dbuf.c revision 288549
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 */
29
30#include <sys/zfs_context.h>
31#include <sys/dmu.h>
32#include <sys/dmu_send.h>
33#include <sys/dmu_impl.h>
34#include <sys/dbuf.h>
35#include <sys/dmu_objset.h>
36#include <sys/dsl_dataset.h>
37#include <sys/dsl_dir.h>
38#include <sys/dmu_tx.h>
39#include <sys/spa.h>
40#include <sys/zio.h>
41#include <sys/dmu_zfetch.h>
42#include <sys/sa.h>
43#include <sys/sa_impl.h>
44#include <sys/zfeature.h>
45#include <sys/blkptr.h>
46#include <sys/range_tree.h>
47
48/*
49 * Number of times that zfs_free_range() took the slow path while doing
50 * a zfs receive.  A nonzero value indicates a potential performance problem.
51 */
52uint64_t zfs_free_range_recv_miss;
53
54static void dbuf_destroy(dmu_buf_impl_t *db);
55static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
56static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
57
58#ifndef __lint
59extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
60    dmu_buf_evict_func_t *evict_func, dmu_buf_t **clear_on_evict_dbufp);
61#endif /* ! __lint */
62
63/*
64 * Global data structures and functions for the dbuf cache.
65 */
66static kmem_cache_t *dbuf_cache;
67static taskq_t *dbu_evict_taskq;
68
69/* ARGSUSED */
70static int
71dbuf_cons(void *vdb, void *unused, int kmflag)
72{
73	dmu_buf_impl_t *db = vdb;
74	bzero(db, sizeof (dmu_buf_impl_t));
75
76	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
77	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
78	refcount_create(&db->db_holds);
79
80	return (0);
81}
82
83/* ARGSUSED */
84static void
85dbuf_dest(void *vdb, void *unused)
86{
87	dmu_buf_impl_t *db = vdb;
88	mutex_destroy(&db->db_mtx);
89	cv_destroy(&db->db_changed);
90	refcount_destroy(&db->db_holds);
91}
92
93/*
94 * dbuf hash table routines
95 */
96static dbuf_hash_table_t dbuf_hash_table;
97
98static uint64_t dbuf_hash_count;
99
100static uint64_t
101dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
102{
103	uintptr_t osv = (uintptr_t)os;
104	uint64_t crc = -1ULL;
105
106	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
107	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
108	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
109	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
110	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
111	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
112	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
113
114	crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
115
116	return (crc);
117}
118
119#define	DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid);
120
121#define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
122	((dbuf)->db.db_object == (obj) &&		\
123	(dbuf)->db_objset == (os) &&			\
124	(dbuf)->db_level == (level) &&			\
125	(dbuf)->db_blkid == (blkid))
126
127dmu_buf_impl_t *
128dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
129{
130	dbuf_hash_table_t *h = &dbuf_hash_table;
131	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
132	uint64_t idx = hv & h->hash_table_mask;
133	dmu_buf_impl_t *db;
134
135	mutex_enter(DBUF_HASH_MUTEX(h, idx));
136	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
137		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
138			mutex_enter(&db->db_mtx);
139			if (db->db_state != DB_EVICTING) {
140				mutex_exit(DBUF_HASH_MUTEX(h, idx));
141				return (db);
142			}
143			mutex_exit(&db->db_mtx);
144		}
145	}
146	mutex_exit(DBUF_HASH_MUTEX(h, idx));
147	return (NULL);
148}
149
150static dmu_buf_impl_t *
151dbuf_find_bonus(objset_t *os, uint64_t object)
152{
153	dnode_t *dn;
154	dmu_buf_impl_t *db = NULL;
155
156	if (dnode_hold(os, object, FTAG, &dn) == 0) {
157		rw_enter(&dn->dn_struct_rwlock, RW_READER);
158		if (dn->dn_bonus != NULL) {
159			db = dn->dn_bonus;
160			mutex_enter(&db->db_mtx);
161		}
162		rw_exit(&dn->dn_struct_rwlock);
163		dnode_rele(dn, FTAG);
164	}
165	return (db);
166}
167
168/*
169 * Insert an entry into the hash table.  If there is already an element
170 * equal to elem in the hash table, then the already existing element
171 * will be returned and the new element will not be inserted.
172 * Otherwise returns NULL.
173 */
174static dmu_buf_impl_t *
175dbuf_hash_insert(dmu_buf_impl_t *db)
176{
177	dbuf_hash_table_t *h = &dbuf_hash_table;
178	objset_t *os = db->db_objset;
179	uint64_t obj = db->db.db_object;
180	int level = db->db_level;
181	uint64_t blkid = db->db_blkid;
182	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
183	uint64_t idx = hv & h->hash_table_mask;
184	dmu_buf_impl_t *dbf;
185
186	mutex_enter(DBUF_HASH_MUTEX(h, idx));
187	for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
188		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
189			mutex_enter(&dbf->db_mtx);
190			if (dbf->db_state != DB_EVICTING) {
191				mutex_exit(DBUF_HASH_MUTEX(h, idx));
192				return (dbf);
193			}
194			mutex_exit(&dbf->db_mtx);
195		}
196	}
197
198	mutex_enter(&db->db_mtx);
199	db->db_hash_next = h->hash_table[idx];
200	h->hash_table[idx] = db;
201	mutex_exit(DBUF_HASH_MUTEX(h, idx));
202	atomic_inc_64(&dbuf_hash_count);
203
204	return (NULL);
205}
206
207/*
208 * Remove an entry from the hash table.  It must be in the EVICTING state.
209 */
210static void
211dbuf_hash_remove(dmu_buf_impl_t *db)
212{
213	dbuf_hash_table_t *h = &dbuf_hash_table;
214	uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object,
215	    db->db_level, db->db_blkid);
216	uint64_t idx = hv & h->hash_table_mask;
217	dmu_buf_impl_t *dbf, **dbp;
218
219	/*
220	 * We musn't hold db_mtx to maintain lock ordering:
221	 * DBUF_HASH_MUTEX > db_mtx.
222	 */
223	ASSERT(refcount_is_zero(&db->db_holds));
224	ASSERT(db->db_state == DB_EVICTING);
225	ASSERT(!MUTEX_HELD(&db->db_mtx));
226
227	mutex_enter(DBUF_HASH_MUTEX(h, idx));
228	dbp = &h->hash_table[idx];
229	while ((dbf = *dbp) != db) {
230		dbp = &dbf->db_hash_next;
231		ASSERT(dbf != NULL);
232	}
233	*dbp = db->db_hash_next;
234	db->db_hash_next = NULL;
235	mutex_exit(DBUF_HASH_MUTEX(h, idx));
236	atomic_dec_64(&dbuf_hash_count);
237}
238
239static arc_evict_func_t dbuf_do_evict;
240
241typedef enum {
242	DBVU_EVICTING,
243	DBVU_NOT_EVICTING
244} dbvu_verify_type_t;
245
246static void
247dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
248{
249#ifdef ZFS_DEBUG
250	int64_t holds;
251
252	if (db->db_user == NULL)
253		return;
254
255	/* Only data blocks support the attachment of user data. */
256	ASSERT(db->db_level == 0);
257
258	/* Clients must resolve a dbuf before attaching user data. */
259	ASSERT(db->db.db_data != NULL);
260	ASSERT3U(db->db_state, ==, DB_CACHED);
261
262	holds = refcount_count(&db->db_holds);
263	if (verify_type == DBVU_EVICTING) {
264		/*
265		 * Immediate eviction occurs when holds == dirtycnt.
266		 * For normal eviction buffers, holds is zero on
267		 * eviction, except when dbuf_fix_old_data() calls
268		 * dbuf_clear_data().  However, the hold count can grow
269		 * during eviction even though db_mtx is held (see
270		 * dmu_bonus_hold() for an example), so we can only
271		 * test the generic invariant that holds >= dirtycnt.
272		 */
273		ASSERT3U(holds, >=, db->db_dirtycnt);
274	} else {
275		if (db->db_immediate_evict == TRUE)
276			ASSERT3U(holds, >=, db->db_dirtycnt);
277		else
278			ASSERT3U(holds, >, 0);
279	}
280#endif
281}
282
283static void
284dbuf_evict_user(dmu_buf_impl_t *db)
285{
286	dmu_buf_user_t *dbu = db->db_user;
287
288	ASSERT(MUTEX_HELD(&db->db_mtx));
289
290	if (dbu == NULL)
291		return;
292
293	dbuf_verify_user(db, DBVU_EVICTING);
294	db->db_user = NULL;
295
296#ifdef ZFS_DEBUG
297	if (dbu->dbu_clear_on_evict_dbufp != NULL)
298		*dbu->dbu_clear_on_evict_dbufp = NULL;
299#endif
300
301	/*
302	 * Invoke the callback from a taskq to avoid lock order reversals
303	 * and limit stack depth.
304	 */
305	taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func, dbu, 0,
306	    &dbu->dbu_tqent);
307}
308
309boolean_t
310dbuf_is_metadata(dmu_buf_impl_t *db)
311{
312	if (db->db_level > 0) {
313		return (B_TRUE);
314	} else {
315		boolean_t is_metadata;
316
317		DB_DNODE_ENTER(db);
318		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
319		DB_DNODE_EXIT(db);
320
321		return (is_metadata);
322	}
323}
324
325void
326dbuf_evict(dmu_buf_impl_t *db)
327{
328	ASSERT(MUTEX_HELD(&db->db_mtx));
329	ASSERT(db->db_buf == NULL);
330	ASSERT(db->db_data_pending == NULL);
331
332	dbuf_clear(db);
333	dbuf_destroy(db);
334}
335
336void
337dbuf_init(void)
338{
339	uint64_t hsize = 1ULL << 16;
340	dbuf_hash_table_t *h = &dbuf_hash_table;
341	int i;
342
343	/*
344	 * The hash table is big enough to fill all of physical memory
345	 * with an average 4K block size.  The table will take up
346	 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
347	 */
348	while (hsize * 4096 < (uint64_t)physmem * PAGESIZE)
349		hsize <<= 1;
350
351retry:
352	h->hash_table_mask = hsize - 1;
353	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
354	if (h->hash_table == NULL) {
355		/* XXX - we should really return an error instead of assert */
356		ASSERT(hsize > (1ULL << 10));
357		hsize >>= 1;
358		goto retry;
359	}
360
361	dbuf_cache = kmem_cache_create("dmu_buf_impl_t",
362	    sizeof (dmu_buf_impl_t),
363	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
364
365	for (i = 0; i < DBUF_MUTEXES; i++)
366		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
367
368	/*
369	 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
370	 * configuration is not required.
371	 */
372	dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0);
373}
374
375void
376dbuf_fini(void)
377{
378	dbuf_hash_table_t *h = &dbuf_hash_table;
379	int i;
380
381	for (i = 0; i < DBUF_MUTEXES; i++)
382		mutex_destroy(&h->hash_mutexes[i]);
383	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
384	kmem_cache_destroy(dbuf_cache);
385	taskq_destroy(dbu_evict_taskq);
386}
387
388/*
389 * Other stuff.
390 */
391
392#ifdef ZFS_DEBUG
393static void
394dbuf_verify(dmu_buf_impl_t *db)
395{
396	dnode_t *dn;
397	dbuf_dirty_record_t *dr;
398
399	ASSERT(MUTEX_HELD(&db->db_mtx));
400
401	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
402		return;
403
404	ASSERT(db->db_objset != NULL);
405	DB_DNODE_ENTER(db);
406	dn = DB_DNODE(db);
407	if (dn == NULL) {
408		ASSERT(db->db_parent == NULL);
409		ASSERT(db->db_blkptr == NULL);
410	} else {
411		ASSERT3U(db->db.db_object, ==, dn->dn_object);
412		ASSERT3P(db->db_objset, ==, dn->dn_objset);
413		ASSERT3U(db->db_level, <, dn->dn_nlevels);
414		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
415		    db->db_blkid == DMU_SPILL_BLKID ||
416		    !avl_is_empty(&dn->dn_dbufs));
417	}
418	if (db->db_blkid == DMU_BONUS_BLKID) {
419		ASSERT(dn != NULL);
420		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
421		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
422	} else if (db->db_blkid == DMU_SPILL_BLKID) {
423		ASSERT(dn != NULL);
424		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
425		ASSERT0(db->db.db_offset);
426	} else {
427		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
428	}
429
430	for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
431		ASSERT(dr->dr_dbuf == db);
432
433	for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
434		ASSERT(dr->dr_dbuf == db);
435
436	/*
437	 * We can't assert that db_size matches dn_datablksz because it
438	 * can be momentarily different when another thread is doing
439	 * dnode_set_blksz().
