dbuf.c revision 263397
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 */
28
29#include <sys/zfs_context.h>
30#include <sys/dmu.h>
31#include <sys/dmu_send.h>
32#include <sys/dmu_impl.h>
33#include <sys/dbuf.h>
34#include <sys/dmu_objset.h>
35#include <sys/dsl_dataset.h>
36#include <sys/dsl_dir.h>
37#include <sys/dmu_tx.h>
38#include <sys/spa.h>
39#include <sys/zio.h>
40#include <sys/dmu_zfetch.h>
41#include <sys/sa.h>
42#include <sys/sa_impl.h>
43
44/*
45 * Number of times that zfs_free_range() took the slow path while doing
46 * a zfs receive.  A nonzero value indicates a potential performance problem.
47 */
48uint64_t zfs_free_range_recv_miss;
49
50static void dbuf_destroy(dmu_buf_impl_t *db);
51static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
52static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
53
54/*
55 * Global data structures and functions for the dbuf cache.
56 */
57static kmem_cache_t *dbuf_cache;
58
59/* ARGSUSED */
60static int
61dbuf_cons(void *vdb, void *unused, int kmflag)
62{
63	dmu_buf_impl_t *db = vdb;
64	bzero(db, sizeof (dmu_buf_impl_t));
65
66	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
67	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
68	refcount_create(&db->db_holds);
69	return (0);
70}
71
72/* ARGSUSED */
73static void
74dbuf_dest(void *vdb, void *unused)
75{
76	dmu_buf_impl_t *db = vdb;
77	mutex_destroy(&db->db_mtx);
78	cv_destroy(&db->db_changed);
79	refcount_destroy(&db->db_holds);
80}
81
82/*
83 * dbuf hash table routines
84 */
85static dbuf_hash_table_t dbuf_hash_table;
86
87static uint64_t dbuf_hash_count;
88
89static uint64_t
90dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
91{
92	uintptr_t osv = (uintptr_t)os;
93	uint64_t crc = -1ULL;
94
95	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
96	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
97	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
98	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
99	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
100	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
101	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
102
103	crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
104
105	return (crc);
106}
107
108#define	DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid);
109
110#define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
111	((dbuf)->db.db_object == (obj) &&		\
112	(dbuf)->db_objset == (os) &&			\
113	(dbuf)->db_level == (level) &&			\
114	(dbuf)->db_blkid == (blkid))
115
116dmu_buf_impl_t *
117dbuf_find(dnode_t *dn, uint8_t level, uint64_t blkid)
118{
119	dbuf_hash_table_t *h = &dbuf_hash_table;
120	objset_t *os = dn->dn_objset;
121	uint64_t obj = dn->dn_object;
122	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
123	uint64_t idx = hv & h->hash_table_mask;
124	dmu_buf_impl_t *db;
125
126	mutex_enter(DBUF_HASH_MUTEX(h, idx));
127	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
128		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
129			mutex_enter(&db->db_mtx);
130			if (db->db_state != DB_EVICTING) {
131				mutex_exit(DBUF_HASH_MUTEX(h, idx));
132				return (db);
133			}
134			mutex_exit(&db->db_mtx);
135		}
136	}
137	mutex_exit(DBUF_HASH_MUTEX(h, idx));
138	return (NULL);
139}
140
141/*
142 * Insert an entry into the hash table.  If there is already an element
143 * equal to elem in the hash table, then the already existing element
144 * will be returned and the new element will not be inserted.
145 * Otherwise returns NULL.
146 */
147static dmu_buf_impl_t *
148dbuf_hash_insert(dmu_buf_impl_t *db)
149{
150	dbuf_hash_table_t *h = &dbuf_hash_table;
151	objset_t *os = db->db_objset;
152	uint64_t obj = db->db.db_object;
153	int level = db->db_level;
154	uint64_t blkid = db->db_blkid;
155	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
156	uint64_t idx = hv & h->hash_table_mask;
157	dmu_buf_impl_t *dbf;
158
159	mutex_enter(DBUF_HASH_MUTEX(h, idx));
160	for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
161		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
162			mutex_enter(&dbf->db_mtx);
163			if (dbf->db_state != DB_EVICTING) {
164				mutex_exit(DBUF_HASH_MUTEX(h, idx));
165				return (dbf);
166			}
167			mutex_exit(&dbf->db_mtx);
168		}
169	}
170
171	mutex_enter(&db->db_mtx);
172	db->db_hash_next = h->hash_table[idx];
173	h->hash_table[idx] = db;
174	mutex_exit(DBUF_HASH_MUTEX(h, idx));
175	atomic_add_64(&dbuf_hash_count, 1);
176
177	return (NULL);
178}
179
180/*
181 * Remove an entry from the hash table.  This operation will
182 * fail if there are any existing holds on the db.
183 */
184static void
185dbuf_hash_remove(dmu_buf_impl_t *db)
186{
187	dbuf_hash_table_t *h = &dbuf_hash_table;
188	uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object,
189	    db->db_level, db->db_blkid);
190	uint64_t idx = hv & h->hash_table_mask;
191	dmu_buf_impl_t *dbf, **dbp;
192
193	/*
194	 * We musn't hold db_mtx to maintin lock ordering:
195	 * DBUF_HASH_MUTEX > db_mtx.
196	 */
197	ASSERT(refcount_is_zero(&db->db_holds));
198	ASSERT(db->db_state == DB_EVICTING);
199	ASSERT(!MUTEX_HELD(&db->db_mtx));
200
201	mutex_enter(DBUF_HASH_MUTEX(h, idx));
202	dbp = &h->hash_table[idx];
203	while ((dbf = *dbp) != db) {
204		dbp = &dbf->db_hash_next;
205		ASSERT(dbf != NULL);
206	}
207	*dbp = db->db_hash_next;
208	db->db_hash_next = NULL;
209	mutex_exit(DBUF_HASH_MUTEX(h, idx));
210	atomic_add_64(&dbuf_hash_count, -1);
211}
212
213static arc_evict_func_t dbuf_do_evict;
214
215static void
216dbuf_evict_user(dmu_buf_impl_t *db)
217{
218	ASSERT(MUTEX_HELD(&db->db_mtx));
219
220	if (db->db_level != 0 || db->db_evict_func == NULL)
221		return;
222
223	if (db->db_user_data_ptr_ptr)
224		*db->db_user_data_ptr_ptr = db->db.db_data;
225	db->db_evict_func(&db->db, db->db_user_ptr);
226	db->db_user_ptr = NULL;
227	db->db_user_data_ptr_ptr = NULL;
228	db->db_evict_func = NULL;
229}
230
231boolean_t
232dbuf_is_metadata(dmu_buf_impl_t *db)
233{
234	if (db->db_level > 0) {
235		return (B_TRUE);
236	} else {
237		boolean_t is_metadata;
238
239		DB_DNODE_ENTER(db);
240		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
241		DB_DNODE_EXIT(db);
242
243		return (is_metadata);
244	}
245}
246
247void
248dbuf_evict(dmu_buf_impl_t *db)
249{
250	ASSERT(MUTEX_HELD(&db->db_mtx));
251	ASSERT(db->db_buf == NULL);
252	ASSERT(db->db_data_pending == NULL);
253
254	dbuf_clear(db);
255	dbuf_destroy(db);
256}
257
258void
259dbuf_init(void)
260{
261	uint64_t hsize = 1ULL << 16;
262	dbuf_hash_table_t *h = &dbuf_hash_table;
263	int i;
264
265	/*
266	 * The hash table is big enough to fill all of physical memory
267	 * with an average 4K block size.  The table will take up
268	 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
269	 */
270	while (hsize * 4096 < (uint64_t)physmem * PAGESIZE)
271		hsize <<= 1;
272
273retry:
274	h->hash_table_mask = hsize - 1;
275	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
276	if (h->hash_table == NULL) {
277		/* XXX - we should really return an error instead of assert */
278		ASSERT(hsize > (1ULL << 10));
279		hsize >>= 1;
280		goto retry;
281	}
282
283	dbuf_cache = kmem_cache_create("dmu_buf_impl_t",
284	    sizeof (dmu_buf_impl_t),
285	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
286
287	for (i = 0; i < DBUF_MUTEXES; i++)
288		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
289}
290
291void
292dbuf_fini(void)
293{
294	dbuf_hash_table_t *h = &dbuf_hash_table;
295	int i;
296
297	for (i = 0; i < DBUF_MUTEXES; i++)
298		mutex_destroy(&h->hash_mutexes[i]);
299	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
300	kmem_cache_destroy(dbuf_cache);
301}
302
303/*
304 * Other stuff.
305 */
306
307#ifdef ZFS_DEBUG
308static void
309dbuf_verify(dmu_buf_impl_t *db)
310{
311	dnode_t *dn;
312	dbuf_dirty_record_t *dr;
313
314	ASSERT(MUTEX_HELD(&db->db_mtx));
315
316	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
317		return;
318
319	ASSERT(db->db_objset != NULL);
320	DB_DNODE_ENTER(db);
321	dn = DB_DNODE(db);
322	if (dn == NULL) {
323		ASSERT(db->db_parent == NULL);
324		ASSERT(db->db_blkptr == NULL);
325	} else {
326		ASSERT3U(db->db.db_object, ==, dn->dn_object);
327		ASSERT3P(db->db_objset, ==, dn->dn_objset);
328		ASSERT3U(db->db_level, <, dn->dn_nlevels);
329		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
330		    db->db_blkid == DMU_SPILL_BLKID ||
331		    !list_is_empty(&dn->dn_dbufs));
332	}
333	if (db->db_blkid == DMU_BONUS_BLKID) {
334		ASSERT(dn != NULL);
335		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
336		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
337	} else if (db->db_blkid == DMU_SPILL_BLKID) {
338		ASSERT(dn != NULL);
339		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
340		ASSERT0(db->db.db_offset);
341	} else {
342		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
343	}
344
345	for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
346		ASSERT(dr->dr_dbuf == db);
347
348	for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
349		ASSERT(dr->dr_dbuf == db);
350
351	/*
352	 * We can't assert that db_size matches dn_datablksz because it
353	 * can be momentarily different when another thread is doing
354	 * dnode_set_blksz().
355	 */
356	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
357		dr = db->db_data_pending;
358		/*
359		 * It should only be modified in syncing context, so
360		 * make sure we only have one copy of the data.
361		 */
362		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
363	}
364
365	/* verify db->db_blkptr */
366	if (db->db_blkptr) {
367		if (db->db_parent == dn->dn_dbuf) {
368			/* db is pointed to by the dnode */
369			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
370			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
371				ASSERT(db->db_parent == NULL);
372			else
373				ASSERT(db->db_parent != NULL);
374			if (db->db_blkid != DMU_SPILL_BLKID)
375				ASSERT3P(db->db_blkptr, ==,
376				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
377		} else {
378			/* db is pointed to by an indirect block */
379			int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
380			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
381			ASSERT3U(db->db_parent->db.db_object, ==,
382			    db->db.db_object);
383			/*
384			 * dnode_grow_indblksz() can make this fail if we don't
385			 * have the struct_rwlock.  XXX indblksz no longer
386			 * grows.  safe to do this now?
387			 */
388			if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
389				ASSERT3P(db->db_blkptr, ==,
390				    ((blkptr_t *)db->db_parent->db.db_data +
391				    db->db_blkid % epb));
392			}
393		}
394	}
395	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
396	    (db->db_buf == NULL || db->db_buf->b_data) &&
397	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
398	    db->db_state != DB_FILL && !dn->dn_free_txg) {
399		/*
400		 * If the blkptr isn't set but they have nonzero data,
401		 * it had better be dirty, otherwise we'll lose that
402		 * data when we evict this buffer.
