dbuf.c revision 297112
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 */
30
31#include <sys/zfs_context.h>
32#include <sys/dmu.h>
33#include <sys/dmu_send.h>
34#include <sys/dmu_impl.h>
35#include <sys/dbuf.h>
36#include <sys/dmu_objset.h>
37#include <sys/dsl_dataset.h>
38#include <sys/dsl_dir.h>
39#include <sys/dmu_tx.h>
40#include <sys/spa.h>
41#include <sys/zio.h>
42#include <sys/dmu_zfetch.h>
43#include <sys/sa.h>
44#include <sys/sa_impl.h>
45#include <sys/zfeature.h>
46#include <sys/blkptr.h>
47#include <sys/range_tree.h>
48
49/*
50 * Number of times that zfs_free_range() took the slow path while doing
51 * a zfs receive.  A nonzero value indicates a potential performance problem.
52 */
53uint64_t zfs_free_range_recv_miss;
54
55static void dbuf_destroy(dmu_buf_impl_t *db);
56static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
57static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
58
59/*
60 * Global data structures and functions for the dbuf cache.
61 */
62static kmem_cache_t *dbuf_cache;
63static taskq_t *dbu_evict_taskq;
64
65/* ARGSUSED */
66static int
67dbuf_cons(void *vdb, void *unused, int kmflag)
68{
69	dmu_buf_impl_t *db = vdb;
70	bzero(db, sizeof (dmu_buf_impl_t));
71
72	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
73	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
74	refcount_create(&db->db_holds);
75
76	return (0);
77}
78
79/* ARGSUSED */
80static void
81dbuf_dest(void *vdb, void *unused)
82{
83	dmu_buf_impl_t *db = vdb;
84	mutex_destroy(&db->db_mtx);
85	cv_destroy(&db->db_changed);
86	refcount_destroy(&db->db_holds);
87}
88
89/*
90 * dbuf hash table routines
91 */
92static dbuf_hash_table_t dbuf_hash_table;
93
94static uint64_t dbuf_hash_count;
95
96static uint64_t
97dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
98{
99	uintptr_t osv = (uintptr_t)os;
100	uint64_t crc = -1ULL;
101
102	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
103	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
104	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
105	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
106	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
107	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
108	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
109
110	crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
111
112	return (crc);
113}
114
115#define	DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid);
116
117#define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
118	((dbuf)->db.db_object == (obj) &&		\
119	(dbuf)->db_objset == (os) &&			\
120	(dbuf)->db_level == (level) &&			\
121	(dbuf)->db_blkid == (blkid))
122
123dmu_buf_impl_t *
124dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
125{
126	dbuf_hash_table_t *h = &dbuf_hash_table;
127	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
128	uint64_t idx = hv & h->hash_table_mask;
129	dmu_buf_impl_t *db;
130
131	mutex_enter(DBUF_HASH_MUTEX(h, idx));
132	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
133		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
134			mutex_enter(&db->db_mtx);
135			if (db->db_state != DB_EVICTING) {
136				mutex_exit(DBUF_HASH_MUTEX(h, idx));
137				return (db);
138			}
139			mutex_exit(&db->db_mtx);
140		}
141	}
142	mutex_exit(DBUF_HASH_MUTEX(h, idx));
143	return (NULL);
144}
145
146static dmu_buf_impl_t *
147dbuf_find_bonus(objset_t *os, uint64_t object)
148{
149	dnode_t *dn;
150	dmu_buf_impl_t *db = NULL;
151
152	if (dnode_hold(os, object, FTAG, &dn) == 0) {
153		rw_enter(&dn->dn_struct_rwlock, RW_READER);
154		if (dn->dn_bonus != NULL) {
155			db = dn->dn_bonus;
156			mutex_enter(&db->db_mtx);
157		}
158		rw_exit(&dn->dn_struct_rwlock);
159		dnode_rele(dn, FTAG);
160	}
161	return (db);
162}
163
164/*
165 * Insert an entry into the hash table.  If there is already an element
166 * equal to elem in the hash table, then the already existing element
167 * will be returned and the new element will not be inserted.
168 * Otherwise returns NULL.
169 */
170static dmu_buf_impl_t *
171dbuf_hash_insert(dmu_buf_impl_t *db)
172{
173	dbuf_hash_table_t *h = &dbuf_hash_table;
174	objset_t *os = db->db_objset;
175	uint64_t obj = db->db.db_object;
176	int level = db->db_level;
177	uint64_t blkid = db->db_blkid;
178	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
179	uint64_t idx = hv & h->hash_table_mask;
180	dmu_buf_impl_t *dbf;
181
182	mutex_enter(DBUF_HASH_MUTEX(h, idx));
183	for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
184		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
185			mutex_enter(&dbf->db_mtx);
186			if (dbf->db_state != DB_EVICTING) {
187				mutex_exit(DBUF_HASH_MUTEX(h, idx));
188				return (dbf);
189			}
190			mutex_exit(&dbf->db_mtx);
191		}
192	}
193
194	mutex_enter(&db->db_mtx);
195	db->db_hash_next = h->hash_table[idx];
196	h->hash_table[idx] = db;
197	mutex_exit(DBUF_HASH_MUTEX(h, idx));
198	atomic_inc_64(&dbuf_hash_count);
199
200	return (NULL);
201}
202
203/*
204 * Remove an entry from the hash table.  It must be in the EVICTING state.
205 */
206static void
207dbuf_hash_remove(dmu_buf_impl_t *db)
208{
209	dbuf_hash_table_t *h = &dbuf_hash_table;
210	uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object,
211	    db->db_level, db->db_blkid);
212	uint64_t idx = hv & h->hash_table_mask;
213	dmu_buf_impl_t *dbf, **dbp;
214
215	/*
216	 * We musn't hold db_mtx to maintain lock ordering:
217	 * DBUF_HASH_MUTEX > db_mtx.
218	 */
219	ASSERT(refcount_is_zero(&db->db_holds));
220	ASSERT(db->db_state == DB_EVICTING);
221	ASSERT(!MUTEX_HELD(&db->db_mtx));
222
223	mutex_enter(DBUF_HASH_MUTEX(h, idx));
224	dbp = &h->hash_table[idx];
225	while ((dbf = *dbp) != db) {
226		dbp = &dbf->db_hash_next;
227		ASSERT(dbf != NULL);
228	}
229	*dbp = db->db_hash_next;
230	db->db_hash_next = NULL;
231	mutex_exit(DBUF_HASH_MUTEX(h, idx));
232	atomic_dec_64(&dbuf_hash_count);
233}
234
235static arc_evict_func_t dbuf_do_evict;
236
237typedef enum {
238	DBVU_EVICTING,
239	DBVU_NOT_EVICTING
240} dbvu_verify_type_t;
241
242static void
243dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
244{
245#ifdef ZFS_DEBUG
246	int64_t holds;
247
248	if (db->db_user == NULL)
249		return;
250
251	/* Only data blocks support the attachment of user data. */
252	ASSERT(db->db_level == 0);
253
254	/* Clients must resolve a dbuf before attaching user data. */
255	ASSERT(db->db.db_data != NULL);
256	ASSERT3U(db->db_state, ==, DB_CACHED);
257
258	holds = refcount_count(&db->db_holds);
259	if (verify_type == DBVU_EVICTING) {
260		/*
261		 * Immediate eviction occurs when holds == dirtycnt.
262		 * For normal eviction buffers, holds is zero on
263		 * eviction, except when dbuf_fix_old_data() calls
264		 * dbuf_clear_data().  However, the hold count can grow
265		 * during eviction even though db_mtx is held (see
266		 * dmu_bonus_hold() for an example), so we can only
267		 * test the generic invariant that holds >= dirtycnt.
268		 */
269		ASSERT3U(holds, >=, db->db_dirtycnt);
270	} else {
271		if (db->db_user_immediate_evict == TRUE)
272			ASSERT3U(holds, >=, db->db_dirtycnt);
273		else
274			ASSERT3U(holds, >, 0);
275	}
276#endif
277}
278
279static void
280dbuf_evict_user(dmu_buf_impl_t *db)
281{
282	dmu_buf_user_t *dbu = db->db_user;
283
284	ASSERT(MUTEX_HELD(&db->db_mtx));
285
286	if (dbu == NULL)
287		return;
288
289	dbuf_verify_user(db, DBVU_EVICTING);
290	db->db_user = NULL;
291
292#ifdef ZFS_DEBUG
293	if (dbu->dbu_clear_on_evict_dbufp != NULL)
294		*dbu->dbu_clear_on_evict_dbufp = NULL;
295#endif
296
297	/*
298	 * Invoke the callback from a taskq to avoid lock order reversals
299	 * and limit stack depth.
300	 */
301	taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func, dbu, 0,
302	    &dbu->dbu_tqent);
303}
304
305boolean_t
306dbuf_is_metadata(dmu_buf_impl_t *db)
307{
308	if (db->db_level > 0) {
309		return (B_TRUE);
310	} else {
311		boolean_t is_metadata;
312
313		DB_DNODE_ENTER(db);
314		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
315		DB_DNODE_EXIT(db);
316
317		return (is_metadata);
318	}
319}
320
321void
322dbuf_evict(dmu_buf_impl_t *db)
323{
324	ASSERT(MUTEX_HELD(&db->db_mtx));
325	ASSERT(db->db_buf == NULL);
326	ASSERT(db->db_data_pending == NULL);
327
328	dbuf_clear(db);
329	dbuf_destroy(db);
330}
331
332void
333dbuf_init(void)
334{
335	uint64_t hsize = 1ULL << 16;
336	dbuf_hash_table_t *h = &dbuf_hash_table;
337	int i;
338
339	/*
340	 * The hash table is big enough to fill all of physical memory
341	 * with an average 4K block size.  The table will take up
342	 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
343	 */
344	while (hsize * 4096 < (uint64_t)physmem * PAGESIZE)
345		hsize <<= 1;
346
347retry:
348	h->hash_table_mask = hsize - 1;
349	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
350	if (h->hash_table == NULL) {
351		/* XXX - we should really return an error instead of assert */
352		ASSERT(hsize > (1ULL << 10));
353		hsize >>= 1;
354		goto retry;
355	}
356
357	dbuf_cache = kmem_cache_create("dmu_buf_impl_t",
358	    sizeof (dmu_buf_impl_t),
359	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
360
361	for (i = 0; i < DBUF_MUTEXES; i++)
362		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
363
364	/*
365	 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
366	 * configuration is not required.
367	 */
368	dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0);
369}
370
371void
372dbuf_fini(void)
373{
374	dbuf_hash_table_t *h = &dbuf_hash_table;
375	int i;
376
377	for (i = 0; i < DBUF_MUTEXES; i++)
378		mutex_destroy(&h->hash_mutexes[i]);
379	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
380	kmem_cache_destroy(dbuf_cache);
381	taskq_destroy(dbu_evict_taskq);
382}
383
384/*
385 * Other stuff.
386 */
387
388#ifdef ZFS_DEBUG
389static void
390dbuf_verify(dmu_buf_impl_t *db)
391{
392	dnode_t *dn;
393	dbuf_dirty_record_t *dr;
394
395	ASSERT(MUTEX_HELD(&db->db_mtx));
396
397	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
398		return;
399
400	ASSERT(db->db_objset != NULL);
401	DB_DNODE_ENTER(db);
402	dn = DB_DNODE(db);
403	if (dn == NULL) {
404		ASSERT(db->db_parent == NULL);
405		ASSERT(db->db_blkptr == NULL);
406	} else {
407		ASSERT3U(db->db.db_object, ==, dn->dn_object);
408		ASSERT3P(db->db_objset, ==, dn->dn_objset);
409		ASSERT3U(db->db_level, <, dn->dn_nlevels);
410		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
411		    db->db_blkid == DMU_SPILL_BLKID ||
412		    !avl_is_empty(&dn->dn_dbufs));
413	}
414	if (db->db_blkid == DMU_BONUS_BLKID) {
415		ASSERT(dn != NULL);
416		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
417		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
418	} else if (db->db_blkid == DMU_SPILL_BLKID) {
419		ASSERT(dn != NULL);
420		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
421		ASSERT0(db->db.db_offset);
422	} else {
423		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
424	}
425
426	for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
427		ASSERT(dr->dr_dbuf == db);
428
429	for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
430		ASSERT(dr->dr_dbuf == db);
431
432	/*
433	 * We can't assert that db_size matches dn_datablksz because it
434	 * can be momentarily different when another thread is doing
435	 * dnode_set_blksz().
436	 */
437	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
438		dr = db->db_data_pending;
439		/*
440		 * It should only be modified in syncing context, so
441		 * make sure we only have one copy of the data.