440	 */
441	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
442		dr = db->db_data_pending;
443		/*
444		 * It should only be modified in syncing context, so
445		 * make sure we only have one copy of the data.
446		 */
447		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
448	}
449
450	/* verify db->db_blkptr */
451	if (db->db_blkptr) {
452		if (db->db_parent == dn->dn_dbuf) {
453			/* db is pointed to by the dnode */
454			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
455			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
456				ASSERT(db->db_parent == NULL);
457			else
458				ASSERT(db->db_parent != NULL);
459			if (db->db_blkid != DMU_SPILL_BLKID)
460				ASSERT3P(db->db_blkptr, ==,
461				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
462		} else {
463			/* db is pointed to by an indirect block */
464			int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
465			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
466			ASSERT3U(db->db_parent->db.db_object, ==,
467			    db->db.db_object);
468			/*
469			 * dnode_grow_indblksz() can make this fail if we don't
470			 * have the struct_rwlock.  XXX indblksz no longer
471			 * grows.  safe to do this now?
472			 */
473			if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
474				ASSERT3P(db->db_blkptr, ==,
475				    ((blkptr_t *)db->db_parent->db.db_data +
476				    db->db_blkid % epb));
477			}
478		}
479	}
480	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
481	    (db->db_buf == NULL || db->db_buf->b_data) &&
482	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
483	    db->db_state != DB_FILL && !dn->dn_free_txg) {
484		/*
485		 * If the blkptr isn't set but they have nonzero data,
486		 * it had better be dirty, otherwise we'll lose that
487		 * data when we evict this buffer.
488		 */
489		if (db->db_dirtycnt == 0) {
490			uint64_t *buf = db->db.db_data;
491			int i;
492
493			for (i = 0; i < db->db.db_size >> 3; i++) {
494				ASSERT(buf[i] == 0);
495			}
496		}
497	}
498	DB_DNODE_EXIT(db);
499}
500#endif
501
502static void
503dbuf_clear_data(dmu_buf_impl_t *db)
504{
505	ASSERT(MUTEX_HELD(&db->db_mtx));
506	dbuf_evict_user(db);
507	db->db_buf = NULL;
508	db->db.db_data = NULL;
509	if (db->db_state != DB_NOFILL)
510		db->db_state = DB_UNCACHED;
511}
512
513static void
514dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
515{
516	ASSERT(MUTEX_HELD(&db->db_mtx));
517	ASSERT(buf != NULL);
518
519	db->db_buf = buf;
520	ASSERT(buf->b_data != NULL);
521	db->db.db_data = buf->b_data;
522	if (!arc_released(buf))
523		arc_set_callback(buf, dbuf_do_evict, db);
524}
525
526/*
527 * Loan out an arc_buf for read.  Return the loaned arc_buf.
528 */
529arc_buf_t *
530dbuf_loan_arcbuf(dmu_buf_impl_t *db)
531{
532	arc_buf_t *abuf;
533
534	mutex_enter(&db->db_mtx);
535	if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
536		int blksz = db->db.db_size;
537		spa_t *spa = db->db_objset->os_spa;
538
539		mutex_exit(&db->db_mtx);
540		abuf = arc_loan_buf(spa, blksz);
541		bcopy(db->db.db_data, abuf->b_data, blksz);
542	} else {
543		abuf = db->db_buf;
544		arc_loan_inuse_buf(abuf, db);
545		dbuf_clear_data(db);
546		mutex_exit(&db->db_mtx);
547	}
548	return (abuf);
549}
550
551uint64_t
552dbuf_whichblock(dnode_t *dn, uint64_t offset)
553{
554	if (dn->dn_datablkshift) {
555		return (offset >> dn->dn_datablkshift);
556	} else {
557		ASSERT3U(offset, <, dn->dn_datablksz);
558		return (0);
559	}
560}
561
562static void
563dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
564{
565	dmu_buf_impl_t *db = vdb;
566
567	mutex_enter(&db->db_mtx);
568	ASSERT3U(db->db_state, ==, DB_READ);
569	/*
570	 * All reads are synchronous, so we must have a hold on the dbuf
571	 */
572	ASSERT(refcount_count(&db->db_holds) > 0);
573	ASSERT(db->db_buf == NULL);
574	ASSERT(db->db.db_data == NULL);
575	if (db->db_level == 0 && db->db_freed_in_flight) {
576		/* we were freed in flight; disregard any error */
577		arc_release(buf, db);
578		bzero(buf->b_data, db->db.db_size);
579		arc_buf_freeze(buf);
580		db->db_freed_in_flight = FALSE;
581		dbuf_set_data(db, buf);
582		db->db_state = DB_CACHED;
583	} else if (zio == NULL || zio->io_error == 0) {
584		dbuf_set_data(db, buf);
585		db->db_state = DB_CACHED;
586	} else {
587		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
588		ASSERT3P(db->db_buf, ==, NULL);
589		VERIFY(arc_buf_remove_ref(buf, db));
590		db->db_state = DB_UNCACHED;
591	}
592	cv_broadcast(&db->db_changed);
593	dbuf_rele_and_unlock(db, NULL);
594}
595
596static void
597dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags)
598{
599	dnode_t *dn;
600	zbookmark_phys_t zb;
601	arc_flags_t aflags = ARC_FLAG_NOWAIT;
602
603	DB_DNODE_ENTER(db);
604	dn = DB_DNODE(db);
605	ASSERT(!refcount_is_zero(&db->db_holds));
606	/* We need the struct_rwlock to prevent db_blkptr from changing. */
607	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
608	ASSERT(MUTEX_HELD(&db->db_mtx));
609	ASSERT(db->db_state == DB_UNCACHED);
610	ASSERT(db->db_buf == NULL);
611
612	if (db->db_blkid == DMU_BONUS_BLKID) {
613		int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
614
615		ASSERT3U(bonuslen, <=, db->db.db_size);
616		db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
617		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
618		if (bonuslen < DN_MAX_BONUSLEN)
619			bzero(db->db.db_data, DN_MAX_BONUSLEN);
620		if (bonuslen)
621			bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
622		DB_DNODE_EXIT(db);
623		db->db_state = DB_CACHED;
624		mutex_exit(&db->db_mtx);
625		return;
626	}
627
628	/*
629	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
630	 * processes the delete record and clears the bp while we are waiting
631	 * for the dn_mtx (resulting in a "no" from block_freed).
632	 */
633	if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
634	    (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
635	    BP_IS_HOLE(db->db_blkptr)))) {
636		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
637
638		DB_DNODE_EXIT(db);
639		dbuf_set_data(db, arc_buf_alloc(db->db_objset->os_spa,
640		    db->db.db_size, db, type));
641		bzero(db->db.db_data, db->db.db_size);
642		db->db_state = DB_CACHED;
643		*flags |= DB_RF_CACHED;
644		mutex_exit(&db->db_mtx);
645		return;
646	}
647
648	DB_DNODE_EXIT(db);
649
650	db->db_state = DB_READ;
651	mutex_exit(&db->db_mtx);
652
653	if (DBUF_IS_L2CACHEABLE(db))
654		aflags |= ARC_FLAG_L2CACHE;
655	if (DBUF_IS_L2COMPRESSIBLE(db))
656		aflags |= ARC_FLAG_L2COMPRESS;
657
658	SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
659	    db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
660	    db->db.db_object, db->db_level, db->db_blkid);
661
662	dbuf_add_ref(db, NULL);
663
664	(void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
665	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
666	    (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
667	    &aflags, &zb);
668	if (aflags & ARC_FLAG_CACHED)
669		*flags |= DB_RF_CACHED;
670}
671
672int
673dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
674{
675	int err = 0;
676	boolean_t havepzio = (zio != NULL);
677	boolean_t prefetch;
678	dnode_t *dn;
679
680	/*
681	 * We don't have to hold the mutex to check db_state because it
682	 * can't be freed while we have a hold on the buffer.
683	 */
684	ASSERT(!refcount_is_zero(&db->db_holds));
685
686	if (db->db_state == DB_NOFILL)
687		return (SET_ERROR(EIO));
688
689	DB_DNODE_ENTER(db);
690	dn = DB_DNODE(db);
691	if ((flags & DB_RF_HAVESTRUCT) == 0)
692		rw_enter(&dn->dn_struct_rwlock, RW_READER);
693
694	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
695	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
696	    DBUF_IS_CACHEABLE(db);
697
698	mutex_enter(&db->db_mtx);
699	if (db->db_state == DB_CACHED) {
700		mutex_exit(&db->db_mtx);
701		if (prefetch)
702			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
703			    db->db.db_size, TRUE);
704		if ((flags & DB_RF_HAVESTRUCT) == 0)
705			rw_exit(&dn->dn_struct_rwlock);
706		DB_DNODE_EXIT(db);
707	} else if (db->db_state == DB_UNCACHED) {
708		spa_t *spa = dn->dn_objset->os_spa;
709
710		if (zio == NULL)
711			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
712		dbuf_read_impl(db, zio, &flags);
713
714		/* dbuf_read_impl has dropped db_mtx for us */
715
716		if (prefetch)
717			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
718			    db->db.db_size, flags & DB_RF_CACHED);
719
720		if ((flags & DB_RF_HAVESTRUCT) == 0)
721			rw_exit(&dn->dn_struct_rwlock);
722		DB_DNODE_EXIT(db);
723
724		if (!havepzio)
725			err = zio_wait(zio);
726	} else {
727		/*
728		 * Another reader came in while the dbuf was in flight
729		 * between UNCACHED and CACHED.  Either a writer will finish
730		 * writing the buffer (sending the dbuf to CACHED) or the
731		 * first reader's request will reach the read_done callback
732		 * and send the dbuf to CACHED.  Otherwise, a failure
733		 * occurred and the dbuf went to UNCACHED.
734		 */
735		mutex_exit(&db->db_mtx);
736		if (prefetch)
737			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
738			    db->db.db_size, TRUE);
739		if ((flags & DB_RF_HAVESTRUCT) == 0)
740			rw_exit(&dn->dn_struct_rwlock);
741		DB_DNODE_EXIT(db);
742
743		/* Skip the wait per the caller's request. */
744		mutex_enter(&db->db_mtx);
745		if ((flags & DB_RF_NEVERWAIT) == 0) {
746			while (db->db_state == DB_READ ||
747			    db->db_state == DB_FILL) {
748				ASSERT(db->db_state == DB_READ ||
749				    (flags & DB_RF_HAVESTRUCT) == 0);
750				DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
751				    db, zio_t *, zio);
752				cv_wait(&db->db_changed, &db->db_mtx);
753			}
754			if (db->db_state == DB_UNCACHED)
755				err = SET_ERROR(EIO);
756		}
757		mutex_exit(&db->db_mtx);
758	}
759
760	ASSERT(err || havepzio || db->db_state == DB_CACHED);
761	return (err);
762}
763
764static void
765dbuf_noread(dmu_buf_impl_t *db)
766{
767	ASSERT(!refcount_is_zero(&db->db_holds));
768	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
769	mutex_enter(&db->db_mtx);
770	while (db->db_state == DB_READ || db->db_state == DB_FILL)
771		cv_wait(&db->db_changed, &db->db_mtx);
772	if (db->db_state == DB_UNCACHED) {
773		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
774		spa_t *spa = db->db_objset->os_spa;
775
776		ASSERT(db->db_buf == NULL);
777		ASSERT(db->db.db_data == NULL);
778		dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type));
779		db->db_state = DB_FILL;
780	} else if (db->db_state == DB_NOFILL) {
781		dbuf_clear_data(db);
782	} else {
783		ASSERT3U(db->db_state, ==, DB_CACHED);
784	}
785	mutex_exit(&db->db_mtx);
786}
787
788/*
789 * This is our just-in-time copy function.  It makes a copy of
790 * buffers, that have been modified in a previous transaction
791 * group, before we modify them in the current active group.
792 *
793 * This function is used in two places: when we are dirtying a
794 * buffer for the first time in a txg, and when we are freeing
795 * a range in a dnode that includes this buffer.