403		 */
404		if (db->db_dirtycnt == 0) {
405			uint64_t *buf = db->db.db_data;
406			int i;
407
408			for (i = 0; i < db->db.db_size >> 3; i++) {
409				ASSERT(buf[i] == 0);
410			}
411		}
412	}
413	DB_DNODE_EXIT(db);
414}
415#endif
416
417static void
418dbuf_update_data(dmu_buf_impl_t *db)
419{
420	ASSERT(MUTEX_HELD(&db->db_mtx));
421	if (db->db_level == 0 && db->db_user_data_ptr_ptr) {
422		ASSERT(!refcount_is_zero(&db->db_holds));
423		*db->db_user_data_ptr_ptr = db->db.db_data;
424	}
425}
426
427static void
428dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
429{
430	ASSERT(MUTEX_HELD(&db->db_mtx));
431	ASSERT(db->db_buf == NULL || !arc_has_callback(db->db_buf));
432	db->db_buf = buf;
433	if (buf != NULL) {
434		ASSERT(buf->b_data != NULL);
435		db->db.db_data = buf->b_data;
436		if (!arc_released(buf))
437			arc_set_callback(buf, dbuf_do_evict, db);
438		dbuf_update_data(db);
439	} else {
440		dbuf_evict_user(db);
441		db->db.db_data = NULL;
442		if (db->db_state != DB_NOFILL)
443			db->db_state = DB_UNCACHED;
444	}
445}
446
447/*
448 * Loan out an arc_buf for read.  Return the loaned arc_buf.
449 */
450arc_buf_t *
451dbuf_loan_arcbuf(dmu_buf_impl_t *db)
452{
453	arc_buf_t *abuf;
454
455	mutex_enter(&db->db_mtx);
456	if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
457		int blksz = db->db.db_size;
458		spa_t *spa = db->db_objset->os_spa;
459
460		mutex_exit(&db->db_mtx);
461		abuf = arc_loan_buf(spa, blksz);
462		bcopy(db->db.db_data, abuf->b_data, blksz);
463	} else {
464		abuf = db->db_buf;
465		arc_loan_inuse_buf(abuf, db);
466		dbuf_set_data(db, NULL);
467		mutex_exit(&db->db_mtx);
468	}
469	return (abuf);
470}
471
472uint64_t
473dbuf_whichblock(dnode_t *dn, uint64_t offset)
474{
475	if (dn->dn_datablkshift) {
476		return (offset >> dn->dn_datablkshift);
477	} else {
478		ASSERT3U(offset, <, dn->dn_datablksz);
479		return (0);
480	}
481}
482
483static void
484dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
485{
486	dmu_buf_impl_t *db = vdb;
487
488	mutex_enter(&db->db_mtx);
489	ASSERT3U(db->db_state, ==, DB_READ);
490	/*
491	 * All reads are synchronous, so we must have a hold on the dbuf
492	 */
493	ASSERT(refcount_count(&db->db_holds) > 0);
494	ASSERT(db->db_buf == NULL);
495	ASSERT(db->db.db_data == NULL);
496	if (db->db_level == 0 && db->db_freed_in_flight) {
497		/* we were freed in flight; disregard any error */
498		arc_release(buf, db);
499		bzero(buf->b_data, db->db.db_size);
500		arc_buf_freeze(buf);
501		db->db_freed_in_flight = FALSE;
502		dbuf_set_data(db, buf);
503		db->db_state = DB_CACHED;
504	} else if (zio == NULL || zio->io_error == 0) {
505		dbuf_set_data(db, buf);
506		db->db_state = DB_CACHED;
507	} else {
508		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
509		ASSERT3P(db->db_buf, ==, NULL);
510		VERIFY(arc_buf_remove_ref(buf, db));
511		db->db_state = DB_UNCACHED;
512	}
513	cv_broadcast(&db->db_changed);
514	dbuf_rele_and_unlock(db, NULL);
515}
516
517static void
518dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags)
519{
520	dnode_t *dn;
521	zbookmark_t zb;
522	uint32_t aflags = ARC_NOWAIT;
523
524	DB_DNODE_ENTER(db);
525	dn = DB_DNODE(db);
526	ASSERT(!refcount_is_zero(&db->db_holds));
527	/* We need the struct_rwlock to prevent db_blkptr from changing. */
528	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
529	ASSERT(MUTEX_HELD(&db->db_mtx));
530	ASSERT(db->db_state == DB_UNCACHED);
531	ASSERT(db->db_buf == NULL);
532
533	if (db->db_blkid == DMU_BONUS_BLKID) {
534		int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
535
536		ASSERT3U(bonuslen, <=, db->db.db_size);
537		db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
538		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
539		if (bonuslen < DN_MAX_BONUSLEN)
540			bzero(db->db.db_data, DN_MAX_BONUSLEN);
541		if (bonuslen)
542			bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
543		DB_DNODE_EXIT(db);
544		dbuf_update_data(db);
545		db->db_state = DB_CACHED;
546		mutex_exit(&db->db_mtx);
547		return;
548	}
549
550	/*
551	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
552	 * processes the delete record and clears the bp while we are waiting
553	 * for the dn_mtx (resulting in a "no" from block_freed).
554	 */
555	if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
556	    (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
557	    BP_IS_HOLE(db->db_blkptr)))) {
558		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
559
560		DB_DNODE_EXIT(db);
561		dbuf_set_data(db, arc_buf_alloc(db->db_objset->os_spa,
562		    db->db.db_size, db, type));
563		bzero(db->db.db_data, db->db.db_size);
564		db->db_state = DB_CACHED;
565		*flags |= DB_RF_CACHED;
566		mutex_exit(&db->db_mtx);
567		return;
568	}
569
570	DB_DNODE_EXIT(db);
571
572	db->db_state = DB_READ;
573	mutex_exit(&db->db_mtx);
574
575	if (DBUF_IS_L2CACHEABLE(db))
576		aflags |= ARC_L2CACHE;
577	if (DBUF_IS_L2COMPRESSIBLE(db))
578		aflags |= ARC_L2COMPRESS;
579
580	SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
581	    db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
582	    db->db.db_object, db->db_level, db->db_blkid);
583
584	dbuf_add_ref(db, NULL);
585
586	(void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
587	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
588	    (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
589	    &aflags, &zb);
590	if (aflags & ARC_CACHED)
591		*flags |= DB_RF_CACHED;
592}
593
594int
595dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
596{
597	int err = 0;
598	boolean_t havepzio = (zio != NULL);
599	boolean_t prefetch;
600	dnode_t *dn;
601
602	/*
603	 * We don't have to hold the mutex to check db_state because it
604	 * can't be freed while we have a hold on the buffer.
605	 */
606	ASSERT(!refcount_is_zero(&db->db_holds));
607
608	if (db->db_state == DB_NOFILL)
609		return (SET_ERROR(EIO));
610
611	DB_DNODE_ENTER(db);
612	dn = DB_DNODE(db);
613	if ((flags & DB_RF_HAVESTRUCT) == 0)
614		rw_enter(&dn->dn_struct_rwlock, RW_READER);
615
616	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
617	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
618	    DBUF_IS_CACHEABLE(db);
619
620	mutex_enter(&db->db_mtx);
621	if (db->db_state == DB_CACHED) {
622		mutex_exit(&db->db_mtx);
623		if (prefetch)
624			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
625			    db->db.db_size, TRUE);
626		if ((flags & DB_RF_HAVESTRUCT) == 0)
627			rw_exit(&dn->dn_struct_rwlock);
628		DB_DNODE_EXIT(db);
629	} else if (db->db_state == DB_UNCACHED) {
630		spa_t *spa = dn->dn_objset->os_spa;
631
632		if (zio == NULL)
633			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
634		dbuf_read_impl(db, zio, &flags);
635
636		/* dbuf_read_impl has dropped db_mtx for us */
637
638		if (prefetch)
639			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
640			    db->db.db_size, flags & DB_RF_CACHED);
641
642		if ((flags & DB_RF_HAVESTRUCT) == 0)
643			rw_exit(&dn->dn_struct_rwlock);
644		DB_DNODE_EXIT(db);
645
646		if (!havepzio)
647			err = zio_wait(zio);
648	} else {
649		/*
650		 * Another reader came in while the dbuf was in flight
651		 * between UNCACHED and CACHED.  Either a writer will finish
652		 * writing the buffer (sending the dbuf to CACHED) or the
653		 * first reader's request will reach the read_done callback
654		 * and send the dbuf to CACHED.  Otherwise, a failure
655		 * occurred and the dbuf went to UNCACHED.
656		 */
657		mutex_exit(&db->db_mtx);
658		if (prefetch)
659			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
660			    db->db.db_size, TRUE);
661		if ((flags & DB_RF_HAVESTRUCT) == 0)
662			rw_exit(&dn->dn_struct_rwlock);
663		DB_DNODE_EXIT(db);
664
665		/* Skip the wait per the caller's request. */
666		mutex_enter(&db->db_mtx);
667		if ((flags & DB_RF_NEVERWAIT) == 0) {
668			while (db->db_state == DB_READ ||
669			    db->db_state == DB_FILL) {
670				ASSERT(db->db_state == DB_READ ||
671				    (flags & DB_RF_HAVESTRUCT) == 0);
672				cv_wait(&db->db_changed, &db->db_mtx);
673			}
674			if (db->db_state == DB_UNCACHED)
675				err = SET_ERROR(EIO);
676		}
677		mutex_exit(&db->db_mtx);
678	}
679
680	ASSERT(err || havepzio || db->db_state == DB_CACHED);
681	return (err);
682}
683
684static void
685dbuf_noread(dmu_buf_impl_t *db)
686{
687	ASSERT(!refcount_is_zero(&db->db_holds));
688	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
689	mutex_enter(&db->db_mtx);
690	while (db->db_state == DB_READ || db->db_state == DB_FILL)
691		cv_wait(&db->db_changed, &db->db_mtx);
692	if (db->db_state == DB_UNCACHED) {
693		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
694		spa_t *spa = db->db_objset->os_spa;
695
696		ASSERT(db->db_buf == NULL);
697		ASSERT(db->db.db_data == NULL);
698		dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type));
699		db->db_state = DB_FILL;
700	} else if (db->db_state == DB_NOFILL) {
701		dbuf_set_data(db, NULL);
702	} else {
703		ASSERT3U(db->db_state, ==, DB_CACHED);
704	}
705	mutex_exit(&db->db_mtx);
706}
707
708/*
709 * This is our just-in-time copy function.  It makes a copy of
710 * buffers, that have been modified in a previous transaction
711 * group, before we modify them in the current active group.
712 *
713 * This function is used in two places: when we are dirtying a
714 * buffer for the first time in a txg, and when we are freeing
715 * a range in a dnode that includes this buffer.
716 *
717 * Note that when we are called from dbuf_free_range() we do
718 * not put a hold on the buffer, we just traverse the active
719 * dbuf list for the dnode.
720 */
721static void
722dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
723{
724	dbuf_dirty_record_t *dr = db->db_last_dirty;
725
726	ASSERT(MUTEX_HELD(&db->db_mtx));
727	ASSERT(db->db.db_data != NULL);
728	ASSERT(db->db_level == 0);
729	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
730
731	if (dr == NULL ||
732	    (dr->dt.dl.dr_data !=
733	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
734		return;
735
736	/*
737	 * If the last dirty record for this dbuf has not yet synced
738	 * and its referencing the dbuf data, either:
739	 *	reset the reference to point to a new copy,
740	 * or (if there a no active holders)
741	 *	just null out the current db_data pointer.
