dbuf.c revision 260763
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 */
28
29#include <sys/zfs_context.h>
30#include <sys/dmu.h>
31#include <sys/dmu_send.h>
32#include <sys/dmu_impl.h>
33#include <sys/dbuf.h>
34#include <sys/dmu_objset.h>
35#include <sys/dsl_dataset.h>
36#include <sys/dsl_dir.h>
37#include <sys/dmu_tx.h>
38#include <sys/spa.h>
39#include <sys/zio.h>
40#include <sys/dmu_zfetch.h>
41#include <sys/sa.h>
42#include <sys/sa_impl.h>
43
44/*
45 * Number of times that zfs_free_range() took the slow path while doing
46 * a zfs receive.  A nonzero value indicates a potential performance problem.
47 */
48uint64_t zfs_free_range_recv_miss;
49
50static void dbuf_destroy(dmu_buf_impl_t *db);
51static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
52static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
53
54/*
55 * Global data structures and functions for the dbuf cache.
56 */
57static kmem_cache_t *dbuf_cache;
58
59/* ARGSUSED */
60static int
61dbuf_cons(void *vdb, void *unused, int kmflag)
62{
63	dmu_buf_impl_t *db = vdb;
64	bzero(db, sizeof (dmu_buf_impl_t));
65
66	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
67	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
68	refcount_create(&db->db_holds);
69	return (0);
70}
71
72/* ARGSUSED */
73static void
74dbuf_dest(void *vdb, void *unused)
75{
76	dmu_buf_impl_t *db = vdb;
77	mutex_destroy(&db->db_mtx);
78	cv_destroy(&db->db_changed);
79	refcount_destroy(&db->db_holds);
80}
81
82/*
83 * dbuf hash table routines
84 */
85static dbuf_hash_table_t dbuf_hash_table;
86
87static uint64_t dbuf_hash_count;
88
89static uint64_t
90dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
91{
92	uintptr_t osv = (uintptr_t)os;
93	uint64_t crc = -1ULL;
94
95	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
96	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
97	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
98	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
99	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
100	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
101	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
102
103	crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
104
105	return (crc);
106}
107
108#define	DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid);
109
110#define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
111	((dbuf)->db.db_object == (obj) &&		\
112	(dbuf)->db_objset == (os) &&			\
113	(dbuf)->db_level == (level) &&			\
114	(dbuf)->db_blkid == (blkid))
115
116dmu_buf_impl_t *
117dbuf_find(dnode_t *dn, uint8_t level, uint64_t blkid)
118{
119	dbuf_hash_table_t *h = &dbuf_hash_table;
120	objset_t *os = dn->dn_objset;
121	uint64_t obj = dn->dn_object;
122	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
123	uint64_t idx = hv & h->hash_table_mask;
124	dmu_buf_impl_t *db;
125
126	mutex_enter(DBUF_HASH_MUTEX(h, idx));
127	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
128		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
129			mutex_enter(&db->db_mtx);
130			if (db->db_state != DB_EVICTING) {
131				mutex_exit(DBUF_HASH_MUTEX(h, idx));
132				return (db);
133			}
134			mutex_exit(&db->db_mtx);
135		}
136	}
137	mutex_exit(DBUF_HASH_MUTEX(h, idx));
138	return (NULL);
139}
140
141/*
142 * Insert an entry into the hash table.  If there is already an element
143 * equal to elem in the hash table, then the already existing element
144 * will be returned and the new element will not be inserted.
145 * Otherwise returns NULL.
146 */
147static dmu_buf_impl_t *
148dbuf_hash_insert(dmu_buf_impl_t *db)
149{
150	dbuf_hash_table_t *h = &dbuf_hash_table;
151	objset_t *os = db->db_objset;
152	uint64_t obj = db->db.db_object;
153	int level = db->db_level;
154	uint64_t blkid = db->db_blkid;
155	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
156	uint64_t idx = hv & h->hash_table_mask;
157	dmu_buf_impl_t *dbf;
158
159	mutex_enter(DBUF_HASH_MUTEX(h, idx));
160	for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
161		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
162			mutex_enter(&dbf->db_mtx);
163			if (dbf->db_state != DB_EVICTING) {
164				mutex_exit(DBUF_HASH_MUTEX(h, idx));
165				return (dbf);
166			}
167			mutex_exit(&dbf->db_mtx);
168		}
169	}
170
171	mutex_enter(&db->db_mtx);
172	db->db_hash_next = h->hash_table[idx];
173	h->hash_table[idx] = db;
174	mutex_exit(DBUF_HASH_MUTEX(h, idx));
175	atomic_add_64(&dbuf_hash_count, 1);
176
177	return (NULL);
178}
179
180/*
181 * Remove an entry from the hash table.  This operation will
182 * fail if there are any existing holds on the db.
183 */
184static void
185dbuf_hash_remove(dmu_buf_impl_t *db)
186{
187	dbuf_hash_table_t *h = &dbuf_hash_table;
188	uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object,
189	    db->db_level, db->db_blkid);
190	uint64_t idx = hv & h->hash_table_mask;
191	dmu_buf_impl_t *dbf, **dbp;
192
193	/*
194	 * We musn't hold db_mtx to maintin lock ordering:
195	 * DBUF_HASH_MUTEX > db_mtx.
196	 */
197	ASSERT(refcount_is_zero(&db->db_holds));
198	ASSERT(db->db_state == DB_EVICTING);
199	ASSERT(!MUTEX_HELD(&db->db_mtx));
200
201	mutex_enter(DBUF_HASH_MUTEX(h, idx));
202	dbp = &h->hash_table[idx];
203	while ((dbf = *dbp) != db) {
204		dbp = &dbf->db_hash_next;
205		ASSERT(dbf != NULL);
206	}
207	*dbp = db->db_hash_next;
208	db->db_hash_next = NULL;
209	mutex_exit(DBUF_HASH_MUTEX(h, idx));
210	atomic_add_64(&dbuf_hash_count, -1);
211}
212
213static arc_evict_func_t dbuf_do_evict;
214
215static void
216dbuf_evict_user(dmu_buf_impl_t *db)
217{
218	ASSERT(MUTEX_HELD(&db->db_mtx));
219
220	if (db->db_level != 0 || db->db_evict_func == NULL)
221		return;
222
223	if (db->db_user_data_ptr_ptr)
224		*db->db_user_data_ptr_ptr = db->db.db_data;
225	db->db_evict_func(&db->db, db->db_user_ptr);
226	db->db_user_ptr = NULL;
227	db->db_user_data_ptr_ptr = NULL;
228	db->db_evict_func = NULL;
229}
230
231boolean_t
232dbuf_is_metadata(dmu_buf_impl_t *db)
233{
234	if (db->db_level > 0) {
235		return (B_TRUE);
236	} else {
237		boolean_t is_metadata;
238
239		DB_DNODE_ENTER(db);
240		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
241		DB_DNODE_EXIT(db);
242
243		return (is_metadata);
244	}
245}
246
247void
248dbuf_evict(dmu_buf_impl_t *db)
249{
250	ASSERT(MUTEX_HELD(&db->db_mtx));
251	ASSERT(db->db_buf == NULL);
252	ASSERT(db->db_data_pending == NULL);
253
254	dbuf_clear(db);
255	dbuf_destroy(db);
256}
257
258void
259dbuf_init(void)
260{
261	uint64_t hsize = 1ULL << 16;
262	dbuf_hash_table_t *h = &dbuf_hash_table;
263	int i;
264
265	/*
266	 * The hash table is big enough to fill all of physical memory
267	 * with an average 4K block size.  The table will take up
268	 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
269	 */
270	while (hsize * 4096 < (uint64_t)physmem * PAGESIZE)
271		hsize <<= 1;
272
273retry:
274	h->hash_table_mask = hsize - 1;
275	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
276	if (h->hash_table == NULL) {
277		/* XXX - we should really return an error instead of assert */
278		ASSERT(hsize > (1ULL << 10));
279		hsize >>= 1;
280		goto retry;
281	}
282
283	dbuf_cache = kmem_cache_create("dmu_buf_impl_t",
284	    sizeof (dmu_buf_impl_t),
285	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
286
287	for (i = 0; i < DBUF_MUTEXES; i++)
288		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
289}
290
291void
292dbuf_fini(void)
293{
294	dbuf_hash_table_t *h = &dbuf_hash_table;
295	int i;
296
297	for (i = 0; i < DBUF_MUTEXES; i++)
298		mutex_destroy(&h->hash_mutexes[i]);
299	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
300	kmem_cache_destroy(dbuf_cache);
301}
302
303/*
304 * Other stuff.
305 */
306
307#ifdef ZFS_DEBUG
308static void
309dbuf_verify(dmu_buf_impl_t *db)
310{
311	dnode_t *dn;
312	dbuf_dirty_record_t *dr;
313
314	ASSERT(MUTEX_HELD(&db->db_mtx));
315
316	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
317		return;
318
319	ASSERT(db->db_objset != NULL);
320	DB_DNODE_ENTER(db);
321	dn = DB_DNODE(db);
322	if (dn == NULL) {
323		ASSERT(db->db_parent == NULL);
324		ASSERT(db->db_blkptr == NULL);
325	} else {
326		ASSERT3U(db->db.db_object, ==, dn->dn_object);
327		ASSERT3P(db->db_objset, ==, dn->dn_objset);
328		ASSERT3U(db->db_level, <, dn->dn_nlevels);
329		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
330		    db->db_blkid == DMU_SPILL_BLKID ||
331		    !list_is_empty(&dn->dn_dbufs));
332	}
333	if (db->db_blkid == DMU_BONUS_BLKID) {
334		ASSERT(dn != NULL);
335		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
336		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
337	} else if (db->db_blkid == DMU_SPILL_BLKID) {
338		ASSERT(dn != NULL);
339		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
340		ASSERT0(db->db.db_offset);
341	} else {
342		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
343	}
344
345	for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
346		ASSERT(dr->dr_dbuf == db);
347
348	for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
349		ASSERT(dr->dr_dbuf == db);
350
351	/*
352	 * We can't assert that db_size matches dn_datablksz because it
353	 * can be momentarily different when another thread is doing
354	 * dnode_set_blksz().
355	 */
356	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
357		dr = db->db_data_pending;
358		/*
359		 * It should only be modified in syncing context, so
360		 * make sure we only have one copy of the data.
361		 */
362		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
363	}
364
365	/* verify db->db_blkptr */
366	if (db->db_blkptr) {
367		if (db->db_parent == dn->dn_dbuf) {
368			/* db is pointed to by the dnode */
369			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
370			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
371				ASSERT(db->db_parent == NULL);
372			else
373				ASSERT(db->db_parent != NULL);
374			if (db->db_blkid != DMU_SPILL_BLKID)
375				ASSERT3P(db->db_blkptr, ==,
376				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
377		} else {
378			/* db is pointed to by an indirect block */
379			int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
380			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
381			ASSERT3U(db->db_parent->db.db_object, ==,
382			    db->db.db_object);
383			/*
384			 * dnode_grow_indblksz() can make this fail if we don't
385			 * have the struct_rwlock.  XXX indblksz no longer
386			 * grows.  safe to do this now?
387			 */
388			if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
389				ASSERT3P(db->db_blkptr, ==,
390				    ((blkptr_t *)db->db_parent->db.db_data +
391				    db->db_blkid % epb));
392			}
393		}
394	}
395	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
396	    (db->db_buf == NULL || db->db_buf->b_data) &&
397	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
398	    db->db_state != DB_FILL && !dn->dn_free_txg) {
399		/*
400		 * If the blkptr isn't set but they have nonzero data,
401		 * it had better be dirty, otherwise we'll lose that
402		 * data when we evict this buffer.