442		 */
443		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
444	}
445
446	/* verify db->db_blkptr */
447	if (db->db_blkptr) {
448		if (db->db_parent == dn->dn_dbuf) {
449			/* db is pointed to by the dnode */
450			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
451			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
452				ASSERT(db->db_parent == NULL);
453			else
454				ASSERT(db->db_parent != NULL);
455			if (db->db_blkid != DMU_SPILL_BLKID)
456				ASSERT3P(db->db_blkptr, ==,
457				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
458		} else {
459			/* db is pointed to by an indirect block */
460			int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
461			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
462			ASSERT3U(db->db_parent->db.db_object, ==,
463			    db->db.db_object);
464			/*
465			 * dnode_grow_indblksz() can make this fail if we don't
466			 * have the struct_rwlock.  XXX indblksz no longer
467			 * grows.  safe to do this now?
468			 */
469			if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
470				ASSERT3P(db->db_blkptr, ==,
471				    ((blkptr_t *)db->db_parent->db.db_data +
472				    db->db_blkid % epb));
473			}
474		}
475	}
476	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
477	    (db->db_buf == NULL || db->db_buf->b_data) &&
478	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
479	    db->db_state != DB_FILL && !dn->dn_free_txg) {
480		/*
481		 * If the blkptr isn't set but they have nonzero data,
482		 * it had better be dirty, otherwise we'll lose that
483		 * data when we evict this buffer.
484		 */
485		if (db->db_dirtycnt == 0) {
486			uint64_t *buf = db->db.db_data;
487			int i;
488
489			for (i = 0; i < db->db.db_size >> 3; i++) {
490				ASSERT(buf[i] == 0);
491			}
492		}
493	}
494	DB_DNODE_EXIT(db);
495}
496#endif
497
498static void
499dbuf_clear_data(dmu_buf_impl_t *db)
500{
501	ASSERT(MUTEX_HELD(&db->db_mtx));
502	dbuf_evict_user(db);
503	db->db_buf = NULL;
504	db->db.db_data = NULL;
505	if (db->db_state != DB_NOFILL)
506		db->db_state = DB_UNCACHED;
507}
508
509static void
510dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
511{
512	ASSERT(MUTEX_HELD(&db->db_mtx));
513	ASSERT(buf != NULL);
514
515	db->db_buf = buf;
516	ASSERT(buf->b_data != NULL);
517	db->db.db_data = buf->b_data;
518	if (!arc_released(buf))
519		arc_set_callback(buf, dbuf_do_evict, db);
520}
521
522/*
523 * Loan out an arc_buf for read.  Return the loaned arc_buf.
524 */
525arc_buf_t *
526dbuf_loan_arcbuf(dmu_buf_impl_t *db)
527{
528	arc_buf_t *abuf;
529
530	mutex_enter(&db->db_mtx);
531	if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
532		int blksz = db->db.db_size;
533		spa_t *spa = db->db_objset->os_spa;
534
535		mutex_exit(&db->db_mtx);
536		abuf = arc_loan_buf(spa, blksz);
537		bcopy(db->db.db_data, abuf->b_data, blksz);
538	} else {
539		abuf = db->db_buf;
540		arc_loan_inuse_buf(abuf, db);
541		dbuf_clear_data(db);
542		mutex_exit(&db->db_mtx);
543	}
544	return (abuf);
545}
546
547/*
548 * Calculate which level n block references the data at the level 0 offset
549 * provided.
550 */
551uint64_t
552dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset)
553{
554	if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
555		/*
556		 * The level n blkid is equal to the level 0 blkid divided by
557		 * the number of level 0s in a level n block.
558		 *
559		 * The level 0 blkid is offset >> datablkshift =
560		 * offset / 2^datablkshift.
561		 *
562		 * The number of level 0s in a level n is the number of block
563		 * pointers in an indirect block, raised to the power of level.
564		 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
565		 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
566		 *
567		 * Thus, the level n blkid is: offset /
568		 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
569		 * = offset / 2^(datablkshift + level *
570		 *   (indblkshift - SPA_BLKPTRSHIFT))
571		 * = offset >> (datablkshift + level *
572		 *   (indblkshift - SPA_BLKPTRSHIFT))
573		 */
574		return (offset >> (dn->dn_datablkshift + level *
575		    (dn->dn_indblkshift - SPA_BLKPTRSHIFT)));
576	} else {
577		ASSERT3U(offset, <, dn->dn_datablksz);
578		return (0);
579	}
580}
581
582static void
583dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
584{
585	dmu_buf_impl_t *db = vdb;
586
587	mutex_enter(&db->db_mtx);
588	ASSERT3U(db->db_state, ==, DB_READ);
589	/*
590	 * All reads are synchronous, so we must have a hold on the dbuf
591	 */
592	ASSERT(refcount_count(&db->db_holds) > 0);
593	ASSERT(db->db_buf == NULL);
594	ASSERT(db->db.db_data == NULL);
595	if (db->db_level == 0 && db->db_freed_in_flight) {
596		/* we were freed in flight; disregard any error */
597		arc_release(buf, db);
598		bzero(buf->b_data, db->db.db_size);
599		arc_buf_freeze(buf);
600		db->db_freed_in_flight = FALSE;
601		dbuf_set_data(db, buf);
602		db->db_state = DB_CACHED;
603	} else if (zio == NULL || zio->io_error == 0) {
604		dbuf_set_data(db, buf);
605		db->db_state = DB_CACHED;
606	} else {
607		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
608		ASSERT3P(db->db_buf, ==, NULL);
609		VERIFY(arc_buf_remove_ref(buf, db));
610		db->db_state = DB_UNCACHED;
611	}
612	cv_broadcast(&db->db_changed);
613	dbuf_rele_and_unlock(db, NULL);
614}
615
616static void
617dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
618{
619	dnode_t *dn;
620	zbookmark_phys_t zb;
621	arc_flags_t aflags = ARC_FLAG_NOWAIT;
622
623	DB_DNODE_ENTER(db);
624	dn = DB_DNODE(db);
625	ASSERT(!refcount_is_zero(&db->db_holds));
626	/* We need the struct_rwlock to prevent db_blkptr from changing. */
627	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
628	ASSERT(MUTEX_HELD(&db->db_mtx));
629	ASSERT(db->db_state == DB_UNCACHED);
630	ASSERT(db->db_buf == NULL);
631
632	if (db->db_blkid == DMU_BONUS_BLKID) {
633		int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
634
635		ASSERT3U(bonuslen, <=, db->db.db_size);
636		db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
637		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
638		if (bonuslen < DN_MAX_BONUSLEN)
639			bzero(db->db.db_data, DN_MAX_BONUSLEN);
640		if (bonuslen)
641			bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
642		DB_DNODE_EXIT(db);
643		db->db_state = DB_CACHED;
644		mutex_exit(&db->db_mtx);
645		return;
646	}
647
648	/*
649	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
650	 * processes the delete record and clears the bp while we are waiting
651	 * for the dn_mtx (resulting in a "no" from block_freed).
652	 */
653	if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
654	    (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
655	    BP_IS_HOLE(db->db_blkptr)))) {
656		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
657
658		DB_DNODE_EXIT(db);
659		dbuf_set_data(db, arc_buf_alloc(db->db_objset->os_spa,
660		    db->db.db_size, db, type));
661		bzero(db->db.db_data, db->db.db_size);
662		db->db_state = DB_CACHED;
663		mutex_exit(&db->db_mtx);
664		return;
665	}
666
667	DB_DNODE_EXIT(db);
668
669	db->db_state = DB_READ;
670	mutex_exit(&db->db_mtx);
671
672	if (DBUF_IS_L2CACHEABLE(db))
673		aflags |= ARC_FLAG_L2CACHE;
674	if (DBUF_IS_L2COMPRESSIBLE(db))
675		aflags |= ARC_FLAG_L2COMPRESS;
676
677	SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
678	    db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
679	    db->db.db_object, db->db_level, db->db_blkid);
680
681	dbuf_add_ref(db, NULL);
682
683	(void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
684	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
685	    (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
686	    &aflags, &zb);
687}
688
689int
690dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
691{
692	int err = 0;
693	boolean_t havepzio = (zio != NULL);
694	boolean_t prefetch;
695	dnode_t *dn;
696
697	/*
698	 * We don't have to hold the mutex to check db_state because it
699	 * can't be freed while we have a hold on the buffer.
700	 */
701	ASSERT(!refcount_is_zero(&db->db_holds));
702
703	if (db->db_state == DB_NOFILL)
704		return (SET_ERROR(EIO));
705
706	DB_DNODE_ENTER(db);
707	dn = DB_DNODE(db);
708	if ((flags & DB_RF_HAVESTRUCT) == 0)
709		rw_enter(&dn->dn_struct_rwlock, RW_READER);
710
711	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
712	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
713	    DBUF_IS_CACHEABLE(db);
714
715	mutex_enter(&db->db_mtx);
716	if (db->db_state == DB_CACHED) {
717		mutex_exit(&db->db_mtx);
718		if (prefetch)
719			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1);
720		if ((flags & DB_RF_HAVESTRUCT) == 0)
721			rw_exit(&dn->dn_struct_rwlock);
722		DB_DNODE_EXIT(db);
723	} else if (db->db_state == DB_UNCACHED) {
724		spa_t *spa = dn->dn_objset->os_spa;
725
726		if (zio == NULL)
727			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
728		dbuf_read_impl(db, zio, flags);
729
730		/* dbuf_read_impl has dropped db_mtx for us */
731
732		if (prefetch)
733			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1);
734
735		if ((flags & DB_RF_HAVESTRUCT) == 0)
736			rw_exit(&dn->dn_struct_rwlock);
737		DB_DNODE_EXIT(db);
738
739		if (!havepzio)
740			err = zio_wait(zio);
741	} else {
742		/*
743		 * Another reader came in while the dbuf was in flight
744		 * between UNCACHED and CACHED.  Either a writer will finish
745		 * writing the buffer (sending the dbuf to CACHED) or the
746		 * first reader's request will reach the read_done callback
747		 * and send the dbuf to CACHED.  Otherwise, a failure
748		 * occurred and the dbuf went to UNCACHED.
749		 */
750		mutex_exit(&db->db_mtx);
751		if (prefetch)
752			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1);
753		if ((flags & DB_RF_HAVESTRUCT) == 0)
754			rw_exit(&dn->dn_struct_rwlock);
755		DB_DNODE_EXIT(db);
756
757		/* Skip the wait per the caller's request. */
758		mutex_enter(&db->db_mtx);
759		if ((flags & DB_RF_NEVERWAIT) == 0) {
760			while (db->db_state == DB_READ ||
761			    db->db_state == DB_FILL) {
762				ASSERT(db->db_state == DB_READ ||
763				    (flags & DB_RF_HAVESTRUCT) == 0);
764				DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
765				    db, zio_t *, zio);
766				cv_wait(&db->db_changed, &db->db_mtx);
767			}
768			if (db->db_state == DB_UNCACHED)
769				err = SET_ERROR(EIO);
770		}
771		mutex_exit(&db->db_mtx);
772	}
773
774	ASSERT(err || havepzio || db->db_state == DB_CACHED);
775	return (err);
776}
777
778static void
779dbuf_noread(dmu_buf_impl_t *db)
780{
781	ASSERT(!refcount_is_zero(&db->db_holds));
782	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
783	mutex_enter(&db->db_mtx);
784	while (db->db_state == DB_READ || db->db_state == DB_FILL)
785		cv_wait(&db->db_changed, &db->db_mtx);
786	if (db->db_state == DB_UNCACHED) {
787		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
788		spa_t *spa = db->db_objset->os_spa;
789
790		ASSERT(db->db_buf == NULL);
791		ASSERT(db->db.db_data == NULL);
792		dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type));
793		db->db_state = DB_FILL;
794	} else if (db->db_state == DB_NOFILL) {
795		dbuf_clear_data(db);
796	} else {
797		ASSERT3U(db->db_state, ==, DB_CACHED);
798	}
799	mutex_exit(&db->db_mtx);
800}
801
802/*
803 * This is our just-in-time copy function.  It makes a copy of
804 * buffers, that have been modified in a previous transaction
805 * group, before we modify them in the current active group.
806 *
807 * This function is used in two places: when we are dirtying a
808 * buffer for the first time in a txg, and when we are freeing
809 * a range in a dnode that includes this buffer.
810 *
811 * Note that when we are called from dbuf_free_range() we do
812 * not put a hold on the buffer, we just traverse the active
813 * dbuf list for the dnode.
814 */
815static void
816dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
817{
818	dbuf_dirty_record_t *dr = db->db_last_dirty;
819
820	ASSERT(MUTEX_HELD(&db->db_mtx));
821	ASSERT(db->db.db_data != NULL);
822	ASSERT(db->db_level == 0);
823	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
824
825	if (dr == NULL ||
826	    (dr->dt.dl.dr_data !=
827	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
828		return;
829
830	/*
831	 * If the last dirty record for this dbuf has not yet synced
832	 * and its referencing the dbuf data, either:
833	 *	reset the reference to point to a new copy,
834	 * or (if there a no active holders)
835	 *	just null out the current db_data pointer.