742	 */
743	ASSERT(dr->dr_txg >= txg - 2);
744	if (db->db_blkid == DMU_BONUS_BLKID) {
745		/* Note that the data bufs here are zio_bufs */
746		dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
747		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
748		bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
749	} else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
750		int size = db->db.db_size;
751		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
752		spa_t *spa = db->db_objset->os_spa;
753
754		dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type);
755		bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
756	} else {
757		dbuf_set_data(db, NULL);
758	}
759}
760
761void
762dbuf_unoverride(dbuf_dirty_record_t *dr)
763{
764	dmu_buf_impl_t *db = dr->dr_dbuf;
765	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
766	uint64_t txg = dr->dr_txg;
767
768	ASSERT(MUTEX_HELD(&db->db_mtx));
769	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
770	ASSERT(db->db_level == 0);
771
772	if (db->db_blkid == DMU_BONUS_BLKID ||
773	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
774		return;
775
776	ASSERT(db->db_data_pending != dr);
777
778	/* free this block */
779	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
780		zio_free(db->db_objset->os_spa, txg, bp);
781
782	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
783	dr->dt.dl.dr_nopwrite = B_FALSE;
784
785	/*
786	 * Release the already-written buffer, so we leave it in
787	 * a consistent dirty state.  Note that all callers are
788	 * modifying the buffer, so they will immediately do
789	 * another (redundant) arc_release().  Therefore, leave
790	 * the buf thawed to save the effort of freezing &
791	 * immediately re-thawing it.
792	 */
793	arc_release(dr->dt.dl.dr_data, db);
794}
795
796/*
797 * Evict (if its unreferenced) or clear (if its referenced) any level-0
798 * data blocks in the free range, so that any future readers will find
799 * empty blocks.
800 *
801 * This is a no-op if the dataset is in the middle of an incremental
802 * receive; see comment below for details.
803 */
804void
805dbuf_free_range(dnode_t *dn, uint64_t start, uint64_t end, dmu_tx_t *tx)
806{
807	dmu_buf_impl_t *db, *db_next;
808	uint64_t txg = tx->tx_txg;
809
810	if (end > dn->dn_maxblkid && (end != DMU_SPILL_BLKID))
811		end = dn->dn_maxblkid;
812	dprintf_dnode(dn, "start=%llu end=%llu\n", start, end);
813
814	mutex_enter(&dn->dn_dbufs_mtx);
815	if (start >= dn->dn_unlisted_l0_blkid * dn->dn_datablksz) {
816		/* There can't be any dbufs in this range; no need to search. */
817		mutex_exit(&dn->dn_dbufs_mtx);
818		return;
819	} else if (dmu_objset_is_receiving(dn->dn_objset)) {
820		/*
821		 * If we are receiving, we expect there to be no dbufs in
822		 * the range to be freed, because receive modifies each
823		 * block at most once, and in offset order.  If this is
824		 * not the case, it can lead to performance problems,
825		 * so note that we unexpectedly took the slow path.
826		 */
827		atomic_inc_64(&zfs_free_range_recv_miss);
828	}
829
830	for (db = list_head(&dn->dn_dbufs); db != NULL; db = db_next) {
831		db_next = list_next(&dn->dn_dbufs, db);
832		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
833
834		if (db->db_level != 0)
835			continue;
836		if (db->db_blkid < start || db->db_blkid > end)
837			continue;
838
839		/* found a level 0 buffer in the range */
840		mutex_enter(&db->db_mtx);
841		if (dbuf_undirty(db, tx)) {
842			/* mutex has been dropped and dbuf destroyed */
843			continue;
844		}
845
846		if (db->db_state == DB_UNCACHED ||
847		    db->db_state == DB_NOFILL ||
848		    db->db_state == DB_EVICTING) {
849			ASSERT(db->db.db_data == NULL);
850			mutex_exit(&db->db_mtx);
851			continue;
852		}
853		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
854			/* will be handled in dbuf_read_done or dbuf_rele */
855			db->db_freed_in_flight = TRUE;
856			mutex_exit(&db->db_mtx);
857			continue;
858		}
859		if (refcount_count(&db->db_holds) == 0) {
860			ASSERT(db->db_buf);
861			dbuf_clear(db);
862			continue;
863		}
864		/* The dbuf is referenced */
865
866		if (db->db_last_dirty != NULL) {
867			dbuf_dirty_record_t *dr = db->db_last_dirty;
868
869			if (dr->dr_txg == txg) {
870				/*
871				 * This buffer is "in-use", re-adjust the file
872				 * size to reflect that this buffer may
873				 * contain new data when we sync.
874				 */
875				if (db->db_blkid != DMU_SPILL_BLKID &&
876				    db->db_blkid > dn->dn_maxblkid)
877					dn->dn_maxblkid = db->db_blkid;
878				dbuf_unoverride(dr);
879			} else {
880				/*
881				 * This dbuf is not dirty in the open context.
882				 * Either uncache it (if its not referenced in
883				 * the open context) or reset its contents to
884				 * empty.
885				 */
886				dbuf_fix_old_data(db, txg);
887			}
888		}
889		/* clear the contents if its cached */
890		if (db->db_state == DB_CACHED) {
891			ASSERT(db->db.db_data != NULL);
892			arc_release(db->db_buf, db);
893			bzero(db->db.db_data, db->db.db_size);
894			arc_buf_freeze(db->db_buf);
895		}
896
897		mutex_exit(&db->db_mtx);
898	}
899	mutex_exit(&dn->dn_dbufs_mtx);
900}
901
902static int
903dbuf_block_freeable(dmu_buf_impl_t *db)
904{
905	dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
906	uint64_t birth_txg = 0;
907
908	/*
909	 * We don't need any locking to protect db_blkptr:
910	 * If it's syncing, then db_last_dirty will be set
911	 * so we'll ignore db_blkptr.
912	 *
913	 * This logic ensures that only block births for
914	 * filled blocks are considered.
915	 */
916	ASSERT(MUTEX_HELD(&db->db_mtx));
917	if (db->db_last_dirty && (db->db_blkptr == NULL ||
918	    !BP_IS_HOLE(db->db_blkptr))) {
919		birth_txg = db->db_last_dirty->dr_txg;
920	} else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
921		birth_txg = db->db_blkptr->blk_birth;
922	}
923
924	/*
925	 * If this block don't exist or is in a snapshot, it can't be freed.
926	 * Don't pass the bp to dsl_dataset_block_freeable() since we
927	 * are holding the db_mtx lock and might deadlock if we are
928	 * prefetching a dedup-ed block.
929	 */
930	if (birth_txg != 0)
931		return (ds == NULL ||
932		    dsl_dataset_block_freeable(ds, NULL, birth_txg));
933	else
934		return (B_FALSE);
935}
936
937void
938dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
939{
940	arc_buf_t *buf, *obuf;
941	int osize = db->db.db_size;
942	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
943	dnode_t *dn;
944
945	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
946
947	DB_DNODE_ENTER(db);
948	dn = DB_DNODE(db);
949
950	/* XXX does *this* func really need the lock? */
951	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
952
953	/*
954	 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
955	 * is OK, because there can be no other references to the db
956	 * when we are changing its size, so no concurrent DB_FILL can
957	 * be happening.
958	 */
959	/*
960	 * XXX we should be doing a dbuf_read, checking the return
961	 * value and returning that up to our callers
962	 */
963	dmu_buf_will_dirty(&db->db, tx);
964
965	/* create the data buffer for the new block */
966	buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type);
967
968	/* copy old block data to the new block */
969	obuf = db->db_buf;
970	bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
971	/* zero the remainder */
972	if (size > osize)
973		bzero((uint8_t *)buf->b_data + osize, size - osize);
974
975	mutex_enter(&db->db_mtx);
976	dbuf_set_data(db, buf);
977	VERIFY(arc_buf_remove_ref(obuf, db));
978	db->db.db_size = size;
979
980	if (db->db_level == 0) {
981		ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
982		db->db_last_dirty->dt.dl.dr_data = buf;
983	}
984	mutex_exit(&db->db_mtx);
985
986	dnode_willuse_space(dn, size-osize, tx);
987	DB_DNODE_EXIT(db);
988}
989
990void
991dbuf_release_bp(dmu_buf_impl_t *db)
992{
993	objset_t *os = db->db_objset;
994
995	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
996	ASSERT(arc_released(os->os_phys_buf) ||
997	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
998	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
999
1000	(void) arc_release(db->db_buf, db);
1001}
1002
1003dbuf_dirty_record_t *
1004dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1005{
1006	dnode_t *dn;
1007	objset_t *os;
1008	dbuf_dirty_record_t **drp, *dr;
1009	int drop_struct_lock = FALSE;
1010	boolean_t do_free_accounting = B_FALSE;
1011	int txgoff = tx->tx_txg & TXG_MASK;
1012
1013	ASSERT(tx->tx_txg != 0);
1014	ASSERT(!refcount_is_zero(&db->db_holds));
1015	DMU_TX_DIRTY_BUF(tx, db);
1016
1017	DB_DNODE_ENTER(db);
1018	dn = DB_DNODE(db);
1019	/*
1020	 * Shouldn't dirty a regular buffer in syncing context.  Private
1021	 * objects may be dirtied in syncing context, but only if they
1022	 * were already pre-dirtied in open context.
1023	 */
1024	ASSERT(!dmu_tx_is_syncing(tx) ||
1025	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1026	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1027	    dn->dn_objset->os_dsl_dataset == NULL);
1028	/*
1029	 * We make this assert for private objects as well, but after we
1030	 * check if we're already dirty.  They are allowed to re-dirty
1031	 * in syncing context.
1032	 */
1033	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1034	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1035	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1036
1037	mutex_enter(&db->db_mtx);
1038	/*
1039	 * XXX make this true for indirects too?  The problem is that
1040	 * transactions created with dmu_tx_create_assigned() from
1041	 * syncing context don't bother holding ahead.
1042	 */
1043	ASSERT(db->db_level != 0 ||
1044	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1045	    db->db_state == DB_NOFILL);
1046
1047	mutex_enter(&dn->dn_mtx);
1048	/*
1049	 * Don't set dirtyctx to SYNC if we're just modifying this as we
1050	 * initialize the objset.
1051	 */
1052	if (dn->dn_dirtyctx == DN_UNDIRTIED &&
1053	    !BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1054		dn->dn_dirtyctx =
1055		    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1056		ASSERT(dn->dn_dirtyctx_firstset == NULL);
1057		dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1058	}
1059	mutex_exit(&dn->dn_mtx);
1060
1061	if (db->db_blkid == DMU_SPILL_BLKID)
1062		dn->dn_have_spill = B_TRUE;
1063
1064	/*
1065	 * If this buffer is already dirty, we're done.
1066	 */
1067	drp = &db->db_last_dirty;
1068	ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1069	    db->db.db_object == DMU_META_DNODE_OBJECT);
1070	while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1071		drp = &dr->dr_next;
1072	if (dr && dr->dr_txg == tx->tx_txg) {
1073		DB_DNODE_EXIT(db);
1074
1075		if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1076			/*
1077			 * If this buffer has already been written out,
1078			 * we now need to reset its state.
1079			 */
1080			dbuf_unoverride(dr);
1081			if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1082			    db->db_state != DB_NOFILL)
1083				arc_buf_thaw(db->db_buf);
1084		}
1085		mutex_exit(&db->db_mtx);
1086		return (dr);
1087	}
1088
1089	/*
1090	 * Only valid if not already dirty.
