dbuf.c revision 288572
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 */
29
30#include <sys/zfs_context.h>
31#include <sys/dmu.h>
32#include <sys/dmu_send.h>
33#include <sys/dmu_impl.h>
34#include <sys/dbuf.h>
35#include <sys/dmu_objset.h>
36#include <sys/dsl_dataset.h>
37#include <sys/dsl_dir.h>
38#include <sys/dmu_tx.h>
39#include <sys/spa.h>
40#include <sys/zio.h>
41#include <sys/dmu_zfetch.h>
42#include <sys/sa.h>
43#include <sys/sa_impl.h>
44#include <sys/zfeature.h>
45#include <sys/blkptr.h>
46#include <sys/range_tree.h>
47
48/*
49 * Number of times that zfs_free_range() took the slow path while doing
50 * a zfs receive.  A nonzero value indicates a potential performance problem.
51 */
52uint64_t zfs_free_range_recv_miss;
53
54static void dbuf_destroy(dmu_buf_impl_t *db);
55static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
56static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
57
58#ifndef __lint
59extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
60    dmu_buf_evict_func_t *evict_func, dmu_buf_t **clear_on_evict_dbufp);
61#endif /* ! __lint */
62
63/*
64 * Global data structures and functions for the dbuf cache.
65 */
66static kmem_cache_t *dbuf_cache;
67static taskq_t *dbu_evict_taskq;
68
69/* ARGSUSED */
70static int
71dbuf_cons(void *vdb, void *unused, int kmflag)
72{
73	dmu_buf_impl_t *db = vdb;
74	bzero(db, sizeof (dmu_buf_impl_t));
75
76	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
77	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
78	refcount_create(&db->db_holds);
79
80	return (0);
81}
82
83/* ARGSUSED */
84static void
85dbuf_dest(void *vdb, void *unused)
86{
87	dmu_buf_impl_t *db = vdb;
88	mutex_destroy(&db->db_mtx);
89	cv_destroy(&db->db_changed);
90	refcount_destroy(&db->db_holds);
91}
92
93/*
94 * dbuf hash table routines
95 */
96static dbuf_hash_table_t dbuf_hash_table;
97
98static uint64_t dbuf_hash_count;
99
100static uint64_t
101dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
102{
103	uintptr_t osv = (uintptr_t)os;
104	uint64_t crc = -1ULL;
105
106	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
107	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
108	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
109	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
110	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
111	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
112	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
113
114	crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
115
116	return (crc);
117}
118
119#define	DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid);
120
121#define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
122	((dbuf)->db.db_object == (obj) &&		\
123	(dbuf)->db_objset == (os) &&			\
124	(dbuf)->db_level == (level) &&			\
125	(dbuf)->db_blkid == (blkid))
126
127dmu_buf_impl_t *
128dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
129{
130	dbuf_hash_table_t *h = &dbuf_hash_table;
131	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
132	uint64_t idx = hv & h->hash_table_mask;
133	dmu_buf_impl_t *db;
134
135	mutex_enter(DBUF_HASH_MUTEX(h, idx));
136	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
137		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
138			mutex_enter(&db->db_mtx);
139			if (db->db_state != DB_EVICTING) {
140				mutex_exit(DBUF_HASH_MUTEX(h, idx));
141				return (db);
142			}
143			mutex_exit(&db->db_mtx);
144		}
145	}
146	mutex_exit(DBUF_HASH_MUTEX(h, idx));
147	return (NULL);
148}
149
150static dmu_buf_impl_t *
151dbuf_find_bonus(objset_t *os, uint64_t object)
152{
153	dnode_t *dn;
154	dmu_buf_impl_t *db = NULL;
155
156	if (dnode_hold(os, object, FTAG, &dn) == 0) {
157		rw_enter(&dn->dn_struct_rwlock, RW_READER);
158		if (dn->dn_bonus != NULL) {
159			db = dn->dn_bonus;
160			mutex_enter(&db->db_mtx);
161		}
162		rw_exit(&dn->dn_struct_rwlock);
163		dnode_rele(dn, FTAG);
164	}
165	return (db);
166}
167
168/*
169 * Insert an entry into the hash table.  If there is already an element
170 * equal to elem in the hash table, then the already existing element
171 * will be returned and the new element will not be inserted.
172 * Otherwise returns NULL.
173 */
174static dmu_buf_impl_t *
175dbuf_hash_insert(dmu_buf_impl_t *db)
176{
177	dbuf_hash_table_t *h = &dbuf_hash_table;
178	objset_t *os = db->db_objset;
179	uint64_t obj = db->db.db_object;
180	int level = db->db_level;
181	uint64_t blkid = db->db_blkid;
182	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
183	uint64_t idx = hv & h->hash_table_mask;
184	dmu_buf_impl_t *dbf;
185
186	mutex_enter(DBUF_HASH_MUTEX(h, idx));
187	for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
188		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
189			mutex_enter(&dbf->db_mtx);
190			if (dbf->db_state != DB_EVICTING) {
191				mutex_exit(DBUF_HASH_MUTEX(h, idx));
192				return (dbf);
193			}
194			mutex_exit(&dbf->db_mtx);
195		}
196	}
197
198	mutex_enter(&db->db_mtx);
199	db->db_hash_next = h->hash_table[idx];
200	h->hash_table[idx] = db;
201	mutex_exit(DBUF_HASH_MUTEX(h, idx));
202	atomic_inc_64(&dbuf_hash_count);
203
204	return (NULL);
205}
206
207/*
208 * Remove an entry from the hash table.  It must be in the EVICTING state.
209 */
210static void
211dbuf_hash_remove(dmu_buf_impl_t *db)
212{
213	dbuf_hash_table_t *h = &dbuf_hash_table;
214	uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object,
215	    db->db_level, db->db_blkid);
216	uint64_t idx = hv & h->hash_table_mask;
217	dmu_buf_impl_t *dbf, **dbp;
218
219	/*
220	 * We musn't hold db_mtx to maintain lock ordering:
221	 * DBUF_HASH_MUTEX > db_mtx.
222	 */
223	ASSERT(refcount_is_zero(&db->db_holds));
224	ASSERT(db->db_state == DB_EVICTING);
225	ASSERT(!MUTEX_HELD(&db->db_mtx));
226
227	mutex_enter(DBUF_HASH_MUTEX(h, idx));
228	dbp = &h->hash_table[idx];
229	while ((dbf = *dbp) != db) {
230		dbp = &dbf->db_hash_next;
231		ASSERT(dbf != NULL);
232	}
233	*dbp = db->db_hash_next;
234	db->db_hash_next = NULL;
235	mutex_exit(DBUF_HASH_MUTEX(h, idx));
236	atomic_dec_64(&dbuf_hash_count);
237}
238
239static arc_evict_func_t dbuf_do_evict;
240
241typedef enum {
242	DBVU_EVICTING,
243	DBVU_NOT_EVICTING
244} dbvu_verify_type_t;
245
246static void
247dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
248{
249#ifdef ZFS_DEBUG
250	int64_t holds;
251
252	if (db->db_user == NULL)
253		return;
254
255	/* Only data blocks support the attachment of user data. */
256	ASSERT(db->db_level == 0);
257
258	/* Clients must resolve a dbuf before attaching user data. */
259	ASSERT(db->db.db_data != NULL);
260	ASSERT3U(db->db_state, ==, DB_CACHED);
261
262	holds = refcount_count(&db->db_holds);
263	if (verify_type == DBVU_EVICTING) {
264		/*
265		 * Immediate eviction occurs when holds == dirtycnt.
266		 * For normal eviction buffers, holds is zero on
267		 * eviction, except when dbuf_fix_old_data() calls
268		 * dbuf_clear_data().  However, the hold count can grow
269		 * during eviction even though db_mtx is held (see
270		 * dmu_bonus_hold() for an example), so we can only
271		 * test the generic invariant that holds >= dirtycnt.
272		 */
273		ASSERT3U(holds, >=, db->db_dirtycnt);
274	} else {
275		if (db->db_immediate_evict == TRUE)
276			ASSERT3U(holds, >=, db->db_dirtycnt);
277		else
278			ASSERT3U(holds, >, 0);
279	}
280#endif
281}
282
283static void
284dbuf_evict_user(dmu_buf_impl_t *db)
285{
286	dmu_buf_user_t *dbu = db->db_user;
287
288	ASSERT(MUTEX_HELD(&db->db_mtx));
289
290	if (dbu == NULL)
291		return;
292
293	dbuf_verify_user(db, DBVU_EVICTING);
294	db->db_user = NULL;
295
296#ifdef ZFS_DEBUG
297	if (dbu->dbu_clear_on_evict_dbufp != NULL)
298		*dbu->dbu_clear_on_evict_dbufp = NULL;
299#endif
300
301	/*
302	 * Invoke the callback from a taskq to avoid lock order reversals
303	 * and limit stack depth.
304	 */
305	taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func, dbu, 0,
306	    &dbu->dbu_tqent);
307}
308
309boolean_t
310dbuf_is_metadata(dmu_buf_impl_t *db)
311{
312	if (db->db_level > 0) {
313		return (B_TRUE);
314	} else {
315		boolean_t is_metadata;
316
317		DB_DNODE_ENTER(db);
318		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
319		DB_DNODE_EXIT(db);
320
321		return (is_metadata);
322	}
323}
324
325void
326dbuf_evict(dmu_buf_impl_t *db)
327{
328	ASSERT(MUTEX_HELD(&db->db_mtx));
329	ASSERT(db->db_buf == NULL);
330	ASSERT(db->db_data_pending == NULL);
331
332	dbuf_clear(db);
333	dbuf_destroy(db);
334}
335
336void
337dbuf_init(void)
338{
339	uint64_t hsize = 1ULL << 16;
340	dbuf_hash_table_t *h = &dbuf_hash_table;
341	int i;
342
343	/*
344	 * The hash table is big enough to fill all of physical memory
345	 * with an average 4K block size.  The table will take up
346	 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
347	 */
348	while (hsize * 4096 < (uint64_t)physmem * PAGESIZE)
349		hsize <<= 1;
350
351retry:
352	h->hash_table_mask = hsize - 1;
353	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
354	if (h->hash_table == NULL) {
355		/* XXX - we should really return an error instead of assert */
356		ASSERT(hsize > (1ULL << 10));
357		hsize >>= 1;
358		goto retry;
359	}
360
361	dbuf_cache = kmem_cache_create("dmu_buf_impl_t",
362	    sizeof (dmu_buf_impl_t),
363	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
364
365	for (i = 0; i < DBUF_MUTEXES; i++)
366		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
367
368	/*
369	 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
370	 * configuration is not required.
371	 */
372	dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0);
373}
374
375void
376dbuf_fini(void)
377{
378	dbuf_hash_table_t *h = &dbuf_hash_table;
379	int i;
380
381	for (i = 0; i < DBUF_MUTEXES; i++)
382		mutex_destroy(&h->hash_mutexes[i]);
383	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
384	kmem_cache_destroy(dbuf_cache);
385	taskq_destroy(dbu_evict_taskq);
386}
387
388/*
389 * Other stuff.
390 */
391
392#ifdef ZFS_DEBUG
393static void
394dbuf_verify(dmu_buf_impl_t *db)
395{
396	dnode_t *dn;
397	dbuf_dirty_record_t *dr;
398
399	ASSERT(MUTEX_HELD(&db->db_mtx));
400
401	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
402		return;
403
404	ASSERT(db->db_objset != NULL);
405	DB_DNODE_ENTER(db);
406	dn = DB_DNODE(db);
407	if (dn == NULL) {
408		ASSERT(db->db_parent == NULL);
409		ASSERT(db->db_blkptr == NULL);
410	} else {
411		ASSERT3U(db->db.db_object, ==, dn->dn_object);
412		ASSERT3P(db->db_objset, ==, dn->dn_objset);
413		ASSERT3U(db->db_level, <, dn->dn_nlevels);
414		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
415		    db->db_blkid == DMU_SPILL_BLKID ||
416		    !avl_is_empty(&dn->dn_dbufs));
417	}
418	if (db->db_blkid == DMU_BONUS_BLKID) {
419		ASSERT(dn != NULL);
420		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
421		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
422	} else if (db->db_blkid == DMU_SPILL_BLKID) {
423		ASSERT(dn != NULL);
424		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
425		ASSERT0(db->db.db_offset);
426	} else {
427		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
428	}
429
430	for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
431		ASSERT(dr->dr_dbuf == db);
432
433	for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
434		ASSERT(dr->dr_dbuf == db);
435
436	/*
437	 * We can't assert that db_size matches dn_datablksz because it
438	 * can be momentarily different when another thread is doing
439	 * dnode_set_blksz().
440	 */
441	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
442		dr = db->db_data_pending;
443		/*
444		 * It should only be modified in syncing context, so
445		 * make sure we only have one copy of the data.
