dtrace.c revision 313486
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 * $FreeBSD: stable/10/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c 313486 2017-02-09 22:04:56Z ngie $
22 */
23
24/*
25 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28 */
29
30/*
31 * DTrace - Dynamic Tracing for Solaris
32 *
33 * This is the implementation of the Solaris Dynamic Tracing framework
34 * (DTrace).  The user-visible interface to DTrace is described at length in
35 * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
36 * library, the in-kernel DTrace framework, and the DTrace providers are
37 * described in the block comments in the <sys/dtrace.h> header file.  The
38 * internal architecture of DTrace is described in the block comments in the
39 * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
40 * implementation very much assume mastery of all of these sources; if one has
41 * an unanswered question about the implementation, one should consult them
42 * first.
43 *
44 * The functions here are ordered roughly as follows:
45 *
46 *   - Probe context functions
47 *   - Probe hashing functions
48 *   - Non-probe context utility functions
49 *   - Matching functions
50 *   - Provider-to-Framework API functions
51 *   - Probe management functions
52 *   - DIF object functions
53 *   - Format functions
54 *   - Predicate functions
55 *   - ECB functions
56 *   - Buffer functions
57 *   - Enabling functions
58 *   - DOF functions
59 *   - Anonymous enabling functions
60 *   - Consumer state functions
61 *   - Helper functions
62 *   - Hook functions
63 *   - Driver cookbook functions
64 *
65 * Each group of functions begins with a block comment labelled the "DTrace
66 * [Group] Functions", allowing one to find each block by searching forward
67 * on capital-f functions.
68 */
69#include <sys/errno.h>
70#ifndef illumos
71#include <sys/time.h>
72#endif
73#include <sys/stat.h>
74#include <sys/modctl.h>
75#include <sys/conf.h>
76#include <sys/systm.h>
77#ifdef illumos
78#include <sys/ddi.h>
79#include <sys/sunddi.h>
80#endif
81#include <sys/cpuvar.h>
82#include <sys/kmem.h>
83#ifdef illumos
84#include <sys/strsubr.h>
85#endif
86#include <sys/sysmacros.h>
87#include <sys/dtrace_impl.h>
88#include <sys/atomic.h>
89#include <sys/cmn_err.h>
90#ifdef illumos
91#include <sys/mutex_impl.h>
92#include <sys/rwlock_impl.h>
93#endif
94#include <sys/ctf_api.h>
95#ifdef illumos
96#include <sys/panic.h>
97#include <sys/priv_impl.h>
98#endif
99#include <sys/policy.h>
100#ifdef illumos
101#include <sys/cred_impl.h>
102#include <sys/procfs_isa.h>
103#endif
104#include <sys/taskq.h>
105#ifdef illumos
106#include <sys/mkdev.h>
107#include <sys/kdi.h>
108#endif
109#include <sys/zone.h>
110#include <sys/socket.h>
111#include <netinet/in.h>
112#include "strtolctype.h"
113
114/* FreeBSD includes: */
115#ifndef illumos
116#include <sys/callout.h>
117#include <sys/ctype.h>
118#include <sys/eventhandler.h>
119#include <sys/limits.h>
120#include <sys/kdb.h>
121#include <sys/kernel.h>
122#include <sys/malloc.h>
123#include <sys/sysctl.h>
124#include <sys/lock.h>
125#include <sys/mutex.h>
126#include <sys/rwlock.h>
127#include <sys/sx.h>
128#include <sys/dtrace_bsd.h>
129#include <netinet/in.h>
130#include "dtrace_cddl.h"
131#include "dtrace_debug.c"
132#endif
133
134/*
135 * DTrace Tunable Variables
136 *
137 * The following variables may be tuned by adding a line to /etc/system that
138 * includes both the name of the DTrace module ("dtrace") and the name of the
139 * variable.  For example:
140 *
141 *   set dtrace:dtrace_destructive_disallow = 1
142 *
143 * In general, the only variables that one should be tuning this way are those
144 * that affect system-wide DTrace behavior, and for which the default behavior
145 * is undesirable.  Most of these variables are tunable on a per-consumer
146 * basis using DTrace options, and need not be tuned on a system-wide basis.
147 * When tuning these variables, avoid pathological values; while some attempt
148 * is made to verify the integrity of these variables, they are not considered
149 * part of the supported interface to DTrace, and they are therefore not
150 * checked comprehensively.  Further, these variables should not be tuned
151 * dynamically via "mdb -kw" or other means; they should only be tuned via
152 * /etc/system.
153 */
154int		dtrace_destructive_disallow = 0;
155dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
156size_t		dtrace_difo_maxsize = (256 * 1024);
157dtrace_optval_t	dtrace_dof_maxsize = (8 * 1024 * 1024);
158size_t		dtrace_statvar_maxsize = (16 * 1024);
159size_t		dtrace_actions_max = (16 * 1024);
160size_t		dtrace_retain_max = 1024;
161dtrace_optval_t	dtrace_helper_actions_max = 128;
162dtrace_optval_t	dtrace_helper_providers_max = 32;
163dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
164size_t		dtrace_strsize_default = 256;
165dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
166dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
167dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
168dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
169dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
170dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
171dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
172dtrace_optval_t	dtrace_nspec_default = 1;
173dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
174dtrace_optval_t dtrace_stackframes_default = 20;
175dtrace_optval_t dtrace_ustackframes_default = 20;
176dtrace_optval_t dtrace_jstackframes_default = 50;
177dtrace_optval_t dtrace_jstackstrsize_default = 512;
178int		dtrace_msgdsize_max = 128;
179hrtime_t	dtrace_chill_max = MSEC2NSEC(500);		/* 500 ms */
180hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
181int		dtrace_devdepth_max = 32;
182int		dtrace_err_verbose;
183hrtime_t	dtrace_deadman_interval = NANOSEC;
184hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
185hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
186hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
187#ifndef illumos
188int		dtrace_memstr_max = 4096;
189#endif
190
191/*
192 * DTrace External Variables
193 *
194 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
195 * available to DTrace consumers via the backtick (`) syntax.  One of these,
196 * dtrace_zero, is made deliberately so:  it is provided as a source of
197 * well-known, zero-filled memory.  While this variable is not documented,
198 * it is used by some translators as an implementation detail.
199 */
200const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
201
202/*
203 * DTrace Internal Variables
204 */
205#ifdef illumos
206static dev_info_t	*dtrace_devi;		/* device info */
207#endif
208#ifdef illumos
209static vmem_t		*dtrace_arena;		/* probe ID arena */
210static vmem_t		*dtrace_minor;		/* minor number arena */
211#else
212static taskq_t		*dtrace_taskq;		/* task queue */
213static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
214#endif
215static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
216static int		dtrace_nprobes;		/* number of probes */
217static dtrace_provider_t *dtrace_provider;	/* provider list */
218static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
219static int		dtrace_opens;		/* number of opens */
220static int		dtrace_helpers;		/* number of helpers */
221static int		dtrace_getf;		/* number of unpriv getf()s */
222#ifdef illumos
223static void		*dtrace_softstate;	/* softstate pointer */
224#endif
225static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
226static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
227static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
228static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
229static int		dtrace_toxranges;	/* number of toxic ranges */
230static int		dtrace_toxranges_max;	/* size of toxic range array */
231static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
232static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
233static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
234static kthread_t	*dtrace_panicked;	/* panicking thread */
235static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
236static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
237static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
238static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
239static dtrace_genid_t	dtrace_retained_gen;	/* current retained enab gen */
240static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
241static int		dtrace_dynvar_failclean; /* dynvars failed to clean */
242#ifndef illumos
243static struct mtx	dtrace_unr_mtx;
244MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
245int		dtrace_in_probe;	/* non-zero if executing a probe */
246#if defined(__i386__) || defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
247uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
248#endif
249static eventhandler_tag	dtrace_kld_load_tag;
250static eventhandler_tag	dtrace_kld_unload_try_tag;
251#endif
252
253/*
254 * DTrace Locking
255 * DTrace is protected by three (relatively coarse-grained) locks:
256 *
257 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
258 *     including enabling state, probes, ECBs, consumer state, helper state,
259 *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
260 *     probe context is lock-free -- synchronization is handled via the
261 *     dtrace_sync() cross call mechanism.
262 *
263 * (2) dtrace_provider_lock is required when manipulating provider state, or
264 *     when provider state must be held constant.
265 *
266 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
267 *     when meta provider state must be held constant.
268 *
269 * The lock ordering between these three locks is dtrace_meta_lock before
270 * dtrace_provider_lock before dtrace_lock.  (In particular, there are
271 * several places where dtrace_provider_lock is held by the framework as it
272 * calls into the providers -- which then call back into the framework,
273 * grabbing dtrace_lock.)
274 *
275 * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
276 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
277 * role as a coarse-grained lock; it is acquired before both of these locks.
278 * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
279 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
280 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
281 * acquired _between_ dtrace_provider_lock and dtrace_lock.
282 */
283static kmutex_t		dtrace_lock;		/* probe state lock */
284static kmutex_t		dtrace_provider_lock;	/* provider state lock */
285static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
286
287#ifndef illumos
288/* XXX FreeBSD hacks. */
289#define cr_suid		cr_svuid
290#define cr_sgid		cr_svgid
291#define	ipaddr_t	in_addr_t
292#define mod_modname	pathname
293#define vuprintf	vprintf
294#define ttoproc(_a)	((_a)->td_proc)
295#define crgetzoneid(_a)	0
296#define	NCPU		MAXCPU
297#define SNOCD		0
298#define CPU_ON_INTR(_a)	0
299
300#define PRIV_EFFECTIVE		(1 << 0)
301#define PRIV_DTRACE_KERNEL	(1 << 1)
302#define PRIV_DTRACE_PROC	(1 << 2)
303#define PRIV_DTRACE_USER	(1 << 3)
304#define PRIV_PROC_OWNER		(1 << 4)
305#define PRIV_PROC_ZONE		(1 << 5)
306#define PRIV_ALL		~0
307
308SYSCTL_DECL(_debug_dtrace);
309SYSCTL_DECL(_kern_dtrace);
310#endif
311
312#ifdef illumos
313#define curcpu	CPU->cpu_id
314#endif
315
316
317/*
318 * DTrace Provider Variables
319 *
320 * These are the variables relating to DTrace as a provider (that is, the
321 * provider of the BEGIN, END, and ERROR probes).
322 */
323static dtrace_pattr_t	dtrace_provider_attr = {
324{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
325{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
326{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
327{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
328{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
329};
330
331static void
332dtrace_nullop(void)
333{}
334
335static dtrace_pops_t	dtrace_provider_ops = {
336	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
337	(void (*)(void *, modctl_t *))dtrace_nullop,
338	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
339	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
340	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
341	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
342	NULL,
343	NULL,
344	NULL,
345	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
346};
347
348static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
349static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
350dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
351
352/*
353 * DTrace Helper Tracing Variables
354 *
355 * These variables should be set dynamically to enable helper tracing.  The
356 * only variables that should be set are dtrace_helptrace_enable (which should
357 * be set to a non-zero value to allocate helper tracing buffers on the next
358 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
359 * non-zero value to deallocate helper tracing buffers on the next close of
360 * /dev/dtrace).  When (and only when) helper tracing is disabled, the
361 * buffer size may also be set via dtrace_helptrace_bufsize.
362 */
363int			dtrace_helptrace_enable = 0;
364int			dtrace_helptrace_disable = 0;
365int			dtrace_helptrace_bufsize = 16 * 1024 * 1024;
366uint32_t		dtrace_helptrace_nlocals;
367static dtrace_helptrace_t *dtrace_helptrace_buffer;
368static uint32_t		dtrace_helptrace_next = 0;
369static int		dtrace_helptrace_wrapped = 0;
370
371/*
372 * DTrace Error Hashing
373 *
374 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
375 * table.  This is very useful for checking coverage of tests that are
376 * expected to induce DIF or DOF processing errors, and may be useful for
377 * debugging problems in the DIF code generator or in DOF generation .  The
378 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
379 */
380#ifdef DEBUG
381static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
382static const char *dtrace_errlast;
383static kthread_t *dtrace_errthread;
384static kmutex_t dtrace_errlock;
385#endif
386
387/*
388 * DTrace Macros and Constants
389 *
390 * These are various macros that are useful in various spots in the
391 * implementation, along with a few random constants that have no meaning
392 * outside of the implementation.  There is no real structure to this cpp
393 * mishmash -- but is there ever?
394 */
395#define	DTRACE_HASHSTR(hash, probe)	\
396	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
397
398#define	DTRACE_HASHNEXT(hash, probe)	\
399	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
400
401#define	DTRACE_HASHPREV(hash, probe)	\
402	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
403
404#define	DTRACE_HASHEQ(hash, lhs, rhs)	\
405	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
406	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
407
408#define	DTRACE_AGGHASHSIZE_SLEW		17
409
410#define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
411
412/*
413 * The key for a thread-local variable consists of the lower 61 bits of the
414 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
415 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
416 * equal to a variable identifier.  This is necessary (but not sufficient) to
417 * assure that global associative arrays never collide with thread-local
418 * variables.  To guarantee that they cannot collide, we must also define the
419 * order for keying dynamic variables.  That order is:
420 *
421 *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
422 *
423 * Because the variable-key and the tls-key are in orthogonal spaces, there is
424 * no way for a global variable key signature to match a thread-local key
425 * signature.
426 */
427#ifdef illumos
428#define	DTRACE_TLS_THRKEY(where) { \
429	uint_t intr = 0; \
430	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
431	for (; actv; actv >>= 1) \
432		intr++; \
433	ASSERT(intr < (1 << 3)); \
434	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
435	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
436}
437#else
438#define	DTRACE_TLS_THRKEY(where) { \
439	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
440	uint_t intr = 0; \
441	uint_t actv = _c->cpu_intr_actv; \
442	for (; actv; actv >>= 1) \
443		intr++; \
444	ASSERT(intr < (1 << 3)); \
445	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
446	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
447}
448#endif
449
450#define	DT_BSWAP_8(x)	((x) & 0xff)
451#define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
452#define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
453#define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
454
455#define	DT_MASK_LO 0x00000000FFFFFFFFULL
456
457#define	DTRACE_STORE(type, tomax, offset, what) \
458	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
459
460#ifndef __x86
461#define	DTRACE_ALIGNCHECK(addr, size, flags)				\
462	if (addr & (size - 1)) {					\
463		*flags |= CPU_DTRACE_BADALIGN;				\
464		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
465		return (0);						\
466	}
467#else
468#define	DTRACE_ALIGNCHECK(addr, size, flags)
469#endif
470
471/*
472 * Test whether a range of memory starting at testaddr of size testsz falls
473 * within the range of memory described by addr, sz.  We take care to avoid
474 * problems with overflow and underflow of the unsigned quantities, and
475 * disallow all negative sizes.  Ranges of size 0 are allowed.
476 */
477#define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
478	((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
479	(testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
480	(testaddr) + (testsz) >= (testaddr))
481
482/*
483 * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
484 * alloc_sz on the righthand side of the comparison in order to avoid overflow
485 * or underflow in the comparison with it.  This is simpler than the INRANGE
486 * check above, because we know that the dtms_scratch_ptr is valid in the
487 * range.  Allocations of size zero are allowed.
488 */
489#define	DTRACE_INSCRATCH(mstate, alloc_sz) \
490	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
491	(mstate)->dtms_scratch_ptr >= (alloc_sz))
492
493#define	DTRACE_LOADFUNC(bits)						\
494/*CSTYLED*/								\
495uint##bits##_t								\
496dtrace_load##bits(uintptr_t addr)					\
497{									\
498	size_t size = bits / NBBY;					\
499	/*CSTYLED*/							\
500	uint##bits##_t rval;						\
501	int i;								\
502	volatile uint16_t *flags = (volatile uint16_t *)		\
503	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
504									\
505	DTRACE_ALIGNCHECK(addr, size, flags);				\
506									\
507	for (i = 0; i < dtrace_toxranges; i++) {			\
508		if (addr >= dtrace_toxrange[i].dtt_limit)		\
509			continue;					\
510									\
511		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
512			continue;					\
513									\
514		/*							\
515		 * This address falls within a toxic region; return 0.	\
516		 */							\
517		*flags |= CPU_DTRACE_BADADDR;				\
518		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
519		return (0);						\
520	}								\
521									\
522	*flags |= CPU_DTRACE_NOFAULT;					\
523	/*CSTYLED*/							\
524	rval = *((volatile uint##bits##_t *)addr);			\
525	*flags &= ~CPU_DTRACE_NOFAULT;					\
526									\
527	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
528}
529
530#ifdef _LP64
531#define	dtrace_loadptr	dtrace_load64
532#else
533#define	dtrace_loadptr	dtrace_load32
534#endif
535
536#define	DTRACE_DYNHASH_FREE	0
537#define	DTRACE_DYNHASH_SINK	1
538#define	DTRACE_DYNHASH_VALID	2
539
540#define	DTRACE_MATCH_NEXT	0
541#define	DTRACE_MATCH_DONE	1
542#define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
543#define	DTRACE_STATE_ALIGN	64
544
545#define	DTRACE_FLAGS2FLT(flags)						\
546	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
547	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
548	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
549	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
550	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
551	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
552	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
553	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
554	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
555	DTRACEFLT_UNKNOWN)
556
557#define	DTRACEACT_ISSTRING(act)						\
558	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
559	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
560
561/* Function prototype definitions: */
562static size_t dtrace_strlen(const char *, size_t);
563static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
564static void dtrace_enabling_provide(dtrace_provider_t *);
565static int dtrace_enabling_match(dtrace_enabling_t *, int *);
566static void dtrace_enabling_matchall(void);
567static void dtrace_enabling_reap(void);
568static dtrace_state_t *dtrace_anon_grab(void);
569static uint64_t dtrace_helper(int, dtrace_mstate_t *,
570    dtrace_state_t *, uint64_t, uint64_t);
571static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
572static void dtrace_buffer_drop(dtrace_buffer_t *);
573static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
574static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
575    dtrace_state_t *, dtrace_mstate_t *);
576static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
577    dtrace_optval_t);
578static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
579static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
580uint16_t dtrace_load16(uintptr_t);
581uint32_t dtrace_load32(uintptr_t);
582uint64_t dtrace_load64(uintptr_t);
583uint8_t dtrace_load8(uintptr_t);
584void dtrace_dynvar_clean(dtrace_dstate_t *);
585dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
586    size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
587uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
588static int dtrace_priv_proc(dtrace_state_t *);
589static void dtrace_getf_barrier(void);
590
591/*
592 * DTrace Probe Context Functions
593 *
594 * These functions are called from probe context.  Because probe context is
595 * any context in which C may be called, arbitrarily locks may be held,
596 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
597 * As a result, functions called from probe context may only call other DTrace
598 * support functions -- they may not interact at all with the system at large.
599 * (Note that the ASSERT macro is made probe-context safe by redefining it in
600 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
601 * loads are to be performed from probe context, they _must_ be in terms of
602 * the safe dtrace_load*() variants.
603 *
604 * Some functions in this block are not actually called from probe context;
605 * for these functions, there will be a comment above the function reading
606 * "Note:  not called from probe context."
607 */
608void
609dtrace_panic(const char *format, ...)
610{
611	va_list alist;
612
613	va_start(alist, format);
614#ifdef __FreeBSD__
615	vpanic(format, alist);
616#else
617	dtrace_vpanic(format, alist);
618#endif
619	va_end(alist);
620}
621
622int
623dtrace_assfail(const char *a, const char *f, int l)
624{
625	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
626
627	/*
628	 * We just need something here that even the most clever compiler
629	 * cannot optimize away.
630	 */
631	return (a[(uintptr_t)f]);
632}
633
634/*
635 * Atomically increment a specified error counter from probe context.
636 */
637static void
638dtrace_error(uint32_t *counter)
639{
640	/*
641	 * Most counters stored to in probe context are per-CPU counters.
642	 * However, there are some error conditions that are sufficiently
643	 * arcane that they don't merit per-CPU storage.  If these counters
644	 * are incremented concurrently on different CPUs, scalability will be
645	 * adversely affected -- but we don't expect them to be white-hot in a
646	 * correctly constructed enabling...
647	 */
648	uint32_t oval, nval;
649
650	do {
651		oval = *counter;
652
653		if ((nval = oval + 1) == 0) {
654			/*
655			 * If the counter would wrap, set it to 1 -- assuring
656			 * that the counter is never zero when we have seen
657			 * errors.  (The counter must be 32-bits because we
658			 * aren't guaranteed a 64-bit compare&swap operation.)
659			 * To save this code both the infamy of being fingered
660			 * by a priggish news story and the indignity of being
661			 * the target of a neo-puritan witch trial, we're
662			 * carefully avoiding any colorful description of the
663			 * likelihood of this condition -- but suffice it to
664			 * say that it is only slightly more likely than the
665			 * overflow of predicate cache IDs, as discussed in
666			 * dtrace_predicate_create().
667			 */
668			nval = 1;
669		}
670	} while (dtrace_cas32(counter, oval, nval) != oval);
671}
672
673/*
674 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
675 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
676 */
677DTRACE_LOADFUNC(8)
678DTRACE_LOADFUNC(16)
679DTRACE_LOADFUNC(32)
680DTRACE_LOADFUNC(64)
681
682static int
683dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
684{
685	if (dest < mstate->dtms_scratch_base)
686		return (0);
687
688	if (dest + size < dest)
689		return (0);
690
691	if (dest + size > mstate->dtms_scratch_ptr)
692		return (0);
693
694	return (1);
695}
696
697static int
698dtrace_canstore_statvar(uint64_t addr, size_t sz,
699    dtrace_statvar_t **svars, int nsvars)
700{
701	int i;
702	size_t maxglobalsize, maxlocalsize;
703
704	if (nsvars == 0)
705		return (0);
706
707	maxglobalsize = dtrace_statvar_maxsize;
708	maxlocalsize = (maxglobalsize + sizeof (uint64_t)) * NCPU;
709
710	for (i = 0; i < nsvars; i++) {
711		dtrace_statvar_t *svar = svars[i];
712		uint8_t scope;
713		size_t size;
714
715		if (svar == NULL || (size = svar->dtsv_size) == 0)
716			continue;
717
718		scope = svar->dtsv_var.dtdv_scope;
719
720		/*
721		 * We verify that our size is valid in the spirit of providing
722		 * defense in depth:  we want to prevent attackers from using
723		 * DTrace to escalate an orthogonal kernel heap corruption bug
724		 * into the ability to store to arbitrary locations in memory.
725		 */
726		VERIFY((scope == DIFV_SCOPE_GLOBAL && size < maxglobalsize) ||
727		    (scope == DIFV_SCOPE_LOCAL && size < maxlocalsize));
728
729		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
730			return (1);
731	}
732
733	return (0);
734}
735
736/*
737 * Check to see if the address is within a memory region to which a store may
738 * be issued.  This includes the DTrace scratch areas, and any DTrace variable
739 * region.  The caller of dtrace_canstore() is responsible for performing any
740 * alignment checks that are needed before stores are actually executed.
741 */
742static int
743dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
744    dtrace_vstate_t *vstate)
745{
746	/*
747	 * First, check to see if the address is in scratch space...
748	 */
749	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
750	    mstate->dtms_scratch_size))
751		return (1);
752
753	/*
754	 * Now check to see if it's a dynamic variable.  This check will pick
755	 * up both thread-local variables and any global dynamically-allocated
756	 * variables.
757	 */
758	if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
759	    vstate->dtvs_dynvars.dtds_size)) {
760		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
761		uintptr_t base = (uintptr_t)dstate->dtds_base +
762		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
763		uintptr_t chunkoffs;
764
765		/*
766		 * Before we assume that we can store here, we need to make
767		 * sure that it isn't in our metadata -- storing to our
768		 * dynamic variable metadata would corrupt our state.  For
769		 * the range to not include any dynamic variable metadata,
770		 * it must:
771		 *
772		 *	(1) Start above the hash table that is at the base of
773		 *	the dynamic variable space
774		 *
775		 *	(2) Have a starting chunk offset that is beyond the
776		 *	dtrace_dynvar_t that is at the base of every chunk
777		 *
778		 *	(3) Not span a chunk boundary
779		 *
780		 */
781		if (addr < base)
782			return (0);
783
784		chunkoffs = (addr - base) % dstate->dtds_chunksize;
785
786		if (chunkoffs < sizeof (dtrace_dynvar_t))
787			return (0);
788
789		if (chunkoffs + sz > dstate->dtds_chunksize)
790			return (0);
791
792		return (1);
793	}
794
795	/*
796	 * Finally, check the static local and global variables.  These checks
797	 * take the longest, so we perform them last.
798	 */
799	if (dtrace_canstore_statvar(addr, sz,
800	    vstate->dtvs_locals, vstate->dtvs_nlocals))
801		return (1);
802
803	if (dtrace_canstore_statvar(addr, sz,
804	    vstate->dtvs_globals, vstate->dtvs_nglobals))
805		return (1);
806
807	return (0);
808}
809
810
811/*
812 * Convenience routine to check to see if the address is within a memory
813 * region in which a load may be issued given the user's privilege level;
814 * if not, it sets the appropriate error flags and loads 'addr' into the
815 * illegal value slot.
816 *
817 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
818 * appropriate memory access protection.
819 */
820static int
821dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
822    dtrace_vstate_t *vstate)
823{
824	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
825	file_t *fp;
826
827	/*
828	 * If we hold the privilege to read from kernel memory, then
829	 * everything is readable.
830	 */
831	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
832		return (1);
833
834	/*
835	 * You can obviously read that which you can store.
836	 */
837	if (dtrace_canstore(addr, sz, mstate, vstate))
838		return (1);
839
840	/*
841	 * We're allowed to read from our own string table.
842	 */
843	if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
844	    mstate->dtms_difo->dtdo_strlen))
845		return (1);
846
847	if (vstate->dtvs_state != NULL &&
848	    dtrace_priv_proc(vstate->dtvs_state)) {
849		proc_t *p;
850
851		/*
852		 * When we have privileges to the current process, there are
853		 * several context-related kernel structures that are safe to
854		 * read, even absent the privilege to read from kernel memory.
855		 * These reads are safe because these structures contain only
856		 * state that (1) we're permitted to read, (2) is harmless or
857		 * (3) contains pointers to additional kernel state that we're
858		 * not permitted to read (and as such, do not present an
859		 * opportunity for privilege escalation).  Finally (and
860		 * critically), because of the nature of their relation with
861		 * the current thread context, the memory associated with these
862		 * structures cannot change over the duration of probe context,
863		 * and it is therefore impossible for this memory to be
864		 * deallocated and reallocated as something else while it's
865		 * being operated upon.
866		 */
867		if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t)))
868			return (1);
869
870		if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
871		    sz, curthread->t_procp, sizeof (proc_t))) {
872			return (1);
873		}
874
875		if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
876		    curthread->t_cred, sizeof (cred_t))) {
877			return (1);
878		}
879
880#ifdef illumos
881		if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
882		    &(p->p_pidp->pid_id), sizeof (pid_t))) {
883			return (1);
884		}
885
886		if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
887		    curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
888			return (1);
889		}
890#endif
891	}
892
893	if ((fp = mstate->dtms_getf) != NULL) {
894		uintptr_t psz = sizeof (void *);
895		vnode_t *vp;
896		vnodeops_t *op;
897
898		/*
899		 * When getf() returns a file_t, the enabling is implicitly
900		 * granted the (transient) right to read the returned file_t
901		 * as well as the v_path and v_op->vnop_name of the underlying
902		 * vnode.  These accesses are allowed after a successful
903		 * getf() because the members that they refer to cannot change
904		 * once set -- and the barrier logic in the kernel's closef()
905		 * path assures that the file_t and its referenced vode_t
906		 * cannot themselves be stale (that is, it impossible for
907		 * either dtms_getf itself or its f_vnode member to reference
908		 * freed memory).
909		 */
910		if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t)))
911			return (1);
912
913		if ((vp = fp->f_vnode) != NULL) {
914#ifdef illumos
915			if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz))
916				return (1);
917			if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz,
918			    vp->v_path, strlen(vp->v_path) + 1)) {
919				return (1);
920			}
921#endif
922
923			if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz))
924				return (1);
925
926#ifdef illumos
927			if ((op = vp->v_op) != NULL &&
928			    DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
929				return (1);
930			}
931
932			if (op != NULL && op->vnop_name != NULL &&
933			    DTRACE_INRANGE(addr, sz, op->vnop_name,
934			    strlen(op->vnop_name) + 1)) {
935				return (1);
936			}
937#endif
938		}
939	}
940
941	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
942	*illval = addr;
943	return (0);
944}
945
946/*
947 * Convenience routine to check to see if a given string is within a memory
948 * region in which a load may be issued given the user's privilege level;
949 * this exists so that we don't need to issue unnecessary dtrace_strlen()
950 * calls in the event that the user has all privileges.
951 */
952static int
953dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
954    dtrace_vstate_t *vstate)
955{
956	size_t strsz;
957
958	/*
959	 * If we hold the privilege to read from kernel memory, then
960	 * everything is readable.
961	 */
962	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
963		return (1);
964
965	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
966	if (dtrace_canload(addr, strsz, mstate, vstate))
967		return (1);
968
969	return (0);
970}
971
972/*
973 * Convenience routine to check to see if a given variable is within a memory
974 * region in which a load may be issued given the user's privilege level.
975 */
976static int
977dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
978    dtrace_vstate_t *vstate)
979{
980	size_t sz;
981	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
982
983	/*
984	 * If we hold the privilege to read from kernel memory, then
985	 * everything is readable.
986	 */
987	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
988		return (1);
989
990	if (type->dtdt_kind == DIF_TYPE_STRING)
991		sz = dtrace_strlen(src,
992		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
993	else
994		sz = type->dtdt_size;
995
996	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
997}
998
999/*
1000 * Convert a string to a signed integer using safe loads.
1001 *
1002 * NOTE: This function uses various macros from strtolctype.h to manipulate
1003 * digit values, etc -- these have all been checked to ensure they make
1004 * no additional function calls.
1005 */
1006static int64_t
1007dtrace_strtoll(char *input, int base, size_t limit)
1008{
1009	uintptr_t pos = (uintptr_t)input;
1010	int64_t val = 0;
1011	int x;
1012	boolean_t neg = B_FALSE;
1013	char c, cc, ccc;
1014	uintptr_t end = pos + limit;
1015
1016	/*
1017	 * Consume any whitespace preceding digits.
1018	 */
1019	while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
1020		pos++;
1021
1022	/*
1023	 * Handle an explicit sign if one is present.
1024	 */
1025	if (c == '-' || c == '+') {
1026		if (c == '-')
1027			neg = B_TRUE;
1028		c = dtrace_load8(++pos);
1029	}
1030
1031	/*
1032	 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1033	 * if present.
1034	 */
1035	if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
1036	    cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
1037		pos += 2;
1038		c = ccc;
1039	}
1040
1041	/*
1042	 * Read in contiguous digits until the first non-digit character.
1043	 */
1044	for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
1045	    c = dtrace_load8(++pos))
1046		val = val * base + x;
1047
1048	return (neg ? -val : val);
1049}
1050
1051/*
1052 * Compare two strings using safe loads.
1053 */
1054static int
1055dtrace_strncmp(char *s1, char *s2, size_t limit)
1056{
1057	uint8_t c1, c2;
1058	volatile uint16_t *flags;
1059
1060	if (s1 == s2 || limit == 0)
1061		return (0);
1062
1063	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1064
1065	do {
1066		if (s1 == NULL) {
1067			c1 = '\0';
1068		} else {
1069			c1 = dtrace_load8((uintptr_t)s1++);
1070		}
1071
1072		if (s2 == NULL) {
1073			c2 = '\0';
1074		} else {
1075			c2 = dtrace_load8((uintptr_t)s2++);
1076		}
1077
1078		if (c1 != c2)
1079			return (c1 - c2);
1080	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1081
1082	return (0);
1083}
1084
1085/*
1086 * Compute strlen(s) for a string using safe memory accesses.  The additional
1087 * len parameter is used to specify a maximum length to ensure completion.
1088 */
1089static size_t
1090dtrace_strlen(const char *s, size_t lim)
1091{
1092	uint_t len;
1093
1094	for (len = 0; len != lim; len++) {
1095		if (dtrace_load8((uintptr_t)s++) == '\0')
1096			break;
1097	}
1098
1099	return (len);
1100}
1101
1102/*
1103 * Check if an address falls within a toxic region.
1104 */
1105static int
1106dtrace_istoxic(uintptr_t kaddr, size_t size)
1107{
1108	uintptr_t taddr, tsize;
1109	int i;
1110
1111	for (i = 0; i < dtrace_toxranges; i++) {
1112		taddr = dtrace_toxrange[i].dtt_base;
1113		tsize = dtrace_toxrange[i].dtt_limit - taddr;
1114
1115		if (kaddr - taddr < tsize) {
1116			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1117			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
1118			return (1);
1119		}
1120
1121		if (taddr - kaddr < size) {
1122			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1123			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
1124			return (1);
1125		}
1126	}
1127
1128	return (0);
1129}
1130
1131/*
1132 * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
1133 * memory specified by the DIF program.  The dst is assumed to be safe memory
1134 * that we can store to directly because it is managed by DTrace.  As with
1135 * standard bcopy, overlapping copies are handled properly.
1136 */
1137static void
1138dtrace_bcopy(const void *src, void *dst, size_t len)
1139{
1140	if (len != 0) {
1141		uint8_t *s1 = dst;
1142		const uint8_t *s2 = src;
1143
1144		if (s1 <= s2) {
1145			do {
1146				*s1++ = dtrace_load8((uintptr_t)s2++);
1147			} while (--len != 0);
1148		} else {
1149			s2 += len;
1150			s1 += len;
1151
1152			do {
1153				*--s1 = dtrace_load8((uintptr_t)--s2);
1154			} while (--len != 0);
1155		}
1156	}
1157}
1158
1159/*
1160 * Copy src to dst using safe memory accesses, up to either the specified
1161 * length, or the point that a nul byte is encountered.  The src is assumed to
1162 * be unsafe memory specified by the DIF program.  The dst is assumed to be
1163 * safe memory that we can store to directly because it is managed by DTrace.
1164 * Unlike dtrace_bcopy(), overlapping regions are not handled.
1165 */
1166static void
1167dtrace_strcpy(const void *src, void *dst, size_t len)
1168{
1169	if (len != 0) {
1170		uint8_t *s1 = dst, c;
1171		const uint8_t *s2 = src;
1172
1173		do {
1174			*s1++ = c = dtrace_load8((uintptr_t)s2++);
1175		} while (--len != 0 && c != '\0');
1176	}
1177}
1178
1179/*
1180 * Copy src to dst, deriving the size and type from the specified (BYREF)
1181 * variable type.  The src is assumed to be unsafe memory specified by the DIF
1182 * program.  The dst is assumed to be DTrace variable memory that is of the
1183 * specified type; we assume that we can store to directly.
1184 */
1185static void
1186dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1187{
1188	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1189
1190	if (type->dtdt_kind == DIF_TYPE_STRING) {
1191		dtrace_strcpy(src, dst, type->dtdt_size);
1192	} else {
1193		dtrace_bcopy(src, dst, type->dtdt_size);
1194	}
1195}
1196
1197/*
1198 * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1199 * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1200 * safe memory that we can access directly because it is managed by DTrace.
1201 */
1202static int
1203dtrace_bcmp(const void *s1, const void *s2, size_t len)
1204{
1205	volatile uint16_t *flags;
1206
1207	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1208
1209	if (s1 == s2)
1210		return (0);
1211
1212	if (s1 == NULL || s2 == NULL)
1213		return (1);
1214
1215	if (s1 != s2 && len != 0) {
1216		const uint8_t *ps1 = s1;
1217		const uint8_t *ps2 = s2;
1218
1219		do {
1220			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1221				return (1);
1222		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1223	}
1224	return (0);
1225}
1226
1227/*
1228 * Zero the specified region using a simple byte-by-byte loop.  Note that this
1229 * is for safe DTrace-managed memory only.
1230 */
1231static void
1232dtrace_bzero(void *dst, size_t len)
1233{
1234	uchar_t *cp;
1235
1236	for (cp = dst; len != 0; len--)
1237		*cp++ = 0;
1238}
1239
1240static void
1241dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1242{
1243	uint64_t result[2];
1244
1245	result[0] = addend1[0] + addend2[0];
1246	result[1] = addend1[1] + addend2[1] +
1247	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1248
1249	sum[0] = result[0];
1250	sum[1] = result[1];
1251}
1252
1253/*
1254 * Shift the 128-bit value in a by b. If b is positive, shift left.
1255 * If b is negative, shift right.
1256 */
1257static void
1258dtrace_shift_128(uint64_t *a, int b)
1259{
1260	uint64_t mask;
1261
1262	if (b == 0)
1263		return;
1264
1265	if (b < 0) {
1266		b = -b;
1267		if (b >= 64) {
1268			a[0] = a[1] >> (b - 64);
1269			a[1] = 0;
1270		} else {
1271			a[0] >>= b;
1272			mask = 1LL << (64 - b);
1273			mask -= 1;
1274			a[0] |= ((a[1] & mask) << (64 - b));
1275			a[1] >>= b;
1276		}
1277	} else {
1278		if (b >= 64) {
1279			a[1] = a[0] << (b - 64);
1280			a[0] = 0;
1281		} else {
1282			a[1] <<= b;
1283			mask = a[0] >> (64 - b);
1284			a[1] |= mask;
1285			a[0] <<= b;
1286		}
1287	}
1288}
1289
1290/*
1291 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1292 * use native multiplication on those, and then re-combine into the
1293 * resulting 128-bit value.
1294 *
1295 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1296 *     hi1 * hi2 << 64 +
1297 *     hi1 * lo2 << 32 +
1298 *     hi2 * lo1 << 32 +
1299 *     lo1 * lo2
1300 */
1301static void
1302dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1303{
1304	uint64_t hi1, hi2, lo1, lo2;
1305	uint64_t tmp[2];
1306
1307	hi1 = factor1 >> 32;
1308	hi2 = factor2 >> 32;
1309
1310	lo1 = factor1 & DT_MASK_LO;
1311	lo2 = factor2 & DT_MASK_LO;
1312
1313	product[0] = lo1 * lo2;
1314	product[1] = hi1 * hi2;
1315
1316	tmp[0] = hi1 * lo2;
1317	tmp[1] = 0;
1318	dtrace_shift_128(tmp, 32);
1319	dtrace_add_128(product, tmp, product);
1320
1321	tmp[0] = hi2 * lo1;
1322	tmp[1] = 0;
1323	dtrace_shift_128(tmp, 32);
1324	dtrace_add_128(product, tmp, product);
1325}
1326
1327/*
1328 * This privilege check should be used by actions and subroutines to
1329 * verify that the user credentials of the process that enabled the
1330 * invoking ECB match the target credentials
1331 */
1332static int
1333dtrace_priv_proc_common_user(dtrace_state_t *state)
1334{
1335	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1336
1337	/*
1338	 * We should always have a non-NULL state cred here, since if cred
1339	 * is null (anonymous tracing), we fast-path bypass this routine.
1340	 */
1341	ASSERT(s_cr != NULL);
1342
1343	if ((cr = CRED()) != NULL &&
1344	    s_cr->cr_uid == cr->cr_uid &&
1345	    s_cr->cr_uid == cr->cr_ruid &&
1346	    s_cr->cr_uid == cr->cr_suid &&
1347	    s_cr->cr_gid == cr->cr_gid &&
1348	    s_cr->cr_gid == cr->cr_rgid &&
1349	    s_cr->cr_gid == cr->cr_sgid)
1350		return (1);
1351
1352	return (0);
1353}
1354
1355/*
1356 * This privilege check should be used by actions and subroutines to
1357 * verify that the zone of the process that enabled the invoking ECB
1358 * matches the target credentials
1359 */
1360static int
1361dtrace_priv_proc_common_zone(dtrace_state_t *state)
1362{
1363#ifdef illumos
1364	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1365
1366	/*
1367	 * We should always have a non-NULL state cred here, since if cred
1368	 * is null (anonymous tracing), we fast-path bypass this routine.
1369	 */
1370	ASSERT(s_cr != NULL);
1371
1372	if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1373		return (1);
1374
1375	return (0);
1376#else
1377	return (1);
1378#endif
1379}
1380
1381/*
1382 * This privilege check should be used by actions and subroutines to
1383 * verify that the process has not setuid or changed credentials.
1384 */
1385static int
1386dtrace_priv_proc_common_nocd(void)
1387{
1388	proc_t *proc;
1389
1390	if ((proc = ttoproc(curthread)) != NULL &&
1391	    !(proc->p_flag & SNOCD))
1392		return (1);
1393
1394	return (0);
1395}
1396
1397static int
1398dtrace_priv_proc_destructive(dtrace_state_t *state)
1399{
1400	int action = state->dts_cred.dcr_action;
1401
1402	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1403	    dtrace_priv_proc_common_zone(state) == 0)
1404		goto bad;
1405
1406	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1407	    dtrace_priv_proc_common_user(state) == 0)
1408		goto bad;
1409
1410	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1411	    dtrace_priv_proc_common_nocd() == 0)
1412		goto bad;
1413
1414	return (1);
1415
1416bad:
1417	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1418
1419	return (0);
1420}
1421
1422static int
1423dtrace_priv_proc_control(dtrace_state_t *state)
1424{
1425	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1426		return (1);
1427
1428	if (dtrace_priv_proc_common_zone(state) &&
1429	    dtrace_priv_proc_common_user(state) &&
1430	    dtrace_priv_proc_common_nocd())
1431		return (1);
1432
1433	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1434
1435	return (0);
1436}
1437
1438static int
1439dtrace_priv_proc(dtrace_state_t *state)
1440{
1441	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1442		return (1);
1443
1444	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1445
1446	return (0);
1447}
1448
1449static int
1450dtrace_priv_kernel(dtrace_state_t *state)
1451{
1452	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1453		return (1);
1454
1455	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1456
1457	return (0);
1458}
1459
1460static int
1461dtrace_priv_kernel_destructive(dtrace_state_t *state)
1462{
1463	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1464		return (1);
1465
1466	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1467
1468	return (0);
1469}
1470
1471/*
1472 * Determine if the dte_cond of the specified ECB allows for processing of
1473 * the current probe to continue.  Note that this routine may allow continued
1474 * processing, but with access(es) stripped from the mstate's dtms_access
1475 * field.
1476 */
1477static int
1478dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1479    dtrace_ecb_t *ecb)
1480{
1481	dtrace_probe_t *probe = ecb->dte_probe;
1482	dtrace_provider_t *prov = probe->dtpr_provider;
1483	dtrace_pops_t *pops = &prov->dtpv_pops;
1484	int mode = DTRACE_MODE_NOPRIV_DROP;
1485
1486	ASSERT(ecb->dte_cond);
1487
1488#ifdef illumos
1489	if (pops->dtps_mode != NULL) {
1490		mode = pops->dtps_mode(prov->dtpv_arg,
1491		    probe->dtpr_id, probe->dtpr_arg);
1492
1493		ASSERT((mode & DTRACE_MODE_USER) ||
1494		    (mode & DTRACE_MODE_KERNEL));
1495		ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) ||
1496		    (mode & DTRACE_MODE_NOPRIV_DROP));
1497	}
1498
1499	/*
1500	 * If the dte_cond bits indicate that this consumer is only allowed to
1501	 * see user-mode firings of this probe, call the provider's dtps_mode()
1502	 * entry point to check that the probe was fired while in a user
1503	 * context.  If that's not the case, use the policy specified by the
1504	 * provider to determine if we drop the probe or merely restrict
1505	 * operation.
1506	 */
1507	if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1508		ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1509
1510		if (!(mode & DTRACE_MODE_USER)) {
1511			if (mode & DTRACE_MODE_NOPRIV_DROP)
1512				return (0);
1513
1514			mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1515		}
1516	}
1517#endif
1518
1519	/*
1520	 * This is more subtle than it looks. We have to be absolutely certain
1521	 * that CRED() isn't going to change out from under us so it's only
1522	 * legit to examine that structure if we're in constrained situations.
1523	 * Currently, the only times we'll this check is if a non-super-user
1524	 * has enabled the profile or syscall providers -- providers that
1525	 * allow visibility of all processes. For the profile case, the check
1526	 * above will ensure that we're examining a user context.
1527	 */
1528	if (ecb->dte_cond & DTRACE_COND_OWNER) {
1529		cred_t *cr;
1530		cred_t *s_cr = state->dts_cred.dcr_cred;
1531		proc_t *proc;
1532
1533		ASSERT(s_cr != NULL);
1534
1535		if ((cr = CRED()) == NULL ||
1536		    s_cr->cr_uid != cr->cr_uid ||
1537		    s_cr->cr_uid != cr->cr_ruid ||
1538		    s_cr->cr_uid != cr->cr_suid ||
1539		    s_cr->cr_gid != cr->cr_gid ||
1540		    s_cr->cr_gid != cr->cr_rgid ||
1541		    s_cr->cr_gid != cr->cr_sgid ||
1542		    (proc = ttoproc(curthread)) == NULL ||
1543		    (proc->p_flag & SNOCD)) {
1544			if (mode & DTRACE_MODE_NOPRIV_DROP)
1545				return (0);
1546
1547#ifdef illumos
1548			mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1549#endif
1550		}
1551	}
1552
1553#ifdef illumos
1554	/*
1555	 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1556	 * in our zone, check to see if our mode policy is to restrict rather
1557	 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1558	 * and DTRACE_ACCESS_ARGS
1559	 */
1560	if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1561		cred_t *cr;
1562		cred_t *s_cr = state->dts_cred.dcr_cred;
1563
1564		ASSERT(s_cr != NULL);
1565
1566		if ((cr = CRED()) == NULL ||
1567		    s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1568			if (mode & DTRACE_MODE_NOPRIV_DROP)
1569				return (0);
1570
1571			mstate->dtms_access &=
1572			    ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1573		}
1574	}
1575#endif
1576
1577	return (1);
1578}
1579
1580/*
1581 * Note:  not called from probe context.  This function is called
1582 * asynchronously (and at a regular interval) from outside of probe context to
1583 * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1584 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1585 */
1586void
1587dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1588{
1589	dtrace_dynvar_t *dirty;
1590	dtrace_dstate_percpu_t *dcpu;
1591	dtrace_dynvar_t **rinsep;
1592	int i, j, work = 0;
1593
1594	for (i = 0; i < NCPU; i++) {
1595		dcpu = &dstate->dtds_percpu[i];
1596		rinsep = &dcpu->dtdsc_rinsing;
1597
1598		/*
1599		 * If the dirty list is NULL, there is no dirty work to do.
1600		 */
1601		if (dcpu->dtdsc_dirty == NULL)
1602			continue;
1603
1604		if (dcpu->dtdsc_rinsing != NULL) {
1605			/*
1606			 * If the rinsing list is non-NULL, then it is because
1607			 * this CPU was selected to accept another CPU's
1608			 * dirty list -- and since that time, dirty buffers
1609			 * have accumulated.  This is a highly unlikely
1610			 * condition, but we choose to ignore the dirty
1611			 * buffers -- they'll be picked up a future cleanse.
1612			 */
1613			continue;
1614		}
1615
1616		if (dcpu->dtdsc_clean != NULL) {
1617			/*
1618			 * If the clean list is non-NULL, then we're in a
1619			 * situation where a CPU has done deallocations (we
1620			 * have a non-NULL dirty list) but no allocations (we
1621			 * also have a non-NULL clean list).  We can't simply
1622			 * move the dirty list into the clean list on this
1623			 * CPU, yet we also don't want to allow this condition
1624			 * to persist, lest a short clean list prevent a
1625			 * massive dirty list from being cleaned (which in
1626			 * turn could lead to otherwise avoidable dynamic
1627			 * drops).  To deal with this, we look for some CPU
1628			 * with a NULL clean list, NULL dirty list, and NULL
1629			 * rinsing list -- and then we borrow this CPU to
1630			 * rinse our dirty list.
1631			 */
1632			for (j = 0; j < NCPU; j++) {
1633				dtrace_dstate_percpu_t *rinser;
1634
1635				rinser = &dstate->dtds_percpu[j];
1636
1637				if (rinser->dtdsc_rinsing != NULL)
1638					continue;
1639
1640				if (rinser->dtdsc_dirty != NULL)
1641					continue;
1642
1643				if (rinser->dtdsc_clean != NULL)
1644					continue;
1645
1646				rinsep = &rinser->dtdsc_rinsing;
1647				break;
1648			}
1649
1650			if (j == NCPU) {
1651				/*
1652				 * We were unable to find another CPU that
1653				 * could accept this dirty list -- we are
1654				 * therefore unable to clean it now.
1655				 */
1656				dtrace_dynvar_failclean++;
1657				continue;
1658			}
1659		}
1660
1661		work = 1;
1662
1663		/*
1664		 * Atomically move the dirty list aside.
1665		 */
1666		do {
1667			dirty = dcpu->dtdsc_dirty;
1668
1669			/*
1670			 * Before we zap the dirty list, set the rinsing list.
1671			 * (This allows for a potential assertion in
1672			 * dtrace_dynvar():  if a free dynamic variable appears
1673			 * on a hash chain, either the dirty list or the
1674			 * rinsing list for some CPU must be non-NULL.)
