dbuf.c revision 277586
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 */
28
29#include <sys/zfs_context.h>
30#include <sys/dmu.h>
31#include <sys/dmu_send.h>
32#include <sys/dmu_impl.h>
33#include <sys/dbuf.h>
34#include <sys/dmu_objset.h>
35#include <sys/dsl_dataset.h>
36#include <sys/dsl_dir.h>
37#include <sys/dmu_tx.h>
38#include <sys/spa.h>
39#include <sys/zio.h>
40#include <sys/dmu_zfetch.h>
41#include <sys/sa.h>
42#include <sys/sa_impl.h>
43#include <sys/zfeature.h>
44#include <sys/blkptr.h>
45#include <sys/range_tree.h>
46
47/*
48 * Number of times that zfs_free_range() took the slow path while doing
49 * a zfs receive.  A nonzero value indicates a potential performance problem.
50 */
51uint64_t zfs_free_range_recv_miss;
52
53static void dbuf_destroy(dmu_buf_impl_t *db);
54static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
55static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
56
57/*
58 * Global data structures and functions for the dbuf cache.
59 */
60static kmem_cache_t *dbuf_cache;
61
62/* ARGSUSED */
63static int
64dbuf_cons(void *vdb, void *unused, int kmflag)
65{
66	dmu_buf_impl_t *db = vdb;
67	bzero(db, sizeof (dmu_buf_impl_t));
68
69	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
70	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
71	refcount_create(&db->db_holds);
72
73	return (0);
74}
75
76/* ARGSUSED */
77static void
78dbuf_dest(void *vdb, void *unused)
79{
80	dmu_buf_impl_t *db = vdb;
81	mutex_destroy(&db->db_mtx);
82	cv_destroy(&db->db_changed);
83	refcount_destroy(&db->db_holds);
84}
85
86/*
87 * dbuf hash table routines
88 */
89static dbuf_hash_table_t dbuf_hash_table;
90
91static uint64_t dbuf_hash_count;
92
93static uint64_t
94dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
95{
96	uintptr_t osv = (uintptr_t)os;
97	uint64_t crc = -1ULL;
98
99	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
100	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
101	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
102	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
103	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
104	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
105	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
106
107	crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
108
109	return (crc);
110}
111
112#define	DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid);
113
114#define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
115	((dbuf)->db.db_object == (obj) &&		\
116	(dbuf)->db_objset == (os) &&			\
117	(dbuf)->db_level == (level) &&			\
118	(dbuf)->db_blkid == (blkid))
119
120dmu_buf_impl_t *
121dbuf_find(dnode_t *dn, uint8_t level, uint64_t blkid)
122{
123	dbuf_hash_table_t *h = &dbuf_hash_table;
124	objset_t *os = dn->dn_objset;
125	uint64_t obj = dn->dn_object;
126	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
127	uint64_t idx = hv & h->hash_table_mask;
128	dmu_buf_impl_t *db;
129
130	mutex_enter(DBUF_HASH_MUTEX(h, idx));
131	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
132		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
133			mutex_enter(&db->db_mtx);
134			if (db->db_state != DB_EVICTING) {
135				mutex_exit(DBUF_HASH_MUTEX(h, idx));
136				return (db);
137			}
138			mutex_exit(&db->db_mtx);
139		}
140	}
141	mutex_exit(DBUF_HASH_MUTEX(h, idx));
142	return (NULL);
143}
144
145/*
146 * Insert an entry into the hash table.  If there is already an element
147 * equal to elem in the hash table, then the already existing element
148 * will be returned and the new element will not be inserted.
149 * Otherwise returns NULL.
150 */
151static dmu_buf_impl_t *
152dbuf_hash_insert(dmu_buf_impl_t *db)
153{
154	dbuf_hash_table_t *h = &dbuf_hash_table;
155	objset_t *os = db->db_objset;
156	uint64_t obj = db->db.db_object;
157	int level = db->db_level;
158	uint64_t blkid = db->db_blkid;
159	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
160	uint64_t idx = hv & h->hash_table_mask;
161	dmu_buf_impl_t *dbf;
162
163	mutex_enter(DBUF_HASH_MUTEX(h, idx));
164	for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
165		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
166			mutex_enter(&dbf->db_mtx);
167			if (dbf->db_state != DB_EVICTING) {
168				mutex_exit(DBUF_HASH_MUTEX(h, idx));
169				return (dbf);
170			}
171			mutex_exit(&dbf->db_mtx);
172		}
173	}
174
175	mutex_enter(&db->db_mtx);
176	db->db_hash_next = h->hash_table[idx];
177	h->hash_table[idx] = db;
178	mutex_exit(DBUF_HASH_MUTEX(h, idx));
179	atomic_inc_64(&dbuf_hash_count);
180
181	return (NULL);
182}
183
184/*
185 * Remove an entry from the hash table.  It must be in the EVICTING state.
186 */
187static void
188dbuf_hash_remove(dmu_buf_impl_t *db)
189{
190	dbuf_hash_table_t *h = &dbuf_hash_table;
191	uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object,
192	    db->db_level, db->db_blkid);
193	uint64_t idx = hv & h->hash_table_mask;
194	dmu_buf_impl_t *dbf, **dbp;
195
196	/*
197	 * We musn't hold db_mtx to maintain lock ordering:
198	 * DBUF_HASH_MUTEX > db_mtx.
199	 */
200	ASSERT(refcount_is_zero(&db->db_holds));
201	ASSERT(db->db_state == DB_EVICTING);
202	ASSERT(!MUTEX_HELD(&db->db_mtx));
203
204	mutex_enter(DBUF_HASH_MUTEX(h, idx));
205	dbp = &h->hash_table[idx];
206	while ((dbf = *dbp) != db) {
207		dbp = &dbf->db_hash_next;
208		ASSERT(dbf != NULL);
209	}
210	*dbp = db->db_hash_next;
211	db->db_hash_next = NULL;
212	mutex_exit(DBUF_HASH_MUTEX(h, idx));
213	atomic_dec_64(&dbuf_hash_count);
214}
215
216static arc_evict_func_t dbuf_do_evict;
217
218static void
219dbuf_evict_user(dmu_buf_impl_t *db)
220{
221	ASSERT(MUTEX_HELD(&db->db_mtx));
222
223	if (db->db_level != 0 || db->db_evict_func == NULL)
224		return;
225
226	db->db_evict_func(&db->db, db->db_user_ptr);
227	db->db_user_ptr = NULL;
228	db->db_evict_func = NULL;
229}
230
231boolean_t
232dbuf_is_metadata(dmu_buf_impl_t *db)
233{
234	if (db->db_level > 0) {
235		return (B_TRUE);
236	} else {
237		boolean_t is_metadata;
238
239		DB_DNODE_ENTER(db);
240		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
241		DB_DNODE_EXIT(db);
242
243		return (is_metadata);
244	}
245}
246
247void
248dbuf_evict(dmu_buf_impl_t *db)
249{
250	ASSERT(MUTEX_HELD(&db->db_mtx));
251	ASSERT(db->db_buf == NULL);
252	ASSERT(db->db_data_pending == NULL);
253
254	dbuf_clear(db);
255	dbuf_destroy(db);
256}
257
258void
259dbuf_init(void)
260{
261	uint64_t hsize = 1ULL << 16;
262	dbuf_hash_table_t *h = &dbuf_hash_table;
263	int i;
264
265	/*
266	 * The hash table is big enough to fill all of physical memory
267	 * with an average 4K block size.  The table will take up
268	 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
269	 */
270	while (hsize * 4096 < (uint64_t)physmem * PAGESIZE)
271		hsize <<= 1;
272
273retry:
274	h->hash_table_mask = hsize - 1;
275	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
276	if (h->hash_table == NULL) {
277		/* XXX - we should really return an error instead of assert */
278		ASSERT(hsize > (1ULL << 10));
279		hsize >>= 1;
280		goto retry;
281	}
282
283	dbuf_cache = kmem_cache_create("dmu_buf_impl_t",
284	    sizeof (dmu_buf_impl_t),
285	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
286
287	for (i = 0; i < DBUF_MUTEXES; i++)
288		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
289}
290
291void
292dbuf_fini(void)
293{
294	dbuf_hash_table_t *h = &dbuf_hash_table;
295	int i;
296
297	for (i = 0; i < DBUF_MUTEXES; i++)
298		mutex_destroy(&h->hash_mutexes[i]);
299	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
300	kmem_cache_destroy(dbuf_cache);
301}
302
303/*
304 * Other stuff.
305 */
306
307#ifdef ZFS_DEBUG
308static void
309dbuf_verify(dmu_buf_impl_t *db)
310{
311	dnode_t *dn;
312	dbuf_dirty_record_t *dr;
313
314	ASSERT(MUTEX_HELD(&db->db_mtx));
315
316	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
317		return;
318
319	ASSERT(db->db_objset != NULL);
320	DB_DNODE_ENTER(db);
321	dn = DB_DNODE(db);
322	if (dn == NULL) {
323		ASSERT(db->db_parent == NULL);
324		ASSERT(db->db_blkptr == NULL);
325	} else {
326		ASSERT3U(db->db.db_object, ==, dn->dn_object);
327		ASSERT3P(db->db_objset, ==, dn->dn_objset);
328		ASSERT3U(db->db_level, <, dn->dn_nlevels);
329		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
330		    db->db_blkid == DMU_SPILL_BLKID ||
331		    !avl_is_empty(&dn->dn_dbufs));
332	}
333	if (db->db_blkid == DMU_BONUS_BLKID) {
334		ASSERT(dn != NULL);
335		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
336		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
337	} else if (db->db_blkid == DMU_SPILL_BLKID) {
338		ASSERT(dn != NULL);
339		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
340		ASSERT0(db->db.db_offset);
341	} else {
342		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
343	}
344
345	for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
346		ASSERT(dr->dr_dbuf == db);
347
348	for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
349		ASSERT(dr->dr_dbuf == db);
350
351	/*
352	 * We can't assert that db_size matches dn_datablksz because it
353	 * can be momentarily different when another thread is doing
354	 * dnode_set_blksz().
355	 */
356	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
357		dr = db->db_data_pending;
358		/*
359		 * It should only be modified in syncing context, so
360		 * make sure we only have one copy of the data.
361		 */
362		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
363	}
364
365	/* verify db->db_blkptr */
366	if (db->db_blkptr) {
367		if (db->db_parent == dn->dn_dbuf) {
368			/* db is pointed to by the dnode */
369			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
370			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
371				ASSERT(db->db_parent == NULL);
372			else
373				ASSERT(db->db_parent != NULL);
374			if (db->db_blkid != DMU_SPILL_BLKID)
375				ASSERT3P(db->db_blkptr, ==,
376				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
377		} else {
378			/* db is pointed to by an indirect block */
379			int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
380			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
381			ASSERT3U(db->db_parent->db.db_object, ==,
382			    db->db.db_object);
383			/*
384			 * dnode_grow_indblksz() can make this fail if we don't
385			 * have the struct_rwlock.  XXX indblksz no longer
386			 * grows.  safe to do this now?
387			 */
388			if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
389				ASSERT3P(db->db_blkptr, ==,
390				    ((blkptr_t *)db->db_parent->db.db_data +
391				    db->db_blkid % epb));
392			}
393		}
394	}
395	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
396	    (db->db_buf == NULL || db->db_buf->b_data) &&
397	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
398	    db->db_state != DB_FILL && !dn->dn_free_txg) {
399		/*
400		 * If the blkptr isn't set but they have nonzero data,
401		 * it had better be dirty, otherwise we'll lose that
402		 * data when we evict this buffer.