1091	 */
1092	ASSERT(dn->dn_object == 0 ||
1093	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1094	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1095
1096	ASSERT3U(dn->dn_nlevels, >, db->db_level);
1097	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1098	    dn->dn_phys->dn_nlevels > db->db_level ||
1099	    dn->dn_next_nlevels[txgoff] > db->db_level ||
1100	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1101	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1102
1103	/*
1104	 * We should only be dirtying in syncing context if it's the
1105	 * mos or we're initializing the os or it's a special object.
1106	 * However, we are allowed to dirty in syncing context provided
1107	 * we already dirtied it in open context.  Hence we must make
1108	 * this assertion only if we're not already dirty.
1109	 */
1110	os = dn->dn_objset;
1111	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1112	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1113	ASSERT(db->db.db_size != 0);
1114
1115	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1116
1117	if (db->db_blkid != DMU_BONUS_BLKID) {
1118		/*
1119		 * Update the accounting.
1120		 * Note: we delay "free accounting" until after we drop
1121		 * the db_mtx.  This keeps us from grabbing other locks
1122		 * (and possibly deadlocking) in bp_get_dsize() while
1123		 * also holding the db_mtx.
1124		 */
1125		dnode_willuse_space(dn, db->db.db_size, tx);
1126		do_free_accounting = dbuf_block_freeable(db);
1127	}
1128
1129	/*
1130	 * If this buffer is dirty in an old transaction group we need
1131	 * to make a copy of it so that the changes we make in this
1132	 * transaction group won't leak out when we sync the older txg.
1133	 */
1134	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1135	if (db->db_level == 0) {
1136		void *data_old = db->db_buf;
1137
1138		if (db->db_state != DB_NOFILL) {
1139			if (db->db_blkid == DMU_BONUS_BLKID) {
1140				dbuf_fix_old_data(db, tx->tx_txg);
1141				data_old = db->db.db_data;
1142			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1143				/*
1144				 * Release the data buffer from the cache so
1145				 * that we can modify it without impacting
1146				 * possible other users of this cached data
1147				 * block.  Note that indirect blocks and
1148				 * private objects are not released until the
1149				 * syncing state (since they are only modified
1150				 * then).
1151				 */
1152				arc_release(db->db_buf, db);
1153				dbuf_fix_old_data(db, tx->tx_txg);
1154				data_old = db->db_buf;
1155			}
1156			ASSERT(data_old != NULL);
1157		}
1158		dr->dt.dl.dr_data = data_old;
1159	} else {
1160		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1161		list_create(&dr->dt.di.dr_children,
1162		    sizeof (dbuf_dirty_record_t),
1163		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
1164	}
1165	if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1166		dr->dr_accounted = db->db.db_size;
1167	dr->dr_dbuf = db;
1168	dr->dr_txg = tx->tx_txg;
1169	dr->dr_next = *drp;
1170	*drp = dr;
1171
1172	/*
1173	 * We could have been freed_in_flight between the dbuf_noread
1174	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
1175	 * happened after the free.
1176	 */
1177	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1178	    db->db_blkid != DMU_SPILL_BLKID) {
1179		mutex_enter(&dn->dn_mtx);
1180		dnode_clear_range(dn, db->db_blkid, 1, tx);
1181		mutex_exit(&dn->dn_mtx);
1182		db->db_freed_in_flight = FALSE;
1183	}
1184
1185	/*
1186	 * This buffer is now part of this txg
1187	 */
1188	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1189	db->db_dirtycnt += 1;
1190	ASSERT3U(db->db_dirtycnt, <=, 3);
1191
1192	mutex_exit(&db->db_mtx);
1193
1194	if (db->db_blkid == DMU_BONUS_BLKID ||
1195	    db->db_blkid == DMU_SPILL_BLKID) {
1196		mutex_enter(&dn->dn_mtx);
1197		ASSERT(!list_link_active(&dr->dr_dirty_node));
1198		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1199		mutex_exit(&dn->dn_mtx);
1200		dnode_setdirty(dn, tx);
1201		DB_DNODE_EXIT(db);
1202		return (dr);
1203	} else if (do_free_accounting) {
1204		blkptr_t *bp = db->db_blkptr;
1205		int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
1206		    bp_get_dsize(os->os_spa, bp) : db->db.db_size;
1207		/*
1208		 * This is only a guess -- if the dbuf is dirty
1209		 * in a previous txg, we don't know how much
1210		 * space it will use on disk yet.  We should
1211		 * really have the struct_rwlock to access
1212		 * db_blkptr, but since this is just a guess,
1213		 * it's OK if we get an odd answer.
1214		 */
1215		ddt_prefetch(os->os_spa, bp);
1216		dnode_willuse_space(dn, -willfree, tx);
1217	}
1218
1219	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1220		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1221		drop_struct_lock = TRUE;
1222	}
1223
1224	if (db->db_level == 0) {
1225		dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1226		ASSERT(dn->dn_maxblkid >= db->db_blkid);
1227	}
1228
1229	if (db->db_level+1 < dn->dn_nlevels) {
1230		dmu_buf_impl_t *parent = db->db_parent;
1231		dbuf_dirty_record_t *di;
1232		int parent_held = FALSE;
1233
1234		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1235			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1236
1237			parent = dbuf_hold_level(dn, db->db_level+1,
1238			    db->db_blkid >> epbs, FTAG);
1239			ASSERT(parent != NULL);
1240			parent_held = TRUE;
1241		}
1242		if (drop_struct_lock)
1243			rw_exit(&dn->dn_struct_rwlock);
1244		ASSERT3U(db->db_level+1, ==, parent->db_level);
1245		di = dbuf_dirty(parent, tx);
1246		if (parent_held)
1247			dbuf_rele(parent, FTAG);
1248
1249		mutex_enter(&db->db_mtx);
1250		/*
1251		 * Since we've dropped the mutex, it's possible that
1252		 * dbuf_undirty() might have changed this out from under us.
1253		 */
1254		if (db->db_last_dirty == dr ||
1255		    dn->dn_object == DMU_META_DNODE_OBJECT) {
1256			mutex_enter(&di->dt.di.dr_mtx);
1257			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1258			ASSERT(!list_link_active(&dr->dr_dirty_node));
1259			list_insert_tail(&di->dt.di.dr_children, dr);
1260			mutex_exit(&di->dt.di.dr_mtx);
1261			dr->dr_parent = di;
1262		}
1263		mutex_exit(&db->db_mtx);
1264	} else {
1265		ASSERT(db->db_level+1 == dn->dn_nlevels);
1266		ASSERT(db->db_blkid < dn->dn_nblkptr);
1267		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1268		mutex_enter(&dn->dn_mtx);
1269		ASSERT(!list_link_active(&dr->dr_dirty_node));
1270		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1271		mutex_exit(&dn->dn_mtx);
1272		if (drop_struct_lock)
1273			rw_exit(&dn->dn_struct_rwlock);
1274	}
1275
1276	dnode_setdirty(dn, tx);
1277	DB_DNODE_EXIT(db);
1278	return (dr);
1279}
1280
1281/*
1282 * Undirty a buffer in the transaction group referenced by the given
1283 * transaction.  Return whether this evicted the dbuf.
1284 */
1285static boolean_t
1286dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1287{
1288	dnode_t *dn;
1289	uint64_t txg = tx->tx_txg;
1290	dbuf_dirty_record_t *dr, **drp;
1291
1292	ASSERT(txg != 0);
1293	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1294	ASSERT0(db->db_level);
1295	ASSERT(MUTEX_HELD(&db->db_mtx));
1296
1297	/*
1298	 * If this buffer is not dirty, we're done.
1299	 */
1300	for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1301		if (dr->dr_txg <= txg)
1302			break;
1303	if (dr == NULL || dr->dr_txg < txg)
1304		return (B_FALSE);
1305	ASSERT(dr->dr_txg == txg);
1306	ASSERT(dr->dr_dbuf == db);
1307
1308	DB_DNODE_ENTER(db);
1309	dn = DB_DNODE(db);
1310
1311	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1312
1313	ASSERT(db->db.db_size != 0);
1314
1315	/*
1316	 * Any space we accounted for in dp_dirty_* will be cleaned up by
1317	 * dsl_pool_sync().  This is relatively rare so the discrepancy
1318	 * is not a big deal.
1319	 */
1320
1321	*drp = dr->dr_next;
1322
1323	/*
1324	 * Note that there are three places in dbuf_dirty()
1325	 * where this dirty record may be put on a list.
1326	 * Make sure to do a list_remove corresponding to
1327	 * every one of those list_insert calls.