1675			 */
1676			*rinsep = dirty;
1677			dtrace_membar_producer();
1678		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1679		    dirty, NULL) != dirty);
1680	}
1681
1682	if (!work) {
1683		/*
1684		 * We have no work to do; we can simply return.
1685		 */
1686		return;
1687	}
1688
1689	dtrace_sync();
1690
1691	for (i = 0; i < NCPU; i++) {
1692		dcpu = &dstate->dtds_percpu[i];
1693
1694		if (dcpu->dtdsc_rinsing == NULL)
1695			continue;
1696
1697		/*
1698		 * We are now guaranteed that no hash chain contains a pointer
1699		 * into this dirty list; we can make it clean.
1700		 */
1701		ASSERT(dcpu->dtdsc_clean == NULL);
1702		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1703		dcpu->dtdsc_rinsing = NULL;
1704	}
1705
1706	/*
1707	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1708	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1709	 * This prevents a race whereby a CPU incorrectly decides that
1710	 * the state should be something other than DTRACE_DSTATE_CLEAN
1711	 * after dtrace_dynvar_clean() has completed.
1712	 */
1713	dtrace_sync();
1714
1715	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1716}
1717
1718/*
1719 * Depending on the value of the op parameter, this function looks-up,
1720 * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1721 * allocation is requested, this function will return a pointer to a
1722 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1723 * variable can be allocated.  If NULL is returned, the appropriate counter
1724 * will be incremented.
1725 */
1726dtrace_dynvar_t *
1727dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1728    dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1729    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1730{
1731	uint64_t hashval = DTRACE_DYNHASH_VALID;
1732	dtrace_dynhash_t *hash = dstate->dtds_hash;
1733	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1734	processorid_t me = curcpu, cpu = me;
1735	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1736	size_t bucket, ksize;
1737	size_t chunksize = dstate->dtds_chunksize;
1738	uintptr_t kdata, lock, nstate;
1739	uint_t i;
1740
1741	ASSERT(nkeys != 0);
1742
1743	/*
1744	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1745	 * algorithm.  For the by-value portions, we perform the algorithm in
1746	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1747	 * bit, and seems to have only a minute effect on distribution.  For
1748	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1749	 * over each referenced byte.  It's painful to do this, but it's much
1750	 * better than pathological hash distribution.  The efficacy of the
1751	 * hashing algorithm (and a comparison with other algorithms) may be
1752	 * found by running the ::dtrace_dynstat MDB dcmd.
1753	 */
1754	for (i = 0; i < nkeys; i++) {
1755		if (key[i].dttk_size == 0) {
1756			uint64_t val = key[i].dttk_value;
1757
1758			hashval += (val >> 48) & 0xffff;
1759			hashval += (hashval << 10);
1760			hashval ^= (hashval >> 6);
1761
1762			hashval += (val >> 32) & 0xffff;
1763			hashval += (hashval << 10);
1764			hashval ^= (hashval >> 6);
1765
1766			hashval += (val >> 16) & 0xffff;
1767			hashval += (hashval << 10);
1768			hashval ^= (hashval >> 6);
1769
1770			hashval += val & 0xffff;
1771			hashval += (hashval << 10);
1772			hashval ^= (hashval >> 6);
1773		} else {
1774			/*
1775			 * This is incredibly painful, but it beats the hell
1776			 * out of the alternative.
1777			 */
1778			uint64_t j, size = key[i].dttk_size;
1779			uintptr_t base = (uintptr_t)key[i].dttk_value;
1780
1781			if (!dtrace_canload(base, size, mstate, vstate))
1782				break;
1783
1784			for (j = 0; j < size; j++) {
1785				hashval += dtrace_load8(base + j);
1786				hashval += (hashval << 10);
1787				hashval ^= (hashval >> 6);
1788			}
1789		}
1790	}
1791
1792	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1793		return (NULL);
1794
1795	hashval += (hashval << 3);
1796	hashval ^= (hashval >> 11);
1797	hashval += (hashval << 15);
1798
1799	/*
1800	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1801	 * comes out to be one of our two sentinel hash values.  If this
1802	 * actually happens, we set the hashval to be a value known to be a
1803	 * non-sentinel value.
1804	 */
1805	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1806		hashval = DTRACE_DYNHASH_VALID;
1807
1808	/*
1809	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1810	 * important here, tricks can be pulled to reduce it.  (However, it's
1811	 * critical that hash collisions be kept to an absolute minimum;
1812	 * they're much more painful than a divide.)  It's better to have a
1813	 * solution that generates few collisions and still keeps things
1814	 * relatively simple.
1815	 */
1816	bucket = hashval % dstate->dtds_hashsize;
1817
1818	if (op == DTRACE_DYNVAR_DEALLOC) {
1819		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1820
1821		for (;;) {
1822			while ((lock = *lockp) & 1)
1823				continue;
1824
1825			if (dtrace_casptr((volatile void *)lockp,
1826			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1827				break;
1828		}
1829
1830		dtrace_membar_producer();
1831	}
1832
1833top:
1834	prev = NULL;
1835	lock = hash[bucket].dtdh_lock;
1836
1837	dtrace_membar_consumer();
1838
1839	start = hash[bucket].dtdh_chain;
1840	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1841	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1842	    op != DTRACE_DYNVAR_DEALLOC));
1843
1844	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1845		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1846		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1847
1848		if (dvar->dtdv_hashval != hashval) {
1849			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1850				/*
1851				 * We've reached the sink, and therefore the
1852				 * end of the hash chain; we can kick out of
1853				 * the loop knowing that we have seen a valid
1854				 * snapshot of state.
1855				 */
1856				ASSERT(dvar->dtdv_next == NULL);
1857				ASSERT(dvar == &dtrace_dynhash_sink);
1858				break;
1859			}
1860
1861			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1862				/*
1863				 * We've gone off the rails:  somewhere along
1864				 * the line, one of the members of this hash
1865				 * chain was deleted.  Note that we could also
1866				 * detect this by simply letting this loop run
1867				 * to completion, as we would eventually hit
1868				 * the end of the dirty list.  However, we
1869				 * want to avoid running the length of the
1870				 * dirty list unnecessarily (it might be quite
1871				 * long), so we catch this as early as
1872				 * possible by detecting the hash marker.  In
1873				 * this case, we simply set dvar to NULL and
1874				 * break; the conditional after the loop will
1875				 * send us back to top.
1876				 */
1877				dvar = NULL;
1878				break;
1879			}
1880
1881			goto next;
1882		}
1883
1884		if (dtuple->dtt_nkeys != nkeys)
1885			goto next;
1886
1887		for (i = 0; i < nkeys; i++, dkey++) {
1888			if (dkey->dttk_size != key[i].dttk_size)
1889				goto next; /* size or type mismatch */
1890
1891			if (dkey->dttk_size != 0) {
1892				if (dtrace_bcmp(
1893				    (void *)(uintptr_t)key[i].dttk_value,
1894				    (void *)(uintptr_t)dkey->dttk_value,
1895				    dkey->dttk_size))
1896					goto next;
1897			} else {
1898				if (dkey->dttk_value != key[i].dttk_value)
1899					goto next;
1900			}
1901		}
1902
1903		if (op != DTRACE_DYNVAR_DEALLOC)
1904			return (dvar);
1905
1906		ASSERT(dvar->dtdv_next == NULL ||
1907		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1908
1909		if (prev != NULL) {
1910			ASSERT(hash[bucket].dtdh_chain != dvar);
1911			ASSERT(start != dvar);
1912			ASSERT(prev->dtdv_next == dvar);
1913			prev->dtdv_next = dvar->dtdv_next;
1914		} else {
1915			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1916			    start, dvar->dtdv_next) != start) {
1917				/*
1918				 * We have failed to atomically swing the
1919				 * hash table head pointer, presumably because
1920				 * of a conflicting allocation on another CPU.
1921				 * We need to reread the hash chain and try
1922				 * again.
1923				 */
1924				goto top;
1925			}
1926		}
1927
1928		dtrace_membar_producer();
1929
1930		/*
1931		 * Now set the hash value to indicate that it's free.
1932		 */
1933		ASSERT(hash[bucket].dtdh_chain != dvar);
1934		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1935
1936		dtrace_membar_producer();
1937
1938		/*
1939		 * Set the next pointer to point at the dirty list, and
1940		 * atomically swing the dirty pointer to the newly freed dvar.
1941		 */
1942		do {
1943			next = dcpu->dtdsc_dirty;
1944			dvar->dtdv_next = next;
1945		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1946
1947		/*
1948		 * Finally, unlock this hash bucket.
1949		 */
1950		ASSERT(hash[bucket].dtdh_lock == lock);
1951		ASSERT(lock & 1);
1952		hash[bucket].dtdh_lock++;
1953
1954		return (NULL);
1955next:
1956		prev = dvar;
1957		continue;
1958	}
1959
1960	if (dvar == NULL) {
1961		/*
1962		 * If dvar is NULL, it is because we went off the rails:
1963		 * one of the elements that we traversed in the hash chain
1964		 * was deleted while we were traversing it.  In this case,
1965		 * we assert that we aren't doing a dealloc (deallocs lock
1966		 * the hash bucket to prevent themselves from racing with
1967		 * one another), and retry the hash chain traversal.
1968		 */
1969		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1970		goto top;
1971	}
1972
1973	if (op != DTRACE_DYNVAR_ALLOC) {
1974		/*
1975		 * If we are not to allocate a new variable, we want to
1976		 * return NULL now.  Before we return, check that the value
1977		 * of the lock word hasn't changed.  If it has, we may have
1978		 * seen an inconsistent snapshot.
1979		 */
1980		if (op == DTRACE_DYNVAR_NOALLOC) {
1981			if (hash[bucket].dtdh_lock != lock)
1982				goto top;
1983		} else {
1984			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1985			ASSERT(hash[bucket].dtdh_lock == lock);
1986			ASSERT(lock & 1);
1987			hash[bucket].dtdh_lock++;
1988		}
1989
1990		return (NULL);
1991	}
1992
1993	/*
1994	 * We need to allocate a new dynamic variable.  The size we need is the
1995	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1996	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1997	 * the size of any referred-to data (dsize).  We then round the final
1998	 * size up to the chunksize for allocation.
1999	 */
2000	for (ksize = 0, i = 0; i < nkeys; i++)
2001		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
2002
2003	/*
2004	 * This should be pretty much impossible, but could happen if, say,
2005	 * strange DIF specified the tuple.  Ideally, this should be an
2006	 * assertion and not an error condition -- but that requires that the
2007	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
2008	 * bullet-proof.  (That is, it must not be able to be fooled by
2009	 * malicious DIF.)  Given the lack of backwards branches in DIF,
2010	 * solving this would presumably not amount to solving the Halting
2011	 * Problem -- but it still seems awfully hard.
2012	 */
2013	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
2014	    ksize + dsize > chunksize) {
2015		dcpu->dtdsc_drops++;
2016		return (NULL);
2017	}
2018
2019	nstate = DTRACE_DSTATE_EMPTY;
2020
2021	do {
2022retry:
2023		free = dcpu->dtdsc_free;
2024
2025		if (free == NULL) {
2026			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
2027			void *rval;
2028
2029			if (clean == NULL) {
2030				/*
2031				 * We're out of dynamic variable space on
2032				 * this CPU.  Unless we have tried all CPUs,
2033				 * we'll try to allocate from a different
2034				 * CPU.
2035				 */
2036				switch (dstate->dtds_state) {
2037				case DTRACE_DSTATE_CLEAN: {
2038					void *sp = &dstate->dtds_state;
2039
2040					if (++cpu >= NCPU)
2041						cpu = 0;
2042
2043					if (dcpu->dtdsc_dirty != NULL &&
2044					    nstate == DTRACE_DSTATE_EMPTY)
2045						nstate = DTRACE_DSTATE_DIRTY;
2046
2047					if (dcpu->dtdsc_rinsing != NULL)
2048						nstate = DTRACE_DSTATE_RINSING;
2049
2050					dcpu = &dstate->dtds_percpu[cpu];
2051
2052					if (cpu != me)
2053						goto retry;
2054
2055					(void) dtrace_cas32(sp,
2056					    DTRACE_DSTATE_CLEAN, nstate);
2057
2058					/*
2059					 * To increment the correct bean
2060					 * counter, take another lap.
2061					 */
2062					goto retry;
2063				}
2064
2065				case DTRACE_DSTATE_DIRTY:
2066					dcpu->dtdsc_dirty_drops++;
2067					break;
2068
2069				case DTRACE_DSTATE_RINSING:
2070					dcpu->dtdsc_rinsing_drops++;
2071					break;
2072
2073				case DTRACE_DSTATE_EMPTY:
2074					dcpu->dtdsc_drops++;
2075					break;
2076				}
2077
2078				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
2079				return (NULL);
2080			}
2081
2082			/*
2083			 * The clean list appears to be non-empty.  We want to
2084			 * move the clean list to the free list; we start by
2085			 * moving the clean pointer aside.
2086			 */
2087			if (dtrace_casptr(&dcpu->dtdsc_clean,
2088			    clean, NULL) != clean) {
2089				/*
2090				 * We are in one of two situations:
2091				 *
2092				 *  (a)	The clean list was switched to the
2093				 *	free list by another CPU.
2094				 *
2095				 *  (b)	The clean list was added to by the
2096				 *	cleansing cyclic.
2097				 *
2098				 * In either of these situations, we can
2099				 * just reattempt the free list allocation.
2100				 */
2101				goto retry;
2102			}
2103
2104			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
2105
2106			/*
2107			 * Now we'll move the clean list to our free list.
2108			 * It's impossible for this to fail:  the only way
2109			 * the free list can be updated is through this
2110			 * code path, and only one CPU can own the clean list.
2111			 * Thus, it would only be possible for this to fail if
2112			 * this code were racing with dtrace_dynvar_clean().
2113			 * (That is, if dtrace_dynvar_clean() updated the clean
2114			 * list, and we ended up racing to update the free
2115			 * list.)  This race is prevented by the dtrace_sync()
2116			 * in dtrace_dynvar_clean() -- which flushes the
2117			 * owners of the clean lists out before resetting
2118			 * the clean lists.
2119			 */
2120			dcpu = &dstate->dtds_percpu[me];
2121			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2122			ASSERT(rval == NULL);
2123			goto retry;
2124		}
2125
2126		dvar = free;
2127		new_free = dvar->dtdv_next;
2128	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2129
2130	/*
2131	 * We have now allocated a new chunk.  We copy the tuple keys into the
2132	 * tuple array and copy any referenced key data into the data space
2133	 * following the tuple array.  As we do this, we relocate dttk_value
2134	 * in the final tuple to point to the key data address in the chunk.
2135	 */
2136	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2137	dvar->dtdv_data = (void *)(kdata + ksize);
2138	dvar->dtdv_tuple.dtt_nkeys = nkeys;
2139
2140	for (i = 0; i < nkeys; i++) {
2141		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2142		size_t kesize = key[i].dttk_size;
2143
2144		if (kesize != 0) {
2145			dtrace_bcopy(
2146			    (const void *)(uintptr_t)key[i].dttk_value,
2147			    (void *)kdata, kesize);
2148			dkey->dttk_value = kdata;
2149			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2150		} else {
2151			dkey->dttk_value = key[i].dttk_value;
2152		}
2153
2154		dkey->dttk_size = kesize;
2155	}
2156
2157	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2158	dvar->dtdv_hashval = hashval;
2159	dvar->dtdv_next = start;
2160
2161	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2162		return (dvar);
2163
2164	/*
2165	 * The cas has failed.  Either another CPU is adding an element to
2166	 * this hash chain, or another CPU is deleting an element from this
2167	 * hash chain.  The simplest way to deal with both of these cases
2168	 * (though not necessarily the most efficient) is to free our
2169	 * allocated block and tail-call ourselves.  Note that the free is
2170	 * to the dirty list and _not_ to the free list.  This is to prevent
2171	 * races with allocators, above.
2172	 */
2173	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2174
2175	dtrace_membar_producer();
2176
2177	do {
2178		free = dcpu->dtdsc_dirty;
2179		dvar->dtdv_next = free;
2180	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2181
2182	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
2183}
2184
2185/*ARGSUSED*/
2186static void
2187dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2188{
2189	if ((int64_t)nval < (int64_t)*oval)
2190		*oval = nval;
2191}
2192
2193/*ARGSUSED*/
2194static void
2195dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2196{
2197	if ((int64_t)nval > (int64_t)*oval)
2198		*oval = nval;
2199}
2200
2201static void
2202dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2203{
2204	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2205	int64_t val = (int64_t)nval;
2206
2207	if (val < 0) {
2208		for (i = 0; i < zero; i++) {
2209			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2210				quanta[i] += incr;
2211				return;
2212			}
2213		}
2214	} else {
2215		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2216			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2217				quanta[i - 1] += incr;
2218				return;
2219			}
2220		}
2221
2222		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2223		return;
2224	}
2225
2226	ASSERT(0);
2227}
2228
2229static void
2230dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2231{
2232	uint64_t arg = *lquanta++;
2233	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2234	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2235	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2236	int32_t val = (int32_t)nval, level;
2237
2238	ASSERT(step != 0);
2239	ASSERT(levels != 0);
2240
2241	if (val < base) {
2242		/*
2243		 * This is an underflow.
2244		 */
2245		lquanta[0] += incr;
2246		return;
2247	}
2248
2249	level = (val - base) / step;
2250
2251	if (level < levels) {
2252		lquanta[level + 1] += incr;
2253		return;
2254	}
2255
2256	/*
2257	 * This is an overflow.
2258	 */
2259	lquanta[levels + 1] += incr;
2260}
2261
2262static int
2263dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2264    uint16_t high, uint16_t nsteps, int64_t value)
2265{
2266	int64_t this = 1, last, next;
2267	int base = 1, order;
2268
2269	ASSERT(factor <= nsteps);
2270	ASSERT(nsteps % factor == 0);
2271
2272	for (order = 0; order < low; order++)
2273		this *= factor;
2274
2275	/*
2276	 * If our value is less than our factor taken to the power of the
2277	 * low order of magnitude, it goes into the zeroth bucket.
2278	 */
2279	if (value < (last = this))
2280		return (0);
2281
2282	for (this *= factor; order <= high; order++) {
2283		int nbuckets = this > nsteps ? nsteps : this;
2284
2285		if ((next = this * factor) < this) {
2286			/*
2287			 * We should not generally get log/linear quantizations
2288			 * with a high magnitude that allows 64-bits to
2289			 * overflow, but we nonetheless protect against this
2290			 * by explicitly checking for overflow, and clamping
2291			 * our value accordingly.
2292			 */
2293			value = this - 1;
2294		}
2295
2296		if (value < this) {
2297			/*
2298			 * If our value lies within this order of magnitude,
2299			 * determine its position by taking the offset within
2300			 * the order of magnitude, dividing by the bucket
2301			 * width, and adding to our (accumulated) base.
2302			 */
2303			return (base + (value - last) / (this / nbuckets));
2304		}
2305
2306		base += nbuckets - (nbuckets / factor);
2307		last = this;
2308		this = next;
2309	}
2310
2311	/*
2312	 * Our value is greater than or equal to our factor taken to the
2313	 * power of one plus the high magnitude -- return the top bucket.
2314	 */
2315	return (base);
2316}
2317
2318static void
2319dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2320{
2321	uint64_t arg = *llquanta++;
2322	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2323	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2324	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2325	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2326
2327	llquanta[dtrace_aggregate_llquantize_bucket(factor,
2328	    low, high, nsteps, nval)] += incr;
2329}
2330
2331/*ARGSUSED*/
2332static void
2333dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2334{
2335	data[0]++;
2336	data[1] += nval;
2337}
2338
2339/*ARGSUSED*/
2340static void
2341dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2342{
2343	int64_t snval = (int64_t)nval;
2344	uint64_t tmp[2];
2345
2346	data[0]++;
2347	data[1] += nval;
2348
2349	/*
2350	 * What we want to say here is:
2351	 *
2352	 * data[2] += nval * nval;
2353	 *
2354	 * But given that nval is 64-bit, we could easily overflow, so
2355	 * we do this as 128-bit arithmetic.
2356	 */
2357	if (snval < 0)
2358		snval = -snval;
2359
2360	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2361	dtrace_add_128(data + 2, tmp, data + 2);
2362}
2363
2364/*ARGSUSED*/
2365static void
2366dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2367{
2368	*oval = *oval + 1;
2369}
2370
2371/*ARGSUSED*/
2372static void
2373dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2374{
2375	*oval += nval;
2376}
2377
2378/*
2379 * Aggregate given the tuple in the principal data buffer, and the aggregating
2380 * action denoted by the specified dtrace_aggregation_t.  The aggregation
2381 * buffer is specified as the buf parameter.  This routine does not return
2382 * failure; if there is no space in the aggregation buffer, the data will be
2383 * dropped, and a corresponding counter incremented.
2384 */
2385static void
2386dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2387    intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2388{
2389	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2390	uint32_t i, ndx, size, fsize;
2391	uint32_t align = sizeof (uint64_t) - 1;
2392	dtrace_aggbuffer_t *agb;
2393	dtrace_aggkey_t *key;
2394	uint32_t hashval = 0, limit, isstr;
2395	caddr_t tomax, data, kdata;
2396	dtrace_actkind_t action;
2397	dtrace_action_t *act;
2398	uintptr_t offs;
2399
2400	if (buf == NULL)
2401		return;
2402
2403	if (!agg->dtag_hasarg) {
2404		/*
2405		 * Currently, only quantize() and lquantize() take additional
2406		 * arguments, and they have the same semantics:  an increment
2407		 * value that defaults to 1 when not present.  If additional
2408		 * aggregating actions take arguments, the setting of the
2409		 * default argument value will presumably have to become more
2410		 * sophisticated...
2411		 */
2412		arg = 1;
2413	}
2414
2415	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2416	size = rec->dtrd_offset - agg->dtag_base;
2417	fsize = size + rec->dtrd_size;
2418
2419	ASSERT(dbuf->dtb_tomax != NULL);
2420	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2421
2422	if ((tomax = buf->dtb_tomax) == NULL) {
2423		dtrace_buffer_drop(buf);
2424		return;
2425	}
2426
2427	/*
2428	 * The metastructure is always at the bottom of the buffer.
2429	 */
2430	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2431	    sizeof (dtrace_aggbuffer_t));
2432
2433	if (buf->dtb_offset == 0) {
2434		/*
2435		 * We just kludge up approximately 1/8th of the size to be
2436		 * buckets.  If this guess ends up being routinely
2437		 * off-the-mark, we may need to dynamically readjust this
2438		 * based on past performance.
2439		 */
2440		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2441
2442		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2443		    (uintptr_t)tomax || hashsize == 0) {
2444			/*
2445			 * We've been given a ludicrously small buffer;
2446			 * increment our drop count and leave.
2447			 */
2448			dtrace_buffer_drop(buf);
2449			return;
2450		}
2451
2452		/*
2453		 * And now, a pathetic attempt to try to get a an odd (or
2454		 * perchance, a prime) hash size for better hash distribution.
2455		 */
2456		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2457			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2458
2459		agb->dtagb_hashsize = hashsize;
2460		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2461		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2462		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2463
2464		for (i = 0; i < agb->dtagb_hashsize; i++)
2465			agb->dtagb_hash[i] = NULL;
2466	}
2467
2468	ASSERT(agg->dtag_first != NULL);
2469	ASSERT(agg->dtag_first->dta_intuple);
2470
2471	/*
2472	 * Calculate the hash value based on the key.  Note that we _don't_
2473	 * include the aggid in the hashing (but we will store it as part of
2474	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2475	 * algorithm: a simple, quick algorithm that has no known funnels, and
2476	 * gets good distribution in practice.  The efficacy of the hashing
2477	 * algorithm (and a comparison with other algorithms) may be found by
2478	 * running the ::dtrace_aggstat MDB dcmd.
2479	 */
2480	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2481		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2482		limit = i + act->dta_rec.dtrd_size;
2483		ASSERT(limit <= size);
2484		isstr = DTRACEACT_ISSTRING(act);
2485
2486		for (; i < limit; i++) {
2487			hashval += data[i];
2488			hashval += (hashval << 10);
2489			hashval ^= (hashval >> 6);
2490
2491			if (isstr && data[i] == '\0')
2492				break;
2493		}
2494	}
2495
2496	hashval += (hashval << 3);
2497	hashval ^= (hashval >> 11);
2498	hashval += (hashval << 15);
2499
2500	/*
2501	 * Yes, the divide here is expensive -- but it's generally the least
2502	 * of the performance issues given the amount of data that we iterate
2503	 * over to compute hash values, compare data, etc.
2504	 */
2505	ndx = hashval % agb->dtagb_hashsize;
2506
2507	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2508		ASSERT((caddr_t)key >= tomax);
2509		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2510
2511		if (hashval != key->dtak_hashval || key->dtak_size != size)
2512			continue;
2513
2514		kdata = key->dtak_data;
2515		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2516
2517		for (act = agg->dtag_first; act->dta_intuple;
2518		    act = act->dta_next) {
2519			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2520			limit = i + act->dta_rec.dtrd_size;
2521			ASSERT(limit <= size);
2522			isstr = DTRACEACT_ISSTRING(act);
2523
2524			for (; i < limit; i++) {
2525				if (kdata[i] != data[i])
2526					goto next;
2527
2528				if (isstr && data[i] == '\0')
2529					break;
2530			}
2531		}
2532
2533		if (action != key->dtak_action) {
2534			/*
2535			 * We are aggregating on the same value in the same
2536			 * aggregation with two different aggregating actions.
2537			 * (This should have been picked up in the compiler,
2538			 * so we may be dealing with errant or devious DIF.)
2539			 * This is an error condition; we indicate as much,
2540			 * and return.
2541			 */
2542			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2543			return;
2544		}
2545
2546		/*
2547		 * This is a hit:  we need to apply the aggregator to
2548		 * the value at this key.
2549		 */
2550		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2551		return;
2552next:
2553		continue;
2554	}
2555
2556	/*
2557	 * We didn't find it.  We need to allocate some zero-filled space,
2558	 * link it into the hash table appropriately, and apply the aggregator
2559	 * to the (zero-filled) value.
2560	 */
2561	offs = buf->dtb_offset;
2562	while (offs & (align - 1))
2563		offs += sizeof (uint32_t);
2564
2565	/*
2566	 * If we don't have enough room to both allocate a new key _and_
2567	 * its associated data, increment the drop count and return.
2568	 */
2569	if ((uintptr_t)tomax + offs + fsize >
2570	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2571		dtrace_buffer_drop(buf);
2572		return;
2573	}
2574
2575	/*CONSTCOND*/
2576	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2577	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2578	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2579
2580	key->dtak_data = kdata = tomax + offs;
2581	buf->dtb_offset = offs + fsize;
2582
2583	/*
2584	 * Now copy the data across.
2585	 */
2586	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2587
2588	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2589		kdata[i] = data[i];
2590
2591	/*
2592	 * Because strings are not zeroed out by default, we need to iterate
2593	 * looking for actions that store strings, and we need to explicitly
2594	 * pad these strings out with zeroes.
2595	 */
2596	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2597		int nul;
2598
2599		if (!DTRACEACT_ISSTRING(act))
2600			continue;
2601
2602		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2603		limit = i + act->dta_rec.dtrd_size;
2604		ASSERT(limit <= size);
2605
2606		for (nul = 0; i < limit; i++) {
2607			if (nul) {
2608				kdata[i] = '\0';
2609				continue;
2610			}
2611
2612			if (data[i] != '\0')
2613				continue;
2614
2615			nul = 1;
2616		}
2617	}
2618
2619	for (i = size; i < fsize; i++)
2620		kdata[i] = 0;
2621
2622	key->dtak_hashval = hashval;
2623	key->dtak_size = size;
2624	key->dtak_action = action;
2625	key->dtak_next = agb->dtagb_hash[ndx];
2626	agb->dtagb_hash[ndx] = key;
2627
2628	/*
2629	 * Finally, apply the aggregator.
2630	 */
2631	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2632	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2633}
2634
2635/*
2636 * Given consumer state, this routine finds a speculation in the INACTIVE
2637 * state and transitions it into the ACTIVE state.  If there is no speculation
2638 * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2639 * incremented -- it is up to the caller to take appropriate action.
2640 */
2641static int
2642dtrace_speculation(dtrace_state_t *state)
2643{
2644	int i = 0;
2645	dtrace_speculation_state_t current;
2646	uint32_t *stat = &state->dts_speculations_unavail, count;
2647
2648	while (i < state->dts_nspeculations) {
2649		dtrace_speculation_t *spec = &state->dts_speculations[i];
2650
2651		current = spec->dtsp_state;
2652
2653		if (current != DTRACESPEC_INACTIVE) {
2654			if (current == DTRACESPEC_COMMITTINGMANY ||
2655			    current == DTRACESPEC_COMMITTING ||
2656			    current == DTRACESPEC_DISCARDING)
2657				stat = &state->dts_speculations_busy;
2658			i++;
2659			continue;
2660		}
2661
2662		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2663		    current, DTRACESPEC_ACTIVE) == current)
2664			return (i + 1);
2665	}
2666
2667	/*
2668	 * We couldn't find a speculation.  If we found as much as a single
2669	 * busy speculation buffer, we'll attribute this failure as "busy"
2670	 * instead of "unavail".
2671	 */
2672	do {
2673		count = *stat;
2674	} while (dtrace_cas32(stat, count, count + 1) != count);
2675
2676	return (0);
2677}
2678
2679/*
2680 * This routine commits an active speculation.  If the specified speculation
2681 * is not in a valid state to perform a commit(), this routine will silently do
2682 * nothing.  The state of the specified speculation is transitioned according
2683 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2684 */
2685static void
2686dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2687    dtrace_specid_t which)
2688{
2689	dtrace_speculation_t *spec;
2690	dtrace_buffer_t *src, *dest;
2691	uintptr_t daddr, saddr, dlimit, slimit;
2692	dtrace_speculation_state_t current, new = 0;
2693	intptr_t offs;
2694	uint64_t timestamp;
2695
2696	if (which == 0)
2697		return;
2698
2699	if (which > state->dts_nspeculations) {
2700		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2701		return;
2702	}
2703
2704	spec = &state->dts_speculations[which - 1];
2705	src = &spec->dtsp_buffer[cpu];
2706	dest = &state->dts_buffer[cpu];
2707
2708	do {
2709		current = spec->dtsp_state;
2710
2711		if (current == DTRACESPEC_COMMITTINGMANY)
2712			break;
2713
2714		switch (current) {
2715		case DTRACESPEC_INACTIVE:
2716		case DTRACESPEC_DISCARDING:
2717			return;
2718
2719		case DTRACESPEC_COMMITTING:
2720			/*
2721			 * This is only possible if we are (a) commit()'ing
2722			 * without having done a prior speculate() on this CPU
2723			 * and (b) racing with another commit() on a different
2724			 * CPU.  There's nothing to do -- we just assert that
2725			 * our offset is 0.
2726			 */
2727			ASSERT(src->dtb_offset == 0);
2728			return;
2729
2730		case DTRACESPEC_ACTIVE:
2731			new = DTRACESPEC_COMMITTING;
2732			break;
2733
2734		case DTRACESPEC_ACTIVEONE:
2735			/*
2736			 * This speculation is active on one CPU.  If our
2737			 * buffer offset is non-zero, we know that the one CPU
2738			 * must be us.  Otherwise, we are committing on a
2739			 * different CPU from the speculate(), and we must
2740			 * rely on being asynchronously cleaned.
2741			 */
2742			if (src->dtb_offset != 0) {
2743				new = DTRACESPEC_COMMITTING;
2744				break;
2745			}
2746			/*FALLTHROUGH*/
2747
2748		case DTRACESPEC_ACTIVEMANY:
2749			new = DTRACESPEC_COMMITTINGMANY;
2750			break;
2751
2752		default:
2753			ASSERT(0);
2754		}
2755	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2756	    current, new) != current);
2757
2758	/*
2759	 * We have set the state to indicate that we are committing this
2760	 * speculation.  Now reserve the necessary space in the destination
2761	 * buffer.
2762	 */
2763	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2764	    sizeof (uint64_t), state, NULL)) < 0) {
2765		dtrace_buffer_drop(dest);
2766		goto out;
2767	}
2768
2769	/*
2770	 * We have sufficient space to copy the speculative buffer into the
2771	 * primary buffer.  First, modify the speculative buffer, filling
2772	 * in the timestamp of all entries with the current time.  The data
2773	 * must have the commit() time rather than the time it was traced,
2774	 * so that all entries in the primary buffer are in timestamp order.
2775	 */
2776	timestamp = dtrace_gethrtime();
2777	saddr = (uintptr_t)src->dtb_tomax;
2778	slimit = saddr + src->dtb_offset;
2779	while (saddr < slimit) {
2780		size_t size;
2781		dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2782
2783		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2784			saddr += sizeof (dtrace_epid_t);
2785			continue;
2786		}
2787		ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2788		size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2789
2790		ASSERT3U(saddr + size, <=, slimit);
2791		ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2792		ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2793
2794		DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2795
2796		saddr += size;
2797	}
2798
2799	/*
2800	 * Copy the buffer across.  (Note that this is a
2801	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2802	 * a serious performance issue, a high-performance DTrace-specific
2803	 * bcopy() should obviously be invented.)
2804	 */
2805	daddr = (uintptr_t)dest->dtb_tomax + offs;
2806	dlimit = daddr + src->dtb_offset;
2807	saddr = (uintptr_t)src->dtb_tomax;
2808
2809	/*
2810	 * First, the aligned portion.
2811	 */
2812	while (dlimit - daddr >= sizeof (uint64_t)) {
2813		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2814
2815		daddr += sizeof (uint64_t);
2816		saddr += sizeof (uint64_t);
2817	}
2818
2819	/*
2820	 * Now any left-over bit...
2821	 */
2822	while (dlimit - daddr)
2823		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2824
2825	/*
2826	 * Finally, commit the reserved space in the destination buffer.
2827	 */
2828	dest->dtb_offset = offs + src->dtb_offset;
2829
2830out:
2831	/*
2832	 * If we're lucky enough to be the only active CPU on this speculation
2833	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2834	 */
2835	if (current == DTRACESPEC_ACTIVE ||
2836	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2837		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2838		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2839
2840		ASSERT(rval == DTRACESPEC_COMMITTING);
2841	}
2842
2843	src->dtb_offset = 0;
2844	src->dtb_xamot_drops += src->dtb_drops;
2845	src->dtb_drops = 0;
2846}
2847
2848/*
2849 * This routine discards an active speculation.  If the specified speculation
2850 * is not in a valid state to perform a discard(), this routine will silently
2851 * do nothing.  The state of the specified speculation is transitioned
2852 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2853 */
2854static void
2855dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2856    dtrace_specid_t which)
2857{
2858	dtrace_speculation_t *spec;
2859	dtrace_speculation_state_t current, new = 0;
2860	dtrace_buffer_t *buf;
2861
2862	if (which == 0)
2863		return;
2864
2865	if (which > state->dts_nspeculations) {
2866		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2867		return;
2868	}
2869
2870	spec = &state->dts_speculations[which - 1];
2871	buf = &spec->dtsp_buffer[cpu];
2872
2873	do {
2874		current = spec->dtsp_state;
2875
2876		switch (current) {
2877		case DTRACESPEC_INACTIVE:
2878		case DTRACESPEC_COMMITTINGMANY:
2879		case DTRACESPEC_COMMITTING:
2880		case DTRACESPEC_DISCARDING:
2881			return;
2882
2883		case DTRACESPEC_ACTIVE:
2884		case DTRACESPEC_ACTIVEMANY:
2885			new = DTRACESPEC_DISCARDING;
2886			break;
2887
2888		case DTRACESPEC_ACTIVEONE:
2889			if (buf->dtb_offset != 0) {
2890				new = DTRACESPEC_INACTIVE;
2891			} else {
2892				new = DTRACESPEC_DISCARDING;
2893			}
2894			break;
2895
2896		default:
2897			ASSERT(0);
2898		}
2899	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2900	    current, new) != current);
2901
2902	buf->dtb_offset = 0;
2903	buf->dtb_drops = 0;
2904}
2905
2906/*
2907 * Note:  not called from probe context.  This function is called
2908 * asynchronously from cross call context to clean any speculations that are
2909 * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2910 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2911 * speculation.
2912 */
2913static void
2914dtrace_speculation_clean_here(dtrace_state_t *state)
2915{
2916	dtrace_icookie_t cookie;
2917	processorid_t cpu = curcpu;
2918	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2919	dtrace_specid_t i;
2920
2921	cookie = dtrace_interrupt_disable();
2922
2923	if (dest->dtb_tomax == NULL) {
2924		dtrace_interrupt_enable(cookie);
2925		return;
2926	}
2927
2928	for (i = 0; i < state->dts_nspeculations; i++) {
2929		dtrace_speculation_t *spec = &state->dts_speculations[i];
2930		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2931
2932		if (src->dtb_tomax == NULL)
2933			continue;
2934
2935		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2936			src->dtb_offset = 0;
2937			continue;
2938		}
2939
2940		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2941			continue;
2942
2943		if (src->dtb_offset == 0)
2944			continue;
2945
2946		dtrace_speculation_commit(state, cpu, i + 1);
2947	}
2948
2949	dtrace_interrupt_enable(cookie);
2950}
2951
2952/*
2953 * Note:  not called from probe context.  This function is called
2954 * asynchronously (and at a regular interval) to clean any speculations that
2955 * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2956 * is work to be done, it cross calls all CPUs to perform that work;
2957 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2958 * INACTIVE state until they have been cleaned by all CPUs.
2959 */
2960static void
2961dtrace_speculation_clean(dtrace_state_t *state)
2962{
2963	int work = 0, rv;
2964	dtrace_specid_t i;
2965
2966	for (i = 0; i < state->dts_nspeculations; i++) {
2967		dtrace_speculation_t *spec = &state->dts_speculations[i];
2968
2969		ASSERT(!spec->dtsp_cleaning);
2970
2971		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2972		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2973			continue;
2974
2975		work++;
2976		spec->dtsp_cleaning = 1;
2977	}
2978
2979	if (!work)
2980		return;
2981
2982	dtrace_xcall(DTRACE_CPUALL,
2983	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2984
2985	/*
2986	 * We now know that all CPUs have committed or discarded their
2987	 * speculation buffers, as appropriate.  We can now set the state
2988	 * to inactive.
2989	 */
2990	for (i = 0; i < state->dts_nspeculations; i++) {
2991		dtrace_speculation_t *spec = &state->dts_speculations[i];
2992		dtrace_speculation_state_t current, new;
2993
2994		if (!spec->dtsp_cleaning)
2995			continue;
2996
2997		current = spec->dtsp_state;
2998		ASSERT(current == DTRACESPEC_DISCARDING ||
2999		    current == DTRACESPEC_COMMITTINGMANY);
3000
3001		new = DTRACESPEC_INACTIVE;
3002
3003		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
3004		ASSERT(rv == current);
3005		spec->dtsp_cleaning = 0;
3006	}
3007}
3008
3009/*
3010 * Called as part of a speculate() to get the speculative buffer associated
3011 * with a given speculation.  Returns NULL if the specified speculation is not
3012 * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
3013 * the active CPU is not the specified CPU -- the speculation will be
3014 * atomically transitioned into the ACTIVEMANY state.
3015 */
3016static dtrace_buffer_t *
3017dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
3018    dtrace_specid_t which)
3019{
3020	dtrace_speculation_t *spec;
3021	dtrace_speculation_state_t current, new = 0;
3022	dtrace_buffer_t *buf;
3023
3024	if (which == 0)
3025		return (NULL);
3026
3027	if (which > state->dts_nspeculations) {
3028		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3029		return (NULL);
3030	}
3031
3032	spec = &state->dts_speculations[which - 1];
3033	buf = &spec->dtsp_buffer[cpuid];
3034
3035	do {
3036		current = spec->dtsp_state;
3037
3038		switch (current) {
3039		case DTRACESPEC_INACTIVE:
3040		case DTRACESPEC_COMMITTINGMANY:
3041		case DTRACESPEC_DISCARDING:
3042			return (NULL);
3043
3044		case DTRACESPEC_COMMITTING:
3045			ASSERT(buf->dtb_offset == 0);
3046			return (NULL);
3047
3048		case DTRACESPEC_ACTIVEONE:
3049			/*
3050			 * This speculation is currently active on one CPU.
3051			 * Check the offset in the buffer; if it's non-zero,
3052			 * that CPU must be us (and we leave the state alone).
3053			 * If it's zero, assume that we're starting on a new
3054			 * CPU -- and change the state to indicate that the
3055			 * speculation is active on more than one CPU.
3056			 */
3057			if (buf->dtb_offset != 0)
3058				return (buf);
3059
3060			new = DTRACESPEC_ACTIVEMANY;
3061			break;
3062
3063		case DTRACESPEC_ACTIVEMANY:
3064			return (buf);
3065
3066		case DTRACESPEC_ACTIVE:
3067			new = DTRACESPEC_ACTIVEONE;
3068			break;
3069
3070		default:
3071			ASSERT(0);
3072		}
3073	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3074	    current, new) != current);
3075
3076	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
3077	return (buf);
3078}
3079
3080/*
3081 * Return a string.  In the event that the user lacks the privilege to access
3082 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3083 * don't fail access checking.
3084 *
3085 * dtrace_dif_variable() uses this routine as a helper for various
3086 * builtin values such as 'execname' and 'probefunc.'
3087 */
3088uintptr_t
3089dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
3090    dtrace_mstate_t *mstate)
3091{
3092	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3093	uintptr_t ret;
3094	size_t strsz;
3095
3096	/*
3097	 * The easy case: this probe is allowed to read all of memory, so
3098	 * we can just return this as a vanilla pointer.
3099	 */
3100	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3101		return (addr);
3102
3103	/*
3104	 * This is the tougher case: we copy the string in question from
3105	 * kernel memory into scratch memory and return it that way: this
3106	 * ensures that we won't trip up when access checking tests the
3107	 * BYREF return value.
3108	 */
3109	strsz = dtrace_strlen((char *)addr, size) + 1;
3110
3111	if (mstate->dtms_scratch_ptr + strsz >
3112	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3113		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3114		return (0);
3115	}
3116
3117	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3118	    strsz);
3119	ret = mstate->dtms_scratch_ptr;
3120	mstate->dtms_scratch_ptr += strsz;
3121	return (ret);
3122}
3123
3124/*
3125 * Return a string from a memoy address which is known to have one or
3126 * more concatenated, individually zero terminated, sub-strings.
3127 * In the event that the user lacks the privilege to access
3128 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3129 * don't fail access checking.
3130 *
3131 * dtrace_dif_variable() uses this routine as a helper for various
3132 * builtin values such as 'execargs'.
3133 */
3134static uintptr_t
3135dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
3136    dtrace_mstate_t *mstate)
3137{
3138	char *p;
3139	size_t i;
3140	uintptr_t ret;
3141
3142	if (mstate->dtms_scratch_ptr + strsz >
3143	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3144		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3145		return (0);
3146	}
3147
3148	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3149	    strsz);
3150
3151	/* Replace sub-string termination characters with a space. */
3152	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
3153	    p++, i++)
3154		if (*p == '\0')
3155			*p = ' ';
3156
3157	ret = mstate->dtms_scratch_ptr;
3158	mstate->dtms_scratch_ptr += strsz;
3159	return (ret);
3160}
3161
3162/*
3163 * This function implements the DIF emulator's variable lookups.  The emulator
3164 * passes a reserved variable identifier and optional built-in array index.
3165 */
3166static uint64_t
3167dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3168    uint64_t ndx)
3169{
3170	/*
3171	 * If we're accessing one of the uncached arguments, we'll turn this
3172	 * into a reference in the args array.
3173	 */
3174	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3175		ndx = v - DIF_VAR_ARG0;
3176		v = DIF_VAR_ARGS;
3177	}
3178
3179	switch (v) {
3180	case DIF_VAR_ARGS:
3181		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3182		if (ndx >= sizeof (mstate->dtms_arg) /
3183		    sizeof (mstate->dtms_arg[0])) {
3184			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3185			dtrace_provider_t *pv;
3186			uint64_t val;
3187
3188			pv = mstate->dtms_probe->dtpr_provider;
3189			if (pv->dtpv_pops.dtps_getargval != NULL)
3190				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3191				    mstate->dtms_probe->dtpr_id,
3192				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
3193			else
3194				val = dtrace_getarg(ndx, aframes);
3195
3196			/*
3197			 * This is regrettably required to keep the compiler
3198			 * from tail-optimizing the call to dtrace_getarg().
3199			 * The condition always evaluates to true, but the
3200			 * compiler has no way of figuring that out a priori.
3201			 * (None of this would be necessary if the compiler
3202			 * could be relied upon to _always_ tail-optimize
3203			 * the call to dtrace_getarg() -- but it can't.)
3204			 */
3205			if (mstate->dtms_probe != NULL)
3206				return (val);
3207
3208			ASSERT(0);
3209		}
3210
3211		return (mstate->dtms_arg[ndx]);
3212
3213#ifdef illumos
3214	case DIF_VAR_UREGS: {
3215		klwp_t *lwp;
3216
3217		if (!dtrace_priv_proc(state))
3218			return (0);
3219
3220		if ((lwp = curthread->t_lwp) == NULL) {
3221			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3222			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
3223			return (0);
3224		}
3225
3226		return (dtrace_getreg(lwp->lwp_regs, ndx));
3227		return (0);
3228	}
3229#else
3230	case DIF_VAR_UREGS: {
3231		struct trapframe *tframe;
3232
3233		if (!dtrace_priv_proc(state))
3234			return (0);
3235
3236		if ((tframe = curthread->td_frame) == NULL) {
3237			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3238			cpu_core[curcpu].cpuc_dtrace_illval = 0;
3239			return (0);
3240		}
3241
3242		return (dtrace_getreg(tframe, ndx));
3243	}
3244#endif
3245
3246	case DIF_VAR_CURTHREAD:
3247		if (!dtrace_priv_proc(state))
3248			return (0);
3249		return ((uint64_t)(uintptr_t)curthread);
3250
3251	case DIF_VAR_TIMESTAMP:
3252		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3253			mstate->dtms_timestamp = dtrace_gethrtime();
3254			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3255		}
3256		return (mstate->dtms_timestamp);
3257
3258	case DIF_VAR_VTIMESTAMP:
3259		ASSERT(dtrace_vtime_references != 0);
3260		return (curthread->t_dtrace_vtime);
3261
3262	case DIF_VAR_WALLTIMESTAMP:
3263		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3264			mstate->dtms_walltimestamp = dtrace_gethrestime();
3265			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3266		}
3267		return (mstate->dtms_walltimestamp);
3268
3269#ifdef illumos
3270	case DIF_VAR_IPL:
3271		if (!dtrace_priv_kernel(state))
3272			return (0);
3273		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3274			mstate->dtms_ipl = dtrace_getipl();
3275			mstate->dtms_present |= DTRACE_MSTATE_IPL;
3276		}
3277		return (mstate->dtms_ipl);
3278#endif
3279
3280	case DIF_VAR_EPID:
3281		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3282		return (mstate->dtms_epid);
3283
3284	case DIF_VAR_ID:
3285		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3286		return (mstate->dtms_probe->dtpr_id);
3287
3288	case DIF_VAR_STACKDEPTH:
3289		if (!dtrace_priv_kernel(state))
3290			return (0);
3291		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3292			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3293
3294			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3295			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3296		}
3297		return (mstate->dtms_stackdepth);
3298
3299	case DIF_VAR_USTACKDEPTH:
3300		if (!dtrace_priv_proc(state))
3301			return (0);
3302		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3303			/*
3304			 * See comment in DIF_VAR_PID.
3305			 */
3306			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3307			    CPU_ON_INTR(CPU)) {
3308				mstate->dtms_ustackdepth = 0;
3309			} else {
3310				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3311				mstate->dtms_ustackdepth =
3312				    dtrace_getustackdepth();
3313				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3314			}
3315			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3316		}
3317		return (mstate->dtms_ustackdepth);
3318
3319	case DIF_VAR_CALLER:
3320		if (!dtrace_priv_kernel(state))
3321			return (0);
3322		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3323			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3324
3325			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3326				/*
3327				 * If this is an unanchored probe, we are
3328				 * required to go through the slow path:
3329				 * dtrace_caller() only guarantees correct
3330				 * results for anchored probes.
3331				 */
3332				pc_t caller[2] = {0, 0};
3333
3334				dtrace_getpcstack(caller, 2, aframes,
3335				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3336				mstate->dtms_caller = caller[1];
3337			} else if ((mstate->dtms_caller =
3338			    dtrace_caller(aframes)) == -1) {
3339				/*
3340				 * We have failed to do this the quick way;
3341				 * we must resort to the slower approach of
3342				 * calling dtrace_getpcstack().
3343				 */
3344				pc_t caller = 0;
3345
3346				dtrace_getpcstack(&caller, 1, aframes, NULL);
3347				mstate->dtms_caller = caller;
3348			}
3349
3350			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3351		}
3352		return (mstate->dtms_caller);
3353
3354	case DIF_VAR_UCALLER:
3355		if (!dtrace_priv_proc(state))
3356			return (0);
3357
3358		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3359			uint64_t ustack[3];
3360
3361			/*
3362			 * dtrace_getupcstack() fills in the first uint64_t
3363			 * with the current PID.  The second uint64_t will
3364			 * be the program counter at user-level.  The third
3365			 * uint64_t will contain the caller, which is what
3366			 * we're after.