796 *
797 * Note that when we are called from dbuf_free_range() we do
798 * not put a hold on the buffer, we just traverse the active
799 * dbuf list for the dnode.
800 */
801static void
802dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
803{
804	dbuf_dirty_record_t *dr = db->db_last_dirty;
805
806	ASSERT(MUTEX_HELD(&db->db_mtx));
807	ASSERT(db->db.db_data != NULL);
808	ASSERT(db->db_level == 0);
809	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
810
811	if (dr == NULL ||
812	    (dr->dt.dl.dr_data !=
813	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
814		return;
815
816	/*
817	 * If the last dirty record for this dbuf has not yet synced
818	 * and its referencing the dbuf data, either:
819	 *	reset the reference to point to a new copy,
820	 * or (if there a no active holders)
821	 *	just null out the current db_data pointer.
822	 */
823	ASSERT(dr->dr_txg >= txg - 2);
824	if (db->db_blkid == DMU_BONUS_BLKID) {
825		/* Note that the data bufs here are zio_bufs */
826		dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
827		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
828		bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
829	} else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
830		int size = db->db.db_size;
831		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
832		spa_t *spa = db->db_objset->os_spa;
833
834		dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type);
835		bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
836	} else {
837		dbuf_clear_data(db);
838	}
839}
840
841void
842dbuf_unoverride(dbuf_dirty_record_t *dr)
843{
844	dmu_buf_impl_t *db = dr->dr_dbuf;
845	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
846	uint64_t txg = dr->dr_txg;
847
848	ASSERT(MUTEX_HELD(&db->db_mtx));
849	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
850	ASSERT(db->db_level == 0);
851
852	if (db->db_blkid == DMU_BONUS_BLKID ||
853	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
854		return;
855
856	ASSERT(db->db_data_pending != dr);
857
858	/* free this block */
859	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
860		zio_free(db->db_objset->os_spa, txg, bp);
861
862	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
863	dr->dt.dl.dr_nopwrite = B_FALSE;
864
865	/*
866	 * Release the already-written buffer, so we leave it in
867	 * a consistent dirty state.  Note that all callers are
868	 * modifying the buffer, so they will immediately do
869	 * another (redundant) arc_release().  Therefore, leave
870	 * the buf thawed to save the effort of freezing &
871	 * immediately re-thawing it.
872	 */
873	arc_release(dr->dt.dl.dr_data, db);
874}
875
876/*
877 * Evict (if its unreferenced) or clear (if its referenced) any level-0
878 * data blocks in the free range, so that any future readers will find
879 * empty blocks.
880 *
881 * This is a no-op if the dataset is in the middle of an incremental
882 * receive; see comment below for details.
883 */
884void
885dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
886    dmu_tx_t *tx)
887{
888	dmu_buf_impl_t db_search;
889	dmu_buf_impl_t *db, *db_next;
890	uint64_t txg = tx->tx_txg;
891	avl_index_t where;
892
893	if (end_blkid > dn->dn_maxblkid && (end_blkid != DMU_SPILL_BLKID))
894		end_blkid = dn->dn_maxblkid;
895	dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
896
897	db_search.db_level = 0;
898	db_search.db_blkid = start_blkid;
899	db_search.db_state = DB_SEARCH;
900
901	mutex_enter(&dn->dn_dbufs_mtx);
902	if (start_blkid >= dn->dn_unlisted_l0_blkid) {
903		/* There can't be any dbufs in this range; no need to search. */
904#ifdef DEBUG
905		db = avl_find(&dn->dn_dbufs, &db_search, &where);
906		ASSERT3P(db, ==, NULL);
907		db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
908		ASSERT(db == NULL || db->db_level > 0);
909#endif
910		mutex_exit(&dn->dn_dbufs_mtx);
911		return;
912	} else if (dmu_objset_is_receiving(dn->dn_objset)) {
913		/*
914		 * If we are receiving, we expect there to be no dbufs in
915		 * the range to be freed, because receive modifies each
916		 * block at most once, and in offset order.  If this is
917		 * not the case, it can lead to performance problems,
918		 * so note that we unexpectedly took the slow path.
919		 */
920		atomic_inc_64(&zfs_free_range_recv_miss);
921	}
922
923	db = avl_find(&dn->dn_dbufs, &db_search, &where);
924	ASSERT3P(db, ==, NULL);
925	db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
926
927	for (; db != NULL; db = db_next) {
928		db_next = AVL_NEXT(&dn->dn_dbufs, db);
929		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
930
931		if (db->db_level != 0 || db->db_blkid > end_blkid) {
932			break;
933		}
934		ASSERT3U(db->db_blkid, >=, start_blkid);
935
936		/* found a level 0 buffer in the range */
937		mutex_enter(&db->db_mtx);
938		if (dbuf_undirty(db, tx)) {
939			/* mutex has been dropped and dbuf destroyed */
940			continue;
941		}
942
943		if (db->db_state == DB_UNCACHED ||
944		    db->db_state == DB_NOFILL ||
945		    db->db_state == DB_EVICTING) {
946			ASSERT(db->db.db_data == NULL);
947			mutex_exit(&db->db_mtx);
948			continue;
949		}
950		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
951			/* will be handled in dbuf_read_done or dbuf_rele */
952			db->db_freed_in_flight = TRUE;
953			mutex_exit(&db->db_mtx);
954			continue;
955		}
956		if (refcount_count(&db->db_holds) == 0) {
957			ASSERT(db->db_buf);
958			dbuf_clear(db);
959			continue;
960		}
961		/* The dbuf is referenced */
962
963		if (db->db_last_dirty != NULL) {
964			dbuf_dirty_record_t *dr = db->db_last_dirty;
965
966			if (dr->dr_txg == txg) {
967				/*
968				 * This buffer is "in-use", re-adjust the file
969				 * size to reflect that this buffer may
970				 * contain new data when we sync.
971				 */
972				if (db->db_blkid != DMU_SPILL_BLKID &&
973				    db->db_blkid > dn->dn_maxblkid)
974					dn->dn_maxblkid = db->db_blkid;
975				dbuf_unoverride(dr);
976			} else {
977				/*
978				 * This dbuf is not dirty in the open context.
979				 * Either uncache it (if its not referenced in
980				 * the open context) or reset its contents to
981				 * empty.
982				 */
983				dbuf_fix_old_data(db, txg);
984			}
985		}
986		/* clear the contents if its cached */
987		if (db->db_state == DB_CACHED) {
988			ASSERT(db->db.db_data != NULL);
989			arc_release(db->db_buf, db);
990			bzero(db->db.db_data, db->db.db_size);
991			arc_buf_freeze(db->db_buf);
992		}
993
994		mutex_exit(&db->db_mtx);
995	}
996	mutex_exit(&dn->dn_dbufs_mtx);
997}
998
999static int
1000dbuf_block_freeable(dmu_buf_impl_t *db)
1001{
1002	dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
1003	uint64_t birth_txg = 0;
1004
1005	/*
1006	 * We don't need any locking to protect db_blkptr:
1007	 * If it's syncing, then db_last_dirty will be set
1008	 * so we'll ignore db_blkptr.
1009	 *
1010	 * This logic ensures that only block births for
1011	 * filled blocks are considered.
1012	 */
1013	ASSERT(MUTEX_HELD(&db->db_mtx));
1014	if (db->db_last_dirty && (db->db_blkptr == NULL ||
1015	    !BP_IS_HOLE(db->db_blkptr))) {
1016		birth_txg = db->db_last_dirty->dr_txg;
1017	} else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1018		birth_txg = db->db_blkptr->blk_birth;
1019	}
1020
1021	/*
1022	 * If this block don't exist or is in a snapshot, it can't be freed.
1023	 * Don't pass the bp to dsl_dataset_block_freeable() since we
1024	 * are holding the db_mtx lock and might deadlock if we are
1025	 * prefetching a dedup-ed block.
1026	 */
1027	if (birth_txg != 0)
1028		return (ds == NULL ||
1029		    dsl_dataset_block_freeable(ds, NULL, birth_txg));
1030	else
1031		return (B_FALSE);
1032}
1033
1034void
1035dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1036{
1037	arc_buf_t *buf, *obuf;
1038	int osize = db->db.db_size;
1039	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1040	dnode_t *dn;
1041
1042	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1043
1044	DB_DNODE_ENTER(db);
1045	dn = DB_DNODE(db);
1046
1047	/* XXX does *this* func really need the lock? */
1048	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1049
1050	/*
1051	 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1052	 * is OK, because there can be no other references to the db
1053	 * when we are changing its size, so no concurrent DB_FILL can
1054	 * be happening.
1055	 */
1056	/*
1057	 * XXX we should be doing a dbuf_read, checking the return
1058	 * value and returning that up to our callers
1059	 */
1060	dmu_buf_will_dirty(&db->db, tx);
1061
1062	/* create the data buffer for the new block */
1063	buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type);
1064
1065	/* copy old block data to the new block */
1066	obuf = db->db_buf;
1067	bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1068	/* zero the remainder */
1069	if (size > osize)
1070		bzero((uint8_t *)buf->b_data + osize, size - osize);
1071
1072	mutex_enter(&db->db_mtx);
1073	dbuf_set_data(db, buf);
1074	VERIFY(arc_buf_remove_ref(obuf, db));
1075	db->db.db_size = size;
1076
1077	if (db->db_level == 0) {
1078		ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1079		db->db_last_dirty->dt.dl.dr_data = buf;
1080	}
1081	mutex_exit(&db->db_mtx);
1082
1083	dnode_willuse_space(dn, size-osize, tx);
1084	DB_DNODE_EXIT(db);
1085}
1086
1087void
1088dbuf_release_bp(dmu_buf_impl_t *db)
1089{
1090	objset_t *os = db->db_objset;
1091
1092	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1093	ASSERT(arc_released(os->os_phys_buf) ||
1094	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
1095	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1096
1097	(void) arc_release(db->db_buf, db);
1098}
1099
1100dbuf_dirty_record_t *
1101dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1102{
1103	dnode_t *dn;
1104	objset_t *os;
1105	dbuf_dirty_record_t **drp, *dr;
1106	int drop_struct_lock = FALSE;
1107	boolean_t do_free_accounting = B_FALSE;
1108	int txgoff = tx->tx_txg & TXG_MASK;
1109
1110	ASSERT(tx->tx_txg != 0);
1111	ASSERT(!refcount_is_zero(&db->db_holds));
1112	DMU_TX_DIRTY_BUF(tx, db);
1113
1114	DB_DNODE_ENTER(db);
1115	dn = DB_DNODE(db);
1116	/*
1117	 * Shouldn't dirty a regular buffer in syncing context.  Private
1118	 * objects may be dirtied in syncing context, but only if they
1119	 * were already pre-dirtied in open context.
1120	 */
1121	ASSERT(!dmu_tx_is_syncing(tx) ||
1122	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1123	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1124	    dn->dn_objset->os_dsl_dataset == NULL);
1125	/*
1126	 * We make this assert for private objects as well, but after we
1127	 * check if we're already dirty.  They are allowed to re-dirty
1128	 * in syncing context.
1129	 */
1130	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1131	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1132	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1133
1134	mutex_enter(&db->db_mtx);
1135	/*
1136	 * XXX make this true for indirects too?  The problem is that
1137	 * transactions created with dmu_tx_create_assigned() from
1138	 * syncing context don't bother holding ahead.
1139	 */
1140	ASSERT(db->db_level != 0 ||
1141	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1142	    db->db_state == DB_NOFILL);
1143
1144	mutex_enter(&dn->dn_mtx);
1145	/*
1146	 * Don't set dirtyctx to SYNC if we're just modifying this as we
1147	 * initialize the objset.
1148	 */
1149	if (dn->dn_dirtyctx == DN_UNDIRTIED &&
1150	    !BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1151		dn->dn_dirtyctx =
1152		    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1153		ASSERT(dn->dn_dirtyctx_firstset == NULL);
1154		dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1155	}
1156	mutex_exit(&dn->dn_mtx);
1157
1158	if (db->db_blkid == DMU_SPILL_BLKID)
1159		dn->dn_have_spill = B_TRUE;
1160
1161	/*
1162	 * If this buffer is already dirty, we're done.
1163	 */
1164	drp = &db->db_last_dirty;
1165	ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1166	    db->db.db_object == DMU_META_DNODE_OBJECT);
1167	while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1168		drp = &dr->dr_next;
1169	if (dr && dr->dr_txg == tx->tx_txg) {
1170		DB_DNODE_EXIT(db);
1171
1172		if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1173			/*
1174			 * If this buffer has already been written out,
1175			 * we now need to reset its state.