403		 */
404		if (db->db_dirtycnt == 0) {
405			uint64_t *buf = db->db.db_data;
406			int i;
407
408			for (i = 0; i < db->db.db_size >> 3; i++) {
409				ASSERT(buf[i] == 0);
410			}
411		}
412	}
413	DB_DNODE_EXIT(db);
414}
415#endif
416
417static void
418dbuf_update_data(dmu_buf_impl_t *db)
419{
420	ASSERT(MUTEX_HELD(&db->db_mtx));
421	if (db->db_level == 0 && db->db_user_data_ptr_ptr) {
422		ASSERT(!refcount_is_zero(&db->db_holds));
423		*db->db_user_data_ptr_ptr = db->db.db_data;
424	}
425}
426
427static void
428dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
429{
430	ASSERT(MUTEX_HELD(&db->db_mtx));
431	ASSERT(db->db_buf == NULL || !arc_has_callback(db->db_buf));
432	db->db_buf = buf;
433	if (buf != NULL) {
434		ASSERT(buf->b_data != NULL);
435		db->db.db_data = buf->b_data;
436		if (!arc_released(buf))
437			arc_set_callback(buf, dbuf_do_evict, db);
438		dbuf_update_data(db);
439	} else {
440		dbuf_evict_user(db);
441		db->db.db_data = NULL;
442		if (db->db_state != DB_NOFILL)
443			db->db_state = DB_UNCACHED;
444	}
445}
446
447/*
448 * Loan out an arc_buf for read.  Return the loaned arc_buf.
449 */
450arc_buf_t *
451dbuf_loan_arcbuf(dmu_buf_impl_t *db)
452{
453	arc_buf_t *abuf;
454
455	mutex_enter(&db->db_mtx);
456	if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
457		int blksz = db->db.db_size;
458		spa_t *spa;
459
460		mutex_exit(&db->db_mtx);
461		DB_GET_SPA(&spa, db);
462		abuf = arc_loan_buf(spa, blksz);
463		bcopy(db->db.db_data, abuf->b_data, blksz);
464	} else {
465		abuf = db->db_buf;
466		arc_loan_inuse_buf(abuf, db);
467		dbuf_set_data(db, NULL);
468		mutex_exit(&db->db_mtx);
469	}
470	return (abuf);
471}
472
473uint64_t
474dbuf_whichblock(dnode_t *dn, uint64_t offset)
475{
476	if (dn->dn_datablkshift) {
477		return (offset >> dn->dn_datablkshift);
478	} else {
479		ASSERT3U(offset, <, dn->dn_datablksz);
480		return (0);
481	}
482}
483
484static void
485dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
486{
487	dmu_buf_impl_t *db = vdb;
488
489	mutex_enter(&db->db_mtx);
490	ASSERT3U(db->db_state, ==, DB_READ);
491	/*
492	 * All reads are synchronous, so we must have a hold on the dbuf
493	 */
494	ASSERT(refcount_count(&db->db_holds) > 0);
495	ASSERT(db->db_buf == NULL);
496	ASSERT(db->db.db_data == NULL);
497	if (db->db_level == 0 && db->db_freed_in_flight) {
498		/* we were freed in flight; disregard any error */
499		arc_release(buf, db);
500		bzero(buf->b_data, db->db.db_size);
501		arc_buf_freeze(buf);
502		db->db_freed_in_flight = FALSE;
503		dbuf_set_data(db, buf);
504		db->db_state = DB_CACHED;
505	} else if (zio == NULL || zio->io_error == 0) {
506		dbuf_set_data(db, buf);
507		db->db_state = DB_CACHED;
508	} else {
509		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
510		ASSERT3P(db->db_buf, ==, NULL);
511		VERIFY(arc_buf_remove_ref(buf, db));
512		db->db_state = DB_UNCACHED;
513	}
514	cv_broadcast(&db->db_changed);
515	dbuf_rele_and_unlock(db, NULL);
516}
517
518static void
519dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags)
520{
521	dnode_t *dn;
522	spa_t *spa;
523	zbookmark_t zb;
524	uint32_t aflags = ARC_NOWAIT;
525
526	DB_DNODE_ENTER(db);
527	dn = DB_DNODE(db);
528	ASSERT(!refcount_is_zero(&db->db_holds));
529	/* We need the struct_rwlock to prevent db_blkptr from changing. */
530	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
531	ASSERT(MUTEX_HELD(&db->db_mtx));
532	ASSERT(db->db_state == DB_UNCACHED);
533	ASSERT(db->db_buf == NULL);
534
535	if (db->db_blkid == DMU_BONUS_BLKID) {
536		int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
537
538		ASSERT3U(bonuslen, <=, db->db.db_size);
539		db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
540		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
541		if (bonuslen < DN_MAX_BONUSLEN)
542			bzero(db->db.db_data, DN_MAX_BONUSLEN);
543		if (bonuslen)
544			bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
545		DB_DNODE_EXIT(db);
546		dbuf_update_data(db);
547		db->db_state = DB_CACHED;
548		mutex_exit(&db->db_mtx);
549		return;
550	}
551
552	/*
553	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
554	 * processes the delete record and clears the bp while we are waiting
555	 * for the dn_mtx (resulting in a "no" from block_freed).
556	 */
557	if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
558	    (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
559	    BP_IS_HOLE(db->db_blkptr)))) {
560		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
561
562		dbuf_set_data(db, arc_buf_alloc(dn->dn_objset->os_spa,
563		    db->db.db_size, db, type));
564		DB_DNODE_EXIT(db);
565		bzero(db->db.db_data, db->db.db_size);
566		db->db_state = DB_CACHED;
567		*flags |= DB_RF_CACHED;
568		mutex_exit(&db->db_mtx);
569		return;
570	}
571
572	spa = dn->dn_objset->os_spa;
573	DB_DNODE_EXIT(db);
574
575	db->db_state = DB_READ;
576	mutex_exit(&db->db_mtx);
577
578	if (DBUF_IS_L2CACHEABLE(db))
579		aflags |= ARC_L2CACHE;
580	if (DBUF_IS_L2COMPRESSIBLE(db))
581		aflags |= ARC_L2COMPRESS;
582
583	SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
584	    db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
585	    db->db.db_object, db->db_level, db->db_blkid);
586
587	dbuf_add_ref(db, NULL);
588
589	(void) arc_read(zio, spa, db->db_blkptr,
590	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
591	    (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
592	    &aflags, &zb);
593	if (aflags & ARC_CACHED)
594		*flags |= DB_RF_CACHED;
595}
596
597int
598dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
599{
600	int err = 0;
601	int havepzio = (zio != NULL);
602	int prefetch;
603	dnode_t *dn;
604
605	/*
606	 * We don't have to hold the mutex to check db_state because it
607	 * can't be freed while we have a hold on the buffer.
608	 */
609	ASSERT(!refcount_is_zero(&db->db_holds));
610
611	if (db->db_state == DB_NOFILL)
612		return (SET_ERROR(EIO));
613
614	DB_DNODE_ENTER(db);
615	dn = DB_DNODE(db);
616	if ((flags & DB_RF_HAVESTRUCT) == 0)
617		rw_enter(&dn->dn_struct_rwlock, RW_READER);
618
619	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
620	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
621	    DBUF_IS_CACHEABLE(db);
622
623	mutex_enter(&db->db_mtx);
624	if (db->db_state == DB_CACHED) {
625		mutex_exit(&db->db_mtx);
626		if (prefetch)
627			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
628			    db->db.db_size, TRUE);
629		if ((flags & DB_RF_HAVESTRUCT) == 0)
630			rw_exit(&dn->dn_struct_rwlock);
631		DB_DNODE_EXIT(db);
632	} else if (db->db_state == DB_UNCACHED) {
633		spa_t *spa = dn->dn_objset->os_spa;
634
635		if (zio == NULL)
636			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
637		dbuf_read_impl(db, zio, &flags);
638
639		/* dbuf_read_impl has dropped db_mtx for us */
640
641		if (prefetch)
642			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
643			    db->db.db_size, flags & DB_RF_CACHED);
644
645		if ((flags & DB_RF_HAVESTRUCT) == 0)
646			rw_exit(&dn->dn_struct_rwlock);
647		DB_DNODE_EXIT(db);
648
649		if (!havepzio)
650			err = zio_wait(zio);
651	} else {
652		/*
653		 * Another reader came in while the dbuf was in flight
654		 * between UNCACHED and CACHED.  Either a writer will finish
655		 * writing the buffer (sending the dbuf to CACHED) or the
656		 * first reader's request will reach the read_done callback
657		 * and send the dbuf to CACHED.  Otherwise, a failure
658		 * occurred and the dbuf went to UNCACHED.
659		 */
660		mutex_exit(&db->db_mtx);
661		if (prefetch)
662			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
663			    db->db.db_size, TRUE);
664		if ((flags & DB_RF_HAVESTRUCT) == 0)
665			rw_exit(&dn->dn_struct_rwlock);
666		DB_DNODE_EXIT(db);
667
668		/* Skip the wait per the caller's request. */
669		mutex_enter(&db->db_mtx);
670		if ((flags & DB_RF_NEVERWAIT) == 0) {
671			while (db->db_state == DB_READ ||
672			    db->db_state == DB_FILL) {
673				ASSERT(db->db_state == DB_READ ||
674				    (flags & DB_RF_HAVESTRUCT) == 0);
675				cv_wait(&db->db_changed, &db->db_mtx);
676			}
677			if (db->db_state == DB_UNCACHED)
678				err = SET_ERROR(EIO);
679		}
680		mutex_exit(&db->db_mtx);
681	}
682
683	ASSERT(err || havepzio || db->db_state == DB_CACHED);
684	return (err);
685}
686
687static void
688dbuf_noread(dmu_buf_impl_t *db)
689{
690	ASSERT(!refcount_is_zero(&db->db_holds));
691	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
692	mutex_enter(&db->db_mtx);
693	while (db->db_state == DB_READ || db->db_state == DB_FILL)
694		cv_wait(&db->db_changed, &db->db_mtx);
695	if (db->db_state == DB_UNCACHED) {
696		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
697		spa_t *spa;
698
699		ASSERT(db->db_buf == NULL);
700		ASSERT(db->db.db_data == NULL);
701		DB_GET_SPA(&spa, db);
702		dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type));
703		db->db_state = DB_FILL;
704	} else if (db->db_state == DB_NOFILL) {
705		dbuf_set_data(db, NULL);
706	} else {
707		ASSERT3U(db->db_state, ==, DB_CACHED);
708	}
709	mutex_exit(&db->db_mtx);
710}
711
712/*
713 * This is our just-in-time copy function.  It makes a copy of
714 * buffers, that have been modified in a previous transaction
715 * group, before we modify them in the current active group.
716 *
717 * This function is used in two places: when we are dirtying a
718 * buffer for the first time in a txg, and when we are freeing
719 * a range in a dnode that includes this buffer.
720 *
721 * Note that when we are called from dbuf_free_range() we do
722 * not put a hold on the buffer, we just traverse the active
723 * dbuf list for the dnode.
724 */
725static void
726dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
727{
728	dbuf_dirty_record_t *dr = db->db_last_dirty;
729
730	ASSERT(MUTEX_HELD(&db->db_mtx));
731	ASSERT(db->db.db_data != NULL);
732	ASSERT(db->db_level == 0);
733	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
734
735	if (dr == NULL ||
736	    (dr->dt.dl.dr_data !=
737	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
738		return;
739
740	/*
741	 * If the last dirty record for this dbuf has not yet synced
742	 * and its referencing the dbuf data, either:
743	 *	reset the reference to point to a new copy,
744	 * or (if there a no active holders)
745	 *	just null out the current db_data pointer.