3367			 */
3368			ustack[2] = 0;
3369			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3370			dtrace_getupcstack(ustack, 3);
3371			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3372			mstate->dtms_ucaller = ustack[2];
3373			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3374		}
3375
3376		return (mstate->dtms_ucaller);
3377
3378	case DIF_VAR_PROBEPROV:
3379		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3380		return (dtrace_dif_varstr(
3381		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3382		    state, mstate));
3383
3384	case DIF_VAR_PROBEMOD:
3385		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3386		return (dtrace_dif_varstr(
3387		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3388		    state, mstate));
3389
3390	case DIF_VAR_PROBEFUNC:
3391		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3392		return (dtrace_dif_varstr(
3393		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3394		    state, mstate));
3395
3396	case DIF_VAR_PROBENAME:
3397		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3398		return (dtrace_dif_varstr(
3399		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3400		    state, mstate));
3401
3402	case DIF_VAR_PID:
3403		if (!dtrace_priv_proc(state))
3404			return (0);
3405
3406#ifdef illumos
3407		/*
3408		 * Note that we are assuming that an unanchored probe is
3409		 * always due to a high-level interrupt.  (And we're assuming
3410		 * that there is only a single high level interrupt.)
3411		 */
3412		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3413			return (pid0.pid_id);
3414
3415		/*
3416		 * It is always safe to dereference one's own t_procp pointer:
3417		 * it always points to a valid, allocated proc structure.
3418		 * Further, it is always safe to dereference the p_pidp member
3419		 * of one's own proc structure.  (These are truisms becuase
3420		 * threads and processes don't clean up their own state --
3421		 * they leave that task to whomever reaps them.)
3422		 */
3423		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3424#else
3425		return ((uint64_t)curproc->p_pid);
3426#endif
3427
3428	case DIF_VAR_PPID:
3429		if (!dtrace_priv_proc(state))
3430			return (0);
3431
3432#ifdef illumos
3433		/*
3434		 * See comment in DIF_VAR_PID.
3435		 */
3436		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3437			return (pid0.pid_id);
3438
3439		/*
3440		 * It is always safe to dereference one's own t_procp pointer:
3441		 * it always points to a valid, allocated proc structure.
3442		 * (This is true because threads don't clean up their own
3443		 * state -- they leave that task to whomever reaps them.)
3444		 */
3445		return ((uint64_t)curthread->t_procp->p_ppid);
3446#else
3447		if (curproc->p_pid == proc0.p_pid)
3448			return (curproc->p_pid);
3449		else
3450			return (curproc->p_pptr->p_pid);
3451#endif
3452
3453	case DIF_VAR_TID:
3454#ifdef illumos
3455		/*
3456		 * See comment in DIF_VAR_PID.
3457		 */
3458		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3459			return (0);
3460#endif
3461
3462		return ((uint64_t)curthread->t_tid);
3463
3464	case DIF_VAR_EXECARGS: {
3465		struct pargs *p_args = curthread->td_proc->p_args;
3466
3467		if (p_args == NULL)
3468			return(0);
3469
3470		return (dtrace_dif_varstrz(
3471		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3472	}
3473
3474	case DIF_VAR_EXECNAME:
3475#ifdef illumos
3476		if (!dtrace_priv_proc(state))
3477			return (0);
3478
3479		/*
3480		 * See comment in DIF_VAR_PID.
3481		 */
3482		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3483			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3484
3485		/*
3486		 * It is always safe to dereference one's own t_procp pointer:
3487		 * it always points to a valid, allocated proc structure.
3488		 * (This is true because threads don't clean up their own
3489		 * state -- they leave that task to whomever reaps them.)
3490		 */
3491		return (dtrace_dif_varstr(
3492		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3493		    state, mstate));
3494#else
3495		return (dtrace_dif_varstr(
3496		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3497#endif
3498
3499	case DIF_VAR_ZONENAME:
3500#ifdef illumos
3501		if (!dtrace_priv_proc(state))
3502			return (0);
3503
3504		/*
3505		 * See comment in DIF_VAR_PID.
3506		 */
3507		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3508			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3509
3510		/*
3511		 * It is always safe to dereference one's own t_procp pointer:
3512		 * it always points to a valid, allocated proc structure.
3513		 * (This is true because threads don't clean up their own
3514		 * state -- they leave that task to whomever reaps them.)
3515		 */
3516		return (dtrace_dif_varstr(
3517		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3518		    state, mstate));
3519#else
3520		return (0);
3521#endif
3522
3523	case DIF_VAR_UID:
3524		if (!dtrace_priv_proc(state))
3525			return (0);
3526
3527#ifdef illumos
3528		/*
3529		 * See comment in DIF_VAR_PID.
3530		 */
3531		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3532			return ((uint64_t)p0.p_cred->cr_uid);
3533
3534		/*
3535		 * It is always safe to dereference one's own t_procp pointer:
3536		 * it always points to a valid, allocated proc structure.
3537		 * (This is true because threads don't clean up their own
3538		 * state -- they leave that task to whomever reaps them.)
3539		 *
3540		 * Additionally, it is safe to dereference one's own process
3541		 * credential, since this is never NULL after process birth.
3542		 */
3543		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3544#else
3545		return ((uint64_t)curthread->td_ucred->cr_uid);
3546#endif
3547
3548	case DIF_VAR_GID:
3549		if (!dtrace_priv_proc(state))
3550			return (0);
3551
3552#ifdef illumos
3553		/*
3554		 * See comment in DIF_VAR_PID.
3555		 */
3556		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3557			return ((uint64_t)p0.p_cred->cr_gid);
3558
3559		/*
3560		 * It is always safe to dereference one's own t_procp pointer:
3561		 * it always points to a valid, allocated proc structure.
3562		 * (This is true because threads don't clean up their own
3563		 * state -- they leave that task to whomever reaps them.)
3564		 *
3565		 * Additionally, it is safe to dereference one's own process
3566		 * credential, since this is never NULL after process birth.
3567		 */
3568		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3569#else
3570		return ((uint64_t)curthread->td_ucred->cr_gid);
3571#endif
3572
3573	case DIF_VAR_ERRNO: {
3574#ifdef illumos
3575		klwp_t *lwp;
3576		if (!dtrace_priv_proc(state))
3577			return (0);
3578
3579		/*
3580		 * See comment in DIF_VAR_PID.
3581		 */
3582		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3583			return (0);
3584
3585		/*
3586		 * It is always safe to dereference one's own t_lwp pointer in
3587		 * the event that this pointer is non-NULL.  (This is true
3588		 * because threads and lwps don't clean up their own state --
3589		 * they leave that task to whomever reaps them.)
3590		 */
3591		if ((lwp = curthread->t_lwp) == NULL)
3592			return (0);
3593
3594		return ((uint64_t)lwp->lwp_errno);
3595#else
3596		return (curthread->td_errno);
3597#endif
3598	}
3599#ifndef illumos
3600	case DIF_VAR_CPU: {
3601		return curcpu;
3602	}
3603#endif
3604	default:
3605		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3606		return (0);
3607	}
3608}
3609
3610
3611typedef enum dtrace_json_state {
3612	DTRACE_JSON_REST = 1,
3613	DTRACE_JSON_OBJECT,
3614	DTRACE_JSON_STRING,
3615	DTRACE_JSON_STRING_ESCAPE,
3616	DTRACE_JSON_STRING_ESCAPE_UNICODE,
3617	DTRACE_JSON_COLON,
3618	DTRACE_JSON_COMMA,
3619	DTRACE_JSON_VALUE,
3620	DTRACE_JSON_IDENTIFIER,
3621	DTRACE_JSON_NUMBER,
3622	DTRACE_JSON_NUMBER_FRAC,
3623	DTRACE_JSON_NUMBER_EXP,
3624	DTRACE_JSON_COLLECT_OBJECT
3625} dtrace_json_state_t;
3626
3627/*
3628 * This function possesses just enough knowledge about JSON to extract a single
3629 * value from a JSON string and store it in the scratch buffer.  It is able
3630 * to extract nested object values, and members of arrays by index.
3631 *
3632 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3633 * be looked up as we descend into the object tree.  e.g.
3634 *
3635 *    foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3636 *       with nelems = 5.
3637 *
3638 * The run time of this function must be bounded above by strsize to limit the
3639 * amount of work done in probe context.  As such, it is implemented as a
3640 * simple state machine, reading one character at a time using safe loads
3641 * until we find the requested element, hit a parsing error or run off the
3642 * end of the object or string.
3643 *
3644 * As there is no way for a subroutine to return an error without interrupting
3645 * clause execution, we simply return NULL in the event of a missing key or any
3646 * other error condition.  Each NULL return in this function is commented with
3647 * the error condition it represents -- parsing or otherwise.
3648 *
3649 * The set of states for the state machine closely matches the JSON
3650 * specification (http://json.org/).  Briefly:
3651 *
3652 *   DTRACE_JSON_REST:
3653 *     Skip whitespace until we find either a top-level Object, moving
3654 *     to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3655 *
3656 *   DTRACE_JSON_OBJECT:
3657 *     Locate the next key String in an Object.  Sets a flag to denote
3658 *     the next String as a key string and moves to DTRACE_JSON_STRING.
3659 *
3660 *   DTRACE_JSON_COLON:
3661 *     Skip whitespace until we find the colon that separates key Strings
3662 *     from their values.  Once found, move to DTRACE_JSON_VALUE.
3663 *
3664 *   DTRACE_JSON_VALUE:
3665 *     Detects the type of the next value (String, Number, Identifier, Object
3666 *     or Array) and routes to the states that process that type.  Here we also
3667 *     deal with the element selector list if we are requested to traverse down
3668 *     into the object tree.
3669 *
3670 *   DTRACE_JSON_COMMA:
3671 *     Skip whitespace until we find the comma that separates key-value pairs
3672 *     in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3673 *     (similarly DTRACE_JSON_VALUE).  All following literal value processing
3674 *     states return to this state at the end of their value, unless otherwise
3675 *     noted.
3676 *
3677 *   DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3678 *     Processes a Number literal from the JSON, including any exponent
3679 *     component that may be present.  Numbers are returned as strings, which
3680 *     may be passed to strtoll() if an integer is required.
3681 *
3682 *   DTRACE_JSON_IDENTIFIER:
3683 *     Processes a "true", "false" or "null" literal in the JSON.
3684 *
3685 *   DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3686 *   DTRACE_JSON_STRING_ESCAPE_UNICODE:
3687 *     Processes a String literal from the JSON, whether the String denotes
3688 *     a key, a value or part of a larger Object.  Handles all escape sequences
3689 *     present in the specification, including four-digit unicode characters,
3690 *     but merely includes the escape sequence without converting it to the
3691 *     actual escaped character.  If the String is flagged as a key, we
3692 *     move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3693 *
3694 *   DTRACE_JSON_COLLECT_OBJECT:
3695 *     This state collects an entire Object (or Array), correctly handling
3696 *     embedded strings.  If the full element selector list matches this nested
3697 *     object, we return the Object in full as a string.  If not, we use this
3698 *     state to skip to the next value at this level and continue processing.
3699 *
3700 * NOTE: This function uses various macros from strtolctype.h to manipulate
3701 * digit values, etc -- these have all been checked to ensure they make
3702 * no additional function calls.
3703 */
3704static char *
3705dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3706    char *dest)
3707{
3708	dtrace_json_state_t state = DTRACE_JSON_REST;
3709	int64_t array_elem = INT64_MIN;
3710	int64_t array_pos = 0;
3711	uint8_t escape_unicount = 0;
3712	boolean_t string_is_key = B_FALSE;
3713	boolean_t collect_object = B_FALSE;
3714	boolean_t found_key = B_FALSE;
3715	boolean_t in_array = B_FALSE;
3716	uint32_t braces = 0, brackets = 0;
3717	char *elem = elemlist;
3718	char *dd = dest;
3719	uintptr_t cur;
3720
3721	for (cur = json; cur < json + size; cur++) {
3722		char cc = dtrace_load8(cur);
3723		if (cc == '\0')
3724			return (NULL);
3725
3726		switch (state) {
3727		case DTRACE_JSON_REST:
3728			if (isspace(cc))
3729				break;
3730
3731			if (cc == '{') {
3732				state = DTRACE_JSON_OBJECT;
3733				break;
3734			}
3735
3736			if (cc == '[') {
3737				in_array = B_TRUE;
3738				array_pos = 0;
3739				array_elem = dtrace_strtoll(elem, 10, size);
3740				found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3741				state = DTRACE_JSON_VALUE;
3742				break;
3743			}
3744
3745			/*
3746			 * ERROR: expected to find a top-level object or array.
3747			 */
3748			return (NULL);
3749		case DTRACE_JSON_OBJECT:
3750			if (isspace(cc))
3751				break;
3752
3753			if (cc == '"') {
3754				state = DTRACE_JSON_STRING;
3755				string_is_key = B_TRUE;
3756				break;
3757			}
3758
3759			/*
3760			 * ERROR: either the object did not start with a key
3761			 * string, or we've run off the end of the object
3762			 * without finding the requested key.
3763			 */
3764			return (NULL);
3765		case DTRACE_JSON_STRING:
3766			if (cc == '\\') {
3767				*dd++ = '\\';
3768				state = DTRACE_JSON_STRING_ESCAPE;
3769				break;
3770			}
3771
3772			if (cc == '"') {
3773				if (collect_object) {
3774					/*
3775					 * We don't reset the dest here, as
3776					 * the string is part of a larger
3777					 * object being collected.
3778					 */
3779					*dd++ = cc;
3780					collect_object = B_FALSE;
3781					state = DTRACE_JSON_COLLECT_OBJECT;
3782					break;
3783				}
3784				*dd = '\0';
3785				dd = dest; /* reset string buffer */
3786				if (string_is_key) {
3787					if (dtrace_strncmp(dest, elem,
3788					    size) == 0)
3789						found_key = B_TRUE;
3790				} else if (found_key) {
3791					if (nelems > 1) {
3792						/*
3793						 * We expected an object, not
3794						 * this string.
3795						 */
3796						return (NULL);
3797					}
3798					return (dest);
3799				}
3800				state = string_is_key ? DTRACE_JSON_COLON :
3801				    DTRACE_JSON_COMMA;
3802				string_is_key = B_FALSE;
3803				break;
3804			}
3805
3806			*dd++ = cc;
3807			break;
3808		case DTRACE_JSON_STRING_ESCAPE:
3809			*dd++ = cc;
3810			if (cc == 'u') {
3811				escape_unicount = 0;
3812				state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3813			} else {
3814				state = DTRACE_JSON_STRING;
3815			}
3816			break;
3817		case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3818			if (!isxdigit(cc)) {
3819				/*
3820				 * ERROR: invalid unicode escape, expected
3821				 * four valid hexidecimal digits.
3822				 */
3823				return (NULL);
3824			}
3825
3826			*dd++ = cc;
3827			if (++escape_unicount == 4)
3828				state = DTRACE_JSON_STRING;
3829			break;
3830		case DTRACE_JSON_COLON:
3831			if (isspace(cc))
3832				break;
3833
3834			if (cc == ':') {
3835				state = DTRACE_JSON_VALUE;
3836				break;
3837			}
3838
3839			/*
3840			 * ERROR: expected a colon.
3841			 */
3842			return (NULL);
3843		case DTRACE_JSON_COMMA:
3844			if (isspace(cc))
3845				break;
3846
3847			if (cc == ',') {
3848				if (in_array) {
3849					state = DTRACE_JSON_VALUE;
3850					if (++array_pos == array_elem)
3851						found_key = B_TRUE;
3852				} else {
3853					state = DTRACE_JSON_OBJECT;
3854				}
3855				break;
3856			}
3857
3858			/*
3859			 * ERROR: either we hit an unexpected character, or
3860			 * we reached the end of the object or array without
3861			 * finding the requested key.
3862			 */
3863			return (NULL);
3864		case DTRACE_JSON_IDENTIFIER:
3865			if (islower(cc)) {
3866				*dd++ = cc;
3867				break;
3868			}
3869
3870			*dd = '\0';
3871			dd = dest; /* reset string buffer */
3872
3873			if (dtrace_strncmp(dest, "true", 5) == 0 ||
3874			    dtrace_strncmp(dest, "false", 6) == 0 ||
3875			    dtrace_strncmp(dest, "null", 5) == 0) {
3876				if (found_key) {
3877					if (nelems > 1) {
3878						/*
3879						 * ERROR: We expected an object,
3880						 * not this identifier.
3881						 */
3882						return (NULL);
3883					}
3884					return (dest);
3885				} else {
3886					cur--;
3887					state = DTRACE_JSON_COMMA;
3888					break;
3889				}
3890			}
3891
3892			/*
3893			 * ERROR: we did not recognise the identifier as one
3894			 * of those in the JSON specification.
3895			 */
3896			return (NULL);
3897		case DTRACE_JSON_NUMBER:
3898			if (cc == '.') {
3899				*dd++ = cc;
3900				state = DTRACE_JSON_NUMBER_FRAC;
3901				break;
3902			}
3903
3904			if (cc == 'x' || cc == 'X') {
3905				/*
3906				 * ERROR: specification explicitly excludes
3907				 * hexidecimal or octal numbers.
3908				 */
3909				return (NULL);
3910			}
3911
3912			/* FALLTHRU */
3913		case DTRACE_JSON_NUMBER_FRAC:
3914			if (cc == 'e' || cc == 'E') {
3915				*dd++ = cc;
3916				state = DTRACE_JSON_NUMBER_EXP;
3917				break;
3918			}
3919
3920			if (cc == '+' || cc == '-') {
3921				/*
3922				 * ERROR: expect sign as part of exponent only.
3923				 */
3924				return (NULL);
3925			}
3926			/* FALLTHRU */
3927		case DTRACE_JSON_NUMBER_EXP:
3928			if (isdigit(cc) || cc == '+' || cc == '-') {
3929				*dd++ = cc;
3930				break;
3931			}
3932
3933			*dd = '\0';
3934			dd = dest; /* reset string buffer */
3935			if (found_key) {
3936				if (nelems > 1) {
3937					/*
3938					 * ERROR: We expected an object, not
3939					 * this number.
3940					 */
3941					return (NULL);
3942				}
3943				return (dest);
3944			}
3945
3946			cur--;
3947			state = DTRACE_JSON_COMMA;
3948			break;
3949		case DTRACE_JSON_VALUE:
3950			if (isspace(cc))
3951				break;
3952
3953			if (cc == '{' || cc == '[') {
3954				if (nelems > 1 && found_key) {
3955					in_array = cc == '[' ? B_TRUE : B_FALSE;
3956					/*
3957					 * If our element selector directs us
3958					 * to descend into this nested object,
3959					 * then move to the next selector
3960					 * element in the list and restart the
3961					 * state machine.
3962					 */
3963					while (*elem != '\0')
3964						elem++;
3965					elem++; /* skip the inter-element NUL */
3966					nelems--;
3967					dd = dest;
3968					if (in_array) {
3969						state = DTRACE_JSON_VALUE;
3970						array_pos = 0;
3971						array_elem = dtrace_strtoll(
3972						    elem, 10, size);
3973						found_key = array_elem == 0 ?
3974						    B_TRUE : B_FALSE;
3975					} else {
3976						found_key = B_FALSE;
3977						state = DTRACE_JSON_OBJECT;
3978					}
3979					break;
3980				}
3981
3982				/*
3983				 * Otherwise, we wish to either skip this
3984				 * nested object or return it in full.
3985				 */
3986				if (cc == '[')
3987					brackets = 1;
3988				else
3989					braces = 1;
3990				*dd++ = cc;
3991				state = DTRACE_JSON_COLLECT_OBJECT;
3992				break;
3993			}
3994
3995			if (cc == '"') {
3996				state = DTRACE_JSON_STRING;
3997				break;
3998			}
3999
4000			if (islower(cc)) {
4001				/*
4002				 * Here we deal with true, false and null.
4003				 */
4004				*dd++ = cc;
4005				state = DTRACE_JSON_IDENTIFIER;
4006				break;
4007			}
4008
4009			if (cc == '-' || isdigit(cc)) {
4010				*dd++ = cc;
4011				state = DTRACE_JSON_NUMBER;
4012				break;
4013			}
4014
4015			/*
4016			 * ERROR: unexpected character at start of value.
4017			 */
4018			return (NULL);
4019		case DTRACE_JSON_COLLECT_OBJECT:
4020			if (cc == '\0')
4021				/*
4022				 * ERROR: unexpected end of input.
4023				 */
4024				return (NULL);
4025
4026			*dd++ = cc;
4027			if (cc == '"') {
4028				collect_object = B_TRUE;
4029				state = DTRACE_JSON_STRING;
4030				break;
4031			}
4032
4033			if (cc == ']') {
4034				if (brackets-- == 0) {
4035					/*
4036					 * ERROR: unbalanced brackets.
4037					 */
4038					return (NULL);
4039				}
4040			} else if (cc == '}') {
4041				if (braces-- == 0) {
4042					/*
4043					 * ERROR: unbalanced braces.
4044					 */
4045					return (NULL);
4046				}
4047			} else if (cc == '{') {
4048				braces++;
4049			} else if (cc == '[') {
4050				brackets++;
4051			}
4052
4053			if (brackets == 0 && braces == 0) {
4054				if (found_key) {
4055					*dd = '\0';
4056					return (dest);
4057				}
4058				dd = dest; /* reset string buffer */
4059				state = DTRACE_JSON_COMMA;
4060			}
4061			break;
4062		}
4063	}
4064	return (NULL);
4065}
4066
4067/*
4068 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4069 * Notice that we don't bother validating the proper number of arguments or
4070 * their types in the tuple stack.  This isn't needed because all argument
4071 * interpretation is safe because of our load safety -- the worst that can
4072 * happen is that a bogus program can obtain bogus results.
4073 */
4074static void
4075dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
4076    dtrace_key_t *tupregs, int nargs,
4077    dtrace_mstate_t *mstate, dtrace_state_t *state)
4078{
4079	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4080	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4081	dtrace_vstate_t *vstate = &state->dts_vstate;
4082
4083#ifdef illumos
4084	union {
4085		mutex_impl_t mi;
4086		uint64_t mx;
4087	} m;
4088
4089	union {
4090		krwlock_t ri;
4091		uintptr_t rw;
4092	} r;
4093#else
4094	struct thread *lowner;
4095	union {
4096		struct lock_object *li;
4097		uintptr_t lx;
4098	} l;
4099#endif
4100
4101	switch (subr) {
4102	case DIF_SUBR_RAND:
4103		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
4104		break;
4105
4106#ifdef illumos
4107	case DIF_SUBR_MUTEX_OWNED:
4108		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4109		    mstate, vstate)) {
4110			regs[rd] = 0;
4111			break;
4112		}
4113
4114		m.mx = dtrace_load64(tupregs[0].dttk_value);
4115		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
4116			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
4117		else
4118			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
4119		break;
4120
4121	case DIF_SUBR_MUTEX_OWNER:
4122		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4123		    mstate, vstate)) {
4124			regs[rd] = 0;
4125			break;
4126		}
4127
4128		m.mx = dtrace_load64(tupregs[0].dttk_value);
4129		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
4130		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
4131			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
4132		else
4133			regs[rd] = 0;
4134		break;
4135
4136	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4137		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4138		    mstate, vstate)) {
4139			regs[rd] = 0;
4140			break;
4141		}
4142
4143		m.mx = dtrace_load64(tupregs[0].dttk_value);
4144		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
4145		break;
4146
4147	case DIF_SUBR_MUTEX_TYPE_SPIN:
4148		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4149		    mstate, vstate)) {
4150			regs[rd] = 0;
4151			break;
4152		}
4153
4154		m.mx = dtrace_load64(tupregs[0].dttk_value);
4155		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
4156		break;
4157
4158	case DIF_SUBR_RW_READ_HELD: {
4159		uintptr_t tmp;
4160
4161		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4162		    mstate, vstate)) {
4163			regs[rd] = 0;
4164			break;
4165		}
4166
4167		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4168		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
4169		break;
4170	}
4171
4172	case DIF_SUBR_RW_WRITE_HELD:
4173		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4174		    mstate, vstate)) {
4175			regs[rd] = 0;
4176			break;
4177		}
4178
4179		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4180		regs[rd] = _RW_WRITE_HELD(&r.ri);
4181		break;
4182
4183	case DIF_SUBR_RW_ISWRITER:
4184		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4185		    mstate, vstate)) {
4186			regs[rd] = 0;
4187			break;
4188		}
4189
4190		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4191		regs[rd] = _RW_ISWRITER(&r.ri);
4192		break;
4193
4194#else /* !illumos */
4195	case DIF_SUBR_MUTEX_OWNED:
4196		if (!dtrace_canload(tupregs[0].dttk_value,
4197			sizeof (struct lock_object), mstate, vstate)) {
4198			regs[rd] = 0;
4199			break;
4200		}
4201		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4202		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4203		break;
4204
4205	case DIF_SUBR_MUTEX_OWNER:
4206		if (!dtrace_canload(tupregs[0].dttk_value,
4207			sizeof (struct lock_object), mstate, vstate)) {
4208			regs[rd] = 0;
4209			break;
4210		}
4211		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4212		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4213		regs[rd] = (uintptr_t)lowner;
4214		break;
4215
4216	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4217		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4218		    mstate, vstate)) {
4219			regs[rd] = 0;
4220			break;
4221		}
4222		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4223		/* XXX - should be only LC_SLEEPABLE? */
4224		regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
4225		    (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
4226		break;
4227
4228	case DIF_SUBR_MUTEX_TYPE_SPIN:
4229		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4230		    mstate, vstate)) {
4231			regs[rd] = 0;
4232			break;
4233		}
4234		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4235		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
4236		break;
4237
4238	case DIF_SUBR_RW_READ_HELD:
4239	case DIF_SUBR_SX_SHARED_HELD:
4240		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4241		    mstate, vstate)) {
4242			regs[rd] = 0;
4243			break;
4244		}
4245		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4246		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4247		    lowner == NULL;
4248		break;
4249
4250	case DIF_SUBR_RW_WRITE_HELD:
4251	case DIF_SUBR_SX_EXCLUSIVE_HELD:
4252		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4253		    mstate, vstate)) {
4254			regs[rd] = 0;
4255			break;
4256		}
4257		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4258		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4259		regs[rd] = (lowner == curthread);
4260		break;
4261
4262	case DIF_SUBR_RW_ISWRITER:
4263	case DIF_SUBR_SX_ISEXCLUSIVE:
4264		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4265		    mstate, vstate)) {
4266			regs[rd] = 0;
4267			break;
4268		}
4269		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4270		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4271		    lowner != NULL;
4272		break;
4273#endif /* illumos */
4274
4275	case DIF_SUBR_BCOPY: {
4276		/*
4277		 * We need to be sure that the destination is in the scratch
4278		 * region -- no other region is allowed.
4279		 */
4280		uintptr_t src = tupregs[0].dttk_value;
4281		uintptr_t dest = tupregs[1].dttk_value;
4282		size_t size = tupregs[2].dttk_value;
4283
4284		if (!dtrace_inscratch(dest, size, mstate)) {
4285			*flags |= CPU_DTRACE_BADADDR;
4286			*illval = regs[rd];
4287			break;
4288		}
4289
4290		if (!dtrace_canload(src, size, mstate, vstate)) {
4291			regs[rd] = 0;
4292			break;
4293		}
4294
4295		dtrace_bcopy((void *)src, (void *)dest, size);
4296		break;
4297	}
4298
4299	case DIF_SUBR_ALLOCA:
4300	case DIF_SUBR_COPYIN: {
4301		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4302		uint64_t size =
4303		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4304		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4305
4306		/*
4307		 * This action doesn't require any credential checks since
4308		 * probes will not activate in user contexts to which the
4309		 * enabling user does not have permissions.
4310		 */
4311
4312		/*
4313		 * Rounding up the user allocation size could have overflowed
4314		 * a large, bogus allocation (like -1ULL) to 0.
4315		 */
4316		if (scratch_size < size ||
4317		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
4318			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4319			regs[rd] = 0;
4320			break;
4321		}
4322
4323		if (subr == DIF_SUBR_COPYIN) {
4324			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4325			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4326			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4327		}
4328
4329		mstate->dtms_scratch_ptr += scratch_size;
4330		regs[rd] = dest;
4331		break;
4332	}
4333
4334	case DIF_SUBR_COPYINTO: {
4335		uint64_t size = tupregs[1].dttk_value;
4336		uintptr_t dest = tupregs[2].dttk_value;
4337
4338		/*
4339		 * This action doesn't require any credential checks since
4340		 * probes will not activate in user contexts to which the
4341		 * enabling user does not have permissions.
4342		 */
4343		if (!dtrace_inscratch(dest, size, mstate)) {
4344			*flags |= CPU_DTRACE_BADADDR;
4345			*illval = regs[rd];
4346			break;
4347		}
4348
4349		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4350		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4351		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4352		break;
4353	}
4354
4355	case DIF_SUBR_COPYINSTR: {
4356		uintptr_t dest = mstate->dtms_scratch_ptr;
4357		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4358
4359		if (nargs > 1 && tupregs[1].dttk_value < size)
4360			size = tupregs[1].dttk_value + 1;
4361
4362		/*
4363		 * This action doesn't require any credential checks since
4364		 * probes will not activate in user contexts to which the
4365		 * enabling user does not have permissions.
4366		 */
4367		if (!DTRACE_INSCRATCH(mstate, size)) {
4368			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4369			regs[rd] = 0;
4370			break;
4371		}
4372
4373		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4374		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4375		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4376
4377		((char *)dest)[size - 1] = '\0';
4378		mstate->dtms_scratch_ptr += size;
4379		regs[rd] = dest;
4380		break;
4381	}
4382
4383#ifdef illumos
4384	case DIF_SUBR_MSGSIZE:
4385	case DIF_SUBR_MSGDSIZE: {
4386		uintptr_t baddr = tupregs[0].dttk_value, daddr;
4387		uintptr_t wptr, rptr;
4388		size_t count = 0;
4389		int cont = 0;
4390
4391		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
4392
4393			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4394			    vstate)) {
4395				regs[rd] = 0;
4396				break;
4397			}
4398
4399			wptr = dtrace_loadptr(baddr +
4400			    offsetof(mblk_t, b_wptr));
4401
4402			rptr = dtrace_loadptr(baddr +
4403			    offsetof(mblk_t, b_rptr));
4404
4405			if (wptr < rptr) {
4406				*flags |= CPU_DTRACE_BADADDR;
4407				*illval = tupregs[0].dttk_value;
4408				break;
4409			}
4410
4411			daddr = dtrace_loadptr(baddr +
4412			    offsetof(mblk_t, b_datap));
4413
4414			baddr = dtrace_loadptr(baddr +
4415			    offsetof(mblk_t, b_cont));
4416
4417			/*
4418			 * We want to prevent against denial-of-service here,
4419			 * so we're only going to search the list for
4420			 * dtrace_msgdsize_max mblks.
4421			 */
4422			if (cont++ > dtrace_msgdsize_max) {
4423				*flags |= CPU_DTRACE_ILLOP;
4424				break;
4425			}
4426
4427			if (subr == DIF_SUBR_MSGDSIZE) {
4428				if (dtrace_load8(daddr +
4429				    offsetof(dblk_t, db_type)) != M_DATA)
4430					continue;
4431			}
4432
4433			count += wptr - rptr;
4434		}
4435
4436		if (!(*flags & CPU_DTRACE_FAULT))
4437			regs[rd] = count;
4438
4439		break;
4440	}
4441#endif
4442
4443	case DIF_SUBR_PROGENYOF: {
4444		pid_t pid = tupregs[0].dttk_value;
4445		proc_t *p;
4446		int rval = 0;
4447
4448		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4449
4450		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4451#ifdef illumos
4452			if (p->p_pidp->pid_id == pid) {
4453#else
4454			if (p->p_pid == pid) {
4455#endif
4456				rval = 1;
4457				break;
4458			}
4459		}
4460
4461		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4462
4463		regs[rd] = rval;
4464		break;
4465	}
4466
4467	case DIF_SUBR_SPECULATION:
4468		regs[rd] = dtrace_speculation(state);
4469		break;
4470
4471	case DIF_SUBR_COPYOUT: {
4472		uintptr_t kaddr = tupregs[0].dttk_value;
4473		uintptr_t uaddr = tupregs[1].dttk_value;
4474		uint64_t size = tupregs[2].dttk_value;
4475
4476		if (!dtrace_destructive_disallow &&
4477		    dtrace_priv_proc_control(state) &&
4478		    !dtrace_istoxic(kaddr, size) &&
4479		    dtrace_canload(kaddr, size, mstate, vstate)) {
4480			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4481			dtrace_copyout(kaddr, uaddr, size, flags);
4482			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4483		}
4484		break;
4485	}
4486
4487	case DIF_SUBR_COPYOUTSTR: {
4488		uintptr_t kaddr = tupregs[0].dttk_value;
4489		uintptr_t uaddr = tupregs[1].dttk_value;
4490		uint64_t size = tupregs[2].dttk_value;
4491
4492		if (!dtrace_destructive_disallow &&
4493		    dtrace_priv_proc_control(state) &&
4494		    !dtrace_istoxic(kaddr, size) &&
4495		    dtrace_strcanload(kaddr, size, mstate, vstate)) {
4496			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4497			dtrace_copyoutstr(kaddr, uaddr, size, flags);
4498			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4499		}
4500		break;
4501	}
4502
4503	case DIF_SUBR_STRLEN: {
4504		size_t sz;
4505		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4506		sz = dtrace_strlen((char *)addr,
4507		    state->dts_options[DTRACEOPT_STRSIZE]);
4508
4509		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
4510			regs[rd] = 0;
4511			break;
4512		}
4513
4514		regs[rd] = sz;
4515
4516		break;
4517	}
4518
4519	case DIF_SUBR_STRCHR:
4520	case DIF_SUBR_STRRCHR: {
4521		/*
4522		 * We're going to iterate over the string looking for the
4523		 * specified character.  We will iterate until we have reached
4524		 * the string length or we have found the character.  If this
4525		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4526		 * of the specified character instead of the first.
4527		 */
4528		uintptr_t saddr = tupregs[0].dttk_value;
4529		uintptr_t addr = tupregs[0].dttk_value;
4530		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
4531		char c, target = (char)tupregs[1].dttk_value;
4532
4533		for (regs[rd] = 0; addr < limit; addr++) {
4534			if ((c = dtrace_load8(addr)) == target) {
4535				regs[rd] = addr;
4536
4537				if (subr == DIF_SUBR_STRCHR)
4538					break;
4539			}
4540
4541			if (c == '\0')
4542				break;
4543		}
4544
4545		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
4546			regs[rd] = 0;
4547			break;
4548		}
4549
4550		break;
4551	}
4552
4553	case DIF_SUBR_STRSTR:
4554	case DIF_SUBR_INDEX:
4555	case DIF_SUBR_RINDEX: {
4556		/*
4557		 * We're going to iterate over the string looking for the
4558		 * specified string.  We will iterate until we have reached
4559		 * the string length or we have found the string.  (Yes, this
4560		 * is done in the most naive way possible -- but considering
4561		 * that the string we're searching for is likely to be
4562		 * relatively short, the complexity of Rabin-Karp or similar
4563		 * hardly seems merited.)
4564		 */
4565		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4566		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4567		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4568		size_t len = dtrace_strlen(addr, size);
4569		size_t sublen = dtrace_strlen(substr, size);
4570		char *limit = addr + len, *orig = addr;
4571		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4572		int inc = 1;
4573
4574		regs[rd] = notfound;
4575
4576		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4577			regs[rd] = 0;
4578			break;
4579		}
4580
4581		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4582		    vstate)) {
4583			regs[rd] = 0;
4584			break;
4585		}
4586
4587		/*
4588		 * strstr() and index()/rindex() have similar semantics if
4589		 * both strings are the empty string: strstr() returns a
4590		 * pointer to the (empty) string, and index() and rindex()
4591		 * both return index 0 (regardless of any position argument).
4592		 */
4593		if (sublen == 0 && len == 0) {
4594			if (subr == DIF_SUBR_STRSTR)
4595				regs[rd] = (uintptr_t)addr;
4596			else
4597				regs[rd] = 0;
4598			break;
4599		}
4600
4601		if (subr != DIF_SUBR_STRSTR) {
4602			if (subr == DIF_SUBR_RINDEX) {
4603				limit = orig - 1;
4604				addr += len;
4605				inc = -1;
4606			}
4607
4608			/*
4609			 * Both index() and rindex() take an optional position
4610			 * argument that denotes the starting position.
4611			 */
4612			if (nargs == 3) {
4613				int64_t pos = (int64_t)tupregs[2].dttk_value;
4614
4615				/*
4616				 * If the position argument to index() is
4617				 * negative, Perl implicitly clamps it at
4618				 * zero.  This semantic is a little surprising
4619				 * given the special meaning of negative
4620				 * positions to similar Perl functions like
4621				 * substr(), but it appears to reflect a
4622				 * notion that index() can start from a
4623				 * negative index and increment its way up to
4624				 * the string.  Given this notion, Perl's
4625				 * rindex() is at least self-consistent in
4626				 * that it implicitly clamps positions greater
4627				 * than the string length to be the string
4628				 * length.  Where Perl completely loses
4629				 * coherence, however, is when the specified
4630				 * substring is the empty string ("").  In
4631				 * this case, even if the position is
4632				 * negative, rindex() returns 0 -- and even if
4633				 * the position is greater than the length,
4634				 * index() returns the string length.  These
4635				 * semantics violate the notion that index()
4636				 * should never return a value less than the
4637				 * specified position and that rindex() should
4638				 * never return a value greater than the
4639				 * specified position.  (One assumes that
4640				 * these semantics are artifacts of Perl's
4641				 * implementation and not the results of
4642				 * deliberate design -- it beggars belief that
4643				 * even Larry Wall could desire such oddness.)
4644				 * While in the abstract one would wish for
4645				 * consistent position semantics across
4646				 * substr(), index() and rindex() -- or at the
4647				 * very least self-consistent position
4648				 * semantics for index() and rindex() -- we
4649				 * instead opt to keep with the extant Perl
4650				 * semantics, in all their broken glory.  (Do
4651				 * we have more desire to maintain Perl's
4652				 * semantics than Perl does?  Probably.)
4653				 */
4654				if (subr == DIF_SUBR_RINDEX) {
4655					if (pos < 0) {
4656						if (sublen == 0)
4657							regs[rd] = 0;
4658						break;
4659					}
4660
4661					if (pos > len)
4662						pos = len;
4663				} else {
4664					if (pos < 0)
4665						pos = 0;
4666
4667					if (pos >= len) {
4668						if (sublen == 0)
4669							regs[rd] = len;
4670						break;
4671					}
4672				}
4673
4674				addr = orig + pos;
4675			}
4676		}
4677
4678		for (regs[rd] = notfound; addr != limit; addr += inc) {
4679			if (dtrace_strncmp(addr, substr, sublen) == 0) {
4680				if (subr != DIF_SUBR_STRSTR) {
4681					/*
4682					 * As D index() and rindex() are
4683					 * modeled on Perl (and not on awk),
4684					 * we return a zero-based (and not a
4685					 * one-based) index.  (For you Perl
4686					 * weenies: no, we're not going to add
4687					 * $[ -- and shouldn't you be at a con
4688					 * or something?)
4689					 */
4690					regs[rd] = (uintptr_t)(addr - orig);
4691					break;
4692				}
4693
4694				ASSERT(subr == DIF_SUBR_STRSTR);
4695				regs[rd] = (uintptr_t)addr;
4696				break;
4697			}
4698		}
4699
4700		break;
4701	}
4702
4703	case DIF_SUBR_STRTOK: {
4704		uintptr_t addr = tupregs[0].dttk_value;
4705		uintptr_t tokaddr = tupregs[1].dttk_value;
4706		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4707		uintptr_t limit, toklimit = tokaddr + size;
4708		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
4709		char *dest = (char *)mstate->dtms_scratch_ptr;
4710		int i;
4711
4712		/*
4713		 * Check both the token buffer and (later) the input buffer,
4714		 * since both could be non-scratch addresses.
4715		 */
4716		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
4717			regs[rd] = 0;
4718			break;
4719		}
4720
4721		if (!DTRACE_INSCRATCH(mstate, size)) {
4722			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4723			regs[rd] = 0;
4724			break;
4725		}
4726
4727		if (addr == 0) {
4728			/*
4729			 * If the address specified is NULL, we use our saved
4730			 * strtok pointer from the mstate.  Note that this
4731			 * means that the saved strtok pointer is _only_
4732			 * valid within multiple enablings of the same probe --
4733			 * it behaves like an implicit clause-local variable.
4734			 */
4735			addr = mstate->dtms_strtok;
4736		} else {
4737			/*
4738			 * If the user-specified address is non-NULL we must
4739			 * access check it.  This is the only time we have
4740			 * a chance to do so, since this address may reside
4741			 * in the string table of this clause-- future calls
4742			 * (when we fetch addr from mstate->dtms_strtok)
4743			 * would fail this access check.
4744			 */
4745			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
4746				regs[rd] = 0;
4747				break;
4748			}
4749		}
4750
4751		/*
4752		 * First, zero the token map, and then process the token
4753		 * string -- setting a bit in the map for every character
4754		 * found in the token string.
4755		 */
4756		for (i = 0; i < sizeof (tokmap); i++)
4757			tokmap[i] = 0;
4758
4759		for (; tokaddr < toklimit; tokaddr++) {
4760			if ((c = dtrace_load8(tokaddr)) == '\0')
4761				break;
4762
4763			ASSERT((c >> 3) < sizeof (tokmap));
4764			tokmap[c >> 3] |= (1 << (c & 0x7));
4765		}
4766
4767		for (limit = addr + size; addr < limit; addr++) {
4768			/*
4769			 * We're looking for a character that is _not_ contained
4770			 * in the token string.
4771			 */
4772			if ((c = dtrace_load8(addr)) == '\0')
4773				break;
4774
4775			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4776				break;
4777		}
4778
4779		if (c == '\0') {
4780			/*
4781			 * We reached the end of the string without finding
4782			 * any character that was not in the token string.
4783			 * We return NULL in this case, and we set the saved
4784			 * address to NULL as well.
4785			 */
4786			regs[rd] = 0;
4787			mstate->dtms_strtok = 0;
4788			break;
4789		}
4790
4791		/*
4792		 * From here on, we're copying into the destination string.
4793		 */
4794		for (i = 0; addr < limit && i < size - 1; addr++) {
4795			if ((c = dtrace_load8(addr)) == '\0')
4796				break;
4797
4798			if (tokmap[c >> 3] & (1 << (c & 0x7)))
4799				break;
4800
4801			ASSERT(i < size);
4802			dest[i++] = c;
4803		}
4804
4805		ASSERT(i < size);
4806		dest[i] = '\0';
4807		regs[rd] = (uintptr_t)dest;
4808		mstate->dtms_scratch_ptr += size;
4809		mstate->dtms_strtok = addr;
4810		break;
4811	}
4812
4813	case DIF_SUBR_SUBSTR: {
4814		uintptr_t s = tupregs[0].dttk_value;
4815		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4816		char *d = (char *)mstate->dtms_scratch_ptr;
4817		int64_t index = (int64_t)tupregs[1].dttk_value;
4818		int64_t remaining = (int64_t)tupregs[2].dttk_value;
4819		size_t len = dtrace_strlen((char *)s, size);
4820		int64_t i;
4821
4822		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4823			regs[rd] = 0;
4824			break;
4825		}
4826
4827		if (!DTRACE_INSCRATCH(mstate, size)) {
4828			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4829			regs[rd] = 0;
4830			break;
4831		}
4832
4833		if (nargs <= 2)
4834			remaining = (int64_t)size;
4835
4836		if (index < 0) {
4837			index += len;
4838
4839			if (index < 0 && index + remaining > 0) {
4840				remaining += index;
4841				index = 0;
4842			}
4843		}
4844
4845		if (index >= len || index < 0) {
4846			remaining = 0;
4847		} else if (remaining < 0) {
4848			remaining += len - index;
4849		} else if (index + remaining > size) {
4850			remaining = size - index;
4851		}
4852
4853		for (i = 0; i < remaining; i++) {
4854			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4855				break;
4856		}
4857
4858		d[i] = '\0';
4859
4860		mstate->dtms_scratch_ptr += size;
4861		regs[rd] = (uintptr_t)d;
4862		break;
4863	}
4864
4865	case DIF_SUBR_JSON: {
4866		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4867		uintptr_t json = tupregs[0].dttk_value;
4868		size_t jsonlen = dtrace_strlen((char *)json, size);
4869		uintptr_t elem = tupregs[1].dttk_value;
4870		size_t elemlen = dtrace_strlen((char *)elem, size);
4871
4872		char *dest = (char *)mstate->dtms_scratch_ptr;
4873		char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
4874		char *ee = elemlist;
4875		int nelems = 1;
4876		uintptr_t cur;
4877
4878		if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
4879		    !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
4880			regs[rd] = 0;
4881			break;
4882		}
4883
4884		if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
4885			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4886			regs[rd] = 0;
4887			break;
4888		}
4889
4890		/*
4891		 * Read the element selector and split it up into a packed list
4892		 * of strings.
4893		 */
4894		for (cur = elem; cur < elem + elemlen; cur++) {
4895			char cc = dtrace_load8(cur);
4896
4897			if (cur == elem && cc == '[') {
4898				/*
4899				 * If the first element selector key is
4900				 * actually an array index then ignore the
4901				 * bracket.
4902				 */
4903				continue;
4904			}
4905
4906			if (cc == ']')
4907				continue;
4908
4909			if (cc == '.' || cc == '[') {
4910				nelems++;
4911				cc = '\0';
4912			}
4913
4914			*ee++ = cc;
4915		}
4916		*ee++ = '\0';
4917
4918		if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
4919		    nelems, dest)) != 0)
4920			mstate->dtms_scratch_ptr += jsonlen + 1;
4921		break;
4922	}
4923
4924	case DIF_SUBR_TOUPPER:
4925	case DIF_SUBR_TOLOWER: {
4926		uintptr_t s = tupregs[0].dttk_value;
4927		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4928		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4929		size_t len = dtrace_strlen((char *)s, size);
4930		char lower, upper, convert;
4931		int64_t i;
4932
4933		if (subr == DIF_SUBR_TOUPPER) {
4934			lower = 'a';
4935			upper = 'z';
4936			convert = 'A';
4937		} else {
4938			lower = 'A';
4939			upper = 'Z';
4940			convert = 'a';
4941		}
4942
4943		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4944			regs[rd] = 0;
4945			break;
4946		}
4947
4948		if (!DTRACE_INSCRATCH(mstate, size)) {
4949			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4950			regs[rd] = 0;
4951			break;
4952		}
4953
4954		for (i = 0; i < size - 1; i++) {
4955			if ((c = dtrace_load8(s + i)) == '\0')
4956				break;
4957
4958			if (c >= lower && c <= upper)
4959				c = convert + (c - lower);
4960
4961			dest[i] = c;
4962		}
4963
4964		ASSERT(i < size);
4965		dest[i] = '\0';
4966		regs[rd] = (uintptr_t)dest;
4967		mstate->dtms_scratch_ptr += size;
4968		break;
4969	}
4970
4971#ifdef illumos
4972	case DIF_SUBR_GETMAJOR:
4973#ifdef _LP64
4974		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4975#else
4976		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4977#endif
4978		break;
4979
4980	case DIF_SUBR_GETMINOR:
4981#ifdef _LP64
4982		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4983#else
4984		regs[rd] = tupregs[0].dttk_value & MAXMIN;
4985#endif
4986		break;
4987
4988	case DIF_SUBR_DDI_PATHNAME: {
4989		/*
4990		 * This one is a galactic mess.  We are going to roughly
4991		 * emulate ddi_pathname(), but it's made more complicated
4992		 * by the fact that we (a) want to include the minor name and
4993		 * (b) must proceed iteratively instead of recursively.
4994		 */
4995		uintptr_t dest = mstate->dtms_scratch_ptr;
4996		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4997		char *start = (char *)dest, *end = start + size - 1;
4998		uintptr_t daddr = tupregs[0].dttk_value;
4999		int64_t minor = (int64_t)tupregs[1].dttk_value;
5000		char *s;
5001		int i, len, depth = 0;
5002
5003		/*
5004		 * Due to all the pointer jumping we do and context we must
5005		 * rely upon, we just mandate that the user must have kernel
5006		 * read privileges to use this routine.
5007		 */
5008		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
5009			*flags |= CPU_DTRACE_KPRIV;
5010			*illval = daddr;
5011			regs[rd] = 0;
5012		}
5013
5014		if (!DTRACE_INSCRATCH(mstate, size)) {
5015			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5016			regs[rd] = 0;
5017			break;
5018		}
5019
5020		*end = '\0';
5021
5022		/*
5023		 * We want to have a name for the minor.  In order to do this,
5024		 * we need to walk the minor list from the devinfo.  We want
5025		 * to be sure that we don't infinitely walk a circular list,
5026		 * so we check for circularity by sending a scout pointer
5027		 * ahead two elements for every element that we iterate over;
5028		 * if the list is circular, these will ultimately point to the
5029		 * same element.  You may recognize this little trick as the
5030		 * answer to a stupid interview question -- one that always
5031		 * seems to be asked by those who had to have it laboriously
5032		 * explained to them, and who can't even concisely describe
5033		 * the conditions under which one would be forced to resort to
5034		 * this technique.  Needless to say, those conditions are
5035		 * found here -- and probably only here.  Is this the only use
5036		 * of this infamous trick in shipping, production code?  If it
5037		 * isn't, it probably should be...