1176			 */
1177			dbuf_unoverride(dr);
1178			if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1179			    db->db_state != DB_NOFILL)
1180				arc_buf_thaw(db->db_buf);
1181		}
1182		mutex_exit(&db->db_mtx);
1183		return (dr);
1184	}
1185
1186	/*
1187	 * Only valid if not already dirty.
1188	 */
1189	ASSERT(dn->dn_object == 0 ||
1190	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1191	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1192
1193	ASSERT3U(dn->dn_nlevels, >, db->db_level);
1194	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1195	    dn->dn_phys->dn_nlevels > db->db_level ||
1196	    dn->dn_next_nlevels[txgoff] > db->db_level ||
1197	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1198	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1199
1200	/*
1201	 * We should only be dirtying in syncing context if it's the
1202	 * mos or we're initializing the os or it's a special object.
1203	 * However, we are allowed to dirty in syncing context provided
1204	 * we already dirtied it in open context.  Hence we must make
1205	 * this assertion only if we're not already dirty.
1206	 */
1207	os = dn->dn_objset;
1208	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1209	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1210	ASSERT(db->db.db_size != 0);
1211
1212	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1213
1214	if (db->db_blkid != DMU_BONUS_BLKID) {
1215		/*
1216		 * Update the accounting.
1217		 * Note: we delay "free accounting" until after we drop
1218		 * the db_mtx.  This keeps us from grabbing other locks
1219		 * (and possibly deadlocking) in bp_get_dsize() while
1220		 * also holding the db_mtx.
1221		 */
1222		dnode_willuse_space(dn, db->db.db_size, tx);
1223		do_free_accounting = dbuf_block_freeable(db);
1224	}
1225
1226	/*
1227	 * If this buffer is dirty in an old transaction group we need
1228	 * to make a copy of it so that the changes we make in this
1229	 * transaction group won't leak out when we sync the older txg.
1230	 */
1231	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1232	if (db->db_level == 0) {
1233		void *data_old = db->db_buf;
1234
1235		if (db->db_state != DB_NOFILL) {
1236			if (db->db_blkid == DMU_BONUS_BLKID) {
1237				dbuf_fix_old_data(db, tx->tx_txg);
1238				data_old = db->db.db_data;
1239			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1240				/*
1241				 * Release the data buffer from the cache so
1242				 * that we can modify it without impacting
1243				 * possible other users of this cached data
1244				 * block.  Note that indirect blocks and
1245				 * private objects are not released until the
1246				 * syncing state (since they are only modified
1247				 * then).
1248				 */
1249				arc_release(db->db_buf, db);
1250				dbuf_fix_old_data(db, tx->tx_txg);
1251				data_old = db->db_buf;
1252			}
1253			ASSERT(data_old != NULL);
1254		}
1255		dr->dt.dl.dr_data = data_old;
1256	} else {
1257		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1258		list_create(&dr->dt.di.dr_children,
1259		    sizeof (dbuf_dirty_record_t),
1260		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
1261	}
1262	if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1263		dr->dr_accounted = db->db.db_size;
1264	dr->dr_dbuf = db;
1265	dr->dr_txg = tx->tx_txg;
1266	dr->dr_next = *drp;
1267	*drp = dr;
1268
1269	/*
1270	 * We could have been freed_in_flight between the dbuf_noread
1271	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
1272	 * happened after the free.
1273	 */
1274	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1275	    db->db_blkid != DMU_SPILL_BLKID) {
1276		mutex_enter(&dn->dn_mtx);
1277		if (dn->dn_free_ranges[txgoff] != NULL) {
1278			range_tree_clear(dn->dn_free_ranges[txgoff],
1279			    db->db_blkid, 1);
1280		}
1281		mutex_exit(&dn->dn_mtx);
1282		db->db_freed_in_flight = FALSE;
1283	}
1284
1285	/*
1286	 * This buffer is now part of this txg
1287	 */
1288	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1289	db->db_dirtycnt += 1;
1290	ASSERT3U(db->db_dirtycnt, <=, 3);
1291
1292	mutex_exit(&db->db_mtx);
1293
1294	if (db->db_blkid == DMU_BONUS_BLKID ||
1295	    db->db_blkid == DMU_SPILL_BLKID) {
1296		mutex_enter(&dn->dn_mtx);
1297		ASSERT(!list_link_active(&dr->dr_dirty_node));
1298		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1299		mutex_exit(&dn->dn_mtx);
1300		dnode_setdirty(dn, tx);
1301		DB_DNODE_EXIT(db);
1302		return (dr);
1303	} else if (do_free_accounting) {
1304		blkptr_t *bp = db->db_blkptr;
1305		int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
1306		    bp_get_dsize(os->os_spa, bp) : db->db.db_size;
1307		/*
1308		 * This is only a guess -- if the dbuf is dirty
1309		 * in a previous txg, we don't know how much
1310		 * space it will use on disk yet.  We should
1311		 * really have the struct_rwlock to access
1312		 * db_blkptr, but since this is just a guess,
1313		 * it's OK if we get an odd answer.
1314		 */
1315		ddt_prefetch(os->os_spa, bp);
1316		dnode_willuse_space(dn, -willfree, tx);
1317	}
1318
1319	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1320		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1321		drop_struct_lock = TRUE;
1322	}
1323
1324	if (db->db_level == 0) {
1325		dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1326		ASSERT(dn->dn_maxblkid >= db->db_blkid);
1327	}
1328
1329	if (db->db_level+1 < dn->dn_nlevels) {
1330		dmu_buf_impl_t *parent = db->db_parent;
1331		dbuf_dirty_record_t *di;
1332		int parent_held = FALSE;
1333
1334		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1335			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1336
1337			parent = dbuf_hold_level(dn, db->db_level+1,
1338			    db->db_blkid >> epbs, FTAG);
1339			ASSERT(parent != NULL);
1340			parent_held = TRUE;
1341		}
1342		if (drop_struct_lock)
1343			rw_exit(&dn->dn_struct_rwlock);
1344		ASSERT3U(db->db_level+1, ==, parent->db_level);
1345		di = dbuf_dirty(parent, tx);
1346		if (parent_held)
1347			dbuf_rele(parent, FTAG);
1348
1349		mutex_enter(&db->db_mtx);
1350		/*
1351		 * Since we've dropped the mutex, it's possible that
1352		 * dbuf_undirty() might have changed this out from under us.
1353		 */
1354		if (db->db_last_dirty == dr ||
1355		    dn->dn_object == DMU_META_DNODE_OBJECT) {
1356			mutex_enter(&di->dt.di.dr_mtx);
1357			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1358			ASSERT(!list_link_active(&dr->dr_dirty_node));
1359			list_insert_tail(&di->dt.di.dr_children, dr);
1360			mutex_exit(&di->dt.di.dr_mtx);
1361			dr->dr_parent = di;
1362		}
1363		mutex_exit(&db->db_mtx);
1364	} else {
1365		ASSERT(db->db_level+1 == dn->dn_nlevels);
1366		ASSERT(db->db_blkid < dn->dn_nblkptr);
1367		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1368		mutex_enter(&dn->dn_mtx);
1369		ASSERT(!list_link_active(&dr->dr_dirty_node));
1370		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1371		mutex_exit(&dn->dn_mtx);
1372		if (drop_struct_lock)
1373			rw_exit(&dn->dn_struct_rwlock);
1374	}
1375
1376	dnode_setdirty(dn, tx);
1377	DB_DNODE_EXIT(db);
1378	return (dr);
1379}
1380
1381/*
1382 * Undirty a buffer in the transaction group referenced by the given
1383 * transaction.  Return whether this evicted the dbuf.
1384 */
1385static boolean_t
1386dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1387{
1388	dnode_t *dn;
1389	uint64_t txg = tx->tx_txg;
1390	dbuf_dirty_record_t *dr, **drp;
1391
1392	ASSERT(txg != 0);
1393
1394	/*
1395	 * Due to our use of dn_nlevels below, this can only be called
1396	 * in open context, unless we are operating on the MOS.
1397	 * From syncing context, dn_nlevels may be different from the
1398	 * dn_nlevels used when dbuf was dirtied.
1399	 */
1400	ASSERT(db->db_objset ==
1401	    dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1402	    txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1403	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1404	ASSERT0(db->db_level);
1405	ASSERT(MUTEX_HELD(&db->db_mtx));
1406
1407	/*
1408	 * If this buffer is not dirty, we're done.
1409	 */
1410	for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1411		if (dr->dr_txg <= txg)
1412			break;
1413	if (dr == NULL || dr->dr_txg < txg)
1414		return (B_FALSE);
1415	ASSERT(dr->dr_txg == txg);
1416	ASSERT(dr->dr_dbuf == db);
1417
1418	DB_DNODE_ENTER(db);
1419	dn = DB_DNODE(db);
1420
1421	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1422
1423	ASSERT(db->db.db_size != 0);
1424
1425	dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1426	    dr->dr_accounted, txg);
1427
1428	*drp = dr->dr_next;
1429
1430	/*
1431	 * Note that there are three places in dbuf_dirty()
1432	 * where this dirty record may be put on a list.
1433	 * Make sure to do a list_remove corresponding to
1434	 * every one of those list_insert calls.