446		 */
447		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
448	}
449
450	/* verify db->db_blkptr */
451	if (db->db_blkptr) {
452		if (db->db_parent == dn->dn_dbuf) {
453			/* db is pointed to by the dnode */
454			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
455			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
456				ASSERT(db->db_parent == NULL);
457			else
458				ASSERT(db->db_parent != NULL);
459			if (db->db_blkid != DMU_SPILL_BLKID)
460				ASSERT3P(db->db_blkptr, ==,
461				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
462		} else {
463			/* db is pointed to by an indirect block */
464			int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
465			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
466			ASSERT3U(db->db_parent->db.db_object, ==,
467			    db->db.db_object);
468			/*
469			 * dnode_grow_indblksz() can make this fail if we don't
470			 * have the struct_rwlock.  XXX indblksz no longer
471			 * grows.  safe to do this now?
472			 */
473			if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
474				ASSERT3P(db->db_blkptr, ==,
475				    ((blkptr_t *)db->db_parent->db.db_data +
476				    db->db_blkid % epb));
477			}
478		}
479	}
480	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
481	    (db->db_buf == NULL || db->db_buf->b_data) &&
482	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
483	    db->db_state != DB_FILL && !dn->dn_free_txg) {
484		/*
485		 * If the blkptr isn't set but they have nonzero data,
486		 * it had better be dirty, otherwise we'll lose that
487		 * data when we evict this buffer.
488		 */
489		if (db->db_dirtycnt == 0) {
490			uint64_t *buf = db->db.db_data;
491			int i;
492
493			for (i = 0; i < db->db.db_size >> 3; i++) {
494				ASSERT(buf[i] == 0);
495			}
496		}
497	}
498	DB_DNODE_EXIT(db);
499}
500#endif
501
502static void
503dbuf_clear_data(dmu_buf_impl_t *db)
504{
505	ASSERT(MUTEX_HELD(&db->db_mtx));
506	dbuf_evict_user(db);
507	db->db_buf = NULL;
508	db->db.db_data = NULL;
509	if (db->db_state != DB_NOFILL)
510		db->db_state = DB_UNCACHED;
511}
512
513static void
514dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
515{
516	ASSERT(MUTEX_HELD(&db->db_mtx));
517	ASSERT(buf != NULL);
518
519	db->db_buf = buf;
520	ASSERT(buf->b_data != NULL);
521	db->db.db_data = buf->b_data;
522	if (!arc_released(buf))
523		arc_set_callback(buf, dbuf_do_evict, db);
524}
525
526/*
527 * Loan out an arc_buf for read.  Return the loaned arc_buf.
528 */
529arc_buf_t *
530dbuf_loan_arcbuf(dmu_buf_impl_t *db)
531{
532	arc_buf_t *abuf;
533
534	mutex_enter(&db->db_mtx);
535	if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
536		int blksz = db->db.db_size;
537		spa_t *spa = db->db_objset->os_spa;
538
539		mutex_exit(&db->db_mtx);
540		abuf = arc_loan_buf(spa, blksz);
541		bcopy(db->db.db_data, abuf->b_data, blksz);
542	} else {
543		abuf = db->db_buf;
544		arc_loan_inuse_buf(abuf, db);
545		dbuf_clear_data(db);
546		mutex_exit(&db->db_mtx);
547	}
548	return (abuf);
549}
550
551/*
552 * Calculate which level n block references the data at the level 0 offset
553 * provided.
554 */
555uint64_t
556dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset)
557{
558	if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
559		/*
560		 * The level n blkid is equal to the level 0 blkid divided by
561		 * the number of level 0s in a level n block.
562		 *
563		 * The level 0 blkid is offset >> datablkshift =
564		 * offset / 2^datablkshift.
565		 *
566		 * The number of level 0s in a level n is the number of block
567		 * pointers in an indirect block, raised to the power of level.
568		 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
569		 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
570		 *
571		 * Thus, the level n blkid is: offset /
572		 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
573		 * = offset / 2^(datablkshift + level *
574		 *   (indblkshift - SPA_BLKPTRSHIFT))
575		 * = offset >> (datablkshift + level *
576		 *   (indblkshift - SPA_BLKPTRSHIFT))
577		 */
578		return (offset >> (dn->dn_datablkshift + level *
579		    (dn->dn_indblkshift - SPA_BLKPTRSHIFT)));
580	} else {
581		ASSERT3U(offset, <, dn->dn_datablksz);
582		return (0);
583	}
584}
585
586static void
587dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
588{
589	dmu_buf_impl_t *db = vdb;
590
591	mutex_enter(&db->db_mtx);
592	ASSERT3U(db->db_state, ==, DB_READ);
593	/*
594	 * All reads are synchronous, so we must have a hold on the dbuf
595	 */
596	ASSERT(refcount_count(&db->db_holds) > 0);
597	ASSERT(db->db_buf == NULL);
598	ASSERT(db->db.db_data == NULL);
599	if (db->db_level == 0 && db->db_freed_in_flight) {
600		/* we were freed in flight; disregard any error */
601		arc_release(buf, db);
602		bzero(buf->b_data, db->db.db_size);
603		arc_buf_freeze(buf);
604		db->db_freed_in_flight = FALSE;
605		dbuf_set_data(db, buf);
606		db->db_state = DB_CACHED;
607	} else if (zio == NULL || zio->io_error == 0) {
608		dbuf_set_data(db, buf);
609		db->db_state = DB_CACHED;
610	} else {
611		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
612		ASSERT3P(db->db_buf, ==, NULL);
613		VERIFY(arc_buf_remove_ref(buf, db));
614		db->db_state = DB_UNCACHED;
615	}
616	cv_broadcast(&db->db_changed);
617	dbuf_rele_and_unlock(db, NULL);
618}
619
620static void
621dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags)
622{
623	dnode_t *dn;
624	zbookmark_phys_t zb;
625	arc_flags_t aflags = ARC_FLAG_NOWAIT;
626
627	DB_DNODE_ENTER(db);
628	dn = DB_DNODE(db);
629	ASSERT(!refcount_is_zero(&db->db_holds));
630	/* We need the struct_rwlock to prevent db_blkptr from changing. */
631	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
632	ASSERT(MUTEX_HELD(&db->db_mtx));
633	ASSERT(db->db_state == DB_UNCACHED);
634	ASSERT(db->db_buf == NULL);
635
636	if (db->db_blkid == DMU_BONUS_BLKID) {
637		int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
638
639		ASSERT3U(bonuslen, <=, db->db.db_size);
640		db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
641		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
642		if (bonuslen < DN_MAX_BONUSLEN)
643			bzero(db->db.db_data, DN_MAX_BONUSLEN);
644		if (bonuslen)
645			bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
646		DB_DNODE_EXIT(db);
647		db->db_state = DB_CACHED;
648		mutex_exit(&db->db_mtx);
649		return;
650	}
651
652	/*
653	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
654	 * processes the delete record and clears the bp while we are waiting
655	 * for the dn_mtx (resulting in a "no" from block_freed).
656	 */
657	if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
658	    (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
659	    BP_IS_HOLE(db->db_blkptr)))) {
660		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
661
662		DB_DNODE_EXIT(db);
663		dbuf_set_data(db, arc_buf_alloc(db->db_objset->os_spa,
664		    db->db.db_size, db, type));
665		bzero(db->db.db_data, db->db.db_size);
666		db->db_state = DB_CACHED;
667		*flags |= DB_RF_CACHED;
668		mutex_exit(&db->db_mtx);
669		return;
670	}
671
672	DB_DNODE_EXIT(db);
673
674	db->db_state = DB_READ;
675	mutex_exit(&db->db_mtx);
676
677	if (DBUF_IS_L2CACHEABLE(db))
678		aflags |= ARC_FLAG_L2CACHE;
679	if (DBUF_IS_L2COMPRESSIBLE(db))
680		aflags |= ARC_FLAG_L2COMPRESS;
681
682	SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
683	    db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
684	    db->db.db_object, db->db_level, db->db_blkid);
685
686	dbuf_add_ref(db, NULL);
687
688	(void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
689	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
690	    (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
691	    &aflags, &zb);
692	if (aflags & ARC_FLAG_CACHED)
693		*flags |= DB_RF_CACHED;
694}
695
696int
697dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
698{
699	int err = 0;
700	boolean_t havepzio = (zio != NULL);
701	boolean_t prefetch;
702	dnode_t *dn;
703
704	/*
705	 * We don't have to hold the mutex to check db_state because it
706	 * can't be freed while we have a hold on the buffer.
707	 */
708	ASSERT(!refcount_is_zero(&db->db_holds));
709
710	if (db->db_state == DB_NOFILL)
711		return (SET_ERROR(EIO));
712
713	DB_DNODE_ENTER(db);
714	dn = DB_DNODE(db);
715	if ((flags & DB_RF_HAVESTRUCT) == 0)
716		rw_enter(&dn->dn_struct_rwlock, RW_READER);
717
718	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
719	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
720	    DBUF_IS_CACHEABLE(db);
721
722	mutex_enter(&db->db_mtx);
723	if (db->db_state == DB_CACHED) {
724		mutex_exit(&db->db_mtx);
725		if (prefetch)
726			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
727			    db->db.db_size, TRUE);
728		if ((flags & DB_RF_HAVESTRUCT) == 0)
729			rw_exit(&dn->dn_struct_rwlock);
730		DB_DNODE_EXIT(db);
731	} else if (db->db_state == DB_UNCACHED) {
732		spa_t *spa = dn->dn_objset->os_spa;
733
734		if (zio == NULL)
735			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
736		dbuf_read_impl(db, zio, &flags);
737
738		/* dbuf_read_impl has dropped db_mtx for us */
739
740		if (prefetch)
741			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
742			    db->db.db_size, flags & DB_RF_CACHED);
743
744		if ((flags & DB_RF_HAVESTRUCT) == 0)
745			rw_exit(&dn->dn_struct_rwlock);
746		DB_DNODE_EXIT(db);
747
748		if (!havepzio)
749			err = zio_wait(zio);
750	} else {
751		/*
752		 * Another reader came in while the dbuf was in flight
753		 * between UNCACHED and CACHED.  Either a writer will finish
754		 * writing the buffer (sending the dbuf to CACHED) or the
755		 * first reader's request will reach the read_done callback
756		 * and send the dbuf to CACHED.  Otherwise, a failure
757		 * occurred and the dbuf went to UNCACHED.
758		 */
759		mutex_exit(&db->db_mtx);
760		if (prefetch)
761			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
762			    db->db.db_size, TRUE);
763		if ((flags & DB_RF_HAVESTRUCT) == 0)
764			rw_exit(&dn->dn_struct_rwlock);
765		DB_DNODE_EXIT(db);
766
767		/* Skip the wait per the caller's request. */
768		mutex_enter(&db->db_mtx);
769		if ((flags & DB_RF_NEVERWAIT) == 0) {
770			while (db->db_state == DB_READ ||
771			    db->db_state == DB_FILL) {
772				ASSERT(db->db_state == DB_READ ||
773				    (flags & DB_RF_HAVESTRUCT) == 0);
774				DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
775				    db, zio_t *, zio);
776				cv_wait(&db->db_changed, &db->db_mtx);
777			}
778			if (db->db_state == DB_UNCACHED)
779				err = SET_ERROR(EIO);
780		}
781		mutex_exit(&db->db_mtx);
782	}
783
784	ASSERT(err || havepzio || db->db_state == DB_CACHED);
785	return (err);
786}
787
788static void
789dbuf_noread(dmu_buf_impl_t *db)
790{
791	ASSERT(!refcount_is_zero(&db->db_holds));
792	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
793	mutex_enter(&db->db_mtx);
794	while (db->db_state == DB_READ || db->db_state == DB_FILL)
795		cv_wait(&db->db_changed, &db->db_mtx);
796	if (db->db_state == DB_UNCACHED) {
797		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
798		spa_t *spa = db->db_objset->os_spa;
799
800		ASSERT(db->db_buf == NULL);
801		ASSERT(db->db.db_data == NULL);
802		dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type));
803		db->db_state = DB_FILL;
804	} else if (db->db_state == DB_NOFILL) {
805		dbuf_clear_data(db);
806	} else {
807		ASSERT3U(db->db_state, ==, DB_CACHED);
808	}
809	mutex_exit(&db->db_mtx);
810}
811
812/*
813 * This is our just-in-time copy function.  It makes a copy of
814 * buffers, that have been modified in a previous transaction
815 * group, before we modify them in the current active group.
816 *
817 * This function is used in two places: when we are dirtying a
818 * buffer for the first time in a txg, and when we are freeing
819 * a range in a dnode that includes this buffer.
820 *
821 * Note that when we are called from dbuf_free_range() we do
822 * not put a hold on the buffer, we just traverse the active
823 * dbuf list for the dnode.
824 */
825static void
826dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
827{
828	dbuf_dirty_record_t *dr = db->db_last_dirty;
829
830	ASSERT(MUTEX_HELD(&db->db_mtx));
831	ASSERT(db->db.db_data != NULL);
832	ASSERT(db->db_level == 0);
833	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
834
835	if (dr == NULL ||
836	    (dr->dt.dl.dr_data !=
837	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
838		return;
839
840	/*
841	 * If the last dirty record for this dbuf has not yet synced
842	 * and its referencing the dbuf data, either:
843	 *	reset the reference to point to a new copy,
844	 * or (if there a no active holders)
845	 *	just null out the current db_data pointer.