746	 */
747	ASSERT(dr->dr_txg >= txg - 2);
748	if (db->db_blkid == DMU_BONUS_BLKID) {
749		/* Note that the data bufs here are zio_bufs */
750		dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
751		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
752		bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
753	} else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
754		int size = db->db.db_size;
755		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
756		spa_t *spa;
757
758		DB_GET_SPA(&spa, db);
759		dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type);
760		bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
761	} else {
762		dbuf_set_data(db, NULL);
763	}
764}
765
766void
767dbuf_unoverride(dbuf_dirty_record_t *dr)
768{
769	dmu_buf_impl_t *db = dr->dr_dbuf;
770	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
771	uint64_t txg = dr->dr_txg;
772
773	ASSERT(MUTEX_HELD(&db->db_mtx));
774	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
775	ASSERT(db->db_level == 0);
776
777	if (db->db_blkid == DMU_BONUS_BLKID ||
778	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
779		return;
780
781	ASSERT(db->db_data_pending != dr);
782
783	/* free this block */
784	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) {
785		spa_t *spa;
786
787		DB_GET_SPA(&spa, db);
788		zio_free(spa, txg, bp);
789	}
790	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
791	dr->dt.dl.dr_nopwrite = B_FALSE;
792
793	/*
794	 * Release the already-written buffer, so we leave it in
795	 * a consistent dirty state.  Note that all callers are
796	 * modifying the buffer, so they will immediately do
797	 * another (redundant) arc_release().  Therefore, leave
798	 * the buf thawed to save the effort of freezing &
799	 * immediately re-thawing it.
800	 */
801	arc_release(dr->dt.dl.dr_data, db);
802}
803
804/*
805 * Evict (if its unreferenced) or clear (if its referenced) any level-0
806 * data blocks in the free range, so that any future readers will find
807 * empty blocks.  Also, if we happen across any level-1 dbufs in the
808 * range that have not already been marked dirty, mark them dirty so
809 * they stay in memory.
810 *
811 * This is a no-op if the dataset is in the middle of an incremental
812 * receive; see comment below for details.
813 */
814void
815dbuf_free_range(dnode_t *dn, uint64_t start, uint64_t end, dmu_tx_t *tx)
816{
817	dmu_buf_impl_t *db, *db_next;
818	uint64_t txg = tx->tx_txg;
819	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
820	uint64_t first_l1 = start >> epbs;
821	uint64_t last_l1 = end >> epbs;
822
823	if (end > dn->dn_maxblkid && (end != DMU_SPILL_BLKID)) {
824		end = dn->dn_maxblkid;
825		last_l1 = end >> epbs;
826	}
827	dprintf_dnode(dn, "start=%llu end=%llu\n", start, end);
828
829	mutex_enter(&dn->dn_dbufs_mtx);
830	if (start >= dn->dn_unlisted_l0_blkid * dn->dn_datablksz) {
831		/* There can't be any dbufs in this range; no need to search. */
832		mutex_exit(&dn->dn_dbufs_mtx);
833		return;
834	} else if (dmu_objset_is_receiving(dn->dn_objset)) {
835		/*
836		 * If we are receiving, we expect there to be no dbufs in
837		 * the range to be freed, because receive modifies each
838		 * block at most once, and in offset order.  If this is
839		 * not the case, it can lead to performance problems,
840		 * so note that we unexpectedly took the slow path.
841		 */
842		atomic_inc_64(&zfs_free_range_recv_miss);
843	}
844
845	for (db = list_head(&dn->dn_dbufs); db != NULL; db = db_next) {
846		db_next = list_next(&dn->dn_dbufs, db);
847		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
848
849		if (db->db_level == 1 &&
850		    db->db_blkid >= first_l1 && db->db_blkid <= last_l1) {
851			mutex_enter(&db->db_mtx);
852			if (db->db_last_dirty &&
853			    db->db_last_dirty->dr_txg < txg) {
854				dbuf_add_ref(db, FTAG);
855				mutex_exit(&db->db_mtx);
856				dbuf_will_dirty(db, tx);
857				dbuf_rele(db, FTAG);
858			} else {
859				mutex_exit(&db->db_mtx);
860			}
861		}
862
863		if (db->db_level != 0)
864			continue;
865		dprintf_dbuf(db, "found buf %s\n", "");
866		if (db->db_blkid < start || db->db_blkid > end)
867			continue;
868
869		/* found a level 0 buffer in the range */
870		mutex_enter(&db->db_mtx);
871		if (dbuf_undirty(db, tx)) {
872			/* mutex has been dropped and dbuf destroyed */
873			continue;
874		}
875
876		if (db->db_state == DB_UNCACHED ||
877		    db->db_state == DB_NOFILL ||
878		    db->db_state == DB_EVICTING) {
879			ASSERT(db->db.db_data == NULL);
880			mutex_exit(&db->db_mtx);
881			continue;
882		}
883		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
884			/* will be handled in dbuf_read_done or dbuf_rele */
885			db->db_freed_in_flight = TRUE;
886			mutex_exit(&db->db_mtx);
887			continue;
888		}
889		if (refcount_count(&db->db_holds) == 0) {
890			ASSERT(db->db_buf);
891			dbuf_clear(db);
892			continue;
893		}
894		/* The dbuf is referenced */
895
896		if (db->db_last_dirty != NULL) {
897			dbuf_dirty_record_t *dr = db->db_last_dirty;
898
899			if (dr->dr_txg == txg) {
900				/*
901				 * This buffer is "in-use", re-adjust the file
902				 * size to reflect that this buffer may
903				 * contain new data when we sync.
904				 */
905				if (db->db_blkid != DMU_SPILL_BLKID &&
906				    db->db_blkid > dn->dn_maxblkid)
907					dn->dn_maxblkid = db->db_blkid;
908				dbuf_unoverride(dr);
909			} else {
910				/*
911				 * This dbuf is not dirty in the open context.
912				 * Either uncache it (if its not referenced in
913				 * the open context) or reset its contents to
914				 * empty.
915				 */
916				dbuf_fix_old_data(db, txg);
917			}
918		}
919		/* clear the contents if its cached */
920		if (db->db_state == DB_CACHED) {
921			ASSERT(db->db.db_data != NULL);
922			arc_release(db->db_buf, db);
923			bzero(db->db.db_data, db->db.db_size);
924			arc_buf_freeze(db->db_buf);
925		}
926
927		mutex_exit(&db->db_mtx);
928	}
929	mutex_exit(&dn->dn_dbufs_mtx);
930}
931
932static int
933dbuf_block_freeable(dmu_buf_impl_t *db)
934{
935	dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
936	uint64_t birth_txg = 0;
937
938	/*
939	 * We don't need any locking to protect db_blkptr:
940	 * If it's syncing, then db_last_dirty will be set
941	 * so we'll ignore db_blkptr.
942	 */
943	ASSERT(MUTEX_HELD(&db->db_mtx));
944	if (db->db_last_dirty)
945		birth_txg = db->db_last_dirty->dr_txg;
946	else if (db->db_blkptr)
947		birth_txg = db->db_blkptr->blk_birth;
948
949	/*
950	 * If we don't exist or are in a snapshot, we can't be freed.
951	 * Don't pass the bp to dsl_dataset_block_freeable() since we
952	 * are holding the db_mtx lock and might deadlock if we are
953	 * prefetching a dedup-ed block.
954	 */
955	if (birth_txg)
956		return (ds == NULL ||
957		    dsl_dataset_block_freeable(ds, NULL, birth_txg));
958	else
959		return (FALSE);
960}
961
962void
963dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
964{
965	arc_buf_t *buf, *obuf;
966	int osize = db->db.db_size;
967	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
968	dnode_t *dn;
969
970	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
971
972	DB_DNODE_ENTER(db);
973	dn = DB_DNODE(db);
974
975	/* XXX does *this* func really need the lock? */
976	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
977
978	/*
979	 * This call to dbuf_will_dirty() with the dn_struct_rwlock held
980	 * is OK, because there can be no other references to the db
981	 * when we are changing its size, so no concurrent DB_FILL can
982	 * be happening.
983	 */
984	/*
985	 * XXX we should be doing a dbuf_read, checking the return
986	 * value and returning that up to our callers
987	 */
988	dbuf_will_dirty(db, tx);
989
990	/* create the data buffer for the new block */
991	buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type);
992
993	/* copy old block data to the new block */
994	obuf = db->db_buf;
995	bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
996	/* zero the remainder */
997	if (size > osize)
998		bzero((uint8_t *)buf->b_data + osize, size - osize);
999
1000	mutex_enter(&db->db_mtx);
1001	dbuf_set_data(db, buf);
1002	VERIFY(arc_buf_remove_ref(obuf, db));
1003	db->db.db_size = size;
1004
1005	if (db->db_level == 0) {
1006		ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1007		db->db_last_dirty->dt.dl.dr_data = buf;
1008	}
1009	mutex_exit(&db->db_mtx);
1010
1011	dnode_willuse_space(dn, size-osize, tx);
1012	DB_DNODE_EXIT(db);
1013}
1014
1015void
1016dbuf_release_bp(dmu_buf_impl_t *db)
1017{
1018	objset_t *os;
1019
1020	DB_GET_OBJSET(&os, db);
1021	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1022	ASSERT(arc_released(os->os_phys_buf) ||
1023	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
1024	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1025
1026	(void) arc_release(db->db_buf, db);
1027}
1028
1029dbuf_dirty_record_t *
1030dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1031{
1032	dnode_t *dn;
1033	objset_t *os;
1034	dbuf_dirty_record_t **drp, *dr;
1035	int drop_struct_lock = FALSE;
1036	boolean_t do_free_accounting = B_FALSE;
1037	int txgoff = tx->tx_txg & TXG_MASK;
1038
1039	ASSERT(tx->tx_txg != 0);
1040	ASSERT(!refcount_is_zero(&db->db_holds));
1041	DMU_TX_DIRTY_BUF(tx, db);
1042
1043	DB_DNODE_ENTER(db);
1044	dn = DB_DNODE(db);
1045	/*
1046	 * Shouldn't dirty a regular buffer in syncing context.  Private
1047	 * objects may be dirtied in syncing context, but only if they
1048	 * were already pre-dirtied in open context.
1049	 */
1050	ASSERT(!dmu_tx_is_syncing(tx) ||
1051	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1052	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1053	    dn->dn_objset->os_dsl_dataset == NULL);
1054	/*
1055	 * We make this assert for private objects as well, but after we
1056	 * check if we're already dirty.  They are allowed to re-dirty
1057	 * in syncing context.
1058	 */
1059	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1060	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1061	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1062
1063	mutex_enter(&db->db_mtx);
1064	/*
1065	 * XXX make this true for indirects too?  The problem is that
1066	 * transactions created with dmu_tx_create_assigned() from
1067	 * syncing context don't bother holding ahead.
1068	 */
1069	ASSERT(db->db_level != 0 ||
1070	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1071	    db->db_state == DB_NOFILL);
1072
1073	mutex_enter(&dn->dn_mtx);
1074	/*
1075	 * Don't set dirtyctx to SYNC if we're just modifying this as we
1076	 * initialize the objset.
1077	 */
1078	if (dn->dn_dirtyctx == DN_UNDIRTIED &&
1079	    !BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1080		dn->dn_dirtyctx =
1081		    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1082		ASSERT(dn->dn_dirtyctx_firstset == NULL);
1083		dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1084	}
1085	mutex_exit(&dn->dn_mtx);
1086
1087	if (db->db_blkid == DMU_SPILL_BLKID)
1088		dn->dn_have_spill = B_TRUE;
1089
1090	/*
1091	 * If this buffer is already dirty, we're done.
1092	 */
1093	drp = &db->db_last_dirty;
1094	ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1095	    db->db.db_object == DMU_META_DNODE_OBJECT);
1096	while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1097		drp = &dr->dr_next;
1098	if (dr && dr->dr_txg == tx->tx_txg) {
1099		DB_DNODE_EXIT(db);
1100
1101		if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1102			/*
1103			 * If this buffer has already been written out,
1104			 * we now need to reset its state.