1328	 */
1329	if (dr->dr_parent) {
1330		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1331		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1332		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1333	} else if (db->db_blkid == DMU_SPILL_BLKID ||
1334	    db->db_level+1 == dn->dn_nlevels) {
1335		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1336		mutex_enter(&dn->dn_mtx);
1337		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1338		mutex_exit(&dn->dn_mtx);
1339	}
1340	DB_DNODE_EXIT(db);
1341
1342	if (db->db_state != DB_NOFILL) {
1343		dbuf_unoverride(dr);
1344
1345		ASSERT(db->db_buf != NULL);
1346		ASSERT(dr->dt.dl.dr_data != NULL);
1347		if (dr->dt.dl.dr_data != db->db_buf)
1348			VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db));
1349	}
1350	kmem_free(dr, sizeof (dbuf_dirty_record_t));
1351
1352	ASSERT(db->db_dirtycnt > 0);
1353	db->db_dirtycnt -= 1;
1354
1355	if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1356		arc_buf_t *buf = db->db_buf;
1357
1358		ASSERT(db->db_state == DB_NOFILL || arc_released(buf));
1359		dbuf_set_data(db, NULL);
1360		VERIFY(arc_buf_remove_ref(buf, db));
1361		dbuf_evict(db);
1362		return (B_TRUE);
1363	}
1364
1365	return (B_FALSE);
1366}
1367
1368void
1369dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1370{
1371	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1372	int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1373
1374	ASSERT(tx->tx_txg != 0);
1375	ASSERT(!refcount_is_zero(&db->db_holds));
1376
1377	DB_DNODE_ENTER(db);
1378	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1379		rf |= DB_RF_HAVESTRUCT;
1380	DB_DNODE_EXIT(db);
1381	(void) dbuf_read(db, NULL, rf);
1382	(void) dbuf_dirty(db, tx);
1383}
1384
1385void
1386dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1387{
1388	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1389
1390	db->db_state = DB_NOFILL;
1391
1392	dmu_buf_will_fill(db_fake, tx);
1393}
1394
1395void
1396dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1397{
1398	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1399
1400	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1401	ASSERT(tx->tx_txg != 0);
1402	ASSERT(db->db_level == 0);
1403	ASSERT(!refcount_is_zero(&db->db_holds));
1404
1405	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1406	    dmu_tx_private_ok(tx));
1407
1408	dbuf_noread(db);
1409	(void) dbuf_dirty(db, tx);
1410}
1411
1412#pragma weak dmu_buf_fill_done = dbuf_fill_done
1413/* ARGSUSED */
1414void
1415dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1416{
1417	mutex_enter(&db->db_mtx);
1418	DBUF_VERIFY(db);
1419
1420	if (db->db_state == DB_FILL) {
1421		if (db->db_level == 0 && db->db_freed_in_flight) {
1422			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1423			/* we were freed while filling */
1424			/* XXX dbuf_undirty? */
1425			bzero(db->db.db_data, db->db.db_size);
1426			db->db_freed_in_flight = FALSE;
1427		}
1428		db->db_state = DB_CACHED;
1429		cv_broadcast(&db->db_changed);
1430	}
1431	mutex_exit(&db->db_mtx);
1432}
1433
1434/*
1435 * Directly assign a provided arc buf to a given dbuf if it's not referenced
1436 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1437 */
1438void
1439dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1440{
1441	ASSERT(!refcount_is_zero(&db->db_holds));
1442	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1443	ASSERT(db->db_level == 0);
1444	ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA);
1445	ASSERT(buf != NULL);
1446	ASSERT(arc_buf_size(buf) == db->db.db_size);
1447	ASSERT(tx->tx_txg != 0);
1448
1449	arc_return_buf(buf, db);
1450	ASSERT(arc_released(buf));
1451
1452	mutex_enter(&db->db_mtx);
1453
1454	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1455		cv_wait(&db->db_changed, &db->db_mtx);
1456
1457	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1458
1459	if (db->db_state == DB_CACHED &&
1460	    refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1461		mutex_exit(&db->db_mtx);
1462		(void) dbuf_dirty(db, tx);
1463		bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1464		VERIFY(arc_buf_remove_ref(buf, db));
1465		xuio_stat_wbuf_copied();
1466		return;
1467	}
1468
1469	xuio_stat_wbuf_nocopy();
1470	if (db->db_state == DB_CACHED) {
1471		dbuf_dirty_record_t *dr = db->db_last_dirty;
1472
1473		ASSERT(db->db_buf != NULL);
1474		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1475			ASSERT(dr->dt.dl.dr_data == db->db_buf);
1476			if (!arc_released(db->db_buf)) {
1477				ASSERT(dr->dt.dl.dr_override_state ==
1478				    DR_OVERRIDDEN);
1479				arc_release(db->db_buf, db);
1480			}
1481			dr->dt.dl.dr_data = buf;
1482			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1483		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
1484			arc_release(db->db_buf, db);
1485			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1486		}
1487		db->db_buf = NULL;
1488	}
1489	ASSERT(db->db_buf == NULL);
1490	dbuf_set_data(db, buf);
1491	db->db_state = DB_FILL;
1492	mutex_exit(&db->db_mtx);
1493	(void) dbuf_dirty(db, tx);
1494	dmu_buf_fill_done(&db->db, tx);
1495}
1496
1497/*
1498 * "Clear" the contents of this dbuf.  This will mark the dbuf
1499 * EVICTING and clear *most* of its references.  Unfortunately,
1500 * when we are not holding the dn_dbufs_mtx, we can't clear the
1501 * entry in the dn_dbufs list.  We have to wait until dbuf_destroy()
1502 * in this case.  For callers from the DMU we will usually see:
1503 *	dbuf_clear()->arc_buf_evict()->dbuf_do_evict()->dbuf_destroy()
1504 * For the arc callback, we will usually see:
1505 *	dbuf_do_evict()->dbuf_clear();dbuf_destroy()
1506 * Sometimes, though, we will get a mix of these two:
1507 *	DMU: dbuf_clear()->arc_buf_evict()
1508 *	ARC: dbuf_do_evict()->dbuf_destroy()
1509 */
1510void
1511dbuf_clear(dmu_buf_impl_t *db)
1512{
1513	dnode_t *dn;
1514	dmu_buf_impl_t *parent = db->db_parent;
1515	dmu_buf_impl_t *dndb;
1516	int dbuf_gone = FALSE;
1517
1518	ASSERT(MUTEX_HELD(&db->db_mtx));
1519	ASSERT(refcount_is_zero(&db->db_holds));
1520
1521	dbuf_evict_user(db);
1522
1523	if (db->db_state == DB_CACHED) {
1524		ASSERT(db->db.db_data != NULL);
1525		if (db->db_blkid == DMU_BONUS_BLKID) {
1526			zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
1527			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1528		}
1529		db->db.db_data = NULL;
1530		db->db_state = DB_UNCACHED;
1531	}
1532
1533	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1534	ASSERT(db->db_data_pending == NULL);
1535
1536	db->db_state = DB_EVICTING;
1537	db->db_blkptr = NULL;
1538
1539	DB_DNODE_ENTER(db);
1540	dn = DB_DNODE(db);
1541	dndb = dn->dn_dbuf;
1542	if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) {
1543		list_remove(&dn->dn_dbufs, db);
1544		(void) atomic_dec_32_nv(&dn->dn_dbufs_count);
1545		membar_producer();
1546		DB_DNODE_EXIT(db);
1547		/*
1548		 * Decrementing the dbuf count means that the hold corresponding
1549		 * to the removed dbuf is no longer discounted in dnode_move(),
1550		 * so the dnode cannot be moved until after we release the hold.
1551		 * The membar_producer() ensures visibility of the decremented
1552		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
1553		 * release any lock.
1554		 */
1555		dnode_rele(dn, db);
1556		db->db_dnode_handle = NULL;
1557	} else {
1558		DB_DNODE_EXIT(db);
1559	}
1560
1561	if (db->db_buf)
1562		dbuf_gone = arc_buf_evict(db->db_buf);
1563
1564	if (!dbuf_gone)
1565		mutex_exit(&db->db_mtx);
1566
1567	/*
1568	 * If this dbuf is referenced from an indirect dbuf,
1569	 * decrement the ref count on the indirect dbuf.
1570	 */
1571	if (parent && parent != dndb)
1572		dbuf_rele(parent, db);
1573}
1574
1575static int
1576dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
1577    dmu_buf_impl_t **parentp, blkptr_t **bpp)
1578{
1579	int nlevels, epbs;
1580
1581	*parentp = NULL;
1582	*bpp = NULL;
1583
1584	ASSERT(blkid != DMU_BONUS_BLKID);
1585
1586	if (blkid == DMU_SPILL_BLKID) {
1587		mutex_enter(&dn->dn_mtx);
1588		if (dn->dn_have_spill &&
1589		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1590			*bpp = &dn->dn_phys->dn_spill;
1591		else
1592			*bpp = NULL;
1593		dbuf_add_ref(dn->dn_dbuf, NULL);
1594		*parentp = dn->dn_dbuf;
1595		mutex_exit(&dn->dn_mtx);
1596		return (0);
1597	}
1598
1599	if (dn->dn_phys->dn_nlevels == 0)
1600		nlevels = 1;
1601	else
1602		nlevels = dn->dn_phys->dn_nlevels;
1603
1604	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1605
1606	ASSERT3U(level * epbs, <, 64);
1607	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1608	if (level >= nlevels ||
1609	    (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
1610		/* the buffer has no parent yet */
1611		return (SET_ERROR(ENOENT));
1612	} else if (level < nlevels-1) {
1613		/* this block is referenced from an indirect block */
1614		int err = dbuf_hold_impl(dn, level+1,
1615		    blkid >> epbs, fail_sparse, NULL, parentp);
1616		if (err)
1617			return (err);
1618		err = dbuf_read(*parentp, NULL,
1619		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
1620		if (err) {
1621			dbuf_rele(*parentp, NULL);
1622			*parentp = NULL;
1623			return (err);
1624		}
1625		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
1626		    (blkid & ((1ULL << epbs) - 1));
1627		return (0);
1628	} else {
1629		/* the block is referenced from the dnode */
1630		ASSERT3U(level, ==, nlevels-1);
1631		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
1632		    blkid < dn->dn_phys->dn_nblkptr);
1633		if (dn->dn_dbuf) {
1634			dbuf_add_ref(dn->dn_dbuf, NULL);
1635			*parentp = dn->dn_dbuf;
1636		}
1637		*bpp = &dn->dn_phys->dn_blkptr[blkid];
1638		return (0);
1639	}
1640}
1641
1642static dmu_buf_impl_t *
1643dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
1644    dmu_buf_impl_t *parent, blkptr_t *blkptr)
1645{
1646	objset_t *os = dn->dn_objset;
1647	dmu_buf_impl_t *db, *odb;
1648
1649	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1650	ASSERT(dn->dn_type != DMU_OT_NONE);
1651
1652	db = kmem_cache_alloc(dbuf_cache, KM_SLEEP);
1653
1654	db->db_objset = os;
1655	db->db.db_object = dn->dn_object;
1656	db->db_level = level;
1657	db->db_blkid = blkid;
1658	db->db_last_dirty = NULL;
1659	db->db_dirtycnt = 0;
1660	db->db_dnode_handle = dn->dn_handle;
1661	db->db_parent = parent;
1662	db->db_blkptr = blkptr;
1663
1664	db->db_user_ptr = NULL;
1665	db->db_user_data_ptr_ptr = NULL;
1666	db->db_evict_func = NULL;
1667	db->db_immediate_evict = 0;
1668	db->db_freed_in_flight = 0;
1669
1670	if (blkid == DMU_BONUS_BLKID) {
1671		ASSERT3P(parent, ==, dn->dn_dbuf);
1672		db->db.db_size = DN_MAX_BONUSLEN -
1673		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
1674		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1675		db->db.db_offset = DMU_BONUS_BLKID;
1676		db->db_state = DB_UNCACHED;
1677		/* the bonus dbuf is not placed in the hash table */
1678		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1679		return (db);
1680	} else if (blkid == DMU_SPILL_BLKID) {
1681		db->db.db_size = (blkptr != NULL) ?
1682		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
1683		db->db.db_offset = 0;
1684	} else {
1685		int blocksize =
1686		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
1687		db->db.db_size = blocksize;
1688		db->db.db_offset = db->db_blkid * blocksize;
1689	}
1690
1691	/*
1692	 * Hold the dn_dbufs_mtx while we get the new dbuf
1693	 * in the hash table *and* added to the dbufs list.
1694	 * This prevents a possible deadlock with someone
1695	 * trying to look up this dbuf before its added to the
1696	 * dn_dbufs list.
1697	 */
1698	mutex_enter(&dn->dn_dbufs_mtx);
1699	db->db_state = DB_EVICTING;
1700	if ((odb = dbuf_hash_insert(db)) != NULL) {
1701		/* someone else inserted it first */
1702		kmem_cache_free(dbuf_cache, db);
1703		mutex_exit(&dn->dn_dbufs_mtx);
1704		return (odb);
1705	}
1706	list_insert_head(&dn->dn_dbufs, db);
1707	if (db->db_level == 0 && db->db_blkid >=
1708	    dn->dn_unlisted_l0_blkid)
1709		dn->dn_unlisted_l0_blkid = db->db_blkid + 1;
1710	db->db_state = DB_UNCACHED;
1711	mutex_exit(&dn->dn_dbufs_mtx);
1712	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1713
1714	if (parent && parent != dn->dn_dbuf)
1715		dbuf_add_ref(parent, db);
1716
1717	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1718	    refcount_count(&dn->dn_holds) > 0);
1719	(void) refcount_add(&dn->dn_holds, db);
1720	(void) atomic_inc_32_nv(&dn->dn_dbufs_count);
1721
1722	dprintf_dbuf(db, "db=%p\n", db);
1723
1724	return (db);
1725}
1726
1727static int
1728dbuf_do_evict(void *private)
1729{
1730	arc_buf_t *buf = private;
1731	dmu_buf_impl_t *db = buf->b_private;
1732
1733	if (!MUTEX_HELD(&db->db_mtx))
1734		mutex_enter(&db->db_mtx);
1735
1736	ASSERT(refcount_is_zero(&db->db_holds));
1737
1738	if (db->db_state != DB_EVICTING) {
1739		ASSERT(db->db_state == DB_CACHED);
1740		DBUF_VERIFY(db);
1741		db->db_buf = NULL;
1742		dbuf_evict(db);
1743	} else {
1744		mutex_exit(&db->db_mtx);
1745		dbuf_destroy(db);
1746	}
1747	return (0);
1748}
1749
1750static void
1751dbuf_destroy(dmu_buf_impl_t *db)
1752{
1753	ASSERT(refcount_is_zero(&db->db_holds));
1754
1755	if (db->db_blkid != DMU_BONUS_BLKID) {
1756		/*
1757		 * If this dbuf is still on the dn_dbufs list,
1758		 * remove it from that list.