1435	 */
1436	if (dr->dr_parent) {
1437		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1438		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1439		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1440	} else if (db->db_blkid == DMU_SPILL_BLKID ||
1441	    db->db_level + 1 == dn->dn_nlevels) {
1442		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1443		mutex_enter(&dn->dn_mtx);
1444		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1445		mutex_exit(&dn->dn_mtx);
1446	}
1447	DB_DNODE_EXIT(db);
1448
1449	if (db->db_state != DB_NOFILL) {
1450		dbuf_unoverride(dr);
1451
1452		ASSERT(db->db_buf != NULL);
1453		ASSERT(dr->dt.dl.dr_data != NULL);
1454		if (dr->dt.dl.dr_data != db->db_buf)
1455			VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db));
1456	}
1457
1458	kmem_free(dr, sizeof (dbuf_dirty_record_t));
1459
1460	ASSERT(db->db_dirtycnt > 0);
1461	db->db_dirtycnt -= 1;
1462
1463	if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1464		arc_buf_t *buf = db->db_buf;
1465
1466		ASSERT(db->db_state == DB_NOFILL || arc_released(buf));
1467		dbuf_clear_data(db);
1468		VERIFY(arc_buf_remove_ref(buf, db));
1469		dbuf_evict(db);
1470		return (B_TRUE);
1471	}
1472
1473	return (B_FALSE);
1474}
1475
1476void
1477dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1478{
1479	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1480	int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1481
1482	ASSERT(tx->tx_txg != 0);
1483	ASSERT(!refcount_is_zero(&db->db_holds));
1484
1485	DB_DNODE_ENTER(db);
1486	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1487		rf |= DB_RF_HAVESTRUCT;
1488	DB_DNODE_EXIT(db);
1489	(void) dbuf_read(db, NULL, rf);
1490	(void) dbuf_dirty(db, tx);
1491}
1492
1493void
1494dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1495{
1496	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1497
1498	db->db_state = DB_NOFILL;
1499
1500	dmu_buf_will_fill(db_fake, tx);
1501}
1502
1503void
1504dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1505{
1506	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1507
1508	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1509	ASSERT(tx->tx_txg != 0);
1510	ASSERT(db->db_level == 0);
1511	ASSERT(!refcount_is_zero(&db->db_holds));
1512
1513	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1514	    dmu_tx_private_ok(tx));
1515
1516	dbuf_noread(db);
1517	(void) dbuf_dirty(db, tx);
1518}
1519
1520#pragma weak dmu_buf_fill_done = dbuf_fill_done
1521/* ARGSUSED */
1522void
1523dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1524{
1525	mutex_enter(&db->db_mtx);
1526	DBUF_VERIFY(db);
1527
1528	if (db->db_state == DB_FILL) {
1529		if (db->db_level == 0 && db->db_freed_in_flight) {
1530			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1531			/* we were freed while filling */
1532			/* XXX dbuf_undirty? */
1533			bzero(db->db.db_data, db->db.db_size);
1534			db->db_freed_in_flight = FALSE;
1535		}
1536		db->db_state = DB_CACHED;
1537		cv_broadcast(&db->db_changed);
1538	}
1539	mutex_exit(&db->db_mtx);
1540}
1541
1542void
1543dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1544    bp_embedded_type_t etype, enum zio_compress comp,
1545    int uncompressed_size, int compressed_size, int byteorder,
1546    dmu_tx_t *tx)
1547{
1548	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
1549	struct dirty_leaf *dl;
1550	dmu_object_type_t type;
1551
1552	DB_DNODE_ENTER(db);
1553	type = DB_DNODE(db)->dn_type;
1554	DB_DNODE_EXIT(db);
1555
1556	ASSERT0(db->db_level);
1557	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1558
1559	dmu_buf_will_not_fill(dbuf, tx);
1560
1561	ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1562	dl = &db->db_last_dirty->dt.dl;
1563	encode_embedded_bp_compressed(&dl->dr_overridden_by,
1564	    data, comp, uncompressed_size, compressed_size);
1565	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
1566	BP_SET_TYPE(&dl->dr_overridden_by, type);
1567	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
1568	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
1569
1570	dl->dr_override_state = DR_OVERRIDDEN;
1571	dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
1572}
1573
1574/*
1575 * Directly assign a provided arc buf to a given dbuf if it's not referenced
1576 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1577 */
1578void
1579dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1580{
1581	ASSERT(!refcount_is_zero(&db->db_holds));
1582	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1583	ASSERT(db->db_level == 0);
1584	ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA);
1585	ASSERT(buf != NULL);
1586	ASSERT(arc_buf_size(buf) == db->db.db_size);
1587	ASSERT(tx->tx_txg != 0);
1588
1589	arc_return_buf(buf, db);
1590	ASSERT(arc_released(buf));
1591
1592	mutex_enter(&db->db_mtx);
1593
1594	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1595		cv_wait(&db->db_changed, &db->db_mtx);
1596
1597	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1598
1599	if (db->db_state == DB_CACHED &&
1600	    refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1601		mutex_exit(&db->db_mtx);
1602		(void) dbuf_dirty(db, tx);
1603		bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1604		VERIFY(arc_buf_remove_ref(buf, db));
1605		xuio_stat_wbuf_copied();
1606		return;
1607	}
1608
1609	xuio_stat_wbuf_nocopy();
1610	if (db->db_state == DB_CACHED) {
1611		dbuf_dirty_record_t *dr = db->db_last_dirty;
1612
1613		ASSERT(db->db_buf != NULL);
1614		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1615			ASSERT(dr->dt.dl.dr_data == db->db_buf);
1616			if (!arc_released(db->db_buf)) {
1617				ASSERT(dr->dt.dl.dr_override_state ==
1618				    DR_OVERRIDDEN);
1619				arc_release(db->db_buf, db);
1620			}
1621			dr->dt.dl.dr_data = buf;
1622			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1623		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
1624			arc_release(db->db_buf, db);
1625			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1626		}
1627		db->db_buf = NULL;
1628	}
1629	ASSERT(db->db_buf == NULL);
1630	dbuf_set_data(db, buf);
1631	db->db_state = DB_FILL;
1632	mutex_exit(&db->db_mtx);
1633	(void) dbuf_dirty(db, tx);
1634	dmu_buf_fill_done(&db->db, tx);
1635}
1636
1637/*
1638 * "Clear" the contents of this dbuf.  This will mark the dbuf
1639 * EVICTING and clear *most* of its references.  Unfortunately,
1640 * when we are not holding the dn_dbufs_mtx, we can't clear the
1641 * entry in the dn_dbufs list.  We have to wait until dbuf_destroy()
1642 * in this case.  For callers from the DMU we will usually see:
1643 *	dbuf_clear()->arc_clear_callback()->dbuf_do_evict()->dbuf_destroy()
1644 * For the arc callback, we will usually see:
1645 *	dbuf_do_evict()->dbuf_clear();dbuf_destroy()
1646 * Sometimes, though, we will get a mix of these two:
1647 *	DMU: dbuf_clear()->arc_clear_callback()
1648 *	ARC: dbuf_do_evict()->dbuf_destroy()
1649 *
1650 * This routine will dissociate the dbuf from the arc, by calling
1651 * arc_clear_callback(), but will not evict the data from the ARC.
1652 */
1653void
1654dbuf_clear(dmu_buf_impl_t *db)
1655{
1656	dnode_t *dn;
1657	dmu_buf_impl_t *parent = db->db_parent;
1658	dmu_buf_impl_t *dndb;
1659	boolean_t dbuf_gone = B_FALSE;
1660
1661	ASSERT(MUTEX_HELD(&db->db_mtx));
1662	ASSERT(refcount_is_zero(&db->db_holds));
1663
1664	dbuf_evict_user(db);
1665
1666	if (db->db_state == DB_CACHED) {
1667		ASSERT(db->db.db_data != NULL);
1668		if (db->db_blkid == DMU_BONUS_BLKID) {
1669			zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
1670			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1671		}
1672		db->db.db_data = NULL;
1673		db->db_state = DB_UNCACHED;
1674	}
1675
1676	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1677	ASSERT(db->db_data_pending == NULL);
1678
1679	db->db_state = DB_EVICTING;
1680	db->db_blkptr = NULL;
1681
1682	DB_DNODE_ENTER(db);
1683	dn = DB_DNODE(db);
1684	dndb = dn->dn_dbuf;
1685	if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) {
1686		avl_remove(&dn->dn_dbufs, db);
1687		atomic_dec_32(&dn->dn_dbufs_count);
1688		membar_producer();
1689		DB_DNODE_EXIT(db);
1690		/*
1691		 * Decrementing the dbuf count means that the hold corresponding
1692		 * to the removed dbuf is no longer discounted in dnode_move(),
1693		 * so the dnode cannot be moved until after we release the hold.
1694		 * The membar_producer() ensures visibility of the decremented
1695		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
1696		 * release any lock.
1697		 */
1698		dnode_rele(dn, db);
1699		db->db_dnode_handle = NULL;
1700	} else {
1701		DB_DNODE_EXIT(db);
1702	}
1703
1704	if (db->db_buf)
1705		dbuf_gone = arc_clear_callback(db->db_buf);
1706
1707	if (!dbuf_gone)
1708		mutex_exit(&db->db_mtx);
1709
1710	/*
1711	 * If this dbuf is referenced from an indirect dbuf,
1712	 * decrement the ref count on the indirect dbuf.
1713	 */
1714	if (parent && parent != dndb)
1715		dbuf_rele(parent, db);
1716}
1717
1718static int
1719dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
1720    dmu_buf_impl_t **parentp, blkptr_t **bpp)
1721{
1722	int nlevels, epbs;
1723
1724	*parentp = NULL;
1725	*bpp = NULL;
1726
1727	ASSERT(blkid != DMU_BONUS_BLKID);
1728
1729	if (blkid == DMU_SPILL_BLKID) {
1730		mutex_enter(&dn->dn_mtx);
1731		if (dn->dn_have_spill &&
1732		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1733			*bpp = &dn->dn_phys->dn_spill;
1734		else
1735			*bpp = NULL;
1736		dbuf_add_ref(dn->dn_dbuf, NULL);
1737		*parentp = dn->dn_dbuf;
1738		mutex_exit(&dn->dn_mtx);
1739		return (0);
1740	}
1741
1742	if (dn->dn_phys->dn_nlevels == 0)
1743		nlevels = 1;
1744	else
1745		nlevels = dn->dn_phys->dn_nlevels;
1746
1747	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1748
1749	ASSERT3U(level * epbs, <, 64);
1750	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1751	if (level >= nlevels ||
1752	    (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
1753		/* the buffer has no parent yet */
1754		return (SET_ERROR(ENOENT));
1755	} else if (level < nlevels-1) {
1756		/* this block is referenced from an indirect block */
1757		int err = dbuf_hold_impl(dn, level+1,
1758		    blkid >> epbs, fail_sparse, NULL, parentp);
1759		if (err)
1760			return (err);
1761		err = dbuf_read(*parentp, NULL,
1762		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
1763		if (err) {
1764			dbuf_rele(*parentp, NULL);
1765			*parentp = NULL;
1766			return (err);
1767		}
1768		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
1769		    (blkid & ((1ULL << epbs) - 1));
1770		return (0);
1771	} else {
1772		/* the block is referenced from the dnode */
1773		ASSERT3U(level, ==, nlevels-1);
1774		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
1775		    blkid < dn->dn_phys->dn_nblkptr);
1776		if (dn->dn_dbuf) {
1777			dbuf_add_ref(dn->dn_dbuf, NULL);
1778			*parentp = dn->dn_dbuf;
1779		}
1780		*bpp = &dn->dn_phys->dn_blkptr[blkid];
1781		return (0);
1782	}
1783}
1784
1785static dmu_buf_impl_t *
1786dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
1787    dmu_buf_impl_t *parent, blkptr_t *blkptr)
1788{
1789	objset_t *os = dn->dn_objset;
1790	dmu_buf_impl_t *db, *odb;
1791
1792	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1793	ASSERT(dn->dn_type != DMU_OT_NONE);
1794
1795	db = kmem_cache_alloc(dbuf_cache, KM_SLEEP);
1796
1797	db->db_objset = os;
1798	db->db.db_object = dn->dn_object;
1799	db->db_level = level;
1800	db->db_blkid = blkid;
1801	db->db_last_dirty = NULL;
1802	db->db_dirtycnt = 0;
1803	db->db_dnode_handle = dn->dn_handle;
1804	db->db_parent = parent;
1805	db->db_blkptr = blkptr;
1806
1807	db->db_user = NULL;
1808	db->db_immediate_evict = 0;
1809	db->db_freed_in_flight = 0;
1810
1811	if (blkid == DMU_BONUS_BLKID) {
1812		ASSERT3P(parent, ==, dn->dn_dbuf);
1813		db->db.db_size = DN_MAX_BONUSLEN -
1814		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
1815		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1816		db->db.db_offset = DMU_BONUS_BLKID;
1817		db->db_state = DB_UNCACHED;
1818		/* the bonus dbuf is not placed in the hash table */
1819		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1820		return (db);
1821	} else if (blkid == DMU_SPILL_BLKID) {
1822		db->db.db_size = (blkptr != NULL) ?
1823		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
1824		db->db.db_offset = 0;
1825	} else {
1826		int blocksize =
1827		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
1828		db->db.db_size = blocksize;
1829		db->db.db_offset = db->db_blkid * blocksize;
1830	}
1831
1832	/*
1833	 * Hold the dn_dbufs_mtx while we get the new dbuf
1834	 * in the hash table *and* added to the dbufs list.
1835	 * This prevents a possible deadlock with someone
1836	 * trying to look up this dbuf before its added to the
1837	 * dn_dbufs list.
1838	 */
1839	mutex_enter(&dn->dn_dbufs_mtx);
1840	db->db_state = DB_EVICTING;
1841	if ((odb = dbuf_hash_insert(db)) != NULL) {
1842		/* someone else inserted it first */
1843		kmem_cache_free(dbuf_cache, db);
1844		mutex_exit(&dn->dn_dbufs_mtx);
1845		return (odb);
1846	}
1847	avl_add(&dn->dn_dbufs, db);
1848	if (db->db_level == 0 && db->db_blkid >=
1849	    dn->dn_unlisted_l0_blkid)
1850		dn->dn_unlisted_l0_blkid = db->db_blkid + 1;
1851	db->db_state = DB_UNCACHED;
1852	mutex_exit(&dn->dn_dbufs_mtx);
1853	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1854
1855	if (parent && parent != dn->dn_dbuf)
1856		dbuf_add_ref(parent, db);
1857
1858	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1859	    refcount_count(&dn->dn_holds) > 0);
1860	(void) refcount_add(&dn->dn_holds, db);
1861	atomic_inc_32(&dn->dn_dbufs_count);
1862
1863	dprintf_dbuf(db, "db=%p\n", db);
1864
1865	return (db);
1866}
1867
1868static int
1869dbuf_do_evict(void *private)
1870{
1871	dmu_buf_impl_t *db = private;
1872
1873	if (!MUTEX_HELD(&db->db_mtx))
1874		mutex_enter(&db->db_mtx);
1875
1876	ASSERT(refcount_is_zero(&db->db_holds));
1877
1878	if (db->db_state != DB_EVICTING) {
1879		ASSERT(db->db_state == DB_CACHED);
1880		DBUF_VERIFY(db);
1881		db->db_buf = NULL;
1882		dbuf_evict(db);
1883	} else {
1884		mutex_exit(&db->db_mtx);
1885		dbuf_destroy(db);
1886	}
1887	return (0);
1888}
1889
1890static void
1891dbuf_destroy(dmu_buf_impl_t *db)
1892{
1893	ASSERT(refcount_is_zero(&db->db_holds));
1894
1895	if (db->db_blkid != DMU_BONUS_BLKID) {
1896		/*
1897		 * If this dbuf is still on the dn_dbufs list,
1898		 * remove it from that list.