1105			 */
1106			dbuf_unoverride(dr);
1107			if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1108			    db->db_state != DB_NOFILL)
1109				arc_buf_thaw(db->db_buf);
1110		}
1111		mutex_exit(&db->db_mtx);
1112		return (dr);
1113	}
1114
1115	/*
1116	 * Only valid if not already dirty.
1117	 */
1118	ASSERT(dn->dn_object == 0 ||
1119	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1120	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1121
1122	ASSERT3U(dn->dn_nlevels, >, db->db_level);
1123	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1124	    dn->dn_phys->dn_nlevels > db->db_level ||
1125	    dn->dn_next_nlevels[txgoff] > db->db_level ||
1126	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1127	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1128
1129	/*
1130	 * We should only be dirtying in syncing context if it's the
1131	 * mos or we're initializing the os or it's a special object.
1132	 * However, we are allowed to dirty in syncing context provided
1133	 * we already dirtied it in open context.  Hence we must make
1134	 * this assertion only if we're not already dirty.
1135	 */
1136	os = dn->dn_objset;
1137	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1138	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1139	ASSERT(db->db.db_size != 0);
1140
1141	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1142
1143	if (db->db_blkid != DMU_BONUS_BLKID) {
1144		/*
1145		 * Update the accounting.
1146		 * Note: we delay "free accounting" until after we drop
1147		 * the db_mtx.  This keeps us from grabbing other locks
1148		 * (and possibly deadlocking) in bp_get_dsize() while
1149		 * also holding the db_mtx.
1150		 */
1151		dnode_willuse_space(dn, db->db.db_size, tx);
1152		do_free_accounting = dbuf_block_freeable(db);
1153	}
1154
1155	/*
1156	 * If this buffer is dirty in an old transaction group we need
1157	 * to make a copy of it so that the changes we make in this
1158	 * transaction group won't leak out when we sync the older txg.
1159	 */
1160	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1161	if (db->db_level == 0) {
1162		void *data_old = db->db_buf;
1163
1164		if (db->db_state != DB_NOFILL) {
1165			if (db->db_blkid == DMU_BONUS_BLKID) {
1166				dbuf_fix_old_data(db, tx->tx_txg);
1167				data_old = db->db.db_data;
1168			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1169				/*
1170				 * Release the data buffer from the cache so
1171				 * that we can modify it without impacting
1172				 * possible other users of this cached data
1173				 * block.  Note that indirect blocks and
1174				 * private objects are not released until the
1175				 * syncing state (since they are only modified
1176				 * then).
1177				 */
1178				arc_release(db->db_buf, db);
1179				dbuf_fix_old_data(db, tx->tx_txg);
1180				data_old = db->db_buf;
1181			}
1182			ASSERT(data_old != NULL);
1183		}
1184		dr->dt.dl.dr_data = data_old;
1185	} else {
1186		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1187		list_create(&dr->dt.di.dr_children,
1188		    sizeof (dbuf_dirty_record_t),
1189		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
1190	}
1191	if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1192		dr->dr_accounted = db->db.db_size;
1193	dr->dr_dbuf = db;
1194	dr->dr_txg = tx->tx_txg;
1195	dr->dr_next = *drp;
1196	*drp = dr;
1197
1198	/*
1199	 * We could have been freed_in_flight between the dbuf_noread
1200	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
1201	 * happened after the free.
1202	 */
1203	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1204	    db->db_blkid != DMU_SPILL_BLKID) {
1205		mutex_enter(&dn->dn_mtx);
1206		dnode_clear_range(dn, db->db_blkid, 1, tx);
1207		mutex_exit(&dn->dn_mtx);
1208		db->db_freed_in_flight = FALSE;
1209	}
1210
1211	/*
1212	 * This buffer is now part of this txg
1213	 */
1214	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1215	db->db_dirtycnt += 1;
1216	ASSERT3U(db->db_dirtycnt, <=, 3);
1217
1218	mutex_exit(&db->db_mtx);
1219
1220	if (db->db_blkid == DMU_BONUS_BLKID ||
1221	    db->db_blkid == DMU_SPILL_BLKID) {
1222		mutex_enter(&dn->dn_mtx);
1223		ASSERT(!list_link_active(&dr->dr_dirty_node));
1224		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1225		mutex_exit(&dn->dn_mtx);
1226		dnode_setdirty(dn, tx);
1227		DB_DNODE_EXIT(db);
1228		return (dr);
1229	} else if (do_free_accounting) {
1230		blkptr_t *bp = db->db_blkptr;
1231		int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
1232		    bp_get_dsize(os->os_spa, bp) : db->db.db_size;
1233		/*
1234		 * This is only a guess -- if the dbuf is dirty
1235		 * in a previous txg, we don't know how much
1236		 * space it will use on disk yet.  We should
1237		 * really have the struct_rwlock to access
1238		 * db_blkptr, but since this is just a guess,
1239		 * it's OK if we get an odd answer.
1240		 */
1241		ddt_prefetch(os->os_spa, bp);
1242		dnode_willuse_space(dn, -willfree, tx);
1243	}
1244
1245	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1246		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1247		drop_struct_lock = TRUE;
1248	}
1249
1250	if (db->db_level == 0) {
1251		dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1252		ASSERT(dn->dn_maxblkid >= db->db_blkid);
1253	}
1254
1255	if (db->db_level+1 < dn->dn_nlevels) {
1256		dmu_buf_impl_t *parent = db->db_parent;
1257		dbuf_dirty_record_t *di;
1258		int parent_held = FALSE;
1259
1260		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1261			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1262
1263			parent = dbuf_hold_level(dn, db->db_level+1,
1264			    db->db_blkid >> epbs, FTAG);
1265			ASSERT(parent != NULL);
1266			parent_held = TRUE;
1267		}
1268		if (drop_struct_lock)
1269			rw_exit(&dn->dn_struct_rwlock);
1270		ASSERT3U(db->db_level+1, ==, parent->db_level);
1271		di = dbuf_dirty(parent, tx);
1272		if (parent_held)
1273			dbuf_rele(parent, FTAG);
1274
1275		mutex_enter(&db->db_mtx);
1276		/*
1277		 * Since we've dropped the mutex, it's possible that
1278		 * dbuf_undirty() might have changed this out from under us.
1279		 */
1280		if (db->db_last_dirty == dr ||
1281		    dn->dn_object == DMU_META_DNODE_OBJECT) {
1282			mutex_enter(&di->dt.di.dr_mtx);
1283			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1284			ASSERT(!list_link_active(&dr->dr_dirty_node));
1285			list_insert_tail(&di->dt.di.dr_children, dr);
1286			mutex_exit(&di->dt.di.dr_mtx);
1287			dr->dr_parent = di;
1288		}
1289		mutex_exit(&db->db_mtx);
1290	} else {
1291		ASSERT(db->db_level+1 == dn->dn_nlevels);
1292		ASSERT(db->db_blkid < dn->dn_nblkptr);
1293		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1294		mutex_enter(&dn->dn_mtx);
1295		ASSERT(!list_link_active(&dr->dr_dirty_node));
1296		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1297		mutex_exit(&dn->dn_mtx);
1298		if (drop_struct_lock)
1299			rw_exit(&dn->dn_struct_rwlock);
1300	}
1301
1302	dnode_setdirty(dn, tx);
1303	DB_DNODE_EXIT(db);
1304	return (dr);
1305}
1306
1307/*
1308 * Undirty a buffer in the transaction group referenced by the given
1309 * transaction.  Return whether this evicted the dbuf.
1310 */
1311static boolean_t
1312dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1313{
1314	dnode_t *dn;
1315	uint64_t txg = tx->tx_txg;
1316	dbuf_dirty_record_t *dr, **drp;
1317
1318	ASSERT(txg != 0);
1319	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1320	ASSERT0(db->db_level);
1321	ASSERT(MUTEX_HELD(&db->db_mtx));
1322
1323	/*
1324	 * If this buffer is not dirty, we're done.
1325	 */
1326	for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1327		if (dr->dr_txg <= txg)
1328			break;
1329	if (dr == NULL || dr->dr_txg < txg)
1330		return (B_FALSE);
1331	ASSERT(dr->dr_txg == txg);
1332	ASSERT(dr->dr_dbuf == db);
1333
1334	DB_DNODE_ENTER(db);
1335	dn = DB_DNODE(db);
1336
1337	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1338
1339	ASSERT(db->db.db_size != 0);
1340
1341	/*
1342	 * Any space we accounted for in dp_dirty_* will be cleaned up by
1343	 * dsl_pool_sync().  This is relatively rare so the discrepancy
1344	 * is not a big deal.
1345	 */
1346
1347	*drp = dr->dr_next;
1348
1349	/*
1350	 * Note that there are three places in dbuf_dirty()
1351	 * where this dirty record may be put on a list.
1352	 * Make sure to do a list_remove corresponding to
1353	 * every one of those list_insert calls.