5038		 */
5039		if (minor != -1) {
5040			uintptr_t maddr = dtrace_loadptr(daddr +
5041			    offsetof(struct dev_info, devi_minor));
5042
5043			uintptr_t next = offsetof(struct ddi_minor_data, next);
5044			uintptr_t name = offsetof(struct ddi_minor_data,
5045			    d_minor) + offsetof(struct ddi_minor, name);
5046			uintptr_t dev = offsetof(struct ddi_minor_data,
5047			    d_minor) + offsetof(struct ddi_minor, dev);
5048			uintptr_t scout;
5049
5050			if (maddr != NULL)
5051				scout = dtrace_loadptr(maddr + next);
5052
5053			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5054				uint64_t m;
5055#ifdef _LP64
5056				m = dtrace_load64(maddr + dev) & MAXMIN64;
5057#else
5058				m = dtrace_load32(maddr + dev) & MAXMIN;
5059#endif
5060				if (m != minor) {
5061					maddr = dtrace_loadptr(maddr + next);
5062
5063					if (scout == NULL)
5064						continue;
5065
5066					scout = dtrace_loadptr(scout + next);
5067
5068					if (scout == NULL)
5069						continue;
5070
5071					scout = dtrace_loadptr(scout + next);
5072
5073					if (scout == NULL)
5074						continue;
5075
5076					if (scout == maddr) {
5077						*flags |= CPU_DTRACE_ILLOP;
5078						break;
5079					}
5080
5081					continue;
5082				}
5083
5084				/*
5085				 * We have the minor data.  Now we need to
5086				 * copy the minor's name into the end of the
5087				 * pathname.
5088				 */
5089				s = (char *)dtrace_loadptr(maddr + name);
5090				len = dtrace_strlen(s, size);
5091
5092				if (*flags & CPU_DTRACE_FAULT)
5093					break;
5094
5095				if (len != 0) {
5096					if ((end -= (len + 1)) < start)
5097						break;
5098
5099					*end = ':';
5100				}
5101
5102				for (i = 1; i <= len; i++)
5103					end[i] = dtrace_load8((uintptr_t)s++);
5104				break;
5105			}
5106		}
5107
5108		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5109			ddi_node_state_t devi_state;
5110
5111			devi_state = dtrace_load32(daddr +
5112			    offsetof(struct dev_info, devi_node_state));
5113
5114			if (*flags & CPU_DTRACE_FAULT)
5115				break;
5116
5117			if (devi_state >= DS_INITIALIZED) {
5118				s = (char *)dtrace_loadptr(daddr +
5119				    offsetof(struct dev_info, devi_addr));
5120				len = dtrace_strlen(s, size);
5121
5122				if (*flags & CPU_DTRACE_FAULT)
5123					break;
5124
5125				if (len != 0) {
5126					if ((end -= (len + 1)) < start)
5127						break;
5128
5129					*end = '@';
5130				}
5131
5132				for (i = 1; i <= len; i++)
5133					end[i] = dtrace_load8((uintptr_t)s++);
5134			}
5135
5136			/*
5137			 * Now for the node name...
5138			 */
5139			s = (char *)dtrace_loadptr(daddr +
5140			    offsetof(struct dev_info, devi_node_name));
5141
5142			daddr = dtrace_loadptr(daddr +
5143			    offsetof(struct dev_info, devi_parent));
5144
5145			/*
5146			 * If our parent is NULL (that is, if we're the root
5147			 * node), we're going to use the special path
5148			 * "devices".
5149			 */
5150			if (daddr == 0)
5151				s = "devices";
5152
5153			len = dtrace_strlen(s, size);
5154			if (*flags & CPU_DTRACE_FAULT)
5155				break;
5156
5157			if ((end -= (len + 1)) < start)
5158				break;
5159
5160			for (i = 1; i <= len; i++)
5161				end[i] = dtrace_load8((uintptr_t)s++);
5162			*end = '/';
5163
5164			if (depth++ > dtrace_devdepth_max) {
5165				*flags |= CPU_DTRACE_ILLOP;
5166				break;
5167			}
5168		}
5169
5170		if (end < start)
5171			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5172
5173		if (daddr == 0) {
5174			regs[rd] = (uintptr_t)end;
5175			mstate->dtms_scratch_ptr += size;
5176		}
5177
5178		break;
5179	}
5180#endif
5181
5182	case DIF_SUBR_STRJOIN: {
5183		char *d = (char *)mstate->dtms_scratch_ptr;
5184		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5185		uintptr_t s1 = tupregs[0].dttk_value;
5186		uintptr_t s2 = tupregs[1].dttk_value;
5187		int i = 0;
5188
5189		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
5190		    !dtrace_strcanload(s2, size, mstate, vstate)) {
5191			regs[rd] = 0;
5192			break;
5193		}
5194
5195		if (!DTRACE_INSCRATCH(mstate, size)) {
5196			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5197			regs[rd] = 0;
5198			break;
5199		}
5200
5201		for (;;) {
5202			if (i >= size) {
5203				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5204				regs[rd] = 0;
5205				break;
5206			}
5207
5208			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
5209				i--;
5210				break;
5211			}
5212		}
5213
5214		for (;;) {
5215			if (i >= size) {
5216				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5217				regs[rd] = 0;
5218				break;
5219			}
5220
5221			if ((d[i++] = dtrace_load8(s2++)) == '\0')
5222				break;
5223		}
5224
5225		if (i < size) {
5226			mstate->dtms_scratch_ptr += i;
5227			regs[rd] = (uintptr_t)d;
5228		}
5229
5230		break;
5231	}
5232
5233	case DIF_SUBR_STRTOLL: {
5234		uintptr_t s = tupregs[0].dttk_value;
5235		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5236		int base = 10;
5237
5238		if (nargs > 1) {
5239			if ((base = tupregs[1].dttk_value) <= 1 ||
5240			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5241				*flags |= CPU_DTRACE_ILLOP;
5242				break;
5243			}
5244		}
5245
5246		if (!dtrace_strcanload(s, size, mstate, vstate)) {
5247			regs[rd] = INT64_MIN;
5248			break;
5249		}
5250
5251		regs[rd] = dtrace_strtoll((char *)s, base, size);
5252		break;
5253	}
5254
5255	case DIF_SUBR_LLTOSTR: {
5256		int64_t i = (int64_t)tupregs[0].dttk_value;
5257		uint64_t val, digit;
5258		uint64_t size = 65;	/* enough room for 2^64 in binary */
5259		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
5260		int base = 10;
5261
5262		if (nargs > 1) {
5263			if ((base = tupregs[1].dttk_value) <= 1 ||
5264			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5265				*flags |= CPU_DTRACE_ILLOP;
5266				break;
5267			}
5268		}
5269
5270		val = (base == 10 && i < 0) ? i * -1 : i;
5271
5272		if (!DTRACE_INSCRATCH(mstate, size)) {
5273			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5274			regs[rd] = 0;
5275			break;
5276		}
5277
5278		for (*end-- = '\0'; val; val /= base) {
5279			if ((digit = val % base) <= '9' - '0') {
5280				*end-- = '0' + digit;
5281			} else {
5282				*end-- = 'a' + (digit - ('9' - '0') - 1);
5283			}
5284		}
5285
5286		if (i == 0 && base == 16)
5287			*end-- = '0';
5288
5289		if (base == 16)
5290			*end-- = 'x';
5291
5292		if (i == 0 || base == 8 || base == 16)
5293			*end-- = '0';
5294
5295		if (i < 0 && base == 10)
5296			*end-- = '-';
5297
5298		regs[rd] = (uintptr_t)end + 1;
5299		mstate->dtms_scratch_ptr += size;
5300		break;
5301	}
5302
5303	case DIF_SUBR_HTONS:
5304	case DIF_SUBR_NTOHS:
5305#if BYTE_ORDER == BIG_ENDIAN
5306		regs[rd] = (uint16_t)tupregs[0].dttk_value;
5307#else
5308		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
5309#endif
5310		break;
5311
5312
5313	case DIF_SUBR_HTONL:
5314	case DIF_SUBR_NTOHL:
5315#if BYTE_ORDER == BIG_ENDIAN
5316		regs[rd] = (uint32_t)tupregs[0].dttk_value;
5317#else
5318		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5319#endif
5320		break;
5321
5322
5323	case DIF_SUBR_HTONLL:
5324	case DIF_SUBR_NTOHLL:
5325#if BYTE_ORDER == BIG_ENDIAN
5326		regs[rd] = (uint64_t)tupregs[0].dttk_value;
5327#else
5328		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5329#endif
5330		break;
5331
5332
5333	case DIF_SUBR_DIRNAME:
5334	case DIF_SUBR_BASENAME: {
5335		char *dest = (char *)mstate->dtms_scratch_ptr;
5336		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5337		uintptr_t src = tupregs[0].dttk_value;
5338		int i, j, len = dtrace_strlen((char *)src, size);
5339		int lastbase = -1, firstbase = -1, lastdir = -1;
5340		int start, end;
5341
5342		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5343			regs[rd] = 0;
5344			break;
5345		}
5346
5347		if (!DTRACE_INSCRATCH(mstate, size)) {
5348			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5349			regs[rd] = 0;
5350			break;
5351		}
5352
5353		/*
5354		 * The basename and dirname for a zero-length string is
5355		 * defined to be "."
5356		 */
5357		if (len == 0) {
5358			len = 1;
5359			src = (uintptr_t)".";
5360		}
5361
5362		/*
5363		 * Start from the back of the string, moving back toward the
5364		 * front until we see a character that isn't a slash.  That
5365		 * character is the last character in the basename.
5366		 */
5367		for (i = len - 1; i >= 0; i--) {
5368			if (dtrace_load8(src + i) != '/')
5369				break;
5370		}
5371
5372		if (i >= 0)
5373			lastbase = i;
5374
5375		/*
5376		 * Starting from the last character in the basename, move
5377		 * towards the front until we find a slash.  The character
5378		 * that we processed immediately before that is the first
5379		 * character in the basename.
5380		 */
5381		for (; i >= 0; i--) {
5382			if (dtrace_load8(src + i) == '/')
5383				break;
5384		}
5385
5386		if (i >= 0)
5387			firstbase = i + 1;
5388
5389		/*
5390		 * Now keep going until we find a non-slash character.  That
5391		 * character is the last character in the dirname.
5392		 */
5393		for (; i >= 0; i--) {
5394			if (dtrace_load8(src + i) != '/')
5395				break;
5396		}
5397
5398		if (i >= 0)
5399			lastdir = i;
5400
5401		ASSERT(!(lastbase == -1 && firstbase != -1));
5402		ASSERT(!(firstbase == -1 && lastdir != -1));
5403
5404		if (lastbase == -1) {
5405			/*
5406			 * We didn't find a non-slash character.  We know that
5407			 * the length is non-zero, so the whole string must be
5408			 * slashes.  In either the dirname or the basename
5409			 * case, we return '/'.
5410			 */
5411			ASSERT(firstbase == -1);
5412			firstbase = lastbase = lastdir = 0;
5413		}
5414
5415		if (firstbase == -1) {
5416			/*
5417			 * The entire string consists only of a basename
5418			 * component.  If we're looking for dirname, we need
5419			 * to change our string to be just "."; if we're
5420			 * looking for a basename, we'll just set the first
5421			 * character of the basename to be 0.
5422			 */
5423			if (subr == DIF_SUBR_DIRNAME) {
5424				ASSERT(lastdir == -1);
5425				src = (uintptr_t)".";
5426				lastdir = 0;
5427			} else {
5428				firstbase = 0;
5429			}
5430		}
5431
5432		if (subr == DIF_SUBR_DIRNAME) {
5433			if (lastdir == -1) {
5434				/*
5435				 * We know that we have a slash in the name --
5436				 * or lastdir would be set to 0, above.  And
5437				 * because lastdir is -1, we know that this
5438				 * slash must be the first character.  (That
5439				 * is, the full string must be of the form
5440				 * "/basename".)  In this case, the last
5441				 * character of the directory name is 0.
5442				 */
5443				lastdir = 0;
5444			}
5445
5446			start = 0;
5447			end = lastdir;
5448		} else {
5449			ASSERT(subr == DIF_SUBR_BASENAME);
5450			ASSERT(firstbase != -1 && lastbase != -1);
5451			start = firstbase;
5452			end = lastbase;
5453		}
5454
5455		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5456			dest[j] = dtrace_load8(src + i);
5457
5458		dest[j] = '\0';
5459		regs[rd] = (uintptr_t)dest;
5460		mstate->dtms_scratch_ptr += size;
5461		break;
5462	}
5463
5464	case DIF_SUBR_GETF: {
5465		uintptr_t fd = tupregs[0].dttk_value;
5466		struct filedesc *fdp;
5467		file_t *fp;
5468
5469		if (!dtrace_priv_proc(state)) {
5470			regs[rd] = 0;
5471			break;
5472		}
5473		fdp = curproc->p_fd;
5474		FILEDESC_SLOCK(fdp);
5475		fp = fget_locked(fdp, fd);
5476		mstate->dtms_getf = fp;
5477		regs[rd] = (uintptr_t)fp;
5478		FILEDESC_SUNLOCK(fdp);
5479		break;
5480	}
5481
5482	case DIF_SUBR_CLEANPATH: {
5483		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5484		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5485		uintptr_t src = tupregs[0].dttk_value;
5486		int i = 0, j = 0;
5487#ifdef illumos
5488		zone_t *z;
5489#endif
5490
5491		if (!dtrace_strcanload(src, size, mstate, vstate)) {
5492			regs[rd] = 0;
5493			break;
5494		}
5495
5496		if (!DTRACE_INSCRATCH(mstate, size)) {
5497			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5498			regs[rd] = 0;
5499			break;
5500		}
5501
5502		/*
5503		 * Move forward, loading each character.
5504		 */
5505		do {
5506			c = dtrace_load8(src + i++);
5507next:
5508			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
5509				break;
5510
5511			if (c != '/') {
5512				dest[j++] = c;
5513				continue;
5514			}
5515
5516			c = dtrace_load8(src + i++);
5517
5518			if (c == '/') {
5519				/*
5520				 * We have two slashes -- we can just advance
5521				 * to the next character.
5522				 */
5523				goto next;
5524			}
5525
5526			if (c != '.') {
5527				/*
5528				 * This is not "." and it's not ".." -- we can
5529				 * just store the "/" and this character and
5530				 * drive on.
5531				 */
5532				dest[j++] = '/';
5533				dest[j++] = c;
5534				continue;
5535			}
5536
5537			c = dtrace_load8(src + i++);
5538
5539			if (c == '/') {
5540				/*
5541				 * This is a "/./" component.  We're not going
5542				 * to store anything in the destination buffer;
5543				 * we're just going to go to the next component.
5544				 */
5545				goto next;
5546			}
5547
5548			if (c != '.') {
5549				/*
5550				 * This is not ".." -- we can just store the
5551				 * "/." and this character and continue
5552				 * processing.
5553				 */
5554				dest[j++] = '/';
5555				dest[j++] = '.';
5556				dest[j++] = c;
5557				continue;
5558			}
5559
5560			c = dtrace_load8(src + i++);
5561
5562			if (c != '/' && c != '\0') {
5563				/*
5564				 * This is not ".." -- it's "..[mumble]".
5565				 * We'll store the "/.." and this character
5566				 * and continue processing.
5567				 */
5568				dest[j++] = '/';
5569				dest[j++] = '.';
5570				dest[j++] = '.';
5571				dest[j++] = c;
5572				continue;
5573			}
5574
5575			/*
5576			 * This is "/../" or "/..\0".  We need to back up
5577			 * our destination pointer until we find a "/".
5578			 */
5579			i--;
5580			while (j != 0 && dest[--j] != '/')
5581				continue;
5582
5583			if (c == '\0')
5584				dest[++j] = '/';
5585		} while (c != '\0');
5586
5587		dest[j] = '\0';
5588
5589#ifdef illumos
5590		if (mstate->dtms_getf != NULL &&
5591		    !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5592		    (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5593			/*
5594			 * If we've done a getf() as a part of this ECB and we
5595			 * don't have kernel access (and we're not in the global
5596			 * zone), check if the path we cleaned up begins with
5597			 * the zone's root path, and trim it off if so.  Note
5598			 * that this is an output cleanliness issue, not a
5599			 * security issue: knowing one's zone root path does
5600			 * not enable privilege escalation.
5601			 */
5602			if (strstr(dest, z->zone_rootpath) == dest)
5603				dest += strlen(z->zone_rootpath) - 1;
5604		}
5605#endif
5606
5607		regs[rd] = (uintptr_t)dest;
5608		mstate->dtms_scratch_ptr += size;
5609		break;
5610	}
5611
5612	case DIF_SUBR_INET_NTOA:
5613	case DIF_SUBR_INET_NTOA6:
5614	case DIF_SUBR_INET_NTOP: {
5615		size_t size;
5616		int af, argi, i;
5617		char *base, *end;
5618
5619		if (subr == DIF_SUBR_INET_NTOP) {
5620			af = (int)tupregs[0].dttk_value;
5621			argi = 1;
5622		} else {
5623			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5624			argi = 0;
5625		}
5626
5627		if (af == AF_INET) {
5628			ipaddr_t ip4;
5629			uint8_t *ptr8, val;
5630
5631			/*
5632			 * Safely load the IPv4 address.
5633			 */
5634			ip4 = dtrace_load32(tupregs[argi].dttk_value);
5635
5636			/*
5637			 * Check an IPv4 string will fit in scratch.
5638			 */
5639			size = INET_ADDRSTRLEN;
5640			if (!DTRACE_INSCRATCH(mstate, size)) {
5641				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5642				regs[rd] = 0;
5643				break;
5644			}
5645			base = (char *)mstate->dtms_scratch_ptr;
5646			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5647
5648			/*
5649			 * Stringify as a dotted decimal quad.
5650			 */
5651			*end-- = '\0';
5652			ptr8 = (uint8_t *)&ip4;
5653			for (i = 3; i >= 0; i--) {
5654				val = ptr8[i];
5655
5656				if (val == 0) {
5657					*end-- = '0';
5658				} else {
5659					for (; val; val /= 10) {
5660						*end-- = '0' + (val % 10);
5661					}
5662				}
5663
5664				if (i > 0)
5665					*end-- = '.';
5666			}
5667			ASSERT(end + 1 >= base);
5668
5669		} else if (af == AF_INET6) {
5670			struct in6_addr ip6;
5671			int firstzero, tryzero, numzero, v6end;
5672			uint16_t val;
5673			const char digits[] = "0123456789abcdef";
5674
5675			/*
5676			 * Stringify using RFC 1884 convention 2 - 16 bit
5677			 * hexadecimal values with a zero-run compression.
5678			 * Lower case hexadecimal digits are used.
5679			 * 	eg, fe80::214:4fff:fe0b:76c8.
5680			 * The IPv4 embedded form is returned for inet_ntop,
5681			 * just the IPv4 string is returned for inet_ntoa6.
5682			 */
5683
5684			/*
5685			 * Safely load the IPv6 address.
5686			 */
5687			dtrace_bcopy(
5688			    (void *)(uintptr_t)tupregs[argi].dttk_value,
5689			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5690
5691			/*
5692			 * Check an IPv6 string will fit in scratch.
5693			 */
5694			size = INET6_ADDRSTRLEN;
5695			if (!DTRACE_INSCRATCH(mstate, size)) {
5696				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5697				regs[rd] = 0;
5698				break;
5699			}
5700			base = (char *)mstate->dtms_scratch_ptr;
5701			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5702			*end-- = '\0';
5703
5704			/*
5705			 * Find the longest run of 16 bit zero values
5706			 * for the single allowed zero compression - "::".
5707			 */
5708			firstzero = -1;
5709			tryzero = -1;
5710			numzero = 1;
5711			for (i = 0; i < sizeof (struct in6_addr); i++) {
5712#ifdef illumos
5713				if (ip6._S6_un._S6_u8[i] == 0 &&
5714#else
5715				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5716#endif
5717				    tryzero == -1 && i % 2 == 0) {
5718					tryzero = i;
5719					continue;
5720				}
5721
5722				if (tryzero != -1 &&
5723#ifdef illumos
5724				    (ip6._S6_un._S6_u8[i] != 0 ||
5725#else
5726				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
5727#endif
5728				    i == sizeof (struct in6_addr) - 1)) {
5729
5730					if (i - tryzero <= numzero) {
5731						tryzero = -1;
5732						continue;
5733					}
5734
5735					firstzero = tryzero;
5736					numzero = i - i % 2 - tryzero;
5737					tryzero = -1;
5738
5739#ifdef illumos
5740					if (ip6._S6_un._S6_u8[i] == 0 &&
5741#else
5742					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5743#endif
5744					    i == sizeof (struct in6_addr) - 1)
5745						numzero += 2;
5746				}
5747			}
5748			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5749
5750			/*
5751			 * Check for an IPv4 embedded address.
5752			 */
5753			v6end = sizeof (struct in6_addr) - 2;
5754			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5755			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
5756				for (i = sizeof (struct in6_addr) - 1;
5757				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
5758					ASSERT(end >= base);
5759
5760#ifdef illumos
5761					val = ip6._S6_un._S6_u8[i];
5762#else
5763					val = ip6.__u6_addr.__u6_addr8[i];
5764#endif
5765
5766					if (val == 0) {
5767						*end-- = '0';
5768					} else {
5769						for (; val; val /= 10) {
5770							*end-- = '0' + val % 10;
5771						}
5772					}
5773
5774					if (i > DTRACE_V4MAPPED_OFFSET)
5775						*end-- = '.';
5776				}
5777
5778				if (subr == DIF_SUBR_INET_NTOA6)
5779					goto inetout;
5780
5781				/*
5782				 * Set v6end to skip the IPv4 address that
5783				 * we have already stringified.
5784				 */
5785				v6end = 10;
5786			}
5787
5788			/*
5789			 * Build the IPv6 string by working through the
5790			 * address in reverse.
5791			 */
5792			for (i = v6end; i >= 0; i -= 2) {
5793				ASSERT(end >= base);
5794
5795				if (i == firstzero + numzero - 2) {
5796					*end-- = ':';
5797					*end-- = ':';
5798					i -= numzero - 2;
5799					continue;
5800				}
5801
5802				if (i < 14 && i != firstzero - 2)
5803					*end-- = ':';
5804
5805#ifdef illumos
5806				val = (ip6._S6_un._S6_u8[i] << 8) +
5807				    ip6._S6_un._S6_u8[i + 1];
5808#else
5809				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
5810				    ip6.__u6_addr.__u6_addr8[i + 1];
5811#endif
5812
5813				if (val == 0) {
5814					*end-- = '0';
5815				} else {
5816					for (; val; val /= 16) {
5817						*end-- = digits[val % 16];
5818					}
5819				}
5820			}
5821			ASSERT(end + 1 >= base);
5822
5823		} else {
5824			/*
5825			 * The user didn't use AH_INET or AH_INET6.
5826			 */
5827			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5828			regs[rd] = 0;
5829			break;
5830		}
5831
5832inetout:	regs[rd] = (uintptr_t)end + 1;
5833		mstate->dtms_scratch_ptr += size;
5834		break;
5835	}
5836
5837	case DIF_SUBR_MEMREF: {
5838		uintptr_t size = 2 * sizeof(uintptr_t);
5839		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
5840		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
5841
5842		/* address and length */
5843		memref[0] = tupregs[0].dttk_value;
5844		memref[1] = tupregs[1].dttk_value;
5845
5846		regs[rd] = (uintptr_t) memref;
5847		mstate->dtms_scratch_ptr += scratch_size;
5848		break;
5849	}
5850
5851#ifndef illumos
5852	case DIF_SUBR_MEMSTR: {
5853		char *str = (char *)mstate->dtms_scratch_ptr;
5854		uintptr_t mem = tupregs[0].dttk_value;
5855		char c = tupregs[1].dttk_value;
5856		size_t size = tupregs[2].dttk_value;
5857		uint8_t n;
5858		int i;
5859
5860		regs[rd] = 0;
5861
5862		if (size == 0)
5863			break;
5864
5865		if (!dtrace_canload(mem, size - 1, mstate, vstate))
5866			break;
5867
5868		if (!DTRACE_INSCRATCH(mstate, size)) {
5869			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5870			break;
5871		}
5872
5873		if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) {
5874			*flags |= CPU_DTRACE_ILLOP;
5875			break;
5876		}
5877
5878		for (i = 0; i < size - 1; i++) {
5879			n = dtrace_load8(mem++);
5880			str[i] = (n == 0) ? c : n;
5881		}
5882		str[size - 1] = 0;
5883
5884		regs[rd] = (uintptr_t)str;
5885		mstate->dtms_scratch_ptr += size;
5886		break;
5887	}
5888#endif
5889
5890	case DIF_SUBR_TYPEREF: {
5891		uintptr_t size = 4 * sizeof(uintptr_t);
5892		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
5893		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
5894
5895		/* address, num_elements, type_str, type_len */
5896		typeref[0] = tupregs[0].dttk_value;
5897		typeref[1] = tupregs[1].dttk_value;
5898		typeref[2] = tupregs[2].dttk_value;
5899		typeref[3] = tupregs[3].dttk_value;
5900
5901		regs[rd] = (uintptr_t) typeref;
5902		mstate->dtms_scratch_ptr += scratch_size;
5903		break;
5904	}
5905	}
5906}
5907
5908/*
5909 * Emulate the execution of DTrace IR instructions specified by the given
5910 * DIF object.  This function is deliberately void of assertions as all of
5911 * the necessary checks are handled by a call to dtrace_difo_validate().
5912 */
5913static uint64_t
5914dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
5915    dtrace_vstate_t *vstate, dtrace_state_t *state)
5916{
5917	const dif_instr_t *text = difo->dtdo_buf;
5918	const uint_t textlen = difo->dtdo_len;
5919	const char *strtab = difo->dtdo_strtab;
5920	const uint64_t *inttab = difo->dtdo_inttab;
5921
5922	uint64_t rval = 0;
5923	dtrace_statvar_t *svar;
5924	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
5925	dtrace_difv_t *v;
5926	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5927	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
5928
5929	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
5930	uint64_t regs[DIF_DIR_NREGS];
5931	uint64_t *tmp;
5932
5933	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
5934	int64_t cc_r;
5935	uint_t pc = 0, id, opc = 0;
5936	uint8_t ttop = 0;
5937	dif_instr_t instr;
5938	uint_t r1, r2, rd;
5939
5940	/*
5941	 * We stash the current DIF object into the machine state: we need it
5942	 * for subsequent access checking.
5943	 */
5944	mstate->dtms_difo = difo;
5945
5946	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
5947
5948	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
5949		opc = pc;
5950
5951		instr = text[pc++];
5952		r1 = DIF_INSTR_R1(instr);
5953		r2 = DIF_INSTR_R2(instr);
5954		rd = DIF_INSTR_RD(instr);
5955
5956		switch (DIF_INSTR_OP(instr)) {
5957		case DIF_OP_OR:
5958			regs[rd] = regs[r1] | regs[r2];
5959			break;
5960		case DIF_OP_XOR:
5961			regs[rd] = regs[r1] ^ regs[r2];
5962			break;
5963		case DIF_OP_AND:
5964			regs[rd] = regs[r1] & regs[r2];
5965			break;
5966		case DIF_OP_SLL:
5967			regs[rd] = regs[r1] << regs[r2];
5968			break;
5969		case DIF_OP_SRL:
5970			regs[rd] = regs[r1] >> regs[r2];
5971			break;
5972		case DIF_OP_SUB:
5973			regs[rd] = regs[r1] - regs[r2];
5974			break;
5975		case DIF_OP_ADD:
5976			regs[rd] = regs[r1] + regs[r2];
5977			break;
5978		case DIF_OP_MUL:
5979			regs[rd] = regs[r1] * regs[r2];
5980			break;
5981		case DIF_OP_SDIV:
5982			if (regs[r2] == 0) {
5983				regs[rd] = 0;
5984				*flags |= CPU_DTRACE_DIVZERO;
5985			} else {
5986				regs[rd] = (int64_t)regs[r1] /
5987				    (int64_t)regs[r2];
5988			}
5989			break;
5990
5991		case DIF_OP_UDIV:
5992			if (regs[r2] == 0) {
5993				regs[rd] = 0;
5994				*flags |= CPU_DTRACE_DIVZERO;
5995			} else {
5996				regs[rd] = regs[r1] / regs[r2];
5997			}
5998			break;
5999
6000		case DIF_OP_SREM:
6001			if (regs[r2] == 0) {
6002				regs[rd] = 0;
6003				*flags |= CPU_DTRACE_DIVZERO;
6004			} else {
6005				regs[rd] = (int64_t)regs[r1] %
6006				    (int64_t)regs[r2];
6007			}
6008			break;
6009
6010		case DIF_OP_UREM:
6011			if (regs[r2] == 0) {
6012				regs[rd] = 0;
6013				*flags |= CPU_DTRACE_DIVZERO;
6014			} else {
6015				regs[rd] = regs[r1] % regs[r2];
6016			}
6017			break;
6018
6019		case DIF_OP_NOT:
6020			regs[rd] = ~regs[r1];
6021			break;
6022		case DIF_OP_MOV:
6023			regs[rd] = regs[r1];
6024			break;
6025		case DIF_OP_CMP:
6026			cc_r = regs[r1] - regs[r2];
6027			cc_n = cc_r < 0;
6028			cc_z = cc_r == 0;
6029			cc_v = 0;
6030			cc_c = regs[r1] < regs[r2];
6031			break;
6032		case DIF_OP_TST:
6033			cc_n = cc_v = cc_c = 0;
6034			cc_z = regs[r1] == 0;
6035			break;
6036		case DIF_OP_BA:
6037			pc = DIF_INSTR_LABEL(instr);
6038			break;
6039		case DIF_OP_BE:
6040			if (cc_z)
6041				pc = DIF_INSTR_LABEL(instr);
6042			break;
6043		case DIF_OP_BNE:
6044			if (cc_z == 0)
6045				pc = DIF_INSTR_LABEL(instr);
6046			break;
6047		case DIF_OP_BG:
6048			if ((cc_z | (cc_n ^ cc_v)) == 0)
6049				pc = DIF_INSTR_LABEL(instr);
6050			break;
6051		case DIF_OP_BGU:
6052			if ((cc_c | cc_z) == 0)
6053				pc = DIF_INSTR_LABEL(instr);
6054			break;
6055		case DIF_OP_BGE:
6056			if ((cc_n ^ cc_v) == 0)
6057				pc = DIF_INSTR_LABEL(instr);
6058			break;
6059		case DIF_OP_BGEU:
6060			if (cc_c == 0)
6061				pc = DIF_INSTR_LABEL(instr);
6062			break;
6063		case DIF_OP_BL:
6064			if (cc_n ^ cc_v)
6065				pc = DIF_INSTR_LABEL(instr);
6066			break;
6067		case DIF_OP_BLU:
6068			if (cc_c)
6069				pc = DIF_INSTR_LABEL(instr);
6070			break;
6071		case DIF_OP_BLE:
6072			if (cc_z | (cc_n ^ cc_v))
6073				pc = DIF_INSTR_LABEL(instr);
6074			break;
6075		case DIF_OP_BLEU:
6076			if (cc_c | cc_z)
6077				pc = DIF_INSTR_LABEL(instr);
6078			break;
6079		case DIF_OP_RLDSB:
6080			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6081				break;
6082			/*FALLTHROUGH*/
6083		case DIF_OP_LDSB:
6084			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
6085			break;
6086		case DIF_OP_RLDSH:
6087			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6088				break;
6089			/*FALLTHROUGH*/
6090		case DIF_OP_LDSH:
6091			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
6092			break;
6093		case DIF_OP_RLDSW:
6094			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6095				break;
6096			/*FALLTHROUGH*/
6097		case DIF_OP_LDSW:
6098			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
6099			break;
6100		case DIF_OP_RLDUB:
6101			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6102				break;
6103			/*FALLTHROUGH*/
6104		case DIF_OP_LDUB:
6105			regs[rd] = dtrace_load8(regs[r1]);
6106			break;
6107		case DIF_OP_RLDUH:
6108			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6109				break;
6110			/*FALLTHROUGH*/
6111		case DIF_OP_LDUH:
6112			regs[rd] = dtrace_load16(regs[r1]);
6113			break;
6114		case DIF_OP_RLDUW:
6115			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6116				break;
6117			/*FALLTHROUGH*/
6118		case DIF_OP_LDUW:
6119			regs[rd] = dtrace_load32(regs[r1]);
6120			break;
6121		case DIF_OP_RLDX:
6122			if (!dtrace_canload(regs[r1], 8, mstate, vstate))
6123				break;
6124			/*FALLTHROUGH*/
6125		case DIF_OP_LDX:
6126			regs[rd] = dtrace_load64(regs[r1]);
6127			break;
6128		case DIF_OP_ULDSB:
6129			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6130			regs[rd] = (int8_t)
6131			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6132			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6133			break;
6134		case DIF_OP_ULDSH:
6135			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6136			regs[rd] = (int16_t)
6137			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6138			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6139			break;
6140		case DIF_OP_ULDSW:
6141			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6142			regs[rd] = (int32_t)
6143			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6144			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6145			break;
6146		case DIF_OP_ULDUB:
6147			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6148			regs[rd] =
6149			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6150			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6151			break;
6152		case DIF_OP_ULDUH:
6153			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6154			regs[rd] =
6155			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6156			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6157			break;
6158		case DIF_OP_ULDUW:
6159			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6160			regs[rd] =
6161			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6162			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6163			break;
6164		case DIF_OP_ULDX:
6165			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6166			regs[rd] =
6167			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
6168			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6169			break;
6170		case DIF_OP_RET:
6171			rval = regs[rd];
6172			pc = textlen;
6173			break;
6174		case DIF_OP_NOP:
6175			break;
6176		case DIF_OP_SETX:
6177			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
6178			break;
6179		case DIF_OP_SETS:
6180			regs[rd] = (uint64_t)(uintptr_t)
6181			    (strtab + DIF_INSTR_STRING(instr));
6182			break;
6183		case DIF_OP_SCMP: {
6184			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
6185			uintptr_t s1 = regs[r1];
6186			uintptr_t s2 = regs[r2];
6187
6188			if (s1 != 0 &&
6189			    !dtrace_strcanload(s1, sz, mstate, vstate))
6190				break;
6191			if (s2 != 0 &&
6192			    !dtrace_strcanload(s2, sz, mstate, vstate))
6193				break;
6194
6195			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
6196
6197			cc_n = cc_r < 0;
6198			cc_z = cc_r == 0;
6199			cc_v = cc_c = 0;
6200			break;
6201		}
6202		case DIF_OP_LDGA:
6203			regs[rd] = dtrace_dif_variable(mstate, state,
6204			    r1, regs[r2]);
6205			break;
6206		case DIF_OP_LDGS:
6207			id = DIF_INSTR_VAR(instr);
6208
6209			if (id >= DIF_VAR_OTHER_UBASE) {
6210				uintptr_t a;
6211
6212				id -= DIF_VAR_OTHER_UBASE;
6213				svar = vstate->dtvs_globals[id];
6214				ASSERT(svar != NULL);
6215				v = &svar->dtsv_var;
6216
6217				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
6218					regs[rd] = svar->dtsv_data;
6219					break;
6220				}
6221
6222				a = (uintptr_t)svar->dtsv_data;
6223
6224				if (*(uint8_t *)a == UINT8_MAX) {
6225					/*
6226					 * If the 0th byte is set to UINT8_MAX
6227					 * then this is to be treated as a
6228					 * reference to a NULL variable.
6229					 */
6230					regs[rd] = 0;
6231				} else {
6232					regs[rd] = a + sizeof (uint64_t);
6233				}
6234
6235				break;
6236			}
6237
6238			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
6239			break;
6240
6241		case DIF_OP_STGS:
6242			id = DIF_INSTR_VAR(instr);
6243
6244			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6245			id -= DIF_VAR_OTHER_UBASE;
6246
6247			svar = vstate->dtvs_globals[id];
6248			ASSERT(svar != NULL);
6249			v = &svar->dtsv_var;
6250
6251			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6252				uintptr_t a = (uintptr_t)svar->dtsv_data;
6253
6254				ASSERT(a != 0);
6255				ASSERT(svar->dtsv_size != 0);
6256
6257				if (regs[rd] == 0) {
6258					*(uint8_t *)a = UINT8_MAX;
6259					break;
6260				} else {
6261					*(uint8_t *)a = 0;
6262					a += sizeof (uint64_t);
6263				}
6264				if (!dtrace_vcanload(
6265				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6266				    mstate, vstate))
6267					break;
6268
6269				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6270				    (void *)a, &v->dtdv_type);
6271				break;
6272			}
6273
6274			svar->dtsv_data = regs[rd];
6275			break;
6276
6277		case DIF_OP_LDTA:
6278			/*
6279			 * There are no DTrace built-in thread-local arrays at
6280			 * present.  This opcode is saved for future work.
6281			 */
6282			*flags |= CPU_DTRACE_ILLOP;
6283			regs[rd] = 0;
6284			break;
6285
6286		case DIF_OP_LDLS:
6287			id = DIF_INSTR_VAR(instr);
6288
6289			if (id < DIF_VAR_OTHER_UBASE) {
6290				/*
6291				 * For now, this has no meaning.
6292				 */
6293				regs[rd] = 0;
6294				break;
6295			}
6296
6297			id -= DIF_VAR_OTHER_UBASE;
6298
6299			ASSERT(id < vstate->dtvs_nlocals);
6300			ASSERT(vstate->dtvs_locals != NULL);
6301
6302			svar = vstate->dtvs_locals[id];
6303			ASSERT(svar != NULL);
6304			v = &svar->dtsv_var;
6305
6306			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6307				uintptr_t a = (uintptr_t)svar->dtsv_data;
6308				size_t sz = v->dtdv_type.dtdt_size;
6309
6310				sz += sizeof (uint64_t);
6311				ASSERT(svar->dtsv_size == NCPU * sz);
6312				a += curcpu * sz;
6313
6314				if (*(uint8_t *)a == UINT8_MAX) {
6315					/*
6316					 * If the 0th byte is set to UINT8_MAX
6317					 * then this is to be treated as a
6318					 * reference to a NULL variable.
6319					 */
6320					regs[rd] = 0;
6321				} else {
6322					regs[rd] = a + sizeof (uint64_t);
6323				}
6324
6325				break;
6326			}
6327
6328			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6329			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6330			regs[rd] = tmp[curcpu];
6331			break;
6332
6333		case DIF_OP_STLS:
6334			id = DIF_INSTR_VAR(instr);
6335
6336			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6337			id -= DIF_VAR_OTHER_UBASE;
6338			ASSERT(id < vstate->dtvs_nlocals);
6339
6340			ASSERT(vstate->dtvs_locals != NULL);
6341			svar = vstate->dtvs_locals[id];
6342			ASSERT(svar != NULL);
6343			v = &svar->dtsv_var;
6344
6345			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6346				uintptr_t a = (uintptr_t)svar->dtsv_data;
6347				size_t sz = v->dtdv_type.dtdt_size;
6348
6349				sz += sizeof (uint64_t);
6350				ASSERT(svar->dtsv_size == NCPU * sz);
6351				a += curcpu * sz;
6352
6353				if (regs[rd] == 0) {
6354					*(uint8_t *)a = UINT8_MAX;
6355					break;
6356				} else {
6357					*(uint8_t *)a = 0;
6358					a += sizeof (uint64_t);
6359				}
6360
6361				if (!dtrace_vcanload(
6362				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6363				    mstate, vstate))
6364					break;
6365
6366				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6367				    (void *)a, &v->dtdv_type);
6368				break;
6369			}
6370
6371			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6372			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6373			tmp[curcpu] = regs[rd];
6374			break;
6375
6376		case DIF_OP_LDTS: {
6377			dtrace_dynvar_t *dvar;
6378			dtrace_key_t *key;
6379
6380			id = DIF_INSTR_VAR(instr);
6381			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6382			id -= DIF_VAR_OTHER_UBASE;
6383			v = &vstate->dtvs_tlocals[id];
6384
6385			key = &tupregs[DIF_DTR_NREGS];
6386			key[0].dttk_value = (uint64_t)id;
6387			key[0].dttk_size = 0;
6388			DTRACE_TLS_THRKEY(key[1].dttk_value);
6389			key[1].dttk_size = 0;
6390
6391			dvar = dtrace_dynvar(dstate, 2, key,
6392			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6393			    mstate, vstate);
6394
6395			if (dvar == NULL) {
6396				regs[rd] = 0;
6397				break;
6398			}
6399
6400			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6401				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6402			} else {
6403				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6404			}
6405
6406			break;
6407		}
6408
6409		case DIF_OP_STTS: {
6410			dtrace_dynvar_t *dvar;
6411			dtrace_key_t *key;
6412
6413			id = DIF_INSTR_VAR(instr);
6414			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6415			id -= DIF_VAR_OTHER_UBASE;
6416
6417			key = &tupregs[DIF_DTR_NREGS];
6418			key[0].dttk_value = (uint64_t)id;
6419			key[0].dttk_size = 0;
6420			DTRACE_TLS_THRKEY(key[1].dttk_value);
6421			key[1].dttk_size = 0;
6422			v = &vstate->dtvs_tlocals[id];
6423
6424			dvar = dtrace_dynvar(dstate, 2, key,
6425			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6426			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6427			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6428			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6429
6430			/*
6431			 * Given that we're storing to thread-local data,
6432			 * we need to flush our predicate cache.
6433			 */
6434			curthread->t_predcache = 0;
6435
6436			if (dvar == NULL)
6437				break;
6438
6439			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6440				if (!dtrace_vcanload(
6441				    (void *)(uintptr_t)regs[rd],
6442				    &v->dtdv_type, mstate, vstate))
6443					break;
6444
6445				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6446				    dvar->dtdv_data, &v->dtdv_type);
6447			} else {
6448				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6449			}
6450
6451			break;
6452		}
6453
6454		case DIF_OP_SRA:
6455			regs[rd] = (int64_t)regs[r1] >> regs[r2];
6456			break;
6457
6458		case DIF_OP_CALL:
6459			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6460			    regs, tupregs, ttop, mstate, state);
6461			break;
6462
6463		case DIF_OP_PUSHTR:
6464			if (ttop == DIF_DTR_NREGS) {
6465				*flags |= CPU_DTRACE_TUPOFLOW;
6466				break;
6467			}
6468
6469			if (r1 == DIF_TYPE_STRING) {
6470				/*
6471				 * If this is a string type and the size is 0,
6472				 * we'll use the system-wide default string
6473				 * size.  Note that we are _not_ looking at
6474				 * the value of the DTRACEOPT_STRSIZE option;
6475				 * had this been set, we would expect to have
6476				 * a non-zero size value in the "pushtr".
6477				 */
6478				tupregs[ttop].dttk_size =
6479				    dtrace_strlen((char *)(uintptr_t)regs[rd],
6480				    regs[r2] ? regs[r2] :
6481				    dtrace_strsize_default) + 1;
6482			} else {
6483				if (regs[r2] > LONG_MAX) {
6484					*flags |= CPU_DTRACE_ILLOP;
6485					break;
6486				}
6487
6488				tupregs[ttop].dttk_size = regs[r2];
6489			}
6490
6491			tupregs[ttop++].dttk_value = regs[rd];
6492			break;
6493
6494		case DIF_OP_PUSHTV:
6495			if (ttop == DIF_DTR_NREGS) {
6496				*flags |= CPU_DTRACE_TUPOFLOW;
6497				break;
6498			}
6499
6500			tupregs[ttop].dttk_value = regs[rd];
6501			tupregs[ttop++].dttk_size = 0;
6502			break;
6503
6504		case DIF_OP_POPTS:
6505			if (ttop != 0)
6506				ttop--;
6507			break;
6508
6509		case DIF_OP_FLUSHTS:
6510			ttop = 0;
6511			break;
6512
6513		case DIF_OP_LDGAA:
6514		case DIF_OP_LDTAA: {
6515			dtrace_dynvar_t *dvar;
6516			dtrace_key_t *key = tupregs;
6517			uint_t nkeys = ttop;
6518
6519			id = DIF_INSTR_VAR(instr);
6520			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6521			id -= DIF_VAR_OTHER_UBASE;
6522
6523			key[nkeys].dttk_value = (uint64_t)id;
6524			key[nkeys++].dttk_size = 0;
6525
6526			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6527				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6528				key[nkeys++].dttk_size = 0;
6529				v = &vstate->dtvs_tlocals[id];
6530			} else {
6531				v = &vstate->dtvs_globals[id]->dtsv_var;
6532			}
6533
6534			dvar = dtrace_dynvar(dstate, nkeys, key,
6535			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6536			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6537			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6538
6539			if (dvar == NULL) {
6540				regs[rd] = 0;
6541				break;
6542			}
6543
6544			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6545				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6546			} else {
6547				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6548			}
6549
6550			break;
6551		}
6552
6553		case DIF_OP_STGAA:
6554		case DIF_OP_STTAA: {
6555			dtrace_dynvar_t *dvar;
6556			dtrace_key_t *key = tupregs;
6557			uint_t nkeys = ttop;
6558
6559			id = DIF_INSTR_VAR(instr);
6560			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6561			id -= DIF_VAR_OTHER_UBASE;
6562
6563			key[nkeys].dttk_value = (uint64_t)id;
6564			key[nkeys++].dttk_size = 0;
6565
6566			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6567				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6568				key[nkeys++].dttk_size = 0;
6569				v = &vstate->dtvs_tlocals[id];
6570			} else {
6571				v = &vstate->dtvs_globals[id]->dtsv_var;
6572			}
6573
6574			dvar = dtrace_dynvar(dstate, nkeys, key,
6575			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6576			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6577			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6578			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6579
6580			if (dvar == NULL)
6581				break;
6582
6583			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6584				if (!dtrace_vcanload(
6585				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6586				    mstate, vstate))
6587					break;
6588
6589				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6590				    dvar->dtdv_data, &v->dtdv_type);
6591			} else {
6592				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6593			}
6594
6595			break;
6596		}
6597
6598		case DIF_OP_ALLOCS: {
6599			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6600			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6601
6602			/*
6603			 * Rounding up the user allocation size could have
6604			 * overflowed large, bogus allocations (like -1ULL) to
6605			 * 0.
6606			 */
6607			if (size < regs[r1] ||
6608			    !DTRACE_INSCRATCH(mstate, size)) {
6609				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6610				regs[rd] = 0;
6611				break;
6612			}
6613
6614			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6615			mstate->dtms_scratch_ptr += size;
6616			regs[rd] = ptr;
6617			break;
6618		}
6619
6620		case DIF_OP_COPYS:
6621			if (!dtrace_canstore(regs[rd], regs[r2],
6622			    mstate, vstate)) {
6623				*flags |= CPU_DTRACE_BADADDR;
6624				*illval = regs[rd];
6625				break;
6626			}
6627
6628			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6629				break;
6630
6631			dtrace_bcopy((void *)(uintptr_t)regs[r1],
6632			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6633			break;
6634
6635		case DIF_OP_STB:
6636			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6637				*flags |= CPU_DTRACE_BADADDR;
6638				*illval = regs[rd];
6639				break;
6640			}
6641			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6642			break;
6643
6644		case DIF_OP_STH:
6645			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6646				*flags |= CPU_DTRACE_BADADDR;
6647				*illval = regs[rd];
6648				break;
6649			}
6650			if (regs[rd] & 1) {
6651				*flags |= CPU_DTRACE_BADALIGN;
6652				*illval = regs[rd];
6653				break;
6654			}
6655			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6656			break;
6657
6658		case DIF_OP_STW:
6659			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6660				*flags |= CPU_DTRACE_BADADDR;
6661				*illval = regs[rd];
6662				break;
6663			}
6664			if (regs[rd] & 3) {
6665				*flags |= CPU_DTRACE_BADALIGN;
6666				*illval = regs[rd];
6667				break;
6668			}
6669			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6670			break;
6671
6672		case DIF_OP_STX:
6673			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6674				*flags |= CPU_DTRACE_BADADDR;
6675				*illval = regs[rd];
6676				break;
6677			}
6678			if (regs[rd] & 7) {
6679				*flags |= CPU_DTRACE_BADALIGN;
6680				*illval = regs[rd];
6681				break;
6682			}
6683			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6684			break;
6685		}
6686	}
6687
6688	if (!(*flags & CPU_DTRACE_FAULT))
6689		return (rval);
6690
6691	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6692	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6693
6694	return (0);
6695}
6696
6697static void
6698dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6699{
6700	dtrace_probe_t *probe = ecb->dte_probe;
6701	dtrace_provider_t *prov = probe->dtpr_provider;
6702	char c[DTRACE_FULLNAMELEN + 80], *str;
6703	char *msg = "dtrace: breakpoint action at probe ";
6704	char *ecbmsg = " (ecb ";
6705	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6706	uintptr_t val = (uintptr_t)ecb;
6707	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6708
6709	if (dtrace_destructive_disallow)
6710		return;
6711
6712	/*
6713	 * It's impossible to be taking action on the NULL probe.