1759		 */
1760		if (db->db_dnode_handle != NULL) {
1761			dnode_t *dn;
1762
1763			DB_DNODE_ENTER(db);
1764			dn = DB_DNODE(db);
1765			mutex_enter(&dn->dn_dbufs_mtx);
1766			list_remove(&dn->dn_dbufs, db);
1767			(void) atomic_dec_32_nv(&dn->dn_dbufs_count);
1768			mutex_exit(&dn->dn_dbufs_mtx);
1769			DB_DNODE_EXIT(db);
1770			/*
1771			 * Decrementing the dbuf count means that the hold
1772			 * corresponding to the removed dbuf is no longer
1773			 * discounted in dnode_move(), so the dnode cannot be
1774			 * moved until after we release the hold.
1775			 */
1776			dnode_rele(dn, db);
1777			db->db_dnode_handle = NULL;
1778		}
1779		dbuf_hash_remove(db);
1780	}
1781	db->db_parent = NULL;
1782	db->db_buf = NULL;
1783
1784	ASSERT(!list_link_active(&db->db_link));
1785	ASSERT(db->db.db_data == NULL);
1786	ASSERT(db->db_hash_next == NULL);
1787	ASSERT(db->db_blkptr == NULL);
1788	ASSERT(db->db_data_pending == NULL);
1789
1790	kmem_cache_free(dbuf_cache, db);
1791	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1792}
1793
1794void
1795dbuf_prefetch(dnode_t *dn, uint64_t blkid, zio_priority_t prio)
1796{
1797	dmu_buf_impl_t *db = NULL;
1798	blkptr_t *bp = NULL;
1799
1800	ASSERT(blkid != DMU_BONUS_BLKID);
1801	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1802
1803	if (dnode_block_freed(dn, blkid))
1804		return;
1805
1806	/* dbuf_find() returns with db_mtx held */
1807	if (db = dbuf_find(dn, 0, blkid)) {
1808		/*
1809		 * This dbuf is already in the cache.  We assume that
1810		 * it is already CACHED, or else about to be either
1811		 * read or filled.
1812		 */
1813		mutex_exit(&db->db_mtx);
1814		return;
1815	}
1816
1817	if (dbuf_findbp(dn, 0, blkid, TRUE, &db, &bp) == 0) {
1818		if (bp && !BP_IS_HOLE(bp)) {
1819			dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
1820			uint32_t aflags = ARC_NOWAIT | ARC_PREFETCH;
1821			zbookmark_t zb;
1822
1823			SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
1824			    dn->dn_object, 0, blkid);
1825
1826			(void) arc_read(NULL, dn->dn_objset->os_spa,
1827			    bp, NULL, NULL, prio,
1828			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
1829			    &aflags, &zb);
1830		}
1831		if (db)
1832			dbuf_rele(db, NULL);
1833	}
1834}
1835
1836/*
1837 * Returns with db_holds incremented, and db_mtx not held.
1838 * Note: dn_struct_rwlock must be held.
1839 */
1840int
1841dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse,
1842    void *tag, dmu_buf_impl_t **dbp)
1843{
1844	dmu_buf_impl_t *db, *parent = NULL;
1845
1846	ASSERT(blkid != DMU_BONUS_BLKID);
1847	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1848	ASSERT3U(dn->dn_nlevels, >, level);
1849
1850	*dbp = NULL;
1851top:
1852	/* dbuf_find() returns with db_mtx held */
1853	db = dbuf_find(dn, level, blkid);
1854
1855	if (db == NULL) {
1856		blkptr_t *bp = NULL;
1857		int err;
1858
1859		ASSERT3P(parent, ==, NULL);
1860		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
1861		if (fail_sparse) {
1862			if (err == 0 && bp && BP_IS_HOLE(bp))
1863				err = SET_ERROR(ENOENT);
1864			if (err) {
1865				if (parent)
1866					dbuf_rele(parent, NULL);
1867				return (err);
1868			}
1869		}
1870		if (err && err != ENOENT)
1871			return (err);
1872		db = dbuf_create(dn, level, blkid, parent, bp);
1873	}
1874
1875	if (db->db_buf && refcount_is_zero(&db->db_holds)) {
1876		arc_buf_add_ref(db->db_buf, db);
1877		if (db->db_buf->b_data == NULL) {
1878			dbuf_clear(db);
1879			if (parent) {
1880				dbuf_rele(parent, NULL);
1881				parent = NULL;
1882			}
1883			goto top;
1884		}
1885		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
1886	}
1887
1888	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
1889
1890	/*
1891	 * If this buffer is currently syncing out, and we are are
1892	 * still referencing it from db_data, we need to make a copy
1893	 * of it in case we decide we want to dirty it again in this txg.
1894	 */
1895	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1896	    dn->dn_object != DMU_META_DNODE_OBJECT &&
1897	    db->db_state == DB_CACHED && db->db_data_pending) {
1898		dbuf_dirty_record_t *dr = db->db_data_pending;
1899
1900		if (dr->dt.dl.dr_data == db->db_buf) {
1901			arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1902
1903			dbuf_set_data(db,
1904			    arc_buf_alloc(dn->dn_objset->os_spa,
1905			    db->db.db_size, db, type));
1906			bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
1907			    db->db.db_size);
1908		}
1909	}
1910
1911	(void) refcount_add(&db->db_holds, tag);
1912	dbuf_update_data(db);
1913	DBUF_VERIFY(db);
1914	mutex_exit(&db->db_mtx);
1915
1916	/* NOTE: we can't rele the parent until after we drop the db_mtx */
1917	if (parent)
1918		dbuf_rele(parent, NULL);
1919
1920	ASSERT3P(DB_DNODE(db), ==, dn);
1921	ASSERT3U(db->db_blkid, ==, blkid);
1922	ASSERT3U(db->db_level, ==, level);
1923	*dbp = db;
1924
1925	return (0);
1926}
1927
1928dmu_buf_impl_t *
1929dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
1930{
1931	dmu_buf_impl_t *db;
1932	int err = dbuf_hold_impl(dn, 0, blkid, FALSE, tag, &db);
1933	return (err ? NULL : db);
1934}
1935
1936dmu_buf_impl_t *
1937dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
1938{
1939	dmu_buf_impl_t *db;
1940	int err = dbuf_hold_impl(dn, level, blkid, FALSE, tag, &db);
1941	return (err ? NULL : db);
1942}
1943
1944void
1945dbuf_create_bonus(dnode_t *dn)
1946{
1947	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1948
1949	ASSERT(dn->dn_bonus == NULL);
1950	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
1951}
1952
1953int
1954dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
1955{
1956	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1957	dnode_t *dn;
1958
1959	if (db->db_blkid != DMU_SPILL_BLKID)
1960		return (SET_ERROR(ENOTSUP));
1961	if (blksz == 0)
1962		blksz = SPA_MINBLOCKSIZE;
1963	if (blksz > SPA_MAXBLOCKSIZE)
1964		blksz = SPA_MAXBLOCKSIZE;
1965	else
1966		blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
1967
1968	DB_DNODE_ENTER(db);
1969	dn = DB_DNODE(db);
1970	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1971	dbuf_new_size(db, blksz, tx);
1972	rw_exit(&dn->dn_struct_rwlock);
1973	DB_DNODE_EXIT(db);
1974
1975	return (0);
1976}
1977
1978void
1979dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
1980{
1981	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
1982}
1983
1984#pragma weak dmu_buf_add_ref = dbuf_add_ref
1985void
1986dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
1987{
1988	int64_t holds = refcount_add(&db->db_holds, tag);
1989	ASSERT(holds > 1);
1990}
1991
1992/*
1993 * If you call dbuf_rele() you had better not be referencing the dnode handle
1994 * unless you have some other direct or indirect hold on the dnode. (An indirect
1995 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
1996 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
1997 * dnode's parent dbuf evicting its dnode handles.
1998 */
1999void
2000dbuf_rele(dmu_buf_impl_t *db, void *tag)
2001{
2002	mutex_enter(&db->db_mtx);
2003	dbuf_rele_and_unlock(db, tag);
2004}
2005
2006void
2007dmu_buf_rele(dmu_buf_t *db, void *tag)
2008{
2009	dbuf_rele((dmu_buf_impl_t *)db, tag);
2010}
2011
2012/*
2013 * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
2014 * db_dirtycnt and db_holds to be updated atomically.
2015 */
2016void
2017dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2018{
2019	int64_t holds;
2020
2021	ASSERT(MUTEX_HELD(&db->db_mtx));
2022	DBUF_VERIFY(db);
2023
2024	/*
2025	 * Remove the reference to the dbuf before removing its hold on the
2026	 * dnode so we can guarantee in dnode_move() that a referenced bonus
2027	 * buffer has a corresponding dnode hold.
2028	 */
2029	holds = refcount_remove(&db->db_holds, tag);
2030	ASSERT(holds >= 0);
2031
2032	/*
2033	 * We can't freeze indirects if there is a possibility that they
2034	 * may be modified in the current syncing context.
2035	 */
2036	if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0))
2037		arc_buf_freeze(db->db_buf);
2038
2039	if (holds == db->db_dirtycnt &&
2040	    db->db_level == 0 && db->db_immediate_evict)
2041		dbuf_evict_user(db);
2042
2043	if (holds == 0) {
2044		if (db->db_blkid == DMU_BONUS_BLKID) {
2045			mutex_exit(&db->db_mtx);
2046
2047			/*
2048			 * If the dnode moves here, we cannot cross this barrier
2049			 * until the move completes.
2050			 */
2051			DB_DNODE_ENTER(db);
2052			(void) atomic_dec_32_nv(&DB_DNODE(db)->dn_dbufs_count);
2053			DB_DNODE_EXIT(db);
2054			/*
2055			 * The bonus buffer's dnode hold is no longer discounted
2056			 * in dnode_move(). The dnode cannot move until after
2057			 * the dnode_rele().
2058			 */
2059			dnode_rele(DB_DNODE(db), db);
2060		} else if (db->db_buf == NULL) {
2061			/*
2062			 * This is a special case: we never associated this
2063			 * dbuf with any data allocated from the ARC.
2064			 */
2065			ASSERT(db->db_state == DB_UNCACHED ||
2066			    db->db_state == DB_NOFILL);
2067			dbuf_evict(db);
2068		} else if (arc_released(db->db_buf)) {
2069			arc_buf_t *buf = db->db_buf;
2070			/*
2071			 * This dbuf has anonymous data associated with it.
2072			 */
2073			dbuf_set_data(db, NULL);
2074			VERIFY(arc_buf_remove_ref(buf, db));
2075			dbuf_evict(db);
2076		} else {
2077			VERIFY(!arc_buf_remove_ref(db->db_buf, db));
2078
2079			/*
2080			 * A dbuf will be eligible for eviction if either the
2081			 * 'primarycache' property is set or a duplicate
2082			 * copy of this buffer is already cached in the arc.
2083			 *
2084			 * In the case of the 'primarycache' a buffer
2085			 * is considered for eviction if it matches the
2086			 * criteria set in the property.
2087			 *
2088			 * To decide if our buffer is considered a
2089			 * duplicate, we must call into the arc to determine
2090			 * if multiple buffers are referencing the same
2091			 * block on-disk. If so, then we simply evict
2092			 * ourselves.