1899		 */
1900		if (db->db_dnode_handle != NULL) {
1901			dnode_t *dn;
1902
1903			DB_DNODE_ENTER(db);
1904			dn = DB_DNODE(db);
1905			mutex_enter(&dn->dn_dbufs_mtx);
1906			avl_remove(&dn->dn_dbufs, db);
1907			atomic_dec_32(&dn->dn_dbufs_count);
1908			mutex_exit(&dn->dn_dbufs_mtx);
1909			DB_DNODE_EXIT(db);
1910			/*
1911			 * Decrementing the dbuf count means that the hold
1912			 * corresponding to the removed dbuf is no longer
1913			 * discounted in dnode_move(), so the dnode cannot be
1914			 * moved until after we release the hold.
1915			 */
1916			dnode_rele(dn, db);
1917			db->db_dnode_handle = NULL;
1918		}
1919		dbuf_hash_remove(db);
1920	}
1921	db->db_parent = NULL;
1922	db->db_buf = NULL;
1923
1924	ASSERT(db->db.db_data == NULL);
1925	ASSERT(db->db_hash_next == NULL);
1926	ASSERT(db->db_blkptr == NULL);
1927	ASSERT(db->db_data_pending == NULL);
1928
1929	kmem_cache_free(dbuf_cache, db);
1930	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1931}
1932
1933void
1934dbuf_prefetch(dnode_t *dn, uint64_t blkid, zio_priority_t prio)
1935{
1936	dmu_buf_impl_t *db = NULL;
1937	blkptr_t *bp = NULL;
1938
1939	ASSERT(blkid != DMU_BONUS_BLKID);
1940	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1941
1942	if (dnode_block_freed(dn, blkid))
1943		return;
1944
1945	/* dbuf_find() returns with db_mtx held */
1946	if (db = dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid)) {
1947		/*
1948		 * This dbuf is already in the cache.  We assume that
1949		 * it is already CACHED, or else about to be either
1950		 * read or filled.
1951		 */
1952		mutex_exit(&db->db_mtx);
1953		return;
1954	}
1955
1956	if (dbuf_findbp(dn, 0, blkid, TRUE, &db, &bp) == 0) {
1957		if (bp && !BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
1958			dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
1959			arc_flags_t aflags =
1960			    ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
1961			zbookmark_phys_t zb;
1962
1963			SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
1964			    dn->dn_object, 0, blkid);
1965
1966			(void) arc_read(NULL, dn->dn_objset->os_spa,
1967			    bp, NULL, NULL, prio,
1968			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
1969			    &aflags, &zb);
1970		}
1971		if (db)
1972			dbuf_rele(db, NULL);
1973	}
1974}
1975
1976/*
1977 * Returns with db_holds incremented, and db_mtx not held.
1978 * Note: dn_struct_rwlock must be held.
1979 */
1980int
1981dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse,
1982    void *tag, dmu_buf_impl_t **dbp)
1983{
1984	dmu_buf_impl_t *db, *parent = NULL;
1985
1986	ASSERT(blkid != DMU_BONUS_BLKID);
1987	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1988	ASSERT3U(dn->dn_nlevels, >, level);
1989
1990	*dbp = NULL;
1991top:
1992	/* dbuf_find() returns with db_mtx held */
1993	db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
1994
1995	if (db == NULL) {
1996		blkptr_t *bp = NULL;
1997		int err;
1998
1999		ASSERT3P(parent, ==, NULL);
2000		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
2001		if (fail_sparse) {
2002			if (err == 0 && bp && BP_IS_HOLE(bp))
2003				err = SET_ERROR(ENOENT);
2004			if (err) {
2005				if (parent)
2006					dbuf_rele(parent, NULL);
2007				return (err);
2008			}
2009		}
2010		if (err && err != ENOENT)
2011			return (err);
2012		db = dbuf_create(dn, level, blkid, parent, bp);
2013	}
2014
2015	if (db->db_buf && refcount_is_zero(&db->db_holds)) {
2016		arc_buf_add_ref(db->db_buf, db);
2017		if (db->db_buf->b_data == NULL) {
2018			dbuf_clear(db);
2019			if (parent) {
2020				dbuf_rele(parent, NULL);
2021				parent = NULL;
2022			}
2023			goto top;
2024		}
2025		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
2026	}
2027
2028	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
2029
2030	/*
2031	 * If this buffer is currently syncing out, and we are are
2032	 * still referencing it from db_data, we need to make a copy
2033	 * of it in case we decide we want to dirty it again in this txg.
2034	 */
2035	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2036	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2037	    db->db_state == DB_CACHED && db->db_data_pending) {
2038		dbuf_dirty_record_t *dr = db->db_data_pending;
2039
2040		if (dr->dt.dl.dr_data == db->db_buf) {
2041			arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2042
2043			dbuf_set_data(db,
2044			    arc_buf_alloc(dn->dn_objset->os_spa,
2045			    db->db.db_size, db, type));
2046			bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
2047			    db->db.db_size);
2048		}
2049	}
2050
2051	(void) refcount_add(&db->db_holds, tag);
2052	DBUF_VERIFY(db);
2053	mutex_exit(&db->db_mtx);
2054
2055	/* NOTE: we can't rele the parent until after we drop the db_mtx */
2056	if (parent)
2057		dbuf_rele(parent, NULL);
2058
2059	ASSERT3P(DB_DNODE(db), ==, dn);
2060	ASSERT3U(db->db_blkid, ==, blkid);
2061	ASSERT3U(db->db_level, ==, level);
2062	*dbp = db;
2063
2064	return (0);
2065}
2066
2067dmu_buf_impl_t *
2068dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2069{
2070	dmu_buf_impl_t *db;
2071	int err = dbuf_hold_impl(dn, 0, blkid, FALSE, tag, &db);
2072	return (err ? NULL : db);
2073}
2074
2075dmu_buf_impl_t *
2076dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2077{
2078	dmu_buf_impl_t *db;
2079	int err = dbuf_hold_impl(dn, level, blkid, FALSE, tag, &db);
2080	return (err ? NULL : db);
2081}
2082
2083void
2084dbuf_create_bonus(dnode_t *dn)
2085{
2086	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2087
2088	ASSERT(dn->dn_bonus == NULL);
2089	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2090}
2091
2092int
2093dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2094{
2095	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2096	dnode_t *dn;
2097
2098	if (db->db_blkid != DMU_SPILL_BLKID)
2099		return (SET_ERROR(ENOTSUP));
2100	if (blksz == 0)
2101		blksz = SPA_MINBLOCKSIZE;
2102	ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2103	blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2104
2105	DB_DNODE_ENTER(db);
2106	dn = DB_DNODE(db);
2107	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2108	dbuf_new_size(db, blksz, tx);
2109	rw_exit(&dn->dn_struct_rwlock);
2110	DB_DNODE_EXIT(db);
2111
2112	return (0);
2113}
2114
2115void
2116dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2117{
2118	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2119}
2120
2121#pragma weak dmu_buf_add_ref = dbuf_add_ref
2122void
2123dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2124{
2125	int64_t holds = refcount_add(&db->db_holds, tag);
2126	ASSERT(holds > 1);
2127}
2128
2129#pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2130boolean_t
2131dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2132    void *tag)
2133{
2134	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2135	dmu_buf_impl_t *found_db;
2136	boolean_t result = B_FALSE;
2137
2138	if (db->db_blkid == DMU_BONUS_BLKID)
2139		found_db = dbuf_find_bonus(os, obj);
2140	else
2141		found_db = dbuf_find(os, obj, 0, blkid);
2142
2143	if (found_db != NULL) {
2144		if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2145			(void) refcount_add(&db->db_holds, tag);
2146			result = B_TRUE;
2147		}
2148		mutex_exit(&db->db_mtx);
2149	}
2150	return (result);
2151}
2152
2153/*
2154 * If you call dbuf_rele() you had better not be referencing the dnode handle
2155 * unless you have some other direct or indirect hold on the dnode. (An indirect
2156 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2157 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2158 * dnode's parent dbuf evicting its dnode handles.
2159 */
2160void
2161dbuf_rele(dmu_buf_impl_t *db, void *tag)
2162{
2163	mutex_enter(&db->db_mtx);
2164	dbuf_rele_and_unlock(db, tag);
2165}
2166
2167void
2168dmu_buf_rele(dmu_buf_t *db, void *tag)
2169{
2170	dbuf_rele((dmu_buf_impl_t *)db, tag);
2171}
2172
2173/*
2174 * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
2175 * db_dirtycnt and db_holds to be updated atomically.
2176 */
2177void
2178dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2179{
2180	int64_t holds;
2181
2182	ASSERT(MUTEX_HELD(&db->db_mtx));
2183	DBUF_VERIFY(db);
2184
2185	/*
2186	 * Remove the reference to the dbuf before removing its hold on the
2187	 * dnode so we can guarantee in dnode_move() that a referenced bonus
2188	 * buffer has a corresponding dnode hold.
2189	 */
2190	holds = refcount_remove(&db->db_holds, tag);
2191	ASSERT(holds >= 0);
2192
2193	/*
2194	 * We can't freeze indirects if there is a possibility that they
2195	 * may be modified in the current syncing context.
2196	 */
2197	if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0))
2198		arc_buf_freeze(db->db_buf);
2199
2200	if (holds == db->db_dirtycnt &&
2201	    db->db_level == 0 && db->db_immediate_evict)
2202		dbuf_evict_user(db);
2203
2204	if (holds == 0) {
2205		if (db->db_blkid == DMU_BONUS_BLKID) {
2206			dnode_t *dn;
2207
2208			/*
2209			 * If the dnode moves here, we cannot cross this
2210			 * barrier until the move completes.
2211			 */
2212			DB_DNODE_ENTER(db);
2213
2214			dn = DB_DNODE(db);
2215			atomic_dec_32(&dn->dn_dbufs_count);
2216
2217			/*
2218			 * Decrementing the dbuf count means that the bonus
2219			 * buffer's dnode hold is no longer discounted in
2220			 * dnode_move(). The dnode cannot move until after
2221			 * the dnode_rele_and_unlock() below.
2222			 */
2223			DB_DNODE_EXIT(db);
2224
2225			/*
2226			 * Do not reference db after its lock is dropped.
2227			 * Another thread may evict it.
2228			 */
2229			mutex_exit(&db->db_mtx);
2230
2231			/*
2232			 * If the dnode has been freed, evict the bonus
2233			 * buffer immediately.	The data in the bonus
2234			 * buffer is no longer relevant and this prevents
2235			 * a stale bonus buffer from being associated
2236			 * with this dnode_t should the dnode_t be reused
2237			 * prior to being destroyed.
2238			 */
2239			mutex_enter(&dn->dn_mtx);
2240			if (dn->dn_type == DMU_OT_NONE ||
2241			    dn->dn_free_txg != 0) {
2242				/*
2243				 * Drop dn_mtx.  It is a leaf lock and
2244				 * cannot be held when dnode_evict_bonus()
2245				 * acquires other locks in order to
2246				 * perform the eviction.
2247				 *
2248				 * Freed dnodes cannot be reused until the
2249				 * last hold is released.  Since this bonus
2250				 * buffer has a hold, the dnode will remain
2251				 * in the free state, even without dn_mtx
2252				 * held, until the dnode_rele_and_unlock()
2253				 * below.
2254				 */
2255				mutex_exit(&dn->dn_mtx);
2256				dnode_evict_bonus(dn);
2257				mutex_enter(&dn->dn_mtx);
2258			}
2259			dnode_rele_and_unlock(dn, db);
2260		} else if (db->db_buf == NULL) {
2261			/*
2262			 * This is a special case: we never associated this
2263			 * dbuf with any data allocated from the ARC.