403		 */
404		if (db->db_dirtycnt == 0) {
405			uint64_t *buf = db->db.db_data;
406			int i;
407
408			for (i = 0; i < db->db.db_size >> 3; i++) {
409				ASSERT(buf[i] == 0);
410			}
411		}
412	}
413	DB_DNODE_EXIT(db);
414}
415#endif
416
417static void
418dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
419{
420	ASSERT(MUTEX_HELD(&db->db_mtx));
421	db->db_buf = buf;
422	if (buf != NULL) {
423		ASSERT(buf->b_data != NULL);
424		db->db.db_data = buf->b_data;
425		if (!arc_released(buf))
426			arc_set_callback(buf, dbuf_do_evict, db);
427	} else {
428		dbuf_evict_user(db);
429		db->db.db_data = NULL;
430		if (db->db_state != DB_NOFILL)
431			db->db_state = DB_UNCACHED;
432	}
433}
434
435/*
436 * Loan out an arc_buf for read.  Return the loaned arc_buf.
437 */
438arc_buf_t *
439dbuf_loan_arcbuf(dmu_buf_impl_t *db)
440{
441	arc_buf_t *abuf;
442
443	mutex_enter(&db->db_mtx);
444	if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
445		int blksz = db->db.db_size;
446		spa_t *spa = db->db_objset->os_spa;
447
448		mutex_exit(&db->db_mtx);
449		abuf = arc_loan_buf(spa, blksz);
450		bcopy(db->db.db_data, abuf->b_data, blksz);
451	} else {
452		abuf = db->db_buf;
453		arc_loan_inuse_buf(abuf, db);
454		dbuf_set_data(db, NULL);
455		mutex_exit(&db->db_mtx);
456	}
457	return (abuf);
458}
459
460uint64_t
461dbuf_whichblock(dnode_t *dn, uint64_t offset)
462{
463	if (dn->dn_datablkshift) {
464		return (offset >> dn->dn_datablkshift);
465	} else {
466		ASSERT3U(offset, <, dn->dn_datablksz);
467		return (0);
468	}
469}
470
471static void
472dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
473{
474	dmu_buf_impl_t *db = vdb;
475
476	mutex_enter(&db->db_mtx);
477	ASSERT3U(db->db_state, ==, DB_READ);
478	/*
479	 * All reads are synchronous, so we must have a hold on the dbuf
480	 */
481	ASSERT(refcount_count(&db->db_holds) > 0);
482	ASSERT(db->db_buf == NULL);
483	ASSERT(db->db.db_data == NULL);
484	if (db->db_level == 0 && db->db_freed_in_flight) {
485		/* we were freed in flight; disregard any error */
486		arc_release(buf, db);
487		bzero(buf->b_data, db->db.db_size);
488		arc_buf_freeze(buf);
489		db->db_freed_in_flight = FALSE;
490		dbuf_set_data(db, buf);
491		db->db_state = DB_CACHED;
492	} else if (zio == NULL || zio->io_error == 0) {
493		dbuf_set_data(db, buf);
494		db->db_state = DB_CACHED;
495	} else {
496		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
497		ASSERT3P(db->db_buf, ==, NULL);
498		VERIFY(arc_buf_remove_ref(buf, db));
499		db->db_state = DB_UNCACHED;
500	}
501	cv_broadcast(&db->db_changed);
502	dbuf_rele_and_unlock(db, NULL);
503}
504
505static void
506dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags)
507{
508	dnode_t *dn;
509	zbookmark_phys_t zb;
510	arc_flags_t aflags = ARC_FLAG_NOWAIT;
511
512	DB_DNODE_ENTER(db);
513	dn = DB_DNODE(db);
514	ASSERT(!refcount_is_zero(&db->db_holds));
515	/* We need the struct_rwlock to prevent db_blkptr from changing. */
516	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
517	ASSERT(MUTEX_HELD(&db->db_mtx));
518	ASSERT(db->db_state == DB_UNCACHED);
519	ASSERT(db->db_buf == NULL);
520
521	if (db->db_blkid == DMU_BONUS_BLKID) {
522		int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
523
524		ASSERT3U(bonuslen, <=, db->db.db_size);
525		db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
526		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
527		if (bonuslen < DN_MAX_BONUSLEN)
528			bzero(db->db.db_data, DN_MAX_BONUSLEN);
529		if (bonuslen)
530			bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
531		DB_DNODE_EXIT(db);
532		db->db_state = DB_CACHED;
533		mutex_exit(&db->db_mtx);
534		return;
535	}
536
537	/*
538	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
539	 * processes the delete record and clears the bp while we are waiting
540	 * for the dn_mtx (resulting in a "no" from block_freed).
541	 */
542	if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
543	    (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
544	    BP_IS_HOLE(db->db_blkptr)))) {
545		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
546
547		DB_DNODE_EXIT(db);
548		dbuf_set_data(db, arc_buf_alloc(db->db_objset->os_spa,
549		    db->db.db_size, db, type));
550		bzero(db->db.db_data, db->db.db_size);
551		db->db_state = DB_CACHED;
552		*flags |= DB_RF_CACHED;
553		mutex_exit(&db->db_mtx);
554		return;
555	}
556
557	DB_DNODE_EXIT(db);
558
559	db->db_state = DB_READ;
560	mutex_exit(&db->db_mtx);
561
562	if (DBUF_IS_L2CACHEABLE(db))
563		aflags |= ARC_FLAG_L2CACHE;
564	if (DBUF_IS_L2COMPRESSIBLE(db))
565		aflags |= ARC_FLAG_L2COMPRESS;
566
567	SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
568	    db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
569	    db->db.db_object, db->db_level, db->db_blkid);
570
571	dbuf_add_ref(db, NULL);
572
573	(void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
574	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
575	    (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
576	    &aflags, &zb);
577	if (aflags & ARC_FLAG_CACHED)
578		*flags |= DB_RF_CACHED;
579}
580
581int
582dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
583{
584	int err = 0;
585	boolean_t havepzio = (zio != NULL);
586	boolean_t prefetch;
587	dnode_t *dn;
588
589	/*
590	 * We don't have to hold the mutex to check db_state because it
591	 * can't be freed while we have a hold on the buffer.
592	 */
593	ASSERT(!refcount_is_zero(&db->db_holds));
594
595	if (db->db_state == DB_NOFILL)
596		return (SET_ERROR(EIO));
597
598	DB_DNODE_ENTER(db);
599	dn = DB_DNODE(db);
600	if ((flags & DB_RF_HAVESTRUCT) == 0)
601		rw_enter(&dn->dn_struct_rwlock, RW_READER);
602
603	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
604	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
605	    DBUF_IS_CACHEABLE(db);
606
607	mutex_enter(&db->db_mtx);
608	if (db->db_state == DB_CACHED) {
609		mutex_exit(&db->db_mtx);
610		if (prefetch)
611			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
612			    db->db.db_size, TRUE);
613		if ((flags & DB_RF_HAVESTRUCT) == 0)
614			rw_exit(&dn->dn_struct_rwlock);
615		DB_DNODE_EXIT(db);
616	} else if (db->db_state == DB_UNCACHED) {
617		spa_t *spa = dn->dn_objset->os_spa;
618
619		if (zio == NULL)
620			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
621		dbuf_read_impl(db, zio, &flags);
622
623		/* dbuf_read_impl has dropped db_mtx for us */
624
625		if (prefetch)
626			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
627			    db->db.db_size, flags & DB_RF_CACHED);
628
629		if ((flags & DB_RF_HAVESTRUCT) == 0)
630			rw_exit(&dn->dn_struct_rwlock);
631		DB_DNODE_EXIT(db);
632
633		if (!havepzio)
634			err = zio_wait(zio);
635	} else {
636		/*
637		 * Another reader came in while the dbuf was in flight
638		 * between UNCACHED and CACHED.  Either a writer will finish
639		 * writing the buffer (sending the dbuf to CACHED) or the
640		 * first reader's request will reach the read_done callback
641		 * and send the dbuf to CACHED.  Otherwise, a failure
642		 * occurred and the dbuf went to UNCACHED.
643		 */
644		mutex_exit(&db->db_mtx);
645		if (prefetch)
646			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
647			    db->db.db_size, TRUE);
648		if ((flags & DB_RF_HAVESTRUCT) == 0)
649			rw_exit(&dn->dn_struct_rwlock);
650		DB_DNODE_EXIT(db);
651
652		/* Skip the wait per the caller's request. */
653		mutex_enter(&db->db_mtx);
654		if ((flags & DB_RF_NEVERWAIT) == 0) {
655			while (db->db_state == DB_READ ||
656			    db->db_state == DB_FILL) {
657				ASSERT(db->db_state == DB_READ ||
658				    (flags & DB_RF_HAVESTRUCT) == 0);
659				DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
660				    db, zio_t *, zio);
661				cv_wait(&db->db_changed, &db->db_mtx);
662			}
663			if (db->db_state == DB_UNCACHED)
664				err = SET_ERROR(EIO);
665		}
666		mutex_exit(&db->db_mtx);
667	}
668
669	ASSERT(err || havepzio || db->db_state == DB_CACHED);
670	return (err);
671}
672
673static void
674dbuf_noread(dmu_buf_impl_t *db)
675{
676	ASSERT(!refcount_is_zero(&db->db_holds));
677	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
678	mutex_enter(&db->db_mtx);
679	while (db->db_state == DB_READ || db->db_state == DB_FILL)
680		cv_wait(&db->db_changed, &db->db_mtx);
681	if (db->db_state == DB_UNCACHED) {
682		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
683		spa_t *spa = db->db_objset->os_spa;
684
685		ASSERT(db->db_buf == NULL);
686		ASSERT(db->db.db_data == NULL);
687		dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type));
688		db->db_state = DB_FILL;
689	} else if (db->db_state == DB_NOFILL) {
690		dbuf_set_data(db, NULL);
691	} else {
692		ASSERT3U(db->db_state, ==, DB_CACHED);
693	}
694	mutex_exit(&db->db_mtx);
695}
696
697/*
698 * This is our just-in-time copy function.  It makes a copy of
699 * buffers, that have been modified in a previous transaction
700 * group, before we modify them in the current active group.
701 *
702 * This function is used in two places: when we are dirtying a
703 * buffer for the first time in a txg, and when we are freeing
704 * a range in a dnode that includes this buffer.
705 *
706 * Note that when we are called from dbuf_free_range() we do
707 * not put a hold on the buffer, we just traverse the active
708 * dbuf list for the dnode.
709 */
710static void
711dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
712{
713	dbuf_dirty_record_t *dr = db->db_last_dirty;
714
715	ASSERT(MUTEX_HELD(&db->db_mtx));
716	ASSERT(db->db.db_data != NULL);
717	ASSERT(db->db_level == 0);
718	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
719
720	if (dr == NULL ||
721	    (dr->dt.dl.dr_data !=
722	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
723		return;
724
725	/*
726	 * If the last dirty record for this dbuf has not yet synced
727	 * and its referencing the dbuf data, either:
728	 *	reset the reference to point to a new copy,
729	 * or (if there a no active holders)
730	 *	just null out the current db_data pointer.
731	 */
732	ASSERT(dr->dr_txg >= txg - 2);
733	if (db->db_blkid == DMU_BONUS_BLKID) {
734		/* Note that the data bufs here are zio_bufs */
735		dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
736		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
737		bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
738	} else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
739		int size = db->db.db_size;
740		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
741		spa_t *spa = db->db_objset->os_spa;
742
743		dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type);
744		bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
745	} else {
746		dbuf_set_data(db, NULL);
747	}
748}
749
750void
751dbuf_unoverride(dbuf_dirty_record_t *dr)
752{
753	dmu_buf_impl_t *db = dr->dr_dbuf;
754	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
755	uint64_t txg = dr->dr_txg;
756
757	ASSERT(MUTEX_HELD(&db->db_mtx));
758	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
759	ASSERT(db->db_level == 0);
760
761	if (db->db_blkid == DMU_BONUS_BLKID ||
762	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
763		return;
764
765	ASSERT(db->db_data_pending != dr);
766
767	/* free this block */
768	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
769		zio_free(db->db_objset->os_spa, txg, bp);
770
771	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
772	dr->dt.dl.dr_nopwrite = B_FALSE;
773
774	/*
775	 * Release the already-written buffer, so we leave it in
776	 * a consistent dirty state.  Note that all callers are
777	 * modifying the buffer, so they will immediately do
778	 * another (redundant) arc_release().  Therefore, leave
779	 * the buf thawed to save the effort of freezing &
780	 * immediately re-thawing it.