836	 */
837	ASSERT(dr->dr_txg >= txg - 2);
838	if (db->db_blkid == DMU_BONUS_BLKID) {
839		/* Note that the data bufs here are zio_bufs */
840		dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
841		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
842		bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
843	} else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
844		int size = db->db.db_size;
845		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
846		spa_t *spa = db->db_objset->os_spa;
847
848		dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type);
849		bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
850	} else {
851		dbuf_clear_data(db);
852	}
853}
854
855void
856dbuf_unoverride(dbuf_dirty_record_t *dr)
857{
858	dmu_buf_impl_t *db = dr->dr_dbuf;
859	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
860	uint64_t txg = dr->dr_txg;
861
862	ASSERT(MUTEX_HELD(&db->db_mtx));
863	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
864	ASSERT(db->db_level == 0);
865
866	if (db->db_blkid == DMU_BONUS_BLKID ||
867	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
868		return;
869
870	ASSERT(db->db_data_pending != dr);
871
872	/* free this block */
873	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
874		zio_free(db->db_objset->os_spa, txg, bp);
875
876	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
877	dr->dt.dl.dr_nopwrite = B_FALSE;
878
879	/*
880	 * Release the already-written buffer, so we leave it in
881	 * a consistent dirty state.  Note that all callers are
882	 * modifying the buffer, so they will immediately do
883	 * another (redundant) arc_release().  Therefore, leave
884	 * the buf thawed to save the effort of freezing &
885	 * immediately re-thawing it.
886	 */
887	arc_release(dr->dt.dl.dr_data, db);
888}
889
890/*
891 * Evict (if its unreferenced) or clear (if its referenced) any level-0
892 * data blocks in the free range, so that any future readers will find
893 * empty blocks.
894 *
895 * This is a no-op if the dataset is in the middle of an incremental
896 * receive; see comment below for details.
897 */
898void
899dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
900    dmu_tx_t *tx)
901{
902	dmu_buf_impl_t db_search;
903	dmu_buf_impl_t *db, *db_next;
904	uint64_t txg = tx->tx_txg;
905	avl_index_t where;
906
907	if (end_blkid > dn->dn_maxblkid && (end_blkid != DMU_SPILL_BLKID))
908		end_blkid = dn->dn_maxblkid;
909	dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
910
911	db_search.db_level = 0;
912	db_search.db_blkid = start_blkid;
913	db_search.db_state = DB_SEARCH;
914
915	mutex_enter(&dn->dn_dbufs_mtx);
916	if (start_blkid >= dn->dn_unlisted_l0_blkid) {
917		/* There can't be any dbufs in this range; no need to search. */
918#ifdef DEBUG
919		db = avl_find(&dn->dn_dbufs, &db_search, &where);
920		ASSERT3P(db, ==, NULL);
921		db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
922		ASSERT(db == NULL || db->db_level > 0);
923#endif
924		mutex_exit(&dn->dn_dbufs_mtx);
925		return;
926	} else if (dmu_objset_is_receiving(dn->dn_objset)) {
927		/*
928		 * If we are receiving, we expect there to be no dbufs in
929		 * the range to be freed, because receive modifies each
930		 * block at most once, and in offset order.  If this is
931		 * not the case, it can lead to performance problems,
932		 * so note that we unexpectedly took the slow path.
933		 */
934		atomic_inc_64(&zfs_free_range_recv_miss);
935	}
936
937	db = avl_find(&dn->dn_dbufs, &db_search, &where);
938	ASSERT3P(db, ==, NULL);
939	db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
940
941	for (; db != NULL; db = db_next) {
942		db_next = AVL_NEXT(&dn->dn_dbufs, db);
943		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
944
945		if (db->db_level != 0 || db->db_blkid > end_blkid) {
946			break;
947		}
948		ASSERT3U(db->db_blkid, >=, start_blkid);
949
950		/* found a level 0 buffer in the range */
951		mutex_enter(&db->db_mtx);
952		if (dbuf_undirty(db, tx)) {
953			/* mutex has been dropped and dbuf destroyed */
954			continue;
955		}
956
957		if (db->db_state == DB_UNCACHED ||
958		    db->db_state == DB_NOFILL ||
959		    db->db_state == DB_EVICTING) {
960			ASSERT(db->db.db_data == NULL);
961			mutex_exit(&db->db_mtx);
962			continue;
963		}
964		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
965			/* will be handled in dbuf_read_done or dbuf_rele */
966			db->db_freed_in_flight = TRUE;
967			mutex_exit(&db->db_mtx);
968			continue;
969		}
970		if (refcount_count(&db->db_holds) == 0) {
971			ASSERT(db->db_buf);
972			dbuf_clear(db);
973			continue;
974		}
975		/* The dbuf is referenced */
976
977		if (db->db_last_dirty != NULL) {
978			dbuf_dirty_record_t *dr = db->db_last_dirty;
979
980			if (dr->dr_txg == txg) {
981				/*
982				 * This buffer is "in-use", re-adjust the file
983				 * size to reflect that this buffer may
984				 * contain new data when we sync.
985				 */
986				if (db->db_blkid != DMU_SPILL_BLKID &&
987				    db->db_blkid > dn->dn_maxblkid)
988					dn->dn_maxblkid = db->db_blkid;
989				dbuf_unoverride(dr);
990			} else {
991				/*
992				 * This dbuf is not dirty in the open context.
993				 * Either uncache it (if its not referenced in
994				 * the open context) or reset its contents to
995				 * empty.
996				 */
997				dbuf_fix_old_data(db, txg);
998			}
999		}
1000		/* clear the contents if its cached */
1001		if (db->db_state == DB_CACHED) {
1002			ASSERT(db->db.db_data != NULL);
1003			arc_release(db->db_buf, db);
1004			bzero(db->db.db_data, db->db.db_size);
1005			arc_buf_freeze(db->db_buf);
1006		}
1007
1008		mutex_exit(&db->db_mtx);
1009	}
1010	mutex_exit(&dn->dn_dbufs_mtx);
1011}
1012
1013static int
1014dbuf_block_freeable(dmu_buf_impl_t *db)
1015{
1016	dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
1017	uint64_t birth_txg = 0;
1018
1019	/*
1020	 * We don't need any locking to protect db_blkptr:
1021	 * If it's syncing, then db_last_dirty will be set
1022	 * so we'll ignore db_blkptr.
1023	 *
1024	 * This logic ensures that only block births for
1025	 * filled blocks are considered.
1026	 */
1027	ASSERT(MUTEX_HELD(&db->db_mtx));
1028	if (db->db_last_dirty && (db->db_blkptr == NULL ||
1029	    !BP_IS_HOLE(db->db_blkptr))) {
1030		birth_txg = db->db_last_dirty->dr_txg;
1031	} else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1032		birth_txg = db->db_blkptr->blk_birth;
1033	}
1034
1035	/*
1036	 * If this block don't exist or is in a snapshot, it can't be freed.
1037	 * Don't pass the bp to dsl_dataset_block_freeable() since we
1038	 * are holding the db_mtx lock and might deadlock if we are
1039	 * prefetching a dedup-ed block.
1040	 */
1041	if (birth_txg != 0)
1042		return (ds == NULL ||
1043		    dsl_dataset_block_freeable(ds, NULL, birth_txg));
1044	else
1045		return (B_FALSE);
1046}
1047
1048void
1049dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1050{
1051	arc_buf_t *buf, *obuf;
1052	int osize = db->db.db_size;
1053	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1054	dnode_t *dn;
1055
1056	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1057
1058	DB_DNODE_ENTER(db);
1059	dn = DB_DNODE(db);
1060
1061	/* XXX does *this* func really need the lock? */
1062	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1063
1064	/*
1065	 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1066	 * is OK, because there can be no other references to the db
1067	 * when we are changing its size, so no concurrent DB_FILL can
1068	 * be happening.
1069	 */
1070	/*
1071	 * XXX we should be doing a dbuf_read, checking the return
1072	 * value and returning that up to our callers
1073	 */
1074	dmu_buf_will_dirty(&db->db, tx);
1075
1076	/* create the data buffer for the new block */
1077	buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type);
1078
1079	/* copy old block data to the new block */
1080	obuf = db->db_buf;
1081	bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1082	/* zero the remainder */
1083	if (size > osize)
1084		bzero((uint8_t *)buf->b_data + osize, size - osize);
1085
1086	mutex_enter(&db->db_mtx);
1087	dbuf_set_data(db, buf);
1088	VERIFY(arc_buf_remove_ref(obuf, db));
1089	db->db.db_size = size;
1090
1091	if (db->db_level == 0) {
1092		ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1093		db->db_last_dirty->dt.dl.dr_data = buf;
1094	}
1095	mutex_exit(&db->db_mtx);
1096
1097	dnode_willuse_space(dn, size-osize, tx);
1098	DB_DNODE_EXIT(db);
1099}
1100
1101void
1102dbuf_release_bp(dmu_buf_impl_t *db)
1103{
1104	objset_t *os = db->db_objset;
1105
1106	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1107	ASSERT(arc_released(os->os_phys_buf) ||
1108	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
1109	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1110
1111	(void) arc_release(db->db_buf, db);
1112}
1113
1114/*
1115 * We already have a dirty record for this TXG, and we are being
1116 * dirtied again.
1117 */
1118static void
1119dbuf_redirty(dbuf_dirty_record_t *dr)
1120{
1121	dmu_buf_impl_t *db = dr->dr_dbuf;
1122
1123	ASSERT(MUTEX_HELD(&db->db_mtx));
1124
1125	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1126		/*
1127		 * If this buffer has already been written out,
1128		 * we now need to reset its state.
1129		 */
1130		dbuf_unoverride(dr);
1131		if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1132		    db->db_state != DB_NOFILL) {
1133			/* Already released on initial dirty, so just thaw. */
1134			ASSERT(arc_released(db->db_buf));
1135			arc_buf_thaw(db->db_buf);
1136		}
1137	}
1138}
1139
1140dbuf_dirty_record_t *
1141dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1142{
1143	dnode_t *dn;
1144	objset_t *os;
1145	dbuf_dirty_record_t **drp, *dr;
1146	int drop_struct_lock = FALSE;
1147	boolean_t do_free_accounting = B_FALSE;
1148	int txgoff = tx->tx_txg & TXG_MASK;
1149
1150	ASSERT(tx->tx_txg != 0);
1151	ASSERT(!refcount_is_zero(&db->db_holds));
1152	DMU_TX_DIRTY_BUF(tx, db);
1153
1154	DB_DNODE_ENTER(db);
1155	dn = DB_DNODE(db);
1156	/*
1157	 * Shouldn't dirty a regular buffer in syncing context.  Private
1158	 * objects may be dirtied in syncing context, but only if they
1159	 * were already pre-dirtied in open context.
1160	 */
1161	ASSERT(!dmu_tx_is_syncing(tx) ||
1162	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1163	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1164	    dn->dn_objset->os_dsl_dataset == NULL);
1165	/*
1166	 * We make this assert for private objects as well, but after we
1167	 * check if we're already dirty.  They are allowed to re-dirty
1168	 * in syncing context.
1169	 */
1170	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1171	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1172	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1173
1174	mutex_enter(&db->db_mtx);
1175	/*
1176	 * XXX make this true for indirects too?  The problem is that
1177	 * transactions created with dmu_tx_create_assigned() from
1178	 * syncing context don't bother holding ahead.
1179	 */
1180	ASSERT(db->db_level != 0 ||
1181	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1182	    db->db_state == DB_NOFILL);
1183
1184	mutex_enter(&dn->dn_mtx);
1185	/*
1186	 * Don't set dirtyctx to SYNC if we're just modifying this as we
1187	 * initialize the objset.
1188	 */
1189	if (dn->dn_dirtyctx == DN_UNDIRTIED &&
1190	    !BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1191		dn->dn_dirtyctx =
1192		    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1193		ASSERT(dn->dn_dirtyctx_firstset == NULL);
1194		dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1195	}
1196	mutex_exit(&dn->dn_mtx);
1197
1198	if (db->db_blkid == DMU_SPILL_BLKID)
1199		dn->dn_have_spill = B_TRUE;
1200
1201	/*
1202	 * If this buffer is already dirty, we're done.
1203	 */
1204	drp = &db->db_last_dirty;
1205	ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1206	    db->db.db_object == DMU_META_DNODE_OBJECT);
1207	while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1208		drp = &dr->dr_next;
1209	if (dr && dr->dr_txg == tx->tx_txg) {
1210		DB_DNODE_EXIT(db);
1211
1212		dbuf_redirty(dr);
1213		mutex_exit(&db->db_mtx);
1214		return (dr);
1215	}
1216
1217	/*
1218	 * Only valid if not already dirty.
1219	 */
1220	ASSERT(dn->dn_object == 0 ||
1221	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1222	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1223
1224	ASSERT3U(dn->dn_nlevels, >, db->db_level);
1225	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1226	    dn->dn_phys->dn_nlevels > db->db_level ||
1227	    dn->dn_next_nlevels[txgoff] > db->db_level ||
1228	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1229	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1230
1231	/*
1232	 * We should only be dirtying in syncing context if it's the
1233	 * mos or we're initializing the os or it's a special object.
1234	 * However, we are allowed to dirty in syncing context provided
1235	 * we already dirtied it in open context.  Hence we must make
1236	 * this assertion only if we're not already dirty.