1354	 */
1355	if (dr->dr_parent) {
1356		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1357		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1358		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1359	} else if (db->db_blkid == DMU_SPILL_BLKID ||
1360	    db->db_level+1 == dn->dn_nlevels) {
1361		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1362		mutex_enter(&dn->dn_mtx);
1363		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1364		mutex_exit(&dn->dn_mtx);
1365	}
1366	DB_DNODE_EXIT(db);
1367
1368	if (db->db_state != DB_NOFILL) {
1369		dbuf_unoverride(dr);
1370
1371		ASSERT(db->db_buf != NULL);
1372		ASSERT(dr->dt.dl.dr_data != NULL);
1373		if (dr->dt.dl.dr_data != db->db_buf)
1374			VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db));
1375	}
1376	kmem_free(dr, sizeof (dbuf_dirty_record_t));
1377
1378	ASSERT(db->db_dirtycnt > 0);
1379	db->db_dirtycnt -= 1;
1380
1381	if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1382		arc_buf_t *buf = db->db_buf;
1383
1384		ASSERT(db->db_state == DB_NOFILL || arc_released(buf));
1385		dbuf_set_data(db, NULL);
1386		VERIFY(arc_buf_remove_ref(buf, db));
1387		dbuf_evict(db);
1388		return (B_TRUE);
1389	}
1390
1391	return (B_FALSE);
1392}
1393
1394#pragma weak dmu_buf_will_dirty = dbuf_will_dirty
1395void
1396dbuf_will_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1397{
1398	int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1399
1400	ASSERT(tx->tx_txg != 0);
1401	ASSERT(!refcount_is_zero(&db->db_holds));
1402
1403	DB_DNODE_ENTER(db);
1404	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1405		rf |= DB_RF_HAVESTRUCT;
1406	DB_DNODE_EXIT(db);
1407	(void) dbuf_read(db, NULL, rf);
1408	(void) dbuf_dirty(db, tx);
1409}
1410
1411void
1412dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1413{
1414	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1415
1416	db->db_state = DB_NOFILL;
1417
1418	dmu_buf_will_fill(db_fake, tx);
1419}
1420
1421void
1422dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1423{
1424	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1425
1426	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1427	ASSERT(tx->tx_txg != 0);
1428	ASSERT(db->db_level == 0);
1429	ASSERT(!refcount_is_zero(&db->db_holds));
1430
1431	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1432	    dmu_tx_private_ok(tx));
1433
1434	dbuf_noread(db);
1435	(void) dbuf_dirty(db, tx);
1436}
1437
1438#pragma weak dmu_buf_fill_done = dbuf_fill_done
1439/* ARGSUSED */
1440void
1441dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1442{
1443	mutex_enter(&db->db_mtx);
1444	DBUF_VERIFY(db);
1445
1446	if (db->db_state == DB_FILL) {
1447		if (db->db_level == 0 && db->db_freed_in_flight) {
1448			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1449			/* we were freed while filling */
1450			/* XXX dbuf_undirty? */
1451			bzero(db->db.db_data, db->db.db_size);
1452			db->db_freed_in_flight = FALSE;
1453		}
1454		db->db_state = DB_CACHED;
1455		cv_broadcast(&db->db_changed);
1456	}
1457	mutex_exit(&db->db_mtx);
1458}
1459
1460/*
1461 * Directly assign a provided arc buf to a given dbuf if it's not referenced
1462 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1463 */
1464void
1465dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1466{
1467	ASSERT(!refcount_is_zero(&db->db_holds));
1468	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1469	ASSERT(db->db_level == 0);
1470	ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA);
1471	ASSERT(buf != NULL);
1472	ASSERT(arc_buf_size(buf) == db->db.db_size);
1473	ASSERT(tx->tx_txg != 0);
1474
1475	arc_return_buf(buf, db);
1476	ASSERT(arc_released(buf));
1477
1478	mutex_enter(&db->db_mtx);
1479
1480	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1481		cv_wait(&db->db_changed, &db->db_mtx);
1482
1483	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1484
1485	if (db->db_state == DB_CACHED &&
1486	    refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1487		mutex_exit(&db->db_mtx);
1488		(void) dbuf_dirty(db, tx);
1489		bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1490		VERIFY(arc_buf_remove_ref(buf, db));
1491		xuio_stat_wbuf_copied();
1492		return;
1493	}
1494
1495	xuio_stat_wbuf_nocopy();
1496	if (db->db_state == DB_CACHED) {
1497		dbuf_dirty_record_t *dr = db->db_last_dirty;
1498
1499		ASSERT(db->db_buf != NULL);
1500		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1501			ASSERT(dr->dt.dl.dr_data == db->db_buf);
1502			if (!arc_released(db->db_buf)) {
1503				ASSERT(dr->dt.dl.dr_override_state ==
1504				    DR_OVERRIDDEN);
1505				arc_release(db->db_buf, db);
1506			}
1507			dr->dt.dl.dr_data = buf;
1508			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1509		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
1510			arc_release(db->db_buf, db);
1511			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1512		}
1513		db->db_buf = NULL;
1514	}
1515	ASSERT(db->db_buf == NULL);
1516	dbuf_set_data(db, buf);
1517	db->db_state = DB_FILL;
1518	mutex_exit(&db->db_mtx);
1519	(void) dbuf_dirty(db, tx);
1520	dbuf_fill_done(db, tx);
1521}
1522
1523/*
1524 * "Clear" the contents of this dbuf.  This will mark the dbuf
1525 * EVICTING and clear *most* of its references.  Unfortunately,
1526 * when we are not holding the dn_dbufs_mtx, we can't clear the
1527 * entry in the dn_dbufs list.  We have to wait until dbuf_destroy()
1528 * in this case.  For callers from the DMU we will usually see:
1529 *	dbuf_clear()->arc_buf_evict()->dbuf_do_evict()->dbuf_destroy()
1530 * For the arc callback, we will usually see:
1531 *	dbuf_do_evict()->dbuf_clear();dbuf_destroy()
1532 * Sometimes, though, we will get a mix of these two:
1533 *	DMU: dbuf_clear()->arc_buf_evict()
1534 *	ARC: dbuf_do_evict()->dbuf_destroy()
1535 */
1536void
1537dbuf_clear(dmu_buf_impl_t *db)
1538{
1539	dnode_t *dn;
1540	dmu_buf_impl_t *parent = db->db_parent;
1541	dmu_buf_impl_t *dndb;
1542	int dbuf_gone = FALSE;
1543
1544	ASSERT(MUTEX_HELD(&db->db_mtx));
1545	ASSERT(refcount_is_zero(&db->db_holds));
1546
1547	dbuf_evict_user(db);
1548
1549	if (db->db_state == DB_CACHED) {
1550		ASSERT(db->db.db_data != NULL);
1551		if (db->db_blkid == DMU_BONUS_BLKID) {
1552			zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
1553			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1554		}
1555		db->db.db_data = NULL;
1556		db->db_state = DB_UNCACHED;
1557	}
1558
1559	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1560	ASSERT(db->db_data_pending == NULL);
1561
1562	db->db_state = DB_EVICTING;
1563	db->db_blkptr = NULL;
1564
1565	DB_DNODE_ENTER(db);
1566	dn = DB_DNODE(db);
1567	dndb = dn->dn_dbuf;
1568	if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) {
1569		list_remove(&dn->dn_dbufs, db);
1570		(void) atomic_dec_32_nv(&dn->dn_dbufs_count);
1571		membar_producer();
1572		DB_DNODE_EXIT(db);
1573		/*
1574		 * Decrementing the dbuf count means that the hold corresponding
1575		 * to the removed dbuf is no longer discounted in dnode_move(),
1576		 * so the dnode cannot be moved until after we release the hold.
1577		 * The membar_producer() ensures visibility of the decremented
1578		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
1579		 * release any lock.
1580		 */
1581		dnode_rele(dn, db);
1582		db->db_dnode_handle = NULL;
1583	} else {
1584		DB_DNODE_EXIT(db);
1585	}
1586
1587	if (db->db_buf)
1588		dbuf_gone = arc_buf_evict(db->db_buf);
1589
1590	if (!dbuf_gone)
1591		mutex_exit(&db->db_mtx);
1592
1593	/*
1594	 * If this dbuf is referenced from an indirect dbuf,
1595	 * decrement the ref count on the indirect dbuf.
1596	 */
1597	if (parent && parent != dndb)
1598		dbuf_rele(parent, db);
1599}
1600
1601static int
1602dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
1603    dmu_buf_impl_t **parentp, blkptr_t **bpp)
1604{
1605	int nlevels, epbs;
1606
1607	*parentp = NULL;
1608	*bpp = NULL;
1609
1610	ASSERT(blkid != DMU_BONUS_BLKID);
1611
1612	if (blkid == DMU_SPILL_BLKID) {
1613		mutex_enter(&dn->dn_mtx);
1614		if (dn->dn_have_spill &&
1615		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1616			*bpp = &dn->dn_phys->dn_spill;
1617		else
1618			*bpp = NULL;
1619		dbuf_add_ref(dn->dn_dbuf, NULL);
1620		*parentp = dn->dn_dbuf;
1621		mutex_exit(&dn->dn_mtx);
1622		return (0);
1623	}
1624
1625	if (dn->dn_phys->dn_nlevels == 0)
1626		nlevels = 1;
1627	else
1628		nlevels = dn->dn_phys->dn_nlevels;
1629
1630	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1631
1632	ASSERT3U(level * epbs, <, 64);
1633	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1634	if (level >= nlevels ||
1635	    (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
1636		/* the buffer has no parent yet */
1637		return (SET_ERROR(ENOENT));
1638	} else if (level < nlevels-1) {
1639		/* this block is referenced from an indirect block */
1640		int err = dbuf_hold_impl(dn, level+1,
1641		    blkid >> epbs, fail_sparse, NULL, parentp);
1642		if (err)
1643			return (err);
1644		err = dbuf_read(*parentp, NULL,
1645		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
1646		if (err) {
1647			dbuf_rele(*parentp, NULL);
1648			*parentp = NULL;
1649			return (err);
1650		}
1651		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
1652		    (blkid & ((1ULL << epbs) - 1));
1653		return (0);
1654	} else {
1655		/* the block is referenced from the dnode */
1656		ASSERT3U(level, ==, nlevels-1);
1657		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
1658		    blkid < dn->dn_phys->dn_nblkptr);
1659		if (dn->dn_dbuf) {
1660			dbuf_add_ref(dn->dn_dbuf, NULL);
1661			*parentp = dn->dn_dbuf;
1662		}
1663		*bpp = &dn->dn_phys->dn_blkptr[blkid];
1664		return (0);
1665	}
1666}
1667
1668static dmu_buf_impl_t *
1669dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
1670    dmu_buf_impl_t *parent, blkptr_t *blkptr)
1671{
1672	objset_t *os = dn->dn_objset;
1673	dmu_buf_impl_t *db, *odb;
1674
1675	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1676	ASSERT(dn->dn_type != DMU_OT_NONE);
1677
1678	db = kmem_cache_alloc(dbuf_cache, KM_SLEEP);
1679
1680	db->db_objset = os;
1681	db->db.db_object = dn->dn_object;
1682	db->db_level = level;
1683	db->db_blkid = blkid;
1684	db->db_last_dirty = NULL;
1685	db->db_dirtycnt = 0;
1686	db->db_dnode_handle = dn->dn_handle;
1687	db->db_parent = parent;
1688	db->db_blkptr = blkptr;
1689
1690	db->db_user_ptr = NULL;
1691	db->db_user_data_ptr_ptr = NULL;
1692	db->db_evict_func = NULL;
1693	db->db_immediate_evict = 0;
1694	db->db_freed_in_flight = 0;
1695
1696	if (blkid == DMU_BONUS_BLKID) {
1697		ASSERT3P(parent, ==, dn->dn_dbuf);
1698		db->db.db_size = DN_MAX_BONUSLEN -
1699		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
1700		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1701		db->db.db_offset = DMU_BONUS_BLKID;
1702		db->db_state = DB_UNCACHED;
1703		/* the bonus dbuf is not placed in the hash table */
1704		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1705		return (db);
1706	} else if (blkid == DMU_SPILL_BLKID) {
1707		db->db.db_size = (blkptr != NULL) ?
1708		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
1709		db->db.db_offset = 0;
1710	} else {
1711		int blocksize =
1712		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
1713		db->db.db_size = blocksize;
1714		db->db.db_offset = db->db_blkid * blocksize;
1715	}
1716
1717	/*
1718	 * Hold the dn_dbufs_mtx while we get the new dbuf
1719	 * in the hash table *and* added to the dbufs list.
1720	 * This prevents a possible deadlock with someone
1721	 * trying to look up this dbuf before its added to the
1722	 * dn_dbufs list.
1723	 */
1724	mutex_enter(&dn->dn_dbufs_mtx);
1725	db->db_state = DB_EVICTING;
1726	if ((odb = dbuf_hash_insert(db)) != NULL) {
1727		/* someone else inserted it first */
1728		kmem_cache_free(dbuf_cache, db);
1729		mutex_exit(&dn->dn_dbufs_mtx);
1730		return (odb);
1731	}
1732	list_insert_head(&dn->dn_dbufs, db);
1733	if (db->db_level == 0 && db->db_blkid >=
1734	    dn->dn_unlisted_l0_blkid)
1735		dn->dn_unlisted_l0_blkid = db->db_blkid + 1;
1736	db->db_state = DB_UNCACHED;
1737	mutex_exit(&dn->dn_dbufs_mtx);
1738	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1739
1740	if (parent && parent != dn->dn_dbuf)
1741		dbuf_add_ref(parent, db);
1742
1743	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1744	    refcount_count(&dn->dn_holds) > 0);
1745	(void) refcount_add(&dn->dn_holds, db);
1746	(void) atomic_inc_32_nv(&dn->dn_dbufs_count);
1747
1748	dprintf_dbuf(db, "db=%p\n", db);
1749
1750	return (db);
1751}
1752
1753static int
1754dbuf_do_evict(void *private)
1755{
1756	arc_buf_t *buf = private;
1757	dmu_buf_impl_t *db = buf->b_private;
1758
1759	if (!MUTEX_HELD(&db->db_mtx))
1760		mutex_enter(&db->db_mtx);
1761
1762	ASSERT(refcount_is_zero(&db->db_holds));
1763
1764	if (db->db_state != DB_EVICTING) {
1765		ASSERT(db->db_state == DB_CACHED);
1766		DBUF_VERIFY(db);
1767		db->db_buf = NULL;
1768		dbuf_evict(db);
1769	} else {
1770		mutex_exit(&db->db_mtx);
1771		dbuf_destroy(db);
1772	}
1773	return (0);
1774}
1775
1776static void
1777dbuf_destroy(dmu_buf_impl_t *db)
1778{
1779	ASSERT(refcount_is_zero(&db->db_holds));
1780
1781	if (db->db_blkid != DMU_BONUS_BLKID) {
1782		/*
1783		 * If this dbuf is still on the dn_dbufs list,
1784		 * remove it from that list.