6714	 */
6715	ASSERT(probe != NULL);
6716
6717	/*
6718	 * This is a poor man's (destitute man's?) sprintf():  we want to
6719	 * print the provider name, module name, function name and name of
6720	 * the probe, along with the hex address of the ECB with the breakpoint
6721	 * action -- all of which we must place in the character buffer by
6722	 * hand.
6723	 */
6724	while (*msg != '\0')
6725		c[i++] = *msg++;
6726
6727	for (str = prov->dtpv_name; *str != '\0'; str++)
6728		c[i++] = *str;
6729	c[i++] = ':';
6730
6731	for (str = probe->dtpr_mod; *str != '\0'; str++)
6732		c[i++] = *str;
6733	c[i++] = ':';
6734
6735	for (str = probe->dtpr_func; *str != '\0'; str++)
6736		c[i++] = *str;
6737	c[i++] = ':';
6738
6739	for (str = probe->dtpr_name; *str != '\0'; str++)
6740		c[i++] = *str;
6741
6742	while (*ecbmsg != '\0')
6743		c[i++] = *ecbmsg++;
6744
6745	while (shift >= 0) {
6746		mask = (uintptr_t)0xf << shift;
6747
6748		if (val >= ((uintptr_t)1 << shift))
6749			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6750		shift -= 4;
6751	}
6752
6753	c[i++] = ')';
6754	c[i] = '\0';
6755
6756#ifdef illumos
6757	debug_enter(c);
6758#else
6759	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
6760#endif
6761}
6762
6763static void
6764dtrace_action_panic(dtrace_ecb_t *ecb)
6765{
6766	dtrace_probe_t *probe = ecb->dte_probe;
6767
6768	/*
6769	 * It's impossible to be taking action on the NULL probe.
6770	 */
6771	ASSERT(probe != NULL);
6772
6773	if (dtrace_destructive_disallow)
6774		return;
6775
6776	if (dtrace_panicked != NULL)
6777		return;
6778
6779	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6780		return;
6781
6782	/*
6783	 * We won the right to panic.  (We want to be sure that only one
6784	 * thread calls panic() from dtrace_probe(), and that panic() is
6785	 * called exactly once.)
6786	 */
6787	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6788	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6789	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6790}
6791
6792static void
6793dtrace_action_raise(uint64_t sig)
6794{
6795	if (dtrace_destructive_disallow)
6796		return;
6797
6798	if (sig >= NSIG) {
6799		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6800		return;
6801	}
6802
6803#ifdef illumos
6804	/*
6805	 * raise() has a queue depth of 1 -- we ignore all subsequent
6806	 * invocations of the raise() action.
6807	 */
6808	if (curthread->t_dtrace_sig == 0)
6809		curthread->t_dtrace_sig = (uint8_t)sig;
6810
6811	curthread->t_sig_check = 1;
6812	aston(curthread);
6813#else
6814	struct proc *p = curproc;
6815	PROC_LOCK(p);
6816	kern_psignal(p, sig);
6817	PROC_UNLOCK(p);
6818#endif
6819}
6820
6821static void
6822dtrace_action_stop(void)
6823{
6824	if (dtrace_destructive_disallow)
6825		return;
6826
6827#ifdef illumos
6828	if (!curthread->t_dtrace_stop) {
6829		curthread->t_dtrace_stop = 1;
6830		curthread->t_sig_check = 1;
6831		aston(curthread);
6832	}
6833#else
6834	struct proc *p = curproc;
6835	PROC_LOCK(p);
6836	kern_psignal(p, SIGSTOP);
6837	PROC_UNLOCK(p);
6838#endif
6839}
6840
6841static void
6842dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
6843{
6844	hrtime_t now;
6845	volatile uint16_t *flags;
6846#ifdef illumos
6847	cpu_t *cpu = CPU;
6848#else
6849	cpu_t *cpu = &solaris_cpu[curcpu];
6850#endif
6851
6852	if (dtrace_destructive_disallow)
6853		return;
6854
6855	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
6856
6857	now = dtrace_gethrtime();
6858
6859	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
6860		/*
6861		 * We need to advance the mark to the current time.
6862		 */
6863		cpu->cpu_dtrace_chillmark = now;
6864		cpu->cpu_dtrace_chilled = 0;
6865	}
6866
6867	/*
6868	 * Now check to see if the requested chill time would take us over
6869	 * the maximum amount of time allowed in the chill interval.  (Or
6870	 * worse, if the calculation itself induces overflow.)
6871	 */
6872	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
6873	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
6874		*flags |= CPU_DTRACE_ILLOP;
6875		return;
6876	}
6877
6878	while (dtrace_gethrtime() - now < val)
6879		continue;
6880
6881	/*
6882	 * Normally, we assure that the value of the variable "timestamp" does
6883	 * not change within an ECB.  The presence of chill() represents an
6884	 * exception to this rule, however.
6885	 */
6886	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
6887	cpu->cpu_dtrace_chilled += val;
6888}
6889
6890static void
6891dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
6892    uint64_t *buf, uint64_t arg)
6893{
6894	int nframes = DTRACE_USTACK_NFRAMES(arg);
6895	int strsize = DTRACE_USTACK_STRSIZE(arg);
6896	uint64_t *pcs = &buf[1], *fps;
6897	char *str = (char *)&pcs[nframes];
6898	int size, offs = 0, i, j;
6899	uintptr_t old = mstate->dtms_scratch_ptr, saved;
6900	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
6901	char *sym;
6902
6903	/*
6904	 * Should be taking a faster path if string space has not been
6905	 * allocated.
6906	 */
6907	ASSERT(strsize != 0);
6908
6909	/*
6910	 * We will first allocate some temporary space for the frame pointers.
6911	 */
6912	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6913	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
6914	    (nframes * sizeof (uint64_t));
6915
6916	if (!DTRACE_INSCRATCH(mstate, size)) {
6917		/*
6918		 * Not enough room for our frame pointers -- need to indicate
6919		 * that we ran out of scratch space.
6920		 */
6921		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6922		return;
6923	}
6924
6925	mstate->dtms_scratch_ptr += size;
6926	saved = mstate->dtms_scratch_ptr;
6927
6928	/*
6929	 * Now get a stack with both program counters and frame pointers.
6930	 */
6931	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6932	dtrace_getufpstack(buf, fps, nframes + 1);
6933	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6934
6935	/*
6936	 * If that faulted, we're cooked.
6937	 */
6938	if (*flags & CPU_DTRACE_FAULT)
6939		goto out;
6940
6941	/*
6942	 * Now we want to walk up the stack, calling the USTACK helper.  For
6943	 * each iteration, we restore the scratch pointer.
6944	 */
6945	for (i = 0; i < nframes; i++) {
6946		mstate->dtms_scratch_ptr = saved;
6947
6948		if (offs >= strsize)
6949			break;
6950
6951		sym = (char *)(uintptr_t)dtrace_helper(
6952		    DTRACE_HELPER_ACTION_USTACK,
6953		    mstate, state, pcs[i], fps[i]);
6954
6955		/*
6956		 * If we faulted while running the helper, we're going to
6957		 * clear the fault and null out the corresponding string.
6958		 */
6959		if (*flags & CPU_DTRACE_FAULT) {
6960			*flags &= ~CPU_DTRACE_FAULT;
6961			str[offs++] = '\0';
6962			continue;
6963		}
6964
6965		if (sym == NULL) {
6966			str[offs++] = '\0';
6967			continue;
6968		}
6969
6970		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6971
6972		/*
6973		 * Now copy in the string that the helper returned to us.
6974		 */
6975		for (j = 0; offs + j < strsize; j++) {
6976			if ((str[offs + j] = sym[j]) == '\0')
6977				break;
6978		}
6979
6980		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6981
6982		offs += j + 1;
6983	}
6984
6985	if (offs >= strsize) {
6986		/*
6987		 * If we didn't have room for all of the strings, we don't
6988		 * abort processing -- this needn't be a fatal error -- but we
6989		 * still want to increment a counter (dts_stkstroverflows) to
6990		 * allow this condition to be warned about.  (If this is from
6991		 * a jstack() action, it is easily tuned via jstackstrsize.)
6992		 */
6993		dtrace_error(&state->dts_stkstroverflows);
6994	}
6995
6996	while (offs < strsize)
6997		str[offs++] = '\0';
6998
6999out:
7000	mstate->dtms_scratch_ptr = old;
7001}
7002
7003static void
7004dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
7005    size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
7006{
7007	volatile uint16_t *flags;
7008	uint64_t val = *valp;
7009	size_t valoffs = *valoffsp;
7010
7011	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
7012	ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
7013
7014	/*
7015	 * If this is a string, we're going to only load until we find the zero
7016	 * byte -- after which we'll store zero bytes.
7017	 */
7018	if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
7019		char c = '\0' + 1;
7020		size_t s;
7021
7022		for (s = 0; s < size; s++) {
7023			if (c != '\0' && dtkind == DIF_TF_BYREF) {
7024				c = dtrace_load8(val++);
7025			} else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
7026				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7027				c = dtrace_fuword8((void *)(uintptr_t)val++);
7028				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7029				if (*flags & CPU_DTRACE_FAULT)
7030					break;
7031			}
7032
7033			DTRACE_STORE(uint8_t, tomax, valoffs++, c);
7034
7035			if (c == '\0' && intuple)
7036				break;
7037		}
7038	} else {
7039		uint8_t c;
7040		while (valoffs < end) {
7041			if (dtkind == DIF_TF_BYREF) {
7042				c = dtrace_load8(val++);
7043			} else if (dtkind == DIF_TF_BYUREF) {
7044				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7045				c = dtrace_fuword8((void *)(uintptr_t)val++);
7046				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7047				if (*flags & CPU_DTRACE_FAULT)
7048					break;
7049			}
7050
7051			DTRACE_STORE(uint8_t, tomax,
7052			    valoffs++, c);
7053		}
7054	}
7055
7056	*valp = val;
7057	*valoffsp = valoffs;
7058}
7059
7060/*
7061 * If you're looking for the epicenter of DTrace, you just found it.  This
7062 * is the function called by the provider to fire a probe -- from which all
7063 * subsequent probe-context DTrace activity emanates.
7064 */
7065void
7066dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
7067    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
7068{
7069	processorid_t cpuid;
7070	dtrace_icookie_t cookie;
7071	dtrace_probe_t *probe;
7072	dtrace_mstate_t mstate;
7073	dtrace_ecb_t *ecb;
7074	dtrace_action_t *act;
7075	intptr_t offs;
7076	size_t size;
7077	int vtime, onintr;
7078	volatile uint16_t *flags;
7079	hrtime_t now;
7080
7081	if (panicstr != NULL)
7082		return;
7083
7084#ifdef illumos
7085	/*
7086	 * Kick out immediately if this CPU is still being born (in which case
7087	 * curthread will be set to -1) or the current thread can't allow
7088	 * probes in its current context.
7089	 */
7090	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
7091		return;
7092#endif
7093
7094	cookie = dtrace_interrupt_disable();
7095	probe = dtrace_probes[id - 1];
7096	cpuid = curcpu;
7097	onintr = CPU_ON_INTR(CPU);
7098
7099	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
7100	    probe->dtpr_predcache == curthread->t_predcache) {
7101		/*
7102		 * We have hit in the predicate cache; we know that
7103		 * this predicate would evaluate to be false.
7104		 */
7105		dtrace_interrupt_enable(cookie);
7106		return;
7107	}
7108
7109#ifdef illumos
7110	if (panic_quiesce) {
7111#else
7112	if (panicstr != NULL) {
7113#endif
7114		/*
7115		 * We don't trace anything if we're panicking.
7116		 */
7117		dtrace_interrupt_enable(cookie);
7118		return;
7119	}
7120
7121	now = mstate.dtms_timestamp = dtrace_gethrtime();
7122	mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7123	vtime = dtrace_vtime_references != 0;
7124
7125	if (vtime && curthread->t_dtrace_start)
7126		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
7127
7128	mstate.dtms_difo = NULL;
7129	mstate.dtms_probe = probe;
7130	mstate.dtms_strtok = 0;
7131	mstate.dtms_arg[0] = arg0;
7132	mstate.dtms_arg[1] = arg1;
7133	mstate.dtms_arg[2] = arg2;
7134	mstate.dtms_arg[3] = arg3;
7135	mstate.dtms_arg[4] = arg4;
7136
7137	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
7138
7139	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
7140		dtrace_predicate_t *pred = ecb->dte_predicate;
7141		dtrace_state_t *state = ecb->dte_state;
7142		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
7143		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
7144		dtrace_vstate_t *vstate = &state->dts_vstate;
7145		dtrace_provider_t *prov = probe->dtpr_provider;
7146		uint64_t tracememsize = 0;
7147		int committed = 0;
7148		caddr_t tomax;
7149
7150		/*
7151		 * A little subtlety with the following (seemingly innocuous)
7152		 * declaration of the automatic 'val':  by looking at the
7153		 * code, you might think that it could be declared in the
7154		 * action processing loop, below.  (That is, it's only used in
7155		 * the action processing loop.)  However, it must be declared
7156		 * out of that scope because in the case of DIF expression
7157		 * arguments to aggregating actions, one iteration of the
7158		 * action loop will use the last iteration's value.
7159		 */
7160		uint64_t val = 0;
7161
7162		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
7163		mstate.dtms_getf = NULL;
7164
7165		*flags &= ~CPU_DTRACE_ERROR;
7166
7167		if (prov == dtrace_provider) {
7168			/*
7169			 * If dtrace itself is the provider of this probe,
7170			 * we're only going to continue processing the ECB if
7171			 * arg0 (the dtrace_state_t) is equal to the ECB's
7172			 * creating state.  (This prevents disjoint consumers
7173			 * from seeing one another's metaprobes.)
7174			 */
7175			if (arg0 != (uint64_t)(uintptr_t)state)
7176				continue;
7177		}
7178
7179		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
7180			/*
7181			 * We're not currently active.  If our provider isn't
7182			 * the dtrace pseudo provider, we're not interested.
7183			 */
7184			if (prov != dtrace_provider)
7185				continue;
7186
7187			/*
7188			 * Now we must further check if we are in the BEGIN
7189			 * probe.  If we are, we will only continue processing
7190			 * if we're still in WARMUP -- if one BEGIN enabling
7191			 * has invoked the exit() action, we don't want to
7192			 * evaluate subsequent BEGIN enablings.
7193			 */
7194			if (probe->dtpr_id == dtrace_probeid_begin &&
7195			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
7196				ASSERT(state->dts_activity ==
7197				    DTRACE_ACTIVITY_DRAINING);
7198				continue;
7199			}
7200		}
7201
7202		if (ecb->dte_cond) {
7203			/*
7204			 * If the dte_cond bits indicate that this
7205			 * consumer is only allowed to see user-mode firings
7206			 * of this probe, call the provider's dtps_usermode()
7207			 * entry point to check that the probe was fired
7208			 * while in a user context. Skip this ECB if that's
7209			 * not the case.
7210			 */
7211			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
7212			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
7213			    probe->dtpr_id, probe->dtpr_arg) == 0)
7214				continue;
7215
7216#ifdef illumos
7217			/*
7218			 * This is more subtle than it looks. We have to be
7219			 * absolutely certain that CRED() isn't going to
7220			 * change out from under us so it's only legit to
7221			 * examine that structure if we're in constrained
7222			 * situations. Currently, the only times we'll this
7223			 * check is if a non-super-user has enabled the
7224			 * profile or syscall providers -- providers that
7225			 * allow visibility of all processes. For the
7226			 * profile case, the check above will ensure that
7227			 * we're examining a user context.
7228			 */
7229			if (ecb->dte_cond & DTRACE_COND_OWNER) {
7230				cred_t *cr;
7231				cred_t *s_cr =
7232				    ecb->dte_state->dts_cred.dcr_cred;
7233				proc_t *proc;
7234
7235				ASSERT(s_cr != NULL);
7236
7237				if ((cr = CRED()) == NULL ||
7238				    s_cr->cr_uid != cr->cr_uid ||
7239				    s_cr->cr_uid != cr->cr_ruid ||
7240				    s_cr->cr_uid != cr->cr_suid ||
7241				    s_cr->cr_gid != cr->cr_gid ||
7242				    s_cr->cr_gid != cr->cr_rgid ||
7243				    s_cr->cr_gid != cr->cr_sgid ||
7244				    (proc = ttoproc(curthread)) == NULL ||
7245				    (proc->p_flag & SNOCD))
7246					continue;
7247			}
7248
7249			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
7250				cred_t *cr;
7251				cred_t *s_cr =
7252				    ecb->dte_state->dts_cred.dcr_cred;
7253
7254				ASSERT(s_cr != NULL);
7255
7256				if ((cr = CRED()) == NULL ||
7257				    s_cr->cr_zone->zone_id !=
7258				    cr->cr_zone->zone_id)
7259					continue;
7260			}
7261#endif
7262		}
7263
7264		if (now - state->dts_alive > dtrace_deadman_timeout) {
7265			/*
7266			 * We seem to be dead.  Unless we (a) have kernel
7267			 * destructive permissions (b) have explicitly enabled
7268			 * destructive actions and (c) destructive actions have
7269			 * not been disabled, we're going to transition into
7270			 * the KILLED state, from which no further processing
7271			 * on this state will be performed.
7272			 */
7273			if (!dtrace_priv_kernel_destructive(state) ||
7274			    !state->dts_cred.dcr_destructive ||
7275			    dtrace_destructive_disallow) {
7276				void *activity = &state->dts_activity;
7277				dtrace_activity_t current;
7278
7279				do {
7280					current = state->dts_activity;
7281				} while (dtrace_cas32(activity, current,
7282				    DTRACE_ACTIVITY_KILLED) != current);
7283
7284				continue;
7285			}
7286		}
7287
7288		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
7289		    ecb->dte_alignment, state, &mstate)) < 0)
7290			continue;
7291
7292		tomax = buf->dtb_tomax;
7293		ASSERT(tomax != NULL);
7294
7295		if (ecb->dte_size != 0) {
7296			dtrace_rechdr_t dtrh;
7297			if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
7298				mstate.dtms_timestamp = dtrace_gethrtime();
7299				mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7300			}
7301			ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
7302			dtrh.dtrh_epid = ecb->dte_epid;
7303			DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
7304			    mstate.dtms_timestamp);
7305			*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
7306		}
7307
7308		mstate.dtms_epid = ecb->dte_epid;
7309		mstate.dtms_present |= DTRACE_MSTATE_EPID;
7310
7311		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
7312			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
7313		else
7314			mstate.dtms_access = 0;
7315
7316		if (pred != NULL) {
7317			dtrace_difo_t *dp = pred->dtp_difo;
7318			uint64_t rval;
7319
7320			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
7321
7322			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
7323				dtrace_cacheid_t cid = probe->dtpr_predcache;
7324
7325				if (cid != DTRACE_CACHEIDNONE && !onintr) {
7326					/*
7327					 * Update the predicate cache...
7328					 */
7329					ASSERT(cid == pred->dtp_cacheid);
7330					curthread->t_predcache = cid;
7331				}
7332
7333				continue;
7334			}
7335		}
7336
7337		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
7338		    act != NULL; act = act->dta_next) {
7339			size_t valoffs;
7340			dtrace_difo_t *dp;
7341			dtrace_recdesc_t *rec = &act->dta_rec;
7342
7343			size = rec->dtrd_size;
7344			valoffs = offs + rec->dtrd_offset;
7345
7346			if (DTRACEACT_ISAGG(act->dta_kind)) {
7347				uint64_t v = 0xbad;
7348				dtrace_aggregation_t *agg;
7349
7350				agg = (dtrace_aggregation_t *)act;
7351
7352				if ((dp = act->dta_difo) != NULL)
7353					v = dtrace_dif_emulate(dp,
7354					    &mstate, vstate, state);
7355
7356				if (*flags & CPU_DTRACE_ERROR)
7357					continue;
7358
7359				/*
7360				 * Note that we always pass the expression
7361				 * value from the previous iteration of the
7362				 * action loop.  This value will only be used
7363				 * if there is an expression argument to the
7364				 * aggregating action, denoted by the
7365				 * dtag_hasarg field.
7366				 */
7367				dtrace_aggregate(agg, buf,
7368				    offs, aggbuf, v, val);
7369				continue;
7370			}
7371
7372			switch (act->dta_kind) {
7373			case DTRACEACT_STOP:
7374				if (dtrace_priv_proc_destructive(state))
7375					dtrace_action_stop();
7376				continue;
7377
7378			case DTRACEACT_BREAKPOINT:
7379				if (dtrace_priv_kernel_destructive(state))
7380					dtrace_action_breakpoint(ecb);
7381				continue;
7382
7383			case DTRACEACT_PANIC:
7384				if (dtrace_priv_kernel_destructive(state))
7385					dtrace_action_panic(ecb);
7386				continue;
7387
7388			case DTRACEACT_STACK:
7389				if (!dtrace_priv_kernel(state))
7390					continue;
7391
7392				dtrace_getpcstack((pc_t *)(tomax + valoffs),
7393				    size / sizeof (pc_t), probe->dtpr_aframes,
7394				    DTRACE_ANCHORED(probe) ? NULL :
7395				    (uint32_t *)arg0);
7396				continue;
7397
7398			case DTRACEACT_JSTACK:
7399			case DTRACEACT_USTACK:
7400				if (!dtrace_priv_proc(state))
7401					continue;
7402
7403				/*
7404				 * See comment in DIF_VAR_PID.
7405				 */
7406				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
7407				    CPU_ON_INTR(CPU)) {
7408					int depth = DTRACE_USTACK_NFRAMES(
7409					    rec->dtrd_arg) + 1;
7410
7411					dtrace_bzero((void *)(tomax + valoffs),
7412					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
7413					    + depth * sizeof (uint64_t));
7414
7415					continue;
7416				}
7417
7418				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
7419				    curproc->p_dtrace_helpers != NULL) {
7420					/*
7421					 * This is the slow path -- we have
7422					 * allocated string space, and we're
7423					 * getting the stack of a process that
7424					 * has helpers.  Call into a separate
7425					 * routine to perform this processing.
7426					 */
7427					dtrace_action_ustack(&mstate, state,
7428					    (uint64_t *)(tomax + valoffs),
7429					    rec->dtrd_arg);
7430					continue;
7431				}
7432
7433				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7434				dtrace_getupcstack((uint64_t *)
7435				    (tomax + valoffs),
7436				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
7437				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7438				continue;
7439
7440			default:
7441				break;
7442			}
7443
7444			dp = act->dta_difo;
7445			ASSERT(dp != NULL);
7446
7447			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
7448
7449			if (*flags & CPU_DTRACE_ERROR)
7450				continue;
7451
7452			switch (act->dta_kind) {
7453			case DTRACEACT_SPECULATE: {
7454				dtrace_rechdr_t *dtrh;
7455
7456				ASSERT(buf == &state->dts_buffer[cpuid]);
7457				buf = dtrace_speculation_buffer(state,
7458				    cpuid, val);
7459
7460				if (buf == NULL) {
7461					*flags |= CPU_DTRACE_DROP;
7462					continue;
7463				}
7464
7465				offs = dtrace_buffer_reserve(buf,
7466				    ecb->dte_needed, ecb->dte_alignment,
7467				    state, NULL);
7468
7469				if (offs < 0) {
7470					*flags |= CPU_DTRACE_DROP;
7471					continue;
7472				}
7473
7474				tomax = buf->dtb_tomax;
7475				ASSERT(tomax != NULL);
7476
7477				if (ecb->dte_size == 0)
7478					continue;
7479
7480				ASSERT3U(ecb->dte_size, >=,
7481				    sizeof (dtrace_rechdr_t));
7482				dtrh = ((void *)(tomax + offs));
7483				dtrh->dtrh_epid = ecb->dte_epid;
7484				/*
7485				 * When the speculation is committed, all of
7486				 * the records in the speculative buffer will
7487				 * have their timestamps set to the commit
7488				 * time.  Until then, it is set to a sentinel
7489				 * value, for debugability.
7490				 */
7491				DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7492				continue;
7493			}
7494
7495			case DTRACEACT_PRINTM: {
7496				/* The DIF returns a 'memref'. */
7497				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
7498
7499				/* Get the size from the memref. */
7500				size = memref[1];
7501
7502				/*
7503				 * Check if the size exceeds the allocated
7504				 * buffer size.
7505				 */
7506				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
7507					/* Flag a drop! */
7508					*flags |= CPU_DTRACE_DROP;
7509					continue;
7510				}
7511
7512				/* Store the size in the buffer first. */
7513				DTRACE_STORE(uintptr_t, tomax,
7514				    valoffs, size);
7515
7516				/*
7517				 * Offset the buffer address to the start
7518				 * of the data.
7519				 */
7520				valoffs += sizeof(uintptr_t);
7521
7522				/*
7523				 * Reset to the memory address rather than
7524				 * the memref array, then let the BYREF
7525				 * code below do the work to store the
7526				 * memory data in the buffer.
7527				 */
7528				val = memref[0];
7529				break;
7530			}
7531
7532			case DTRACEACT_PRINTT: {
7533				/* The DIF returns a 'typeref'. */
7534				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
7535				char c = '\0' + 1;
7536				size_t s;
7537
7538				/*
7539				 * Get the type string length and round it
7540				 * up so that the data that follows is
7541				 * aligned for easy access.
7542				 */
7543				size_t typs = strlen((char *) typeref[2]) + 1;
7544				typs = roundup(typs,  sizeof(uintptr_t));
7545
7546				/*
7547				 *Get the size from the typeref using the
7548				 * number of elements and the type size.
7549				 */
7550				size = typeref[1] * typeref[3];
7551
7552				/*
7553				 * Check if the size exceeds the allocated
7554				 * buffer size.
7555				 */
7556				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
7557					/* Flag a drop! */
7558					*flags |= CPU_DTRACE_DROP;
7559
7560				}
7561
7562				/* Store the size in the buffer first. */
7563				DTRACE_STORE(uintptr_t, tomax,
7564				    valoffs, size);
7565				valoffs += sizeof(uintptr_t);
7566
7567				/* Store the type size in the buffer. */
7568				DTRACE_STORE(uintptr_t, tomax,
7569				    valoffs, typeref[3]);
7570				valoffs += sizeof(uintptr_t);
7571
7572				val = typeref[2];
7573
7574				for (s = 0; s < typs; s++) {
7575					if (c != '\0')
7576						c = dtrace_load8(val++);
7577
7578					DTRACE_STORE(uint8_t, tomax,
7579					    valoffs++, c);
7580				}
7581
7582				/*
7583				 * Reset to the memory address rather than
7584				 * the typeref array, then let the BYREF
7585				 * code below do the work to store the
7586				 * memory data in the buffer.
7587				 */
7588				val = typeref[0];
7589				break;
7590			}
7591
7592			case DTRACEACT_CHILL:
7593				if (dtrace_priv_kernel_destructive(state))
7594					dtrace_action_chill(&mstate, val);
7595				continue;
7596
7597			case DTRACEACT_RAISE:
7598				if (dtrace_priv_proc_destructive(state))
7599					dtrace_action_raise(val);
7600				continue;
7601
7602			case DTRACEACT_COMMIT:
7603				ASSERT(!committed);
7604
7605				/*
7606				 * We need to commit our buffer state.
7607				 */
7608				if (ecb->dte_size)
7609					buf->dtb_offset = offs + ecb->dte_size;
7610				buf = &state->dts_buffer[cpuid];
7611				dtrace_speculation_commit(state, cpuid, val);
7612				committed = 1;
7613				continue;
7614
7615			case DTRACEACT_DISCARD:
7616				dtrace_speculation_discard(state, cpuid, val);
7617				continue;
7618
7619			case DTRACEACT_DIFEXPR:
7620			case DTRACEACT_LIBACT:
7621			case DTRACEACT_PRINTF:
7622			case DTRACEACT_PRINTA:
7623			case DTRACEACT_SYSTEM:
7624			case DTRACEACT_FREOPEN:
7625			case DTRACEACT_TRACEMEM:
7626				break;
7627
7628			case DTRACEACT_TRACEMEM_DYNSIZE:
7629				tracememsize = val;
7630				break;
7631
7632			case DTRACEACT_SYM:
7633			case DTRACEACT_MOD:
7634				if (!dtrace_priv_kernel(state))
7635					continue;
7636				break;
7637
7638			case DTRACEACT_USYM:
7639			case DTRACEACT_UMOD:
7640			case DTRACEACT_UADDR: {
7641#ifdef illumos
7642				struct pid *pid = curthread->t_procp->p_pidp;
7643#endif
7644
7645				if (!dtrace_priv_proc(state))
7646					continue;
7647
7648				DTRACE_STORE(uint64_t, tomax,
7649#ifdef illumos
7650				    valoffs, (uint64_t)pid->pid_id);
7651#else
7652				    valoffs, (uint64_t) curproc->p_pid);
7653#endif
7654				DTRACE_STORE(uint64_t, tomax,
7655				    valoffs + sizeof (uint64_t), val);
7656
7657				continue;
7658			}
7659
7660			case DTRACEACT_EXIT: {
7661				/*
7662				 * For the exit action, we are going to attempt
7663				 * to atomically set our activity to be
7664				 * draining.  If this fails (either because
7665				 * another CPU has beat us to the exit action,
7666				 * or because our current activity is something
7667				 * other than ACTIVE or WARMUP), we will
7668				 * continue.  This assures that the exit action
7669				 * can be successfully recorded at most once
7670				 * when we're in the ACTIVE state.  If we're
7671				 * encountering the exit() action while in
7672				 * COOLDOWN, however, we want to honor the new
7673				 * status code.  (We know that we're the only
7674				 * thread in COOLDOWN, so there is no race.)
7675				 */
7676				void *activity = &state->dts_activity;
7677				dtrace_activity_t current = state->dts_activity;
7678
7679				if (current == DTRACE_ACTIVITY_COOLDOWN)
7680					break;
7681
7682				if (current != DTRACE_ACTIVITY_WARMUP)
7683					current = DTRACE_ACTIVITY_ACTIVE;
7684
7685				if (dtrace_cas32(activity, current,
7686				    DTRACE_ACTIVITY_DRAINING) != current) {
7687					*flags |= CPU_DTRACE_DROP;
7688					continue;
7689				}
7690
7691				break;
7692			}
7693
7694			default:
7695				ASSERT(0);
7696			}
7697
7698			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7699			    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7700				uintptr_t end = valoffs + size;
7701
7702				if (tracememsize != 0 &&
7703				    valoffs + tracememsize < end) {
7704					end = valoffs + tracememsize;
7705					tracememsize = 0;
7706				}
7707
7708				if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7709				    !dtrace_vcanload((void *)(uintptr_t)val,
7710				    &dp->dtdo_rtype, &mstate, vstate))
7711					continue;
7712
7713				dtrace_store_by_ref(dp, tomax, size, &valoffs,
7714				    &val, end, act->dta_intuple,
7715				    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7716				    DIF_TF_BYREF: DIF_TF_BYUREF);
7717				continue;
7718			}
7719
7720			switch (size) {
7721			case 0:
7722				break;
7723
7724			case sizeof (uint8_t):
7725				DTRACE_STORE(uint8_t, tomax, valoffs, val);
7726				break;
7727			case sizeof (uint16_t):
7728				DTRACE_STORE(uint16_t, tomax, valoffs, val);
7729				break;
7730			case sizeof (uint32_t):
7731				DTRACE_STORE(uint32_t, tomax, valoffs, val);
7732				break;
7733			case sizeof (uint64_t):
7734				DTRACE_STORE(uint64_t, tomax, valoffs, val);
7735				break;
7736			default:
7737				/*
7738				 * Any other size should have been returned by
7739				 * reference, not by value.
7740				 */
7741				ASSERT(0);
7742				break;
7743			}
7744		}
7745
7746		if (*flags & CPU_DTRACE_DROP)
7747			continue;
7748
7749		if (*flags & CPU_DTRACE_FAULT) {
7750			int ndx;
7751			dtrace_action_t *err;
7752
7753			buf->dtb_errors++;
7754
7755			if (probe->dtpr_id == dtrace_probeid_error) {
7756				/*
7757				 * There's nothing we can do -- we had an
7758				 * error on the error probe.  We bump an
7759				 * error counter to at least indicate that
7760				 * this condition happened.
7761				 */
7762				dtrace_error(&state->dts_dblerrors);
7763				continue;
7764			}
7765
7766			if (vtime) {
7767				/*
7768				 * Before recursing on dtrace_probe(), we
7769				 * need to explicitly clear out our start
7770				 * time to prevent it from being accumulated
7771				 * into t_dtrace_vtime.
7772				 */
7773				curthread->t_dtrace_start = 0;
7774			}
7775
7776			/*
7777			 * Iterate over the actions to figure out which action
7778			 * we were processing when we experienced the error.
7779			 * Note that act points _past_ the faulting action; if
7780			 * act is ecb->dte_action, the fault was in the
7781			 * predicate, if it's ecb->dte_action->dta_next it's
7782			 * in action #1, and so on.
7783			 */
7784			for (err = ecb->dte_action, ndx = 0;
7785			    err != act; err = err->dta_next, ndx++)
7786				continue;
7787
7788			dtrace_probe_error(state, ecb->dte_epid, ndx,
7789			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7790			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7791			    cpu_core[cpuid].cpuc_dtrace_illval);
7792
7793			continue;
7794		}
7795
7796		if (!committed)
7797			buf->dtb_offset = offs + ecb->dte_size;
7798	}
7799
7800	if (vtime)
7801		curthread->t_dtrace_start = dtrace_gethrtime();
7802
7803	dtrace_interrupt_enable(cookie);
7804}
7805
7806/*
7807 * DTrace Probe Hashing Functions
7808 *
7809 * The functions in this section (and indeed, the functions in remaining
7810 * sections) are not _called_ from probe context.  (Any exceptions to this are
7811 * marked with a "Note:".)  Rather, they are called from elsewhere in the
7812 * DTrace framework to look-up probes in, add probes to and remove probes from
7813 * the DTrace probe hashes.  (Each probe is hashed by each element of the
7814 * probe tuple -- allowing for fast lookups, regardless of what was
7815 * specified.)
7816 */
7817static uint_t
7818dtrace_hash_str(const char *p)
7819{
7820	unsigned int g;
7821	uint_t hval = 0;
7822
7823	while (*p) {
7824		hval = (hval << 4) + *p++;
7825		if ((g = (hval & 0xf0000000)) != 0)
7826			hval ^= g >> 24;
7827		hval &= ~g;
7828	}
7829	return (hval);
7830}
7831
7832static dtrace_hash_t *
7833dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
7834{
7835	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
7836
7837	hash->dth_stroffs = stroffs;
7838	hash->dth_nextoffs = nextoffs;
7839	hash->dth_prevoffs = prevoffs;
7840
7841	hash->dth_size = 1;
7842	hash->dth_mask = hash->dth_size - 1;
7843
7844	hash->dth_tab = kmem_zalloc(hash->dth_size *
7845	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
7846
7847	return (hash);
7848}
7849
7850static void
7851dtrace_hash_destroy(dtrace_hash_t *hash)
7852{
7853#ifdef DEBUG
7854	int i;
7855
7856	for (i = 0; i < hash->dth_size; i++)
7857		ASSERT(hash->dth_tab[i] == NULL);
7858#endif
7859
7860	kmem_free(hash->dth_tab,
7861	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
7862	kmem_free(hash, sizeof (dtrace_hash_t));
7863}
7864
7865static void
7866dtrace_hash_resize(dtrace_hash_t *hash)
7867{
7868	int size = hash->dth_size, i, ndx;
7869	int new_size = hash->dth_size << 1;
7870	int new_mask = new_size - 1;
7871	dtrace_hashbucket_t **new_tab, *bucket, *next;
7872
7873	ASSERT((new_size & new_mask) == 0);
7874
7875	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
7876
7877	for (i = 0; i < size; i++) {
7878		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
7879			dtrace_probe_t *probe = bucket->dthb_chain;
7880
7881			ASSERT(probe != NULL);
7882			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
7883
7884			next = bucket->dthb_next;
7885			bucket->dthb_next = new_tab[ndx];
7886			new_tab[ndx] = bucket;
7887		}
7888	}
7889
7890	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
7891	hash->dth_tab = new_tab;
7892	hash->dth_size = new_size;
7893	hash->dth_mask = new_mask;
7894}
7895
7896static void
7897dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
7898{
7899	int hashval = DTRACE_HASHSTR(hash, new);
7900	int ndx = hashval & hash->dth_mask;
7901	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7902	dtrace_probe_t **nextp, **prevp;
7903
7904	for (; bucket != NULL; bucket = bucket->dthb_next) {
7905		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
7906			goto add;
7907	}
7908
7909	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
7910		dtrace_hash_resize(hash);
7911		dtrace_hash_add(hash, new);
7912		return;
7913	}
7914
7915	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
7916	bucket->dthb_next = hash->dth_tab[ndx];
7917	hash->dth_tab[ndx] = bucket;
7918	hash->dth_nbuckets++;
7919
7920add:
7921	nextp = DTRACE_HASHNEXT(hash, new);
7922	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
7923	*nextp = bucket->dthb_chain;
7924
7925	if (bucket->dthb_chain != NULL) {
7926		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
7927		ASSERT(*prevp == NULL);
7928		*prevp = new;
7929	}
7930
7931	bucket->dthb_chain = new;
7932	bucket->dthb_len++;
7933}
7934
7935static dtrace_probe_t *
7936dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
7937{
7938	int hashval = DTRACE_HASHSTR(hash, template);
7939	int ndx = hashval & hash->dth_mask;
7940	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7941
7942	for (; bucket != NULL; bucket = bucket->dthb_next) {
7943		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7944			return (bucket->dthb_chain);
7945	}
7946
7947	return (NULL);
7948}
7949
7950static int
7951dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
7952{
7953	int hashval = DTRACE_HASHSTR(hash, template);
7954	int ndx = hashval & hash->dth_mask;
7955	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7956
7957	for (; bucket != NULL; bucket = bucket->dthb_next) {
7958		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7959			return (bucket->dthb_len);
7960	}
7961
7962	return (0);
7963}
7964
7965static void
7966dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
7967{
7968	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
7969	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7970
7971	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
7972	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
7973
7974	/*
7975	 * Find the bucket that we're removing this probe from.
7976	 */
7977	for (; bucket != NULL; bucket = bucket->dthb_next) {
7978		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
7979			break;
7980	}
7981
7982	ASSERT(bucket != NULL);
7983
7984	if (*prevp == NULL) {
7985		if (*nextp == NULL) {
7986			/*
7987			 * The removed probe was the only probe on this
7988			 * bucket; we need to remove the bucket.
7989			 */
7990			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
7991
7992			ASSERT(bucket->dthb_chain == probe);
7993			ASSERT(b != NULL);
7994
7995			if (b == bucket) {
7996				hash->dth_tab[ndx] = bucket->dthb_next;
7997			} else {
7998				while (b->dthb_next != bucket)
7999					b = b->dthb_next;
8000				b->dthb_next = bucket->dthb_next;
8001			}
8002
8003			ASSERT(hash->dth_nbuckets > 0);
8004			hash->dth_nbuckets--;
8005			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
8006			return;
8007		}
8008
8009		bucket->dthb_chain = *nextp;
8010	} else {
8011		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
8012	}
8013
8014	if (*nextp != NULL)
8015		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
8016}
8017
8018/*
8019 * DTrace Utility Functions
8020 *
8021 * These are random utility functions that are _not_ called from probe context.
8022 */
8023static int
8024dtrace_badattr(const dtrace_attribute_t *a)
8025{
8026	return (a->dtat_name > DTRACE_STABILITY_MAX ||
8027	    a->dtat_data > DTRACE_STABILITY_MAX ||
8028	    a->dtat_class > DTRACE_CLASS_MAX);
8029}
8030
8031/*
8032 * Return a duplicate copy of a string.  If the specified string is NULL,
8033 * this function returns a zero-length string.
8034 */
8035static char *
8036dtrace_strdup(const char *str)
8037{
8038	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
8039
8040	if (str != NULL)
8041		(void) strcpy(new, str);
8042
8043	return (new);
8044}
8045
8046#define	DTRACE_ISALPHA(c)	\
8047	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
8048
8049static int
8050dtrace_badname(const char *s)
8051{
8052	char c;
8053
8054	if (s == NULL || (c = *s++) == '\0')
8055		return (0);
8056
8057	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
8058		return (1);
8059
8060	while ((c = *s++) != '\0') {
8061		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
8062		    c != '-' && c != '_' && c != '.' && c != '`')
8063			return (1);
8064	}
8065
8066	return (0);
8067}
8068
8069static void
8070dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
8071{
8072	uint32_t priv;
8073
8074#ifdef illumos
8075	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
8076		/*
8077		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
8078		 */
8079		priv = DTRACE_PRIV_ALL;
8080	} else {
8081		*uidp = crgetuid(cr);
8082		*zoneidp = crgetzoneid(cr);
8083
8084		priv = 0;
8085		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
8086			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
8087		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
8088			priv |= DTRACE_PRIV_USER;
8089		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
8090			priv |= DTRACE_PRIV_PROC;
8091		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
8092			priv |= DTRACE_PRIV_OWNER;
8093		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
8094			priv |= DTRACE_PRIV_ZONEOWNER;
8095	}
8096#else
8097	priv = DTRACE_PRIV_ALL;
8098#endif
8099
8100	*privp = priv;
8101}
8102
8103#ifdef DTRACE_ERRDEBUG
8104static void
8105dtrace_errdebug(const char *str)
8106{
8107	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
8108	int occupied = 0;
8109
8110	mutex_enter(&dtrace_errlock);
8111	dtrace_errlast = str;
8112	dtrace_errthread = curthread;
8113
8114	while (occupied++ < DTRACE_ERRHASHSZ) {
8115		if (dtrace_errhash[hval].dter_msg == str) {
8116			dtrace_errhash[hval].dter_count++;
8117			goto out;
8118		}
8119
8120		if (dtrace_errhash[hval].dter_msg != NULL) {
8121			hval = (hval + 1) % DTRACE_ERRHASHSZ;
8122			continue;
8123		}
8124
8125		dtrace_errhash[hval].dter_msg = str;
8126		dtrace_errhash[hval].dter_count = 1;
8127		goto out;
8128	}
8129
8130	panic("dtrace: undersized error hash");
8131out:
8132	mutex_exit(&dtrace_errlock);
8133}
8134#endif
8135
8136/*
8137 * DTrace Matching Functions
8138 *
8139 * These functions are used to match groups of probes, given some elements of
8140 * a probe tuple, or some globbed expressions for elements of a probe tuple.
8141 */
8142static int
8143dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
8144    zoneid_t zoneid)
8145{
8146	if (priv != DTRACE_PRIV_ALL) {
8147		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
8148		uint32_t match = priv & ppriv;
8149
8150		/*
8151		 * No PRIV_DTRACE_* privileges...
8152		 */
8153		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
8154		    DTRACE_PRIV_KERNEL)) == 0)
8155			return (0);
8156
8157		/*
8158		 * No matching bits, but there were bits to match...
8159		 */
8160		if (match == 0 && ppriv != 0)
8161			return (0);
8162
8163		/*
8164		 * Need to have permissions to the process, but don't...
8165		 */
8166		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
8167		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
8168			return (0);
8169		}
8170
8171		/*
8172		 * Need to be in the same zone unless we possess the
8173		 * privilege to examine all zones.
8174		 */
8175		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
8176		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
8177			return (0);
8178		}
8179	}
8180
8181	return (1);
8182}
8183
8184/*
8185 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
8186 * consists of input pattern strings and an ops-vector to evaluate them.
8187 * This function returns >0 for match, 0 for no match, and <0 for error.
8188 */
8189static int
8190dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
8191    uint32_t priv, uid_t uid, zoneid_t zoneid)
8192{
8193	dtrace_provider_t *pvp = prp->dtpr_provider;
8194	int rv;
8195
8196	if (pvp->dtpv_defunct)
8197		return (0);
8198
8199	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
8200		return (rv);
8201
8202	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
8203		return (rv);
8204
8205	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
8206		return (rv);
8207
8208	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
8209		return (rv);
8210
8211	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
8212		return (0);
8213
8214	return (rv);
8215}
8216
8217/*
8218 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
8219 * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
8220 * libc's version, the kernel version only applies to 8-bit ASCII strings.
8221 * In addition, all of the recursion cases except for '*' matching have been
8222 * unwound.  For '*', we still implement recursive evaluation, but a depth
8223 * counter is maintained and matching is aborted if we recurse too deep.
8224 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
8225 */
8226static int
8227dtrace_match_glob(const char *s, const char *p, int depth)
8228{
8229	const char *olds;
8230	char s1, c;
8231	int gs;
8232
8233	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
8234		return (-1);
8235
8236	if (s == NULL)
8237		s = ""; /* treat NULL as empty string */
8238
8239top:
8240	olds = s;
8241	s1 = *s++;
8242
8243	if (p == NULL)
8244		return (0);
8245
8246	if ((c = *p++) == '\0')
8247		return (s1 == '\0');
8248
8249	switch (c) {
8250	case '[': {
8251		int ok = 0, notflag = 0;
8252		char lc = '\0';
8253
8254		if (s1 == '\0')
8255			return (0);
8256
8257		if (*p == '!') {
8258			notflag = 1;
8259			p++;
8260		}
8261
8262		if ((c = *p++) == '\0')
8263			return (0);
8264
8265		do {
8266			if (c == '-' && lc != '\0' && *p != ']') {
8267				if ((c = *p++) == '\0')
8268					return (0);
8269				if (c == '\\' && (c = *p++) == '\0')
8270					return (0);
8271
8272				if (notflag) {
8273					if (s1 < lc || s1 > c)
8274						ok++;
8275					else
8276						return (0);
8277				} else if (lc <= s1 && s1 <= c)
8278					ok++;
8279
8280			} else if (c == '\\' && (c = *p++) == '\0')
8281				return (0);
8282
8283			lc = c; /* save left-hand 'c' for next iteration */
8284
8285			if (notflag) {
8286				if (s1 != c)
8287					ok++;
8288				else
8289					return (0);
8290			} else if (s1 == c)
8291				ok++;
8292
8293			if ((c = *p++) == '\0')
8294				return (0);
8295
8296		} while (c != ']');
8297
8298		if (ok)
8299			goto top;
8300
8301		return (0);
8302	}
8303
8304	case '\\':
8305		if ((c = *p++) == '\0')
8306			return (0);
8307		/*FALLTHRU*/
8308
8309	default:
8310		if (c != s1)
8311			return (0);
8312		/*FALLTHRU*/
8313
8314	case '?':
8315		if (s1 != '\0')
8316			goto top;
8317		return (0);
8318
8319	case '*':
8320		while (*p == '*')
8321			p++; /* consecutive *'s are identical to a single one */
8322
8323		if (*p == '\0')
8324			return (1);
8325
8326		for (s = olds; *s != '\0'; s++) {
8327			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
8328				return (gs);
8329		}
8330
8331		return (0);
8332	}
8333}
8334
8335/*ARGSUSED*/
8336static int
8337dtrace_match_string(const char *s, const char *p, int depth)
8338{
8339	return (s != NULL && strcmp(s, p) == 0);
8340}
8341
8342/*ARGSUSED*/
8343static int
8344dtrace_match_nul(const char *s, const char *p, int depth)
8345{
8346	return (1); /* always match the empty pattern */
8347}
8348
8349/*ARGSUSED*/
8350static int
8351dtrace_match_nonzero(const char *s, const char *p, int depth)
8352{
8353	return (s != NULL && s[0] != '\0');
8354}
8355
8356static int
8357dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
8358    zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
8359{
8360	dtrace_probe_t template, *probe;
8361	dtrace_hash_t *hash = NULL;
8362	int len, best = INT_MAX, nmatched = 0;
8363	dtrace_id_t i;
8364
8365	ASSERT(MUTEX_HELD(&dtrace_lock));
8366
8367	/*
8368	 * If the probe ID is specified in the key, just lookup by ID and
8369	 * invoke the match callback once if a matching probe is found.
8370	 */
8371	if (pkp->dtpk_id != DTRACE_IDNONE) {
8372		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
8373		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
8374			(void) (*matched)(probe, arg);
8375			nmatched++;
8376		}
8377		return (nmatched);
8378	}
8379
8380	template.dtpr_mod = (char *)pkp->dtpk_mod;
8381	template.dtpr_func = (char *)pkp->dtpk_func;
8382	template.dtpr_name = (char *)pkp->dtpk_name;
8383
8384	/*
8385	 * We want to find the most distinct of the module name, function
8386	 * name, and name.  So for each one that is not a glob pattern or
8387	 * empty string, we perform a lookup in the corresponding hash and
8388	 * use the hash table with the fewest collisions to do our search.
8389	 */
8390	if (pkp->dtpk_mmatch == &dtrace_match_string &&
8391	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
8392		best = len;
8393		hash = dtrace_bymod;
8394	}
8395
8396	if (pkp->dtpk_fmatch == &dtrace_match_string &&
8397	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
8398		best = len;
8399		hash = dtrace_byfunc;
8400	}
8401
8402	if (pkp->dtpk_nmatch == &dtrace_match_string &&
8403	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
8404		best = len;
8405		hash = dtrace_byname;
8406	}
8407
8408	/*
8409	 * If we did not select a hash table, iterate over every probe and
8410	 * invoke our callback for each one that matches our input probe key.