1237	 */
1238	os = dn->dn_objset;
1239	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1240	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1241	ASSERT(db->db.db_size != 0);
1242
1243	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1244
1245	if (db->db_blkid != DMU_BONUS_BLKID) {
1246		/*
1247		 * Update the accounting.
1248		 * Note: we delay "free accounting" until after we drop
1249		 * the db_mtx.  This keeps us from grabbing other locks
1250		 * (and possibly deadlocking) in bp_get_dsize() while
1251		 * also holding the db_mtx.
1252		 */
1253		dnode_willuse_space(dn, db->db.db_size, tx);
1254		do_free_accounting = dbuf_block_freeable(db);
1255	}
1256
1257	/*
1258	 * If this buffer is dirty in an old transaction group we need
1259	 * to make a copy of it so that the changes we make in this
1260	 * transaction group won't leak out when we sync the older txg.
1261	 */
1262	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1263	if (db->db_level == 0) {
1264		void *data_old = db->db_buf;
1265
1266		if (db->db_state != DB_NOFILL) {
1267			if (db->db_blkid == DMU_BONUS_BLKID) {
1268				dbuf_fix_old_data(db, tx->tx_txg);
1269				data_old = db->db.db_data;
1270			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1271				/*
1272				 * Release the data buffer from the cache so
1273				 * that we can modify it without impacting
1274				 * possible other users of this cached data
1275				 * block.  Note that indirect blocks and
1276				 * private objects are not released until the
1277				 * syncing state (since they are only modified
1278				 * then).
1279				 */
1280				arc_release(db->db_buf, db);
1281				dbuf_fix_old_data(db, tx->tx_txg);
1282				data_old = db->db_buf;
1283			}
1284			ASSERT(data_old != NULL);
1285		}
1286		dr->dt.dl.dr_data = data_old;
1287	} else {
1288		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1289		list_create(&dr->dt.di.dr_children,
1290		    sizeof (dbuf_dirty_record_t),
1291		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
1292	}
1293	if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1294		dr->dr_accounted = db->db.db_size;
1295	dr->dr_dbuf = db;
1296	dr->dr_txg = tx->tx_txg;
1297	dr->dr_next = *drp;
1298	*drp = dr;
1299
1300	/*
1301	 * We could have been freed_in_flight between the dbuf_noread
1302	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
1303	 * happened after the free.
1304	 */
1305	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1306	    db->db_blkid != DMU_SPILL_BLKID) {
1307		mutex_enter(&dn->dn_mtx);
1308		if (dn->dn_free_ranges[txgoff] != NULL) {
1309			range_tree_clear(dn->dn_free_ranges[txgoff],
1310			    db->db_blkid, 1);
1311		}
1312		mutex_exit(&dn->dn_mtx);
1313		db->db_freed_in_flight = FALSE;
1314	}
1315
1316	/*
1317	 * This buffer is now part of this txg
1318	 */
1319	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1320	db->db_dirtycnt += 1;
1321	ASSERT3U(db->db_dirtycnt, <=, 3);
1322
1323	mutex_exit(&db->db_mtx);
1324
1325	if (db->db_blkid == DMU_BONUS_BLKID ||
1326	    db->db_blkid == DMU_SPILL_BLKID) {
1327		mutex_enter(&dn->dn_mtx);
1328		ASSERT(!list_link_active(&dr->dr_dirty_node));
1329		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1330		mutex_exit(&dn->dn_mtx);
1331		dnode_setdirty(dn, tx);
1332		DB_DNODE_EXIT(db);
1333		return (dr);
1334	} else if (do_free_accounting) {
1335		blkptr_t *bp = db->db_blkptr;
1336		int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
1337		    bp_get_dsize(os->os_spa, bp) : db->db.db_size;
1338		/*
1339		 * This is only a guess -- if the dbuf is dirty
1340		 * in a previous txg, we don't know how much
1341		 * space it will use on disk yet.  We should
1342		 * really have the struct_rwlock to access
1343		 * db_blkptr, but since this is just a guess,
1344		 * it's OK if we get an odd answer.
1345		 */
1346		ddt_prefetch(os->os_spa, bp);
1347		dnode_willuse_space(dn, -willfree, tx);
1348	}
1349
1350	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1351		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1352		drop_struct_lock = TRUE;
1353	}
1354
1355	if (db->db_level == 0) {
1356		dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1357		ASSERT(dn->dn_maxblkid >= db->db_blkid);
1358	}
1359
1360	if (db->db_level+1 < dn->dn_nlevels) {
1361		dmu_buf_impl_t *parent = db->db_parent;
1362		dbuf_dirty_record_t *di;
1363		int parent_held = FALSE;
1364
1365		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1366			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1367
1368			parent = dbuf_hold_level(dn, db->db_level+1,
1369			    db->db_blkid >> epbs, FTAG);
1370			ASSERT(parent != NULL);
1371			parent_held = TRUE;
1372		}
1373		if (drop_struct_lock)
1374			rw_exit(&dn->dn_struct_rwlock);
1375		ASSERT3U(db->db_level+1, ==, parent->db_level);
1376		di = dbuf_dirty(parent, tx);
1377		if (parent_held)
1378			dbuf_rele(parent, FTAG);
1379
1380		mutex_enter(&db->db_mtx);
1381		/*
1382		 * Since we've dropped the mutex, it's possible that
1383		 * dbuf_undirty() might have changed this out from under us.
1384		 */
1385		if (db->db_last_dirty == dr ||
1386		    dn->dn_object == DMU_META_DNODE_OBJECT) {
1387			mutex_enter(&di->dt.di.dr_mtx);
1388			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1389			ASSERT(!list_link_active(&dr->dr_dirty_node));
1390			list_insert_tail(&di->dt.di.dr_children, dr);
1391			mutex_exit(&di->dt.di.dr_mtx);
1392			dr->dr_parent = di;
1393		}
1394		mutex_exit(&db->db_mtx);
1395	} else {
1396		ASSERT(db->db_level+1 == dn->dn_nlevels);
1397		ASSERT(db->db_blkid < dn->dn_nblkptr);
1398		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1399		mutex_enter(&dn->dn_mtx);
1400		ASSERT(!list_link_active(&dr->dr_dirty_node));
1401		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1402		mutex_exit(&dn->dn_mtx);
1403		if (drop_struct_lock)
1404			rw_exit(&dn->dn_struct_rwlock);
1405	}
1406
1407	dnode_setdirty(dn, tx);
1408	DB_DNODE_EXIT(db);
1409	return (dr);
1410}
1411
1412/*
1413 * Undirty a buffer in the transaction group referenced by the given
1414 * transaction.  Return whether this evicted the dbuf.
1415 */
1416static boolean_t
1417dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1418{
1419	dnode_t *dn;
1420	uint64_t txg = tx->tx_txg;
1421	dbuf_dirty_record_t *dr, **drp;
1422
1423	ASSERT(txg != 0);
1424
1425	/*
1426	 * Due to our use of dn_nlevels below, this can only be called
1427	 * in open context, unless we are operating on the MOS.
1428	 * From syncing context, dn_nlevels may be different from the
1429	 * dn_nlevels used when dbuf was dirtied.
1430	 */
1431	ASSERT(db->db_objset ==
1432	    dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1433	    txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1434	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1435	ASSERT0(db->db_level);
1436	ASSERT(MUTEX_HELD(&db->db_mtx));
1437
1438	/*
1439	 * If this buffer is not dirty, we're done.
1440	 */
1441	for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1442		if (dr->dr_txg <= txg)
1443			break;
1444	if (dr == NULL || dr->dr_txg < txg)
1445		return (B_FALSE);
1446	ASSERT(dr->dr_txg == txg);
1447	ASSERT(dr->dr_dbuf == db);
1448
1449	DB_DNODE_ENTER(db);
1450	dn = DB_DNODE(db);
1451
1452	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1453
1454	ASSERT(db->db.db_size != 0);
1455
1456	dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1457	    dr->dr_accounted, txg);
1458
1459	*drp = dr->dr_next;
1460
1461	/*
1462	 * Note that there are three places in dbuf_dirty()
1463	 * where this dirty record may be put on a list.
1464	 * Make sure to do a list_remove corresponding to
1465	 * every one of those list_insert calls.
1466	 */
1467	if (dr->dr_parent) {
1468		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1469		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1470		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1471	} else if (db->db_blkid == DMU_SPILL_BLKID ||
1472	    db->db_level + 1 == dn->dn_nlevels) {
1473		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1474		mutex_enter(&dn->dn_mtx);
1475		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1476		mutex_exit(&dn->dn_mtx);
1477	}
1478	DB_DNODE_EXIT(db);
1479
1480	if (db->db_state != DB_NOFILL) {
1481		dbuf_unoverride(dr);
1482
1483		ASSERT(db->db_buf != NULL);
1484		ASSERT(dr->dt.dl.dr_data != NULL);
1485		if (dr->dt.dl.dr_data != db->db_buf)
1486			VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db));
1487	}
1488
1489	kmem_free(dr, sizeof (dbuf_dirty_record_t));
1490
1491	ASSERT(db->db_dirtycnt > 0);
1492	db->db_dirtycnt -= 1;
1493
1494	if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1495		arc_buf_t *buf = db->db_buf;
1496
1497		ASSERT(db->db_state == DB_NOFILL || arc_released(buf));
1498		dbuf_clear_data(db);
1499		VERIFY(arc_buf_remove_ref(buf, db));
1500		dbuf_evict(db);
1501		return (B_TRUE);
1502	}
1503
1504	return (B_FALSE);
1505}
1506
1507void
1508dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1509{
1510	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1511	int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1512
1513	ASSERT(tx->tx_txg != 0);
1514	ASSERT(!refcount_is_zero(&db->db_holds));
1515
1516	/*
1517	 * Quick check for dirtyness.  For already dirty blocks, this
1518	 * reduces runtime of this function by >90%, and overall performance
1519	 * by 50% for some workloads (e.g. file deletion with indirect blocks
1520	 * cached).
1521	 */
1522	mutex_enter(&db->db_mtx);
1523	dbuf_dirty_record_t *dr;
1524	for (dr = db->db_last_dirty;
1525	    dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
1526		/*
1527		 * It's possible that it is already dirty but not cached,
1528		 * because there are some calls to dbuf_dirty() that don't
1529		 * go through dmu_buf_will_dirty().