1785		 */
1786		if (db->db_dnode_handle != NULL) {
1787			dnode_t *dn;
1788
1789			DB_DNODE_ENTER(db);
1790			dn = DB_DNODE(db);
1791			mutex_enter(&dn->dn_dbufs_mtx);
1792			list_remove(&dn->dn_dbufs, db);
1793			(void) atomic_dec_32_nv(&dn->dn_dbufs_count);
1794			mutex_exit(&dn->dn_dbufs_mtx);
1795			DB_DNODE_EXIT(db);
1796			/*
1797			 * Decrementing the dbuf count means that the hold
1798			 * corresponding to the removed dbuf is no longer
1799			 * discounted in dnode_move(), so the dnode cannot be
1800			 * moved until after we release the hold.
1801			 */
1802			dnode_rele(dn, db);
1803			db->db_dnode_handle = NULL;
1804		}
1805		dbuf_hash_remove(db);
1806	}
1807	db->db_parent = NULL;
1808	db->db_buf = NULL;
1809
1810	ASSERT(!list_link_active(&db->db_link));
1811	ASSERT(db->db.db_data == NULL);
1812	ASSERT(db->db_hash_next == NULL);
1813	ASSERT(db->db_blkptr == NULL);
1814	ASSERT(db->db_data_pending == NULL);
1815
1816	kmem_cache_free(dbuf_cache, db);
1817	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1818}
1819
1820void
1821dbuf_prefetch(dnode_t *dn, uint64_t blkid, zio_priority_t prio)
1822{
1823	dmu_buf_impl_t *db = NULL;
1824	blkptr_t *bp = NULL;
1825
1826	ASSERT(blkid != DMU_BONUS_BLKID);
1827	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1828
1829	if (dnode_block_freed(dn, blkid))
1830		return;
1831
1832	/* dbuf_find() returns with db_mtx held */
1833	if (db = dbuf_find(dn, 0, blkid)) {
1834		/*
1835		 * This dbuf is already in the cache.  We assume that
1836		 * it is already CACHED, or else about to be either
1837		 * read or filled.
1838		 */
1839		mutex_exit(&db->db_mtx);
1840		return;
1841	}
1842
1843	if (dbuf_findbp(dn, 0, blkid, TRUE, &db, &bp) == 0) {
1844		if (bp && !BP_IS_HOLE(bp)) {
1845			dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
1846			uint32_t aflags = ARC_NOWAIT | ARC_PREFETCH;
1847			zbookmark_t zb;
1848
1849			SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
1850			    dn->dn_object, 0, blkid);
1851
1852			(void) arc_read(NULL, dn->dn_objset->os_spa,
1853			    bp, NULL, NULL, prio,
1854			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
1855			    &aflags, &zb);
1856		}
1857		if (db)
1858			dbuf_rele(db, NULL);
1859	}
1860}
1861
1862/*
1863 * Returns with db_holds incremented, and db_mtx not held.
1864 * Note: dn_struct_rwlock must be held.
1865 */
1866int
1867dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse,
1868    void *tag, dmu_buf_impl_t **dbp)
1869{
1870	dmu_buf_impl_t *db, *parent = NULL;
1871
1872	ASSERT(blkid != DMU_BONUS_BLKID);
1873	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1874	ASSERT3U(dn->dn_nlevels, >, level);
1875
1876	*dbp = NULL;
1877top:
1878	/* dbuf_find() returns with db_mtx held */
1879	db = dbuf_find(dn, level, blkid);
1880
1881	if (db == NULL) {
1882		blkptr_t *bp = NULL;
1883		int err;
1884
1885		ASSERT3P(parent, ==, NULL);
1886		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
1887		if (fail_sparse) {
1888			if (err == 0 && bp && BP_IS_HOLE(bp))
1889				err = SET_ERROR(ENOENT);
1890			if (err) {
1891				if (parent)
1892					dbuf_rele(parent, NULL);
1893				return (err);
1894			}
1895		}
1896		if (err && err != ENOENT)
1897			return (err);
1898		db = dbuf_create(dn, level, blkid, parent, bp);
1899	}
1900
1901	if (db->db_buf && refcount_is_zero(&db->db_holds)) {
1902		arc_buf_add_ref(db->db_buf, db);
1903		if (db->db_buf->b_data == NULL) {
1904			dbuf_clear(db);
1905			if (parent) {
1906				dbuf_rele(parent, NULL);
1907				parent = NULL;
1908			}
1909			goto top;
1910		}
1911		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
1912	}
1913
1914	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
1915
1916	/*
1917	 * If this buffer is currently syncing out, and we are are
1918	 * still referencing it from db_data, we need to make a copy
1919	 * of it in case we decide we want to dirty it again in this txg.
1920	 */
1921	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1922	    dn->dn_object != DMU_META_DNODE_OBJECT &&
1923	    db->db_state == DB_CACHED && db->db_data_pending) {
1924		dbuf_dirty_record_t *dr = db->db_data_pending;
1925
1926		if (dr->dt.dl.dr_data == db->db_buf) {
1927			arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1928
1929			dbuf_set_data(db,
1930			    arc_buf_alloc(dn->dn_objset->os_spa,
1931			    db->db.db_size, db, type));
1932			bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
1933			    db->db.db_size);
1934		}
1935	}
1936
1937	(void) refcount_add(&db->db_holds, tag);
1938	dbuf_update_data(db);
1939	DBUF_VERIFY(db);
1940	mutex_exit(&db->db_mtx);
1941
1942	/* NOTE: we can't rele the parent until after we drop the db_mtx */
1943	if (parent)
1944		dbuf_rele(parent, NULL);
1945
1946	ASSERT3P(DB_DNODE(db), ==, dn);
1947	ASSERT3U(db->db_blkid, ==, blkid);
1948	ASSERT3U(db->db_level, ==, level);
1949	*dbp = db;
1950
1951	return (0);
1952}
1953
1954dmu_buf_impl_t *
1955dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
1956{
1957	dmu_buf_impl_t *db;
1958	int err = dbuf_hold_impl(dn, 0, blkid, FALSE, tag, &db);
1959	return (err ? NULL : db);
1960}
1961
1962dmu_buf_impl_t *
1963dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
1964{
1965	dmu_buf_impl_t *db;
1966	int err = dbuf_hold_impl(dn, level, blkid, FALSE, tag, &db);
1967	return (err ? NULL : db);
1968}
1969
1970void
1971dbuf_create_bonus(dnode_t *dn)
1972{
1973	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1974
1975	ASSERT(dn->dn_bonus == NULL);
1976	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
1977}
1978
1979int
1980dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
1981{
1982	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1983	dnode_t *dn;
1984
1985	if (db->db_blkid != DMU_SPILL_BLKID)
1986		return (SET_ERROR(ENOTSUP));
1987	if (blksz == 0)
1988		blksz = SPA_MINBLOCKSIZE;
1989	if (blksz > SPA_MAXBLOCKSIZE)
1990		blksz = SPA_MAXBLOCKSIZE;
1991	else
1992		blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
1993
1994	DB_DNODE_ENTER(db);
1995	dn = DB_DNODE(db);
1996	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1997	dbuf_new_size(db, blksz, tx);
1998	rw_exit(&dn->dn_struct_rwlock);
1999	DB_DNODE_EXIT(db);
2000
2001	return (0);
2002}
2003
2004void
2005dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2006{
2007	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2008}
2009
2010#pragma weak dmu_buf_add_ref = dbuf_add_ref
2011void
2012dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2013{
2014	int64_t holds = refcount_add(&db->db_holds, tag);
2015	ASSERT(holds > 1);
2016}
2017
2018/*
2019 * If you call dbuf_rele() you had better not be referencing the dnode handle
2020 * unless you have some other direct or indirect hold on the dnode. (An indirect
2021 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2022 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2023 * dnode's parent dbuf evicting its dnode handles.
2024 */
2025#pragma weak dmu_buf_rele = dbuf_rele
2026void
2027dbuf_rele(dmu_buf_impl_t *db, void *tag)
2028{
2029	mutex_enter(&db->db_mtx);
2030	dbuf_rele_and_unlock(db, tag);
2031}
2032
2033/*
2034 * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
2035 * db_dirtycnt and db_holds to be updated atomically.
2036 */
2037void
2038dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2039{
2040	int64_t holds;
2041
2042	ASSERT(MUTEX_HELD(&db->db_mtx));
2043	DBUF_VERIFY(db);
2044
2045	/*
2046	 * Remove the reference to the dbuf before removing its hold on the
2047	 * dnode so we can guarantee in dnode_move() that a referenced bonus
2048	 * buffer has a corresponding dnode hold.
2049	 */
2050	holds = refcount_remove(&db->db_holds, tag);
2051	ASSERT(holds >= 0);
2052
2053	/*
2054	 * We can't freeze indirects if there is a possibility that they
2055	 * may be modified in the current syncing context.
2056	 */
2057	if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0))
2058		arc_buf_freeze(db->db_buf);
2059
2060	if (holds == db->db_dirtycnt &&
2061	    db->db_level == 0 && db->db_immediate_evict)
2062		dbuf_evict_user(db);
2063
2064	if (holds == 0) {
2065		if (db->db_blkid == DMU_BONUS_BLKID) {
2066			mutex_exit(&db->db_mtx);
2067
2068			/*
2069			 * If the dnode moves here, we cannot cross this barrier
2070			 * until the move completes.
2071			 */
2072			DB_DNODE_ENTER(db);
2073			(void) atomic_dec_32_nv(&DB_DNODE(db)->dn_dbufs_count);
2074			DB_DNODE_EXIT(db);
2075			/*
2076			 * The bonus buffer's dnode hold is no longer discounted
2077			 * in dnode_move(). The dnode cannot move until after
2078			 * the dnode_rele().
2079			 */
2080			dnode_rele(DB_DNODE(db), db);
2081		} else if (db->db_buf == NULL) {
2082			/*
2083			 * This is a special case: we never associated this
2084			 * dbuf with any data allocated from the ARC.
2085			 */
2086			ASSERT(db->db_state == DB_UNCACHED ||
2087			    db->db_state == DB_NOFILL);
2088			dbuf_evict(db);
2089		} else if (arc_released(db->db_buf)) {
2090			arc_buf_t *buf = db->db_buf;
2091			/*
2092			 * This dbuf has anonymous data associated with it.
2093			 */
2094			dbuf_set_data(db, NULL);
2095			VERIFY(arc_buf_remove_ref(buf, db));
2096			dbuf_evict(db);
2097		} else {
2098			VERIFY(!arc_buf_remove_ref(db->db_buf, db));
2099
2100			/*
2101			 * A dbuf will be eligible for eviction if either the
2102			 * 'primarycache' property is set or a duplicate
2103			 * copy of this buffer is already cached in the arc.
2104			 *
2105			 * In the case of the 'primarycache' a buffer
2106			 * is considered for eviction if it matches the
2107			 * criteria set in the property.
2108			 *
2109			 * To decide if our buffer is considered a
2110			 * duplicate, we must call into the arc to determine
2111			 * if multiple buffers are referencing the same
2112			 * block on-disk. If so, then we simply evict
2113			 * ourselves.