8411	 */
8412	if (hash == NULL) {
8413		for (i = 0; i < dtrace_nprobes; i++) {
8414			if ((probe = dtrace_probes[i]) == NULL ||
8415			    dtrace_match_probe(probe, pkp, priv, uid,
8416			    zoneid) <= 0)
8417				continue;
8418
8419			nmatched++;
8420
8421			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8422				break;
8423		}
8424
8425		return (nmatched);
8426	}
8427
8428	/*
8429	 * If we selected a hash table, iterate over each probe of the same key
8430	 * name and invoke the callback for every probe that matches the other
8431	 * attributes of our input probe key.
8432	 */
8433	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
8434	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
8435
8436		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
8437			continue;
8438
8439		nmatched++;
8440
8441		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8442			break;
8443	}
8444
8445	return (nmatched);
8446}
8447
8448/*
8449 * Return the function pointer dtrace_probecmp() should use to compare the
8450 * specified pattern with a string.  For NULL or empty patterns, we select
8451 * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
8452 * For non-empty non-glob strings, we use dtrace_match_string().
8453 */
8454static dtrace_probekey_f *
8455dtrace_probekey_func(const char *p)
8456{
8457	char c;
8458
8459	if (p == NULL || *p == '\0')
8460		return (&dtrace_match_nul);
8461
8462	while ((c = *p++) != '\0') {
8463		if (c == '[' || c == '?' || c == '*' || c == '\\')
8464			return (&dtrace_match_glob);
8465	}
8466
8467	return (&dtrace_match_string);
8468}
8469
8470/*
8471 * Build a probe comparison key for use with dtrace_match_probe() from the
8472 * given probe description.  By convention, a null key only matches anchored
8473 * probes: if each field is the empty string, reset dtpk_fmatch to
8474 * dtrace_match_nonzero().
8475 */
8476static void
8477dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
8478{
8479	pkp->dtpk_prov = pdp->dtpd_provider;
8480	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
8481
8482	pkp->dtpk_mod = pdp->dtpd_mod;
8483	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
8484
8485	pkp->dtpk_func = pdp->dtpd_func;
8486	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
8487
8488	pkp->dtpk_name = pdp->dtpd_name;
8489	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
8490
8491	pkp->dtpk_id = pdp->dtpd_id;
8492
8493	if (pkp->dtpk_id == DTRACE_IDNONE &&
8494	    pkp->dtpk_pmatch == &dtrace_match_nul &&
8495	    pkp->dtpk_mmatch == &dtrace_match_nul &&
8496	    pkp->dtpk_fmatch == &dtrace_match_nul &&
8497	    pkp->dtpk_nmatch == &dtrace_match_nul)
8498		pkp->dtpk_fmatch = &dtrace_match_nonzero;
8499}
8500
8501/*
8502 * DTrace Provider-to-Framework API Functions
8503 *
8504 * These functions implement much of the Provider-to-Framework API, as
8505 * described in <sys/dtrace.h>.  The parts of the API not in this section are
8506 * the functions in the API for probe management (found below), and
8507 * dtrace_probe() itself (found above).
8508 */
8509
8510/*
8511 * Register the calling provider with the DTrace framework.  This should
8512 * generally be called by DTrace providers in their attach(9E) entry point.
8513 */
8514int
8515dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
8516    cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
8517{
8518	dtrace_provider_t *provider;
8519
8520	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
8521		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8522		    "arguments", name ? name : "<NULL>");
8523		return (EINVAL);
8524	}
8525
8526	if (name[0] == '\0' || dtrace_badname(name)) {
8527		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8528		    "provider name", name);
8529		return (EINVAL);
8530	}
8531
8532	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
8533	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
8534	    pops->dtps_destroy == NULL ||
8535	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
8536		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8537		    "provider ops", name);
8538		return (EINVAL);
8539	}
8540
8541	if (dtrace_badattr(&pap->dtpa_provider) ||
8542	    dtrace_badattr(&pap->dtpa_mod) ||
8543	    dtrace_badattr(&pap->dtpa_func) ||
8544	    dtrace_badattr(&pap->dtpa_name) ||
8545	    dtrace_badattr(&pap->dtpa_args)) {
8546		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8547		    "provider attributes", name);
8548		return (EINVAL);
8549	}
8550
8551	if (priv & ~DTRACE_PRIV_ALL) {
8552		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8553		    "privilege attributes", name);
8554		return (EINVAL);
8555	}
8556
8557	if ((priv & DTRACE_PRIV_KERNEL) &&
8558	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
8559	    pops->dtps_usermode == NULL) {
8560		cmn_err(CE_WARN, "failed to register provider '%s': need "
8561		    "dtps_usermode() op for given privilege attributes", name);
8562		return (EINVAL);
8563	}
8564
8565	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
8566	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8567	(void) strcpy(provider->dtpv_name, name);
8568
8569	provider->dtpv_attr = *pap;
8570	provider->dtpv_priv.dtpp_flags = priv;
8571	if (cr != NULL) {
8572		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8573		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8574	}
8575	provider->dtpv_pops = *pops;
8576
8577	if (pops->dtps_provide == NULL) {
8578		ASSERT(pops->dtps_provide_module != NULL);
8579		provider->dtpv_pops.dtps_provide =
8580		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
8581	}
8582
8583	if (pops->dtps_provide_module == NULL) {
8584		ASSERT(pops->dtps_provide != NULL);
8585		provider->dtpv_pops.dtps_provide_module =
8586		    (void (*)(void *, modctl_t *))dtrace_nullop;
8587	}
8588
8589	if (pops->dtps_suspend == NULL) {
8590		ASSERT(pops->dtps_resume == NULL);
8591		provider->dtpv_pops.dtps_suspend =
8592		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8593		provider->dtpv_pops.dtps_resume =
8594		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8595	}
8596
8597	provider->dtpv_arg = arg;
8598	*idp = (dtrace_provider_id_t)provider;
8599
8600	if (pops == &dtrace_provider_ops) {
8601		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8602		ASSERT(MUTEX_HELD(&dtrace_lock));
8603		ASSERT(dtrace_anon.dta_enabling == NULL);
8604
8605		/*
8606		 * We make sure that the DTrace provider is at the head of
8607		 * the provider chain.
8608		 */
8609		provider->dtpv_next = dtrace_provider;
8610		dtrace_provider = provider;
8611		return (0);
8612	}
8613
8614	mutex_enter(&dtrace_provider_lock);
8615	mutex_enter(&dtrace_lock);
8616
8617	/*
8618	 * If there is at least one provider registered, we'll add this
8619	 * provider after the first provider.
8620	 */
8621	if (dtrace_provider != NULL) {
8622		provider->dtpv_next = dtrace_provider->dtpv_next;
8623		dtrace_provider->dtpv_next = provider;
8624	} else {
8625		dtrace_provider = provider;
8626	}
8627
8628	if (dtrace_retained != NULL) {
8629		dtrace_enabling_provide(provider);
8630
8631		/*
8632		 * Now we need to call dtrace_enabling_matchall() -- which
8633		 * will acquire cpu_lock and dtrace_lock.  We therefore need
8634		 * to drop all of our locks before calling into it...
8635		 */
8636		mutex_exit(&dtrace_lock);
8637		mutex_exit(&dtrace_provider_lock);
8638		dtrace_enabling_matchall();
8639
8640		return (0);
8641	}
8642
8643	mutex_exit(&dtrace_lock);
8644	mutex_exit(&dtrace_provider_lock);
8645
8646	return (0);
8647}
8648
8649/*
8650 * Unregister the specified provider from the DTrace framework.  This should
8651 * generally be called by DTrace providers in their detach(9E) entry point.
8652 */
8653int
8654dtrace_unregister(dtrace_provider_id_t id)
8655{
8656	dtrace_provider_t *old = (dtrace_provider_t *)id;
8657	dtrace_provider_t *prev = NULL;
8658	int i, self = 0, noreap = 0;
8659	dtrace_probe_t *probe, *first = NULL;
8660
8661	if (old->dtpv_pops.dtps_enable ==
8662	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
8663		/*
8664		 * If DTrace itself is the provider, we're called with locks
8665		 * already held.
8666		 */
8667		ASSERT(old == dtrace_provider);
8668#ifdef illumos
8669		ASSERT(dtrace_devi != NULL);
8670#endif
8671		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8672		ASSERT(MUTEX_HELD(&dtrace_lock));
8673		self = 1;
8674
8675		if (dtrace_provider->dtpv_next != NULL) {
8676			/*
8677			 * There's another provider here; return failure.
8678			 */
8679			return (EBUSY);
8680		}
8681	} else {
8682		mutex_enter(&dtrace_provider_lock);
8683#ifdef illumos
8684		mutex_enter(&mod_lock);
8685#endif
8686		mutex_enter(&dtrace_lock);
8687	}
8688
8689	/*
8690	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8691	 * probes, we refuse to let providers slither away, unless this
8692	 * provider has already been explicitly invalidated.
8693	 */
8694	if (!old->dtpv_defunct &&
8695	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8696	    dtrace_anon.dta_state->dts_necbs > 0))) {
8697		if (!self) {
8698			mutex_exit(&dtrace_lock);
8699#ifdef illumos
8700			mutex_exit(&mod_lock);
8701#endif
8702			mutex_exit(&dtrace_provider_lock);
8703		}
8704		return (EBUSY);
8705	}
8706
8707	/*
8708	 * Attempt to destroy the probes associated with this provider.
8709	 */
8710	for (i = 0; i < dtrace_nprobes; i++) {
8711		if ((probe = dtrace_probes[i]) == NULL)
8712			continue;
8713
8714		if (probe->dtpr_provider != old)
8715			continue;
8716
8717		if (probe->dtpr_ecb == NULL)
8718			continue;
8719
8720		/*
8721		 * If we are trying to unregister a defunct provider, and the
8722		 * provider was made defunct within the interval dictated by
8723		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8724		 * attempt to reap our enablings.  To denote that the provider
8725		 * should reattempt to unregister itself at some point in the
8726		 * future, we will return a differentiable error code (EAGAIN
8727		 * instead of EBUSY) in this case.
8728		 */
8729		if (dtrace_gethrtime() - old->dtpv_defunct >
8730		    dtrace_unregister_defunct_reap)
8731			noreap = 1;
8732
8733		if (!self) {
8734			mutex_exit(&dtrace_lock);
8735#ifdef illumos
8736			mutex_exit(&mod_lock);
8737#endif
8738			mutex_exit(&dtrace_provider_lock);
8739		}
8740
8741		if (noreap)
8742			return (EBUSY);
8743
8744		(void) taskq_dispatch(dtrace_taskq,
8745		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8746
8747		return (EAGAIN);
8748	}
8749
8750	/*
8751	 * All of the probes for this provider are disabled; we can safely
8752	 * remove all of them from their hash chains and from the probe array.
8753	 */
8754	for (i = 0; i < dtrace_nprobes; i++) {
8755		if ((probe = dtrace_probes[i]) == NULL)
8756			continue;
8757
8758		if (probe->dtpr_provider != old)
8759			continue;
8760
8761		dtrace_probes[i] = NULL;
8762
8763		dtrace_hash_remove(dtrace_bymod, probe);
8764		dtrace_hash_remove(dtrace_byfunc, probe);
8765		dtrace_hash_remove(dtrace_byname, probe);
8766
8767		if (first == NULL) {
8768			first = probe;
8769			probe->dtpr_nextmod = NULL;
8770		} else {
8771			probe->dtpr_nextmod = first;
8772			first = probe;
8773		}
8774	}
8775
8776	/*
8777	 * The provider's probes have been removed from the hash chains and
8778	 * from the probe array.  Now issue a dtrace_sync() to be sure that
8779	 * everyone has cleared out from any probe array processing.
8780	 */
8781	dtrace_sync();
8782
8783	for (probe = first; probe != NULL; probe = first) {
8784		first = probe->dtpr_nextmod;
8785
8786		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8787		    probe->dtpr_arg);
8788		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8789		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8790		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8791#ifdef illumos
8792		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
8793#else
8794		free_unr(dtrace_arena, probe->dtpr_id);
8795#endif
8796		kmem_free(probe, sizeof (dtrace_probe_t));
8797	}
8798
8799	if ((prev = dtrace_provider) == old) {
8800#ifdef illumos
8801		ASSERT(self || dtrace_devi == NULL);
8802		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
8803#endif
8804		dtrace_provider = old->dtpv_next;
8805	} else {
8806		while (prev != NULL && prev->dtpv_next != old)
8807			prev = prev->dtpv_next;
8808
8809		if (prev == NULL) {
8810			panic("attempt to unregister non-existent "
8811			    "dtrace provider %p\n", (void *)id);
8812		}
8813
8814		prev->dtpv_next = old->dtpv_next;
8815	}
8816
8817	if (!self) {
8818		mutex_exit(&dtrace_lock);
8819#ifdef illumos
8820		mutex_exit(&mod_lock);
8821#endif
8822		mutex_exit(&dtrace_provider_lock);
8823	}
8824
8825	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
8826	kmem_free(old, sizeof (dtrace_provider_t));
8827
8828	return (0);
8829}
8830
8831/*
8832 * Invalidate the specified provider.  All subsequent probe lookups for the
8833 * specified provider will fail, but its probes will not be removed.
8834 */
8835void
8836dtrace_invalidate(dtrace_provider_id_t id)
8837{
8838	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
8839
8840	ASSERT(pvp->dtpv_pops.dtps_enable !=
8841	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
8842
8843	mutex_enter(&dtrace_provider_lock);
8844	mutex_enter(&dtrace_lock);
8845
8846	pvp->dtpv_defunct = dtrace_gethrtime();
8847
8848	mutex_exit(&dtrace_lock);
8849	mutex_exit(&dtrace_provider_lock);
8850}
8851
8852/*
8853 * Indicate whether or not DTrace has attached.
8854 */
8855int
8856dtrace_attached(void)
8857{
8858	/*
8859	 * dtrace_provider will be non-NULL iff the DTrace driver has
8860	 * attached.  (It's non-NULL because DTrace is always itself a
8861	 * provider.)
8862	 */
8863	return (dtrace_provider != NULL);
8864}
8865
8866/*
8867 * Remove all the unenabled probes for the given provider.  This function is
8868 * not unlike dtrace_unregister(), except that it doesn't remove the provider
8869 * -- just as many of its associated probes as it can.
8870 */
8871int
8872dtrace_condense(dtrace_provider_id_t id)
8873{
8874	dtrace_provider_t *prov = (dtrace_provider_t *)id;
8875	int i;
8876	dtrace_probe_t *probe;
8877
8878	/*
8879	 * Make sure this isn't the dtrace provider itself.
8880	 */
8881	ASSERT(prov->dtpv_pops.dtps_enable !=
8882	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
8883
8884	mutex_enter(&dtrace_provider_lock);
8885	mutex_enter(&dtrace_lock);
8886
8887	/*
8888	 * Attempt to destroy the probes associated with this provider.
8889	 */
8890	for (i = 0; i < dtrace_nprobes; i++) {
8891		if ((probe = dtrace_probes[i]) == NULL)
8892			continue;
8893
8894		if (probe->dtpr_provider != prov)
8895			continue;
8896
8897		if (probe->dtpr_ecb != NULL)
8898			continue;
8899
8900		dtrace_probes[i] = NULL;
8901
8902		dtrace_hash_remove(dtrace_bymod, probe);
8903		dtrace_hash_remove(dtrace_byfunc, probe);
8904		dtrace_hash_remove(dtrace_byname, probe);
8905
8906		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
8907		    probe->dtpr_arg);
8908		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8909		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8910		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8911		kmem_free(probe, sizeof (dtrace_probe_t));
8912#ifdef illumos
8913		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
8914#else
8915		free_unr(dtrace_arena, i + 1);
8916#endif
8917	}
8918
8919	mutex_exit(&dtrace_lock);
8920	mutex_exit(&dtrace_provider_lock);
8921
8922	return (0);
8923}
8924
8925/*
8926 * DTrace Probe Management Functions
8927 *
8928 * The functions in this section perform the DTrace probe management,
8929 * including functions to create probes, look-up probes, and call into the
8930 * providers to request that probes be provided.  Some of these functions are
8931 * in the Provider-to-Framework API; these functions can be identified by the
8932 * fact that they are not declared "static".
8933 */
8934
8935/*
8936 * Create a probe with the specified module name, function name, and name.
8937 */
8938dtrace_id_t
8939dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
8940    const char *func, const char *name, int aframes, void *arg)
8941{
8942	dtrace_probe_t *probe, **probes;
8943	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
8944	dtrace_id_t id;
8945
8946	if (provider == dtrace_provider) {
8947		ASSERT(MUTEX_HELD(&dtrace_lock));
8948	} else {
8949		mutex_enter(&dtrace_lock);
8950	}
8951
8952#ifdef illumos
8953	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
8954	    VM_BESTFIT | VM_SLEEP);
8955#else
8956	id = alloc_unr(dtrace_arena);
8957#endif
8958	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
8959
8960	probe->dtpr_id = id;
8961	probe->dtpr_gen = dtrace_probegen++;
8962	probe->dtpr_mod = dtrace_strdup(mod);
8963	probe->dtpr_func = dtrace_strdup(func);
8964	probe->dtpr_name = dtrace_strdup(name);
8965	probe->dtpr_arg = arg;
8966	probe->dtpr_aframes = aframes;
8967	probe->dtpr_provider = provider;
8968
8969	dtrace_hash_add(dtrace_bymod, probe);
8970	dtrace_hash_add(dtrace_byfunc, probe);
8971	dtrace_hash_add(dtrace_byname, probe);
8972
8973	if (id - 1 >= dtrace_nprobes) {
8974		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
8975		size_t nsize = osize << 1;
8976
8977		if (nsize == 0) {
8978			ASSERT(osize == 0);
8979			ASSERT(dtrace_probes == NULL);
8980			nsize = sizeof (dtrace_probe_t *);
8981		}
8982
8983		probes = kmem_zalloc(nsize, KM_SLEEP);
8984
8985		if (dtrace_probes == NULL) {
8986			ASSERT(osize == 0);
8987			dtrace_probes = probes;
8988			dtrace_nprobes = 1;
8989		} else {
8990			dtrace_probe_t **oprobes = dtrace_probes;
8991
8992			bcopy(oprobes, probes, osize);
8993			dtrace_membar_producer();
8994			dtrace_probes = probes;
8995
8996			dtrace_sync();
8997
8998			/*
8999			 * All CPUs are now seeing the new probes array; we can
9000			 * safely free the old array.
9001			 */
9002			kmem_free(oprobes, osize);
9003			dtrace_nprobes <<= 1;
9004		}
9005
9006		ASSERT(id - 1 < dtrace_nprobes);
9007	}
9008
9009	ASSERT(dtrace_probes[id - 1] == NULL);
9010	dtrace_probes[id - 1] = probe;
9011
9012	if (provider != dtrace_provider)
9013		mutex_exit(&dtrace_lock);
9014
9015	return (id);
9016}
9017
9018static dtrace_probe_t *
9019dtrace_probe_lookup_id(dtrace_id_t id)
9020{
9021	ASSERT(MUTEX_HELD(&dtrace_lock));
9022
9023	if (id == 0 || id > dtrace_nprobes)
9024		return (NULL);
9025
9026	return (dtrace_probes[id - 1]);
9027}
9028
9029static int
9030dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
9031{
9032	*((dtrace_id_t *)arg) = probe->dtpr_id;
9033
9034	return (DTRACE_MATCH_DONE);
9035}
9036
9037/*
9038 * Look up a probe based on provider and one or more of module name, function
9039 * name and probe name.
9040 */
9041dtrace_id_t
9042dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
9043    char *func, char *name)
9044{
9045	dtrace_probekey_t pkey;
9046	dtrace_id_t id;
9047	int match;
9048
9049	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
9050	pkey.dtpk_pmatch = &dtrace_match_string;
9051	pkey.dtpk_mod = mod;
9052	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
9053	pkey.dtpk_func = func;
9054	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
9055	pkey.dtpk_name = name;
9056	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
9057	pkey.dtpk_id = DTRACE_IDNONE;
9058
9059	mutex_enter(&dtrace_lock);
9060	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
9061	    dtrace_probe_lookup_match, &id);
9062	mutex_exit(&dtrace_lock);
9063
9064	ASSERT(match == 1 || match == 0);
9065	return (match ? id : 0);
9066}
9067
9068/*
9069 * Returns the probe argument associated with the specified probe.
9070 */
9071void *
9072dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
9073{
9074	dtrace_probe_t *probe;
9075	void *rval = NULL;
9076
9077	mutex_enter(&dtrace_lock);
9078
9079	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
9080	    probe->dtpr_provider == (dtrace_provider_t *)id)
9081		rval = probe->dtpr_arg;
9082
9083	mutex_exit(&dtrace_lock);
9084
9085	return (rval);
9086}
9087
9088/*
9089 * Copy a probe into a probe description.
9090 */
9091static void
9092dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
9093{
9094	bzero(pdp, sizeof (dtrace_probedesc_t));
9095	pdp->dtpd_id = prp->dtpr_id;
9096
9097	(void) strncpy(pdp->dtpd_provider,
9098	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
9099
9100	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
9101	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
9102	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
9103}
9104
9105/*
9106 * Called to indicate that a probe -- or probes -- should be provided by a
9107 * specfied provider.  If the specified description is NULL, the provider will
9108 * be told to provide all of its probes.  (This is done whenever a new
9109 * consumer comes along, or whenever a retained enabling is to be matched.) If
9110 * the specified description is non-NULL, the provider is given the
9111 * opportunity to dynamically provide the specified probe, allowing providers
9112 * to support the creation of probes on-the-fly.  (So-called _autocreated_
9113 * probes.)  If the provider is NULL, the operations will be applied to all
9114 * providers; if the provider is non-NULL the operations will only be applied
9115 * to the specified provider.  The dtrace_provider_lock must be held, and the
9116 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
9117 * will need to grab the dtrace_lock when it reenters the framework through
9118 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
9119 */
9120static void
9121dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
9122{
9123#ifdef illumos
9124	modctl_t *ctl;
9125#endif
9126	int all = 0;
9127
9128	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
9129
9130	if (prv == NULL) {
9131		all = 1;
9132		prv = dtrace_provider;
9133	}
9134
9135	do {
9136		/*
9137		 * First, call the blanket provide operation.
9138		 */
9139		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
9140
9141#ifdef illumos
9142		/*
9143		 * Now call the per-module provide operation.  We will grab
9144		 * mod_lock to prevent the list from being modified.  Note
9145		 * that this also prevents the mod_busy bits from changing.
9146		 * (mod_busy can only be changed with mod_lock held.)
9147		 */
9148		mutex_enter(&mod_lock);
9149
9150		ctl = &modules;
9151		do {
9152			if (ctl->mod_busy || ctl->mod_mp == NULL)
9153				continue;
9154
9155			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
9156
9157		} while ((ctl = ctl->mod_next) != &modules);
9158
9159		mutex_exit(&mod_lock);
9160#endif
9161	} while (all && (prv = prv->dtpv_next) != NULL);
9162}
9163
9164#ifdef illumos
9165/*
9166 * Iterate over each probe, and call the Framework-to-Provider API function
9167 * denoted by offs.
9168 */
9169static void
9170dtrace_probe_foreach(uintptr_t offs)
9171{
9172	dtrace_provider_t *prov;
9173	void (*func)(void *, dtrace_id_t, void *);
9174	dtrace_probe_t *probe;
9175	dtrace_icookie_t cookie;
9176	int i;
9177
9178	/*
9179	 * We disable interrupts to walk through the probe array.  This is
9180	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
9181	 * won't see stale data.
9182	 */
9183	cookie = dtrace_interrupt_disable();
9184
9185	for (i = 0; i < dtrace_nprobes; i++) {
9186		if ((probe = dtrace_probes[i]) == NULL)
9187			continue;
9188
9189		if (probe->dtpr_ecb == NULL) {
9190			/*
9191			 * This probe isn't enabled -- don't call the function.
9192			 */
9193			continue;
9194		}
9195
9196		prov = probe->dtpr_provider;
9197		func = *((void(**)(void *, dtrace_id_t, void *))
9198		    ((uintptr_t)&prov->dtpv_pops + offs));
9199
9200		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
9201	}
9202
9203	dtrace_interrupt_enable(cookie);
9204}
9205#endif
9206
9207static int
9208dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
9209{
9210	dtrace_probekey_t pkey;
9211	uint32_t priv;
9212	uid_t uid;
9213	zoneid_t zoneid;
9214
9215	ASSERT(MUTEX_HELD(&dtrace_lock));
9216	dtrace_ecb_create_cache = NULL;
9217
9218	if (desc == NULL) {
9219		/*
9220		 * If we're passed a NULL description, we're being asked to
9221		 * create an ECB with a NULL probe.
9222		 */
9223		(void) dtrace_ecb_create_enable(NULL, enab);
9224		return (0);
9225	}
9226
9227	dtrace_probekey(desc, &pkey);
9228	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
9229	    &priv, &uid, &zoneid);
9230
9231	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
9232	    enab));
9233}
9234
9235/*
9236 * DTrace Helper Provider Functions
9237 */
9238static void
9239dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
9240{
9241	attr->dtat_name = DOF_ATTR_NAME(dofattr);
9242	attr->dtat_data = DOF_ATTR_DATA(dofattr);
9243	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
9244}
9245
9246static void
9247dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
9248    const dof_provider_t *dofprov, char *strtab)
9249{
9250	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
9251	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
9252	    dofprov->dofpv_provattr);
9253	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
9254	    dofprov->dofpv_modattr);
9255	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
9256	    dofprov->dofpv_funcattr);
9257	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
9258	    dofprov->dofpv_nameattr);
9259	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
9260	    dofprov->dofpv_argsattr);
9261}
9262
9263static void
9264dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9265{
9266	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9267	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9268	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
9269	dof_provider_t *provider;
9270	dof_probe_t *probe;
9271	uint32_t *off, *enoff;
9272	uint8_t *arg;
9273	char *strtab;
9274	uint_t i, nprobes;
9275	dtrace_helper_provdesc_t dhpv;
9276	dtrace_helper_probedesc_t dhpb;
9277	dtrace_meta_t *meta = dtrace_meta_pid;
9278	dtrace_mops_t *mops = &meta->dtm_mops;
9279	void *parg;
9280
9281	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9282	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9283	    provider->dofpv_strtab * dof->dofh_secsize);
9284	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9285	    provider->dofpv_probes * dof->dofh_secsize);
9286	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9287	    provider->dofpv_prargs * dof->dofh_secsize);
9288	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9289	    provider->dofpv_proffs * dof->dofh_secsize);
9290
9291	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9292	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
9293	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
9294	enoff = NULL;
9295
9296	/*
9297	 * See dtrace_helper_provider_validate().
9298	 */
9299	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
9300	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
9301		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9302		    provider->dofpv_prenoffs * dof->dofh_secsize);
9303		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
9304	}
9305
9306	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
9307
9308	/*
9309	 * Create the provider.
9310	 */
9311	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9312
9313	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
9314		return;
9315
9316	meta->dtm_count++;
9317
9318	/*
9319	 * Create the probes.
9320	 */
9321	for (i = 0; i < nprobes; i++) {
9322		probe = (dof_probe_t *)(uintptr_t)(daddr +
9323		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
9324
9325		/* See the check in dtrace_helper_provider_validate(). */
9326		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN)
9327			continue;
9328
9329		dhpb.dthpb_mod = dhp->dofhp_mod;
9330		dhpb.dthpb_func = strtab + probe->dofpr_func;
9331		dhpb.dthpb_name = strtab + probe->dofpr_name;
9332		dhpb.dthpb_base = probe->dofpr_addr;
9333		dhpb.dthpb_offs = off + probe->dofpr_offidx;
9334		dhpb.dthpb_noffs = probe->dofpr_noffs;
9335		if (enoff != NULL) {
9336			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
9337			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
9338		} else {
9339			dhpb.dthpb_enoffs = NULL;
9340			dhpb.dthpb_nenoffs = 0;
9341		}
9342		dhpb.dthpb_args = arg + probe->dofpr_argidx;
9343		dhpb.dthpb_nargc = probe->dofpr_nargc;
9344		dhpb.dthpb_xargc = probe->dofpr_xargc;
9345		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
9346		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
9347
9348		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
9349	}
9350}
9351
9352static void
9353dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
9354{
9355	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9356	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9357	int i;
9358
9359	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9360
9361	for (i = 0; i < dof->dofh_secnum; i++) {
9362		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9363		    dof->dofh_secoff + i * dof->dofh_secsize);
9364
9365		if (sec->dofs_type != DOF_SECT_PROVIDER)
9366			continue;
9367
9368		dtrace_helper_provide_one(dhp, sec, pid);
9369	}
9370
9371	/*
9372	 * We may have just created probes, so we must now rematch against
9373	 * any retained enablings.  Note that this call will acquire both
9374	 * cpu_lock and dtrace_lock; the fact that we are holding
9375	 * dtrace_meta_lock now is what defines the ordering with respect to
9376	 * these three locks.
9377	 */
9378	dtrace_enabling_matchall();
9379}
9380
9381static void
9382dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9383{
9384	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9385	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9386	dof_sec_t *str_sec;
9387	dof_provider_t *provider;
9388	char *strtab;
9389	dtrace_helper_provdesc_t dhpv;
9390	dtrace_meta_t *meta = dtrace_meta_pid;
9391	dtrace_mops_t *mops = &meta->dtm_mops;
9392
9393	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9394	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9395	    provider->dofpv_strtab * dof->dofh_secsize);
9396
9397	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9398
9399	/*
9400	 * Create the provider.
9401	 */
9402	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9403
9404	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
9405
9406	meta->dtm_count--;
9407}
9408
9409static void
9410dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
9411{
9412	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9413	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9414	int i;
9415
9416	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9417
9418	for (i = 0; i < dof->dofh_secnum; i++) {
9419		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9420		    dof->dofh_secoff + i * dof->dofh_secsize);
9421
9422		if (sec->dofs_type != DOF_SECT_PROVIDER)
9423			continue;
9424
9425		dtrace_helper_provider_remove_one(dhp, sec, pid);
9426	}
9427}
9428
9429/*
9430 * DTrace Meta Provider-to-Framework API Functions
9431 *
9432 * These functions implement the Meta Provider-to-Framework API, as described
9433 * in <sys/dtrace.h>.
9434 */
9435int
9436dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
9437    dtrace_meta_provider_id_t *idp)
9438{
9439	dtrace_meta_t *meta;
9440	dtrace_helpers_t *help, *next;
9441	int i;
9442
9443	*idp = DTRACE_METAPROVNONE;
9444
9445	/*
9446	 * We strictly don't need the name, but we hold onto it for
9447	 * debuggability. All hail error queues!
9448	 */
9449	if (name == NULL) {
9450		cmn_err(CE_WARN, "failed to register meta-provider: "
9451		    "invalid name");
9452		return (EINVAL);
9453	}
9454
9455	if (mops == NULL ||
9456	    mops->dtms_create_probe == NULL ||
9457	    mops->dtms_provide_pid == NULL ||
9458	    mops->dtms_remove_pid == NULL) {
9459		cmn_err(CE_WARN, "failed to register meta-register %s: "
9460		    "invalid ops", name);
9461		return (EINVAL);
9462	}
9463
9464	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
9465	meta->dtm_mops = *mops;
9466	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
9467	(void) strcpy(meta->dtm_name, name);
9468	meta->dtm_arg = arg;
9469
9470	mutex_enter(&dtrace_meta_lock);
9471	mutex_enter(&dtrace_lock);
9472
9473	if (dtrace_meta_pid != NULL) {
9474		mutex_exit(&dtrace_lock);
9475		mutex_exit(&dtrace_meta_lock);
9476		cmn_err(CE_WARN, "failed to register meta-register %s: "
9477		    "user-land meta-provider exists", name);
9478		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
9479		kmem_free(meta, sizeof (dtrace_meta_t));
9480		return (EINVAL);
9481	}
9482
9483	dtrace_meta_pid = meta;
9484	*idp = (dtrace_meta_provider_id_t)meta;
9485
9486	/*
9487	 * If there are providers and probes ready to go, pass them
9488	 * off to the new meta provider now.
9489	 */
9490
9491	help = dtrace_deferred_pid;
9492	dtrace_deferred_pid = NULL;
9493
9494	mutex_exit(&dtrace_lock);
9495
9496	while (help != NULL) {
9497		for (i = 0; i < help->dthps_nprovs; i++) {
9498			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
9499			    help->dthps_pid);
9500		}
9501
9502		next = help->dthps_next;
9503		help->dthps_next = NULL;
9504		help->dthps_prev = NULL;
9505		help->dthps_deferred = 0;
9506		help = next;
9507	}
9508
9509	mutex_exit(&dtrace_meta_lock);
9510
9511	return (0);
9512}
9513
9514int
9515dtrace_meta_unregister(dtrace_meta_provider_id_t id)
9516{
9517	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
9518
9519	mutex_enter(&dtrace_meta_lock);
9520	mutex_enter(&dtrace_lock);
9521
9522	if (old == dtrace_meta_pid) {
9523		pp = &dtrace_meta_pid;
9524	} else {
9525		panic("attempt to unregister non-existent "
9526		    "dtrace meta-provider %p\n", (void *)old);
9527	}
9528
9529	if (old->dtm_count != 0) {
9530		mutex_exit(&dtrace_lock);
9531		mutex_exit(&dtrace_meta_lock);
9532		return (EBUSY);
9533	}
9534
9535	*pp = NULL;
9536
9537	mutex_exit(&dtrace_lock);
9538	mutex_exit(&dtrace_meta_lock);
9539
9540	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
9541	kmem_free(old, sizeof (dtrace_meta_t));
9542
9543	return (0);
9544}
9545
9546
9547/*
9548 * DTrace DIF Object Functions
9549 */
9550static int
9551dtrace_difo_err(uint_t pc, const char *format, ...)
9552{
9553	if (dtrace_err_verbose) {
9554		va_list alist;
9555
9556		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
9557		va_start(alist, format);
9558		(void) vuprintf(format, alist);
9559		va_end(alist);
9560	}
9561
9562#ifdef DTRACE_ERRDEBUG
9563	dtrace_errdebug(format);
9564#endif
9565	return (1);
9566}
9567
9568/*
9569 * Validate a DTrace DIF object by checking the IR instructions.  The following
9570 * rules are currently enforced by dtrace_difo_validate():
9571 *
9572 * 1. Each instruction must have a valid opcode
9573 * 2. Each register, string, variable, or subroutine reference must be valid
9574 * 3. No instruction can modify register %r0 (must be zero)
9575 * 4. All instruction reserved bits must be set to zero
9576 * 5. The last instruction must be a "ret" instruction
9577 * 6. All branch targets must reference a valid instruction _after_ the branch
9578 */
9579static int
9580dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
9581    cred_t *cr)
9582{
9583	int err = 0, i;
9584	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9585	int kcheckload;
9586	uint_t pc;
9587
9588	kcheckload = cr == NULL ||
9589	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
9590
9591	dp->dtdo_destructive = 0;
9592
9593	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9594		dif_instr_t instr = dp->dtdo_buf[pc];
9595
9596		uint_t r1 = DIF_INSTR_R1(instr);
9597		uint_t r2 = DIF_INSTR_R2(instr);
9598		uint_t rd = DIF_INSTR_RD(instr);
9599		uint_t rs = DIF_INSTR_RS(instr);
9600		uint_t label = DIF_INSTR_LABEL(instr);
9601		uint_t v = DIF_INSTR_VAR(instr);
9602		uint_t subr = DIF_INSTR_SUBR(instr);
9603		uint_t type = DIF_INSTR_TYPE(instr);
9604		uint_t op = DIF_INSTR_OP(instr);
9605
9606		switch (op) {
9607		case DIF_OP_OR:
9608		case DIF_OP_XOR:
9609		case DIF_OP_AND:
9610		case DIF_OP_SLL:
9611		case DIF_OP_SRL:
9612		case DIF_OP_SRA:
9613		case DIF_OP_SUB:
9614		case DIF_OP_ADD:
9615		case DIF_OP_MUL:
9616		case DIF_OP_SDIV:
9617		case DIF_OP_UDIV:
9618		case DIF_OP_SREM:
9619		case DIF_OP_UREM:
9620		case DIF_OP_COPYS:
9621			if (r1 >= nregs)
9622				err += efunc(pc, "invalid register %u\n", r1);
9623			if (r2 >= nregs)
9624				err += efunc(pc, "invalid register %u\n", r2);
9625			if (rd >= nregs)
9626				err += efunc(pc, "invalid register %u\n", rd);
9627			if (rd == 0)
9628				err += efunc(pc, "cannot write to %r0\n");
9629			break;
9630		case DIF_OP_NOT:
9631		case DIF_OP_MOV:
9632		case DIF_OP_ALLOCS:
9633			if (r1 >= nregs)
9634				err += efunc(pc, "invalid register %u\n", r1);
9635			if (r2 != 0)
9636				err += efunc(pc, "non-zero reserved bits\n");
9637			if (rd >= nregs)
9638				err += efunc(pc, "invalid register %u\n", rd);
9639			if (rd == 0)
9640				err += efunc(pc, "cannot write to %r0\n");
9641			break;
9642		case DIF_OP_LDSB:
9643		case DIF_OP_LDSH:
9644		case DIF_OP_LDSW:
9645		case DIF_OP_LDUB:
9646		case DIF_OP_LDUH:
9647		case DIF_OP_LDUW:
9648		case DIF_OP_LDX:
9649			if (r1 >= nregs)
9650				err += efunc(pc, "invalid register %u\n", r1);
9651			if (r2 != 0)
9652				err += efunc(pc, "non-zero reserved bits\n");
9653			if (rd >= nregs)
9654				err += efunc(pc, "invalid register %u\n", rd);
9655			if (rd == 0)
9656				err += efunc(pc, "cannot write to %r0\n");
9657			if (kcheckload)
9658				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9659				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9660			break;
9661		case DIF_OP_RLDSB:
9662		case DIF_OP_RLDSH:
9663		case DIF_OP_RLDSW:
9664		case DIF_OP_RLDUB:
9665		case DIF_OP_RLDUH:
9666		case DIF_OP_RLDUW:
9667		case DIF_OP_RLDX:
9668			if (r1 >= nregs)
9669				err += efunc(pc, "invalid register %u\n", r1);
9670			if (r2 != 0)
9671				err += efunc(pc, "non-zero reserved bits\n");
9672			if (rd >= nregs)
9673				err += efunc(pc, "invalid register %u\n", rd);
9674			if (rd == 0)
9675				err += efunc(pc, "cannot write to %r0\n");
9676			break;
9677		case DIF_OP_ULDSB:
9678		case DIF_OP_ULDSH:
9679		case DIF_OP_ULDSW:
9680		case DIF_OP_ULDUB:
9681		case DIF_OP_ULDUH:
9682		case DIF_OP_ULDUW:
9683		case DIF_OP_ULDX:
9684			if (r1 >= nregs)
9685				err += efunc(pc, "invalid register %u\n", r1);
9686			if (r2 != 0)
9687				err += efunc(pc, "non-zero reserved bits\n");
9688			if (rd >= nregs)
9689				err += efunc(pc, "invalid register %u\n", rd);
9690			if (rd == 0)
9691				err += efunc(pc, "cannot write to %r0\n");
9692			break;
9693		case DIF_OP_STB:
9694		case DIF_OP_STH:
9695		case DIF_OP_STW:
9696		case DIF_OP_STX:
9697			if (r1 >= nregs)
9698				err += efunc(pc, "invalid register %u\n", r1);
9699			if (r2 != 0)
9700				err += efunc(pc, "non-zero reserved bits\n");
9701			if (rd >= nregs)
9702				err += efunc(pc, "invalid register %u\n", rd);
9703			if (rd == 0)
9704				err += efunc(pc, "cannot write to 0 address\n");
9705			break;
9706		case DIF_OP_CMP:
9707		case DIF_OP_SCMP:
9708			if (r1 >= nregs)
9709				err += efunc(pc, "invalid register %u\n", r1);
9710			if (r2 >= nregs)
9711				err += efunc(pc, "invalid register %u\n", r2);
9712			if (rd != 0)
9713				err += efunc(pc, "non-zero reserved bits\n");
9714			break;
9715		case DIF_OP_TST:
9716			if (r1 >= nregs)
9717				err += efunc(pc, "invalid register %u\n", r1);
9718			if (r2 != 0 || rd != 0)
9719				err += efunc(pc, "non-zero reserved bits\n");
9720			break;
9721		case DIF_OP_BA:
9722		case DIF_OP_BE:
9723		case DIF_OP_BNE:
9724		case DIF_OP_BG:
9725		case DIF_OP_BGU:
9726		case DIF_OP_BGE:
9727		case DIF_OP_BGEU:
9728		case DIF_OP_BL:
9729		case DIF_OP_BLU:
9730		case DIF_OP_BLE:
9731		case DIF_OP_BLEU:
9732			if (label >= dp->dtdo_len) {
9733				err += efunc(pc, "invalid branch target %u\n",
9734				    label);
9735			}
9736			if (label <= pc) {
9737				err += efunc(pc, "backward branch to %u\n",
9738				    label);
9739			}
9740			break;
9741		case DIF_OP_RET:
9742			if (r1 != 0 || r2 != 0)
9743				err += efunc(pc, "non-zero reserved bits\n");
9744			if (rd >= nregs)
9745				err += efunc(pc, "invalid register %u\n", rd);
9746			break;
9747		case DIF_OP_NOP:
9748		case DIF_OP_POPTS:
9749		case DIF_OP_FLUSHTS:
9750			if (r1 != 0 || r2 != 0 || rd != 0)
9751				err += efunc(pc, "non-zero reserved bits\n");
9752			break;
9753		case DIF_OP_SETX:
9754			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9755				err += efunc(pc, "invalid integer ref %u\n",
9756				    DIF_INSTR_INTEGER(instr));
9757			}
9758			if (rd >= nregs)
9759				err += efunc(pc, "invalid register %u\n", rd);
9760			if (rd == 0)
9761				err += efunc(pc, "cannot write to %r0\n");
9762			break;
9763		case DIF_OP_SETS:
9764			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9765				err += efunc(pc, "invalid string ref %u\n",
9766				    DIF_INSTR_STRING(instr));
9767			}
9768			if (rd >= nregs)
9769				err += efunc(pc, "invalid register %u\n", rd);
9770			if (rd == 0)
9771				err += efunc(pc, "cannot write to %r0\n");
9772			break;
9773		case DIF_OP_LDGA:
9774		case DIF_OP_LDTA:
9775			if (r1 > DIF_VAR_ARRAY_MAX)
9776				err += efunc(pc, "invalid array %u\n", r1);
9777			if (r2 >= nregs)
9778				err += efunc(pc, "invalid register %u\n", r2);
9779			if (rd >= nregs)
9780				err += efunc(pc, "invalid register %u\n", rd);
9781			if (rd == 0)
9782				err += efunc(pc, "cannot write to %r0\n");
9783			break;
9784		case DIF_OP_LDGS:
9785		case DIF_OP_LDTS:
9786		case DIF_OP_LDLS:
9787		case DIF_OP_LDGAA:
9788		case DIF_OP_LDTAA:
9789			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9790				err += efunc(pc, "invalid variable %u\n", v);
9791			if (rd >= nregs)
9792				err += efunc(pc, "invalid register %u\n", rd);
9793			if (rd == 0)
9794				err += efunc(pc, "cannot write to %r0\n");
9795			break;
9796		case DIF_OP_STGS:
9797		case DIF_OP_STTS:
9798		case DIF_OP_STLS:
9799		case DIF_OP_STGAA:
9800		case DIF_OP_STTAA:
9801			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
9802				err += efunc(pc, "invalid variable %u\n", v);
9803			if (rs >= nregs)
9804				err += efunc(pc, "invalid register %u\n", rd);
9805			break;
9806		case DIF_OP_CALL:
9807			if (subr > DIF_SUBR_MAX)
9808				err += efunc(pc, "invalid subr %u\n", subr);
9809			if (rd >= nregs)
9810				err += efunc(pc, "invalid register %u\n", rd);
9811			if (rd == 0)
9812				err += efunc(pc, "cannot write to %r0\n");
9813
9814			if (subr == DIF_SUBR_COPYOUT ||
9815			    subr == DIF_SUBR_COPYOUTSTR) {
9816				dp->dtdo_destructive = 1;
9817			}
9818
9819			if (subr == DIF_SUBR_GETF) {
9820				/*
9821				 * If we have a getf() we need to record that
9822				 * in our state.  Note that our state can be
9823				 * NULL if this is a helper -- but in that
9824				 * case, the call to getf() is itself illegal,
9825				 * and will be caught (slightly later) when
9826				 * the helper is validated.
9827				 */
9828				if (vstate->dtvs_state != NULL)
9829					vstate->dtvs_state->dts_getf++;
9830			}
9831
9832			break;
9833		case DIF_OP_PUSHTR:
9834			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
9835				err += efunc(pc, "invalid ref type %u\n", type);
9836			if (r2 >= nregs)
9837				err += efunc(pc, "invalid register %u\n", r2);
9838			if (rs >= nregs)
9839				err += efunc(pc, "invalid register %u\n", rs);
9840			break;
9841		case DIF_OP_PUSHTV:
9842			if (type != DIF_TYPE_CTF)
9843				err += efunc(pc, "invalid val type %u\n", type);
9844			if (r2 >= nregs)
9845				err += efunc(pc, "invalid register %u\n", r2);
9846			if (rs >= nregs)
9847				err += efunc(pc, "invalid register %u\n", rs);
9848			break;
9849		default:
9850			err += efunc(pc, "invalid opcode %u\n",
9851			    DIF_INSTR_OP(instr));
9852		}
9853	}
9854
9855	if (dp->dtdo_len != 0 &&
9856	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
9857		err += efunc(dp->dtdo_len - 1,
9858		    "expected 'ret' as last DIF instruction\n");
9859	}
9860
9861	if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
9862		/*
9863		 * If we're not returning by reference, the size must be either
9864		 * 0 or the size of one of the base types.
9865		 */
9866		switch (dp->dtdo_rtype.dtdt_size) {
9867		case 0:
9868		case sizeof (uint8_t):
9869		case sizeof (uint16_t):
9870		case sizeof (uint32_t):
9871		case sizeof (uint64_t):
9872			break;
9873
9874		default:
9875			err += efunc(dp->dtdo_len - 1, "bad return size\n");
9876		}
9877	}
9878
9879	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
9880		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
9881		dtrace_diftype_t *vt, *et;
9882		uint_t id, ndx;
9883
9884		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
9885		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
9886		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
9887			err += efunc(i, "unrecognized variable scope %d\n",
9888			    v->dtdv_scope);
9889			break;
9890		}
9891
9892		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
9893		    v->dtdv_kind != DIFV_KIND_SCALAR) {
9894			err += efunc(i, "unrecognized variable type %d\n",
9895			    v->dtdv_kind);
9896			break;
9897		}
9898
9899		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
9900			err += efunc(i, "%d exceeds variable id limit\n", id);
9901			break;
9902		}
9903
9904		if (id < DIF_VAR_OTHER_UBASE)
9905			continue;
9906
9907		/*
9908		 * For user-defined variables, we need to check that this
9909		 * definition is identical to any previous definition that we
9910		 * encountered.
9911		 */
9912		ndx = id - DIF_VAR_OTHER_UBASE;
9913
9914		switch (v->dtdv_scope) {
9915		case DIFV_SCOPE_GLOBAL:
9916			if (ndx < vstate->dtvs_nglobals) {
9917				dtrace_statvar_t *svar;
9918
9919				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
9920					existing = &svar->dtsv_var;
9921			}
9922
9923			break;
9924
9925		case DIFV_SCOPE_THREAD:
9926			if (ndx < vstate->dtvs_ntlocals)
9927				existing = &vstate->dtvs_tlocals[ndx];
9928			break;
9929
9930		case DIFV_SCOPE_LOCAL:
9931			if (ndx < vstate->dtvs_nlocals) {
9932				dtrace_statvar_t *svar;
9933
9934				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
9935					existing = &svar->dtsv_var;
9936			}
9937
9938			break;
9939		}
9940
9941		vt = &v->dtdv_type;
9942
9943		if (vt->dtdt_flags & DIF_TF_BYREF) {
9944			if (vt->dtdt_size == 0) {
9945				err += efunc(i, "zero-sized variable\n");
9946				break;
9947			}
9948
9949			if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL ||
9950			    v->dtdv_scope == DIFV_SCOPE_LOCAL) &&
9951			    vt->dtdt_size > dtrace_statvar_maxsize) {
9952				err += efunc(i, "oversized by-ref static\n");
9953				break;
9954			}
9955		}
9956
9957		if (existing == NULL || existing->dtdv_id == 0)
9958			continue;
9959
9960		ASSERT(existing->dtdv_id == v->dtdv_id);
9961		ASSERT(existing->dtdv_scope == v->dtdv_scope);
9962
9963		if (existing->dtdv_kind != v->dtdv_kind)
9964			err += efunc(i, "%d changed variable kind\n", id);
9965
9966		et = &existing->dtdv_type;
9967
9968		if (vt->dtdt_flags != et->dtdt_flags) {
9969			err += efunc(i, "%d changed variable type flags\n", id);
9970			break;
9971		}
9972
9973		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
9974			err += efunc(i, "%d changed variable type size\n", id);
9975			break;
9976		}
9977	}
9978
9979	return (err);
9980}
9981
9982/*
9983 * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
9984 * are much more constrained than normal DIFOs.  Specifically, they may
9985 * not:
9986 *
9987 * 1. Make calls to subroutines other than copyin(), copyinstr() or
9988 *    miscellaneous string routines
9989 * 2. Access DTrace variables other than the args[] array, and the
9990 *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
9991 * 3. Have thread-local variables.