781	 */
782	arc_release(dr->dt.dl.dr_data, db);
783}
784
785/*
786 * Evict (if its unreferenced) or clear (if its referenced) any level-0
787 * data blocks in the free range, so that any future readers will find
788 * empty blocks.
789 *
790 * This is a no-op if the dataset is in the middle of an incremental
791 * receive; see comment below for details.
792 */
793void
794dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
795    dmu_tx_t *tx)
796{
797	dmu_buf_impl_t *db, *db_next, db_search;
798	uint64_t txg = tx->tx_txg;
799	avl_index_t where;
800
801	if (end_blkid > dn->dn_maxblkid && (end_blkid != DMU_SPILL_BLKID))
802		end_blkid = dn->dn_maxblkid;
803	dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
804
805	db_search.db_level = 0;
806	db_search.db_blkid = start_blkid;
807	db_search.db_state = DB_SEARCH;
808
809	mutex_enter(&dn->dn_dbufs_mtx);
810	if (start_blkid >= dn->dn_unlisted_l0_blkid) {
811		/* There can't be any dbufs in this range; no need to search. */
812#ifdef DEBUG
813		db = avl_find(&dn->dn_dbufs, &db_search, &where);
814		ASSERT3P(db, ==, NULL);
815		db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
816		ASSERT(db == NULL || db->db_level > 0);
817#endif
818		mutex_exit(&dn->dn_dbufs_mtx);
819		return;
820	} else if (dmu_objset_is_receiving(dn->dn_objset)) {
821		/*
822		 * If we are receiving, we expect there to be no dbufs in
823		 * the range to be freed, because receive modifies each
824		 * block at most once, and in offset order.  If this is
825		 * not the case, it can lead to performance problems,
826		 * so note that we unexpectedly took the slow path.
827		 */
828		atomic_inc_64(&zfs_free_range_recv_miss);
829	}
830
831	db = avl_find(&dn->dn_dbufs, &db_search, &where);
832	ASSERT3P(db, ==, NULL);
833	db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
834
835	for (; db != NULL; db = db_next) {
836		db_next = AVL_NEXT(&dn->dn_dbufs, db);
837		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
838
839		if (db->db_level != 0 || db->db_blkid > end_blkid) {
840			break;
841		}
842		ASSERT3U(db->db_blkid, >=, start_blkid);
843
844		/* found a level 0 buffer in the range */
845		mutex_enter(&db->db_mtx);
846		if (dbuf_undirty(db, tx)) {
847			/* mutex has been dropped and dbuf destroyed */
848			continue;
849		}
850
851		if (db->db_state == DB_UNCACHED ||
852		    db->db_state == DB_NOFILL ||
853		    db->db_state == DB_EVICTING) {
854			ASSERT(db->db.db_data == NULL);
855			mutex_exit(&db->db_mtx);
856			continue;
857		}
858		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
859			/* will be handled in dbuf_read_done or dbuf_rele */
860			db->db_freed_in_flight = TRUE;
861			mutex_exit(&db->db_mtx);
862			continue;
863		}
864		if (refcount_count(&db->db_holds) == 0) {
865			ASSERT(db->db_buf);
866			dbuf_clear(db);
867			continue;
868		}
869		/* The dbuf is referenced */
870
871		if (db->db_last_dirty != NULL) {
872			dbuf_dirty_record_t *dr = db->db_last_dirty;
873
874			if (dr->dr_txg == txg) {
875				/*
876				 * This buffer is "in-use", re-adjust the file
877				 * size to reflect that this buffer may
878				 * contain new data when we sync.
879				 */
880				if (db->db_blkid != DMU_SPILL_BLKID &&
881				    db->db_blkid > dn->dn_maxblkid)
882					dn->dn_maxblkid = db->db_blkid;
883				dbuf_unoverride(dr);
884			} else {
885				/*
886				 * This dbuf is not dirty in the open context.
887				 * Either uncache it (if its not referenced in
888				 * the open context) or reset its contents to
889				 * empty.
890				 */
891				dbuf_fix_old_data(db, txg);
892			}
893		}
894		/* clear the contents if its cached */
895		if (db->db_state == DB_CACHED) {
896			ASSERT(db->db.db_data != NULL);
897			arc_release(db->db_buf, db);
898			bzero(db->db.db_data, db->db.db_size);
899			arc_buf_freeze(db->db_buf);
900		}
901
902		mutex_exit(&db->db_mtx);
903	}
904	mutex_exit(&dn->dn_dbufs_mtx);
905}
906
907static int
908dbuf_block_freeable(dmu_buf_impl_t *db)
909{
910	dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
911	uint64_t birth_txg = 0;
912
913	/*
914	 * We don't need any locking to protect db_blkptr:
915	 * If it's syncing, then db_last_dirty will be set
916	 * so we'll ignore db_blkptr.
917	 *
918	 * This logic ensures that only block births for
919	 * filled blocks are considered.
920	 */
921	ASSERT(MUTEX_HELD(&db->db_mtx));
922	if (db->db_last_dirty && (db->db_blkptr == NULL ||
923	    !BP_IS_HOLE(db->db_blkptr))) {
924		birth_txg = db->db_last_dirty->dr_txg;
925	} else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
926		birth_txg = db->db_blkptr->blk_birth;
927	}
928
929	/*
930	 * If this block don't exist or is in a snapshot, it can't be freed.
931	 * Don't pass the bp to dsl_dataset_block_freeable() since we
932	 * are holding the db_mtx lock and might deadlock if we are
933	 * prefetching a dedup-ed block.
934	 */
935	if (birth_txg != 0)
936		return (ds == NULL ||
937		    dsl_dataset_block_freeable(ds, NULL, birth_txg));
938	else
939		return (B_FALSE);
940}
941
942void
943dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
944{
945	arc_buf_t *buf, *obuf;
946	int osize = db->db.db_size;
947	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
948	dnode_t *dn;
949
950	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
951
952	DB_DNODE_ENTER(db);
953	dn = DB_DNODE(db);
954
955	/* XXX does *this* func really need the lock? */
956	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
957
958	/*
959	 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
960	 * is OK, because there can be no other references to the db
961	 * when we are changing its size, so no concurrent DB_FILL can
962	 * be happening.
963	 */
964	/*
965	 * XXX we should be doing a dbuf_read, checking the return
966	 * value and returning that up to our callers
967	 */
968	dmu_buf_will_dirty(&db->db, tx);
969
970	/* create the data buffer for the new block */
971	buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type);
972
973	/* copy old block data to the new block */
974	obuf = db->db_buf;
975	bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
976	/* zero the remainder */
977	if (size > osize)
978		bzero((uint8_t *)buf->b_data + osize, size - osize);
979
980	mutex_enter(&db->db_mtx);
981	dbuf_set_data(db, buf);
982	VERIFY(arc_buf_remove_ref(obuf, db));
983	db->db.db_size = size;
984
985	if (db->db_level == 0) {
986		ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
987		db->db_last_dirty->dt.dl.dr_data = buf;
988	}
989	mutex_exit(&db->db_mtx);
990
991	dnode_willuse_space(dn, size-osize, tx);
992	DB_DNODE_EXIT(db);
993}
994
995void
996dbuf_release_bp(dmu_buf_impl_t *db)
997{
998	objset_t *os = db->db_objset;
999
1000	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1001	ASSERT(arc_released(os->os_phys_buf) ||
1002	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
1003	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1004
1005	(void) arc_release(db->db_buf, db);
1006}
1007
1008dbuf_dirty_record_t *
1009dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1010{
1011	dnode_t *dn;
1012	objset_t *os;
1013	dbuf_dirty_record_t **drp, *dr;
1014	int drop_struct_lock = FALSE;
1015	boolean_t do_free_accounting = B_FALSE;
1016	int txgoff = tx->tx_txg & TXG_MASK;
1017
1018	ASSERT(tx->tx_txg != 0);
1019	ASSERT(!refcount_is_zero(&db->db_holds));
1020	DMU_TX_DIRTY_BUF(tx, db);
1021
1022	DB_DNODE_ENTER(db);
1023	dn = DB_DNODE(db);
1024	/*
1025	 * Shouldn't dirty a regular buffer in syncing context.  Private
1026	 * objects may be dirtied in syncing context, but only if they
1027	 * were already pre-dirtied in open context.
1028	 */
1029	ASSERT(!dmu_tx_is_syncing(tx) ||
1030	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1031	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1032	    dn->dn_objset->os_dsl_dataset == NULL);
1033	/*
1034	 * We make this assert for private objects as well, but after we
1035	 * check if we're already dirty.  They are allowed to re-dirty
1036	 * in syncing context.
1037	 */
1038	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1039	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1040	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1041
1042	mutex_enter(&db->db_mtx);
1043	/*
1044	 * XXX make this true for indirects too?  The problem is that
1045	 * transactions created with dmu_tx_create_assigned() from
1046	 * syncing context don't bother holding ahead.
1047	 */
1048	ASSERT(db->db_level != 0 ||
1049	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1050	    db->db_state == DB_NOFILL);
1051
1052	mutex_enter(&dn->dn_mtx);
1053	/*
1054	 * Don't set dirtyctx to SYNC if we're just modifying this as we
1055	 * initialize the objset.
1056	 */
1057	if (dn->dn_dirtyctx == DN_UNDIRTIED &&
1058	    !BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1059		dn->dn_dirtyctx =
1060		    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1061		ASSERT(dn->dn_dirtyctx_firstset == NULL);
1062		dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1063	}
1064	mutex_exit(&dn->dn_mtx);
1065
1066	if (db->db_blkid == DMU_SPILL_BLKID)
1067		dn->dn_have_spill = B_TRUE;
1068
1069	/*
1070	 * If this buffer is already dirty, we're done.
1071	 */
1072	drp = &db->db_last_dirty;
1073	ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1074	    db->db.db_object == DMU_META_DNODE_OBJECT);
1075	while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1076		drp = &dr->dr_next;
1077	if (dr && dr->dr_txg == tx->tx_txg) {
1078		DB_DNODE_EXIT(db);
1079
1080		if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1081			/*
1082			 * If this buffer has already been written out,
1083			 * we now need to reset its state.
1084			 */
1085			dbuf_unoverride(dr);
1086			if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1087			    db->db_state != DB_NOFILL)
1088				arc_buf_thaw(db->db_buf);
1089		}
1090		mutex_exit(&db->db_mtx);
1091		return (dr);
1092	}
1093
1094	/*
1095	 * Only valid if not already dirty.
1096	 */
1097	ASSERT(dn->dn_object == 0 ||
1098	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1099	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1100
1101	ASSERT3U(dn->dn_nlevels, >, db->db_level);
1102	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1103	    dn->dn_phys->dn_nlevels > db->db_level ||
1104	    dn->dn_next_nlevels[txgoff] > db->db_level ||
1105	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1106	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1107
1108	/*
1109	 * We should only be dirtying in syncing context if it's the
1110	 * mos or we're initializing the os or it's a special object.
1111	 * However, we are allowed to dirty in syncing context provided
1112	 * we already dirtied it in open context.  Hence we must make
1113	 * this assertion only if we're not already dirty.
1114	 */
1115	os = dn->dn_objset;
1116	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1117	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1118	ASSERT(db->db.db_size != 0);
1119
1120	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1121
1122	if (db->db_blkid != DMU_BONUS_BLKID) {
1123		/*
1124		 * Update the accounting.