2093			 */
2094			if (!DBUF_IS_CACHEABLE(db) ||
2095			    arc_buf_eviction_needed(db->db_buf))
2096				dbuf_clear(db);
2097			else
2098				mutex_exit(&db->db_mtx);
2099		}
2100	} else {
2101		mutex_exit(&db->db_mtx);
2102	}
2103}
2104
2105#pragma weak dmu_buf_refcount = dbuf_refcount
2106uint64_t
2107dbuf_refcount(dmu_buf_impl_t *db)
2108{
2109	return (refcount_count(&db->db_holds));
2110}
2111
2112void *
2113dmu_buf_set_user(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr,
2114    dmu_buf_evict_func_t *evict_func)
2115{
2116	return (dmu_buf_update_user(db_fake, NULL, user_ptr,
2117	    user_data_ptr_ptr, evict_func));
2118}
2119
2120void *
2121dmu_buf_set_user_ie(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr,
2122    dmu_buf_evict_func_t *evict_func)
2123{
2124	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2125
2126	db->db_immediate_evict = TRUE;
2127	return (dmu_buf_update_user(db_fake, NULL, user_ptr,
2128	    user_data_ptr_ptr, evict_func));
2129}
2130
2131void *
2132dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr, void *user_ptr,
2133    void *user_data_ptr_ptr, dmu_buf_evict_func_t *evict_func)
2134{
2135	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2136	ASSERT(db->db_level == 0);
2137
2138	ASSERT((user_ptr == NULL) == (evict_func == NULL));
2139
2140	mutex_enter(&db->db_mtx);
2141
2142	if (db->db_user_ptr == old_user_ptr) {
2143		db->db_user_ptr = user_ptr;
2144		db->db_user_data_ptr_ptr = user_data_ptr_ptr;
2145		db->db_evict_func = evict_func;
2146
2147		dbuf_update_data(db);
2148	} else {
2149		old_user_ptr = db->db_user_ptr;
2150	}
2151
2152	mutex_exit(&db->db_mtx);
2153	return (old_user_ptr);
2154}
2155
2156void *
2157dmu_buf_get_user(dmu_buf_t *db_fake)
2158{
2159	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2160	ASSERT(!refcount_is_zero(&db->db_holds));
2161
2162	return (db->db_user_ptr);
2163}
2164
2165boolean_t
2166dmu_buf_freeable(dmu_buf_t *dbuf)
2167{
2168	boolean_t res = B_FALSE;
2169	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2170
2171	if (db->db_blkptr)
2172		res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset,
2173		    db->db_blkptr, db->db_blkptr->blk_birth);
2174
2175	return (res);
2176}
2177
2178blkptr_t *
2179dmu_buf_get_blkptr(dmu_buf_t *db)
2180{
2181	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2182	return (dbi->db_blkptr);
2183}
2184
2185static void
2186dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2187{
2188	/* ASSERT(dmu_tx_is_syncing(tx) */
2189	ASSERT(MUTEX_HELD(&db->db_mtx));
2190
2191	if (db->db_blkptr != NULL)
2192		return;
2193
2194	if (db->db_blkid == DMU_SPILL_BLKID) {
2195		db->db_blkptr = &dn->dn_phys->dn_spill;
2196		BP_ZERO(db->db_blkptr);
2197		return;
2198	}
2199	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2200		/*
2201		 * This buffer was allocated at a time when there was
2202		 * no available blkptrs from the dnode, or it was
2203		 * inappropriate to hook it in (i.e., nlevels mis-match).
2204		 */
2205		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2206		ASSERT(db->db_parent == NULL);
2207		db->db_parent = dn->dn_dbuf;
2208		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2209		DBUF_VERIFY(db);
2210	} else {
2211		dmu_buf_impl_t *parent = db->db_parent;
2212		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2213
2214		ASSERT(dn->dn_phys->dn_nlevels > 1);
2215		if (parent == NULL) {
2216			mutex_exit(&db->db_mtx);
2217			rw_enter(&dn->dn_struct_rwlock, RW_READER);
2218			(void) dbuf_hold_impl(dn, db->db_level+1,
2219			    db->db_blkid >> epbs, FALSE, db, &parent);
2220			rw_exit(&dn->dn_struct_rwlock);
2221			mutex_enter(&db->db_mtx);
2222			db->db_parent = parent;
2223		}
2224		db->db_blkptr = (blkptr_t *)parent->db.db_data +
2225		    (db->db_blkid & ((1ULL << epbs) - 1));
2226		DBUF_VERIFY(db);
2227	}
2228}
2229
2230static void
2231dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2232{
2233	dmu_buf_impl_t *db = dr->dr_dbuf;
2234	dnode_t *dn;
2235	zio_t *zio;
2236
2237	ASSERT(dmu_tx_is_syncing(tx));
2238
2239	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2240
2241	mutex_enter(&db->db_mtx);
2242
2243	ASSERT(db->db_level > 0);
2244	DBUF_VERIFY(db);
2245
2246	/* Read the block if it hasn't been read yet. */
2247	if (db->db_buf == NULL) {
2248		mutex_exit(&db->db_mtx);
2249		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2250		mutex_enter(&db->db_mtx);
2251	}
2252	ASSERT3U(db->db_state, ==, DB_CACHED);
2253	ASSERT(db->db_buf != NULL);
2254
2255	DB_DNODE_ENTER(db);
2256	dn = DB_DNODE(db);
2257	/* Indirect block size must match what the dnode thinks it is. */
2258	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2259	dbuf_check_blkptr(dn, db);
2260	DB_DNODE_EXIT(db);
2261
2262	/* Provide the pending dirty record to child dbufs */
2263	db->db_data_pending = dr;
2264
2265	mutex_exit(&db->db_mtx);
2266	dbuf_write(dr, db->db_buf, tx);
2267
2268	zio = dr->dr_zio;
2269	mutex_enter(&dr->dt.di.dr_mtx);
2270	dbuf_sync_list(&dr->dt.di.dr_children, tx);
2271	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2272	mutex_exit(&dr->dt.di.dr_mtx);
2273	zio_nowait(zio);
2274}
2275
2276static void
2277dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2278{
2279	arc_buf_t **datap = &dr->dt.dl.dr_data;
2280	dmu_buf_impl_t *db = dr->dr_dbuf;
2281	dnode_t *dn;
2282	objset_t *os;
2283	uint64_t txg = tx->tx_txg;
2284
2285	ASSERT(dmu_tx_is_syncing(tx));
2286
2287	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2288
2289	mutex_enter(&db->db_mtx);
2290	/*
2291	 * To be synced, we must be dirtied.  But we
2292	 * might have been freed after the dirty.
2293	 */
2294	if (db->db_state == DB_UNCACHED) {
2295		/* This buffer has been freed since it was dirtied */
2296		ASSERT(db->db.db_data == NULL);
2297	} else if (db->db_state == DB_FILL) {
2298		/* This buffer was freed and is now being re-filled */
2299		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
2300	} else {
2301		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
2302	}
2303	DBUF_VERIFY(db);
2304
2305	DB_DNODE_ENTER(db);
2306	dn = DB_DNODE(db);
2307
2308	if (db->db_blkid == DMU_SPILL_BLKID) {
2309		mutex_enter(&dn->dn_mtx);
2310		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
2311		mutex_exit(&dn->dn_mtx);
2312	}
2313
2314	/*
2315	 * If this is a bonus buffer, simply copy the bonus data into the
2316	 * dnode.  It will be written out when the dnode is synced (and it
2317	 * will be synced, since it must have been dirty for dbuf_sync to
2318	 * be called).
2319	 */
2320	if (db->db_blkid == DMU_BONUS_BLKID) {
2321		dbuf_dirty_record_t **drp;
2322
2323		ASSERT(*datap != NULL);
2324		ASSERT0(db->db_level);
2325		ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
2326		bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
2327		DB_DNODE_EXIT(db);
2328
2329		if (*datap != db->db.db_data) {
2330			zio_buf_free(*datap, DN_MAX_BONUSLEN);
2331			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2332		}
2333		db->db_data_pending = NULL;
2334		drp = &db->db_last_dirty;
2335		while (*drp != dr)
2336			drp = &(*drp)->dr_next;
2337		ASSERT(dr->dr_next == NULL);
2338		ASSERT(dr->dr_dbuf == db);
2339		*drp = dr->dr_next;
2340		if (dr->dr_dbuf->db_level != 0) {
2341			list_destroy(&dr->dt.di.dr_children);
2342			mutex_destroy(&dr->dt.di.dr_mtx);
2343		}
2344		kmem_free(dr, sizeof (dbuf_dirty_record_t));
2345		ASSERT(db->db_dirtycnt > 0);
2346		db->db_dirtycnt -= 1;
2347		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2348		return;
2349	}
2350
2351	os = dn->dn_objset;
2352
2353	/*
2354	 * This function may have dropped the db_mtx lock allowing a dmu_sync
2355	 * operation to sneak in. As a result, we need to ensure that we
2356	 * don't check the dr_override_state until we have returned from
2357	 * dbuf_check_blkptr.
2358	 */
2359	dbuf_check_blkptr(dn, db);
2360
2361	/*
2362	 * If this buffer is in the middle of an immediate write,
2363	 * wait for the synchronous IO to complete.
2364	 */
2365	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
2366		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
2367		cv_wait(&db->db_changed, &db->db_mtx);
2368		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
2369	}
2370
2371	if (db->db_state != DB_NOFILL &&
2372	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2373	    refcount_count(&db->db_holds) > 1 &&
2374	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
2375	    *datap == db->db_buf) {
2376		/*
2377		 * If this buffer is currently "in use" (i.e., there
2378		 * are active holds and db_data still references it),
2379		 * then make a copy before we start the write so that
2380		 * any modifications from the open txg will not leak
2381		 * into this write.
2382		 *
2383		 * NOTE: this copy does not need to be made for
2384		 * objects only modified in the syncing context (e.g.
2385		 * DNONE_DNODE blocks).
2386		 */
2387		int blksz = arc_buf_size(*datap);
2388		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2389		*datap = arc_buf_alloc(os->os_spa, blksz, db, type);
2390		bcopy(db->db.db_data, (*datap)->b_data, blksz);
2391	}
2392	db->db_data_pending = dr;
2393
2394	mutex_exit(&db->db_mtx);
2395
2396	dbuf_write(dr, *datap, tx);
2397
2398	ASSERT(!list_link_active(&dr->dr_dirty_node));
2399	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
2400		list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
2401		DB_DNODE_EXIT(db);
2402	} else {
2403		/*
2404		 * Although zio_nowait() does not "wait for an IO", it does
2405		 * initiate the IO. If this is an empty write it seems plausible
2406		 * that the IO could actually be completed before the nowait
2407		 * returns. We need to DB_DNODE_EXIT() first in case
2408		 * zio_nowait() invalidates the dbuf.
2409		 */
2410		DB_DNODE_EXIT(db);
2411		zio_nowait(dr->dr_zio);
2412	}
2413}
2414
2415void
2416dbuf_sync_list(list_t *list, dmu_tx_t *tx)
2417{
2418	dbuf_dirty_record_t *dr;
2419
2420	while (dr = list_head(list)) {
2421		if (dr->dr_zio != NULL) {
2422			/*
2423			 * If we find an already initialized zio then we
2424			 * are processing the meta-dnode, and we have finished.
2425			 * The dbufs for all dnodes are put back on the list
2426			 * during processing, so that we can zio_wait()
2427			 * these IOs after initiating all child IOs.