1530		 */
1531		if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
1532			/* This dbuf is already dirty and cached. */
1533			dbuf_redirty(dr);
1534			mutex_exit(&db->db_mtx);
1535			return;
1536		}
1537	}
1538	mutex_exit(&db->db_mtx);
1539
1540	DB_DNODE_ENTER(db);
1541	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1542		rf |= DB_RF_HAVESTRUCT;
1543	DB_DNODE_EXIT(db);
1544	(void) dbuf_read(db, NULL, rf);
1545	(void) dbuf_dirty(db, tx);
1546}
1547
1548void
1549dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1550{
1551	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1552
1553	db->db_state = DB_NOFILL;
1554
1555	dmu_buf_will_fill(db_fake, tx);
1556}
1557
1558void
1559dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1560{
1561	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1562
1563	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1564	ASSERT(tx->tx_txg != 0);
1565	ASSERT(db->db_level == 0);
1566	ASSERT(!refcount_is_zero(&db->db_holds));
1567
1568	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1569	    dmu_tx_private_ok(tx));
1570
1571	dbuf_noread(db);
1572	(void) dbuf_dirty(db, tx);
1573}
1574
1575#pragma weak dmu_buf_fill_done = dbuf_fill_done
1576/* ARGSUSED */
1577void
1578dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1579{
1580	mutex_enter(&db->db_mtx);
1581	DBUF_VERIFY(db);
1582
1583	if (db->db_state == DB_FILL) {
1584		if (db->db_level == 0 && db->db_freed_in_flight) {
1585			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1586			/* we were freed while filling */
1587			/* XXX dbuf_undirty? */
1588			bzero(db->db.db_data, db->db.db_size);
1589			db->db_freed_in_flight = FALSE;
1590		}
1591		db->db_state = DB_CACHED;
1592		cv_broadcast(&db->db_changed);
1593	}
1594	mutex_exit(&db->db_mtx);
1595}
1596
1597void
1598dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1599    bp_embedded_type_t etype, enum zio_compress comp,
1600    int uncompressed_size, int compressed_size, int byteorder,
1601    dmu_tx_t *tx)
1602{
1603	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
1604	struct dirty_leaf *dl;
1605	dmu_object_type_t type;
1606
1607	if (etype == BP_EMBEDDED_TYPE_DATA) {
1608		ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
1609		    SPA_FEATURE_EMBEDDED_DATA));
1610	}
1611
1612	DB_DNODE_ENTER(db);
1613	type = DB_DNODE(db)->dn_type;
1614	DB_DNODE_EXIT(db);
1615
1616	ASSERT0(db->db_level);
1617	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1618
1619	dmu_buf_will_not_fill(dbuf, tx);
1620
1621	ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1622	dl = &db->db_last_dirty->dt.dl;
1623	encode_embedded_bp_compressed(&dl->dr_overridden_by,
1624	    data, comp, uncompressed_size, compressed_size);
1625	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
1626	BP_SET_TYPE(&dl->dr_overridden_by, type);
1627	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
1628	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
1629
1630	dl->dr_override_state = DR_OVERRIDDEN;
1631	dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
1632}
1633
1634/*
1635 * Directly assign a provided arc buf to a given dbuf if it's not referenced
1636 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1637 */
1638void
1639dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1640{
1641	ASSERT(!refcount_is_zero(&db->db_holds));
1642	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1643	ASSERT(db->db_level == 0);
1644	ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA);
1645	ASSERT(buf != NULL);
1646	ASSERT(arc_buf_size(buf) == db->db.db_size);
1647	ASSERT(tx->tx_txg != 0);
1648
1649	arc_return_buf(buf, db);
1650	ASSERT(arc_released(buf));
1651
1652	mutex_enter(&db->db_mtx);
1653
1654	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1655		cv_wait(&db->db_changed, &db->db_mtx);
1656
1657	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1658
1659	if (db->db_state == DB_CACHED &&
1660	    refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1661		mutex_exit(&db->db_mtx);
1662		(void) dbuf_dirty(db, tx);
1663		bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1664		VERIFY(arc_buf_remove_ref(buf, db));
1665		xuio_stat_wbuf_copied();
1666		return;
1667	}
1668
1669	xuio_stat_wbuf_nocopy();
1670	if (db->db_state == DB_CACHED) {
1671		dbuf_dirty_record_t *dr = db->db_last_dirty;
1672
1673		ASSERT(db->db_buf != NULL);
1674		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1675			ASSERT(dr->dt.dl.dr_data == db->db_buf);
1676			if (!arc_released(db->db_buf)) {
1677				ASSERT(dr->dt.dl.dr_override_state ==
1678				    DR_OVERRIDDEN);
1679				arc_release(db->db_buf, db);
1680			}
1681			dr->dt.dl.dr_data = buf;
1682			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1683		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
1684			arc_release(db->db_buf, db);
1685			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1686		}
1687		db->db_buf = NULL;
1688	}
1689	ASSERT(db->db_buf == NULL);
1690	dbuf_set_data(db, buf);
1691	db->db_state = DB_FILL;
1692	mutex_exit(&db->db_mtx);
1693	(void) dbuf_dirty(db, tx);
1694	dmu_buf_fill_done(&db->db, tx);
1695}
1696
1697/*
1698 * "Clear" the contents of this dbuf.  This will mark the dbuf
1699 * EVICTING and clear *most* of its references.  Unfortunately,
1700 * when we are not holding the dn_dbufs_mtx, we can't clear the
1701 * entry in the dn_dbufs list.  We have to wait until dbuf_destroy()
1702 * in this case.  For callers from the DMU we will usually see:
1703 *	dbuf_clear()->arc_clear_callback()->dbuf_do_evict()->dbuf_destroy()
1704 * For the arc callback, we will usually see:
1705 *	dbuf_do_evict()->dbuf_clear();dbuf_destroy()
1706 * Sometimes, though, we will get a mix of these two:
1707 *	DMU: dbuf_clear()->arc_clear_callback()
1708 *	ARC: dbuf_do_evict()->dbuf_destroy()
1709 *
1710 * This routine will dissociate the dbuf from the arc, by calling
1711 * arc_clear_callback(), but will not evict the data from the ARC.
1712 */
1713void
1714dbuf_clear(dmu_buf_impl_t *db)
1715{
1716	dnode_t *dn;
1717	dmu_buf_impl_t *parent = db->db_parent;
1718	dmu_buf_impl_t *dndb;
1719	boolean_t dbuf_gone = B_FALSE;
1720
1721	ASSERT(MUTEX_HELD(&db->db_mtx));
1722	ASSERT(refcount_is_zero(&db->db_holds));
1723
1724	dbuf_evict_user(db);
1725
1726	if (db->db_state == DB_CACHED) {
1727		ASSERT(db->db.db_data != NULL);
1728		if (db->db_blkid == DMU_BONUS_BLKID) {
1729			zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
1730			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1731		}
1732		db->db.db_data = NULL;
1733		db->db_state = DB_UNCACHED;
1734	}
1735
1736	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1737	ASSERT(db->db_data_pending == NULL);
1738
1739	db->db_state = DB_EVICTING;
1740	db->db_blkptr = NULL;
1741
1742	DB_DNODE_ENTER(db);
1743	dn = DB_DNODE(db);
1744	dndb = dn->dn_dbuf;
1745	if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) {
1746		avl_remove(&dn->dn_dbufs, db);
1747		atomic_dec_32(&dn->dn_dbufs_count);
1748		membar_producer();
1749		DB_DNODE_EXIT(db);
1750		/*
1751		 * Decrementing the dbuf count means that the hold corresponding
1752		 * to the removed dbuf is no longer discounted in dnode_move(),
1753		 * so the dnode cannot be moved until after we release the hold.
1754		 * The membar_producer() ensures visibility of the decremented
1755		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
1756		 * release any lock.
1757		 */
1758		dnode_rele(dn, db);
1759		db->db_dnode_handle = NULL;
1760	} else {
1761		DB_DNODE_EXIT(db);
1762	}
1763
1764	if (db->db_buf)
1765		dbuf_gone = arc_clear_callback(db->db_buf);
1766
1767	if (!dbuf_gone)
1768		mutex_exit(&db->db_mtx);
1769
1770	/*
1771	 * If this dbuf is referenced from an indirect dbuf,
1772	 * decrement the ref count on the indirect dbuf.
1773	 */
1774	if (parent && parent != dndb)
1775		dbuf_rele(parent, db);
1776}
1777
1778/*
1779 * Note: While bpp will always be updated if the function returns success,
1780 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
1781 * this happens when the dnode is the meta-dnode, or a userused or groupused
1782 * object.
1783 */
1784static int
1785dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
1786    dmu_buf_impl_t **parentp, blkptr_t **bpp)
1787{
1788	int nlevels, epbs;
1789
1790	*parentp = NULL;
1791	*bpp = NULL;
1792
1793	ASSERT(blkid != DMU_BONUS_BLKID);
1794
1795	if (blkid == DMU_SPILL_BLKID) {
1796		mutex_enter(&dn->dn_mtx);
1797		if (dn->dn_have_spill &&
1798		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1799			*bpp = &dn->dn_phys->dn_spill;
1800		else
1801			*bpp = NULL;
1802		dbuf_add_ref(dn->dn_dbuf, NULL);
1803		*parentp = dn->dn_dbuf;
1804		mutex_exit(&dn->dn_mtx);
1805		return (0);
1806	}
1807
1808	if (dn->dn_phys->dn_nlevels == 0)
1809		nlevels = 1;
1810	else
1811		nlevels = dn->dn_phys->dn_nlevels;
1812
1813	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1814
1815	ASSERT3U(level * epbs, <, 64);
1816	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1817	if (level >= nlevels ||
1818	    (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
1819		/* the buffer has no parent yet */
1820		return (SET_ERROR(ENOENT));
1821	} else if (level < nlevels-1) {
1822		/* this block is referenced from an indirect block */
1823		int err = dbuf_hold_impl(dn, level+1,
1824		    blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
1825		if (err)
1826			return (err);
1827		err = dbuf_read(*parentp, NULL,
1828		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
1829		if (err) {
1830			dbuf_rele(*parentp, NULL);
1831			*parentp = NULL;
1832			return (err);
1833		}
1834		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
1835		    (blkid & ((1ULL << epbs) - 1));
1836		return (0);
1837	} else {
1838		/* the block is referenced from the dnode */
1839		ASSERT3U(level, ==, nlevels-1);
1840		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
1841		    blkid < dn->dn_phys->dn_nblkptr);
1842		if (dn->dn_dbuf) {
1843			dbuf_add_ref(dn->dn_dbuf, NULL);
1844			*parentp = dn->dn_dbuf;
1845		}
1846		*bpp = &dn->dn_phys->dn_blkptr[blkid];
1847		return (0);
1848	}
1849}
1850
1851static dmu_buf_impl_t *
1852dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
1853    dmu_buf_impl_t *parent, blkptr_t *blkptr)
1854{
1855	objset_t *os = dn->dn_objset;
1856	dmu_buf_impl_t *db, *odb;
1857
1858	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1859	ASSERT(dn->dn_type != DMU_OT_NONE);
1860
1861	db = kmem_cache_alloc(dbuf_cache, KM_SLEEP);
1862
1863	db->db_objset = os;
1864	db->db.db_object = dn->dn_object;
1865	db->db_level = level;
1866	db->db_blkid = blkid;
1867	db->db_last_dirty = NULL;
1868	db->db_dirtycnt = 0;
1869	db->db_dnode_handle = dn->dn_handle;
1870	db->db_parent = parent;
1871	db->db_blkptr = blkptr;
1872
1873	db->db_user = NULL;
1874	db->db_user_immediate_evict = FALSE;
1875	db->db_freed_in_flight = FALSE;
1876	db->db_pending_evict = FALSE;
1877
1878	if (blkid == DMU_BONUS_BLKID) {
1879		ASSERT3P(parent, ==, dn->dn_dbuf);
1880		db->db.db_size = DN_MAX_BONUSLEN -
1881		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
1882		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1883		db->db.db_offset = DMU_BONUS_BLKID;
1884		db->db_state = DB_UNCACHED;
1885		/* the bonus dbuf is not placed in the hash table */
1886		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1887		return (db);
1888	} else if (blkid == DMU_SPILL_BLKID) {
1889		db->db.db_size = (blkptr != NULL) ?
1890		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
1891		db->db.db_offset = 0;
1892	} else {
1893		int blocksize =
1894		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
1895		db->db.db_size = blocksize;
1896		db->db.db_offset = db->db_blkid * blocksize;
1897	}
1898
1899	/*
1900	 * Hold the dn_dbufs_mtx while we get the new dbuf
1901	 * in the hash table *and* added to the dbufs list.
1902	 * This prevents a possible deadlock with someone
1903	 * trying to look up this dbuf before its added to the
1904	 * dn_dbufs list.
1905	 */
1906	mutex_enter(&dn->dn_dbufs_mtx);
1907	db->db_state = DB_EVICTING;
1908	if ((odb = dbuf_hash_insert(db)) != NULL) {
1909		/* someone else inserted it first */
1910		kmem_cache_free(dbuf_cache, db);
1911		mutex_exit(&dn->dn_dbufs_mtx);
1912		return (odb);
1913	}
1914	avl_add(&dn->dn_dbufs, db);
1915	if (db->db_level == 0 && db->db_blkid >=
1916	    dn->dn_unlisted_l0_blkid)
1917		dn->dn_unlisted_l0_blkid = db->db_blkid + 1;
1918	db->db_state = DB_UNCACHED;
1919	mutex_exit(&dn->dn_dbufs_mtx);
1920	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1921
1922	if (parent && parent != dn->dn_dbuf)
1923		dbuf_add_ref(parent, db);
1924
1925	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1926	    refcount_count(&dn->dn_holds) > 0);
1927	(void) refcount_add(&dn->dn_holds, db);
1928	atomic_inc_32(&dn->dn_dbufs_count);
1929
1930	dprintf_dbuf(db, "db=%p\n", db);
1931
1932	return (db);
1933}
1934
1935static int
1936dbuf_do_evict(void *private)
1937{
1938	dmu_buf_impl_t *db = private;
1939
1940	if (!MUTEX_HELD(&db->db_mtx))
1941		mutex_enter(&db->db_mtx);
1942
1943	ASSERT(refcount_is_zero(&db->db_holds));
1944
1945	if (db->db_state != DB_EVICTING) {
1946		ASSERT(db->db_state == DB_CACHED);
1947		DBUF_VERIFY(db);
1948		db->db_buf = NULL;
1949		dbuf_evict(db);
1950	} else {
1951		mutex_exit(&db->db_mtx);
1952		dbuf_destroy(db);
1953	}
1954	return (0);
1955}
1956
1957static void
1958dbuf_destroy(dmu_buf_impl_t *db)
1959{
1960	ASSERT(refcount_is_zero(&db->db_holds));
1961
1962	if (db->db_blkid != DMU_BONUS_BLKID) {
1963		/*
1964		 * If this dbuf is still on the dn_dbufs list,
1965		 * remove it from that list.
1966		 */
1967		if (db->db_dnode_handle != NULL) {
1968			dnode_t *dn;
1969
1970			DB_DNODE_ENTER(db);
1971			dn = DB_DNODE(db);
1972			mutex_enter(&dn->dn_dbufs_mtx);
1973			avl_remove(&dn->dn_dbufs, db);
1974			atomic_dec_32(&dn->dn_dbufs_count);
1975			mutex_exit(&dn->dn_dbufs_mtx);
1976			DB_DNODE_EXIT(db);
1977			/*
1978			 * Decrementing the dbuf count means that the hold
1979			 * corresponding to the removed dbuf is no longer
1980			 * discounted in dnode_move(), so the dnode cannot be
1981			 * moved until after we release the hold.