9992 * 4. Have dynamic variables.
9993 */
9994static int
9995dtrace_difo_validate_helper(dtrace_difo_t *dp)
9996{
9997	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9998	int err = 0;
9999	uint_t pc;
10000
10001	for (pc = 0; pc < dp->dtdo_len; pc++) {
10002		dif_instr_t instr = dp->dtdo_buf[pc];
10003
10004		uint_t v = DIF_INSTR_VAR(instr);
10005		uint_t subr = DIF_INSTR_SUBR(instr);
10006		uint_t op = DIF_INSTR_OP(instr);
10007
10008		switch (op) {
10009		case DIF_OP_OR:
10010		case DIF_OP_XOR:
10011		case DIF_OP_AND:
10012		case DIF_OP_SLL:
10013		case DIF_OP_SRL:
10014		case DIF_OP_SRA:
10015		case DIF_OP_SUB:
10016		case DIF_OP_ADD:
10017		case DIF_OP_MUL:
10018		case DIF_OP_SDIV:
10019		case DIF_OP_UDIV:
10020		case DIF_OP_SREM:
10021		case DIF_OP_UREM:
10022		case DIF_OP_COPYS:
10023		case DIF_OP_NOT:
10024		case DIF_OP_MOV:
10025		case DIF_OP_RLDSB:
10026		case DIF_OP_RLDSH:
10027		case DIF_OP_RLDSW:
10028		case DIF_OP_RLDUB:
10029		case DIF_OP_RLDUH:
10030		case DIF_OP_RLDUW:
10031		case DIF_OP_RLDX:
10032		case DIF_OP_ULDSB:
10033		case DIF_OP_ULDSH:
10034		case DIF_OP_ULDSW:
10035		case DIF_OP_ULDUB:
10036		case DIF_OP_ULDUH:
10037		case DIF_OP_ULDUW:
10038		case DIF_OP_ULDX:
10039		case DIF_OP_STB:
10040		case DIF_OP_STH:
10041		case DIF_OP_STW:
10042		case DIF_OP_STX:
10043		case DIF_OP_ALLOCS:
10044		case DIF_OP_CMP:
10045		case DIF_OP_SCMP:
10046		case DIF_OP_TST:
10047		case DIF_OP_BA:
10048		case DIF_OP_BE:
10049		case DIF_OP_BNE:
10050		case DIF_OP_BG:
10051		case DIF_OP_BGU:
10052		case DIF_OP_BGE:
10053		case DIF_OP_BGEU:
10054		case DIF_OP_BL:
10055		case DIF_OP_BLU:
10056		case DIF_OP_BLE:
10057		case DIF_OP_BLEU:
10058		case DIF_OP_RET:
10059		case DIF_OP_NOP:
10060		case DIF_OP_POPTS:
10061		case DIF_OP_FLUSHTS:
10062		case DIF_OP_SETX:
10063		case DIF_OP_SETS:
10064		case DIF_OP_LDGA:
10065		case DIF_OP_LDLS:
10066		case DIF_OP_STGS:
10067		case DIF_OP_STLS:
10068		case DIF_OP_PUSHTR:
10069		case DIF_OP_PUSHTV:
10070			break;
10071
10072		case DIF_OP_LDGS:
10073			if (v >= DIF_VAR_OTHER_UBASE)
10074				break;
10075
10076			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
10077				break;
10078
10079			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
10080			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
10081			    v == DIF_VAR_EXECARGS ||
10082			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
10083			    v == DIF_VAR_UID || v == DIF_VAR_GID)
10084				break;
10085
10086			err += efunc(pc, "illegal variable %u\n", v);
10087			break;
10088
10089		case DIF_OP_LDTA:
10090		case DIF_OP_LDTS:
10091		case DIF_OP_LDGAA:
10092		case DIF_OP_LDTAA:
10093			err += efunc(pc, "illegal dynamic variable load\n");
10094			break;
10095
10096		case DIF_OP_STTS:
10097		case DIF_OP_STGAA:
10098		case DIF_OP_STTAA:
10099			err += efunc(pc, "illegal dynamic variable store\n");
10100			break;
10101
10102		case DIF_OP_CALL:
10103			if (subr == DIF_SUBR_ALLOCA ||
10104			    subr == DIF_SUBR_BCOPY ||
10105			    subr == DIF_SUBR_COPYIN ||
10106			    subr == DIF_SUBR_COPYINTO ||
10107			    subr == DIF_SUBR_COPYINSTR ||
10108			    subr == DIF_SUBR_INDEX ||
10109			    subr == DIF_SUBR_INET_NTOA ||
10110			    subr == DIF_SUBR_INET_NTOA6 ||
10111			    subr == DIF_SUBR_INET_NTOP ||
10112			    subr == DIF_SUBR_JSON ||
10113			    subr == DIF_SUBR_LLTOSTR ||
10114			    subr == DIF_SUBR_STRTOLL ||
10115			    subr == DIF_SUBR_RINDEX ||
10116			    subr == DIF_SUBR_STRCHR ||
10117			    subr == DIF_SUBR_STRJOIN ||
10118			    subr == DIF_SUBR_STRRCHR ||
10119			    subr == DIF_SUBR_STRSTR ||
10120			    subr == DIF_SUBR_HTONS ||
10121			    subr == DIF_SUBR_HTONL ||
10122			    subr == DIF_SUBR_HTONLL ||
10123			    subr == DIF_SUBR_NTOHS ||
10124			    subr == DIF_SUBR_NTOHL ||
10125			    subr == DIF_SUBR_NTOHLL ||
10126			    subr == DIF_SUBR_MEMREF ||
10127#ifndef illumos
10128			    subr == DIF_SUBR_MEMSTR ||
10129#endif
10130			    subr == DIF_SUBR_TYPEREF)
10131				break;
10132
10133			err += efunc(pc, "invalid subr %u\n", subr);
10134			break;
10135
10136		default:
10137			err += efunc(pc, "invalid opcode %u\n",
10138			    DIF_INSTR_OP(instr));
10139		}
10140	}
10141
10142	return (err);
10143}
10144
10145/*
10146 * Returns 1 if the expression in the DIF object can be cached on a per-thread
10147 * basis; 0 if not.
10148 */
10149static int
10150dtrace_difo_cacheable(dtrace_difo_t *dp)
10151{
10152	int i;
10153
10154	if (dp == NULL)
10155		return (0);
10156
10157	for (i = 0; i < dp->dtdo_varlen; i++) {
10158		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10159
10160		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
10161			continue;
10162
10163		switch (v->dtdv_id) {
10164		case DIF_VAR_CURTHREAD:
10165		case DIF_VAR_PID:
10166		case DIF_VAR_TID:
10167		case DIF_VAR_EXECARGS:
10168		case DIF_VAR_EXECNAME:
10169		case DIF_VAR_ZONENAME:
10170			break;
10171
10172		default:
10173			return (0);
10174		}
10175	}
10176
10177	/*
10178	 * This DIF object may be cacheable.  Now we need to look for any
10179	 * array loading instructions, any memory loading instructions, or
10180	 * any stores to thread-local variables.
10181	 */
10182	for (i = 0; i < dp->dtdo_len; i++) {
10183		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
10184
10185		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
10186		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
10187		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
10188		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
10189			return (0);
10190	}
10191
10192	return (1);
10193}
10194
10195static void
10196dtrace_difo_hold(dtrace_difo_t *dp)
10197{
10198	int i;
10199
10200	ASSERT(MUTEX_HELD(&dtrace_lock));
10201
10202	dp->dtdo_refcnt++;
10203	ASSERT(dp->dtdo_refcnt != 0);
10204
10205	/*
10206	 * We need to check this DIF object for references to the variable
10207	 * DIF_VAR_VTIMESTAMP.
10208	 */
10209	for (i = 0; i < dp->dtdo_varlen; i++) {
10210		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10211
10212		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10213			continue;
10214
10215		if (dtrace_vtime_references++ == 0)
10216			dtrace_vtime_enable();
10217	}
10218}
10219
10220/*
10221 * This routine calculates the dynamic variable chunksize for a given DIF
10222 * object.  The calculation is not fool-proof, and can probably be tricked by
10223 * malicious DIF -- but it works for all compiler-generated DIF.  Because this
10224 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
10225 * if a dynamic variable size exceeds the chunksize.
10226 */
10227static void
10228dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10229{
10230	uint64_t sval = 0;
10231	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
10232	const dif_instr_t *text = dp->dtdo_buf;
10233	uint_t pc, srd = 0;
10234	uint_t ttop = 0;
10235	size_t size, ksize;
10236	uint_t id, i;
10237
10238	for (pc = 0; pc < dp->dtdo_len; pc++) {
10239		dif_instr_t instr = text[pc];
10240		uint_t op = DIF_INSTR_OP(instr);
10241		uint_t rd = DIF_INSTR_RD(instr);
10242		uint_t r1 = DIF_INSTR_R1(instr);
10243		uint_t nkeys = 0;
10244		uchar_t scope = 0;
10245
10246		dtrace_key_t *key = tupregs;
10247
10248		switch (op) {
10249		case DIF_OP_SETX:
10250			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
10251			srd = rd;
10252			continue;
10253
10254		case DIF_OP_STTS:
10255			key = &tupregs[DIF_DTR_NREGS];
10256			key[0].dttk_size = 0;
10257			key[1].dttk_size = 0;
10258			nkeys = 2;
10259			scope = DIFV_SCOPE_THREAD;
10260			break;
10261
10262		case DIF_OP_STGAA:
10263		case DIF_OP_STTAA:
10264			nkeys = ttop;
10265
10266			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
10267				key[nkeys++].dttk_size = 0;
10268
10269			key[nkeys++].dttk_size = 0;
10270
10271			if (op == DIF_OP_STTAA) {
10272				scope = DIFV_SCOPE_THREAD;
10273			} else {
10274				scope = DIFV_SCOPE_GLOBAL;
10275			}
10276
10277			break;
10278
10279		case DIF_OP_PUSHTR:
10280			if (ttop == DIF_DTR_NREGS)
10281				return;
10282
10283			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
10284				/*
10285				 * If the register for the size of the "pushtr"
10286				 * is %r0 (or the value is 0) and the type is
10287				 * a string, we'll use the system-wide default
10288				 * string size.
10289				 */
10290				tupregs[ttop++].dttk_size =
10291				    dtrace_strsize_default;
10292			} else {
10293				if (srd == 0)
10294					return;
10295
10296				if (sval > LONG_MAX)
10297					return;
10298
10299				tupregs[ttop++].dttk_size = sval;
10300			}
10301
10302			break;
10303
10304		case DIF_OP_PUSHTV:
10305			if (ttop == DIF_DTR_NREGS)
10306				return;
10307
10308			tupregs[ttop++].dttk_size = 0;
10309			break;
10310
10311		case DIF_OP_FLUSHTS:
10312			ttop = 0;
10313			break;
10314
10315		case DIF_OP_POPTS:
10316			if (ttop != 0)
10317				ttop--;
10318			break;
10319		}
10320
10321		sval = 0;
10322		srd = 0;
10323
10324		if (nkeys == 0)
10325			continue;
10326
10327		/*
10328		 * We have a dynamic variable allocation; calculate its size.
10329		 */
10330		for (ksize = 0, i = 0; i < nkeys; i++)
10331			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
10332
10333		size = sizeof (dtrace_dynvar_t);
10334		size += sizeof (dtrace_key_t) * (nkeys - 1);
10335		size += ksize;
10336
10337		/*
10338		 * Now we need to determine the size of the stored data.
10339		 */
10340		id = DIF_INSTR_VAR(instr);
10341
10342		for (i = 0; i < dp->dtdo_varlen; i++) {
10343			dtrace_difv_t *v = &dp->dtdo_vartab[i];
10344
10345			if (v->dtdv_id == id && v->dtdv_scope == scope) {
10346				size += v->dtdv_type.dtdt_size;
10347				break;
10348			}
10349		}
10350
10351		if (i == dp->dtdo_varlen)
10352			return;
10353
10354		/*
10355		 * We have the size.  If this is larger than the chunk size
10356		 * for our dynamic variable state, reset the chunk size.
10357		 */
10358		size = P2ROUNDUP(size, sizeof (uint64_t));
10359
10360		/*
10361		 * Before setting the chunk size, check that we're not going
10362		 * to set it to a negative value...
10363		 */
10364		if (size > LONG_MAX)
10365			return;
10366
10367		/*
10368		 * ...and make certain that we didn't badly overflow.
10369		 */
10370		if (size < ksize || size < sizeof (dtrace_dynvar_t))
10371			return;
10372
10373		if (size > vstate->dtvs_dynvars.dtds_chunksize)
10374			vstate->dtvs_dynvars.dtds_chunksize = size;
10375	}
10376}
10377
10378static void
10379dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10380{
10381	int i, oldsvars, osz, nsz, otlocals, ntlocals;
10382	uint_t id;
10383
10384	ASSERT(MUTEX_HELD(&dtrace_lock));
10385	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
10386
10387	for (i = 0; i < dp->dtdo_varlen; i++) {
10388		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10389		dtrace_statvar_t *svar, ***svarp = NULL;
10390		size_t dsize = 0;
10391		uint8_t scope = v->dtdv_scope;
10392		int *np = NULL;
10393
10394		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10395			continue;
10396
10397		id -= DIF_VAR_OTHER_UBASE;
10398
10399		switch (scope) {
10400		case DIFV_SCOPE_THREAD:
10401			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
10402				dtrace_difv_t *tlocals;
10403
10404				if ((ntlocals = (otlocals << 1)) == 0)
10405					ntlocals = 1;
10406
10407				osz = otlocals * sizeof (dtrace_difv_t);
10408				nsz = ntlocals * sizeof (dtrace_difv_t);
10409
10410				tlocals = kmem_zalloc(nsz, KM_SLEEP);
10411
10412				if (osz != 0) {
10413					bcopy(vstate->dtvs_tlocals,
10414					    tlocals, osz);
10415					kmem_free(vstate->dtvs_tlocals, osz);
10416				}
10417
10418				vstate->dtvs_tlocals = tlocals;
10419				vstate->dtvs_ntlocals = ntlocals;
10420			}
10421
10422			vstate->dtvs_tlocals[id] = *v;
10423			continue;
10424
10425		case DIFV_SCOPE_LOCAL:
10426			np = &vstate->dtvs_nlocals;
10427			svarp = &vstate->dtvs_locals;
10428
10429			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10430				dsize = NCPU * (v->dtdv_type.dtdt_size +
10431				    sizeof (uint64_t));
10432			else
10433				dsize = NCPU * sizeof (uint64_t);
10434
10435			break;
10436
10437		case DIFV_SCOPE_GLOBAL:
10438			np = &vstate->dtvs_nglobals;
10439			svarp = &vstate->dtvs_globals;
10440
10441			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10442				dsize = v->dtdv_type.dtdt_size +
10443				    sizeof (uint64_t);
10444
10445			break;
10446
10447		default:
10448			ASSERT(0);
10449		}
10450
10451		while (id >= (oldsvars = *np)) {
10452			dtrace_statvar_t **statics;
10453			int newsvars, oldsize, newsize;
10454
10455			if ((newsvars = (oldsvars << 1)) == 0)
10456				newsvars = 1;
10457
10458			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
10459			newsize = newsvars * sizeof (dtrace_statvar_t *);
10460
10461			statics = kmem_zalloc(newsize, KM_SLEEP);
10462
10463			if (oldsize != 0) {
10464				bcopy(*svarp, statics, oldsize);
10465				kmem_free(*svarp, oldsize);
10466			}
10467
10468			*svarp = statics;
10469			*np = newsvars;
10470		}
10471
10472		if ((svar = (*svarp)[id]) == NULL) {
10473			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
10474			svar->dtsv_var = *v;
10475
10476			if ((svar->dtsv_size = dsize) != 0) {
10477				svar->dtsv_data = (uint64_t)(uintptr_t)
10478				    kmem_zalloc(dsize, KM_SLEEP);
10479			}
10480
10481			(*svarp)[id] = svar;
10482		}
10483
10484		svar->dtsv_refcnt++;
10485	}
10486
10487	dtrace_difo_chunksize(dp, vstate);
10488	dtrace_difo_hold(dp);
10489}
10490
10491static dtrace_difo_t *
10492dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10493{
10494	dtrace_difo_t *new;
10495	size_t sz;
10496
10497	ASSERT(dp->dtdo_buf != NULL);
10498	ASSERT(dp->dtdo_refcnt != 0);
10499
10500	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10501
10502	ASSERT(dp->dtdo_buf != NULL);
10503	sz = dp->dtdo_len * sizeof (dif_instr_t);
10504	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
10505	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
10506	new->dtdo_len = dp->dtdo_len;
10507
10508	if (dp->dtdo_strtab != NULL) {
10509		ASSERT(dp->dtdo_strlen != 0);
10510		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
10511		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
10512		new->dtdo_strlen = dp->dtdo_strlen;
10513	}
10514
10515	if (dp->dtdo_inttab != NULL) {
10516		ASSERT(dp->dtdo_intlen != 0);
10517		sz = dp->dtdo_intlen * sizeof (uint64_t);
10518		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
10519		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
10520		new->dtdo_intlen = dp->dtdo_intlen;
10521	}
10522
10523	if (dp->dtdo_vartab != NULL) {
10524		ASSERT(dp->dtdo_varlen != 0);
10525		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
10526		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
10527		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
10528		new->dtdo_varlen = dp->dtdo_varlen;
10529	}
10530
10531	dtrace_difo_init(new, vstate);
10532	return (new);
10533}
10534
10535static void
10536dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10537{
10538	int i;
10539
10540	ASSERT(dp->dtdo_refcnt == 0);
10541
10542	for (i = 0; i < dp->dtdo_varlen; i++) {
10543		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10544		dtrace_statvar_t *svar, **svarp = NULL;
10545		uint_t id;
10546		uint8_t scope = v->dtdv_scope;
10547		int *np = NULL;
10548
10549		switch (scope) {
10550		case DIFV_SCOPE_THREAD:
10551			continue;
10552
10553		case DIFV_SCOPE_LOCAL:
10554			np = &vstate->dtvs_nlocals;
10555			svarp = vstate->dtvs_locals;
10556			break;
10557
10558		case DIFV_SCOPE_GLOBAL:
10559			np = &vstate->dtvs_nglobals;
10560			svarp = vstate->dtvs_globals;
10561			break;
10562
10563		default:
10564			ASSERT(0);
10565		}
10566
10567		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10568			continue;
10569
10570		id -= DIF_VAR_OTHER_UBASE;
10571		ASSERT(id < *np);
10572
10573		svar = svarp[id];
10574		ASSERT(svar != NULL);
10575		ASSERT(svar->dtsv_refcnt > 0);
10576
10577		if (--svar->dtsv_refcnt > 0)
10578			continue;
10579
10580		if (svar->dtsv_size != 0) {
10581			ASSERT(svar->dtsv_data != 0);
10582			kmem_free((void *)(uintptr_t)svar->dtsv_data,
10583			    svar->dtsv_size);
10584		}
10585
10586		kmem_free(svar, sizeof (dtrace_statvar_t));
10587		svarp[id] = NULL;
10588	}
10589
10590	if (dp->dtdo_buf != NULL)
10591		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10592	if (dp->dtdo_inttab != NULL)
10593		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10594	if (dp->dtdo_strtab != NULL)
10595		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10596	if (dp->dtdo_vartab != NULL)
10597		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10598
10599	kmem_free(dp, sizeof (dtrace_difo_t));
10600}
10601
10602static void
10603dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10604{
10605	int i;
10606
10607	ASSERT(MUTEX_HELD(&dtrace_lock));
10608	ASSERT(dp->dtdo_refcnt != 0);
10609
10610	for (i = 0; i < dp->dtdo_varlen; i++) {
10611		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10612
10613		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10614			continue;
10615
10616		ASSERT(dtrace_vtime_references > 0);
10617		if (--dtrace_vtime_references == 0)
10618			dtrace_vtime_disable();
10619	}
10620
10621	if (--dp->dtdo_refcnt == 0)
10622		dtrace_difo_destroy(dp, vstate);
10623}
10624
10625/*
10626 * DTrace Format Functions
10627 */
10628static uint16_t
10629dtrace_format_add(dtrace_state_t *state, char *str)
10630{
10631	char *fmt, **new;
10632	uint16_t ndx, len = strlen(str) + 1;
10633
10634	fmt = kmem_zalloc(len, KM_SLEEP);
10635	bcopy(str, fmt, len);
10636
10637	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10638		if (state->dts_formats[ndx] == NULL) {
10639			state->dts_formats[ndx] = fmt;
10640			return (ndx + 1);
10641		}
10642	}
10643
10644	if (state->dts_nformats == USHRT_MAX) {
10645		/*
10646		 * This is only likely if a denial-of-service attack is being
10647		 * attempted.  As such, it's okay to fail silently here.
10648		 */
10649		kmem_free(fmt, len);
10650		return (0);
10651	}
10652
10653	/*
10654	 * For simplicity, we always resize the formats array to be exactly the
10655	 * number of formats.
10656	 */
10657	ndx = state->dts_nformats++;
10658	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10659
10660	if (state->dts_formats != NULL) {
10661		ASSERT(ndx != 0);
10662		bcopy(state->dts_formats, new, ndx * sizeof (char *));
10663		kmem_free(state->dts_formats, ndx * sizeof (char *));
10664	}
10665
10666	state->dts_formats = new;
10667	state->dts_formats[ndx] = fmt;
10668
10669	return (ndx + 1);
10670}
10671
10672static void
10673dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10674{
10675	char *fmt;
10676
10677	ASSERT(state->dts_formats != NULL);
10678	ASSERT(format <= state->dts_nformats);
10679	ASSERT(state->dts_formats[format - 1] != NULL);
10680
10681	fmt = state->dts_formats[format - 1];
10682	kmem_free(fmt, strlen(fmt) + 1);
10683	state->dts_formats[format - 1] = NULL;
10684}
10685
10686static void
10687dtrace_format_destroy(dtrace_state_t *state)
10688{
10689	int i;
10690
10691	if (state->dts_nformats == 0) {
10692		ASSERT(state->dts_formats == NULL);
10693		return;
10694	}
10695
10696	ASSERT(state->dts_formats != NULL);
10697
10698	for (i = 0; i < state->dts_nformats; i++) {
10699		char *fmt = state->dts_formats[i];
10700
10701		if (fmt == NULL)
10702			continue;
10703
10704		kmem_free(fmt, strlen(fmt) + 1);
10705	}
10706
10707	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10708	state->dts_nformats = 0;
10709	state->dts_formats = NULL;
10710}
10711
10712/*
10713 * DTrace Predicate Functions
10714 */
10715static dtrace_predicate_t *
10716dtrace_predicate_create(dtrace_difo_t *dp)
10717{
10718	dtrace_predicate_t *pred;
10719
10720	ASSERT(MUTEX_HELD(&dtrace_lock));
10721	ASSERT(dp->dtdo_refcnt != 0);
10722
10723	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10724	pred->dtp_difo = dp;
10725	pred->dtp_refcnt = 1;
10726
10727	if (!dtrace_difo_cacheable(dp))
10728		return (pred);
10729
10730	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10731		/*
10732		 * This is only theoretically possible -- we have had 2^32
10733		 * cacheable predicates on this machine.  We cannot allow any
10734		 * more predicates to become cacheable:  as unlikely as it is,
10735		 * there may be a thread caching a (now stale) predicate cache
10736		 * ID. (N.B.: the temptation is being successfully resisted to
10737		 * have this cmn_err() "Holy shit -- we executed this code!")
10738		 */
10739		return (pred);
10740	}
10741
10742	pred->dtp_cacheid = dtrace_predcache_id++;
10743
10744	return (pred);
10745}
10746
10747static void
10748dtrace_predicate_hold(dtrace_predicate_t *pred)
10749{
10750	ASSERT(MUTEX_HELD(&dtrace_lock));
10751	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
10752	ASSERT(pred->dtp_refcnt > 0);
10753
10754	pred->dtp_refcnt++;
10755}
10756
10757static void
10758dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
10759{
10760	dtrace_difo_t *dp = pred->dtp_difo;
10761
10762	ASSERT(MUTEX_HELD(&dtrace_lock));
10763	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
10764	ASSERT(pred->dtp_refcnt > 0);
10765
10766	if (--pred->dtp_refcnt == 0) {
10767		dtrace_difo_release(pred->dtp_difo, vstate);
10768		kmem_free(pred, sizeof (dtrace_predicate_t));
10769	}
10770}
10771
10772/*
10773 * DTrace Action Description Functions
10774 */
10775static dtrace_actdesc_t *
10776dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
10777    uint64_t uarg, uint64_t arg)
10778{
10779	dtrace_actdesc_t *act;
10780
10781#ifdef illumos
10782	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
10783	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
10784#endif
10785
10786	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
10787	act->dtad_kind = kind;
10788	act->dtad_ntuple = ntuple;
10789	act->dtad_uarg = uarg;
10790	act->dtad_arg = arg;
10791	act->dtad_refcnt = 1;
10792
10793	return (act);
10794}
10795
10796static void
10797dtrace_actdesc_hold(dtrace_actdesc_t *act)
10798{
10799	ASSERT(act->dtad_refcnt >= 1);
10800	act->dtad_refcnt++;
10801}
10802
10803static void
10804dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
10805{
10806	dtrace_actkind_t kind = act->dtad_kind;
10807	dtrace_difo_t *dp;
10808
10809	ASSERT(act->dtad_refcnt >= 1);
10810
10811	if (--act->dtad_refcnt != 0)
10812		return;
10813
10814	if ((dp = act->dtad_difo) != NULL)
10815		dtrace_difo_release(dp, vstate);
10816
10817	if (DTRACEACT_ISPRINTFLIKE(kind)) {
10818		char *str = (char *)(uintptr_t)act->dtad_arg;
10819
10820#ifdef illumos
10821		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
10822		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
10823#endif
10824
10825		if (str != NULL)
10826			kmem_free(str, strlen(str) + 1);
10827	}
10828
10829	kmem_free(act, sizeof (dtrace_actdesc_t));
10830}
10831
10832/*
10833 * DTrace ECB Functions
10834 */
10835static dtrace_ecb_t *
10836dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
10837{
10838	dtrace_ecb_t *ecb;
10839	dtrace_epid_t epid;
10840
10841	ASSERT(MUTEX_HELD(&dtrace_lock));
10842
10843	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
10844	ecb->dte_predicate = NULL;
10845	ecb->dte_probe = probe;
10846
10847	/*
10848	 * The default size is the size of the default action: recording
10849	 * the header.
10850	 */
10851	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
10852	ecb->dte_alignment = sizeof (dtrace_epid_t);
10853
10854	epid = state->dts_epid++;
10855
10856	if (epid - 1 >= state->dts_necbs) {
10857		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
10858		int necbs = state->dts_necbs << 1;
10859
10860		ASSERT(epid == state->dts_necbs + 1);
10861
10862		if (necbs == 0) {
10863			ASSERT(oecbs == NULL);
10864			necbs = 1;
10865		}
10866
10867		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
10868
10869		if (oecbs != NULL)
10870			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
10871
10872		dtrace_membar_producer();
10873		state->dts_ecbs = ecbs;
10874
10875		if (oecbs != NULL) {
10876			/*
10877			 * If this state is active, we must dtrace_sync()
10878			 * before we can free the old dts_ecbs array:  we're
10879			 * coming in hot, and there may be active ring
10880			 * buffer processing (which indexes into the dts_ecbs
10881			 * array) on another CPU.
10882			 */
10883			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
10884				dtrace_sync();
10885
10886			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
10887		}
10888
10889		dtrace_membar_producer();
10890		state->dts_necbs = necbs;
10891	}
10892
10893	ecb->dte_state = state;
10894
10895	ASSERT(state->dts_ecbs[epid - 1] == NULL);
10896	dtrace_membar_producer();
10897	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
10898
10899	return (ecb);
10900}
10901
10902static void
10903dtrace_ecb_enable(dtrace_ecb_t *ecb)
10904{
10905	dtrace_probe_t *probe = ecb->dte_probe;
10906
10907	ASSERT(MUTEX_HELD(&cpu_lock));
10908	ASSERT(MUTEX_HELD(&dtrace_lock));
10909	ASSERT(ecb->dte_next == NULL);
10910
10911	if (probe == NULL) {
10912		/*
10913		 * This is the NULL probe -- there's nothing to do.
10914		 */
10915		return;
10916	}
10917
10918	if (probe->dtpr_ecb == NULL) {
10919		dtrace_provider_t *prov = probe->dtpr_provider;
10920
10921		/*
10922		 * We're the first ECB on this probe.
10923		 */
10924		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
10925
10926		if (ecb->dte_predicate != NULL)
10927			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
10928
10929		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
10930		    probe->dtpr_id, probe->dtpr_arg);
10931	} else {
10932		/*
10933		 * This probe is already active.  Swing the last pointer to
10934		 * point to the new ECB, and issue a dtrace_sync() to assure
10935		 * that all CPUs have seen the change.
10936		 */
10937		ASSERT(probe->dtpr_ecb_last != NULL);
10938		probe->dtpr_ecb_last->dte_next = ecb;
10939		probe->dtpr_ecb_last = ecb;
10940		probe->dtpr_predcache = 0;
10941
10942		dtrace_sync();
10943	}
10944}
10945
10946static void
10947dtrace_ecb_resize(dtrace_ecb_t *ecb)
10948{
10949	dtrace_action_t *act;
10950	uint32_t curneeded = UINT32_MAX;
10951	uint32_t aggbase = UINT32_MAX;
10952
10953	/*
10954	 * If we record anything, we always record the dtrace_rechdr_t.  (And
10955	 * we always record it first.)
10956	 */
10957	ecb->dte_size = sizeof (dtrace_rechdr_t);
10958	ecb->dte_alignment = sizeof (dtrace_epid_t);
10959
10960	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10961		dtrace_recdesc_t *rec = &act->dta_rec;
10962		ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
10963
10964		ecb->dte_alignment = MAX(ecb->dte_alignment,
10965		    rec->dtrd_alignment);
10966
10967		if (DTRACEACT_ISAGG(act->dta_kind)) {
10968			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10969
10970			ASSERT(rec->dtrd_size != 0);
10971			ASSERT(agg->dtag_first != NULL);
10972			ASSERT(act->dta_prev->dta_intuple);
10973			ASSERT(aggbase != UINT32_MAX);
10974			ASSERT(curneeded != UINT32_MAX);
10975
10976			agg->dtag_base = aggbase;
10977
10978			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10979			rec->dtrd_offset = curneeded;
10980			curneeded += rec->dtrd_size;
10981			ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
10982
10983			aggbase = UINT32_MAX;
10984			curneeded = UINT32_MAX;
10985		} else if (act->dta_intuple) {
10986			if (curneeded == UINT32_MAX) {
10987				/*
10988				 * This is the first record in a tuple.  Align
10989				 * curneeded to be at offset 4 in an 8-byte
10990				 * aligned block.
10991				 */
10992				ASSERT(act->dta_prev == NULL ||
10993				    !act->dta_prev->dta_intuple);
10994				ASSERT3U(aggbase, ==, UINT32_MAX);
10995				curneeded = P2PHASEUP(ecb->dte_size,
10996				    sizeof (uint64_t), sizeof (dtrace_aggid_t));
10997
10998				aggbase = curneeded - sizeof (dtrace_aggid_t);
10999				ASSERT(IS_P2ALIGNED(aggbase,
11000				    sizeof (uint64_t)));
11001			}
11002			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11003			rec->dtrd_offset = curneeded;
11004			curneeded += rec->dtrd_size;
11005		} else {
11006			/* tuples must be followed by an aggregation */
11007			ASSERT(act->dta_prev == NULL ||
11008			    !act->dta_prev->dta_intuple);
11009
11010			ecb->dte_size = P2ROUNDUP(ecb->dte_size,
11011			    rec->dtrd_alignment);
11012			rec->dtrd_offset = ecb->dte_size;
11013			ecb->dte_size += rec->dtrd_size;
11014			ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
11015		}
11016	}
11017
11018	if ((act = ecb->dte_action) != NULL &&
11019	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
11020	    ecb->dte_size == sizeof (dtrace_rechdr_t)) {
11021		/*
11022		 * If the size is still sizeof (dtrace_rechdr_t), then all
11023		 * actions store no data; set the size to 0.
11024		 */
11025		ecb->dte_size = 0;
11026	}
11027
11028	ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
11029	ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
11030	ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
11031	    ecb->dte_needed);
11032}
11033
11034static dtrace_action_t *
11035dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11036{
11037	dtrace_aggregation_t *agg;
11038	size_t size = sizeof (uint64_t);
11039	int ntuple = desc->dtad_ntuple;
11040	dtrace_action_t *act;
11041	dtrace_recdesc_t *frec;
11042	dtrace_aggid_t aggid;
11043	dtrace_state_t *state = ecb->dte_state;
11044
11045	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
11046	agg->dtag_ecb = ecb;
11047
11048	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
11049
11050	switch (desc->dtad_kind) {
11051	case DTRACEAGG_MIN:
11052		agg->dtag_initial = INT64_MAX;
11053		agg->dtag_aggregate = dtrace_aggregate_min;
11054		break;
11055
11056	case DTRACEAGG_MAX:
11057		agg->dtag_initial = INT64_MIN;
11058		agg->dtag_aggregate = dtrace_aggregate_max;
11059		break;
11060
11061	case DTRACEAGG_COUNT:
11062		agg->dtag_aggregate = dtrace_aggregate_count;
11063		break;
11064
11065	case DTRACEAGG_QUANTIZE:
11066		agg->dtag_aggregate = dtrace_aggregate_quantize;
11067		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
11068		    sizeof (uint64_t);
11069		break;
11070
11071	case DTRACEAGG_LQUANTIZE: {
11072		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
11073		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
11074
11075		agg->dtag_initial = desc->dtad_arg;
11076		agg->dtag_aggregate = dtrace_aggregate_lquantize;
11077
11078		if (step == 0 || levels == 0)
11079			goto err;
11080
11081		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
11082		break;
11083	}
11084
11085	case DTRACEAGG_LLQUANTIZE: {
11086		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
11087		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
11088		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
11089		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
11090		int64_t v;
11091
11092		agg->dtag_initial = desc->dtad_arg;
11093		agg->dtag_aggregate = dtrace_aggregate_llquantize;
11094
11095		if (factor < 2 || low >= high || nsteps < factor)
11096			goto err;
11097
11098		/*
11099		 * Now check that the number of steps evenly divides a power
11100		 * of the factor.  (This assures both integer bucket size and
11101		 * linearity within each magnitude.)
11102		 */
11103		for (v = factor; v < nsteps; v *= factor)
11104			continue;
11105
11106		if ((v % nsteps) || (nsteps % factor))
11107			goto err;
11108
11109		size = (dtrace_aggregate_llquantize_bucket(factor,
11110		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
11111		break;
11112	}
11113
11114	case DTRACEAGG_AVG:
11115		agg->dtag_aggregate = dtrace_aggregate_avg;
11116		size = sizeof (uint64_t) * 2;
11117		break;
11118
11119	case DTRACEAGG_STDDEV:
11120		agg->dtag_aggregate = dtrace_aggregate_stddev;
11121		size = sizeof (uint64_t) * 4;
11122		break;
11123
11124	case DTRACEAGG_SUM:
11125		agg->dtag_aggregate = dtrace_aggregate_sum;
11126		break;
11127
11128	default:
11129		goto err;
11130	}
11131
11132	agg->dtag_action.dta_rec.dtrd_size = size;
11133
11134	if (ntuple == 0)
11135		goto err;
11136
11137	/*
11138	 * We must make sure that we have enough actions for the n-tuple.
11139	 */
11140	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
11141		if (DTRACEACT_ISAGG(act->dta_kind))
11142			break;
11143
11144		if (--ntuple == 0) {
11145			/*
11146			 * This is the action with which our n-tuple begins.
11147			 */
11148			agg->dtag_first = act;
11149			goto success;
11150		}
11151	}
11152
11153	/*
11154	 * This n-tuple is short by ntuple elements.  Return failure.
11155	 */
11156	ASSERT(ntuple != 0);
11157err:
11158	kmem_free(agg, sizeof (dtrace_aggregation_t));
11159	return (NULL);
11160
11161success:
11162	/*
11163	 * If the last action in the tuple has a size of zero, it's actually
11164	 * an expression argument for the aggregating action.
11165	 */
11166	ASSERT(ecb->dte_action_last != NULL);
11167	act = ecb->dte_action_last;
11168
11169	if (act->dta_kind == DTRACEACT_DIFEXPR) {
11170		ASSERT(act->dta_difo != NULL);
11171
11172		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
11173			agg->dtag_hasarg = 1;
11174	}
11175
11176	/*
11177	 * We need to allocate an id for this aggregation.
11178	 */
11179#ifdef illumos
11180	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
11181	    VM_BESTFIT | VM_SLEEP);
11182#else
11183	aggid = alloc_unr(state->dts_aggid_arena);
11184#endif
11185
11186	if (aggid - 1 >= state->dts_naggregations) {
11187		dtrace_aggregation_t **oaggs = state->dts_aggregations;
11188		dtrace_aggregation_t **aggs;
11189		int naggs = state->dts_naggregations << 1;
11190		int onaggs = state->dts_naggregations;
11191
11192		ASSERT(aggid == state->dts_naggregations + 1);
11193
11194		if (naggs == 0) {
11195			ASSERT(oaggs == NULL);
11196			naggs = 1;
11197		}
11198
11199		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
11200
11201		if (oaggs != NULL) {
11202			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
11203			kmem_free(oaggs, onaggs * sizeof (*aggs));
11204		}
11205
11206		state->dts_aggregations = aggs;
11207		state->dts_naggregations = naggs;
11208	}
11209
11210	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
11211	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
11212
11213	frec = &agg->dtag_first->dta_rec;
11214	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
11215		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
11216
11217	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
11218		ASSERT(!act->dta_intuple);
11219		act->dta_intuple = 1;
11220	}
11221
11222	return (&agg->dtag_action);
11223}
11224
11225static void
11226dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
11227{
11228	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11229	dtrace_state_t *state = ecb->dte_state;
11230	dtrace_aggid_t aggid = agg->dtag_id;
11231
11232	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
11233#ifdef illumos
11234	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
11235#else
11236	free_unr(state->dts_aggid_arena, aggid);
11237#endif
11238
11239	ASSERT(state->dts_aggregations[aggid - 1] == agg);
11240	state->dts_aggregations[aggid - 1] = NULL;
11241
11242	kmem_free(agg, sizeof (dtrace_aggregation_t));
11243}
11244
11245static int
11246dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11247{
11248	dtrace_action_t *action, *last;
11249	dtrace_difo_t *dp = desc->dtad_difo;
11250	uint32_t size = 0, align = sizeof (uint8_t), mask;
11251	uint16_t format = 0;
11252	dtrace_recdesc_t *rec;
11253	dtrace_state_t *state = ecb->dte_state;
11254	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
11255	uint64_t arg = desc->dtad_arg;
11256
11257	ASSERT(MUTEX_HELD(&dtrace_lock));
11258	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
11259
11260	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
11261		/*
11262		 * If this is an aggregating action, there must be neither
11263		 * a speculate nor a commit on the action chain.
11264		 */
11265		dtrace_action_t *act;
11266
11267		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11268			if (act->dta_kind == DTRACEACT_COMMIT)
11269				return (EINVAL);
11270
11271			if (act->dta_kind == DTRACEACT_SPECULATE)
11272				return (EINVAL);
11273		}
11274
11275		action = dtrace_ecb_aggregation_create(ecb, desc);
11276
11277		if (action == NULL)
11278			return (EINVAL);
11279	} else {
11280		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
11281		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
11282		    dp != NULL && dp->dtdo_destructive)) {
11283			state->dts_destructive = 1;
11284		}
11285
11286		switch (desc->dtad_kind) {
11287		case DTRACEACT_PRINTF:
11288		case DTRACEACT_PRINTA:
11289		case DTRACEACT_SYSTEM:
11290		case DTRACEACT_FREOPEN:
11291		case DTRACEACT_DIFEXPR:
11292			/*
11293			 * We know that our arg is a string -- turn it into a
11294			 * format.
11295			 */
11296			if (arg == 0) {
11297				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
11298				    desc->dtad_kind == DTRACEACT_DIFEXPR);
11299				format = 0;
11300			} else {
11301				ASSERT(arg != 0);
11302#ifdef illumos
11303				ASSERT(arg > KERNELBASE);
11304#endif
11305				format = dtrace_format_add(state,
11306				    (char *)(uintptr_t)arg);
11307			}
11308
11309			/*FALLTHROUGH*/
11310		case DTRACEACT_LIBACT:
11311		case DTRACEACT_TRACEMEM:
11312		case DTRACEACT_TRACEMEM_DYNSIZE:
11313			if (dp == NULL)
11314				return (EINVAL);
11315
11316			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
11317				break;
11318
11319			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
11320				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11321					return (EINVAL);
11322
11323				size = opt[DTRACEOPT_STRSIZE];
11324			}
11325
11326			break;
11327
11328		case DTRACEACT_STACK:
11329			if ((nframes = arg) == 0) {
11330				nframes = opt[DTRACEOPT_STACKFRAMES];
11331				ASSERT(nframes > 0);
11332				arg = nframes;
11333			}
11334
11335			size = nframes * sizeof (pc_t);
11336			break;
11337
11338		case DTRACEACT_JSTACK:
11339			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
11340				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
11341
11342			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
11343				nframes = opt[DTRACEOPT_JSTACKFRAMES];
11344
11345			arg = DTRACE_USTACK_ARG(nframes, strsize);
11346
11347			/*FALLTHROUGH*/
11348		case DTRACEACT_USTACK:
11349			if (desc->dtad_kind != DTRACEACT_JSTACK &&
11350			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
11351				strsize = DTRACE_USTACK_STRSIZE(arg);
11352				nframes = opt[DTRACEOPT_USTACKFRAMES];
11353				ASSERT(nframes > 0);
11354				arg = DTRACE_USTACK_ARG(nframes, strsize);
11355			}
11356
11357			/*
11358			 * Save a slot for the pid.
11359			 */
11360			size = (nframes + 1) * sizeof (uint64_t);
11361			size += DTRACE_USTACK_STRSIZE(arg);
11362			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
11363
11364			break;
11365
11366		case DTRACEACT_SYM:
11367		case DTRACEACT_MOD:
11368			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
11369			    sizeof (uint64_t)) ||
11370			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11371				return (EINVAL);
11372			break;
11373
11374		case DTRACEACT_USYM:
11375		case DTRACEACT_UMOD:
11376		case DTRACEACT_UADDR:
11377			if (dp == NULL ||
11378			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
11379			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11380				return (EINVAL);
11381
11382			/*
11383			 * We have a slot for the pid, plus a slot for the
11384			 * argument.  To keep things simple (aligned with
11385			 * bitness-neutral sizing), we store each as a 64-bit
11386			 * quantity.
11387			 */
11388			size = 2 * sizeof (uint64_t);
11389			break;
11390
11391		case DTRACEACT_STOP:
11392		case DTRACEACT_BREAKPOINT:
11393		case DTRACEACT_PANIC:
11394			break;
11395
11396		case DTRACEACT_CHILL:
11397		case DTRACEACT_DISCARD:
11398		case DTRACEACT_RAISE:
11399			if (dp == NULL)
11400				return (EINVAL);
11401			break;
11402
11403		case DTRACEACT_EXIT:
11404			if (dp == NULL ||
11405			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
11406			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11407				return (EINVAL);
11408			break;
11409
11410		case DTRACEACT_SPECULATE:
11411			if (ecb->dte_size > sizeof (dtrace_rechdr_t))
11412				return (EINVAL);
11413
11414			if (dp == NULL)
11415				return (EINVAL);
11416
11417			state->dts_speculates = 1;
11418			break;
11419
11420		case DTRACEACT_PRINTM:
11421		    	size = dp->dtdo_rtype.dtdt_size;
11422			break;
11423
11424		case DTRACEACT_PRINTT:
11425		    	size = dp->dtdo_rtype.dtdt_size;
11426			break;
11427
11428		case DTRACEACT_COMMIT: {
11429			dtrace_action_t *act = ecb->dte_action;
11430
11431			for (; act != NULL; act = act->dta_next) {
11432				if (act->dta_kind == DTRACEACT_COMMIT)
11433					return (EINVAL);
11434			}
11435
11436			if (dp == NULL)
11437				return (EINVAL);
11438			break;
11439		}
11440
11441		default:
11442			return (EINVAL);
11443		}
11444
11445		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
11446			/*
11447			 * If this is a data-storing action or a speculate,
11448			 * we must be sure that there isn't a commit on the
11449			 * action chain.
11450			 */
11451			dtrace_action_t *act = ecb->dte_action;
11452
11453			for (; act != NULL; act = act->dta_next) {
11454				if (act->dta_kind == DTRACEACT_COMMIT)
11455					return (EINVAL);
11456			}
11457		}
11458
11459		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
11460		action->dta_rec.dtrd_size = size;
11461	}
11462
11463	action->dta_refcnt = 1;
11464	rec = &action->dta_rec;
11465	size = rec->dtrd_size;
11466
11467	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
11468		if (!(size & mask)) {
11469			align = mask + 1;
11470			break;
11471		}
11472	}
11473
11474	action->dta_kind = desc->dtad_kind;
11475
11476	if ((action->dta_difo = dp) != NULL)
11477		dtrace_difo_hold(dp);
11478
11479	rec->dtrd_action = action->dta_kind;
11480	rec->dtrd_arg = arg;
11481	rec->dtrd_uarg = desc->dtad_uarg;
11482	rec->dtrd_alignment = (uint16_t)align;
11483	rec->dtrd_format = format;
11484
11485	if ((last = ecb->dte_action_last) != NULL) {
11486		ASSERT(ecb->dte_action != NULL);
11487		action->dta_prev = last;
11488		last->dta_next = action;
11489	} else {
11490		ASSERT(ecb->dte_action == NULL);
11491		ecb->dte_action = action;
11492	}
11493
11494	ecb->dte_action_last = action;
11495
11496	return (0);
11497}
11498
11499static void
11500dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
11501{
11502	dtrace_action_t *act = ecb->dte_action, *next;
11503	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
11504	dtrace_difo_t *dp;
11505	uint16_t format;
11506
11507	if (act != NULL && act->dta_refcnt > 1) {
11508		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
11509		act->dta_refcnt--;
11510	} else {
11511		for (; act != NULL; act = next) {
11512			next = act->dta_next;
11513			ASSERT(next != NULL || act == ecb->dte_action_last);
11514			ASSERT(act->dta_refcnt == 1);
11515
11516			if ((format = act->dta_rec.dtrd_format) != 0)
11517				dtrace_format_remove(ecb->dte_state, format);
11518
11519			if ((dp = act->dta_difo) != NULL)
11520				dtrace_difo_release(dp, vstate);
11521
11522			if (DTRACEACT_ISAGG(act->dta_kind)) {
11523				dtrace_ecb_aggregation_destroy(ecb, act);
11524			} else {
11525				kmem_free(act, sizeof (dtrace_action_t));
11526			}
11527		}
11528	}
11529
11530	ecb->dte_action = NULL;
11531	ecb->dte_action_last = NULL;
11532	ecb->dte_size = 0;
11533}
11534
11535static void
11536dtrace_ecb_disable(dtrace_ecb_t *ecb)
11537{
11538	/*
11539	 * We disable the ECB by removing it from its probe.
11540	 */
11541	dtrace_ecb_t *pecb, *prev = NULL;
11542	dtrace_probe_t *probe = ecb->dte_probe;
11543
11544	ASSERT(MUTEX_HELD(&dtrace_lock));
11545
11546	if (probe == NULL) {
11547		/*
11548		 * This is the NULL probe; there is nothing to disable.
11549		 */
11550		return;
11551	}
11552
11553	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
11554		if (pecb == ecb)
11555			break;
11556		prev = pecb;
11557	}
11558
11559	ASSERT(pecb != NULL);
11560
11561	if (prev == NULL) {
11562		probe->dtpr_ecb = ecb->dte_next;
11563	} else {
11564		prev->dte_next = ecb->dte_next;
11565	}
11566
11567	if (ecb == probe->dtpr_ecb_last) {
11568		ASSERT(ecb->dte_next == NULL);
11569		probe->dtpr_ecb_last = prev;
11570	}
11571
11572	/*
11573	 * The ECB has been disconnected from the probe; now sync to assure
11574	 * that all CPUs have seen the change before returning.
11575	 */
11576	dtrace_sync();
11577
11578	if (probe->dtpr_ecb == NULL) {
11579		/*
11580		 * That was the last ECB on the probe; clear the predicate
11581		 * cache ID for the probe, disable it and sync one more time
11582		 * to assure that we'll never hit it again.
11583		 */
11584		dtrace_provider_t *prov = probe->dtpr_provider;
11585
11586		ASSERT(ecb->dte_next == NULL);
11587		ASSERT(probe->dtpr_ecb_last == NULL);
11588		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
11589		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
11590		    probe->dtpr_id, probe->dtpr_arg);
11591		dtrace_sync();
11592	} else {
11593		/*
11594		 * There is at least one ECB remaining on the probe.  If there
11595		 * is _exactly_ one, set the probe's predicate cache ID to be
11596		 * the predicate cache ID of the remaining ECB.