846	 */
847	ASSERT(dr->dr_txg >= txg - 2);
848	if (db->db_blkid == DMU_BONUS_BLKID) {
849		/* Note that the data bufs here are zio_bufs */
850		dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
851		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
852		bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
853	} else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
854		int size = db->db.db_size;
855		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
856		spa_t *spa = db->db_objset->os_spa;
857
858		dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type);
859		bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
860	} else {
861		dbuf_clear_data(db);
862	}
863}
864
865void
866dbuf_unoverride(dbuf_dirty_record_t *dr)
867{
868	dmu_buf_impl_t *db = dr->dr_dbuf;
869	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
870	uint64_t txg = dr->dr_txg;
871
872	ASSERT(MUTEX_HELD(&db->db_mtx));
873	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
874	ASSERT(db->db_level == 0);
875
876	if (db->db_blkid == DMU_BONUS_BLKID ||
877	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
878		return;
879
880	ASSERT(db->db_data_pending != dr);
881
882	/* free this block */
883	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
884		zio_free(db->db_objset->os_spa, txg, bp);
885
886	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
887	dr->dt.dl.dr_nopwrite = B_FALSE;
888
889	/*
890	 * Release the already-written buffer, so we leave it in
891	 * a consistent dirty state.  Note that all callers are
892	 * modifying the buffer, so they will immediately do
893	 * another (redundant) arc_release().  Therefore, leave
894	 * the buf thawed to save the effort of freezing &
895	 * immediately re-thawing it.
896	 */
897	arc_release(dr->dt.dl.dr_data, db);
898}
899
900/*
901 * Evict (if its unreferenced) or clear (if its referenced) any level-0
902 * data blocks in the free range, so that any future readers will find
903 * empty blocks.
904 *
905 * This is a no-op if the dataset is in the middle of an incremental
906 * receive; see comment below for details.
907 */
908void
909dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
910    dmu_tx_t *tx)
911{
912	dmu_buf_impl_t db_search;
913	dmu_buf_impl_t *db, *db_next;
914	uint64_t txg = tx->tx_txg;
915	avl_index_t where;
916
917	if (end_blkid > dn->dn_maxblkid && (end_blkid != DMU_SPILL_BLKID))
918		end_blkid = dn->dn_maxblkid;
919	dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
920
921	db_search.db_level = 0;
922	db_search.db_blkid = start_blkid;
923	db_search.db_state = DB_SEARCH;
924
925	mutex_enter(&dn->dn_dbufs_mtx);
926	if (start_blkid >= dn->dn_unlisted_l0_blkid) {
927		/* There can't be any dbufs in this range; no need to search. */
928#ifdef DEBUG
929		db = avl_find(&dn->dn_dbufs, &db_search, &where);
930		ASSERT3P(db, ==, NULL);
931		db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
932		ASSERT(db == NULL || db->db_level > 0);
933#endif
934		mutex_exit(&dn->dn_dbufs_mtx);
935		return;
936	} else if (dmu_objset_is_receiving(dn->dn_objset)) {
937		/*
938		 * If we are receiving, we expect there to be no dbufs in
939		 * the range to be freed, because receive modifies each
940		 * block at most once, and in offset order.  If this is
941		 * not the case, it can lead to performance problems,
942		 * so note that we unexpectedly took the slow path.
943		 */
944		atomic_inc_64(&zfs_free_range_recv_miss);
945	}
946
947	db = avl_find(&dn->dn_dbufs, &db_search, &where);
948	ASSERT3P(db, ==, NULL);
949	db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
950
951	for (; db != NULL; db = db_next) {
952		db_next = AVL_NEXT(&dn->dn_dbufs, db);
953		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
954
955		if (db->db_level != 0 || db->db_blkid > end_blkid) {
956			break;
957		}
958		ASSERT3U(db->db_blkid, >=, start_blkid);
959
960		/* found a level 0 buffer in the range */
961		mutex_enter(&db->db_mtx);
962		if (dbuf_undirty(db, tx)) {
963			/* mutex has been dropped and dbuf destroyed */
964			continue;
965		}
966
967		if (db->db_state == DB_UNCACHED ||
968		    db->db_state == DB_NOFILL ||
969		    db->db_state == DB_EVICTING) {
970			ASSERT(db->db.db_data == NULL);
971			mutex_exit(&db->db_mtx);
972			continue;
973		}
974		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
975			/* will be handled in dbuf_read_done or dbuf_rele */
976			db->db_freed_in_flight = TRUE;
977			mutex_exit(&db->db_mtx);
978			continue;
979		}
980		if (refcount_count(&db->db_holds) == 0) {
981			ASSERT(db->db_buf);
982			dbuf_clear(db);
983			continue;
984		}
985		/* The dbuf is referenced */
986
987		if (db->db_last_dirty != NULL) {
988			dbuf_dirty_record_t *dr = db->db_last_dirty;
989
990			if (dr->dr_txg == txg) {
991				/*
992				 * This buffer is "in-use", re-adjust the file
993				 * size to reflect that this buffer may
994				 * contain new data when we sync.
995				 */
996				if (db->db_blkid != DMU_SPILL_BLKID &&
997				    db->db_blkid > dn->dn_maxblkid)
998					dn->dn_maxblkid = db->db_blkid;
999				dbuf_unoverride(dr);
1000			} else {
1001				/*
1002				 * This dbuf is not dirty in the open context.
1003				 * Either uncache it (if its not referenced in
1004				 * the open context) or reset its contents to
1005				 * empty.
1006				 */
1007				dbuf_fix_old_data(db, txg);
1008			}
1009		}
1010		/* clear the contents if its cached */
1011		if (db->db_state == DB_CACHED) {
1012			ASSERT(db->db.db_data != NULL);
1013			arc_release(db->db_buf, db);
1014			bzero(db->db.db_data, db->db.db_size);
1015			arc_buf_freeze(db->db_buf);
1016		}
1017
1018		mutex_exit(&db->db_mtx);
1019	}
1020	mutex_exit(&dn->dn_dbufs_mtx);
1021}
1022
1023static int
1024dbuf_block_freeable(dmu_buf_impl_t *db)
1025{
1026	dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
1027	uint64_t birth_txg = 0;
1028
1029	/*
1030	 * We don't need any locking to protect db_blkptr:
1031	 * If it's syncing, then db_last_dirty will be set
1032	 * so we'll ignore db_blkptr.
1033	 *
1034	 * This logic ensures that only block births for
1035	 * filled blocks are considered.
1036	 */
1037	ASSERT(MUTEX_HELD(&db->db_mtx));
1038	if (db->db_last_dirty && (db->db_blkptr == NULL ||
1039	    !BP_IS_HOLE(db->db_blkptr))) {
1040		birth_txg = db->db_last_dirty->dr_txg;
1041	} else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1042		birth_txg = db->db_blkptr->blk_birth;
1043	}
1044
1045	/*
1046	 * If this block don't exist or is in a snapshot, it can't be freed.
1047	 * Don't pass the bp to dsl_dataset_block_freeable() since we
1048	 * are holding the db_mtx lock and might deadlock if we are
1049	 * prefetching a dedup-ed block.
1050	 */
1051	if (birth_txg != 0)
1052		return (ds == NULL ||
1053		    dsl_dataset_block_freeable(ds, NULL, birth_txg));
1054	else
1055		return (B_FALSE);
1056}
1057
1058void
1059dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1060{
1061	arc_buf_t *buf, *obuf;
1062	int osize = db->db.db_size;
1063	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1064	dnode_t *dn;
1065
1066	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1067
1068	DB_DNODE_ENTER(db);
1069	dn = DB_DNODE(db);
1070
1071	/* XXX does *this* func really need the lock? */
1072	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1073
1074	/*
1075	 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1076	 * is OK, because there can be no other references to the db
1077	 * when we are changing its size, so no concurrent DB_FILL can
1078	 * be happening.
1079	 */
1080	/*
1081	 * XXX we should be doing a dbuf_read, checking the return
1082	 * value and returning that up to our callers
1083	 */
1084	dmu_buf_will_dirty(&db->db, tx);
1085
1086	/* create the data buffer for the new block */
1087	buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type);
1088
1089	/* copy old block data to the new block */
1090	obuf = db->db_buf;
1091	bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1092	/* zero the remainder */
1093	if (size > osize)
1094		bzero((uint8_t *)buf->b_data + osize, size - osize);
1095
1096	mutex_enter(&db->db_mtx);
1097	dbuf_set_data(db, buf);
1098	VERIFY(arc_buf_remove_ref(obuf, db));
1099	db->db.db_size = size;
1100
1101	if (db->db_level == 0) {
1102		ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1103		db->db_last_dirty->dt.dl.dr_data = buf;
1104	}
1105	mutex_exit(&db->db_mtx);
1106
1107	dnode_willuse_space(dn, size-osize, tx);
1108	DB_DNODE_EXIT(db);
1109}
1110
1111void
1112dbuf_release_bp(dmu_buf_impl_t *db)
1113{
1114	objset_t *os = db->db_objset;
1115
1116	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1117	ASSERT(arc_released(os->os_phys_buf) ||
1118	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
1119	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1120
1121	(void) arc_release(db->db_buf, db);
1122}
1123
1124dbuf_dirty_record_t *
1125dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1126{
1127	dnode_t *dn;
1128	objset_t *os;
1129	dbuf_dirty_record_t **drp, *dr;
1130	int drop_struct_lock = FALSE;
1131	boolean_t do_free_accounting = B_FALSE;
1132	int txgoff = tx->tx_txg & TXG_MASK;
1133
1134	ASSERT(tx->tx_txg != 0);
1135	ASSERT(!refcount_is_zero(&db->db_holds));
1136	DMU_TX_DIRTY_BUF(tx, db);
1137
1138	DB_DNODE_ENTER(db);
1139	dn = DB_DNODE(db);
1140	/*
1141	 * Shouldn't dirty a regular buffer in syncing context.  Private
1142	 * objects may be dirtied in syncing context, but only if they
1143	 * were already pre-dirtied in open context.
1144	 */
1145	ASSERT(!dmu_tx_is_syncing(tx) ||
1146	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1147	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1148	    dn->dn_objset->os_dsl_dataset == NULL);
1149	/*
1150	 * We make this assert for private objects as well, but after we
1151	 * check if we're already dirty.  They are allowed to re-dirty
1152	 * in syncing context.
1153	 */
1154	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1155	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1156	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1157
1158	mutex_enter(&db->db_mtx);
1159	/*
1160	 * XXX make this true for indirects too?  The problem is that
1161	 * transactions created with dmu_tx_create_assigned() from
1162	 * syncing context don't bother holding ahead.
1163	 */
1164	ASSERT(db->db_level != 0 ||
1165	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1166	    db->db_state == DB_NOFILL);
1167
1168	mutex_enter(&dn->dn_mtx);
1169	/*
1170	 * Don't set dirtyctx to SYNC if we're just modifying this as we
1171	 * initialize the objset.
1172	 */
1173	if (dn->dn_dirtyctx == DN_UNDIRTIED &&
1174	    !BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1175		dn->dn_dirtyctx =
1176		    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1177		ASSERT(dn->dn_dirtyctx_firstset == NULL);
1178		dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1179	}
1180	mutex_exit(&dn->dn_mtx);
1181
1182	if (db->db_blkid == DMU_SPILL_BLKID)
1183		dn->dn_have_spill = B_TRUE;
1184
1185	/*
1186	 * If this buffer is already dirty, we're done.
1187	 */
1188	drp = &db->db_last_dirty;
1189	ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1190	    db->db.db_object == DMU_META_DNODE_OBJECT);
1191	while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1192		drp = &dr->dr_next;
1193	if (dr && dr->dr_txg == tx->tx_txg) {
1194		DB_DNODE_EXIT(db);
1195
1196		if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1197			/*
1198			 * If this buffer has already been written out,
1199			 * we now need to reset its state.
1200			 */
1201			dbuf_unoverride(dr);
1202			if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1203			    db->db_state != DB_NOFILL)
1204				arc_buf_thaw(db->db_buf);
1205		}
1206		mutex_exit(&db->db_mtx);
1207		return (dr);
1208	}
1209
1210	/*
1211	 * Only valid if not already dirty.
1212	 */
1213	ASSERT(dn->dn_object == 0 ||
1214	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1215	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1216
1217	ASSERT3U(dn->dn_nlevels, >, db->db_level);
1218	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1219	    dn->dn_phys->dn_nlevels > db->db_level ||
1220	    dn->dn_next_nlevels[txgoff] > db->db_level ||
1221	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1222	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1223
1224	/*
1225	 * We should only be dirtying in syncing context if it's the
1226	 * mos or we're initializing the os or it's a special object.
1227	 * However, we are allowed to dirty in syncing context provided
1228	 * we already dirtied it in open context.  Hence we must make
1229	 * this assertion only if we're not already dirty.