1982			 */
1983			dnode_rele(dn, db);
1984			db->db_dnode_handle = NULL;
1985		}
1986		dbuf_hash_remove(db);
1987	}
1988	db->db_parent = NULL;
1989	db->db_buf = NULL;
1990
1991	ASSERT(db->db.db_data == NULL);
1992	ASSERT(db->db_hash_next == NULL);
1993	ASSERT(db->db_blkptr == NULL);
1994	ASSERT(db->db_data_pending == NULL);
1995
1996	kmem_cache_free(dbuf_cache, db);
1997	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1998}
1999
2000typedef struct dbuf_prefetch_arg {
2001	spa_t *dpa_spa;	/* The spa to issue the prefetch in. */
2002	zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2003	int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2004	int dpa_curlevel; /* The current level that we're reading */
2005	zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2006	zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2007	arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2008} dbuf_prefetch_arg_t;
2009
2010/*
2011 * Actually issue the prefetch read for the block given.
2012 */
2013static void
2014dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2015{
2016	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2017		return;
2018
2019	arc_flags_t aflags =
2020	    dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2021
2022	ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2023	ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2024	ASSERT(dpa->dpa_zio != NULL);
2025	(void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2026	    dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2027	    &aflags, &dpa->dpa_zb);
2028}
2029
2030/*
2031 * Called when an indirect block above our prefetch target is read in.  This
2032 * will either read in the next indirect block down the tree or issue the actual
2033 * prefetch if the next block down is our target.
2034 */
2035static void
2036dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private)
2037{
2038	dbuf_prefetch_arg_t *dpa = private;
2039
2040	ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2041	ASSERT3S(dpa->dpa_curlevel, >, 0);
2042	if (zio != NULL) {
2043		ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2044		ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2045		ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2046	}
2047
2048	dpa->dpa_curlevel--;
2049
2050	uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2051	    (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2052	blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2053	    P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2054	if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) {
2055		kmem_free(dpa, sizeof (*dpa));
2056	} else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2057		ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2058		dbuf_issue_final_prefetch(dpa, bp);
2059		kmem_free(dpa, sizeof (*dpa));
2060	} else {
2061		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2062		zbookmark_phys_t zb;
2063
2064		ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2065
2066		SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2067		    dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2068
2069		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2070		    bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2071		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2072		    &iter_aflags, &zb);
2073	}
2074	(void) arc_buf_remove_ref(abuf, private);
2075}
2076
2077/*
2078 * Issue prefetch reads for the given block on the given level.  If the indirect
2079 * blocks above that block are not in memory, we will read them in
2080 * asynchronously.  As a result, this call never blocks waiting for a read to
2081 * complete.
2082 */
2083void
2084dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2085    arc_flags_t aflags)
2086{
2087	blkptr_t bp;
2088	int epbs, nlevels, curlevel;
2089	uint64_t curblkid;
2090
2091	ASSERT(blkid != DMU_BONUS_BLKID);
2092	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2093
2094	if (blkid > dn->dn_maxblkid)
2095		return;
2096
2097	if (dnode_block_freed(dn, blkid))
2098		return;
2099
2100	/*
2101	 * This dnode hasn't been written to disk yet, so there's nothing to
2102	 * prefetch.
2103	 */
2104	nlevels = dn->dn_phys->dn_nlevels;
2105	if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2106		return;
2107
2108	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2109	if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2110		return;
2111
2112	dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2113	    level, blkid);
2114	if (db != NULL) {
2115		mutex_exit(&db->db_mtx);
2116		/*
2117		 * This dbuf already exists.  It is either CACHED, or
2118		 * (we assume) about to be read or filled.
2119		 */
2120		return;
2121	}
2122
2123	/*
2124	 * Find the closest ancestor (indirect block) of the target block
2125	 * that is present in the cache.  In this indirect block, we will
2126	 * find the bp that is at curlevel, curblkid.
2127	 */
2128	curlevel = level;
2129	curblkid = blkid;
2130	while (curlevel < nlevels - 1) {
2131		int parent_level = curlevel + 1;
2132		uint64_t parent_blkid = curblkid >> epbs;
2133		dmu_buf_impl_t *db;
2134
2135		if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2136		    FALSE, TRUE, FTAG, &db) == 0) {
2137			blkptr_t *bpp = db->db_buf->b_data;
2138			bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2139			dbuf_rele(db, FTAG);
2140			break;
2141		}
2142
2143		curlevel = parent_level;
2144		curblkid = parent_blkid;
2145	}
2146
2147	if (curlevel == nlevels - 1) {
2148		/* No cached indirect blocks found. */
2149		ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2150		bp = dn->dn_phys->dn_blkptr[curblkid];
2151	}
2152	if (BP_IS_HOLE(&bp))
2153		return;
2154
2155	ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2156
2157	zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2158	    ZIO_FLAG_CANFAIL);
2159
2160	dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2161	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2162	SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2163	    dn->dn_object, level, blkid);
2164	dpa->dpa_curlevel = curlevel;
2165	dpa->dpa_prio = prio;
2166	dpa->dpa_aflags = aflags;
2167	dpa->dpa_spa = dn->dn_objset->os_spa;
2168	dpa->dpa_epbs = epbs;
2169	dpa->dpa_zio = pio;
2170
2171	/*
2172	 * If we have the indirect just above us, no need to do the asynchronous
2173	 * prefetch chain; we'll just run the last step ourselves.  If we're at
2174	 * a higher level, though, we want to issue the prefetches for all the
2175	 * indirect blocks asynchronously, so we can go on with whatever we were
2176	 * doing.
2177	 */
2178	if (curlevel == level) {
2179		ASSERT3U(curblkid, ==, blkid);
2180		dbuf_issue_final_prefetch(dpa, &bp);
2181		kmem_free(dpa, sizeof (*dpa));
2182	} else {
2183		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2184		zbookmark_phys_t zb;
2185
2186		SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2187		    dn->dn_object, curlevel, curblkid);
2188		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2189		    &bp, dbuf_prefetch_indirect_done, dpa, prio,
2190		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2191		    &iter_aflags, &zb);
2192	}
2193	/*
2194	 * We use pio here instead of dpa_zio since it's possible that
2195	 * dpa may have already been freed.
2196	 */
2197	zio_nowait(pio);
2198}
2199
2200/*
2201 * Returns with db_holds incremented, and db_mtx not held.
2202 * Note: dn_struct_rwlock must be held.
2203 */
2204int
2205dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2206    boolean_t fail_sparse, boolean_t fail_uncached,
2207    void *tag, dmu_buf_impl_t **dbp)
2208{
2209	dmu_buf_impl_t *db, *parent = NULL;
2210
2211	ASSERT(blkid != DMU_BONUS_BLKID);
2212	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2213	ASSERT3U(dn->dn_nlevels, >, level);
2214
2215	*dbp = NULL;
2216top:
2217	/* dbuf_find() returns with db_mtx held */
2218	db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
2219
2220	if (db == NULL) {
2221		blkptr_t *bp = NULL;
2222		int err;
2223
2224		if (fail_uncached)
2225			return (SET_ERROR(ENOENT));
2226
2227		ASSERT3P(parent, ==, NULL);
2228		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
2229		if (fail_sparse) {
2230			if (err == 0 && bp && BP_IS_HOLE(bp))
2231				err = SET_ERROR(ENOENT);
2232			if (err) {
2233				if (parent)
2234					dbuf_rele(parent, NULL);
2235				return (err);
2236			}
2237		}
2238		if (err && err != ENOENT)
2239			return (err);
2240		db = dbuf_create(dn, level, blkid, parent, bp);
2241	}
2242
2243	if (fail_uncached && db->db_state != DB_CACHED) {
2244		mutex_exit(&db->db_mtx);
2245		return (SET_ERROR(ENOENT));
2246	}
2247
2248	if (db->db_buf && refcount_is_zero(&db->db_holds)) {
2249		arc_buf_add_ref(db->db_buf, db);
2250		if (db->db_buf->b_data == NULL) {
2251			dbuf_clear(db);
2252			if (parent) {
2253				dbuf_rele(parent, NULL);
2254				parent = NULL;
2255			}
2256			goto top;
2257		}
2258		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
2259	}
2260
2261	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
2262
2263	/*
2264	 * If this buffer is currently syncing out, and we are are
2265	 * still referencing it from db_data, we need to make a copy
2266	 * of it in case we decide we want to dirty it again in this txg.
2267	 */
2268	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2269	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2270	    db->db_state == DB_CACHED && db->db_data_pending) {
2271		dbuf_dirty_record_t *dr = db->db_data_pending;
2272
2273		if (dr->dt.dl.dr_data == db->db_buf) {
2274			arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2275
2276			dbuf_set_data(db,
2277			    arc_buf_alloc(dn->dn_objset->os_spa,
2278			    db->db.db_size, db, type));
2279			bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
2280			    db->db.db_size);
2281		}
2282	}
2283
2284	(void) refcount_add(&db->db_holds, tag);
2285	DBUF_VERIFY(db);
2286	mutex_exit(&db->db_mtx);
2287
2288	/* NOTE: we can't rele the parent until after we drop the db_mtx */
2289	if (parent)
2290		dbuf_rele(parent, NULL);
2291
2292	ASSERT3P(DB_DNODE(db), ==, dn);
2293	ASSERT3U(db->db_blkid, ==, blkid);
2294	ASSERT3U(db->db_level, ==, level);
2295	*dbp = db;
2296
2297	return (0);
2298}
2299
2300dmu_buf_impl_t *
2301dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2302{
2303	return (dbuf_hold_level(dn, 0, blkid, tag));
2304}
2305
2306dmu_buf_impl_t *
2307dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2308{
2309	dmu_buf_impl_t *db;
2310	int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
2311	return (err ? NULL : db);
2312}
2313
2314void
2315dbuf_create_bonus(dnode_t *dn)
2316{
2317	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2318
2319	ASSERT(dn->dn_bonus == NULL);
2320	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2321}
2322
2323int
2324dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2325{
2326	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2327	dnode_t *dn;
2328
2329	if (db->db_blkid != DMU_SPILL_BLKID)
2330		return (SET_ERROR(ENOTSUP));
2331	if (blksz == 0)
2332		blksz = SPA_MINBLOCKSIZE;
2333	ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2334	blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2335
2336	DB_DNODE_ENTER(db);
2337	dn = DB_DNODE(db);
2338	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2339	dbuf_new_size(db, blksz, tx);
2340	rw_exit(&dn->dn_struct_rwlock);
2341	DB_DNODE_EXIT(db);
2342
2343	return (0);
2344}
2345
2346void
2347dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2348{
2349	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2350}
2351
2352#pragma weak dmu_buf_add_ref = dbuf_add_ref
2353void
2354dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2355{
2356	int64_t holds = refcount_add(&db->db_holds, tag);
2357	ASSERT(holds > 1);
2358}
2359
2360#pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2361boolean_t
2362dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2363    void *tag)
2364{
2365	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2366	dmu_buf_impl_t *found_db;
2367	boolean_t result = B_FALSE;
2368
2369	if (db->db_blkid == DMU_BONUS_BLKID)
2370		found_db = dbuf_find_bonus(os, obj);
2371	else
2372		found_db = dbuf_find(os, obj, 0, blkid);
2373
2374	if (found_db != NULL) {
2375		if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2376			(void) refcount_add(&db->db_holds, tag);
2377			result = B_TRUE;
2378		}
2379		mutex_exit(&db->db_mtx);
2380	}
2381	return (result);
2382}
2383
2384/*
2385 * If you call dbuf_rele() you had better not be referencing the dnode handle
2386 * unless you have some other direct or indirect hold on the dnode. (An indirect
2387 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2388 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2389 * dnode's parent dbuf evicting its dnode handles.
2390 */
2391void
2392dbuf_rele(dmu_buf_impl_t *db, void *tag)
2393{
2394	mutex_enter(&db->db_mtx);
2395	dbuf_rele_and_unlock(db, tag);
2396}
2397
2398void
2399dmu_buf_rele(dmu_buf_t *db, void *tag)
2400{
2401	dbuf_rele((dmu_buf_impl_t *)db, tag);
2402}
2403
2404/*
2405 * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
2406 * db_dirtycnt and db_holds to be updated atomically.
2407 */
2408void
2409dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2410{
2411	int64_t holds;
2412
2413	ASSERT(MUTEX_HELD(&db->db_mtx));
2414	DBUF_VERIFY(db);
2415
2416	/*
2417	 * Remove the reference to the dbuf before removing its hold on the
2418	 * dnode so we can guarantee in dnode_move() that a referenced bonus
2419	 * buffer has a corresponding dnode hold.
2420	 */
2421	holds = refcount_remove(&db->db_holds, tag);
2422	ASSERT(holds >= 0);
2423
2424	/*
2425	 * We can't freeze indirects if there is a possibility that they
2426	 * may be modified in the current syncing context.