2264			 */
2265			ASSERT(db->db_state == DB_UNCACHED ||
2266			    db->db_state == DB_NOFILL);
2267			dbuf_evict(db);
2268		} else if (arc_released(db->db_buf)) {
2269			arc_buf_t *buf = db->db_buf;
2270			/*
2271			 * This dbuf has anonymous data associated with it.
2272			 */
2273			dbuf_clear_data(db);
2274			VERIFY(arc_buf_remove_ref(buf, db));
2275			dbuf_evict(db);
2276		} else {
2277			VERIFY(!arc_buf_remove_ref(db->db_buf, db));
2278
2279			/*
2280			 * A dbuf will be eligible for eviction if either the
2281			 * 'primarycache' property is set or a duplicate
2282			 * copy of this buffer is already cached in the arc.
2283			 *
2284			 * In the case of the 'primarycache' a buffer
2285			 * is considered for eviction if it matches the
2286			 * criteria set in the property.
2287			 *
2288			 * To decide if our buffer is considered a
2289			 * duplicate, we must call into the arc to determine
2290			 * if multiple buffers are referencing the same
2291			 * block on-disk. If so, then we simply evict
2292			 * ourselves.
2293			 */
2294			if (!DBUF_IS_CACHEABLE(db)) {
2295				if (db->db_blkptr != NULL &&
2296				    !BP_IS_HOLE(db->db_blkptr) &&
2297				    !BP_IS_EMBEDDED(db->db_blkptr)) {
2298					spa_t *spa =
2299					    dmu_objset_spa(db->db_objset);
2300					blkptr_t bp = *db->db_blkptr;
2301					dbuf_clear(db);
2302					arc_freed(spa, &bp);
2303				} else {
2304					dbuf_clear(db);
2305				}
2306			} else if (db->db_objset->os_evicting ||
2307			    arc_buf_eviction_needed(db->db_buf)) {
2308				dbuf_clear(db);
2309			} else {
2310				mutex_exit(&db->db_mtx);
2311			}
2312		}
2313	} else {
2314		mutex_exit(&db->db_mtx);
2315	}
2316}
2317
2318#pragma weak dmu_buf_refcount = dbuf_refcount
2319uint64_t
2320dbuf_refcount(dmu_buf_impl_t *db)
2321{
2322	return (refcount_count(&db->db_holds));
2323}
2324
2325void *
2326dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
2327    dmu_buf_user_t *new_user)
2328{
2329	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2330
2331	mutex_enter(&db->db_mtx);
2332	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2333	if (db->db_user == old_user)
2334		db->db_user = new_user;
2335	else
2336		old_user = db->db_user;
2337	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2338	mutex_exit(&db->db_mtx);
2339
2340	return (old_user);
2341}
2342
2343void *
2344dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2345{
2346	return (dmu_buf_replace_user(db_fake, NULL, user));
2347}
2348
2349void *
2350dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2351{
2352	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2353
2354	db->db_immediate_evict = TRUE;
2355	return (dmu_buf_set_user(db_fake, user));
2356}
2357
2358void *
2359dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2360{
2361	return (dmu_buf_replace_user(db_fake, user, NULL));
2362}
2363
2364void *
2365dmu_buf_get_user(dmu_buf_t *db_fake)
2366{
2367	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2368
2369	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2370	return (db->db_user);
2371}
2372
2373void
2374dmu_buf_user_evict_wait()
2375{
2376	taskq_wait(dbu_evict_taskq);
2377}
2378
2379boolean_t
2380dmu_buf_freeable(dmu_buf_t *dbuf)
2381{
2382	boolean_t res = B_FALSE;
2383	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2384
2385	if (db->db_blkptr)
2386		res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset,
2387		    db->db_blkptr, db->db_blkptr->blk_birth);
2388
2389	return (res);
2390}
2391
2392blkptr_t *
2393dmu_buf_get_blkptr(dmu_buf_t *db)
2394{
2395	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2396	return (dbi->db_blkptr);
2397}
2398
2399static void
2400dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2401{
2402	/* ASSERT(dmu_tx_is_syncing(tx) */
2403	ASSERT(MUTEX_HELD(&db->db_mtx));
2404
2405	if (db->db_blkptr != NULL)
2406		return;
2407
2408	if (db->db_blkid == DMU_SPILL_BLKID) {
2409		db->db_blkptr = &dn->dn_phys->dn_spill;
2410		BP_ZERO(db->db_blkptr);
2411		return;
2412	}
2413	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2414		/*
2415		 * This buffer was allocated at a time when there was
2416		 * no available blkptrs from the dnode, or it was
2417		 * inappropriate to hook it in (i.e., nlevels mis-match).
2418		 */
2419		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2420		ASSERT(db->db_parent == NULL);
2421		db->db_parent = dn->dn_dbuf;
2422		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2423		DBUF_VERIFY(db);
2424	} else {
2425		dmu_buf_impl_t *parent = db->db_parent;
2426		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2427
2428		ASSERT(dn->dn_phys->dn_nlevels > 1);
2429		if (parent == NULL) {
2430			mutex_exit(&db->db_mtx);
2431			rw_enter(&dn->dn_struct_rwlock, RW_READER);
2432			(void) dbuf_hold_impl(dn, db->db_level+1,
2433			    db->db_blkid >> epbs, FALSE, db, &parent);
2434			rw_exit(&dn->dn_struct_rwlock);
2435			mutex_enter(&db->db_mtx);
2436			db->db_parent = parent;
2437		}
2438		db->db_blkptr = (blkptr_t *)parent->db.db_data +
2439		    (db->db_blkid & ((1ULL << epbs) - 1));
2440		DBUF_VERIFY(db);
2441	}
2442}
2443
2444static void
2445dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2446{
2447	dmu_buf_impl_t *db = dr->dr_dbuf;
2448	dnode_t *dn;
2449	zio_t *zio;
2450
2451	ASSERT(dmu_tx_is_syncing(tx));
2452
2453	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2454
2455	mutex_enter(&db->db_mtx);
2456
2457	ASSERT(db->db_level > 0);
2458	DBUF_VERIFY(db);
2459
2460	/* Read the block if it hasn't been read yet. */
2461	if (db->db_buf == NULL) {
2462		mutex_exit(&db->db_mtx);
2463		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2464		mutex_enter(&db->db_mtx);
2465	}
2466	ASSERT3U(db->db_state, ==, DB_CACHED);
2467	ASSERT(db->db_buf != NULL);
2468
2469	DB_DNODE_ENTER(db);
2470	dn = DB_DNODE(db);
2471	/* Indirect block size must match what the dnode thinks it is. */
2472	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2473	dbuf_check_blkptr(dn, db);
2474	DB_DNODE_EXIT(db);
2475
2476	/* Provide the pending dirty record to child dbufs */
2477	db->db_data_pending = dr;
2478
2479	mutex_exit(&db->db_mtx);
2480	dbuf_write(dr, db->db_buf, tx);
2481
2482	zio = dr->dr_zio;
2483	mutex_enter(&dr->dt.di.dr_mtx);
2484	dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
2485	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2486	mutex_exit(&dr->dt.di.dr_mtx);
2487	zio_nowait(zio);
2488}
2489
2490static void
2491dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2492{
2493	arc_buf_t **datap = &dr->dt.dl.dr_data;
2494	dmu_buf_impl_t *db = dr->dr_dbuf;
2495	dnode_t *dn;
2496	objset_t *os;
2497	uint64_t txg = tx->tx_txg;
2498
2499	ASSERT(dmu_tx_is_syncing(tx));
2500
2501	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2502
2503	mutex_enter(&db->db_mtx);
2504	/*
2505	 * To be synced, we must be dirtied.  But we
2506	 * might have been freed after the dirty.
2507	 */
2508	if (db->db_state == DB_UNCACHED) {
2509		/* This buffer has been freed since it was dirtied */
2510		ASSERT(db->db.db_data == NULL);
2511	} else if (db->db_state == DB_FILL) {
2512		/* This buffer was freed and is now being re-filled */
2513		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
2514	} else {
2515		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
2516	}
2517	DBUF_VERIFY(db);
2518
2519	DB_DNODE_ENTER(db);
2520	dn = DB_DNODE(db);
2521
2522	if (db->db_blkid == DMU_SPILL_BLKID) {
2523		mutex_enter(&dn->dn_mtx);
2524		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
2525		mutex_exit(&dn->dn_mtx);
2526	}
2527
2528	/*
2529	 * If this is a bonus buffer, simply copy the bonus data into the
2530	 * dnode.  It will be written out when the dnode is synced (and it
2531	 * will be synced, since it must have been dirty for dbuf_sync to
2532	 * be called).
2533	 */
2534	if (db->db_blkid == DMU_BONUS_BLKID) {
2535		dbuf_dirty_record_t **drp;
2536
2537		ASSERT(*datap != NULL);
2538		ASSERT0(db->db_level);
2539		ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
2540		bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
2541		DB_DNODE_EXIT(db);
2542
2543		if (*datap != db->db.db_data) {
2544			zio_buf_free(*datap, DN_MAX_BONUSLEN);
2545			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2546		}
2547		db->db_data_pending = NULL;
2548		drp = &db->db_last_dirty;
2549		while (*drp != dr)
2550			drp = &(*drp)->dr_next;
2551		ASSERT(dr->dr_next == NULL);
2552		ASSERT(dr->dr_dbuf == db);
2553		*drp = dr->dr_next;
2554		if (dr->dr_dbuf->db_level != 0) {
2555			list_destroy(&dr->dt.di.dr_children);
2556			mutex_destroy(&dr->dt.di.dr_mtx);
2557		}
2558		kmem_free(dr, sizeof (dbuf_dirty_record_t));
2559		ASSERT(db->db_dirtycnt > 0);
2560		db->db_dirtycnt -= 1;
2561		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2562		return;
2563	}
2564
2565	os = dn->dn_objset;
2566
2567	/*
2568	 * This function may have dropped the db_mtx lock allowing a dmu_sync
2569	 * operation to sneak in. As a result, we need to ensure that we
2570	 * don't check the dr_override_state until we have returned from
2571	 * dbuf_check_blkptr.
2572	 */
2573	dbuf_check_blkptr(dn, db);
2574
2575	/*
2576	 * If this buffer is in the middle of an immediate write,
2577	 * wait for the synchronous IO to complete.
2578	 */
2579	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
2580		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
2581		cv_wait(&db->db_changed, &db->db_mtx);
2582		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
2583	}
2584
2585	if (db->db_state != DB_NOFILL &&
2586	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2587	    refcount_count(&db->db_holds) > 1 &&
2588	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
2589	    *datap == db->db_buf) {
2590		/*
2591		 * If this buffer is currently "in use" (i.e., there
2592		 * are active holds and db_data still references it),
2593		 * then make a copy before we start the write so that
2594		 * any modifications from the open txg will not leak
2595		 * into this write.
2596		 *
2597		 * NOTE: this copy does not need to be made for
2598		 * objects only modified in the syncing context (e.g.
2599		 * DNONE_DNODE blocks).
2600		 */
2601		int blksz = arc_buf_size(*datap);
2602		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2603		*datap = arc_buf_alloc(os->os_spa, blksz, db, type);
2604		bcopy(db->db.db_data, (*datap)->b_data, blksz);
2605	}
2606	db->db_data_pending = dr;
2607
2608	mutex_exit(&db->db_mtx);
2609
2610	dbuf_write(dr, *datap, tx);
2611
2612	ASSERT(!list_link_active(&dr->dr_dirty_node));
2613	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
2614		list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
2615		DB_DNODE_EXIT(db);
2616	} else {
2617		/*
2618		 * Although zio_nowait() does not "wait for an IO", it does
2619		 * initiate the IO. If this is an empty write it seems plausible
2620		 * that the IO could actually be completed before the nowait
2621		 * returns. We need to DB_DNODE_EXIT() first in case
2622		 * zio_nowait() invalidates the dbuf.
2623		 */
2624		DB_DNODE_EXIT(db);
2625		zio_nowait(dr->dr_zio);
2626	}
2627}
2628
2629void
2630dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
2631{
2632	dbuf_dirty_record_t *dr;
2633
2634	while (dr = list_head(list)) {
2635		if (dr->dr_zio != NULL) {
2636			/*
2637			 * If we find an already initialized zio then we
2638			 * are processing the meta-dnode, and we have finished.
2639			 * The dbufs for all dnodes are put back on the list
2640			 * during processing, so that we can zio_wait()
2641			 * these IOs after initiating all child IOs.