1230	 */
1231	os = dn->dn_objset;
1232	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1233	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1234	ASSERT(db->db.db_size != 0);
1235
1236	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1237
1238	if (db->db_blkid != DMU_BONUS_BLKID) {
1239		/*
1240		 * Update the accounting.
1241		 * Note: we delay "free accounting" until after we drop
1242		 * the db_mtx.  This keeps us from grabbing other locks
1243		 * (and possibly deadlocking) in bp_get_dsize() while
1244		 * also holding the db_mtx.
1245		 */
1246		dnode_willuse_space(dn, db->db.db_size, tx);
1247		do_free_accounting = dbuf_block_freeable(db);
1248	}
1249
1250	/*
1251	 * If this buffer is dirty in an old transaction group we need
1252	 * to make a copy of it so that the changes we make in this
1253	 * transaction group won't leak out when we sync the older txg.
1254	 */
1255	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1256	if (db->db_level == 0) {
1257		void *data_old = db->db_buf;
1258
1259		if (db->db_state != DB_NOFILL) {
1260			if (db->db_blkid == DMU_BONUS_BLKID) {
1261				dbuf_fix_old_data(db, tx->tx_txg);
1262				data_old = db->db.db_data;
1263			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1264				/*
1265				 * Release the data buffer from the cache so
1266				 * that we can modify it without impacting
1267				 * possible other users of this cached data
1268				 * block.  Note that indirect blocks and
1269				 * private objects are not released until the
1270				 * syncing state (since they are only modified
1271				 * then).
1272				 */
1273				arc_release(db->db_buf, db);
1274				dbuf_fix_old_data(db, tx->tx_txg);
1275				data_old = db->db_buf;
1276			}
1277			ASSERT(data_old != NULL);
1278		}
1279		dr->dt.dl.dr_data = data_old;
1280	} else {
1281		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1282		list_create(&dr->dt.di.dr_children,
1283		    sizeof (dbuf_dirty_record_t),
1284		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
1285	}
1286	if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1287		dr->dr_accounted = db->db.db_size;
1288	dr->dr_dbuf = db;
1289	dr->dr_txg = tx->tx_txg;
1290	dr->dr_next = *drp;
1291	*drp = dr;
1292
1293	/*
1294	 * We could have been freed_in_flight between the dbuf_noread
1295	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
1296	 * happened after the free.
1297	 */
1298	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1299	    db->db_blkid != DMU_SPILL_BLKID) {
1300		mutex_enter(&dn->dn_mtx);
1301		if (dn->dn_free_ranges[txgoff] != NULL) {
1302			range_tree_clear(dn->dn_free_ranges[txgoff],
1303			    db->db_blkid, 1);
1304		}
1305		mutex_exit(&dn->dn_mtx);
1306		db->db_freed_in_flight = FALSE;
1307	}
1308
1309	/*
1310	 * This buffer is now part of this txg
1311	 */
1312	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1313	db->db_dirtycnt += 1;
1314	ASSERT3U(db->db_dirtycnt, <=, 3);
1315
1316	mutex_exit(&db->db_mtx);
1317
1318	if (db->db_blkid == DMU_BONUS_BLKID ||
1319	    db->db_blkid == DMU_SPILL_BLKID) {
1320		mutex_enter(&dn->dn_mtx);
1321		ASSERT(!list_link_active(&dr->dr_dirty_node));
1322		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1323		mutex_exit(&dn->dn_mtx);
1324		dnode_setdirty(dn, tx);
1325		DB_DNODE_EXIT(db);
1326		return (dr);
1327	} else if (do_free_accounting) {
1328		blkptr_t *bp = db->db_blkptr;
1329		int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
1330		    bp_get_dsize(os->os_spa, bp) : db->db.db_size;
1331		/*
1332		 * This is only a guess -- if the dbuf is dirty
1333		 * in a previous txg, we don't know how much
1334		 * space it will use on disk yet.  We should
1335		 * really have the struct_rwlock to access
1336		 * db_blkptr, but since this is just a guess,
1337		 * it's OK if we get an odd answer.
1338		 */
1339		ddt_prefetch(os->os_spa, bp);
1340		dnode_willuse_space(dn, -willfree, tx);
1341	}
1342
1343	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1344		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1345		drop_struct_lock = TRUE;
1346	}
1347
1348	if (db->db_level == 0) {
1349		dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1350		ASSERT(dn->dn_maxblkid >= db->db_blkid);
1351	}
1352
1353	if (db->db_level+1 < dn->dn_nlevels) {
1354		dmu_buf_impl_t *parent = db->db_parent;
1355		dbuf_dirty_record_t *di;
1356		int parent_held = FALSE;
1357
1358		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1359			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1360
1361			parent = dbuf_hold_level(dn, db->db_level+1,
1362			    db->db_blkid >> epbs, FTAG);
1363			ASSERT(parent != NULL);
1364			parent_held = TRUE;
1365		}
1366		if (drop_struct_lock)
1367			rw_exit(&dn->dn_struct_rwlock);
1368		ASSERT3U(db->db_level+1, ==, parent->db_level);
1369		di = dbuf_dirty(parent, tx);
1370		if (parent_held)
1371			dbuf_rele(parent, FTAG);
1372
1373		mutex_enter(&db->db_mtx);
1374		/*
1375		 * Since we've dropped the mutex, it's possible that
1376		 * dbuf_undirty() might have changed this out from under us.
1377		 */
1378		if (db->db_last_dirty == dr ||
1379		    dn->dn_object == DMU_META_DNODE_OBJECT) {
1380			mutex_enter(&di->dt.di.dr_mtx);
1381			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1382			ASSERT(!list_link_active(&dr->dr_dirty_node));
1383			list_insert_tail(&di->dt.di.dr_children, dr);
1384			mutex_exit(&di->dt.di.dr_mtx);
1385			dr->dr_parent = di;
1386		}
1387		mutex_exit(&db->db_mtx);
1388	} else {
1389		ASSERT(db->db_level+1 == dn->dn_nlevels);
1390		ASSERT(db->db_blkid < dn->dn_nblkptr);
1391		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1392		mutex_enter(&dn->dn_mtx);
1393		ASSERT(!list_link_active(&dr->dr_dirty_node));
1394		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1395		mutex_exit(&dn->dn_mtx);
1396		if (drop_struct_lock)
1397			rw_exit(&dn->dn_struct_rwlock);
1398	}
1399
1400	dnode_setdirty(dn, tx);
1401	DB_DNODE_EXIT(db);
1402	return (dr);
1403}
1404
1405/*
1406 * Undirty a buffer in the transaction group referenced by the given
1407 * transaction.  Return whether this evicted the dbuf.
1408 */
1409static boolean_t
1410dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1411{
1412	dnode_t *dn;
1413	uint64_t txg = tx->tx_txg;
1414	dbuf_dirty_record_t *dr, **drp;
1415
1416	ASSERT(txg != 0);
1417
1418	/*
1419	 * Due to our use of dn_nlevels below, this can only be called
1420	 * in open context, unless we are operating on the MOS.
1421	 * From syncing context, dn_nlevels may be different from the
1422	 * dn_nlevels used when dbuf was dirtied.
1423	 */
1424	ASSERT(db->db_objset ==
1425	    dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1426	    txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1427	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1428	ASSERT0(db->db_level);
1429	ASSERT(MUTEX_HELD(&db->db_mtx));
1430
1431	/*
1432	 * If this buffer is not dirty, we're done.
1433	 */
1434	for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1435		if (dr->dr_txg <= txg)
1436			break;
1437	if (dr == NULL || dr->dr_txg < txg)
1438		return (B_FALSE);
1439	ASSERT(dr->dr_txg == txg);
1440	ASSERT(dr->dr_dbuf == db);
1441
1442	DB_DNODE_ENTER(db);
1443	dn = DB_DNODE(db);
1444
1445	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1446
1447	ASSERT(db->db.db_size != 0);
1448
1449	dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1450	    dr->dr_accounted, txg);
1451
1452	*drp = dr->dr_next;
1453
1454	/*
1455	 * Note that there are three places in dbuf_dirty()
1456	 * where this dirty record may be put on a list.
1457	 * Make sure to do a list_remove corresponding to
1458	 * every one of those list_insert calls.
1459	 */
1460	if (dr->dr_parent) {
1461		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1462		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1463		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1464	} else if (db->db_blkid == DMU_SPILL_BLKID ||
1465	    db->db_level + 1 == dn->dn_nlevels) {
1466		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1467		mutex_enter(&dn->dn_mtx);
1468		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1469		mutex_exit(&dn->dn_mtx);
1470	}
1471	DB_DNODE_EXIT(db);
1472
1473	if (db->db_state != DB_NOFILL) {
1474		dbuf_unoverride(dr);
1475
1476		ASSERT(db->db_buf != NULL);
1477		ASSERT(dr->dt.dl.dr_data != NULL);
1478		if (dr->dt.dl.dr_data != db->db_buf)
1479			VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db));
1480	}
1481
1482	kmem_free(dr, sizeof (dbuf_dirty_record_t));
1483
1484	ASSERT(db->db_dirtycnt > 0);
1485	db->db_dirtycnt -= 1;
1486
1487	if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1488		arc_buf_t *buf = db->db_buf;
1489
1490		ASSERT(db->db_state == DB_NOFILL || arc_released(buf));
1491		dbuf_clear_data(db);
1492		VERIFY(arc_buf_remove_ref(buf, db));
1493		dbuf_evict(db);
1494		return (B_TRUE);
1495	}
1496
1497	return (B_FALSE);
1498}
1499
1500void
1501dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1502{
1503	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1504	int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1505
1506	ASSERT(tx->tx_txg != 0);
1507	ASSERT(!refcount_is_zero(&db->db_holds));
1508
1509	DB_DNODE_ENTER(db);
1510	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1511		rf |= DB_RF_HAVESTRUCT;
1512	DB_DNODE_EXIT(db);
1513	(void) dbuf_read(db, NULL, rf);
1514	(void) dbuf_dirty(db, tx);
1515}
1516
1517void
1518dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1519{
1520	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1521
1522	db->db_state = DB_NOFILL;
1523
1524	dmu_buf_will_fill(db_fake, tx);
1525}
1526
1527void
1528dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1529{
1530	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1531
1532	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1533	ASSERT(tx->tx_txg != 0);
1534	ASSERT(db->db_level == 0);
1535	ASSERT(!refcount_is_zero(&db->db_holds));
1536
1537	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1538	    dmu_tx_private_ok(tx));
1539
1540	dbuf_noread(db);
1541	(void) dbuf_dirty(db, tx);
1542}
1543
1544#pragma weak dmu_buf_fill_done = dbuf_fill_done
1545/* ARGSUSED */
1546void
1547dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1548{
1549	mutex_enter(&db->db_mtx);
1550	DBUF_VERIFY(db);
1551
1552	if (db->db_state == DB_FILL) {
1553		if (db->db_level == 0 && db->db_freed_in_flight) {
1554			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1555			/* we were freed while filling */
1556			/* XXX dbuf_undirty? */
1557			bzero(db->db.db_data, db->db.db_size);
1558			db->db_freed_in_flight = FALSE;
1559		}
1560		db->db_state = DB_CACHED;
1561		cv_broadcast(&db->db_changed);
1562	}
1563	mutex_exit(&db->db_mtx);
1564}
1565
1566void
1567dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1568    bp_embedded_type_t etype, enum zio_compress comp,
1569    int uncompressed_size, int compressed_size, int byteorder,
1570    dmu_tx_t *tx)
1571{
1572	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
1573	struct dirty_leaf *dl;
1574	dmu_object_type_t type;
1575
1576	if (etype == BP_EMBEDDED_TYPE_DATA) {
1577		ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
1578		    SPA_FEATURE_EMBEDDED_DATA));
1579	}
1580
1581	DB_DNODE_ENTER(db);
1582	type = DB_DNODE(db)->dn_type;
1583	DB_DNODE_EXIT(db);
1584
1585	ASSERT0(db->db_level);
1586	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1587
1588	dmu_buf_will_not_fill(dbuf, tx);
1589
1590	ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1591	dl = &db->db_last_dirty->dt.dl;
1592	encode_embedded_bp_compressed(&dl->dr_overridden_by,
1593	    data, comp, uncompressed_size, compressed_size);
1594	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
1595	BP_SET_TYPE(&dl->dr_overridden_by, type);
1596	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
1597	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
1598
1599	dl->dr_override_state = DR_OVERRIDDEN;
1600	dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
1601}
1602
1603/*
1604 * Directly assign a provided arc buf to a given dbuf if it's not referenced
1605 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1606 */
1607void
1608dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1609{
1610	ASSERT(!refcount_is_zero(&db->db_holds));
1611	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1612	ASSERT(db->db_level == 0);
1613	ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA);
1614	ASSERT(buf != NULL);
1615	ASSERT(arc_buf_size(buf) == db->db.db_size);
1616	ASSERT(tx->tx_txg != 0);
1617
1618	arc_return_buf(buf, db);
1619	ASSERT(arc_released(buf));
1620
1621	mutex_enter(&db->db_mtx);
1622
1623	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1624		cv_wait(&db->db_changed, &db->db_mtx);
1625
1626	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1627
1628	if (db->db_state == DB_CACHED &&
1629	    refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1630		mutex_exit(&db->db_mtx);
1631		(void) dbuf_dirty(db, tx);
1632		bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1633		VERIFY(arc_buf_remove_ref(buf, db));
1634		xuio_stat_wbuf_copied();
1635		return;
1636	}
1637
1638	xuio_stat_wbuf_nocopy();
1639	if (db->db_state == DB_CACHED) {
1640		dbuf_dirty_record_t *dr = db->db_last_dirty;
1641
1642		ASSERT(db->db_buf != NULL);
1643		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1644			ASSERT(dr->dt.dl.dr_data == db->db_buf);
1645			if (!arc_released(db->db_buf)) {
1646				ASSERT(dr->dt.dl.dr_override_state ==
1647				    DR_OVERRIDDEN);
1648				arc_release(db->db_buf, db);
1649			}
1650			dr->dt.dl.dr_data = buf;
1651			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1652		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
1653			arc_release(db->db_buf, db);
1654			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1655		}
1656		db->db_buf = NULL;
1657	}
1658	ASSERT(db->db_buf == NULL);
1659	dbuf_set_data(db, buf);
1660	db->db_state = DB_FILL;
1661	mutex_exit(&db->db_mtx);
1662	(void) dbuf_dirty(db, tx);
1663	dmu_buf_fill_done(&db->db, tx);
1664}
1665
1666/*
1667 * "Clear" the contents of this dbuf.  This will mark the dbuf
1668 * EVICTING and clear *most* of its references.  Unfortunately,
1669 * when we are not holding the dn_dbufs_mtx, we can't clear the
1670 * entry in the dn_dbufs list.  We have to wait until dbuf_destroy()
1671 * in this case.  For callers from the DMU we will usually see:
1672 *	dbuf_clear()->arc_clear_callback()->dbuf_do_evict()->dbuf_destroy()
1673 * For the arc callback, we will usually see:
1674 *	dbuf_do_evict()->dbuf_clear();dbuf_destroy()
1675 * Sometimes, though, we will get a mix of these two:
1676 *	DMU: dbuf_clear()->arc_clear_callback()
1677 *	ARC: dbuf_do_evict()->dbuf_destroy()
1678 *
1679 * This routine will dissociate the dbuf from the arc, by calling
1680 * arc_clear_callback(), but will not evict the data from the ARC.