1125		 * Note: we delay "free accounting" until after we drop
1126		 * the db_mtx.  This keeps us from grabbing other locks
1127		 * (and possibly deadlocking) in bp_get_dsize() while
1128		 * also holding the db_mtx.
1129		 */
1130		dnode_willuse_space(dn, db->db.db_size, tx);
1131		do_free_accounting = dbuf_block_freeable(db);
1132	}
1133
1134	/*
1135	 * If this buffer is dirty in an old transaction group we need
1136	 * to make a copy of it so that the changes we make in this
1137	 * transaction group won't leak out when we sync the older txg.
1138	 */
1139	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1140	if (db->db_level == 0) {
1141		void *data_old = db->db_buf;
1142
1143		if (db->db_state != DB_NOFILL) {
1144			if (db->db_blkid == DMU_BONUS_BLKID) {
1145				dbuf_fix_old_data(db, tx->tx_txg);
1146				data_old = db->db.db_data;
1147			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1148				/*
1149				 * Release the data buffer from the cache so
1150				 * that we can modify it without impacting
1151				 * possible other users of this cached data
1152				 * block.  Note that indirect blocks and
1153				 * private objects are not released until the
1154				 * syncing state (since they are only modified
1155				 * then).
1156				 */
1157				arc_release(db->db_buf, db);
1158				dbuf_fix_old_data(db, tx->tx_txg);
1159				data_old = db->db_buf;
1160			}
1161			ASSERT(data_old != NULL);
1162		}
1163		dr->dt.dl.dr_data = data_old;
1164	} else {
1165		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1166		list_create(&dr->dt.di.dr_children,
1167		    sizeof (dbuf_dirty_record_t),
1168		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
1169	}
1170	if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1171		dr->dr_accounted = db->db.db_size;
1172	dr->dr_dbuf = db;
1173	dr->dr_txg = tx->tx_txg;
1174	dr->dr_next = *drp;
1175	*drp = dr;
1176
1177	/*
1178	 * We could have been freed_in_flight between the dbuf_noread
1179	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
1180	 * happened after the free.
1181	 */
1182	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1183	    db->db_blkid != DMU_SPILL_BLKID) {
1184		mutex_enter(&dn->dn_mtx);
1185		if (dn->dn_free_ranges[txgoff] != NULL) {
1186			range_tree_clear(dn->dn_free_ranges[txgoff],
1187			    db->db_blkid, 1);
1188		}
1189		mutex_exit(&dn->dn_mtx);
1190		db->db_freed_in_flight = FALSE;
1191	}
1192
1193	/*
1194	 * This buffer is now part of this txg
1195	 */
1196	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1197	db->db_dirtycnt += 1;
1198	ASSERT3U(db->db_dirtycnt, <=, 3);
1199
1200	mutex_exit(&db->db_mtx);
1201
1202	if (db->db_blkid == DMU_BONUS_BLKID ||
1203	    db->db_blkid == DMU_SPILL_BLKID) {
1204		mutex_enter(&dn->dn_mtx);
1205		ASSERT(!list_link_active(&dr->dr_dirty_node));
1206		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1207		mutex_exit(&dn->dn_mtx);
1208		dnode_setdirty(dn, tx);
1209		DB_DNODE_EXIT(db);
1210		return (dr);
1211	} else if (do_free_accounting) {
1212		blkptr_t *bp = db->db_blkptr;
1213		int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
1214		    bp_get_dsize(os->os_spa, bp) : db->db.db_size;
1215		/*
1216		 * This is only a guess -- if the dbuf is dirty
1217		 * in a previous txg, we don't know how much
1218		 * space it will use on disk yet.  We should
1219		 * really have the struct_rwlock to access
1220		 * db_blkptr, but since this is just a guess,
1221		 * it's OK if we get an odd answer.
1222		 */
1223		ddt_prefetch(os->os_spa, bp);
1224		dnode_willuse_space(dn, -willfree, tx);
1225	}
1226
1227	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1228		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1229		drop_struct_lock = TRUE;
1230	}
1231
1232	if (db->db_level == 0) {
1233		dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1234		ASSERT(dn->dn_maxblkid >= db->db_blkid);
1235	}
1236
1237	if (db->db_level+1 < dn->dn_nlevels) {
1238		dmu_buf_impl_t *parent = db->db_parent;
1239		dbuf_dirty_record_t *di;
1240		int parent_held = FALSE;
1241
1242		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1243			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1244
1245			parent = dbuf_hold_level(dn, db->db_level+1,
1246			    db->db_blkid >> epbs, FTAG);
1247			ASSERT(parent != NULL);
1248			parent_held = TRUE;
1249		}
1250		if (drop_struct_lock)
1251			rw_exit(&dn->dn_struct_rwlock);
1252		ASSERT3U(db->db_level+1, ==, parent->db_level);
1253		di = dbuf_dirty(parent, tx);
1254		if (parent_held)
1255			dbuf_rele(parent, FTAG);
1256
1257		mutex_enter(&db->db_mtx);
1258		/*
1259		 * Since we've dropped the mutex, it's possible that
1260		 * dbuf_undirty() might have changed this out from under us.
1261		 */
1262		if (db->db_last_dirty == dr ||
1263		    dn->dn_object == DMU_META_DNODE_OBJECT) {
1264			mutex_enter(&di->dt.di.dr_mtx);
1265			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1266			ASSERT(!list_link_active(&dr->dr_dirty_node));
1267			list_insert_tail(&di->dt.di.dr_children, dr);
1268			mutex_exit(&di->dt.di.dr_mtx);
1269			dr->dr_parent = di;
1270		}
1271		mutex_exit(&db->db_mtx);
1272	} else {
1273		ASSERT(db->db_level+1 == dn->dn_nlevels);
1274		ASSERT(db->db_blkid < dn->dn_nblkptr);
1275		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1276		mutex_enter(&dn->dn_mtx);
1277		ASSERT(!list_link_active(&dr->dr_dirty_node));
1278		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1279		mutex_exit(&dn->dn_mtx);
1280		if (drop_struct_lock)
1281			rw_exit(&dn->dn_struct_rwlock);
1282	}
1283
1284	dnode_setdirty(dn, tx);
1285	DB_DNODE_EXIT(db);
1286	return (dr);
1287}
1288
1289/*
1290 * Undirty a buffer in the transaction group referenced by the given
1291 * transaction.  Return whether this evicted the dbuf.
1292 */
1293static boolean_t
1294dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1295{
1296	dnode_t *dn;
1297	uint64_t txg = tx->tx_txg;
1298	dbuf_dirty_record_t *dr, **drp;
1299
1300	ASSERT(txg != 0);
1301	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1302	ASSERT0(db->db_level);
1303	ASSERT(MUTEX_HELD(&db->db_mtx));
1304
1305	/*
1306	 * If this buffer is not dirty, we're done.
1307	 */
1308	for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1309		if (dr->dr_txg <= txg)
1310			break;
1311	if (dr == NULL || dr->dr_txg < txg)
1312		return (B_FALSE);
1313	ASSERT(dr->dr_txg == txg);
1314	ASSERT(dr->dr_dbuf == db);
1315
1316	DB_DNODE_ENTER(db);
1317	dn = DB_DNODE(db);
1318
1319	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1320
1321	ASSERT(db->db.db_size != 0);
1322
1323	/*
1324	 * Any space we accounted for in dp_dirty_* will be cleaned up by
1325	 * dsl_pool_sync().  This is relatively rare so the discrepancy
1326	 * is not a big deal.
1327	 */
1328
1329	*drp = dr->dr_next;
1330
1331	/*
1332	 * Note that there are three places in dbuf_dirty()
1333	 * where this dirty record may be put on a list.
1334	 * Make sure to do a list_remove corresponding to
1335	 * every one of those list_insert calls.
1336	 */
1337	if (dr->dr_parent) {
1338		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1339		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1340		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1341	} else if (db->db_blkid == DMU_SPILL_BLKID ||
1342	    db->db_level+1 == dn->dn_nlevels) {
1343		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1344		mutex_enter(&dn->dn_mtx);
1345		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1346		mutex_exit(&dn->dn_mtx);
1347	}
1348	DB_DNODE_EXIT(db);
1349
1350	if (db->db_state != DB_NOFILL) {
1351		dbuf_unoverride(dr);
1352
1353		ASSERT(db->db_buf != NULL);
1354		ASSERT(dr->dt.dl.dr_data != NULL);
1355		if (dr->dt.dl.dr_data != db->db_buf)
1356			VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db));
1357	}
1358
1359	if (db->db_level != 0) {
1360		mutex_destroy(&dr->dt.di.dr_mtx);
1361		list_destroy(&dr->dt.di.dr_children);
1362	}
1363
1364	kmem_free(dr, sizeof (dbuf_dirty_record_t));
1365
1366	ASSERT(db->db_dirtycnt > 0);
1367	db->db_dirtycnt -= 1;
1368
1369	if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1370		arc_buf_t *buf = db->db_buf;
1371
1372		ASSERT(db->db_state == DB_NOFILL || arc_released(buf));
1373		dbuf_set_data(db, NULL);
1374		VERIFY(arc_buf_remove_ref(buf, db));
1375		dbuf_evict(db);
1376		return (B_TRUE);
1377	}
1378
1379	return (B_FALSE);
1380}
1381
1382void
1383dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1384{
1385	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1386	int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1387
1388	ASSERT(tx->tx_txg != 0);
1389	ASSERT(!refcount_is_zero(&db->db_holds));
1390
1391	DB_DNODE_ENTER(db);
1392	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1393		rf |= DB_RF_HAVESTRUCT;
1394	DB_DNODE_EXIT(db);
1395	(void) dbuf_read(db, NULL, rf);
1396	(void) dbuf_dirty(db, tx);
1397}
1398
1399void
1400dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1401{
1402	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1403
1404	db->db_state = DB_NOFILL;
1405
1406	dmu_buf_will_fill(db_fake, tx);
1407}
1408
1409void
1410dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1411{
1412	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1413
1414	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1415	ASSERT(tx->tx_txg != 0);
1416	ASSERT(db->db_level == 0);
1417	ASSERT(!refcount_is_zero(&db->db_holds));
1418
1419	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1420	    dmu_tx_private_ok(tx));
1421
1422	dbuf_noread(db);
1423	(void) dbuf_dirty(db, tx);
1424}
1425
1426#pragma weak dmu_buf_fill_done = dbuf_fill_done
1427/* ARGSUSED */
1428void
1429dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1430{
1431	mutex_enter(&db->db_mtx);
1432	DBUF_VERIFY(db);
1433
1434	if (db->db_state == DB_FILL) {
1435		if (db->db_level == 0 && db->db_freed_in_flight) {
1436			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1437			/* we were freed while filling */
1438			/* XXX dbuf_undirty? */
1439			bzero(db->db.db_data, db->db.db_size);
1440			db->db_freed_in_flight = FALSE;
1441		}
1442		db->db_state = DB_CACHED;
1443		cv_broadcast(&db->db_changed);
1444	}
1445	mutex_exit(&db->db_mtx);
1446}
1447
1448void
1449dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1450    bp_embedded_type_t etype, enum zio_compress comp,
1451    int uncompressed_size, int compressed_size, int byteorder,
1452    dmu_tx_t *tx)
1453{
1454	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
1455	struct dirty_leaf *dl;
1456	dmu_object_type_t type;
1457
1458	DB_DNODE_ENTER(db);
1459	type = DB_DNODE(db)->dn_type;
1460	DB_DNODE_EXIT(db);
1461
1462	ASSERT0(db->db_level);
1463	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1464
1465	dmu_buf_will_not_fill(dbuf, tx);
1466
1467	ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1468	dl = &db->db_last_dirty->dt.dl;
1469	encode_embedded_bp_compressed(&dl->dr_overridden_by,
1470	    data, comp, uncompressed_size, compressed_size);
1471	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
1472	BP_SET_TYPE(&dl->dr_overridden_by, type);
1473	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
1474	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
1475
1476	dl->dr_override_state = DR_OVERRIDDEN;
1477	dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
1478}
1479
1480/*
1481 * Directly assign a provided arc buf to a given dbuf if it's not referenced
1482 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1483 */
1484void
1485dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1486{
1487	ASSERT(!refcount_is_zero(&db->db_holds));
1488	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1489	ASSERT(db->db_level == 0);
1490	ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA);
1491	ASSERT(buf != NULL);
1492	ASSERT(arc_buf_size(buf) == db->db.db_size);
1493	ASSERT(tx->tx_txg != 0);
1494
1495	arc_return_buf(buf, db);
1496	ASSERT(arc_released(buf));
1497
1498	mutex_enter(&db->db_mtx);
1499
1500	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1501		cv_wait(&db->db_changed, &db->db_mtx);
1502
1503	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1504
1505	if (db->db_state == DB_CACHED &&
1506	    refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1507		mutex_exit(&db->db_mtx);
1508		(void) dbuf_dirty(db, tx);
1509		bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1510		VERIFY(arc_buf_remove_ref(buf, db));
1511		xuio_stat_wbuf_copied();
1512		return;
1513	}
1514
1515	xuio_stat_wbuf_nocopy();
1516	if (db->db_state == DB_CACHED) {
1517		dbuf_dirty_record_t *dr = db->db_last_dirty;
1518
1519		ASSERT(db->db_buf != NULL);
1520		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1521			ASSERT(dr->dt.dl.dr_data == db->db_buf);
1522			if (!arc_released(db->db_buf)) {
1523				ASSERT(dr->dt.dl.dr_override_state ==
1524				    DR_OVERRIDDEN);
1525				arc_release(db->db_buf, db);
1526			}
1527			dr->dt.dl.dr_data = buf;
1528			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1529		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
1530			arc_release(db->db_buf, db);
1531			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1532		}
1533		db->db_buf = NULL;
1534	}
1535	ASSERT(db->db_buf == NULL);
1536	dbuf_set_data(db, buf);
1537	db->db_state = DB_FILL;
1538	mutex_exit(&db->db_mtx);
1539	(void) dbuf_dirty(db, tx);
1540	dmu_buf_fill_done(&db->db, tx);
1541}
1542
1543/*
1544 * "Clear" the contents of this dbuf.  This will mark the dbuf
1545 * EVICTING and clear *most* of its references.  Unfortunately,
1546 * when we are not holding the dn_dbufs_mtx, we can't clear the
1547 * entry in the dn_dbufs list.  We have to wait until dbuf_destroy()
1548 * in this case.  For callers from the DMU we will usually see:
1549 *	dbuf_clear()->arc_clear_callback()->dbuf_do_evict()->dbuf_destroy()
1550 * For the arc callback, we will usually see:
1551 *	dbuf_do_evict()->dbuf_clear();dbuf_destroy()
1552 * Sometimes, though, we will get a mix of these two:
1553 *	DMU: dbuf_clear()->arc_clear_callback()
1554 *	ARC: dbuf_do_evict()->dbuf_destroy()
1555 *
1556 * This routine will dissociate the dbuf from the arc, by calling
1557 * arc_clear_callback(), but will not evict the data from the ARC.