2427	 */
2428	if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0))
2429		arc_buf_freeze(db->db_buf);
2430
2431	if (holds == db->db_dirtycnt &&
2432	    db->db_level == 0 && db->db_user_immediate_evict)
2433		dbuf_evict_user(db);
2434
2435	if (holds == 0) {
2436		if (db->db_blkid == DMU_BONUS_BLKID) {
2437			dnode_t *dn;
2438			boolean_t evict_dbuf = db->db_pending_evict;
2439
2440			/*
2441			 * If the dnode moves here, we cannot cross this
2442			 * barrier until the move completes.
2443			 */
2444			DB_DNODE_ENTER(db);
2445
2446			dn = DB_DNODE(db);
2447			atomic_dec_32(&dn->dn_dbufs_count);
2448
2449			/*
2450			 * Decrementing the dbuf count means that the bonus
2451			 * buffer's dnode hold is no longer discounted in
2452			 * dnode_move(). The dnode cannot move until after
2453			 * the dnode_rele() below.
2454			 */
2455			DB_DNODE_EXIT(db);
2456
2457			/*
2458			 * Do not reference db after its lock is dropped.
2459			 * Another thread may evict it.
2460			 */
2461			mutex_exit(&db->db_mtx);
2462
2463			if (evict_dbuf)
2464				dnode_evict_bonus(dn);
2465
2466			dnode_rele(dn, db);
2467		} else if (db->db_buf == NULL) {
2468			/*
2469			 * This is a special case: we never associated this
2470			 * dbuf with any data allocated from the ARC.
2471			 */
2472			ASSERT(db->db_state == DB_UNCACHED ||
2473			    db->db_state == DB_NOFILL);
2474			dbuf_evict(db);
2475		} else if (arc_released(db->db_buf)) {
2476			arc_buf_t *buf = db->db_buf;
2477			/*
2478			 * This dbuf has anonymous data associated with it.
2479			 */
2480			dbuf_clear_data(db);
2481			VERIFY(arc_buf_remove_ref(buf, db));
2482			dbuf_evict(db);
2483		} else {
2484			VERIFY(!arc_buf_remove_ref(db->db_buf, db));
2485
2486			/*
2487			 * A dbuf will be eligible for eviction if either the
2488			 * 'primarycache' property is set or a duplicate
2489			 * copy of this buffer is already cached in the arc.
2490			 *
2491			 * In the case of the 'primarycache' a buffer
2492			 * is considered for eviction if it matches the
2493			 * criteria set in the property.
2494			 *
2495			 * To decide if our buffer is considered a
2496			 * duplicate, we must call into the arc to determine
2497			 * if multiple buffers are referencing the same
2498			 * block on-disk. If so, then we simply evict
2499			 * ourselves.
2500			 */
2501			if (!DBUF_IS_CACHEABLE(db)) {
2502				if (db->db_blkptr != NULL &&
2503				    !BP_IS_HOLE(db->db_blkptr) &&
2504				    !BP_IS_EMBEDDED(db->db_blkptr)) {
2505					spa_t *spa =
2506					    dmu_objset_spa(db->db_objset);
2507					blkptr_t bp = *db->db_blkptr;
2508					dbuf_clear(db);
2509					arc_freed(spa, &bp);
2510				} else {
2511					dbuf_clear(db);
2512				}
2513			} else if (db->db_pending_evict ||
2514			    arc_buf_eviction_needed(db->db_buf)) {
2515				dbuf_clear(db);
2516			} else {
2517				mutex_exit(&db->db_mtx);
2518			}
2519		}
2520	} else {
2521		mutex_exit(&db->db_mtx);
2522	}
2523}
2524
2525#pragma weak dmu_buf_refcount = dbuf_refcount
2526uint64_t
2527dbuf_refcount(dmu_buf_impl_t *db)
2528{
2529	return (refcount_count(&db->db_holds));
2530}
2531
2532void *
2533dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
2534    dmu_buf_user_t *new_user)
2535{
2536	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2537
2538	mutex_enter(&db->db_mtx);
2539	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2540	if (db->db_user == old_user)
2541		db->db_user = new_user;
2542	else
2543		old_user = db->db_user;
2544	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2545	mutex_exit(&db->db_mtx);
2546
2547	return (old_user);
2548}
2549
2550void *
2551dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2552{
2553	return (dmu_buf_replace_user(db_fake, NULL, user));
2554}
2555
2556void *
2557dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2558{
2559	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2560
2561	db->db_user_immediate_evict = TRUE;
2562	return (dmu_buf_set_user(db_fake, user));
2563}
2564
2565void *
2566dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2567{
2568	return (dmu_buf_replace_user(db_fake, user, NULL));
2569}
2570
2571void *
2572dmu_buf_get_user(dmu_buf_t *db_fake)
2573{
2574	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2575
2576	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2577	return (db->db_user);
2578}
2579
2580void
2581dmu_buf_user_evict_wait()
2582{
2583	taskq_wait(dbu_evict_taskq);
2584}
2585
2586boolean_t
2587dmu_buf_freeable(dmu_buf_t *dbuf)
2588{
2589	boolean_t res = B_FALSE;
2590	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2591
2592	if (db->db_blkptr)
2593		res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset,
2594		    db->db_blkptr, db->db_blkptr->blk_birth);
2595
2596	return (res);
2597}
2598
2599blkptr_t *
2600dmu_buf_get_blkptr(dmu_buf_t *db)
2601{
2602	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2603	return (dbi->db_blkptr);
2604}
2605
2606static void
2607dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2608{
2609	/* ASSERT(dmu_tx_is_syncing(tx) */
2610	ASSERT(MUTEX_HELD(&db->db_mtx));
2611
2612	if (db->db_blkptr != NULL)
2613		return;
2614
2615	if (db->db_blkid == DMU_SPILL_BLKID) {
2616		db->db_blkptr = &dn->dn_phys->dn_spill;
2617		BP_ZERO(db->db_blkptr);
2618		return;
2619	}
2620	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2621		/*
2622		 * This buffer was allocated at a time when there was
2623		 * no available blkptrs from the dnode, or it was
2624		 * inappropriate to hook it in (i.e., nlevels mis-match).
2625		 */
2626		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2627		ASSERT(db->db_parent == NULL);
2628		db->db_parent = dn->dn_dbuf;
2629		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2630		DBUF_VERIFY(db);
2631	} else {
2632		dmu_buf_impl_t *parent = db->db_parent;
2633		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2634
2635		ASSERT(dn->dn_phys->dn_nlevels > 1);
2636		if (parent == NULL) {
2637			mutex_exit(&db->db_mtx);
2638			rw_enter(&dn->dn_struct_rwlock, RW_READER);
2639			parent = dbuf_hold_level(dn, db->db_level + 1,
2640			    db->db_blkid >> epbs, db);
2641			rw_exit(&dn->dn_struct_rwlock);
2642			mutex_enter(&db->db_mtx);
2643			db->db_parent = parent;
2644		}
2645		db->db_blkptr = (blkptr_t *)parent->db.db_data +
2646		    (db->db_blkid & ((1ULL << epbs) - 1));
2647		DBUF_VERIFY(db);
2648	}
2649}
2650
2651static void
2652dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2653{
2654	dmu_buf_impl_t *db = dr->dr_dbuf;
2655	dnode_t *dn;
2656	zio_t *zio;
2657
2658	ASSERT(dmu_tx_is_syncing(tx));
2659
2660	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2661
2662	mutex_enter(&db->db_mtx);
2663
2664	ASSERT(db->db_level > 0);
2665	DBUF_VERIFY(db);
2666
2667	/* Read the block if it hasn't been read yet. */
2668	if (db->db_buf == NULL) {
2669		mutex_exit(&db->db_mtx);
2670		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2671		mutex_enter(&db->db_mtx);
2672	}
2673	ASSERT3U(db->db_state, ==, DB_CACHED);
2674	ASSERT(db->db_buf != NULL);
2675
2676	DB_DNODE_ENTER(db);
2677	dn = DB_DNODE(db);
2678	/* Indirect block size must match what the dnode thinks it is. */
2679	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2680	dbuf_check_blkptr(dn, db);
2681	DB_DNODE_EXIT(db);
2682
2683	/* Provide the pending dirty record to child dbufs */
2684	db->db_data_pending = dr;
2685
2686	mutex_exit(&db->db_mtx);
2687	dbuf_write(dr, db->db_buf, tx);
2688
2689	zio = dr->dr_zio;
2690	mutex_enter(&dr->dt.di.dr_mtx);
2691	dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
2692	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2693	mutex_exit(&dr->dt.di.dr_mtx);
2694	zio_nowait(zio);
2695}
2696
2697static void
2698dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2699{
2700	arc_buf_t **datap = &dr->dt.dl.dr_data;
2701	dmu_buf_impl_t *db = dr->dr_dbuf;
2702	dnode_t *dn;
2703	objset_t *os;
2704	uint64_t txg = tx->tx_txg;
2705
2706	ASSERT(dmu_tx_is_syncing(tx));
2707
2708	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2709
2710	mutex_enter(&db->db_mtx);
2711	/*
2712	 * To be synced, we must be dirtied.  But we
2713	 * might have been freed after the dirty.
2714	 */
2715	if (db->db_state == DB_UNCACHED) {
2716		/* This buffer has been freed since it was dirtied */
2717		ASSERT(db->db.db_data == NULL);
2718	} else if (db->db_state == DB_FILL) {
2719		/* This buffer was freed and is now being re-filled */
2720		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
2721	} else {
2722		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
2723	}
2724	DBUF_VERIFY(db);
2725
2726	DB_DNODE_ENTER(db);
2727	dn = DB_DNODE(db);
2728
2729	if (db->db_blkid == DMU_SPILL_BLKID) {
2730		mutex_enter(&dn->dn_mtx);
2731		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
2732		mutex_exit(&dn->dn_mtx);
2733	}
2734
2735	/*
2736	 * If this is a bonus buffer, simply copy the bonus data into the
2737	 * dnode.  It will be written out when the dnode is synced (and it
2738	 * will be synced, since it must have been dirty for dbuf_sync to
2739	 * be called).
2740	 */
2741	if (db->db_blkid == DMU_BONUS_BLKID) {
2742		dbuf_dirty_record_t **drp;
2743
2744		ASSERT(*datap != NULL);
2745		ASSERT0(db->db_level);
2746		ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
2747		bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
2748		DB_DNODE_EXIT(db);
2749
2750		if (*datap != db->db.db_data) {
2751			zio_buf_free(*datap, DN_MAX_BONUSLEN);
2752			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2753		}
2754		db->db_data_pending = NULL;
2755		drp = &db->db_last_dirty;
2756		while (*drp != dr)
2757			drp = &(*drp)->dr_next;
2758		ASSERT(dr->dr_next == NULL);
2759		ASSERT(dr->dr_dbuf == db);
2760		*drp = dr->dr_next;
2761		if (dr->dr_dbuf->db_level != 0) {
2762			list_destroy(&dr->dt.di.dr_children);
2763			mutex_destroy(&dr->dt.di.dr_mtx);
2764		}
2765		kmem_free(dr, sizeof (dbuf_dirty_record_t));
2766		ASSERT(db->db_dirtycnt > 0);
2767		db->db_dirtycnt -= 1;
2768		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2769		return;
2770	}
2771
2772	os = dn->dn_objset;
2773
2774	/*
2775	 * This function may have dropped the db_mtx lock allowing a dmu_sync
2776	 * operation to sneak in. As a result, we need to ensure that we
2777	 * don't check the dr_override_state until we have returned from
2778	 * dbuf_check_blkptr.
2779	 */
2780	dbuf_check_blkptr(dn, db);
2781
2782	/*
2783	 * If this buffer is in the middle of an immediate write,
2784	 * wait for the synchronous IO to complete.
2785	 */
2786	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
2787		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
2788		cv_wait(&db->db_changed, &db->db_mtx);
2789		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
2790	}
2791
2792	if (db->db_state != DB_NOFILL &&
2793	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2794	    refcount_count(&db->db_holds) > 1 &&
2795	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
2796	    *datap == db->db_buf) {
2797		/*
2798		 * If this buffer is currently "in use" (i.e., there
2799		 * are active holds and db_data still references it),
2800		 * then make a copy before we start the write so that
2801		 * any modifications from the open txg will not leak
2802		 * into this write.
2803		 *
2804		 * NOTE: this copy does not need to be made for
2805		 * objects only modified in the syncing context (e.g.
2806		 * DNONE_DNODE blocks).
2807		 */
2808		int blksz = arc_buf_size(*datap);
2809		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2810		*datap = arc_buf_alloc(os->os_spa, blksz, db, type);
2811		bcopy(db->db.db_data, (*datap)->b_data, blksz);
2812	}
2813	db->db_data_pending = dr;
2814
2815	mutex_exit(&db->db_mtx);
2816
2817	dbuf_write(dr, *datap, tx);
2818
2819	ASSERT(!list_link_active(&dr->dr_dirty_node));
2820	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
2821		list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
2822		DB_DNODE_EXIT(db);
2823	} else {
2824		/*
2825		 * Although zio_nowait() does not "wait for an IO", it does
2826		 * initiate the IO. If this is an empty write it seems plausible
2827		 * that the IO could actually be completed before the nowait
2828		 * returns. We need to DB_DNODE_EXIT() first in case
2829		 * zio_nowait() invalidates the dbuf.