1681 */
1682void
1683dbuf_clear(dmu_buf_impl_t *db)
1684{
1685	dnode_t *dn;
1686	dmu_buf_impl_t *parent = db->db_parent;
1687	dmu_buf_impl_t *dndb;
1688	boolean_t dbuf_gone = B_FALSE;
1689
1690	ASSERT(MUTEX_HELD(&db->db_mtx));
1691	ASSERT(refcount_is_zero(&db->db_holds));
1692
1693	dbuf_evict_user(db);
1694
1695	if (db->db_state == DB_CACHED) {
1696		ASSERT(db->db.db_data != NULL);
1697		if (db->db_blkid == DMU_BONUS_BLKID) {
1698			zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
1699			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1700		}
1701		db->db.db_data = NULL;
1702		db->db_state = DB_UNCACHED;
1703	}
1704
1705	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1706	ASSERT(db->db_data_pending == NULL);
1707
1708	db->db_state = DB_EVICTING;
1709	db->db_blkptr = NULL;
1710
1711	DB_DNODE_ENTER(db);
1712	dn = DB_DNODE(db);
1713	dndb = dn->dn_dbuf;
1714	if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) {
1715		avl_remove(&dn->dn_dbufs, db);
1716		atomic_dec_32(&dn->dn_dbufs_count);
1717		membar_producer();
1718		DB_DNODE_EXIT(db);
1719		/*
1720		 * Decrementing the dbuf count means that the hold corresponding
1721		 * to the removed dbuf is no longer discounted in dnode_move(),
1722		 * so the dnode cannot be moved until after we release the hold.
1723		 * The membar_producer() ensures visibility of the decremented
1724		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
1725		 * release any lock.
1726		 */
1727		dnode_rele(dn, db);
1728		db->db_dnode_handle = NULL;
1729	} else {
1730		DB_DNODE_EXIT(db);
1731	}
1732
1733	if (db->db_buf)
1734		dbuf_gone = arc_clear_callback(db->db_buf);
1735
1736	if (!dbuf_gone)
1737		mutex_exit(&db->db_mtx);
1738
1739	/*
1740	 * If this dbuf is referenced from an indirect dbuf,
1741	 * decrement the ref count on the indirect dbuf.
1742	 */
1743	if (parent && parent != dndb)
1744		dbuf_rele(parent, db);
1745}
1746
1747/*
1748 * Note: While bpp will always be updated if the function returns success,
1749 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
1750 * this happens when the dnode is the meta-dnode, or a userused or groupused
1751 * object.
1752 */
1753static int
1754dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
1755    dmu_buf_impl_t **parentp, blkptr_t **bpp)
1756{
1757	int nlevels, epbs;
1758
1759	*parentp = NULL;
1760	*bpp = NULL;
1761
1762	ASSERT(blkid != DMU_BONUS_BLKID);
1763
1764	if (blkid == DMU_SPILL_BLKID) {
1765		mutex_enter(&dn->dn_mtx);
1766		if (dn->dn_have_spill &&
1767		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1768			*bpp = &dn->dn_phys->dn_spill;
1769		else
1770			*bpp = NULL;
1771		dbuf_add_ref(dn->dn_dbuf, NULL);
1772		*parentp = dn->dn_dbuf;
1773		mutex_exit(&dn->dn_mtx);
1774		return (0);
1775	}
1776
1777	if (dn->dn_phys->dn_nlevels == 0)
1778		nlevels = 1;
1779	else
1780		nlevels = dn->dn_phys->dn_nlevels;
1781
1782	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1783
1784	ASSERT3U(level * epbs, <, 64);
1785	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1786	if (level >= nlevels ||
1787	    (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
1788		/* the buffer has no parent yet */
1789		return (SET_ERROR(ENOENT));
1790	} else if (level < nlevels-1) {
1791		/* this block is referenced from an indirect block */
1792		int err = dbuf_hold_impl(dn, level+1,
1793		    blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
1794		if (err)
1795			return (err);
1796		err = dbuf_read(*parentp, NULL,
1797		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
1798		if (err) {
1799			dbuf_rele(*parentp, NULL);
1800			*parentp = NULL;
1801			return (err);
1802		}
1803		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
1804		    (blkid & ((1ULL << epbs) - 1));
1805		return (0);
1806	} else {
1807		/* the block is referenced from the dnode */
1808		ASSERT3U(level, ==, nlevels-1);
1809		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
1810		    blkid < dn->dn_phys->dn_nblkptr);
1811		if (dn->dn_dbuf) {
1812			dbuf_add_ref(dn->dn_dbuf, NULL);
1813			*parentp = dn->dn_dbuf;
1814		}
1815		*bpp = &dn->dn_phys->dn_blkptr[blkid];
1816		return (0);
1817	}
1818}
1819
1820static dmu_buf_impl_t *
1821dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
1822    dmu_buf_impl_t *parent, blkptr_t *blkptr)
1823{
1824	objset_t *os = dn->dn_objset;
1825	dmu_buf_impl_t *db, *odb;
1826
1827	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1828	ASSERT(dn->dn_type != DMU_OT_NONE);
1829
1830	db = kmem_cache_alloc(dbuf_cache, KM_SLEEP);
1831
1832	db->db_objset = os;
1833	db->db.db_object = dn->dn_object;
1834	db->db_level = level;
1835	db->db_blkid = blkid;
1836	db->db_last_dirty = NULL;
1837	db->db_dirtycnt = 0;
1838	db->db_dnode_handle = dn->dn_handle;
1839	db->db_parent = parent;
1840	db->db_blkptr = blkptr;
1841
1842	db->db_user = NULL;
1843	db->db_immediate_evict = 0;
1844	db->db_freed_in_flight = 0;
1845
1846	if (blkid == DMU_BONUS_BLKID) {
1847		ASSERT3P(parent, ==, dn->dn_dbuf);
1848		db->db.db_size = DN_MAX_BONUSLEN -
1849		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
1850		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1851		db->db.db_offset = DMU_BONUS_BLKID;
1852		db->db_state = DB_UNCACHED;
1853		/* the bonus dbuf is not placed in the hash table */
1854		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1855		return (db);
1856	} else if (blkid == DMU_SPILL_BLKID) {
1857		db->db.db_size = (blkptr != NULL) ?
1858		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
1859		db->db.db_offset = 0;
1860	} else {
1861		int blocksize =
1862		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
1863		db->db.db_size = blocksize;
1864		db->db.db_offset = db->db_blkid * blocksize;
1865	}
1866
1867	/*
1868	 * Hold the dn_dbufs_mtx while we get the new dbuf
1869	 * in the hash table *and* added to the dbufs list.
1870	 * This prevents a possible deadlock with someone
1871	 * trying to look up this dbuf before its added to the
1872	 * dn_dbufs list.
1873	 */
1874	mutex_enter(&dn->dn_dbufs_mtx);
1875	db->db_state = DB_EVICTING;
1876	if ((odb = dbuf_hash_insert(db)) != NULL) {
1877		/* someone else inserted it first */
1878		kmem_cache_free(dbuf_cache, db);
1879		mutex_exit(&dn->dn_dbufs_mtx);
1880		return (odb);
1881	}
1882	avl_add(&dn->dn_dbufs, db);
1883	if (db->db_level == 0 && db->db_blkid >=
1884	    dn->dn_unlisted_l0_blkid)
1885		dn->dn_unlisted_l0_blkid = db->db_blkid + 1;
1886	db->db_state = DB_UNCACHED;
1887	mutex_exit(&dn->dn_dbufs_mtx);
1888	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1889
1890	if (parent && parent != dn->dn_dbuf)
1891		dbuf_add_ref(parent, db);
1892
1893	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1894	    refcount_count(&dn->dn_holds) > 0);
1895	(void) refcount_add(&dn->dn_holds, db);
1896	atomic_inc_32(&dn->dn_dbufs_count);
1897
1898	dprintf_dbuf(db, "db=%p\n", db);
1899
1900	return (db);
1901}
1902
1903static int
1904dbuf_do_evict(void *private)
1905{
1906	dmu_buf_impl_t *db = private;
1907
1908	if (!MUTEX_HELD(&db->db_mtx))
1909		mutex_enter(&db->db_mtx);
1910
1911	ASSERT(refcount_is_zero(&db->db_holds));
1912
1913	if (db->db_state != DB_EVICTING) {
1914		ASSERT(db->db_state == DB_CACHED);
1915		DBUF_VERIFY(db);
1916		db->db_buf = NULL;
1917		dbuf_evict(db);
1918	} else {
1919		mutex_exit(&db->db_mtx);
1920		dbuf_destroy(db);
1921	}
1922	return (0);
1923}
1924
1925static void
1926dbuf_destroy(dmu_buf_impl_t *db)
1927{
1928	ASSERT(refcount_is_zero(&db->db_holds));
1929
1930	if (db->db_blkid != DMU_BONUS_BLKID) {
1931		/*
1932		 * If this dbuf is still on the dn_dbufs list,
1933		 * remove it from that list.
1934		 */
1935		if (db->db_dnode_handle != NULL) {
1936			dnode_t *dn;
1937
1938			DB_DNODE_ENTER(db);
1939			dn = DB_DNODE(db);
1940			mutex_enter(&dn->dn_dbufs_mtx);
1941			avl_remove(&dn->dn_dbufs, db);
1942			atomic_dec_32(&dn->dn_dbufs_count);
1943			mutex_exit(&dn->dn_dbufs_mtx);
1944			DB_DNODE_EXIT(db);
1945			/*
1946			 * Decrementing the dbuf count means that the hold
1947			 * corresponding to the removed dbuf is no longer
1948			 * discounted in dnode_move(), so the dnode cannot be
1949			 * moved until after we release the hold.
1950			 */
1951			dnode_rele(dn, db);
1952			db->db_dnode_handle = NULL;
1953		}
1954		dbuf_hash_remove(db);
1955	}
1956	db->db_parent = NULL;
1957	db->db_buf = NULL;
1958
1959	ASSERT(db->db.db_data == NULL);
1960	ASSERT(db->db_hash_next == NULL);
1961	ASSERT(db->db_blkptr == NULL);
1962	ASSERT(db->db_data_pending == NULL);
1963
1964	kmem_cache_free(dbuf_cache, db);
1965	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1966}
1967
1968typedef struct dbuf_prefetch_arg {
1969	spa_t *dpa_spa;	/* The spa to issue the prefetch in. */
1970	zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
1971	int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
1972	int dpa_curlevel; /* The current level that we're reading */
1973	zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
1974	zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
1975	arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
1976} dbuf_prefetch_arg_t;
1977
1978/*
1979 * Actually issue the prefetch read for the block given.