2642			 */
2643			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
2644			    DMU_META_DNODE_OBJECT);
2645			break;
2646		}
2647		if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
2648		    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
2649			VERIFY3U(dr->dr_dbuf->db_level, ==, level);
2650		}
2651		list_remove(list, dr);
2652		if (dr->dr_dbuf->db_level > 0)
2653			dbuf_sync_indirect(dr, tx);
2654		else
2655			dbuf_sync_leaf(dr, tx);
2656	}
2657}
2658
2659/* ARGSUSED */
2660static void
2661dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
2662{
2663	dmu_buf_impl_t *db = vdb;
2664	dnode_t *dn;
2665	blkptr_t *bp = zio->io_bp;
2666	blkptr_t *bp_orig = &zio->io_bp_orig;
2667	spa_t *spa = zio->io_spa;
2668	int64_t delta;
2669	uint64_t fill = 0;
2670	int i;
2671
2672	ASSERT3P(db->db_blkptr, ==, bp);
2673
2674	DB_DNODE_ENTER(db);
2675	dn = DB_DNODE(db);
2676	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
2677	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
2678	zio->io_prev_space_delta = delta;
2679
2680	if (bp->blk_birth != 0) {
2681		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
2682		    BP_GET_TYPE(bp) == dn->dn_type) ||
2683		    (db->db_blkid == DMU_SPILL_BLKID &&
2684		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
2685		    BP_IS_EMBEDDED(bp));
2686		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
2687	}
2688
2689	mutex_enter(&db->db_mtx);
2690
2691#ifdef ZFS_DEBUG
2692	if (db->db_blkid == DMU_SPILL_BLKID) {
2693		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2694		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2695		    db->db_blkptr == &dn->dn_phys->dn_spill);
2696	}
2697#endif
2698
2699	if (db->db_level == 0) {
2700		mutex_enter(&dn->dn_mtx);
2701		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
2702		    db->db_blkid != DMU_SPILL_BLKID)
2703			dn->dn_phys->dn_maxblkid = db->db_blkid;
2704		mutex_exit(&dn->dn_mtx);
2705
2706		if (dn->dn_type == DMU_OT_DNODE) {
2707			dnode_phys_t *dnp = db->db.db_data;
2708			for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
2709			    i--, dnp++) {
2710				if (dnp->dn_type != DMU_OT_NONE)
2711					fill++;
2712			}
2713		} else {
2714			if (BP_IS_HOLE(bp)) {
2715				fill = 0;
2716			} else {
2717				fill = 1;
2718			}
2719		}
2720	} else {
2721		blkptr_t *ibp = db->db.db_data;
2722		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2723		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
2724			if (BP_IS_HOLE(ibp))
2725				continue;
2726			fill += BP_GET_FILL(ibp);
2727		}
2728	}
2729	DB_DNODE_EXIT(db);
2730
2731	if (!BP_IS_EMBEDDED(bp))
2732		bp->blk_fill = fill;
2733
2734	mutex_exit(&db->db_mtx);
2735}
2736
2737/*
2738 * The SPA will call this callback several times for each zio - once
2739 * for every physical child i/o (zio->io_phys_children times).  This
2740 * allows the DMU to monitor the progress of each logical i/o.  For example,
2741 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
2742 * block.  There may be a long delay before all copies/fragments are completed,
2743 * so this callback allows us to retire dirty space gradually, as the physical
2744 * i/os complete.
2745 */
2746/* ARGSUSED */
2747static void
2748dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
2749{
2750	dmu_buf_impl_t *db = arg;
2751	objset_t *os = db->db_objset;
2752	dsl_pool_t *dp = dmu_objset_pool(os);
2753	dbuf_dirty_record_t *dr;
2754	int delta = 0;
2755
2756	dr = db->db_data_pending;
2757	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
2758
2759	/*
2760	 * The callback will be called io_phys_children times.  Retire one
2761	 * portion of our dirty space each time we are called.  Any rounding
2762	 * error will be cleaned up by dsl_pool_sync()'s call to
2763	 * dsl_pool_undirty_space().
2764	 */
2765	delta = dr->dr_accounted / zio->io_phys_children;
2766	dsl_pool_undirty_space(dp, delta, zio->io_txg);
2767}
2768
2769/* ARGSUSED */
2770static void
2771dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
2772{
2773	dmu_buf_impl_t *db = vdb;
2774	blkptr_t *bp_orig = &zio->io_bp_orig;
2775	blkptr_t *bp = db->db_blkptr;
2776	objset_t *os = db->db_objset;
2777	dmu_tx_t *tx = os->os_synctx;
2778	dbuf_dirty_record_t **drp, *dr;
2779
2780	ASSERT0(zio->io_error);
2781	ASSERT(db->db_blkptr == bp);
2782
2783	/*
2784	 * For nopwrites and rewrites we ensure that the bp matches our
2785	 * original and bypass all the accounting.
2786	 */
2787	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
2788		ASSERT(BP_EQUAL(bp, bp_orig));
2789	} else {
2790		dsl_dataset_t *ds = os->os_dsl_dataset;
2791		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
2792		dsl_dataset_block_born(ds, bp, tx);
2793	}
2794
2795	mutex_enter(&db->db_mtx);
2796
2797	DBUF_VERIFY(db);
2798
2799	drp = &db->db_last_dirty;
2800	while ((dr = *drp) != db->db_data_pending)
2801		drp = &dr->dr_next;
2802	ASSERT(!list_link_active(&dr->dr_dirty_node));
2803	ASSERT(dr->dr_dbuf == db);
2804	ASSERT(dr->dr_next == NULL);
2805	*drp = dr->dr_next;
2806
2807#ifdef ZFS_DEBUG
2808	if (db->db_blkid == DMU_SPILL_BLKID) {
2809		dnode_t *dn;
2810
2811		DB_DNODE_ENTER(db);
2812		dn = DB_DNODE(db);
2813		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2814		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2815		    db->db_blkptr == &dn->dn_phys->dn_spill);
2816		DB_DNODE_EXIT(db);
2817	}
2818#endif
2819
2820	if (db->db_level == 0) {
2821		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2822		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
2823		if (db->db_state != DB_NOFILL) {
2824			if (dr->dt.dl.dr_data != db->db_buf)
2825				VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data,
2826				    db));
2827			else if (!arc_released(db->db_buf))
2828				arc_set_callback(db->db_buf, dbuf_do_evict, db);
2829		}
2830	} else {
2831		dnode_t *dn;
2832
2833		DB_DNODE_ENTER(db);
2834		dn = DB_DNODE(db);
2835		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2836		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
2837		if (!BP_IS_HOLE(db->db_blkptr)) {
2838			int epbs =
2839			    dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2840			ASSERT3U(db->db_blkid, <=,
2841			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
2842			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
2843			    db->db.db_size);
2844			if (!arc_released(db->db_buf))
2845				arc_set_callback(db->db_buf, dbuf_do_evict, db);
2846		}
2847		DB_DNODE_EXIT(db);
2848		mutex_destroy(&dr->dt.di.dr_mtx);
2849		list_destroy(&dr->dt.di.dr_children);
2850	}
2851	kmem_free(dr, sizeof (dbuf_dirty_record_t));
2852
2853	cv_broadcast(&db->db_changed);
2854	ASSERT(db->db_dirtycnt > 0);
2855	db->db_dirtycnt -= 1;
2856	db->db_data_pending = NULL;
2857	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
2858}
2859
2860static void
2861dbuf_write_nofill_ready(zio_t *zio)
2862{
2863	dbuf_write_ready(zio, NULL, zio->io_private);
2864}
2865
2866static void
2867dbuf_write_nofill_done(zio_t *zio)
2868{
2869	dbuf_write_done(zio, NULL, zio->io_private);
2870}
2871
2872static void
2873dbuf_write_override_ready(zio_t *zio)
2874{
2875	dbuf_dirty_record_t *dr = zio->io_private;
2876	dmu_buf_impl_t *db = dr->dr_dbuf;
2877
2878	dbuf_write_ready(zio, NULL, db);
2879}
2880
2881static void
2882dbuf_write_override_done(zio_t *zio)
2883{
2884	dbuf_dirty_record_t *dr = zio->io_private;
2885	dmu_buf_impl_t *db = dr->dr_dbuf;
2886	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
2887
2888	mutex_enter(&db->db_mtx);
2889	if (!BP_EQUAL(zio->io_bp, obp)) {
2890		if (!BP_IS_HOLE(obp))
2891			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
2892		arc_release(dr->dt.dl.dr_data, db);
2893	}
2894	mutex_exit(&db->db_mtx);
2895
2896	dbuf_write_done(zio, NULL, db);
2897}
2898
2899/* Issue I/O to commit a dirty buffer to disk. */
2900static void
2901dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
2902{
2903	dmu_buf_impl_t *db = dr->dr_dbuf;
2904	dnode_t *dn;
2905	objset_t *os;
2906	dmu_buf_impl_t *parent = db->db_parent;
2907	uint64_t txg = tx->tx_txg;
2908	zbookmark_phys_t zb;
2909	zio_prop_t zp;
2910	zio_t *zio;
2911	int wp_flag = 0;
2912
2913	DB_DNODE_ENTER(db);
2914	dn = DB_DNODE(db);
2915	os = dn->dn_objset;
2916
2917	if (db->db_state != DB_NOFILL) {
2918		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
2919			/*
2920			 * Private object buffers are released here rather
2921			 * than in dbuf_dirty() since they are only modified
2922			 * in the syncing context and we don't want the
2923			 * overhead of making multiple copies of the data.
2924			 */
2925			if (BP_IS_HOLE(db->db_blkptr)) {
2926				arc_buf_thaw(data);
2927			} else {
2928				dbuf_release_bp(db);
2929			}
2930		}
2931	}
2932
2933	if (parent != dn->dn_dbuf) {
2934		/* Our parent is an indirect block. */
2935		/* We have a dirty parent that has been scheduled for write. */
2936		ASSERT(parent && parent->db_data_pending);
2937		/* Our parent's buffer is one level closer to the dnode. */
2938		ASSERT(db->db_level == parent->db_level-1);
2939		/*
2940		 * We're about to modify our parent's db_data by modifying
2941		 * our block pointer, so the parent must be released.
2942		 */
2943		ASSERT(arc_released(parent->db_buf));
2944		zio = parent->db_data_pending->dr_zio;
2945	} else {
2946		/* Our parent is the dnode itself. */
2947		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
2948		    db->db_blkid != DMU_SPILL_BLKID) ||
2949		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
2950		if (db->db_blkid != DMU_SPILL_BLKID)
2951			ASSERT3P(db->db_blkptr, ==,
2952			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
2953		zio = dn->dn_zio;
2954	}
2955
2956	ASSERT(db->db_level == 0 || data == db->db_buf);
2957	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
2958	ASSERT(zio);
2959
2960	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
2961	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
2962	    db->db.db_object, db->db_level, db->db_blkid);
2963
2964	if (db->db_blkid == DMU_SPILL_BLKID)
2965		wp_flag = WP_SPILL;
2966	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
2967
2968	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
2969	DB_DNODE_EXIT(db);
2970
2971	if (db->db_level == 0 &&
2972	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
2973		/*
2974		 * The BP for this block has been provided by open context
2975		 * (by dmu_sync() or dmu_buf_write_embedded()).
2976		 */
2977		void *contents = (data != NULL) ? data->b_data : NULL;
2978
2979		dr->dr_zio = zio_write(zio, os->os_spa, txg,
2980		    db->db_blkptr, contents, db->db.db_size, &zp,
2981		    dbuf_write_override_ready, NULL, dbuf_write_override_done,
2982		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
2983		mutex_enter(&db->db_mtx);
2984		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
2985		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
2986		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
2987		mutex_exit(&db->db_mtx);
2988	} else if (db->db_state == DB_NOFILL) {
2989		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
2990		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
2991		dr->dr_zio = zio_write(zio, os->os_spa, txg,
2992		    db->db_blkptr, NULL, db->db.db_size, &zp,
2993		    dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db,
2994		    ZIO_PRIORITY_ASYNC_WRITE,
2995		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
2996	} else {
2997		ASSERT(arc_released(data));
2998		dr->dr_zio = arc_write(zio, os->os_spa, txg,
2999		    db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db),
3000		    DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready,
3001		    dbuf_write_physdone, dbuf_write_done, db,
3002		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3003	}
3004}
3005