1558 */
1559void
1560dbuf_clear(dmu_buf_impl_t *db)
1561{
1562	dnode_t *dn;
1563	dmu_buf_impl_t *parent = db->db_parent;
1564	dmu_buf_impl_t *dndb;
1565	boolean_t dbuf_gone = B_FALSE;
1566
1567	ASSERT(MUTEX_HELD(&db->db_mtx));
1568	ASSERT(refcount_is_zero(&db->db_holds));
1569
1570	dbuf_evict_user(db);
1571
1572	if (db->db_state == DB_CACHED) {
1573		ASSERT(db->db.db_data != NULL);
1574		if (db->db_blkid == DMU_BONUS_BLKID) {
1575			zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
1576			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1577		}
1578		db->db.db_data = NULL;
1579		db->db_state = DB_UNCACHED;
1580	}
1581
1582	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1583	ASSERT(db->db_data_pending == NULL);
1584
1585	db->db_state = DB_EVICTING;
1586	db->db_blkptr = NULL;
1587
1588	DB_DNODE_ENTER(db);
1589	dn = DB_DNODE(db);
1590	dndb = dn->dn_dbuf;
1591	if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) {
1592		avl_remove(&dn->dn_dbufs, db);
1593		atomic_dec_32(&dn->dn_dbufs_count);
1594		membar_producer();
1595		DB_DNODE_EXIT(db);
1596		/*
1597		 * Decrementing the dbuf count means that the hold corresponding
1598		 * to the removed dbuf is no longer discounted in dnode_move(),
1599		 * so the dnode cannot be moved until after we release the hold.
1600		 * The membar_producer() ensures visibility of the decremented
1601		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
1602		 * release any lock.
1603		 */
1604		dnode_rele(dn, db);
1605		db->db_dnode_handle = NULL;
1606	} else {
1607		DB_DNODE_EXIT(db);
1608	}
1609
1610	if (db->db_buf)
1611		dbuf_gone = arc_clear_callback(db->db_buf);
1612
1613	if (!dbuf_gone)
1614		mutex_exit(&db->db_mtx);
1615
1616	/*
1617	 * If this dbuf is referenced from an indirect dbuf,
1618	 * decrement the ref count on the indirect dbuf.
1619	 */
1620	if (parent && parent != dndb)
1621		dbuf_rele(parent, db);
1622}
1623
1624static int
1625dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
1626    dmu_buf_impl_t **parentp, blkptr_t **bpp)
1627{
1628	int nlevels, epbs;
1629
1630	*parentp = NULL;
1631	*bpp = NULL;
1632
1633	ASSERT(blkid != DMU_BONUS_BLKID);
1634
1635	if (blkid == DMU_SPILL_BLKID) {
1636		mutex_enter(&dn->dn_mtx);
1637		if (dn->dn_have_spill &&
1638		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1639			*bpp = &dn->dn_phys->dn_spill;
1640		else
1641			*bpp = NULL;
1642		dbuf_add_ref(dn->dn_dbuf, NULL);
1643		*parentp = dn->dn_dbuf;
1644		mutex_exit(&dn->dn_mtx);
1645		return (0);
1646	}
1647
1648	if (dn->dn_phys->dn_nlevels == 0)
1649		nlevels = 1;
1650	else
1651		nlevels = dn->dn_phys->dn_nlevels;
1652
1653	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1654
1655	ASSERT3U(level * epbs, <, 64);
1656	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1657	if (level >= nlevels ||
1658	    (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
1659		/* the buffer has no parent yet */
1660		return (SET_ERROR(ENOENT));
1661	} else if (level < nlevels-1) {
1662		/* this block is referenced from an indirect block */
1663		int err = dbuf_hold_impl(dn, level+1,
1664		    blkid >> epbs, fail_sparse, NULL, parentp);
1665		if (err)
1666			return (err);
1667		err = dbuf_read(*parentp, NULL,
1668		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
1669		if (err) {
1670			dbuf_rele(*parentp, NULL);
1671			*parentp = NULL;
1672			return (err);
1673		}
1674		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
1675		    (blkid & ((1ULL << epbs) - 1));
1676		return (0);
1677	} else {
1678		/* the block is referenced from the dnode */
1679		ASSERT3U(level, ==, nlevels-1);
1680		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
1681		    blkid < dn->dn_phys->dn_nblkptr);
1682		if (dn->dn_dbuf) {
1683			dbuf_add_ref(dn->dn_dbuf, NULL);
1684			*parentp = dn->dn_dbuf;
1685		}
1686		*bpp = &dn->dn_phys->dn_blkptr[blkid];
1687		return (0);
1688	}
1689}
1690
1691static dmu_buf_impl_t *
1692dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
1693    dmu_buf_impl_t *parent, blkptr_t *blkptr)
1694{
1695	objset_t *os = dn->dn_objset;
1696	dmu_buf_impl_t *db, *odb;
1697
1698	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1699	ASSERT(dn->dn_type != DMU_OT_NONE);
1700
1701	db = kmem_cache_alloc(dbuf_cache, KM_SLEEP);
1702
1703	db->db_objset = os;
1704	db->db.db_object = dn->dn_object;
1705	db->db_level = level;
1706	db->db_blkid = blkid;
1707	db->db_last_dirty = NULL;
1708	db->db_dirtycnt = 0;
1709	db->db_dnode_handle = dn->dn_handle;
1710	db->db_parent = parent;
1711	db->db_blkptr = blkptr;
1712
1713	db->db_user_ptr = NULL;
1714	db->db_evict_func = NULL;
1715	db->db_immediate_evict = 0;
1716	db->db_freed_in_flight = 0;
1717
1718	if (blkid == DMU_BONUS_BLKID) {
1719		ASSERT3P(parent, ==, dn->dn_dbuf);
1720		db->db.db_size = DN_MAX_BONUSLEN -
1721		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
1722		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1723		db->db.db_offset = DMU_BONUS_BLKID;
1724		db->db_state = DB_UNCACHED;
1725		/* the bonus dbuf is not placed in the hash table */
1726		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1727		return (db);
1728	} else if (blkid == DMU_SPILL_BLKID) {
1729		db->db.db_size = (blkptr != NULL) ?
1730		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
1731		db->db.db_offset = 0;
1732	} else {
1733		int blocksize =
1734		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
1735		db->db.db_size = blocksize;
1736		db->db.db_offset = db->db_blkid * blocksize;
1737	}
1738
1739	/*
1740	 * Hold the dn_dbufs_mtx while we get the new dbuf
1741	 * in the hash table *and* added to the dbufs list.
1742	 * This prevents a possible deadlock with someone
1743	 * trying to look up this dbuf before its added to the
1744	 * dn_dbufs list.
1745	 */
1746	mutex_enter(&dn->dn_dbufs_mtx);
1747	db->db_state = DB_EVICTING;
1748	if ((odb = dbuf_hash_insert(db)) != NULL) {
1749		/* someone else inserted it first */
1750		kmem_cache_free(dbuf_cache, db);
1751		mutex_exit(&dn->dn_dbufs_mtx);
1752		return (odb);
1753	}
1754	avl_add(&dn->dn_dbufs, db);
1755	if (db->db_level == 0 && db->db_blkid >=
1756	    dn->dn_unlisted_l0_blkid)
1757		dn->dn_unlisted_l0_blkid = db->db_blkid + 1;
1758	db->db_state = DB_UNCACHED;
1759	mutex_exit(&dn->dn_dbufs_mtx);
1760	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1761
1762	if (parent && parent != dn->dn_dbuf)
1763		dbuf_add_ref(parent, db);
1764
1765	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1766	    refcount_count(&dn->dn_holds) > 0);
1767	(void) refcount_add(&dn->dn_holds, db);
1768	atomic_inc_32(&dn->dn_dbufs_count);
1769
1770	dprintf_dbuf(db, "db=%p\n", db);
1771
1772	return (db);
1773}
1774
1775static int
1776dbuf_do_evict(void *private)
1777{
1778	dmu_buf_impl_t *db = private;
1779
1780	if (!MUTEX_HELD(&db->db_mtx))
1781		mutex_enter(&db->db_mtx);
1782
1783	ASSERT(refcount_is_zero(&db->db_holds));
1784
1785	if (db->db_state != DB_EVICTING) {
1786		ASSERT(db->db_state == DB_CACHED);
1787		DBUF_VERIFY(db);
1788		db->db_buf = NULL;
1789		dbuf_evict(db);
1790	} else {
1791		mutex_exit(&db->db_mtx);
1792		dbuf_destroy(db);
1793	}
1794	return (0);
1795}
1796
1797static void
1798dbuf_destroy(dmu_buf_impl_t *db)
1799{
1800	ASSERT(refcount_is_zero(&db->db_holds));
1801
1802	if (db->db_blkid != DMU_BONUS_BLKID) {
1803		/*
1804		 * If this dbuf is still on the dn_dbufs list,
1805		 * remove it from that list.