1980 */
1981static void
1982dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
1983{
1984	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1985		return;
1986
1987	arc_flags_t aflags =
1988	    dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
1989
1990	ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
1991	ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
1992	ASSERT(dpa->dpa_zio != NULL);
1993	(void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
1994	    dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
1995	    &aflags, &dpa->dpa_zb);
1996}
1997
1998/*
1999 * Called when an indirect block above our prefetch target is read in.  This
2000 * will either read in the next indirect block down the tree or issue the actual
2001 * prefetch if the next block down is our target.
2002 */
2003static void
2004dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private)
2005{
2006	dbuf_prefetch_arg_t *dpa = private;
2007
2008	ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2009	ASSERT3S(dpa->dpa_curlevel, >, 0);
2010	if (zio != NULL) {
2011		ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2012		ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2013		ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2014	}
2015
2016	dpa->dpa_curlevel--;
2017
2018	uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2019	    (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2020	blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2021	    P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2022	if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) {
2023		kmem_free(dpa, sizeof (*dpa));
2024	} else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2025		ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2026		dbuf_issue_final_prefetch(dpa, bp);
2027		kmem_free(dpa, sizeof (*dpa));
2028	} else {
2029		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2030		zbookmark_phys_t zb;
2031
2032		ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2033
2034		SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2035		    dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2036
2037		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2038		    bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2039		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2040		    &iter_aflags, &zb);
2041	}
2042	(void) arc_buf_remove_ref(abuf, private);
2043}
2044
2045/*
2046 * Issue prefetch reads for the given block on the given level.  If the indirect
2047 * blocks above that block are not in memory, we will read them in
2048 * asynchronously.  As a result, this call never blocks waiting for a read to
2049 * complete.
2050 */
2051void
2052dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2053    arc_flags_t aflags)
2054{
2055	blkptr_t bp;
2056	int epbs, nlevels, curlevel;
2057	uint64_t curblkid;
2058
2059	ASSERT(blkid != DMU_BONUS_BLKID);
2060	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2061
2062	if (dnode_block_freed(dn, blkid))
2063		return;
2064
2065	/*
2066	 * This dnode hasn't been written to disk yet, so there's nothing to
2067	 * prefetch.
2068	 */
2069	nlevels = dn->dn_phys->dn_nlevels;
2070	if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2071		return;
2072
2073	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2074	if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2075		return;
2076
2077	dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2078	    level, blkid);
2079	if (db != NULL) {
2080		mutex_exit(&db->db_mtx);
2081		/*
2082		 * This dbuf already exists.  It is either CACHED, or
2083		 * (we assume) about to be read or filled.
2084		 */
2085		return;
2086	}
2087
2088	/*
2089	 * Find the closest ancestor (indirect block) of the target block
2090	 * that is present in the cache.  In this indirect block, we will
2091	 * find the bp that is at curlevel, curblkid.
2092	 */
2093	curlevel = level;
2094	curblkid = blkid;
2095	while (curlevel < nlevels - 1) {
2096		int parent_level = curlevel + 1;
2097		uint64_t parent_blkid = curblkid >> epbs;
2098		dmu_buf_impl_t *db;
2099
2100		if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2101		    FALSE, TRUE, FTAG, &db) == 0) {
2102			blkptr_t *bpp = db->db_buf->b_data;
2103			bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2104			dbuf_rele(db, FTAG);
2105			break;
2106		}
2107
2108		curlevel = parent_level;
2109		curblkid = parent_blkid;
2110	}
2111
2112	if (curlevel == nlevels - 1) {
2113		/* No cached indirect blocks found. */
2114		ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2115		bp = dn->dn_phys->dn_blkptr[curblkid];
2116	}
2117	if (BP_IS_HOLE(&bp))
2118		return;
2119
2120	ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2121
2122	zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2123	    ZIO_FLAG_CANFAIL);
2124
2125	dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2126	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2127	SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2128	    dn->dn_object, level, blkid);
2129	dpa->dpa_curlevel = curlevel;
2130	dpa->dpa_prio = prio;
2131	dpa->dpa_aflags = aflags;
2132	dpa->dpa_spa = dn->dn_objset->os_spa;
2133	dpa->dpa_epbs = epbs;
2134	dpa->dpa_zio = pio;
2135
2136	/*
2137	 * If we have the indirect just above us, no need to do the asynchronous
2138	 * prefetch chain; we'll just run the last step ourselves.  If we're at
2139	 * a higher level, though, we want to issue the prefetches for all the
2140	 * indirect blocks asynchronously, so we can go on with whatever we were
2141	 * doing.
2142	 */
2143	if (curlevel == level) {
2144		ASSERT3U(curblkid, ==, blkid);
2145		dbuf_issue_final_prefetch(dpa, &bp);
2146		kmem_free(dpa, sizeof (*dpa));
2147	} else {
2148		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2149		zbookmark_phys_t zb;
2150
2151		SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2152		    dn->dn_object, curlevel, curblkid);
2153		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2154		    &bp, dbuf_prefetch_indirect_done, dpa, prio,
2155		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2156		    &iter_aflags, &zb);
2157	}
2158	/*
2159	 * We use pio here instead of dpa_zio since it's possible that
2160	 * dpa may have already been freed.
2161	 */
2162	zio_nowait(pio);
2163}
2164
2165/*
2166 * Returns with db_holds incremented, and db_mtx not held.
2167 * Note: dn_struct_rwlock must be held.
2168 */
2169int
2170dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2171    boolean_t fail_sparse, boolean_t fail_uncached,
2172    void *tag, dmu_buf_impl_t **dbp)
2173{
2174	dmu_buf_impl_t *db, *parent = NULL;
2175
2176	ASSERT(blkid != DMU_BONUS_BLKID);
2177	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2178	ASSERT3U(dn->dn_nlevels, >, level);
2179
2180	*dbp = NULL;
2181top:
2182	/* dbuf_find() returns with db_mtx held */
2183	db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
2184
2185	if (db == NULL) {
2186		blkptr_t *bp = NULL;
2187		int err;
2188
2189		if (fail_uncached)
2190			return (SET_ERROR(ENOENT));
2191
2192		ASSERT3P(parent, ==, NULL);
2193		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
2194		if (fail_sparse) {
2195			if (err == 0 && bp && BP_IS_HOLE(bp))
2196				err = SET_ERROR(ENOENT);
2197			if (err) {
2198				if (parent)
2199					dbuf_rele(parent, NULL);
2200				return (err);
2201			}
2202		}
2203		if (err && err != ENOENT)
2204			return (err);
2205		db = dbuf_create(dn, level, blkid, parent, bp);
2206	}
2207
2208	if (fail_uncached && db->db_state != DB_CACHED) {
2209		mutex_exit(&db->db_mtx);
2210		return (SET_ERROR(ENOENT));
2211	}
2212
2213	if (db->db_buf && refcount_is_zero(&db->db_holds)) {
2214		arc_buf_add_ref(db->db_buf, db);
2215		if (db->db_buf->b_data == NULL) {
2216			dbuf_clear(db);
2217			if (parent) {
2218				dbuf_rele(parent, NULL);
2219				parent = NULL;
2220			}
2221			goto top;
2222		}
2223		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
2224	}
2225
2226	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
2227
2228	/*
2229	 * If this buffer is currently syncing out, and we are are
2230	 * still referencing it from db_data, we need to make a copy
2231	 * of it in case we decide we want to dirty it again in this txg.
2232	 */
2233	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2234	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2235	    db->db_state == DB_CACHED && db->db_data_pending) {
2236		dbuf_dirty_record_t *dr = db->db_data_pending;
2237
2238		if (dr->dt.dl.dr_data == db->db_buf) {
2239			arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2240
2241			dbuf_set_data(db,
2242			    arc_buf_alloc(dn->dn_objset->os_spa,
2243			    db->db.db_size, db, type));
2244			bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
2245			    db->db.db_size);
2246		}
2247	}
2248
2249	(void) refcount_add(&db->db_holds, tag);
2250	DBUF_VERIFY(db);
2251	mutex_exit(&db->db_mtx);
2252
2253	/* NOTE: we can't rele the parent until after we drop the db_mtx */
2254	if (parent)
2255		dbuf_rele(parent, NULL);
2256
2257	ASSERT3P(DB_DNODE(db), ==, dn);
2258	ASSERT3U(db->db_blkid, ==, blkid);
2259	ASSERT3U(db->db_level, ==, level);
2260	*dbp = db;
2261
2262	return (0);
2263}
2264
2265dmu_buf_impl_t *
2266dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2267{
2268	return (dbuf_hold_level(dn, 0, blkid, tag));
2269}
2270
2271dmu_buf_impl_t *
2272dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2273{
2274	dmu_buf_impl_t *db;
2275	int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
2276	return (err ? NULL : db);
2277}
2278
2279void
2280dbuf_create_bonus(dnode_t *dn)
2281{
2282	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2283
2284	ASSERT(dn->dn_bonus == NULL);
2285	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2286}
2287
2288int
2289dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2290{
2291	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2292	dnode_t *dn;
2293
2294	if (db->db_blkid != DMU_SPILL_BLKID)
2295		return (SET_ERROR(ENOTSUP));
2296	if (blksz == 0)
2297		blksz = SPA_MINBLOCKSIZE;
2298	ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2299	blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2300
2301	DB_DNODE_ENTER(db);
2302	dn = DB_DNODE(db);
2303	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2304	dbuf_new_size(db, blksz, tx);
2305	rw_exit(&dn->dn_struct_rwlock);
2306	DB_DNODE_EXIT(db);
2307
2308	return (0);
2309}
2310
2311void
2312dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2313{
2314	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2315}
2316
2317#pragma weak dmu_buf_add_ref = dbuf_add_ref
2318void
2319dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2320{
2321	int64_t holds = refcount_add(&db->db_holds, tag);
2322	ASSERT(holds > 1);
2323}
2324
2325#pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2326boolean_t
2327dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2328    void *tag)
2329{
2330	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2331	dmu_buf_impl_t *found_db;
2332	boolean_t result = B_FALSE;
2333
2334	if (db->db_blkid == DMU_BONUS_BLKID)
2335		found_db = dbuf_find_bonus(os, obj);
2336	else
2337		found_db = dbuf_find(os, obj, 0, blkid);
2338
2339	if (found_db != NULL) {
2340		if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2341			(void) refcount_add(&db->db_holds, tag);
2342			result = B_TRUE;
2343		}
2344		mutex_exit(&db->db_mtx);
2345	}
2346	return (result);
2347}
2348
2349/*
2350 * If you call dbuf_rele() you had better not be referencing the dnode handle
2351 * unless you have some other direct or indirect hold on the dnode. (An indirect
2352 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2353 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2354 * dnode's parent dbuf evicting its dnode handles.
2355 */
2356void
2357dbuf_rele(dmu_buf_impl_t *db, void *tag)
2358{
2359	mutex_enter(&db->db_mtx);
2360	dbuf_rele_and_unlock(db, tag);
2361}
2362
2363void
2364dmu_buf_rele(dmu_buf_t *db, void *tag)
2365{
2366	dbuf_rele((dmu_buf_impl_t *)db, tag);
2367}
2368
2369/*
2370 * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
2371 * db_dirtycnt and db_holds to be updated atomically.
2372 */
2373void
2374dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2375{
2376	int64_t holds;
2377
2378	ASSERT(MUTEX_HELD(&db->db_mtx));
2379	DBUF_VERIFY(db);
2380
2381	/*
2382	 * Remove the reference to the dbuf before removing its hold on the
2383	 * dnode so we can guarantee in dnode_move() that a referenced bonus
2384	 * buffer has a corresponding dnode hold.
2385	 */
2386	holds = refcount_remove(&db->db_holds, tag);
2387	ASSERT(holds >= 0);
2388
2389	/*
2390	 * We can't freeze indirects if there is a possibility that they
2391	 * may be modified in the current syncing context.
2392	 */
2393	if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0))
2394		arc_buf_freeze(db->db_buf);
2395
2396	if (holds == db->db_dirtycnt &&
2397	    db->db_level == 0 && db->db_immediate_evict)
2398		dbuf_evict_user(db);
2399
2400	if (holds == 0) {
2401		if (db->db_blkid == DMU_BONUS_BLKID) {
2402			dnode_t *dn;
2403
2404			/*
2405			 * If the dnode moves here, we cannot cross this
2406			 * barrier until the move completes.
2407			 */
2408			DB_DNODE_ENTER(db);
2409
2410			dn = DB_DNODE(db);
2411			atomic_dec_32(&dn->dn_dbufs_count);
2412
2413			/*
2414			 * Decrementing the dbuf count means that the bonus
2415			 * buffer's dnode hold is no longer discounted in
2416			 * dnode_move(). The dnode cannot move until after
2417			 * the dnode_rele_and_unlock() below.
2418			 */
2419			DB_DNODE_EXIT(db);
2420
2421			/*
2422			 * Do not reference db after its lock is dropped.
2423			 * Another thread may evict it.