2428			 */
2429			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
2430			    DMU_META_DNODE_OBJECT);
2431			break;
2432		}
2433		list_remove(list, dr);
2434		if (dr->dr_dbuf->db_level > 0)
2435			dbuf_sync_indirect(dr, tx);
2436		else
2437			dbuf_sync_leaf(dr, tx);
2438	}
2439}
2440
2441/* ARGSUSED */
2442static void
2443dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
2444{
2445	dmu_buf_impl_t *db = vdb;
2446	dnode_t *dn;
2447	blkptr_t *bp = zio->io_bp;
2448	blkptr_t *bp_orig = &zio->io_bp_orig;
2449	spa_t *spa = zio->io_spa;
2450	int64_t delta;
2451	uint64_t fill = 0;
2452	int i;
2453
2454	ASSERT(db->db_blkptr == bp);
2455
2456	DB_DNODE_ENTER(db);
2457	dn = DB_DNODE(db);
2458	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
2459	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
2460	zio->io_prev_space_delta = delta;
2461
2462	if (bp->blk_birth != 0) {
2463		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
2464		    BP_GET_TYPE(bp) == dn->dn_type) ||
2465		    (db->db_blkid == DMU_SPILL_BLKID &&
2466		    BP_GET_TYPE(bp) == dn->dn_bonustype));
2467		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
2468	}
2469
2470	mutex_enter(&db->db_mtx);
2471
2472#ifdef ZFS_DEBUG
2473	if (db->db_blkid == DMU_SPILL_BLKID) {
2474		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2475		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2476		    db->db_blkptr == &dn->dn_phys->dn_spill);
2477	}
2478#endif
2479
2480	if (db->db_level == 0) {
2481		mutex_enter(&dn->dn_mtx);
2482		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
2483		    db->db_blkid != DMU_SPILL_BLKID)
2484			dn->dn_phys->dn_maxblkid = db->db_blkid;
2485		mutex_exit(&dn->dn_mtx);
2486
2487		if (dn->dn_type == DMU_OT_DNODE) {
2488			dnode_phys_t *dnp = db->db.db_data;
2489			for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
2490			    i--, dnp++) {
2491				if (dnp->dn_type != DMU_OT_NONE)
2492					fill++;
2493			}
2494		} else {
2495			if (BP_IS_HOLE(bp)) {
2496				fill = 0;
2497			} else {
2498				fill = 1;
2499			}
2500		}
2501	} else {
2502		blkptr_t *ibp = db->db.db_data;
2503		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2504		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
2505			if (BP_IS_HOLE(ibp))
2506				continue;
2507			fill += ibp->blk_fill;
2508		}
2509	}
2510	DB_DNODE_EXIT(db);
2511
2512	bp->blk_fill = fill;
2513
2514	mutex_exit(&db->db_mtx);
2515}
2516
2517/*
2518 * The SPA will call this callback several times for each zio - once
2519 * for every physical child i/o (zio->io_phys_children times).  This
2520 * allows the DMU to monitor the progress of each logical i/o.  For example,
2521 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
2522 * block.  There may be a long delay before all copies/fragments are completed,
2523 * so this callback allows us to retire dirty space gradually, as the physical
2524 * i/os complete.
2525 */
2526/* ARGSUSED */
2527static void
2528dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
2529{
2530	dmu_buf_impl_t *db = arg;
2531	objset_t *os = db->db_objset;
2532	dsl_pool_t *dp = dmu_objset_pool(os);
2533	dbuf_dirty_record_t *dr;
2534	int delta = 0;
2535
2536	dr = db->db_data_pending;
2537	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
2538
2539	/*
2540	 * The callback will be called io_phys_children times.  Retire one
2541	 * portion of our dirty space each time we are called.  Any rounding
2542	 * error will be cleaned up by dsl_pool_sync()'s call to
2543	 * dsl_pool_undirty_space().
2544	 */
2545	delta = dr->dr_accounted / zio->io_phys_children;
2546	dsl_pool_undirty_space(dp, delta, zio->io_txg);
2547}
2548
2549/* ARGSUSED */
2550static void
2551dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
2552{
2553	dmu_buf_impl_t *db = vdb;
2554	blkptr_t *bp_orig = &zio->io_bp_orig;
2555	blkptr_t *bp = db->db_blkptr;
2556	objset_t *os = db->db_objset;
2557	dmu_tx_t *tx = os->os_synctx;
2558	dbuf_dirty_record_t **drp, *dr;
2559
2560	ASSERT0(zio->io_error);
2561	ASSERT(db->db_blkptr == bp);
2562
2563	/*
2564	 * For nopwrites and rewrites we ensure that the bp matches our
2565	 * original and bypass all the accounting.
2566	 */
2567	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
2568		ASSERT(BP_EQUAL(bp, bp_orig));
2569	} else {
2570		dsl_dataset_t *ds = os->os_dsl_dataset;
2571		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
2572		dsl_dataset_block_born(ds, bp, tx);
2573	}
2574
2575	mutex_enter(&db->db_mtx);
2576
2577	DBUF_VERIFY(db);
2578
2579	drp = &db->db_last_dirty;
2580	while ((dr = *drp) != db->db_data_pending)
2581		drp = &dr->dr_next;
2582	ASSERT(!list_link_active(&dr->dr_dirty_node));
2583	ASSERT(dr->dr_dbuf == db);
2584	ASSERT(dr->dr_next == NULL);
2585	*drp = dr->dr_next;
2586
2587#ifdef ZFS_DEBUG
2588	if (db->db_blkid == DMU_SPILL_BLKID) {
2589		dnode_t *dn;
2590
2591		DB_DNODE_ENTER(db);
2592		dn = DB_DNODE(db);
2593		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2594		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2595		    db->db_blkptr == &dn->dn_phys->dn_spill);
2596		DB_DNODE_EXIT(db);
2597	}
2598#endif
2599
2600	if (db->db_level == 0) {
2601		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2602		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
2603		if (db->db_state != DB_NOFILL) {
2604			if (dr->dt.dl.dr_data != db->db_buf)
2605				VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data,
2606				    db));
2607			else if (!arc_released(db->db_buf))
2608				arc_set_callback(db->db_buf, dbuf_do_evict, db);
2609		}
2610	} else {
2611		dnode_t *dn;
2612
2613		DB_DNODE_ENTER(db);
2614		dn = DB_DNODE(db);
2615		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2616		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
2617		if (!BP_IS_HOLE(db->db_blkptr)) {
2618			int epbs =
2619			    dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2620			ASSERT3U(db->db_blkid, <=,
2621			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
2622			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
2623			    db->db.db_size);
2624			arc_set_callback(db->db_buf, dbuf_do_evict, db);
2625		}
2626		DB_DNODE_EXIT(db);
2627		mutex_destroy(&dr->dt.di.dr_mtx);
2628		list_destroy(&dr->dt.di.dr_children);
2629	}
2630	kmem_free(dr, sizeof (dbuf_dirty_record_t));
2631
2632	cv_broadcast(&db->db_changed);
2633	ASSERT(db->db_dirtycnt > 0);
2634	db->db_dirtycnt -= 1;
2635	db->db_data_pending = NULL;
2636	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
2637}
2638
2639static void
2640dbuf_write_nofill_ready(zio_t *zio)
2641{
2642	dbuf_write_ready(zio, NULL, zio->io_private);
2643}
2644
2645static void
2646dbuf_write_nofill_done(zio_t *zio)
2647{
2648	dbuf_write_done(zio, NULL, zio->io_private);
2649}
2650
2651static void
2652dbuf_write_override_ready(zio_t *zio)
2653{
2654	dbuf_dirty_record_t *dr = zio->io_private;
2655	dmu_buf_impl_t *db = dr->dr_dbuf;
2656
2657	dbuf_write_ready(zio, NULL, db);
2658}
2659
2660static void
2661dbuf_write_override_done(zio_t *zio)
2662{
2663	dbuf_dirty_record_t *dr = zio->io_private;
2664	dmu_buf_impl_t *db = dr->dr_dbuf;
2665	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
2666
2667	mutex_enter(&db->db_mtx);
2668	if (!BP_EQUAL(zio->io_bp, obp)) {
2669		if (!BP_IS_HOLE(obp))
2670			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
2671		arc_release(dr->dt.dl.dr_data, db);
2672	}
2673	mutex_exit(&db->db_mtx);
2674
2675	dbuf_write_done(zio, NULL, db);
2676}
2677
2678/* Issue I/O to commit a dirty buffer to disk. */
2679static void
2680dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
2681{
2682	dmu_buf_impl_t *db = dr->dr_dbuf;
2683	dnode_t *dn;
2684	objset_t *os;
2685	dmu_buf_impl_t *parent = db->db_parent;
2686	uint64_t txg = tx->tx_txg;
2687	zbookmark_t zb;
2688	zio_prop_t zp;
2689	zio_t *zio;
2690	int wp_flag = 0;
2691
2692	DB_DNODE_ENTER(db);
2693	dn = DB_DNODE(db);
2694	os = dn->dn_objset;
2695
2696	if (db->db_state != DB_NOFILL) {
2697		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
2698			/*
2699			 * Private object buffers are released here rather
2700			 * than in dbuf_dirty() since they are only modified
2701			 * in the syncing context and we don't want the
2702			 * overhead of making multiple copies of the data.
2703			 */
2704			if (BP_IS_HOLE(db->db_blkptr)) {
2705				arc_buf_thaw(data);
2706			} else {
2707				dbuf_release_bp(db);
2708			}
2709		}
2710	}
2711
2712	if (parent != dn->dn_dbuf) {
2713		/* Our parent is an indirect block. */
2714		/* We have a dirty parent that has been scheduled for write. */
2715		ASSERT(parent && parent->db_data_pending);
2716		/* Our parent's buffer is one level closer to the dnode. */
2717		ASSERT(db->db_level == parent->db_level-1);
2718		/*
2719		 * We're about to modify our parent's db_data by modifying
2720		 * our block pointer, so the parent must be released.
2721		 */
2722		ASSERT(arc_released(parent->db_buf));
2723		zio = parent->db_data_pending->dr_zio;
2724	} else {
2725		/* Our parent is the dnode itself. */
2726		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
2727		    db->db_blkid != DMU_SPILL_BLKID) ||
2728		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
2729		if (db->db_blkid != DMU_SPILL_BLKID)
2730			ASSERT3P(db->db_blkptr, ==,
2731			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
2732		zio = dn->dn_zio;
2733	}
2734
2735	ASSERT(db->db_level == 0 || data == db->db_buf);
2736	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
2737	ASSERT(zio);
2738
2739	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
2740	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
2741	    db->db.db_object, db->db_level, db->db_blkid);
2742
2743	if (db->db_blkid == DMU_SPILL_BLKID)
2744		wp_flag = WP_SPILL;
2745	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
2746
2747	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
2748	DB_DNODE_EXIT(db);
2749
2750	if (db->db_level == 0 && dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
2751		ASSERT(db->db_state != DB_NOFILL);
2752		dr->dr_zio = zio_write(zio, os->os_spa, txg,
2753		    db->db_blkptr, data->b_data, arc_buf_size(data), &zp,
2754		    dbuf_write_override_ready, NULL, dbuf_write_override_done,
2755		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
2756		mutex_enter(&db->db_mtx);
2757		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
2758		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
2759		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
2760		mutex_exit(&db->db_mtx);
2761	} else if (db->db_state == DB_NOFILL) {
2762		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
2763		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
2764		dr->dr_zio = zio_write(zio, os->os_spa, txg,
2765		    db->db_blkptr, NULL, db->db.db_size, &zp,
2766		    dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db,
2767		    ZIO_PRIORITY_ASYNC_WRITE,
2768		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
2769	} else {
2770		ASSERT(arc_released(data));
2771		dr->dr_zio = arc_write(zio, os->os_spa, txg,
2772		    db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db),
2773		    DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready,
2774		    dbuf_write_physdone, dbuf_write_done, db,
2775		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
2776	}
2777}
2778