1806		 */
1807		if (db->db_dnode_handle != NULL) {
1808			dnode_t *dn;
1809
1810			DB_DNODE_ENTER(db);
1811			dn = DB_DNODE(db);
1812			mutex_enter(&dn->dn_dbufs_mtx);
1813			avl_remove(&dn->dn_dbufs, db);
1814			atomic_dec_32(&dn->dn_dbufs_count);
1815			mutex_exit(&dn->dn_dbufs_mtx);
1816			DB_DNODE_EXIT(db);
1817			/*
1818			 * Decrementing the dbuf count means that the hold
1819			 * corresponding to the removed dbuf is no longer
1820			 * discounted in dnode_move(), so the dnode cannot be
1821			 * moved until after we release the hold.
1822			 */
1823			dnode_rele(dn, db);
1824			db->db_dnode_handle = NULL;
1825		}
1826		dbuf_hash_remove(db);
1827	}
1828	db->db_parent = NULL;
1829	db->db_buf = NULL;
1830
1831	ASSERT(db->db.db_data == NULL);
1832	ASSERT(db->db_hash_next == NULL);
1833	ASSERT(db->db_blkptr == NULL);
1834	ASSERT(db->db_data_pending == NULL);
1835
1836	kmem_cache_free(dbuf_cache, db);
1837	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1838}
1839
1840void
1841dbuf_prefetch(dnode_t *dn, uint64_t blkid, zio_priority_t prio)
1842{
1843	dmu_buf_impl_t *db = NULL;
1844	blkptr_t *bp = NULL;
1845
1846	ASSERT(blkid != DMU_BONUS_BLKID);
1847	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1848
1849	if (dnode_block_freed(dn, blkid))
1850		return;
1851
1852	/* dbuf_find() returns with db_mtx held */
1853	if (db = dbuf_find(dn, 0, blkid)) {
1854		/*
1855		 * This dbuf is already in the cache.  We assume that
1856		 * it is already CACHED, or else about to be either
1857		 * read or filled.
1858		 */
1859		mutex_exit(&db->db_mtx);
1860		return;
1861	}
1862
1863	if (dbuf_findbp(dn, 0, blkid, TRUE, &db, &bp) == 0) {
1864		if (bp && !BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
1865			dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
1866			arc_flags_t aflags =
1867			    ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
1868			zbookmark_phys_t zb;
1869
1870			SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
1871			    dn->dn_object, 0, blkid);
1872
1873			(void) arc_read(NULL, dn->dn_objset->os_spa,
1874			    bp, NULL, NULL, prio,
1875			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
1876			    &aflags, &zb);
1877		}
1878		if (db)
1879			dbuf_rele(db, NULL);
1880	}
1881}
1882
1883/*
1884 * Returns with db_holds incremented, and db_mtx not held.
1885 * Note: dn_struct_rwlock must be held.
1886 */
1887int
1888dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse,
1889    void *tag, dmu_buf_impl_t **dbp)
1890{
1891	dmu_buf_impl_t *db, *parent = NULL;
1892
1893	ASSERT(blkid != DMU_BONUS_BLKID);
1894	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1895	ASSERT3U(dn->dn_nlevels, >, level);
1896
1897	*dbp = NULL;
1898top:
1899	/* dbuf_find() returns with db_mtx held */
1900	db = dbuf_find(dn, level, blkid);
1901
1902	if (db == NULL) {
1903		blkptr_t *bp = NULL;
1904		int err;
1905
1906		ASSERT3P(parent, ==, NULL);
1907		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
1908		if (fail_sparse) {
1909			if (err == 0 && bp && BP_IS_HOLE(bp))
1910				err = SET_ERROR(ENOENT);
1911			if (err) {
1912				if (parent)
1913					dbuf_rele(parent, NULL);
1914				return (err);
1915			}
1916		}
1917		if (err && err != ENOENT)
1918			return (err);
1919		db = dbuf_create(dn, level, blkid, parent, bp);
1920	}
1921
1922	if (db->db_buf && refcount_is_zero(&db->db_holds)) {
1923		arc_buf_add_ref(db->db_buf, db);
1924		if (db->db_buf->b_data == NULL) {
1925			dbuf_clear(db);
1926			if (parent) {
1927				dbuf_rele(parent, NULL);
1928				parent = NULL;
1929			}
1930			goto top;
1931		}
1932		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
1933	}
1934
1935	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
1936
1937	/*
1938	 * If this buffer is currently syncing out, and we are are
1939	 * still referencing it from db_data, we need to make a copy
1940	 * of it in case we decide we want to dirty it again in this txg.
1941	 */
1942	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1943	    dn->dn_object != DMU_META_DNODE_OBJECT &&
1944	    db->db_state == DB_CACHED && db->db_data_pending) {
1945		dbuf_dirty_record_t *dr = db->db_data_pending;
1946
1947		if (dr->dt.dl.dr_data == db->db_buf) {
1948			arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1949
1950			dbuf_set_data(db,
1951			    arc_buf_alloc(dn->dn_objset->os_spa,
1952			    db->db.db_size, db, type));
1953			bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
1954			    db->db.db_size);
1955		}
1956	}
1957
1958	(void) refcount_add(&db->db_holds, tag);
1959	DBUF_VERIFY(db);
1960	mutex_exit(&db->db_mtx);
1961
1962	/* NOTE: we can't rele the parent until after we drop the db_mtx */
1963	if (parent)
1964		dbuf_rele(parent, NULL);
1965
1966	ASSERT3P(DB_DNODE(db), ==, dn);
1967	ASSERT3U(db->db_blkid, ==, blkid);
1968	ASSERT3U(db->db_level, ==, level);
1969	*dbp = db;
1970
1971	return (0);
1972}
1973
1974dmu_buf_impl_t *
1975dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
1976{
1977	dmu_buf_impl_t *db;
1978	int err = dbuf_hold_impl(dn, 0, blkid, FALSE, tag, &db);
1979	return (err ? NULL : db);
1980}
1981
1982dmu_buf_impl_t *
1983dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
1984{
1985	dmu_buf_impl_t *db;
1986	int err = dbuf_hold_impl(dn, level, blkid, FALSE, tag, &db);
1987	return (err ? NULL : db);
1988}
1989
1990void
1991dbuf_create_bonus(dnode_t *dn)
1992{
1993	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1994
1995	ASSERT(dn->dn_bonus == NULL);
1996	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
1997}
1998
1999int
2000dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2001{
2002	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2003	dnode_t *dn;
2004
2005	if (db->db_blkid != DMU_SPILL_BLKID)
2006		return (SET_ERROR(ENOTSUP));
2007	if (blksz == 0)
2008		blksz = SPA_MINBLOCKSIZE;
2009	ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2010	blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2011
2012	DB_DNODE_ENTER(db);
2013	dn = DB_DNODE(db);
2014	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2015	dbuf_new_size(db, blksz, tx);
2016	rw_exit(&dn->dn_struct_rwlock);
2017	DB_DNODE_EXIT(db);
2018
2019	return (0);
2020}
2021
2022void
2023dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2024{
2025	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2026}
2027
2028#pragma weak dmu_buf_add_ref = dbuf_add_ref
2029void
2030dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2031{
2032	int64_t holds = refcount_add(&db->db_holds, tag);
2033	ASSERT(holds > 1);
2034}
2035
2036/*
2037 * If you call dbuf_rele() you had better not be referencing the dnode handle
2038 * unless you have some other direct or indirect hold on the dnode. (An indirect
2039 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2040 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2041 * dnode's parent dbuf evicting its dnode handles.
2042 */
2043void
2044dbuf_rele(dmu_buf_impl_t *db, void *tag)
2045{
2046	mutex_enter(&db->db_mtx);
2047	dbuf_rele_and_unlock(db, tag);
2048}
2049
2050void
2051dmu_buf_rele(dmu_buf_t *db, void *tag)
2052{
2053	dbuf_rele((dmu_buf_impl_t *)db, tag);
2054}
2055
2056/*
2057 * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
2058 * db_dirtycnt and db_holds to be updated atomically.
2059 */
2060void
2061dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2062{
2063	int64_t holds;
2064
2065	ASSERT(MUTEX_HELD(&db->db_mtx));
2066	DBUF_VERIFY(db);
2067
2068	/*
2069	 * Remove the reference to the dbuf before removing its hold on the
2070	 * dnode so we can guarantee in dnode_move() that a referenced bonus
2071	 * buffer has a corresponding dnode hold.
2072	 */
2073	holds = refcount_remove(&db->db_holds, tag);
2074	ASSERT(holds >= 0);
2075
2076	/*
2077	 * We can't freeze indirects if there is a possibility that they
2078	 * may be modified in the current syncing context.
2079	 */
2080	if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0))
2081		arc_buf_freeze(db->db_buf);
2082
2083	if (holds == db->db_dirtycnt &&
2084	    db->db_level == 0 && db->db_immediate_evict)
2085		dbuf_evict_user(db);
2086
2087	if (holds == 0) {
2088		if (db->db_blkid == DMU_BONUS_BLKID) {
2089			mutex_exit(&db->db_mtx);
2090
2091			/*
2092			 * If the dnode moves here, we cannot cross this barrier
2093			 * until the move completes.
2094			 */
2095			DB_DNODE_ENTER(db);
2096			atomic_dec_32(&DB_DNODE(db)->dn_dbufs_count);
2097			DB_DNODE_EXIT(db);
2098			/*
2099			 * The bonus buffer's dnode hold is no longer discounted
2100			 * in dnode_move(). The dnode cannot move until after
2101			 * the dnode_rele().
2102			 */
2103			dnode_rele(DB_DNODE(db), db);
2104		} else if (db->db_buf == NULL) {
2105			/*
2106			 * This is a special case: we never associated this
2107			 * dbuf with any data allocated from the ARC.
2108			 */
2109			ASSERT(db->db_state == DB_UNCACHED ||
2110			    db->db_state == DB_NOFILL);
2111			dbuf_evict(db);
2112		} else if (arc_released(db->db_buf)) {
2113			arc_buf_t *buf = db->db_buf;
2114			/*
2115			 * This dbuf has anonymous data associated with it.
2116			 */
2117			dbuf_set_data(db, NULL);
2118			VERIFY(arc_buf_remove_ref(buf, db));
2119			dbuf_evict(db);
2120		} else {
2121			VERIFY(!arc_buf_remove_ref(db->db_buf, db));
2122
2123			/*
2124			 * A dbuf will be eligible for eviction if either the
2125			 * 'primarycache' property is set or a duplicate
2126			 * copy of this buffer is already cached in the arc.
2127			 *
2128			 * In the case of the 'primarycache' a buffer
2129			 * is considered for eviction if it matches the
2130			 * criteria set in the property.
2131			 *
2132			 * To decide if our buffer is considered a
2133			 * duplicate, we must call into the arc to determine
2134			 * if multiple buffers are referencing the same
2135			 * block on-disk. If so, then we simply evict
2136			 * ourselves.