2424			 */
2425			mutex_exit(&db->db_mtx);
2426
2427			/*
2428			 * If the dnode has been freed, evict the bonus
2429			 * buffer immediately.	The data in the bonus
2430			 * buffer is no longer relevant and this prevents
2431			 * a stale bonus buffer from being associated
2432			 * with this dnode_t should the dnode_t be reused
2433			 * prior to being destroyed.
2434			 */
2435			mutex_enter(&dn->dn_mtx);
2436			if (dn->dn_type == DMU_OT_NONE ||
2437			    dn->dn_free_txg != 0) {
2438				/*
2439				 * Drop dn_mtx.  It is a leaf lock and
2440				 * cannot be held when dnode_evict_bonus()
2441				 * acquires other locks in order to
2442				 * perform the eviction.
2443				 *
2444				 * Freed dnodes cannot be reused until the
2445				 * last hold is released.  Since this bonus
2446				 * buffer has a hold, the dnode will remain
2447				 * in the free state, even without dn_mtx
2448				 * held, until the dnode_rele_and_unlock()
2449				 * below.
2450				 */
2451				mutex_exit(&dn->dn_mtx);
2452				dnode_evict_bonus(dn);
2453				mutex_enter(&dn->dn_mtx);
2454			}
2455			dnode_rele_and_unlock(dn, db);
2456		} else if (db->db_buf == NULL) {
2457			/*
2458			 * This is a special case: we never associated this
2459			 * dbuf with any data allocated from the ARC.
2460			 */
2461			ASSERT(db->db_state == DB_UNCACHED ||
2462			    db->db_state == DB_NOFILL);
2463			dbuf_evict(db);
2464		} else if (arc_released(db->db_buf)) {
2465			arc_buf_t *buf = db->db_buf;
2466			/*
2467			 * This dbuf has anonymous data associated with it.
2468			 */
2469			dbuf_clear_data(db);
2470			VERIFY(arc_buf_remove_ref(buf, db));
2471			dbuf_evict(db);
2472		} else {
2473			VERIFY(!arc_buf_remove_ref(db->db_buf, db));
2474
2475			/*
2476			 * A dbuf will be eligible for eviction if either the
2477			 * 'primarycache' property is set or a duplicate
2478			 * copy of this buffer is already cached in the arc.
2479			 *
2480			 * In the case of the 'primarycache' a buffer
2481			 * is considered for eviction if it matches the
2482			 * criteria set in the property.
2483			 *
2484			 * To decide if our buffer is considered a
2485			 * duplicate, we must call into the arc to determine
2486			 * if multiple buffers are referencing the same
2487			 * block on-disk. If so, then we simply evict
2488			 * ourselves.
2489			 */
2490			if (!DBUF_IS_CACHEABLE(db)) {
2491				if (db->db_blkptr != NULL &&
2492				    !BP_IS_HOLE(db->db_blkptr) &&
2493				    !BP_IS_EMBEDDED(db->db_blkptr)) {
2494					spa_t *spa =
2495					    dmu_objset_spa(db->db_objset);
2496					blkptr_t bp = *db->db_blkptr;
2497					dbuf_clear(db);
2498					arc_freed(spa, &bp);
2499				} else {
2500					dbuf_clear(db);
2501				}
2502			} else if (db->db_objset->os_evicting ||
2503			    arc_buf_eviction_needed(db->db_buf)) {
2504				dbuf_clear(db);
2505			} else {
2506				mutex_exit(&db->db_mtx);
2507			}
2508		}
2509	} else {
2510		mutex_exit(&db->db_mtx);
2511	}
2512}
2513
2514#pragma weak dmu_buf_refcount = dbuf_refcount
2515uint64_t
2516dbuf_refcount(dmu_buf_impl_t *db)
2517{
2518	return (refcount_count(&db->db_holds));
2519}
2520
2521void *
2522dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
2523    dmu_buf_user_t *new_user)
2524{
2525	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2526
2527	mutex_enter(&db->db_mtx);
2528	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2529	if (db->db_user == old_user)
2530		db->db_user = new_user;
2531	else
2532		old_user = db->db_user;
2533	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2534	mutex_exit(&db->db_mtx);
2535
2536	return (old_user);
2537}
2538
2539void *
2540dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2541{
2542	return (dmu_buf_replace_user(db_fake, NULL, user));
2543}
2544
2545void *
2546dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2547{
2548	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2549
2550	db->db_immediate_evict = TRUE;
2551	return (dmu_buf_set_user(db_fake, user));
2552}
2553
2554void *
2555dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2556{
2557	return (dmu_buf_replace_user(db_fake, user, NULL));
2558}
2559
2560void *
2561dmu_buf_get_user(dmu_buf_t *db_fake)
2562{
2563	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2564
2565	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2566	return (db->db_user);
2567}
2568
2569void
2570dmu_buf_user_evict_wait()
2571{
2572	taskq_wait(dbu_evict_taskq);
2573}
2574
2575boolean_t
2576dmu_buf_freeable(dmu_buf_t *dbuf)
2577{
2578	boolean_t res = B_FALSE;
2579	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2580
2581	if (db->db_blkptr)
2582		res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset,
2583		    db->db_blkptr, db->db_blkptr->blk_birth);
2584
2585	return (res);
2586}
2587
2588blkptr_t *
2589dmu_buf_get_blkptr(dmu_buf_t *db)
2590{
2591	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2592	return (dbi->db_blkptr);
2593}
2594
2595static void
2596dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2597{
2598	/* ASSERT(dmu_tx_is_syncing(tx) */
2599	ASSERT(MUTEX_HELD(&db->db_mtx));
2600
2601	if (db->db_blkptr != NULL)
2602		return;
2603
2604	if (db->db_blkid == DMU_SPILL_BLKID) {
2605		db->db_blkptr = &dn->dn_phys->dn_spill;
2606		BP_ZERO(db->db_blkptr);
2607		return;
2608	}
2609	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2610		/*
2611		 * This buffer was allocated at a time when there was
2612		 * no available blkptrs from the dnode, or it was
2613		 * inappropriate to hook it in (i.e., nlevels mis-match).
2614		 */
2615		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2616		ASSERT(db->db_parent == NULL);
2617		db->db_parent = dn->dn_dbuf;
2618		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2619		DBUF_VERIFY(db);
2620	} else {
2621		dmu_buf_impl_t *parent = db->db_parent;
2622		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2623
2624		ASSERT(dn->dn_phys->dn_nlevels > 1);
2625		if (parent == NULL) {
2626			mutex_exit(&db->db_mtx);
2627			rw_enter(&dn->dn_struct_rwlock, RW_READER);
2628			parent = dbuf_hold_level(dn, db->db_level + 1,
2629			    db->db_blkid >> epbs, db);
2630			rw_exit(&dn->dn_struct_rwlock);
2631			mutex_enter(&db->db_mtx);
2632			db->db_parent = parent;
2633		}
2634		db->db_blkptr = (blkptr_t *)parent->db.db_data +
2635		    (db->db_blkid & ((1ULL << epbs) - 1));
2636		DBUF_VERIFY(db);
2637	}
2638}
2639
2640static void
2641dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2642{
2643	dmu_buf_impl_t *db = dr->dr_dbuf;
2644	dnode_t *dn;
2645	zio_t *zio;
2646
2647	ASSERT(dmu_tx_is_syncing(tx));
2648
2649	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2650
2651	mutex_enter(&db->db_mtx);
2652
2653	ASSERT(db->db_level > 0);
2654	DBUF_VERIFY(db);
2655
2656	/* Read the block if it hasn't been read yet. */
2657	if (db->db_buf == NULL) {
2658		mutex_exit(&db->db_mtx);
2659		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2660		mutex_enter(&db->db_mtx);
2661	}
2662	ASSERT3U(db->db_state, ==, DB_CACHED);
2663	ASSERT(db->db_buf != NULL);
2664
2665	DB_DNODE_ENTER(db);
2666	dn = DB_DNODE(db);
2667	/* Indirect block size must match what the dnode thinks it is. */
2668	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2669	dbuf_check_blkptr(dn, db);
2670	DB_DNODE_EXIT(db);
2671
2672	/* Provide the pending dirty record to child dbufs */
2673	db->db_data_pending = dr;
2674
2675	mutex_exit(&db->db_mtx);
2676	dbuf_write(dr, db->db_buf, tx);
2677
2678	zio = dr->dr_zio;
2679	mutex_enter(&dr->dt.di.dr_mtx);
2680	dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
2681	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2682	mutex_exit(&dr->dt.di.dr_mtx);
2683	zio_nowait(zio);
2684}
2685
2686static void
2687dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2688{
2689	arc_buf_t **datap = &dr->dt.dl.dr_data;
2690	dmu_buf_impl_t *db = dr->dr_dbuf;
2691	dnode_t *dn;
2692	objset_t *os;
2693	uint64_t txg = tx->tx_txg;
2694
2695	ASSERT(dmu_tx_is_syncing(tx));
2696
2697	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2698
2699	mutex_enter(&db->db_mtx);
2700	/*
2701	 * To be synced, we must be dirtied.  But we
2702	 * might have been freed after the dirty.
2703	 */
2704	if (db->db_state == DB_UNCACHED) {
2705		/* This buffer has been freed since it was dirtied */
2706		ASSERT(db->db.db_data == NULL);
2707	} else if (db->db_state == DB_FILL) {
2708		/* This buffer was freed and is now being re-filled */
2709		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
2710	} else {
2711		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
2712	}
2713	DBUF_VERIFY(db);
2714
2715	DB_DNODE_ENTER(db);
2716	dn = DB_DNODE(db);
2717
2718	if (db->db_blkid == DMU_SPILL_BLKID) {
2719		mutex_enter(&dn->dn_mtx);
2720		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
2721		mutex_exit(&dn->dn_mtx);
2722	}
2723
2724	/*
2725	 * If this is a bonus buffer, simply copy the bonus data into the
2726	 * dnode.  It will be written out when the dnode is synced (and it
2727	 * will be synced, since it must have been dirty for dbuf_sync to
2728	 * be called).
2729	 */
2730	if (db->db_blkid == DMU_BONUS_BLKID) {
2731		dbuf_dirty_record_t **drp;
2732
2733		ASSERT(*datap != NULL);
2734		ASSERT0(db->db_level);
2735		ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
2736		bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
2737		DB_DNODE_EXIT(db);
2738
2739		if (*datap != db->db.db_data) {
2740			zio_buf_free(*datap, DN_MAX_BONUSLEN);
2741			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2742		}
2743		db->db_data_pending = NULL;
2744		drp = &db->db_last_dirty;
2745		while (*drp != dr)
2746			drp = &(*drp)->dr_next;
2747		ASSERT(dr->dr_next == NULL);
2748		ASSERT(dr->dr_dbuf == db);
2749		*drp = dr->dr_next;
2750		if (dr->dr_dbuf->db_level != 0) {
2751			list_destroy(&dr->dt.di.dr_children);
2752			mutex_destroy(&dr->dt.di.dr_mtx);
2753		}
2754		kmem_free(dr, sizeof (dbuf_dirty_record_t));
2755		ASSERT(db->db_dirtycnt > 0);
2756		db->db_dirtycnt -= 1;
2757		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2758		return;
2759	}
2760
2761	os = dn->dn_objset;
2762
2763	/*
2764	 * This function may have dropped the db_mtx lock allowing a dmu_sync
2765	 * operation to sneak in. As a result, we need to ensure that we
2766	 * don't check the dr_override_state until we have returned from
2767	 * dbuf_check_blkptr.
2768	 */
2769	dbuf_check_blkptr(dn, db);
2770
2771	/*
2772	 * If this buffer is in the middle of an immediate write,
2773	 * wait for the synchronous IO to complete.
2774	 */
2775	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
2776		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
2777		cv_wait(&db->db_changed, &db->db_mtx);
2778		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
2779	}
2780
2781	if (db->db_state != DB_NOFILL &&
2782	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2783	    refcount_count(&db->db_holds) > 1 &&
2784	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
2785	    *datap == db->db_buf) {
2786		/*
2787		 * If this buffer is currently "in use" (i.e., there
2788		 * are active holds and db_data still references it),
2789		 * then make a copy before we start the write so that
2790		 * any modifications from the open txg will not leak
2791		 * into this write.
2792		 *
2793		 * NOTE: this copy does not need to be made for
2794		 * objects only modified in the syncing context (e.g.
2795		 * DNONE_DNODE blocks).
2796		 */
2797		int blksz = arc_buf_size(*datap);
2798		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2799		*datap = arc_buf_alloc(os->os_spa, blksz, db, type);
2800		bcopy(db->db.db_data, (*datap)->b_data, blksz);
2801	}
2802	db->db_data_pending = dr;
2803
2804	mutex_exit(&db->db_mtx);
2805
2806	dbuf_write(dr, *datap, tx);
2807
2808	ASSERT(!list_link_active(&dr->dr_dirty_node));
2809	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
2810		list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
2811		DB_DNODE_EXIT(db);
2812	} else {
2813		/*
2814		 * Although zio_nowait() does not "wait for an IO", it does
2815		 * initiate the IO. If this is an empty write it seems plausible
2816		 * that the IO could actually be completed before the nowait
2817		 * returns. We need to DB_DNODE_EXIT() first in case
2818		 * zio_nowait() invalidates the dbuf.