2114			 */
2115			if (!DBUF_IS_CACHEABLE(db) ||
2116			    arc_buf_eviction_needed(db->db_buf))
2117				dbuf_clear(db);
2118			else
2119				mutex_exit(&db->db_mtx);
2120		}
2121	} else {
2122		mutex_exit(&db->db_mtx);
2123	}
2124}
2125
2126#pragma weak dmu_buf_refcount = dbuf_refcount
2127uint64_t
2128dbuf_refcount(dmu_buf_impl_t *db)
2129{
2130	return (refcount_count(&db->db_holds));
2131}
2132
2133void *
2134dmu_buf_set_user(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr,
2135    dmu_buf_evict_func_t *evict_func)
2136{
2137	return (dmu_buf_update_user(db_fake, NULL, user_ptr,
2138	    user_data_ptr_ptr, evict_func));
2139}
2140
2141void *
2142dmu_buf_set_user_ie(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr,
2143    dmu_buf_evict_func_t *evict_func)
2144{
2145	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2146
2147	db->db_immediate_evict = TRUE;
2148	return (dmu_buf_update_user(db_fake, NULL, user_ptr,
2149	    user_data_ptr_ptr, evict_func));
2150}
2151
2152void *
2153dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr, void *user_ptr,
2154    void *user_data_ptr_ptr, dmu_buf_evict_func_t *evict_func)
2155{
2156	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2157	ASSERT(db->db_level == 0);
2158
2159	ASSERT((user_ptr == NULL) == (evict_func == NULL));
2160
2161	mutex_enter(&db->db_mtx);
2162
2163	if (db->db_user_ptr == old_user_ptr) {
2164		db->db_user_ptr = user_ptr;
2165		db->db_user_data_ptr_ptr = user_data_ptr_ptr;
2166		db->db_evict_func = evict_func;
2167
2168		dbuf_update_data(db);
2169	} else {
2170		old_user_ptr = db->db_user_ptr;
2171	}
2172
2173	mutex_exit(&db->db_mtx);
2174	return (old_user_ptr);
2175}
2176
2177void *
2178dmu_buf_get_user(dmu_buf_t *db_fake)
2179{
2180	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2181	ASSERT(!refcount_is_zero(&db->db_holds));
2182
2183	return (db->db_user_ptr);
2184}
2185
2186boolean_t
2187dmu_buf_freeable(dmu_buf_t *dbuf)
2188{
2189	boolean_t res = B_FALSE;
2190	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2191
2192	if (db->db_blkptr)
2193		res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset,
2194		    db->db_blkptr, db->db_blkptr->blk_birth);
2195
2196	return (res);
2197}
2198
2199blkptr_t *
2200dmu_buf_get_blkptr(dmu_buf_t *db)
2201{
2202	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2203	return (dbi->db_blkptr);
2204}
2205
2206static void
2207dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2208{
2209	/* ASSERT(dmu_tx_is_syncing(tx) */
2210	ASSERT(MUTEX_HELD(&db->db_mtx));
2211
2212	if (db->db_blkptr != NULL)
2213		return;
2214
2215	if (db->db_blkid == DMU_SPILL_BLKID) {
2216		db->db_blkptr = &dn->dn_phys->dn_spill;
2217		BP_ZERO(db->db_blkptr);
2218		return;
2219	}
2220	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2221		/*
2222		 * This buffer was allocated at a time when there was
2223		 * no available blkptrs from the dnode, or it was
2224		 * inappropriate to hook it in (i.e., nlevels mis-match).
2225		 */
2226		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2227		ASSERT(db->db_parent == NULL);
2228		db->db_parent = dn->dn_dbuf;
2229		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2230		DBUF_VERIFY(db);
2231	} else {
2232		dmu_buf_impl_t *parent = db->db_parent;
2233		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2234
2235		ASSERT(dn->dn_phys->dn_nlevels > 1);
2236		if (parent == NULL) {
2237			mutex_exit(&db->db_mtx);
2238			rw_enter(&dn->dn_struct_rwlock, RW_READER);
2239			(void) dbuf_hold_impl(dn, db->db_level+1,
2240			    db->db_blkid >> epbs, FALSE, db, &parent);
2241			rw_exit(&dn->dn_struct_rwlock);
2242			mutex_enter(&db->db_mtx);
2243			db->db_parent = parent;
2244		}
2245		db->db_blkptr = (blkptr_t *)parent->db.db_data +
2246		    (db->db_blkid & ((1ULL << epbs) - 1));
2247		DBUF_VERIFY(db);
2248	}
2249}
2250
2251static void
2252dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2253{
2254	dmu_buf_impl_t *db = dr->dr_dbuf;
2255	dnode_t *dn;
2256	zio_t *zio;
2257
2258	ASSERT(dmu_tx_is_syncing(tx));
2259
2260	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2261
2262	mutex_enter(&db->db_mtx);
2263
2264	ASSERT(db->db_level > 0);
2265	DBUF_VERIFY(db);
2266
2267	/* Read the block if it hasn't been read yet. */
2268	if (db->db_buf == NULL) {
2269		mutex_exit(&db->db_mtx);
2270		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2271		mutex_enter(&db->db_mtx);
2272	}
2273	ASSERT3U(db->db_state, ==, DB_CACHED);
2274	ASSERT(db->db_buf != NULL);
2275
2276	DB_DNODE_ENTER(db);
2277	dn = DB_DNODE(db);
2278	/* Indirect block size must match what the dnode thinks it is. */
2279	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2280	dbuf_check_blkptr(dn, db);
2281	DB_DNODE_EXIT(db);
2282
2283	/* Provide the pending dirty record to child dbufs */
2284	db->db_data_pending = dr;
2285
2286	mutex_exit(&db->db_mtx);
2287	dbuf_write(dr, db->db_buf, tx);
2288
2289	zio = dr->dr_zio;
2290	mutex_enter(&dr->dt.di.dr_mtx);
2291	dbuf_sync_list(&dr->dt.di.dr_children, tx);
2292	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2293	mutex_exit(&dr->dt.di.dr_mtx);
2294	zio_nowait(zio);
2295}
2296
2297static void
2298dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2299{
2300	arc_buf_t **datap = &dr->dt.dl.dr_data;
2301	dmu_buf_impl_t *db = dr->dr_dbuf;
2302	dnode_t *dn;
2303	objset_t *os;
2304	uint64_t txg = tx->tx_txg;
2305
2306	ASSERT(dmu_tx_is_syncing(tx));
2307
2308	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2309
2310	mutex_enter(&db->db_mtx);
2311	/*
2312	 * To be synced, we must be dirtied.  But we
2313	 * might have been freed after the dirty.
2314	 */
2315	if (db->db_state == DB_UNCACHED) {
2316		/* This buffer has been freed since it was dirtied */
2317		ASSERT(db->db.db_data == NULL);
2318	} else if (db->db_state == DB_FILL) {
2319		/* This buffer was freed and is now being re-filled */
2320		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
2321	} else {
2322		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
2323	}
2324	DBUF_VERIFY(db);
2325
2326	DB_DNODE_ENTER(db);
2327	dn = DB_DNODE(db);
2328
2329	if (db->db_blkid == DMU_SPILL_BLKID) {
2330		mutex_enter(&dn->dn_mtx);
2331		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
2332		mutex_exit(&dn->dn_mtx);
2333	}
2334
2335	/*
2336	 * If this is a bonus buffer, simply copy the bonus data into the
2337	 * dnode.  It will be written out when the dnode is synced (and it
2338	 * will be synced, since it must have been dirty for dbuf_sync to
2339	 * be called).
2340	 */
2341	if (db->db_blkid == DMU_BONUS_BLKID) {
2342		dbuf_dirty_record_t **drp;
2343
2344		ASSERT(*datap != NULL);
2345		ASSERT0(db->db_level);
2346		ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
2347		bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
2348		DB_DNODE_EXIT(db);
2349
2350		if (*datap != db->db.db_data) {
2351			zio_buf_free(*datap, DN_MAX_BONUSLEN);
2352			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2353		}
2354		db->db_data_pending = NULL;
2355		drp = &db->db_last_dirty;
2356		while (*drp != dr)
2357			drp = &(*drp)->dr_next;
2358		ASSERT(dr->dr_next == NULL);
2359		ASSERT(dr->dr_dbuf == db);
2360		*drp = dr->dr_next;
2361		if (dr->dr_dbuf->db_level != 0) {
2362			list_destroy(&dr->dt.di.dr_children);
2363			mutex_destroy(&dr->dt.di.dr_mtx);
2364		}
2365		kmem_free(dr, sizeof (dbuf_dirty_record_t));
2366		ASSERT(db->db_dirtycnt > 0);
2367		db->db_dirtycnt -= 1;
2368		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2369		return;
2370	}
2371
2372	os = dn->dn_objset;
2373
2374	/*
2375	 * This function may have dropped the db_mtx lock allowing a dmu_sync
2376	 * operation to sneak in. As a result, we need to ensure that we
2377	 * don't check the dr_override_state until we have returned from
2378	 * dbuf_check_blkptr.
2379	 */
2380	dbuf_check_blkptr(dn, db);
2381
2382	/*
2383	 * If this buffer is in the middle of an immediate write,
2384	 * wait for the synchronous IO to complete.
2385	 */
2386	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
2387		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
2388		cv_wait(&db->db_changed, &db->db_mtx);
2389		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
2390	}
2391
2392	if (db->db_state != DB_NOFILL &&
2393	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2394	    refcount_count(&db->db_holds) > 1 &&
2395	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
2396	    *datap == db->db_buf) {
2397		/*
2398		 * If this buffer is currently "in use" (i.e., there
2399		 * are active holds and db_data still references it),
2400		 * then make a copy before we start the write so that
2401		 * any modifications from the open txg will not leak
2402		 * into this write.
2403		 *
2404		 * NOTE: this copy does not need to be made for
2405		 * objects only modified in the syncing context (e.g.
2406		 * DNONE_DNODE blocks).
2407		 */
2408		int blksz = arc_buf_size(*datap);
2409		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2410		*datap = arc_buf_alloc(os->os_spa, blksz, db, type);
2411		bcopy(db->db.db_data, (*datap)->b_data, blksz);
2412	}
2413	db->db_data_pending = dr;
2414
2415	mutex_exit(&db->db_mtx);
2416
2417	dbuf_write(dr, *datap, tx);
2418
2419	ASSERT(!list_link_active(&dr->dr_dirty_node));
2420	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
2421		list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
2422		DB_DNODE_EXIT(db);
2423	} else {
2424		/*
2425		 * Although zio_nowait() does not "wait for an IO", it does
2426		 * initiate the IO. If this is an empty write it seems plausible
2427		 * that the IO could actually be completed before the nowait
2428		 * returns. We need to DB_DNODE_EXIT() first in case
2429		 * zio_nowait() invalidates the dbuf.
2430		 */
2431		DB_DNODE_EXIT(db);
2432		zio_nowait(dr->dr_zio);
2433	}
2434}
2435
2436void
2437dbuf_sync_list(list_t *list, dmu_tx_t *tx)
2438{
2439	dbuf_dirty_record_t *dr;
2440
2441	while (dr = list_head(list)) {
2442		if (dr->dr_zio != NULL) {
2443			/*
2444			 * If we find an already initialized zio then we
2445			 * are processing the meta-dnode, and we have finished.
2446			 * The dbufs for all dnodes are put back on the list
2447			 * during processing, so that we can zio_wait()
2448			 * these IOs after initiating all child IOs.