2137			 */
2138			if (!DBUF_IS_CACHEABLE(db)) {
2139				if (db->db_blkptr != NULL &&
2140				    !BP_IS_HOLE(db->db_blkptr) &&
2141				    !BP_IS_EMBEDDED(db->db_blkptr)) {
2142					spa_t *spa =
2143					    dmu_objset_spa(db->db_objset);
2144					blkptr_t bp = *db->db_blkptr;
2145					dbuf_clear(db);
2146					arc_freed(spa, &bp);
2147				} else {
2148					dbuf_clear(db);
2149				}
2150			} else if (arc_buf_eviction_needed(db->db_buf)) {
2151				dbuf_clear(db);
2152			} else {
2153				mutex_exit(&db->db_mtx);
2154			}
2155		}
2156	} else {
2157		mutex_exit(&db->db_mtx);
2158	}
2159}
2160
2161#pragma weak dmu_buf_refcount = dbuf_refcount
2162uint64_t
2163dbuf_refcount(dmu_buf_impl_t *db)
2164{
2165	return (refcount_count(&db->db_holds));
2166}
2167
2168void *
2169dmu_buf_set_user(dmu_buf_t *db_fake, void *user_ptr,
2170    dmu_buf_evict_func_t *evict_func)
2171{
2172	return (dmu_buf_update_user(db_fake, NULL, user_ptr, evict_func));
2173}
2174
2175void *
2176dmu_buf_set_user_ie(dmu_buf_t *db_fake, void *user_ptr,
2177    dmu_buf_evict_func_t *evict_func)
2178{
2179	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2180
2181	db->db_immediate_evict = TRUE;
2182	return (dmu_buf_update_user(db_fake, NULL, user_ptr, evict_func));
2183}
2184
2185void *
2186dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr, void *user_ptr,
2187    dmu_buf_evict_func_t *evict_func)
2188{
2189	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2190	ASSERT(db->db_level == 0);
2191
2192	ASSERT((user_ptr == NULL) == (evict_func == NULL));
2193
2194	mutex_enter(&db->db_mtx);
2195
2196	if (db->db_user_ptr == old_user_ptr) {
2197		db->db_user_ptr = user_ptr;
2198		db->db_evict_func = evict_func;
2199	} else {
2200		old_user_ptr = db->db_user_ptr;
2201	}
2202
2203	mutex_exit(&db->db_mtx);
2204	return (old_user_ptr);
2205}
2206
2207void *
2208dmu_buf_get_user(dmu_buf_t *db_fake)
2209{
2210	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2211	ASSERT(!refcount_is_zero(&db->db_holds));
2212
2213	return (db->db_user_ptr);
2214}
2215
2216boolean_t
2217dmu_buf_freeable(dmu_buf_t *dbuf)
2218{
2219	boolean_t res = B_FALSE;
2220	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2221
2222	if (db->db_blkptr)
2223		res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset,
2224		    db->db_blkptr, db->db_blkptr->blk_birth);
2225
2226	return (res);
2227}
2228
2229blkptr_t *
2230dmu_buf_get_blkptr(dmu_buf_t *db)
2231{
2232	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2233	return (dbi->db_blkptr);
2234}
2235
2236static void
2237dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2238{
2239	/* ASSERT(dmu_tx_is_syncing(tx) */
2240	ASSERT(MUTEX_HELD(&db->db_mtx));
2241
2242	if (db->db_blkptr != NULL)
2243		return;
2244
2245	if (db->db_blkid == DMU_SPILL_BLKID) {
2246		db->db_blkptr = &dn->dn_phys->dn_spill;
2247		BP_ZERO(db->db_blkptr);
2248		return;
2249	}
2250	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2251		/*
2252		 * This buffer was allocated at a time when there was
2253		 * no available blkptrs from the dnode, or it was
2254		 * inappropriate to hook it in (i.e., nlevels mis-match).
2255		 */
2256		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2257		ASSERT(db->db_parent == NULL);
2258		db->db_parent = dn->dn_dbuf;
2259		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2260		DBUF_VERIFY(db);
2261	} else {
2262		dmu_buf_impl_t *parent = db->db_parent;
2263		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2264
2265		ASSERT(dn->dn_phys->dn_nlevels > 1);
2266		if (parent == NULL) {
2267			mutex_exit(&db->db_mtx);
2268			rw_enter(&dn->dn_struct_rwlock, RW_READER);
2269			(void) dbuf_hold_impl(dn, db->db_level+1,
2270			    db->db_blkid >> epbs, FALSE, db, &parent);
2271			rw_exit(&dn->dn_struct_rwlock);
2272			mutex_enter(&db->db_mtx);
2273			db->db_parent = parent;
2274		}
2275		db->db_blkptr = (blkptr_t *)parent->db.db_data +
2276		    (db->db_blkid & ((1ULL << epbs) - 1));
2277		DBUF_VERIFY(db);
2278	}
2279}
2280
2281static void
2282dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2283{
2284	dmu_buf_impl_t *db = dr->dr_dbuf;
2285	dnode_t *dn;
2286	zio_t *zio;
2287
2288	ASSERT(dmu_tx_is_syncing(tx));
2289
2290	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2291
2292	mutex_enter(&db->db_mtx);
2293
2294	ASSERT(db->db_level > 0);
2295	DBUF_VERIFY(db);
2296
2297	/* Read the block if it hasn't been read yet. */
2298	if (db->db_buf == NULL) {
2299		mutex_exit(&db->db_mtx);
2300		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2301		mutex_enter(&db->db_mtx);
2302	}
2303	ASSERT3U(db->db_state, ==, DB_CACHED);
2304	ASSERT(db->db_buf != NULL);
2305
2306	DB_DNODE_ENTER(db);
2307	dn = DB_DNODE(db);
2308	/* Indirect block size must match what the dnode thinks it is. */
2309	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2310	dbuf_check_blkptr(dn, db);
2311	DB_DNODE_EXIT(db);
2312
2313	/* Provide the pending dirty record to child dbufs */
2314	db->db_data_pending = dr;
2315
2316	mutex_exit(&db->db_mtx);
2317	dbuf_write(dr, db->db_buf, tx);
2318
2319	zio = dr->dr_zio;
2320	mutex_enter(&dr->dt.di.dr_mtx);
2321	dbuf_sync_list(&dr->dt.di.dr_children, tx);
2322	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2323	mutex_exit(&dr->dt.di.dr_mtx);
2324	zio_nowait(zio);
2325}
2326
2327static void
2328dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2329{
2330	arc_buf_t **datap = &dr->dt.dl.dr_data;
2331	dmu_buf_impl_t *db = dr->dr_dbuf;
2332	dnode_t *dn;
2333	objset_t *os;
2334	uint64_t txg = tx->tx_txg;
2335
2336	ASSERT(dmu_tx_is_syncing(tx));
2337
2338	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2339
2340	mutex_enter(&db->db_mtx);
2341	/*
2342	 * To be synced, we must be dirtied.  But we
2343	 * might have been freed after the dirty.
2344	 */
2345	if (db->db_state == DB_UNCACHED) {
2346		/* This buffer has been freed since it was dirtied */
2347		ASSERT(db->db.db_data == NULL);
2348	} else if (db->db_state == DB_FILL) {
2349		/* This buffer was freed and is now being re-filled */
2350		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
2351	} else {
2352		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
2353	}
2354	DBUF_VERIFY(db);
2355
2356	DB_DNODE_ENTER(db);
2357	dn = DB_DNODE(db);
2358
2359	if (db->db_blkid == DMU_SPILL_BLKID) {
2360		mutex_enter(&dn->dn_mtx);
2361		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
2362		mutex_exit(&dn->dn_mtx);
2363	}
2364
2365	/*
2366	 * If this is a bonus buffer, simply copy the bonus data into the
2367	 * dnode.  It will be written out when the dnode is synced (and it
2368	 * will be synced, since it must have been dirty for dbuf_sync to
2369	 * be called).
2370	 */
2371	if (db->db_blkid == DMU_BONUS_BLKID) {
2372		dbuf_dirty_record_t **drp;
2373
2374		ASSERT(*datap != NULL);
2375		ASSERT0(db->db_level);
2376		ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
2377		bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
2378		DB_DNODE_EXIT(db);
2379
2380		if (*datap != db->db.db_data) {
2381			zio_buf_free(*datap, DN_MAX_BONUSLEN);
2382			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2383		}
2384		db->db_data_pending = NULL;
2385		drp = &db->db_last_dirty;
2386		while (*drp != dr)
2387			drp = &(*drp)->dr_next;
2388		ASSERT(dr->dr_next == NULL);
2389		ASSERT(dr->dr_dbuf == db);
2390		*drp = dr->dr_next;
2391		if (dr->dr_dbuf->db_level != 0) {
2392			list_destroy(&dr->dt.di.dr_children);
2393			mutex_destroy(&dr->dt.di.dr_mtx);
2394		}
2395		kmem_free(dr, sizeof (dbuf_dirty_record_t));
2396		ASSERT(db->db_dirtycnt > 0);
2397		db->db_dirtycnt -= 1;
2398		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2399		return;
2400	}
2401
2402	os = dn->dn_objset;
2403
2404	/*
2405	 * This function may have dropped the db_mtx lock allowing a dmu_sync
2406	 * operation to sneak in. As a result, we need to ensure that we
2407	 * don't check the dr_override_state until we have returned from
2408	 * dbuf_check_blkptr.
2409	 */
2410	dbuf_check_blkptr(dn, db);
2411
2412	/*
2413	 * If this buffer is in the middle of an immediate write,
2414	 * wait for the synchronous IO to complete.
2415	 */
2416	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
2417		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
2418		cv_wait(&db->db_changed, &db->db_mtx);
2419		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
2420	}
2421
2422	if (db->db_state != DB_NOFILL &&
2423	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2424	    refcount_count(&db->db_holds) > 1 &&
2425	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
2426	    *datap == db->db_buf) {
2427		/*
2428		 * If this buffer is currently "in use" (i.e., there
2429		 * are active holds and db_data still references it),
2430		 * then make a copy before we start the write so that
2431		 * any modifications from the open txg will not leak
2432		 * into this write.
2433		 *
2434		 * NOTE: this copy does not need to be made for
2435		 * objects only modified in the syncing context (e.g.
2436		 * DNONE_DNODE blocks).
2437		 */
2438		int blksz = arc_buf_size(*datap);
2439		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2440		*datap = arc_buf_alloc(os->os_spa, blksz, db, type);
2441		bcopy(db->db.db_data, (*datap)->b_data, blksz);
2442	}
2443	db->db_data_pending = dr;
2444
2445	mutex_exit(&db->db_mtx);
2446
2447	dbuf_write(dr, *datap, tx);
2448
2449	ASSERT(!list_link_active(&dr->dr_dirty_node));
2450	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
2451		list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
2452		DB_DNODE_EXIT(db);
2453	} else {
2454		/*
2455		 * Although zio_nowait() does not "wait for an IO", it does
2456		 * initiate the IO. If this is an empty write it seems plausible
2457		 * that the IO could actually be completed before the nowait
2458		 * returns. We need to DB_DNODE_EXIT() first in case
2459		 * zio_nowait() invalidates the dbuf.
2460		 */
2461		DB_DNODE_EXIT(db);
2462		zio_nowait(dr->dr_zio);
2463	}
2464}
2465
2466void
2467dbuf_sync_list(list_t *list, dmu_tx_t *tx)
2468{
2469	dbuf_dirty_record_t *dr;
2470
2471	while (dr = list_head(list)) {
2472		if (dr->dr_zio != NULL) {
2473			/*
2474			 * If we find an already initialized zio then we
2475			 * are processing the meta-dnode, and we have finished.
2476			 * The dbufs for all dnodes are put back on the list
2477			 * during processing, so that we can zio_wait()
2478			 * these IOs after initiating all child IOs.