2819		 */
2820		DB_DNODE_EXIT(db);
2821		zio_nowait(dr->dr_zio);
2822	}
2823}
2824
2825void
2826dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
2827{
2828	dbuf_dirty_record_t *dr;
2829
2830	while (dr = list_head(list)) {
2831		if (dr->dr_zio != NULL) {
2832			/*
2833			 * If we find an already initialized zio then we
2834			 * are processing the meta-dnode, and we have finished.
2835			 * The dbufs for all dnodes are put back on the list
2836			 * during processing, so that we can zio_wait()
2837			 * these IOs after initiating all child IOs.
2838			 */
2839			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
2840			    DMU_META_DNODE_OBJECT);
2841			break;
2842		}
2843		if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
2844		    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
2845			VERIFY3U(dr->dr_dbuf->db_level, ==, level);
2846		}
2847		list_remove(list, dr);
2848		if (dr->dr_dbuf->db_level > 0)
2849			dbuf_sync_indirect(dr, tx);
2850		else
2851			dbuf_sync_leaf(dr, tx);
2852	}
2853}
2854
2855/* ARGSUSED */
2856static void
2857dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
2858{
2859	dmu_buf_impl_t *db = vdb;
2860	dnode_t *dn;
2861	blkptr_t *bp = zio->io_bp;
2862	blkptr_t *bp_orig = &zio->io_bp_orig;
2863	spa_t *spa = zio->io_spa;
2864	int64_t delta;
2865	uint64_t fill = 0;
2866	int i;
2867
2868	ASSERT3P(db->db_blkptr, ==, bp);
2869
2870	DB_DNODE_ENTER(db);
2871	dn = DB_DNODE(db);
2872	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
2873	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
2874	zio->io_prev_space_delta = delta;
2875
2876	if (bp->blk_birth != 0) {
2877		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
2878		    BP_GET_TYPE(bp) == dn->dn_type) ||
2879		    (db->db_blkid == DMU_SPILL_BLKID &&
2880		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
2881		    BP_IS_EMBEDDED(bp));
2882		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
2883	}
2884
2885	mutex_enter(&db->db_mtx);
2886
2887#ifdef ZFS_DEBUG
2888	if (db->db_blkid == DMU_SPILL_BLKID) {
2889		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2890		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2891		    db->db_blkptr == &dn->dn_phys->dn_spill);
2892	}
2893#endif
2894
2895	if (db->db_level == 0) {
2896		mutex_enter(&dn->dn_mtx);
2897		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
2898		    db->db_blkid != DMU_SPILL_BLKID)
2899			dn->dn_phys->dn_maxblkid = db->db_blkid;
2900		mutex_exit(&dn->dn_mtx);
2901
2902		if (dn->dn_type == DMU_OT_DNODE) {
2903			dnode_phys_t *dnp = db->db.db_data;
2904			for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
2905			    i--, dnp++) {
2906				if (dnp->dn_type != DMU_OT_NONE)
2907					fill++;
2908			}
2909		} else {
2910			if (BP_IS_HOLE(bp)) {
2911				fill = 0;
2912			} else {
2913				fill = 1;
2914			}
2915		}
2916	} else {
2917		blkptr_t *ibp = db->db.db_data;
2918		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2919		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
2920			if (BP_IS_HOLE(ibp))
2921				continue;
2922			fill += BP_GET_FILL(ibp);
2923		}
2924	}
2925	DB_DNODE_EXIT(db);
2926
2927	if (!BP_IS_EMBEDDED(bp))
2928		bp->blk_fill = fill;
2929
2930	mutex_exit(&db->db_mtx);
2931}
2932
2933/*
2934 * The SPA will call this callback several times for each zio - once
2935 * for every physical child i/o (zio->io_phys_children times).  This
2936 * allows the DMU to monitor the progress of each logical i/o.  For example,
2937 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
2938 * block.  There may be a long delay before all copies/fragments are completed,
2939 * so this callback allows us to retire dirty space gradually, as the physical
2940 * i/os complete.
2941 */
2942/* ARGSUSED */
2943static void
2944dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
2945{
2946	dmu_buf_impl_t *db = arg;
2947	objset_t *os = db->db_objset;
2948	dsl_pool_t *dp = dmu_objset_pool(os);
2949	dbuf_dirty_record_t *dr;
2950	int delta = 0;
2951
2952	dr = db->db_data_pending;
2953	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
2954
2955	/*
2956	 * The callback will be called io_phys_children times.  Retire one
2957	 * portion of our dirty space each time we are called.  Any rounding
2958	 * error will be cleaned up by dsl_pool_sync()'s call to
2959	 * dsl_pool_undirty_space().
2960	 */
2961	delta = dr->dr_accounted / zio->io_phys_children;
2962	dsl_pool_undirty_space(dp, delta, zio->io_txg);
2963}
2964
2965/* ARGSUSED */
2966static void
2967dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
2968{
2969	dmu_buf_impl_t *db = vdb;
2970	blkptr_t *bp_orig = &zio->io_bp_orig;
2971	blkptr_t *bp = db->db_blkptr;
2972	objset_t *os = db->db_objset;
2973	dmu_tx_t *tx = os->os_synctx;
2974	dbuf_dirty_record_t **drp, *dr;
2975
2976	ASSERT0(zio->io_error);
2977	ASSERT(db->db_blkptr == bp);
2978
2979	/*
2980	 * For nopwrites and rewrites we ensure that the bp matches our
2981	 * original and bypass all the accounting.
2982	 */
2983	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
2984		ASSERT(BP_EQUAL(bp, bp_orig));
2985	} else {
2986		dsl_dataset_t *ds = os->os_dsl_dataset;
2987		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
2988		dsl_dataset_block_born(ds, bp, tx);
2989	}
2990
2991	mutex_enter(&db->db_mtx);
2992
2993	DBUF_VERIFY(db);
2994
2995	drp = &db->db_last_dirty;
2996	while ((dr = *drp) != db->db_data_pending)
2997		drp = &dr->dr_next;
2998	ASSERT(!list_link_active(&dr->dr_dirty_node));
2999	ASSERT(dr->dr_dbuf == db);
3000	ASSERT(dr->dr_next == NULL);
3001	*drp = dr->dr_next;
3002
3003#ifdef ZFS_DEBUG
3004	if (db->db_blkid == DMU_SPILL_BLKID) {
3005		dnode_t *dn;
3006
3007		DB_DNODE_ENTER(db);
3008		dn = DB_DNODE(db);
3009		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3010		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3011		    db->db_blkptr == &dn->dn_phys->dn_spill);
3012		DB_DNODE_EXIT(db);
3013	}
3014#endif
3015
3016	if (db->db_level == 0) {
3017		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3018		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3019		if (db->db_state != DB_NOFILL) {
3020			if (dr->dt.dl.dr_data != db->db_buf)
3021				VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data,
3022				    db));
3023			else if (!arc_released(db->db_buf))
3024				arc_set_callback(db->db_buf, dbuf_do_evict, db);
3025		}
3026	} else {
3027		dnode_t *dn;
3028
3029		DB_DNODE_ENTER(db);
3030		dn = DB_DNODE(db);
3031		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3032		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3033		if (!BP_IS_HOLE(db->db_blkptr)) {
3034			int epbs =
3035			    dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3036			ASSERT3U(db->db_blkid, <=,
3037			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3038			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3039			    db->db.db_size);
3040			if (!arc_released(db->db_buf))
3041				arc_set_callback(db->db_buf, dbuf_do_evict, db);
3042		}
3043		DB_DNODE_EXIT(db);
3044		mutex_destroy(&dr->dt.di.dr_mtx);
3045		list_destroy(&dr->dt.di.dr_children);
3046	}
3047	kmem_free(dr, sizeof (dbuf_dirty_record_t));
3048
3049	cv_broadcast(&db->db_changed);
3050	ASSERT(db->db_dirtycnt > 0);
3051	db->db_dirtycnt -= 1;
3052	db->db_data_pending = NULL;
3053	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
3054}
3055
3056static void
3057dbuf_write_nofill_ready(zio_t *zio)
3058{
3059	dbuf_write_ready(zio, NULL, zio->io_private);
3060}
3061
3062static void
3063dbuf_write_nofill_done(zio_t *zio)
3064{
3065	dbuf_write_done(zio, NULL, zio->io_private);
3066}
3067
3068static void
3069dbuf_write_override_ready(zio_t *zio)
3070{
3071	dbuf_dirty_record_t *dr = zio->io_private;
3072	dmu_buf_impl_t *db = dr->dr_dbuf;
3073
3074	dbuf_write_ready(zio, NULL, db);
3075}
3076
3077static void
3078dbuf_write_override_done(zio_t *zio)
3079{
3080	dbuf_dirty_record_t *dr = zio->io_private;
3081	dmu_buf_impl_t *db = dr->dr_dbuf;
3082	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3083
3084	mutex_enter(&db->db_mtx);
3085	if (!BP_EQUAL(zio->io_bp, obp)) {
3086		if (!BP_IS_HOLE(obp))
3087			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3088		arc_release(dr->dt.dl.dr_data, db);
3089	}
3090	mutex_exit(&db->db_mtx);
3091
3092	dbuf_write_done(zio, NULL, db);
3093}
3094
3095/* Issue I/O to commit a dirty buffer to disk. */
3096static void
3097dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3098{
3099	dmu_buf_impl_t *db = dr->dr_dbuf;
3100	dnode_t *dn;
3101	objset_t *os;
3102	dmu_buf_impl_t *parent = db->db_parent;
3103	uint64_t txg = tx->tx_txg;
3104	zbookmark_phys_t zb;
3105	zio_prop_t zp;
3106	zio_t *zio;
3107	int wp_flag = 0;
3108
3109	DB_DNODE_ENTER(db);
3110	dn = DB_DNODE(db);
3111	os = dn->dn_objset;
3112
3113	if (db->db_state != DB_NOFILL) {
3114		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3115			/*
3116			 * Private object buffers are released here rather
3117			 * than in dbuf_dirty() since they are only modified
3118			 * in the syncing context and we don't want the
3119			 * overhead of making multiple copies of the data.
3120			 */
3121			if (BP_IS_HOLE(db->db_blkptr)) {
3122				arc_buf_thaw(data);
3123			} else {
3124				dbuf_release_bp(db);
3125			}
3126		}
3127	}
3128
3129	if (parent != dn->dn_dbuf) {
3130		/* Our parent is an indirect block. */
3131		/* We have a dirty parent that has been scheduled for write. */
3132		ASSERT(parent && parent->db_data_pending);
3133		/* Our parent's buffer is one level closer to the dnode. */
3134		ASSERT(db->db_level == parent->db_level-1);
3135		/*
3136		 * We're about to modify our parent's db_data by modifying
3137		 * our block pointer, so the parent must be released.
3138		 */
3139		ASSERT(arc_released(parent->db_buf));
3140		zio = parent->db_data_pending->dr_zio;
3141	} else {
3142		/* Our parent is the dnode itself. */
3143		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3144		    db->db_blkid != DMU_SPILL_BLKID) ||
3145		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3146		if (db->db_blkid != DMU_SPILL_BLKID)
3147			ASSERT3P(db->db_blkptr, ==,
3148			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
3149		zio = dn->dn_zio;
3150	}
3151
3152	ASSERT(db->db_level == 0 || data == db->db_buf);
3153	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3154	ASSERT(zio);
3155
3156	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3157	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3158	    db->db.db_object, db->db_level, db->db_blkid);
3159
3160	if (db->db_blkid == DMU_SPILL_BLKID)
3161		wp_flag = WP_SPILL;
3162	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3163
3164	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
3165	DB_DNODE_EXIT(db);
3166
3167	if (db->db_level == 0 &&
3168	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3169		/*
3170		 * The BP for this block has been provided by open context
3171		 * (by dmu_sync() or dmu_buf_write_embedded()).
3172		 */
3173		void *contents = (data != NULL) ? data->b_data : NULL;
3174
3175		dr->dr_zio = zio_write(zio, os->os_spa, txg,
3176		    db->db_blkptr, contents, db->db.db_size, &zp,
3177		    dbuf_write_override_ready, NULL, dbuf_write_override_done,
3178		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3179		mutex_enter(&db->db_mtx);
3180		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3181		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
3182		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
3183		mutex_exit(&db->db_mtx);
3184	} else if (db->db_state == DB_NOFILL) {
3185		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3186		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
3187		dr->dr_zio = zio_write(zio, os->os_spa, txg,
3188		    db->db_blkptr, NULL, db->db.db_size, &zp,
3189		    dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db,
3190		    ZIO_PRIORITY_ASYNC_WRITE,
3191		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3192	} else {
3193		ASSERT(arc_released(data));
3194		dr->dr_zio = arc_write(zio, os->os_spa, txg,
3195		    db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db),
3196		    DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready,
3197		    dbuf_write_physdone, dbuf_write_done, db,
3198		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3199	}
3200}
3201