2830		 */
2831		DB_DNODE_EXIT(db);
2832		zio_nowait(dr->dr_zio);
2833	}
2834}
2835
2836void
2837dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
2838{
2839	dbuf_dirty_record_t *dr;
2840
2841	while (dr = list_head(list)) {
2842		if (dr->dr_zio != NULL) {
2843			/*
2844			 * If we find an already initialized zio then we
2845			 * are processing the meta-dnode, and we have finished.
2846			 * The dbufs for all dnodes are put back on the list
2847			 * during processing, so that we can zio_wait()
2848			 * these IOs after initiating all child IOs.
2849			 */
2850			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
2851			    DMU_META_DNODE_OBJECT);
2852			break;
2853		}
2854		if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
2855		    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
2856			VERIFY3U(dr->dr_dbuf->db_level, ==, level);
2857		}
2858		list_remove(list, dr);
2859		if (dr->dr_dbuf->db_level > 0)
2860			dbuf_sync_indirect(dr, tx);
2861		else
2862			dbuf_sync_leaf(dr, tx);
2863	}
2864}
2865
2866/* ARGSUSED */
2867static void
2868dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
2869{
2870	dmu_buf_impl_t *db = vdb;
2871	dnode_t *dn;
2872	blkptr_t *bp = zio->io_bp;
2873	blkptr_t *bp_orig = &zio->io_bp_orig;
2874	spa_t *spa = zio->io_spa;
2875	int64_t delta;
2876	uint64_t fill = 0;
2877	int i;
2878
2879	ASSERT3P(db->db_blkptr, ==, bp);
2880
2881	DB_DNODE_ENTER(db);
2882	dn = DB_DNODE(db);
2883	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
2884	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
2885	zio->io_prev_space_delta = delta;
2886
2887	if (bp->blk_birth != 0) {
2888		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
2889		    BP_GET_TYPE(bp) == dn->dn_type) ||
2890		    (db->db_blkid == DMU_SPILL_BLKID &&
2891		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
2892		    BP_IS_EMBEDDED(bp));
2893		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
2894	}
2895
2896	mutex_enter(&db->db_mtx);
2897
2898#ifdef ZFS_DEBUG
2899	if (db->db_blkid == DMU_SPILL_BLKID) {
2900		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2901		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2902		    db->db_blkptr == &dn->dn_phys->dn_spill);
2903	}
2904#endif
2905
2906	if (db->db_level == 0) {
2907		mutex_enter(&dn->dn_mtx);
2908		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
2909		    db->db_blkid != DMU_SPILL_BLKID)
2910			dn->dn_phys->dn_maxblkid = db->db_blkid;
2911		mutex_exit(&dn->dn_mtx);
2912
2913		if (dn->dn_type == DMU_OT_DNODE) {
2914			dnode_phys_t *dnp = db->db.db_data;
2915			for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
2916			    i--, dnp++) {
2917				if (dnp->dn_type != DMU_OT_NONE)
2918					fill++;
2919			}
2920		} else {
2921			if (BP_IS_HOLE(bp)) {
2922				fill = 0;
2923			} else {
2924				fill = 1;
2925			}
2926		}
2927	} else {
2928		blkptr_t *ibp = db->db.db_data;
2929		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2930		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
2931			if (BP_IS_HOLE(ibp))
2932				continue;
2933			fill += BP_GET_FILL(ibp);
2934		}
2935	}
2936	DB_DNODE_EXIT(db);
2937
2938	if (!BP_IS_EMBEDDED(bp))
2939		bp->blk_fill = fill;
2940
2941	mutex_exit(&db->db_mtx);
2942}
2943
2944/*
2945 * The SPA will call this callback several times for each zio - once
2946 * for every physical child i/o (zio->io_phys_children times).  This
2947 * allows the DMU to monitor the progress of each logical i/o.  For example,
2948 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
2949 * block.  There may be a long delay before all copies/fragments are completed,
2950 * so this callback allows us to retire dirty space gradually, as the physical
2951 * i/os complete.
2952 */
2953/* ARGSUSED */
2954static void
2955dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
2956{
2957	dmu_buf_impl_t *db = arg;
2958	objset_t *os = db->db_objset;
2959	dsl_pool_t *dp = dmu_objset_pool(os);
2960	dbuf_dirty_record_t *dr;
2961	int delta = 0;
2962
2963	dr = db->db_data_pending;
2964	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
2965
2966	/*
2967	 * The callback will be called io_phys_children times.  Retire one
2968	 * portion of our dirty space each time we are called.  Any rounding
2969	 * error will be cleaned up by dsl_pool_sync()'s call to
2970	 * dsl_pool_undirty_space().
2971	 */
2972	delta = dr->dr_accounted / zio->io_phys_children;
2973	dsl_pool_undirty_space(dp, delta, zio->io_txg);
2974}
2975
2976/* ARGSUSED */
2977static void
2978dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
2979{
2980	dmu_buf_impl_t *db = vdb;
2981	blkptr_t *bp_orig = &zio->io_bp_orig;
2982	blkptr_t *bp = db->db_blkptr;
2983	objset_t *os = db->db_objset;
2984	dmu_tx_t *tx = os->os_synctx;
2985	dbuf_dirty_record_t **drp, *dr;
2986
2987	ASSERT0(zio->io_error);
2988	ASSERT(db->db_blkptr == bp);
2989
2990	/*
2991	 * For nopwrites and rewrites we ensure that the bp matches our
2992	 * original and bypass all the accounting.
2993	 */
2994	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
2995		ASSERT(BP_EQUAL(bp, bp_orig));
2996	} else {
2997		dsl_dataset_t *ds = os->os_dsl_dataset;
2998		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
2999		dsl_dataset_block_born(ds, bp, tx);
3000	}
3001
3002	mutex_enter(&db->db_mtx);
3003
3004	DBUF_VERIFY(db);
3005
3006	drp = &db->db_last_dirty;
3007	while ((dr = *drp) != db->db_data_pending)
3008		drp = &dr->dr_next;
3009	ASSERT(!list_link_active(&dr->dr_dirty_node));
3010	ASSERT(dr->dr_dbuf == db);
3011	ASSERT(dr->dr_next == NULL);
3012	*drp = dr->dr_next;
3013
3014#ifdef ZFS_DEBUG
3015	if (db->db_blkid == DMU_SPILL_BLKID) {
3016		dnode_t *dn;
3017
3018		DB_DNODE_ENTER(db);
3019		dn = DB_DNODE(db);
3020		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3021		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3022		    db->db_blkptr == &dn->dn_phys->dn_spill);
3023		DB_DNODE_EXIT(db);
3024	}
3025#endif
3026
3027	if (db->db_level == 0) {
3028		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3029		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3030		if (db->db_state != DB_NOFILL) {
3031			if (dr->dt.dl.dr_data != db->db_buf)
3032				VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data,
3033				    db));
3034			else if (!arc_released(db->db_buf))
3035				arc_set_callback(db->db_buf, dbuf_do_evict, db);
3036		}
3037	} else {
3038		dnode_t *dn;
3039
3040		DB_DNODE_ENTER(db);
3041		dn = DB_DNODE(db);
3042		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3043		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3044		if (!BP_IS_HOLE(db->db_blkptr)) {
3045			int epbs =
3046			    dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3047			ASSERT3U(db->db_blkid, <=,
3048			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3049			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3050			    db->db.db_size);
3051			if (!arc_released(db->db_buf))
3052				arc_set_callback(db->db_buf, dbuf_do_evict, db);
3053		}
3054		DB_DNODE_EXIT(db);
3055		mutex_destroy(&dr->dt.di.dr_mtx);
3056		list_destroy(&dr->dt.di.dr_children);
3057	}
3058	kmem_free(dr, sizeof (dbuf_dirty_record_t));
3059
3060	cv_broadcast(&db->db_changed);
3061	ASSERT(db->db_dirtycnt > 0);
3062	db->db_dirtycnt -= 1;
3063	db->db_data_pending = NULL;
3064	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
3065}
3066
3067static void
3068dbuf_write_nofill_ready(zio_t *zio)
3069{
3070	dbuf_write_ready(zio, NULL, zio->io_private);
3071}
3072
3073static void
3074dbuf_write_nofill_done(zio_t *zio)
3075{
3076	dbuf_write_done(zio, NULL, zio->io_private);
3077}
3078
3079static void
3080dbuf_write_override_ready(zio_t *zio)
3081{
3082	dbuf_dirty_record_t *dr = zio->io_private;
3083	dmu_buf_impl_t *db = dr->dr_dbuf;
3084
3085	dbuf_write_ready(zio, NULL, db);
3086}
3087
3088static void
3089dbuf_write_override_done(zio_t *zio)
3090{
3091	dbuf_dirty_record_t *dr = zio->io_private;
3092	dmu_buf_impl_t *db = dr->dr_dbuf;
3093	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3094
3095	mutex_enter(&db->db_mtx);
3096	if (!BP_EQUAL(zio->io_bp, obp)) {
3097		if (!BP_IS_HOLE(obp))
3098			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3099		arc_release(dr->dt.dl.dr_data, db);
3100	}
3101	mutex_exit(&db->db_mtx);
3102
3103	dbuf_write_done(zio, NULL, db);
3104}
3105
3106/* Issue I/O to commit a dirty buffer to disk. */
3107static void
3108dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3109{
3110	dmu_buf_impl_t *db = dr->dr_dbuf;
3111	dnode_t *dn;
3112	objset_t *os;
3113	dmu_buf_impl_t *parent = db->db_parent;
3114	uint64_t txg = tx->tx_txg;
3115	zbookmark_phys_t zb;
3116	zio_prop_t zp;
3117	zio_t *zio;
3118	int wp_flag = 0;
3119
3120	DB_DNODE_ENTER(db);
3121	dn = DB_DNODE(db);
3122	os = dn->dn_objset;
3123
3124	if (db->db_state != DB_NOFILL) {
3125		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3126			/*
3127			 * Private object buffers are released here rather
3128			 * than in dbuf_dirty() since they are only modified
3129			 * in the syncing context and we don't want the
3130			 * overhead of making multiple copies of the data.
3131			 */
3132			if (BP_IS_HOLE(db->db_blkptr)) {
3133				arc_buf_thaw(data);
3134			} else {
3135				dbuf_release_bp(db);
3136			}
3137		}
3138	}
3139
3140	if (parent != dn->dn_dbuf) {
3141		/* Our parent is an indirect block. */
3142		/* We have a dirty parent that has been scheduled for write. */
3143		ASSERT(parent && parent->db_data_pending);
3144		/* Our parent's buffer is one level closer to the dnode. */
3145		ASSERT(db->db_level == parent->db_level-1);
3146		/*
3147		 * We're about to modify our parent's db_data by modifying
3148		 * our block pointer, so the parent must be released.
3149		 */
3150		ASSERT(arc_released(parent->db_buf));
3151		zio = parent->db_data_pending->dr_zio;
3152	} else {
3153		/* Our parent is the dnode itself. */
3154		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3155		    db->db_blkid != DMU_SPILL_BLKID) ||
3156		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3157		if (db->db_blkid != DMU_SPILL_BLKID)
3158			ASSERT3P(db->db_blkptr, ==,
3159			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
3160		zio = dn->dn_zio;
3161	}
3162
3163	ASSERT(db->db_level == 0 || data == db->db_buf);
3164	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3165	ASSERT(zio);
3166
3167	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3168	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3169	    db->db.db_object, db->db_level, db->db_blkid);
3170
3171	if (db->db_blkid == DMU_SPILL_BLKID)
3172		wp_flag = WP_SPILL;
3173	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3174
3175	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
3176	DB_DNODE_EXIT(db);
3177
3178	if (db->db_level == 0 &&
3179	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3180		/*
3181		 * The BP for this block has been provided by open context
3182		 * (by dmu_sync() or dmu_buf_write_embedded()).
3183		 */
3184		void *contents = (data != NULL) ? data->b_data : NULL;
3185
3186		dr->dr_zio = zio_write(zio, os->os_spa, txg,
3187		    db->db_blkptr, contents, db->db.db_size, &zp,
3188		    dbuf_write_override_ready, NULL, dbuf_write_override_done,
3189		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3190		mutex_enter(&db->db_mtx);
3191		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3192		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
3193		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
3194		mutex_exit(&db->db_mtx);
3195	} else if (db->db_state == DB_NOFILL) {
3196		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3197		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
3198		dr->dr_zio = zio_write(zio, os->os_spa, txg,
3199		    db->db_blkptr, NULL, db->db.db_size, &zp,
3200		    dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db,
3201		    ZIO_PRIORITY_ASYNC_WRITE,
3202		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3203	} else {
3204		ASSERT(arc_released(data));
3205		dr->dr_zio = arc_write(zio, os->os_spa, txg,
3206		    db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db),
3207		    DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready,
3208		    dbuf_write_physdone, dbuf_write_done, db,
3209		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3210	}
3211}
3212