2479			 */
2480			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
2481			    DMU_META_DNODE_OBJECT);
2482			break;
2483		}
2484		list_remove(list, dr);
2485		if (dr->dr_dbuf->db_level > 0)
2486			dbuf_sync_indirect(dr, tx);
2487		else
2488			dbuf_sync_leaf(dr, tx);
2489	}
2490}
2491
2492/* ARGSUSED */
2493static void
2494dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
2495{
2496	dmu_buf_impl_t *db = vdb;
2497	dnode_t *dn;
2498	blkptr_t *bp = zio->io_bp;
2499	blkptr_t *bp_orig = &zio->io_bp_orig;
2500	spa_t *spa = zio->io_spa;
2501	int64_t delta;
2502	uint64_t fill = 0;
2503	int i;
2504
2505	ASSERT3P(db->db_blkptr, ==, bp);
2506
2507	DB_DNODE_ENTER(db);
2508	dn = DB_DNODE(db);
2509	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
2510	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
2511	zio->io_prev_space_delta = delta;
2512
2513	if (bp->blk_birth != 0) {
2514		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
2515		    BP_GET_TYPE(bp) == dn->dn_type) ||
2516		    (db->db_blkid == DMU_SPILL_BLKID &&
2517		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
2518		    BP_IS_EMBEDDED(bp));
2519		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
2520	}
2521
2522	mutex_enter(&db->db_mtx);
2523
2524#ifdef ZFS_DEBUG
2525	if (db->db_blkid == DMU_SPILL_BLKID) {
2526		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2527		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2528		    db->db_blkptr == &dn->dn_phys->dn_spill);
2529	}
2530#endif
2531
2532	if (db->db_level == 0) {
2533		mutex_enter(&dn->dn_mtx);
2534		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
2535		    db->db_blkid != DMU_SPILL_BLKID)
2536			dn->dn_phys->dn_maxblkid = db->db_blkid;
2537		mutex_exit(&dn->dn_mtx);
2538
2539		if (dn->dn_type == DMU_OT_DNODE) {
2540			dnode_phys_t *dnp = db->db.db_data;
2541			for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
2542			    i--, dnp++) {
2543				if (dnp->dn_type != DMU_OT_NONE)
2544					fill++;
2545			}
2546		} else {
2547			if (BP_IS_HOLE(bp)) {
2548				fill = 0;
2549			} else {
2550				fill = 1;
2551			}
2552		}
2553	} else {
2554		blkptr_t *ibp = db->db.db_data;
2555		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2556		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
2557			if (BP_IS_HOLE(ibp))
2558				continue;
2559			fill += BP_GET_FILL(ibp);
2560		}
2561	}
2562	DB_DNODE_EXIT(db);
2563
2564	if (!BP_IS_EMBEDDED(bp))
2565		bp->blk_fill = fill;
2566
2567	mutex_exit(&db->db_mtx);
2568}
2569
2570/*
2571 * The SPA will call this callback several times for each zio - once
2572 * for every physical child i/o (zio->io_phys_children times).  This
2573 * allows the DMU to monitor the progress of each logical i/o.  For example,
2574 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
2575 * block.  There may be a long delay before all copies/fragments are completed,
2576 * so this callback allows us to retire dirty space gradually, as the physical
2577 * i/os complete.
2578 */
2579/* ARGSUSED */
2580static void
2581dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
2582{
2583	dmu_buf_impl_t *db = arg;
2584	objset_t *os = db->db_objset;
2585	dsl_pool_t *dp = dmu_objset_pool(os);
2586	dbuf_dirty_record_t *dr;
2587	int delta = 0;
2588
2589	dr = db->db_data_pending;
2590	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
2591
2592	/*
2593	 * The callback will be called io_phys_children times.  Retire one
2594	 * portion of our dirty space each time we are called.  Any rounding
2595	 * error will be cleaned up by dsl_pool_sync()'s call to
2596	 * dsl_pool_undirty_space().
2597	 */
2598	delta = dr->dr_accounted / zio->io_phys_children;
2599	dsl_pool_undirty_space(dp, delta, zio->io_txg);
2600}
2601
2602/* ARGSUSED */
2603static void
2604dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
2605{
2606	dmu_buf_impl_t *db = vdb;
2607	blkptr_t *bp_orig = &zio->io_bp_orig;
2608	blkptr_t *bp = db->db_blkptr;
2609	objset_t *os = db->db_objset;
2610	dmu_tx_t *tx = os->os_synctx;
2611	dbuf_dirty_record_t **drp, *dr;
2612
2613	ASSERT0(zio->io_error);
2614	ASSERT(db->db_blkptr == bp);
2615
2616	/*
2617	 * For nopwrites and rewrites we ensure that the bp matches our
2618	 * original and bypass all the accounting.
2619	 */
2620	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
2621		ASSERT(BP_EQUAL(bp, bp_orig));
2622	} else {
2623		dsl_dataset_t *ds = os->os_dsl_dataset;
2624		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
2625		dsl_dataset_block_born(ds, bp, tx);
2626	}
2627
2628	mutex_enter(&db->db_mtx);
2629
2630	DBUF_VERIFY(db);
2631
2632	drp = &db->db_last_dirty;
2633	while ((dr = *drp) != db->db_data_pending)
2634		drp = &dr->dr_next;
2635	ASSERT(!list_link_active(&dr->dr_dirty_node));
2636	ASSERT(dr->dr_dbuf == db);
2637	ASSERT(dr->dr_next == NULL);
2638	*drp = dr->dr_next;
2639
2640#ifdef ZFS_DEBUG
2641	if (db->db_blkid == DMU_SPILL_BLKID) {
2642		dnode_t *dn;
2643
2644		DB_DNODE_ENTER(db);
2645		dn = DB_DNODE(db);
2646		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2647		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2648		    db->db_blkptr == &dn->dn_phys->dn_spill);
2649		DB_DNODE_EXIT(db);
2650	}
2651#endif
2652
2653	if (db->db_level == 0) {
2654		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2655		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
2656		if (db->db_state != DB_NOFILL) {
2657			if (dr->dt.dl.dr_data != db->db_buf)
2658				VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data,
2659				    db));
2660			else if (!arc_released(db->db_buf))
2661				arc_set_callback(db->db_buf, dbuf_do_evict, db);
2662		}
2663	} else {
2664		dnode_t *dn;
2665
2666		DB_DNODE_ENTER(db);
2667		dn = DB_DNODE(db);
2668		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2669		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
2670		if (!BP_IS_HOLE(db->db_blkptr)) {
2671			int epbs =
2672			    dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2673			ASSERT3U(db->db_blkid, <=,
2674			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
2675			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
2676			    db->db.db_size);
2677			if (!arc_released(db->db_buf))
2678				arc_set_callback(db->db_buf, dbuf_do_evict, db);
2679		}
2680		DB_DNODE_EXIT(db);
2681		mutex_destroy(&dr->dt.di.dr_mtx);
2682		list_destroy(&dr->dt.di.dr_children);
2683	}
2684	kmem_free(dr, sizeof (dbuf_dirty_record_t));
2685
2686	cv_broadcast(&db->db_changed);
2687	ASSERT(db->db_dirtycnt > 0);
2688	db->db_dirtycnt -= 1;
2689	db->db_data_pending = NULL;
2690	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
2691}
2692
2693static void
2694dbuf_write_nofill_ready(zio_t *zio)
2695{
2696	dbuf_write_ready(zio, NULL, zio->io_private);
2697}
2698
2699static void
2700dbuf_write_nofill_done(zio_t *zio)
2701{
2702	dbuf_write_done(zio, NULL, zio->io_private);
2703}
2704
2705static void
2706dbuf_write_override_ready(zio_t *zio)
2707{
2708	dbuf_dirty_record_t *dr = zio->io_private;
2709	dmu_buf_impl_t *db = dr->dr_dbuf;
2710
2711	dbuf_write_ready(zio, NULL, db);
2712}
2713
2714static void
2715dbuf_write_override_done(zio_t *zio)
2716{
2717	dbuf_dirty_record_t *dr = zio->io_private;
2718	dmu_buf_impl_t *db = dr->dr_dbuf;
2719	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
2720
2721	mutex_enter(&db->db_mtx);
2722	if (!BP_EQUAL(zio->io_bp, obp)) {
2723		if (!BP_IS_HOLE(obp))
2724			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
2725		arc_release(dr->dt.dl.dr_data, db);
2726	}
2727	mutex_exit(&db->db_mtx);
2728
2729	dbuf_write_done(zio, NULL, db);
2730}
2731
2732/* Issue I/O to commit a dirty buffer to disk. */
2733static void
2734dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
2735{
2736	dmu_buf_impl_t *db = dr->dr_dbuf;
2737	dnode_t *dn;
2738	objset_t *os;
2739	dmu_buf_impl_t *parent = db->db_parent;
2740	uint64_t txg = tx->tx_txg;
2741	zbookmark_phys_t zb;
2742	zio_prop_t zp;
2743	zio_t *zio;
2744	int wp_flag = 0;
2745
2746	DB_DNODE_ENTER(db);
2747	dn = DB_DNODE(db);
2748	os = dn->dn_objset;
2749
2750	if (db->db_state != DB_NOFILL) {
2751		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
2752			/*
2753			 * Private object buffers are released here rather
2754			 * than in dbuf_dirty() since they are only modified
2755			 * in the syncing context and we don't want the
2756			 * overhead of making multiple copies of the data.
2757			 */
2758			if (BP_IS_HOLE(db->db_blkptr)) {
2759				arc_buf_thaw(data);
2760			} else {
2761				dbuf_release_bp(db);
2762			}
2763		}
2764	}
2765
2766	if (parent != dn->dn_dbuf) {
2767		/* Our parent is an indirect block. */
2768		/* We have a dirty parent that has been scheduled for write. */
2769		ASSERT(parent && parent->db_data_pending);
2770		/* Our parent's buffer is one level closer to the dnode. */
2771		ASSERT(db->db_level == parent->db_level-1);
2772		/*
2773		 * We're about to modify our parent's db_data by modifying
2774		 * our block pointer, so the parent must be released.
2775		 */
2776		ASSERT(arc_released(parent->db_buf));
2777		zio = parent->db_data_pending->dr_zio;
2778	} else {
2779		/* Our parent is the dnode itself. */
2780		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
2781		    db->db_blkid != DMU_SPILL_BLKID) ||
2782		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
2783		if (db->db_blkid != DMU_SPILL_BLKID)
2784			ASSERT3P(db->db_blkptr, ==,
2785			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
2786		zio = dn->dn_zio;
2787	}
2788
2789	ASSERT(db->db_level == 0 || data == db->db_buf);
2790	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
2791	ASSERT(zio);
2792
2793	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
2794	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
2795	    db->db.db_object, db->db_level, db->db_blkid);
2796
2797	if (db->db_blkid == DMU_SPILL_BLKID)
2798		wp_flag = WP_SPILL;
2799	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
2800
2801	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
2802	DB_DNODE_EXIT(db);
2803
2804	if (db->db_level == 0 &&
2805	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
2806		/*
2807		 * The BP for this block has been provided by open context
2808		 * (by dmu_sync() or dmu_buf_write_embedded()).
2809		 */
2810		void *contents = (data != NULL) ? data->b_data : NULL;
2811
2812		dr->dr_zio = zio_write(zio, os->os_spa, txg,
2813		    db->db_blkptr, contents, db->db.db_size, &zp,
2814		    dbuf_write_override_ready, NULL, dbuf_write_override_done,
2815		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
2816		mutex_enter(&db->db_mtx);
2817		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
2818		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
2819		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
2820		mutex_exit(&db->db_mtx);
2821	} else if (db->db_state == DB_NOFILL) {
2822		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
2823		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
2824		dr->dr_zio = zio_write(zio, os->os_spa, txg,
2825		    db->db_blkptr, NULL, db->db.db_size, &zp,
2826		    dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db,
2827		    ZIO_PRIORITY_ASYNC_WRITE,
2828		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
2829	} else {
2830		ASSERT(arc_released(data));
2831		dr->dr_zio = arc_write(zio, os->os_spa, txg,
2832		    db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db),
2833		    DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready,
2834		    dbuf_write_physdone, dbuf_write_done, db,
2835		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
2836	}
2837}
2838