2449			 */
2450			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
2451			    DMU_META_DNODE_OBJECT);
2452			break;
2453		}
2454		list_remove(list, dr);
2455		if (dr->dr_dbuf->db_level > 0)
2456			dbuf_sync_indirect(dr, tx);
2457		else
2458			dbuf_sync_leaf(dr, tx);
2459	}
2460}
2461
2462/* ARGSUSED */
2463static void
2464dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
2465{
2466	dmu_buf_impl_t *db = vdb;
2467	dnode_t *dn;
2468	blkptr_t *bp = zio->io_bp;
2469	blkptr_t *bp_orig = &zio->io_bp_orig;
2470	spa_t *spa = zio->io_spa;
2471	int64_t delta;
2472	uint64_t fill = 0;
2473	int i;
2474
2475	ASSERT(db->db_blkptr == bp);
2476
2477	DB_DNODE_ENTER(db);
2478	dn = DB_DNODE(db);
2479	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
2480	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
2481	zio->io_prev_space_delta = delta;
2482
2483	if (BP_IS_HOLE(bp)) {
2484		ASSERT(bp->blk_fill == 0);
2485		DB_DNODE_EXIT(db);
2486		return;
2487	}
2488
2489	ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
2490	    BP_GET_TYPE(bp) == dn->dn_type) ||
2491	    (db->db_blkid == DMU_SPILL_BLKID &&
2492	    BP_GET_TYPE(bp) == dn->dn_bonustype));
2493	ASSERT(BP_GET_LEVEL(bp) == db->db_level);
2494
2495	mutex_enter(&db->db_mtx);
2496
2497#ifdef ZFS_DEBUG
2498	if (db->db_blkid == DMU_SPILL_BLKID) {
2499		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2500		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2501		    db->db_blkptr == &dn->dn_phys->dn_spill);
2502	}
2503#endif
2504
2505	if (db->db_level == 0) {
2506		mutex_enter(&dn->dn_mtx);
2507		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
2508		    db->db_blkid != DMU_SPILL_BLKID)
2509			dn->dn_phys->dn_maxblkid = db->db_blkid;
2510		mutex_exit(&dn->dn_mtx);
2511
2512		if (dn->dn_type == DMU_OT_DNODE) {
2513			dnode_phys_t *dnp = db->db.db_data;
2514			for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
2515			    i--, dnp++) {
2516				if (dnp->dn_type != DMU_OT_NONE)
2517					fill++;
2518			}
2519		} else {
2520			fill = 1;
2521		}
2522	} else {
2523		blkptr_t *ibp = db->db.db_data;
2524		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2525		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
2526			if (BP_IS_HOLE(ibp))
2527				continue;
2528			fill += ibp->blk_fill;
2529		}
2530	}
2531	DB_DNODE_EXIT(db);
2532
2533	bp->blk_fill = fill;
2534
2535	mutex_exit(&db->db_mtx);
2536}
2537
2538/*
2539 * The SPA will call this callback several times for each zio - once
2540 * for every physical child i/o (zio->io_phys_children times).  This
2541 * allows the DMU to monitor the progress of each logical i/o.  For example,
2542 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
2543 * block.  There may be a long delay before all copies/fragments are completed,
2544 * so this callback allows us to retire dirty space gradually, as the physical
2545 * i/os complete.
2546 */
2547/* ARGSUSED */
2548static void
2549dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
2550{
2551	dmu_buf_impl_t *db = arg;
2552	objset_t *os = db->db_objset;
2553	dsl_pool_t *dp = dmu_objset_pool(os);
2554	dbuf_dirty_record_t *dr;
2555	int delta = 0;
2556
2557	dr = db->db_data_pending;
2558	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
2559
2560	/*
2561	 * The callback will be called io_phys_children times.  Retire one
2562	 * portion of our dirty space each time we are called.  Any rounding
2563	 * error will be cleaned up by dsl_pool_sync()'s call to
2564	 * dsl_pool_undirty_space().
2565	 */
2566	delta = dr->dr_accounted / zio->io_phys_children;
2567	dsl_pool_undirty_space(dp, delta, zio->io_txg);
2568}
2569
2570/* ARGSUSED */
2571static void
2572dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
2573{
2574	dmu_buf_impl_t *db = vdb;
2575	blkptr_t *bp = zio->io_bp;
2576	blkptr_t *bp_orig = &zio->io_bp_orig;
2577	uint64_t txg = zio->io_txg;
2578	dbuf_dirty_record_t **drp, *dr;
2579
2580	ASSERT0(zio->io_error);
2581	ASSERT(db->db_blkptr == bp);
2582
2583	/*
2584	 * For nopwrites and rewrites we ensure that the bp matches our
2585	 * original and bypass all the accounting.
2586	 */
2587	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
2588		ASSERT(BP_EQUAL(bp, bp_orig));
2589	} else {
2590		objset_t *os;
2591		dsl_dataset_t *ds;
2592		dmu_tx_t *tx;
2593
2594		DB_GET_OBJSET(&os, db);
2595		ds = os->os_dsl_dataset;
2596		tx = os->os_synctx;
2597
2598		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
2599		dsl_dataset_block_born(ds, bp, tx);
2600	}
2601
2602	mutex_enter(&db->db_mtx);
2603
2604	DBUF_VERIFY(db);
2605
2606	drp = &db->db_last_dirty;
2607	while ((dr = *drp) != db->db_data_pending)
2608		drp = &dr->dr_next;
2609	ASSERT(!list_link_active(&dr->dr_dirty_node));
2610	ASSERT(dr->dr_txg == txg);
2611	ASSERT(dr->dr_dbuf == db);
2612	ASSERT(dr->dr_next == NULL);
2613	*drp = dr->dr_next;
2614
2615#ifdef ZFS_DEBUG
2616	if (db->db_blkid == DMU_SPILL_BLKID) {
2617		dnode_t *dn;
2618
2619		DB_DNODE_ENTER(db);
2620		dn = DB_DNODE(db);
2621		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2622		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2623		    db->db_blkptr == &dn->dn_phys->dn_spill);
2624		DB_DNODE_EXIT(db);
2625	}
2626#endif
2627
2628	if (db->db_level == 0) {
2629		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2630		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
2631		if (db->db_state != DB_NOFILL) {
2632			if (dr->dt.dl.dr_data != db->db_buf)
2633				VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data,
2634				    db));
2635			else if (!arc_released(db->db_buf))
2636				arc_set_callback(db->db_buf, dbuf_do_evict, db);
2637		}
2638	} else {
2639		dnode_t *dn;
2640
2641		DB_DNODE_ENTER(db);
2642		dn = DB_DNODE(db);
2643		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2644		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2645		if (!BP_IS_HOLE(db->db_blkptr)) {
2646			int epbs =
2647			    dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2648			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
2649			    db->db.db_size);
2650			ASSERT3U(dn->dn_phys->dn_maxblkid
2651			    >> (db->db_level * epbs), >=, db->db_blkid);
2652			arc_set_callback(db->db_buf, dbuf_do_evict, db);
2653		}
2654		DB_DNODE_EXIT(db);
2655		mutex_destroy(&dr->dt.di.dr_mtx);
2656		list_destroy(&dr->dt.di.dr_children);
2657	}
2658	kmem_free(dr, sizeof (dbuf_dirty_record_t));
2659
2660	cv_broadcast(&db->db_changed);
2661	ASSERT(db->db_dirtycnt > 0);
2662	db->db_dirtycnt -= 1;
2663	db->db_data_pending = NULL;
2664
2665	dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2666}
2667
2668static void
2669dbuf_write_nofill_ready(zio_t *zio)
2670{
2671	dbuf_write_ready(zio, NULL, zio->io_private);
2672}
2673
2674static void
2675dbuf_write_nofill_done(zio_t *zio)
2676{
2677	dbuf_write_done(zio, NULL, zio->io_private);
2678}
2679
2680static void
2681dbuf_write_override_ready(zio_t *zio)
2682{
2683	dbuf_dirty_record_t *dr = zio->io_private;
2684	dmu_buf_impl_t *db = dr->dr_dbuf;
2685
2686	dbuf_write_ready(zio, NULL, db);
2687}
2688
2689static void
2690dbuf_write_override_done(zio_t *zio)
2691{
2692	dbuf_dirty_record_t *dr = zio->io_private;
2693	dmu_buf_impl_t *db = dr->dr_dbuf;
2694	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
2695
2696	mutex_enter(&db->db_mtx);
2697	if (!BP_EQUAL(zio->io_bp, obp)) {
2698		if (!BP_IS_HOLE(obp))
2699			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
2700		arc_release(dr->dt.dl.dr_data, db);
2701	}
2702	mutex_exit(&db->db_mtx);
2703
2704	dbuf_write_done(zio, NULL, db);
2705}
2706
2707/* Issue I/O to commit a dirty buffer to disk. */
2708static void
2709dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
2710{
2711	dmu_buf_impl_t *db = dr->dr_dbuf;
2712	dnode_t *dn;
2713	objset_t *os;
2714	dmu_buf_impl_t *parent = db->db_parent;
2715	uint64_t txg = tx->tx_txg;
2716	zbookmark_t zb;
2717	zio_prop_t zp;
2718	zio_t *zio;
2719	int wp_flag = 0;
2720
2721	DB_DNODE_ENTER(db);
2722	dn = DB_DNODE(db);
2723	os = dn->dn_objset;
2724
2725	if (db->db_state != DB_NOFILL) {
2726		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
2727			/*
2728			 * Private object buffers are released here rather
2729			 * than in dbuf_dirty() since they are only modified
2730			 * in the syncing context and we don't want the
2731			 * overhead of making multiple copies of the data.
2732			 */
2733			if (BP_IS_HOLE(db->db_blkptr)) {
2734				arc_buf_thaw(data);
2735			} else {
2736				dbuf_release_bp(db);
2737			}
2738		}
2739	}
2740
2741	if (parent != dn->dn_dbuf) {
2742		/* Our parent is an indirect block. */
2743		/* We have a dirty parent that has been scheduled for write. */
2744		ASSERT(parent && parent->db_data_pending);
2745		/* Our parent's buffer is one level closer to the dnode. */
2746		ASSERT(db->db_level == parent->db_level-1);
2747		/*
2748		 * We're about to modify our parent's db_data by modifying
2749		 * our block pointer, so the parent must be released.
2750		 */
2751		ASSERT(arc_released(parent->db_buf));
2752		zio = parent->db_data_pending->dr_zio;
2753	} else {
2754		/* Our parent is the dnode itself. */
2755		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
2756		    db->db_blkid != DMU_SPILL_BLKID) ||
2757		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
2758		if (db->db_blkid != DMU_SPILL_BLKID)
2759			ASSERT3P(db->db_blkptr, ==,
2760			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
2761		zio = dn->dn_zio;
2762	}
2763
2764	ASSERT(db->db_level == 0 || data == db->db_buf);
2765	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
2766	ASSERT(zio);
2767
2768	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
2769	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
2770	    db->db.db_object, db->db_level, db->db_blkid);
2771
2772	if (db->db_blkid == DMU_SPILL_BLKID)
2773		wp_flag = WP_SPILL;
2774	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
2775
2776	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
2777	DB_DNODE_EXIT(db);
2778
2779	if (db->db_level == 0 && dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
2780		ASSERT(db->db_state != DB_NOFILL);
2781		dr->dr_zio = zio_write(zio, os->os_spa, txg,
2782		    db->db_blkptr, data->b_data, arc_buf_size(data), &zp,
2783		    dbuf_write_override_ready, NULL, dbuf_write_override_done,
2784		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
2785		mutex_enter(&db->db_mtx);
2786		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
2787		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
2788		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
2789		mutex_exit(&db->db_mtx);
2790	} else if (db->db_state == DB_NOFILL) {
2791		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
2792		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
2793		dr->dr_zio = zio_write(zio, os->os_spa, txg,
2794		    db->db_blkptr, NULL, db->db.db_size, &zp,
2795		    dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db,
2796		    ZIO_PRIORITY_ASYNC_WRITE,
2797		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
2798	} else {
2799		ASSERT(arc_released(data));
2800		dr->dr_zio = arc_write(zio, os->os_spa, txg,
2801		    db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db),
2802		    DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready,
2803		    dbuf_write_physdone, dbuf_write_done, db,
2804		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
2805	}
2806}
2807