11597		 */
11598		ASSERT(probe->dtpr_ecb_last != NULL);
11599		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
11600
11601		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
11602			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
11603
11604			ASSERT(probe->dtpr_ecb->dte_next == NULL);
11605
11606			if (p != NULL)
11607				probe->dtpr_predcache = p->dtp_cacheid;
11608		}
11609
11610		ecb->dte_next = NULL;
11611	}
11612}
11613
11614static void
11615dtrace_ecb_destroy(dtrace_ecb_t *ecb)
11616{
11617	dtrace_state_t *state = ecb->dte_state;
11618	dtrace_vstate_t *vstate = &state->dts_vstate;
11619	dtrace_predicate_t *pred;
11620	dtrace_epid_t epid = ecb->dte_epid;
11621
11622	ASSERT(MUTEX_HELD(&dtrace_lock));
11623	ASSERT(ecb->dte_next == NULL);
11624	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
11625
11626	if ((pred = ecb->dte_predicate) != NULL)
11627		dtrace_predicate_release(pred, vstate);
11628
11629	dtrace_ecb_action_remove(ecb);
11630
11631	ASSERT(state->dts_ecbs[epid - 1] == ecb);
11632	state->dts_ecbs[epid - 1] = NULL;
11633
11634	kmem_free(ecb, sizeof (dtrace_ecb_t));
11635}
11636
11637static dtrace_ecb_t *
11638dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
11639    dtrace_enabling_t *enab)
11640{
11641	dtrace_ecb_t *ecb;
11642	dtrace_predicate_t *pred;
11643	dtrace_actdesc_t *act;
11644	dtrace_provider_t *prov;
11645	dtrace_ecbdesc_t *desc = enab->dten_current;
11646
11647	ASSERT(MUTEX_HELD(&dtrace_lock));
11648	ASSERT(state != NULL);
11649
11650	ecb = dtrace_ecb_add(state, probe);
11651	ecb->dte_uarg = desc->dted_uarg;
11652
11653	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11654		dtrace_predicate_hold(pred);
11655		ecb->dte_predicate = pred;
11656	}
11657
11658	if (probe != NULL) {
11659		/*
11660		 * If the provider shows more leg than the consumer is old
11661		 * enough to see, we need to enable the appropriate implicit
11662		 * predicate bits to prevent the ecb from activating at
11663		 * revealing times.
11664		 *
11665		 * Providers specifying DTRACE_PRIV_USER at register time
11666		 * are stating that they need the /proc-style privilege
11667		 * model to be enforced, and this is what DTRACE_COND_OWNER
11668		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11669		 */
11670		prov = probe->dtpr_provider;
11671		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11672		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11673			ecb->dte_cond |= DTRACE_COND_OWNER;
11674
11675		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11676		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11677			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11678
11679		/*
11680		 * If the provider shows us kernel innards and the user
11681		 * is lacking sufficient privilege, enable the
11682		 * DTRACE_COND_USERMODE implicit predicate.
11683		 */
11684		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11685		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11686			ecb->dte_cond |= DTRACE_COND_USERMODE;
11687	}
11688
11689	if (dtrace_ecb_create_cache != NULL) {
11690		/*
11691		 * If we have a cached ecb, we'll use its action list instead
11692		 * of creating our own (saving both time and space).
11693		 */
11694		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11695		dtrace_action_t *act = cached->dte_action;
11696
11697		if (act != NULL) {
11698			ASSERT(act->dta_refcnt > 0);
11699			act->dta_refcnt++;
11700			ecb->dte_action = act;
11701			ecb->dte_action_last = cached->dte_action_last;
11702			ecb->dte_needed = cached->dte_needed;
11703			ecb->dte_size = cached->dte_size;
11704			ecb->dte_alignment = cached->dte_alignment;
11705		}
11706
11707		return (ecb);
11708	}
11709
11710	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11711		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11712			dtrace_ecb_destroy(ecb);
11713			return (NULL);
11714		}
11715	}
11716
11717	dtrace_ecb_resize(ecb);
11718
11719	return (dtrace_ecb_create_cache = ecb);
11720}
11721
11722static int
11723dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11724{
11725	dtrace_ecb_t *ecb;
11726	dtrace_enabling_t *enab = arg;
11727	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11728
11729	ASSERT(state != NULL);
11730
11731	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11732		/*
11733		 * This probe was created in a generation for which this
11734		 * enabling has previously created ECBs; we don't want to
11735		 * enable it again, so just kick out.
11736		 */
11737		return (DTRACE_MATCH_NEXT);
11738	}
11739
11740	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
11741		return (DTRACE_MATCH_DONE);
11742
11743	dtrace_ecb_enable(ecb);
11744	return (DTRACE_MATCH_NEXT);
11745}
11746
11747static dtrace_ecb_t *
11748dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
11749{
11750	dtrace_ecb_t *ecb;
11751
11752	ASSERT(MUTEX_HELD(&dtrace_lock));
11753
11754	if (id == 0 || id > state->dts_necbs)
11755		return (NULL);
11756
11757	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
11758	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
11759
11760	return (state->dts_ecbs[id - 1]);
11761}
11762
11763static dtrace_aggregation_t *
11764dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
11765{
11766	dtrace_aggregation_t *agg;
11767
11768	ASSERT(MUTEX_HELD(&dtrace_lock));
11769
11770	if (id == 0 || id > state->dts_naggregations)
11771		return (NULL);
11772
11773	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
11774	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
11775	    agg->dtag_id == id);
11776
11777	return (state->dts_aggregations[id - 1]);
11778}
11779
11780/*
11781 * DTrace Buffer Functions
11782 *
11783 * The following functions manipulate DTrace buffers.  Most of these functions
11784 * are called in the context of establishing or processing consumer state;
11785 * exceptions are explicitly noted.
11786 */
11787
11788/*
11789 * Note:  called from cross call context.  This function switches the two
11790 * buffers on a given CPU.  The atomicity of this operation is assured by
11791 * disabling interrupts while the actual switch takes place; the disabling of
11792 * interrupts serializes the execution with any execution of dtrace_probe() on
11793 * the same CPU.
11794 */
11795static void
11796dtrace_buffer_switch(dtrace_buffer_t *buf)
11797{
11798	caddr_t tomax = buf->dtb_tomax;
11799	caddr_t xamot = buf->dtb_xamot;
11800	dtrace_icookie_t cookie;
11801	hrtime_t now;
11802
11803	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11804	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
11805
11806	cookie = dtrace_interrupt_disable();
11807	now = dtrace_gethrtime();
11808	buf->dtb_tomax = xamot;
11809	buf->dtb_xamot = tomax;
11810	buf->dtb_xamot_drops = buf->dtb_drops;
11811	buf->dtb_xamot_offset = buf->dtb_offset;
11812	buf->dtb_xamot_errors = buf->dtb_errors;
11813	buf->dtb_xamot_flags = buf->dtb_flags;
11814	buf->dtb_offset = 0;
11815	buf->dtb_drops = 0;
11816	buf->dtb_errors = 0;
11817	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
11818	buf->dtb_interval = now - buf->dtb_switched;
11819	buf->dtb_switched = now;
11820	dtrace_interrupt_enable(cookie);
11821}
11822
11823/*
11824 * Note:  called from cross call context.  This function activates a buffer
11825 * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
11826 * is guaranteed by the disabling of interrupts.
11827 */
11828static void
11829dtrace_buffer_activate(dtrace_state_t *state)
11830{
11831	dtrace_buffer_t *buf;
11832	dtrace_icookie_t cookie = dtrace_interrupt_disable();
11833
11834	buf = &state->dts_buffer[curcpu];
11835
11836	if (buf->dtb_tomax != NULL) {
11837		/*
11838		 * We might like to assert that the buffer is marked inactive,
11839		 * but this isn't necessarily true:  the buffer for the CPU
11840		 * that processes the BEGIN probe has its buffer activated
11841		 * manually.  In this case, we take the (harmless) action
11842		 * re-clearing the bit INACTIVE bit.
11843		 */
11844		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
11845	}
11846
11847	dtrace_interrupt_enable(cookie);
11848}
11849
11850static int
11851dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
11852    processorid_t cpu, int *factor)
11853{
11854#ifdef illumos
11855	cpu_t *cp;
11856#endif
11857	dtrace_buffer_t *buf;
11858	int allocated = 0, desired = 0;
11859
11860#ifdef illumos
11861	ASSERT(MUTEX_HELD(&cpu_lock));
11862	ASSERT(MUTEX_HELD(&dtrace_lock));
11863
11864	*factor = 1;
11865
11866	if (size > dtrace_nonroot_maxsize &&
11867	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
11868		return (EFBIG);
11869
11870	cp = cpu_list;
11871
11872	do {
11873		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11874			continue;
11875
11876		buf = &bufs[cp->cpu_id];
11877
11878		/*
11879		 * If there is already a buffer allocated for this CPU, it
11880		 * is only possible that this is a DR event.  In this case,
11881		 */
11882		if (buf->dtb_tomax != NULL) {
11883			ASSERT(buf->dtb_size == size);
11884			continue;
11885		}
11886
11887		ASSERT(buf->dtb_xamot == NULL);
11888
11889		if ((buf->dtb_tomax = kmem_zalloc(size,
11890		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11891			goto err;
11892
11893		buf->dtb_size = size;
11894		buf->dtb_flags = flags;
11895		buf->dtb_offset = 0;
11896		buf->dtb_drops = 0;
11897
11898		if (flags & DTRACEBUF_NOSWITCH)
11899			continue;
11900
11901		if ((buf->dtb_xamot = kmem_zalloc(size,
11902		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11903			goto err;
11904	} while ((cp = cp->cpu_next) != cpu_list);
11905
11906	return (0);
11907
11908err:
11909	cp = cpu_list;
11910
11911	do {
11912		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11913			continue;
11914
11915		buf = &bufs[cp->cpu_id];
11916		desired += 2;
11917
11918		if (buf->dtb_xamot != NULL) {
11919			ASSERT(buf->dtb_tomax != NULL);
11920			ASSERT(buf->dtb_size == size);
11921			kmem_free(buf->dtb_xamot, size);
11922			allocated++;
11923		}
11924
11925		if (buf->dtb_tomax != NULL) {
11926			ASSERT(buf->dtb_size == size);
11927			kmem_free(buf->dtb_tomax, size);
11928			allocated++;
11929		}
11930
11931		buf->dtb_tomax = NULL;
11932		buf->dtb_xamot = NULL;
11933		buf->dtb_size = 0;
11934	} while ((cp = cp->cpu_next) != cpu_list);
11935#else
11936	int i;
11937
11938	*factor = 1;
11939#if defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
11940	/*
11941	 * FreeBSD isn't good at limiting the amount of memory we
11942	 * ask to malloc, so let's place a limit here before trying
11943	 * to do something that might well end in tears at bedtime.
11944	 */
11945	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
11946		return (ENOMEM);
11947#endif
11948
11949	ASSERT(MUTEX_HELD(&dtrace_lock));
11950	CPU_FOREACH(i) {
11951		if (cpu != DTRACE_CPUALL && cpu != i)
11952			continue;
11953
11954		buf = &bufs[i];
11955
11956		/*
11957		 * If there is already a buffer allocated for this CPU, it
11958		 * is only possible that this is a DR event.  In this case,
11959		 * the buffer size must match our specified size.
11960		 */
11961		if (buf->dtb_tomax != NULL) {
11962			ASSERT(buf->dtb_size == size);
11963			continue;
11964		}
11965
11966		ASSERT(buf->dtb_xamot == NULL);
11967
11968		if ((buf->dtb_tomax = kmem_zalloc(size,
11969		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11970			goto err;
11971
11972		buf->dtb_size = size;
11973		buf->dtb_flags = flags;
11974		buf->dtb_offset = 0;
11975		buf->dtb_drops = 0;
11976
11977		if (flags & DTRACEBUF_NOSWITCH)
11978			continue;
11979
11980		if ((buf->dtb_xamot = kmem_zalloc(size,
11981		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11982			goto err;
11983	}
11984
11985	return (0);
11986
11987err:
11988	/*
11989	 * Error allocating memory, so free the buffers that were
11990	 * allocated before the failed allocation.
11991	 */
11992	CPU_FOREACH(i) {
11993		if (cpu != DTRACE_CPUALL && cpu != i)
11994			continue;
11995
11996		buf = &bufs[i];
11997		desired += 2;
11998
11999		if (buf->dtb_xamot != NULL) {
12000			ASSERT(buf->dtb_tomax != NULL);
12001			ASSERT(buf->dtb_size == size);
12002			kmem_free(buf->dtb_xamot, size);
12003			allocated++;
12004		}
12005
12006		if (buf->dtb_tomax != NULL) {
12007			ASSERT(buf->dtb_size == size);
12008			kmem_free(buf->dtb_tomax, size);
12009			allocated++;
12010		}
12011
12012		buf->dtb_tomax = NULL;
12013		buf->dtb_xamot = NULL;
12014		buf->dtb_size = 0;
12015
12016	}
12017#endif
12018	*factor = desired / (allocated > 0 ? allocated : 1);
12019
12020	return (ENOMEM);
12021}
12022
12023/*
12024 * Note:  called from probe context.  This function just increments the drop
12025 * count on a buffer.  It has been made a function to allow for the
12026 * possibility of understanding the source of mysterious drop counts.  (A
12027 * problem for which one may be particularly disappointed that DTrace cannot
12028 * be used to understand DTrace.)
12029 */
12030static void
12031dtrace_buffer_drop(dtrace_buffer_t *buf)
12032{
12033	buf->dtb_drops++;
12034}
12035
12036/*
12037 * Note:  called from probe context.  This function is called to reserve space
12038 * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
12039 * mstate.  Returns the new offset in the buffer, or a negative value if an
12040 * error has occurred.
12041 */
12042static intptr_t
12043dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
12044    dtrace_state_t *state, dtrace_mstate_t *mstate)
12045{
12046	intptr_t offs = buf->dtb_offset, soffs;
12047	intptr_t woffs;
12048	caddr_t tomax;
12049	size_t total;
12050
12051	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
12052		return (-1);
12053
12054	if ((tomax = buf->dtb_tomax) == NULL) {
12055		dtrace_buffer_drop(buf);
12056		return (-1);
12057	}
12058
12059	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
12060		while (offs & (align - 1)) {
12061			/*
12062			 * Assert that our alignment is off by a number which
12063			 * is itself sizeof (uint32_t) aligned.
12064			 */
12065			ASSERT(!((align - (offs & (align - 1))) &
12066			    (sizeof (uint32_t) - 1)));
12067			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12068			offs += sizeof (uint32_t);
12069		}
12070
12071		if ((soffs = offs + needed) > buf->dtb_size) {
12072			dtrace_buffer_drop(buf);
12073			return (-1);
12074		}
12075
12076		if (mstate == NULL)
12077			return (offs);
12078
12079		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
12080		mstate->dtms_scratch_size = buf->dtb_size - soffs;
12081		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12082
12083		return (offs);
12084	}
12085
12086	if (buf->dtb_flags & DTRACEBUF_FILL) {
12087		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
12088		    (buf->dtb_flags & DTRACEBUF_FULL))
12089			return (-1);
12090		goto out;
12091	}
12092
12093	total = needed + (offs & (align - 1));
12094
12095	/*
12096	 * For a ring buffer, life is quite a bit more complicated.  Before
12097	 * we can store any padding, we need to adjust our wrapping offset.
12098	 * (If we've never before wrapped or we're not about to, no adjustment
12099	 * is required.)
12100	 */
12101	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
12102	    offs + total > buf->dtb_size) {
12103		woffs = buf->dtb_xamot_offset;
12104
12105		if (offs + total > buf->dtb_size) {
12106			/*
12107			 * We can't fit in the end of the buffer.  First, a
12108			 * sanity check that we can fit in the buffer at all.
12109			 */
12110			if (total > buf->dtb_size) {
12111				dtrace_buffer_drop(buf);
12112				return (-1);
12113			}
12114
12115			/*
12116			 * We're going to be storing at the top of the buffer,
12117			 * so now we need to deal with the wrapped offset.  We
12118			 * only reset our wrapped offset to 0 if it is
12119			 * currently greater than the current offset.  If it
12120			 * is less than the current offset, it is because a
12121			 * previous allocation induced a wrap -- but the
12122			 * allocation didn't subsequently take the space due
12123			 * to an error or false predicate evaluation.  In this
12124			 * case, we'll just leave the wrapped offset alone: if
12125			 * the wrapped offset hasn't been advanced far enough
12126			 * for this allocation, it will be adjusted in the
12127			 * lower loop.
12128			 */
12129			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
12130				if (woffs >= offs)
12131					woffs = 0;
12132			} else {
12133				woffs = 0;
12134			}
12135
12136			/*
12137			 * Now we know that we're going to be storing to the
12138			 * top of the buffer and that there is room for us
12139			 * there.  We need to clear the buffer from the current
12140			 * offset to the end (there may be old gunk there).
12141			 */
12142			while (offs < buf->dtb_size)
12143				tomax[offs++] = 0;
12144
12145			/*
12146			 * We need to set our offset to zero.  And because we
12147			 * are wrapping, we need to set the bit indicating as
12148			 * much.  We can also adjust our needed space back
12149			 * down to the space required by the ECB -- we know
12150			 * that the top of the buffer is aligned.
12151			 */
12152			offs = 0;
12153			total = needed;
12154			buf->dtb_flags |= DTRACEBUF_WRAPPED;
12155		} else {
12156			/*
12157			 * There is room for us in the buffer, so we simply
12158			 * need to check the wrapped offset.
12159			 */
12160			if (woffs < offs) {
12161				/*
12162				 * The wrapped offset is less than the offset.
12163				 * This can happen if we allocated buffer space
12164				 * that induced a wrap, but then we didn't
12165				 * subsequently take the space due to an error
12166				 * or false predicate evaluation.  This is
12167				 * okay; we know that _this_ allocation isn't
12168				 * going to induce a wrap.  We still can't
12169				 * reset the wrapped offset to be zero,
12170				 * however: the space may have been trashed in
12171				 * the previous failed probe attempt.  But at
12172				 * least the wrapped offset doesn't need to
12173				 * be adjusted at all...
12174				 */
12175				goto out;
12176			}
12177		}
12178
12179		while (offs + total > woffs) {
12180			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
12181			size_t size;
12182
12183			if (epid == DTRACE_EPIDNONE) {
12184				size = sizeof (uint32_t);
12185			} else {
12186				ASSERT3U(epid, <=, state->dts_necbs);
12187				ASSERT(state->dts_ecbs[epid - 1] != NULL);
12188
12189				size = state->dts_ecbs[epid - 1]->dte_size;
12190			}
12191
12192			ASSERT(woffs + size <= buf->dtb_size);
12193			ASSERT(size != 0);
12194
12195			if (woffs + size == buf->dtb_size) {
12196				/*
12197				 * We've reached the end of the buffer; we want
12198				 * to set the wrapped offset to 0 and break
12199				 * out.  However, if the offs is 0, then we're
12200				 * in a strange edge-condition:  the amount of
12201				 * space that we want to reserve plus the size
12202				 * of the record that we're overwriting is
12203				 * greater than the size of the buffer.  This
12204				 * is problematic because if we reserve the
12205				 * space but subsequently don't consume it (due
12206				 * to a failed predicate or error) the wrapped
12207				 * offset will be 0 -- yet the EPID at offset 0
12208				 * will not be committed.  This situation is
12209				 * relatively easy to deal with:  if we're in
12210				 * this case, the buffer is indistinguishable
12211				 * from one that hasn't wrapped; we need only
12212				 * finish the job by clearing the wrapped bit,
12213				 * explicitly setting the offset to be 0, and
12214				 * zero'ing out the old data in the buffer.
12215				 */
12216				if (offs == 0) {
12217					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
12218					buf->dtb_offset = 0;
12219					woffs = total;
12220
12221					while (woffs < buf->dtb_size)
12222						tomax[woffs++] = 0;
12223				}
12224
12225				woffs = 0;
12226				break;
12227			}
12228
12229			woffs += size;
12230		}
12231
12232		/*
12233		 * We have a wrapped offset.  It may be that the wrapped offset
12234		 * has become zero -- that's okay.
12235		 */
12236		buf->dtb_xamot_offset = woffs;
12237	}
12238
12239out:
12240	/*
12241	 * Now we can plow the buffer with any necessary padding.
12242	 */
12243	while (offs & (align - 1)) {
12244		/*
12245		 * Assert that our alignment is off by a number which
12246		 * is itself sizeof (uint32_t) aligned.
12247		 */
12248		ASSERT(!((align - (offs & (align - 1))) &
12249		    (sizeof (uint32_t) - 1)));
12250		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12251		offs += sizeof (uint32_t);
12252	}
12253
12254	if (buf->dtb_flags & DTRACEBUF_FILL) {
12255		if (offs + needed > buf->dtb_size - state->dts_reserve) {
12256			buf->dtb_flags |= DTRACEBUF_FULL;
12257			return (-1);
12258		}
12259	}
12260
12261	if (mstate == NULL)
12262		return (offs);
12263
12264	/*
12265	 * For ring buffers and fill buffers, the scratch space is always
12266	 * the inactive buffer.
12267	 */
12268	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
12269	mstate->dtms_scratch_size = buf->dtb_size;
12270	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12271
12272	return (offs);
12273}
12274
12275static void
12276dtrace_buffer_polish(dtrace_buffer_t *buf)
12277{
12278	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
12279	ASSERT(MUTEX_HELD(&dtrace_lock));
12280
12281	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
12282		return;
12283
12284	/*
12285	 * We need to polish the ring buffer.  There are three cases:
12286	 *
12287	 * - The first (and presumably most common) is that there is no gap
12288	 *   between the buffer offset and the wrapped offset.  In this case,
12289	 *   there is nothing in the buffer that isn't valid data; we can
12290	 *   mark the buffer as polished and return.
12291	 *
12292	 * - The second (less common than the first but still more common
12293	 *   than the third) is that there is a gap between the buffer offset
12294	 *   and the wrapped offset, and the wrapped offset is larger than the
12295	 *   buffer offset.  This can happen because of an alignment issue, or
12296	 *   can happen because of a call to dtrace_buffer_reserve() that
12297	 *   didn't subsequently consume the buffer space.  In this case,
12298	 *   we need to zero the data from the buffer offset to the wrapped
12299	 *   offset.
12300	 *
12301	 * - The third (and least common) is that there is a gap between the
12302	 *   buffer offset and the wrapped offset, but the wrapped offset is
12303	 *   _less_ than the buffer offset.  This can only happen because a
12304	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
12305	 *   was not subsequently consumed.  In this case, we need to zero the
12306	 *   space from the offset to the end of the buffer _and_ from the
12307	 *   top of the buffer to the wrapped offset.
12308	 */
12309	if (buf->dtb_offset < buf->dtb_xamot_offset) {
12310		bzero(buf->dtb_tomax + buf->dtb_offset,
12311		    buf->dtb_xamot_offset - buf->dtb_offset);
12312	}
12313
12314	if (buf->dtb_offset > buf->dtb_xamot_offset) {
12315		bzero(buf->dtb_tomax + buf->dtb_offset,
12316		    buf->dtb_size - buf->dtb_offset);
12317		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
12318	}
12319}
12320
12321/*
12322 * This routine determines if data generated at the specified time has likely
12323 * been entirely consumed at user-level.  This routine is called to determine
12324 * if an ECB on a defunct probe (but for an active enabling) can be safely
12325 * disabled and destroyed.
12326 */
12327static int
12328dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
12329{
12330	int i;
12331
12332	for (i = 0; i < NCPU; i++) {
12333		dtrace_buffer_t *buf = &bufs[i];
12334
12335		if (buf->dtb_size == 0)
12336			continue;
12337
12338		if (buf->dtb_flags & DTRACEBUF_RING)
12339			return (0);
12340
12341		if (!buf->dtb_switched && buf->dtb_offset != 0)
12342			return (0);
12343
12344		if (buf->dtb_switched - buf->dtb_interval < when)
12345			return (0);
12346	}
12347
12348	return (1);
12349}
12350
12351static void
12352dtrace_buffer_free(dtrace_buffer_t *bufs)
12353{
12354	int i;
12355
12356	for (i = 0; i < NCPU; i++) {
12357		dtrace_buffer_t *buf = &bufs[i];
12358
12359		if (buf->dtb_tomax == NULL) {
12360			ASSERT(buf->dtb_xamot == NULL);
12361			ASSERT(buf->dtb_size == 0);
12362			continue;
12363		}
12364
12365		if (buf->dtb_xamot != NULL) {
12366			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12367			kmem_free(buf->dtb_xamot, buf->dtb_size);
12368		}
12369
12370		kmem_free(buf->dtb_tomax, buf->dtb_size);
12371		buf->dtb_size = 0;
12372		buf->dtb_tomax = NULL;
12373		buf->dtb_xamot = NULL;
12374	}
12375}
12376
12377/*
12378 * DTrace Enabling Functions
12379 */
12380static dtrace_enabling_t *
12381dtrace_enabling_create(dtrace_vstate_t *vstate)
12382{
12383	dtrace_enabling_t *enab;
12384
12385	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
12386	enab->dten_vstate = vstate;
12387
12388	return (enab);
12389}
12390
12391static void
12392dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
12393{
12394	dtrace_ecbdesc_t **ndesc;
12395	size_t osize, nsize;
12396
12397	/*
12398	 * We can't add to enablings after we've enabled them, or after we've
12399	 * retained them.
12400	 */
12401	ASSERT(enab->dten_probegen == 0);
12402	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12403
12404	if (enab->dten_ndesc < enab->dten_maxdesc) {
12405		enab->dten_desc[enab->dten_ndesc++] = ecb;
12406		return;
12407	}
12408
12409	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12410
12411	if (enab->dten_maxdesc == 0) {
12412		enab->dten_maxdesc = 1;
12413	} else {
12414		enab->dten_maxdesc <<= 1;
12415	}
12416
12417	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
12418
12419	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12420	ndesc = kmem_zalloc(nsize, KM_SLEEP);
12421	bcopy(enab->dten_desc, ndesc, osize);
12422	if (enab->dten_desc != NULL)
12423		kmem_free(enab->dten_desc, osize);
12424
12425	enab->dten_desc = ndesc;
12426	enab->dten_desc[enab->dten_ndesc++] = ecb;
12427}
12428
12429static void
12430dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
12431    dtrace_probedesc_t *pd)
12432{
12433	dtrace_ecbdesc_t *new;
12434	dtrace_predicate_t *pred;
12435	dtrace_actdesc_t *act;
12436
12437	/*
12438	 * We're going to create a new ECB description that matches the
12439	 * specified ECB in every way, but has the specified probe description.
12440	 */
12441	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12442
12443	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
12444		dtrace_predicate_hold(pred);
12445
12446	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
12447		dtrace_actdesc_hold(act);
12448
12449	new->dted_action = ecb->dted_action;
12450	new->dted_pred = ecb->dted_pred;
12451	new->dted_probe = *pd;
12452	new->dted_uarg = ecb->dted_uarg;
12453
12454	dtrace_enabling_add(enab, new);
12455}
12456
12457static void
12458dtrace_enabling_dump(dtrace_enabling_t *enab)
12459{
12460	int i;
12461
12462	for (i = 0; i < enab->dten_ndesc; i++) {
12463		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
12464
12465		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
12466		    desc->dtpd_provider, desc->dtpd_mod,
12467		    desc->dtpd_func, desc->dtpd_name);
12468	}
12469}
12470
12471static void
12472dtrace_enabling_destroy(dtrace_enabling_t *enab)
12473{
12474	int i;
12475	dtrace_ecbdesc_t *ep;
12476	dtrace_vstate_t *vstate = enab->dten_vstate;
12477
12478	ASSERT(MUTEX_HELD(&dtrace_lock));
12479
12480	for (i = 0; i < enab->dten_ndesc; i++) {
12481		dtrace_actdesc_t *act, *next;
12482		dtrace_predicate_t *pred;
12483
12484		ep = enab->dten_desc[i];
12485
12486		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
12487			dtrace_predicate_release(pred, vstate);
12488
12489		for (act = ep->dted_action; act != NULL; act = next) {
12490			next = act->dtad_next;
12491			dtrace_actdesc_release(act, vstate);
12492		}
12493
12494		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12495	}
12496
12497	if (enab->dten_desc != NULL)
12498		kmem_free(enab->dten_desc,
12499		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
12500
12501	/*
12502	 * If this was a retained enabling, decrement the dts_nretained count
12503	 * and take it off of the dtrace_retained list.
12504	 */
12505	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
12506	    dtrace_retained == enab) {
12507		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12508		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
12509		enab->dten_vstate->dtvs_state->dts_nretained--;
12510		dtrace_retained_gen++;
12511	}
12512
12513	if (enab->dten_prev == NULL) {
12514		if (dtrace_retained == enab) {
12515			dtrace_retained = enab->dten_next;
12516
12517			if (dtrace_retained != NULL)
12518				dtrace_retained->dten_prev = NULL;
12519		}
12520	} else {
12521		ASSERT(enab != dtrace_retained);
12522		ASSERT(dtrace_retained != NULL);
12523		enab->dten_prev->dten_next = enab->dten_next;
12524	}
12525
12526	if (enab->dten_next != NULL) {
12527		ASSERT(dtrace_retained != NULL);
12528		enab->dten_next->dten_prev = enab->dten_prev;
12529	}
12530
12531	kmem_free(enab, sizeof (dtrace_enabling_t));
12532}
12533
12534static int
12535dtrace_enabling_retain(dtrace_enabling_t *enab)
12536{
12537	dtrace_state_t *state;
12538
12539	ASSERT(MUTEX_HELD(&dtrace_lock));
12540	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12541	ASSERT(enab->dten_vstate != NULL);
12542
12543	state = enab->dten_vstate->dtvs_state;
12544	ASSERT(state != NULL);
12545
12546	/*
12547	 * We only allow each state to retain dtrace_retain_max enablings.
12548	 */
12549	if (state->dts_nretained >= dtrace_retain_max)
12550		return (ENOSPC);
12551
12552	state->dts_nretained++;
12553	dtrace_retained_gen++;
12554
12555	if (dtrace_retained == NULL) {
12556		dtrace_retained = enab;
12557		return (0);
12558	}
12559
12560	enab->dten_next = dtrace_retained;
12561	dtrace_retained->dten_prev = enab;
12562	dtrace_retained = enab;
12563
12564	return (0);
12565}
12566
12567static int
12568dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
12569    dtrace_probedesc_t *create)
12570{
12571	dtrace_enabling_t *new, *enab;
12572	int found = 0, err = ENOENT;
12573
12574	ASSERT(MUTEX_HELD(&dtrace_lock));
12575	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
12576	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
12577	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
12578	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
12579
12580	new = dtrace_enabling_create(&state->dts_vstate);
12581
12582	/*
12583	 * Iterate over all retained enablings, looking for enablings that
12584	 * match the specified state.
12585	 */
12586	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12587		int i;
12588
12589		/*
12590		 * dtvs_state can only be NULL for helper enablings -- and
12591		 * helper enablings can't be retained.
12592		 */
12593		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12594
12595		if (enab->dten_vstate->dtvs_state != state)
12596			continue;
12597
12598		/*
12599		 * Now iterate over each probe description; we're looking for
12600		 * an exact match to the specified probe description.
12601		 */
12602		for (i = 0; i < enab->dten_ndesc; i++) {
12603			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12604			dtrace_probedesc_t *pd = &ep->dted_probe;
12605
12606			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
12607				continue;
12608
12609			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
12610				continue;
12611
12612			if (strcmp(pd->dtpd_func, match->dtpd_func))
12613				continue;
12614
12615			if (strcmp(pd->dtpd_name, match->dtpd_name))
12616				continue;
12617
12618			/*
12619			 * We have a winning probe!  Add it to our growing
12620			 * enabling.
12621			 */
12622			found = 1;
12623			dtrace_enabling_addlike(new, ep, create);
12624		}
12625	}
12626
12627	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
12628		dtrace_enabling_destroy(new);
12629		return (err);
12630	}
12631
12632	return (0);
12633}
12634
12635static void
12636dtrace_enabling_retract(dtrace_state_t *state)
12637{
12638	dtrace_enabling_t *enab, *next;
12639
12640	ASSERT(MUTEX_HELD(&dtrace_lock));
12641
12642	/*
12643	 * Iterate over all retained enablings, destroy the enablings retained
12644	 * for the specified state.
12645	 */
12646	for (enab = dtrace_retained; enab != NULL; enab = next) {
12647		next = enab->dten_next;
12648
12649		/*
12650		 * dtvs_state can only be NULL for helper enablings -- and
12651		 * helper enablings can't be retained.
12652		 */
12653		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12654
12655		if (enab->dten_vstate->dtvs_state == state) {
12656			ASSERT(state->dts_nretained > 0);
12657			dtrace_enabling_destroy(enab);
12658		}
12659	}
12660
12661	ASSERT(state->dts_nretained == 0);
12662}
12663
12664static int
12665dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
12666{
12667	int i = 0;
12668	int matched = 0;
12669
12670	ASSERT(MUTEX_HELD(&cpu_lock));
12671	ASSERT(MUTEX_HELD(&dtrace_lock));
12672
12673	for (i = 0; i < enab->dten_ndesc; i++) {
12674		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12675
12676		enab->dten_current = ep;
12677		enab->dten_error = 0;
12678
12679		matched += dtrace_probe_enable(&ep->dted_probe, enab);
12680
12681		if (enab->dten_error != 0) {
12682			/*
12683			 * If we get an error half-way through enabling the
12684			 * probes, we kick out -- perhaps with some number of
12685			 * them enabled.  Leaving enabled probes enabled may
12686			 * be slightly confusing for user-level, but we expect
12687			 * that no one will attempt to actually drive on in
12688			 * the face of such errors.  If this is an anonymous
12689			 * enabling (indicated with a NULL nmatched pointer),
12690			 * we cmn_err() a message.  We aren't expecting to
12691			 * get such an error -- such as it can exist at all,
12692			 * it would be a result of corrupted DOF in the driver
12693			 * properties.
12694			 */
12695			if (nmatched == NULL) {
12696				cmn_err(CE_WARN, "dtrace_enabling_match() "
12697				    "error on %p: %d", (void *)ep,
12698				    enab->dten_error);
12699			}
12700
12701			return (enab->dten_error);
12702		}
12703	}
12704
12705	enab->dten_probegen = dtrace_probegen;
12706	if (nmatched != NULL)
12707		*nmatched = matched;
12708
12709	return (0);
12710}
12711
12712static void
12713dtrace_enabling_matchall(void)
12714{
12715	dtrace_enabling_t *enab;
12716
12717	mutex_enter(&cpu_lock);
12718	mutex_enter(&dtrace_lock);
12719
12720	/*
12721	 * Iterate over all retained enablings to see if any probes match
12722	 * against them.  We only perform this operation on enablings for which
12723	 * we have sufficient permissions by virtue of being in the global zone
12724	 * or in the same zone as the DTrace client.  Because we can be called
12725	 * after dtrace_detach() has been called, we cannot assert that there
12726	 * are retained enablings.  We can safely load from dtrace_retained,
12727	 * however:  the taskq_destroy() at the end of dtrace_detach() will
12728	 * block pending our completion.
12729	 */
12730	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12731#ifdef illumos
12732		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
12733
12734		if (INGLOBALZONE(curproc) ||
12735		    cr != NULL && getzoneid() == crgetzoneid(cr))
12736#endif
12737			(void) dtrace_enabling_match(enab, NULL);
12738	}
12739
12740	mutex_exit(&dtrace_lock);
12741	mutex_exit(&cpu_lock);
12742}
12743
12744/*
12745 * If an enabling is to be enabled without having matched probes (that is, if
12746 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
12747 * enabling must be _primed_ by creating an ECB for every ECB description.
12748 * This must be done to assure that we know the number of speculations, the
12749 * number of aggregations, the minimum buffer size needed, etc. before we
12750 * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
12751 * enabling any probes, we create ECBs for every ECB decription, but with a
12752 * NULL probe -- which is exactly what this function does.
12753 */
12754static void
12755dtrace_enabling_prime(dtrace_state_t *state)
12756{
12757	dtrace_enabling_t *enab;
12758	int i;
12759
12760	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12761		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12762
12763		if (enab->dten_vstate->dtvs_state != state)
12764			continue;
12765
12766		/*
12767		 * We don't want to prime an enabling more than once, lest
12768		 * we allow a malicious user to induce resource exhaustion.
12769		 * (The ECBs that result from priming an enabling aren't
12770		 * leaked -- but they also aren't deallocated until the
12771		 * consumer state is destroyed.)
12772		 */
12773		if (enab->dten_primed)
12774			continue;
12775
12776		for (i = 0; i < enab->dten_ndesc; i++) {
12777			enab->dten_current = enab->dten_desc[i];
12778			(void) dtrace_probe_enable(NULL, enab);
12779		}
12780
12781		enab->dten_primed = 1;
12782	}
12783}
12784
12785/*
12786 * Called to indicate that probes should be provided due to retained
12787 * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
12788 * must take an initial lap through the enabling calling the dtps_provide()
12789 * entry point explicitly to allow for autocreated probes.
12790 */
12791static void
12792dtrace_enabling_provide(dtrace_provider_t *prv)
12793{
12794	int i, all = 0;
12795	dtrace_probedesc_t desc;
12796	dtrace_genid_t gen;
12797
12798	ASSERT(MUTEX_HELD(&dtrace_lock));
12799	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
12800
12801	if (prv == NULL) {
12802		all = 1;
12803		prv = dtrace_provider;
12804	}
12805
12806	do {
12807		dtrace_enabling_t *enab;
12808		void *parg = prv->dtpv_arg;
12809
12810retry:
12811		gen = dtrace_retained_gen;
12812		for (enab = dtrace_retained; enab != NULL;
12813		    enab = enab->dten_next) {
12814			for (i = 0; i < enab->dten_ndesc; i++) {
12815				desc = enab->dten_desc[i]->dted_probe;
12816				mutex_exit(&dtrace_lock);
12817				prv->dtpv_pops.dtps_provide(parg, &desc);
12818				mutex_enter(&dtrace_lock);
12819				/*
12820				 * Process the retained enablings again if
12821				 * they have changed while we weren't holding
12822				 * dtrace_lock.
12823				 */
12824				if (gen != dtrace_retained_gen)
12825					goto retry;
12826			}
12827		}
12828	} while (all && (prv = prv->dtpv_next) != NULL);
12829
12830	mutex_exit(&dtrace_lock);
12831	dtrace_probe_provide(NULL, all ? NULL : prv);
12832	mutex_enter(&dtrace_lock);
12833}
12834
12835/*
12836 * Called to reap ECBs that are attached to probes from defunct providers.
12837 */
12838static void
12839dtrace_enabling_reap(void)
12840{
12841	dtrace_provider_t *prov;
12842	dtrace_probe_t *probe;
12843	dtrace_ecb_t *ecb;
12844	hrtime_t when;
12845	int i;
12846
12847	mutex_enter(&cpu_lock);
12848	mutex_enter(&dtrace_lock);
12849
12850	for (i = 0; i < dtrace_nprobes; i++) {
12851		if ((probe = dtrace_probes[i]) == NULL)
12852			continue;
12853
12854		if (probe->dtpr_ecb == NULL)
12855			continue;
12856
12857		prov = probe->dtpr_provider;
12858
12859		if ((when = prov->dtpv_defunct) == 0)
12860			continue;
12861
12862		/*
12863		 * We have ECBs on a defunct provider:  we want to reap these
12864		 * ECBs to allow the provider to unregister.  The destruction
12865		 * of these ECBs must be done carefully:  if we destroy the ECB
12866		 * and the consumer later wishes to consume an EPID that
12867		 * corresponds to the destroyed ECB (and if the EPID metadata
12868		 * has not been previously consumed), the consumer will abort
12869		 * processing on the unknown EPID.  To reduce (but not, sadly,
12870		 * eliminate) the possibility of this, we will only destroy an
12871		 * ECB for a defunct provider if, for the state that
12872		 * corresponds to the ECB:
12873		 *
12874		 *  (a)	There is no speculative tracing (which can effectively
12875		 *	cache an EPID for an arbitrary amount of time).
12876		 *
12877		 *  (b)	The principal buffers have been switched twice since the
12878		 *	provider became defunct.
12879		 *
12880		 *  (c)	The aggregation buffers are of zero size or have been
12881		 *	switched twice since the provider became defunct.
12882		 *
12883		 * We use dts_speculates to determine (a) and call a function
12884		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
12885		 * that as soon as we've been unable to destroy one of the ECBs
12886		 * associated with the probe, we quit trying -- reaping is only
12887		 * fruitful in as much as we can destroy all ECBs associated
12888		 * with the defunct provider's probes.
12889		 */
12890		while ((ecb = probe->dtpr_ecb) != NULL) {
12891			dtrace_state_t *state = ecb->dte_state;
12892			dtrace_buffer_t *buf = state->dts_buffer;
12893			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
12894
12895			if (state->dts_speculates)
12896				break;
12897
12898			if (!dtrace_buffer_consumed(buf, when))
12899				break;
12900
12901			if (!dtrace_buffer_consumed(aggbuf, when))
12902				break;
12903
12904			dtrace_ecb_disable(ecb);
12905			ASSERT(probe->dtpr_ecb != ecb);
12906			dtrace_ecb_destroy(ecb);
12907		}
12908	}
12909
12910	mutex_exit(&dtrace_lock);
12911	mutex_exit(&cpu_lock);
12912}
12913
12914/*
12915 * DTrace DOF Functions
12916 */
12917/*ARGSUSED*/
12918static void
12919dtrace_dof_error(dof_hdr_t *dof, const char *str)
12920{
12921	if (dtrace_err_verbose)
12922		cmn_err(CE_WARN, "failed to process DOF: %s", str);
12923
12924#ifdef DTRACE_ERRDEBUG
12925	dtrace_errdebug(str);
12926#endif
12927}
12928
12929/*
12930 * Create DOF out of a currently enabled state.  Right now, we only create
12931 * DOF containing the run-time options -- but this could be expanded to create
12932 * complete DOF representing the enabled state.
12933 */
12934static dof_hdr_t *
12935dtrace_dof_create(dtrace_state_t *state)
12936{
12937	dof_hdr_t *dof;
12938	dof_sec_t *sec;
12939	dof_optdesc_t *opt;
12940	int i, len = sizeof (dof_hdr_t) +
12941	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
12942	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12943
12944	ASSERT(MUTEX_HELD(&dtrace_lock));
12945
12946	dof = kmem_zalloc(len, KM_SLEEP);
12947	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
12948	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
12949	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
12950	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
12951
12952	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
12953	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
12954	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
12955	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
12956	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
12957	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
12958
12959	dof->dofh_flags = 0;
12960	dof->dofh_hdrsize = sizeof (dof_hdr_t);
12961	dof->dofh_secsize = sizeof (dof_sec_t);
12962	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
12963	dof->dofh_secoff = sizeof (dof_hdr_t);
12964	dof->dofh_loadsz = len;
12965	dof->dofh_filesz = len;
12966	dof->dofh_pad = 0;
12967
12968	/*
12969	 * Fill in the option section header...
12970	 */
12971	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
12972	sec->dofs_type = DOF_SECT_OPTDESC;
12973	sec->dofs_align = sizeof (uint64_t);
12974	sec->dofs_flags = DOF_SECF_LOAD;
12975	sec->dofs_entsize = sizeof (dof_optdesc_t);
12976
12977	opt = (dof_optdesc_t *)((uintptr_t)sec +
12978	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
12979
12980	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
12981	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12982
12983	for (i = 0; i < DTRACEOPT_MAX; i++) {
12984		opt[i].dofo_option = i;
12985		opt[i].dofo_strtab = DOF_SECIDX_NONE;
12986		opt[i].dofo_value = state->dts_options[i];
12987	}
12988
12989	return (dof);
12990}
12991
12992static dof_hdr_t *
12993dtrace_dof_copyin(uintptr_t uarg, int *errp)
12994{
12995	dof_hdr_t hdr, *dof;
12996
12997	ASSERT(!MUTEX_HELD(&dtrace_lock));
12998
12999	/*
13000	 * First, we're going to copyin() the sizeof (dof_hdr_t).
13001	 */
13002	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
13003		dtrace_dof_error(NULL, "failed to copyin DOF header");
13004		*errp = EFAULT;
13005		return (NULL);
13006	}
13007
13008	/*
13009	 * Now we'll allocate the entire DOF and copy it in -- provided
13010	 * that the length isn't outrageous.
13011	 */
13012	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13013		dtrace_dof_error(&hdr, "load size exceeds maximum");
13014		*errp = E2BIG;
13015		return (NULL);
13016	}
13017
13018	if (hdr.dofh_loadsz < sizeof (hdr)) {
13019		dtrace_dof_error(&hdr, "invalid load size");
13020		*errp = EINVAL;
13021		return (NULL);
13022	}
13023
13024	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
13025
13026	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
13027	    dof->dofh_loadsz != hdr.dofh_loadsz) {
13028		kmem_free(dof, hdr.dofh_loadsz);
13029		*errp = EFAULT;
13030		return (NULL);
13031	}
13032
13033	return (dof);
13034}
13035
13036#ifndef illumos
13037static __inline uchar_t
13038dtrace_dof_char(char c) {
13039	switch (c) {
13040	case '0':
13041	case '1':
13042	case '2':
13043	case '3':
13044	case '4':
13045	case '5':
13046	case '6':
13047	case '7':
13048	case '8':
13049	case '9':
13050		return (c - '0');
13051	case 'A':
13052	case 'B':
13053	case 'C':
13054	case 'D':
13055	case 'E':
13056	case 'F':
13057		return (c - 'A' + 10);
13058	case 'a':
13059	case 'b':
13060	case 'c':
13061	case 'd':
13062	case 'e':
13063	case 'f':
13064		return (c - 'a' + 10);
13065	}
13066	/* Should not reach here. */
13067	return (0);
13068}
13069#endif
13070
13071static dof_hdr_t *
13072dtrace_dof_property(const char *name)
13073{
13074	uchar_t *buf;
13075	uint64_t loadsz;
13076	unsigned int len, i;
13077	dof_hdr_t *dof;
13078
13079#ifdef illumos
13080	/*
13081	 * Unfortunately, array of values in .conf files are always (and
13082	 * only) interpreted to be integer arrays.  We must read our DOF
13083	 * as an integer array, and then squeeze it into a byte array.
13084	 */
13085	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
13086	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
13087		return (NULL);
13088
13089	for (i = 0; i < len; i++)
13090		buf[i] = (uchar_t)(((int *)buf)[i]);
13091
13092	if (len < sizeof (dof_hdr_t)) {
13093		ddi_prop_free(buf);
13094		dtrace_dof_error(NULL, "truncated header");
13095		return (NULL);
13096	}
13097
13098	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
13099		ddi_prop_free(buf);
13100		dtrace_dof_error(NULL, "truncated DOF");
13101		return (NULL);
13102	}
13103
13104	if (loadsz >= dtrace_dof_maxsize) {
13105		ddi_prop_free(buf);
13106		dtrace_dof_error(NULL, "oversized DOF");
13107		return (NULL);
13108	}
13109
13110	dof = kmem_alloc(loadsz, KM_SLEEP);
13111	bcopy(buf, dof, loadsz);
13112	ddi_prop_free(buf);
13113#else
13114	char *p;
13115	char *p_env;
13116
13117	if ((p_env = getenv(name)) == NULL)
13118		return (NULL);
13119
13120	len = strlen(p_env) / 2;
13121
13122	buf = kmem_alloc(len, KM_SLEEP);
13123
13124	dof = (dof_hdr_t *) buf;
13125
13126	p = p_env;
13127
13128	for (i = 0; i < len; i++) {
13129		buf[i] = (dtrace_dof_char(p[0]) << 4) |
13130		     dtrace_dof_char(p[1]);
13131		p += 2;
13132	}
13133
13134	freeenv(p_env);
13135
13136	if (len < sizeof (dof_hdr_t)) {
13137		kmem_free(buf, 0);
13138		dtrace_dof_error(NULL, "truncated header");
13139		return (NULL);
13140	}
13141
13142	if (len < (loadsz = dof->dofh_loadsz)) {
13143		kmem_free(buf, 0);
13144		dtrace_dof_error(NULL, "truncated DOF");
13145		return (NULL);
13146	}
13147
13148	if (loadsz >= dtrace_dof_maxsize) {
13149		kmem_free(buf, 0);
13150		dtrace_dof_error(NULL, "oversized DOF");
13151		return (NULL);
13152	}
13153#endif
13154
13155	return (dof);
13156}
13157
13158static void
13159dtrace_dof_destroy(dof_hdr_t *dof)
13160{
13161	kmem_free(dof, dof->dofh_loadsz);
13162}
13163
13164/*
13165 * Return the dof_sec_t pointer corresponding to a given section index.  If the
13166 * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
13167 * a type other than DOF_SECT_NONE is specified, the header is checked against
13168 * this type and NULL is returned if the types do not match.
13169 */
13170static dof_sec_t *
13171dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
13172{
13173	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
13174	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
13175
13176	if (i >= dof->dofh_secnum) {
13177		dtrace_dof_error(dof, "referenced section index is invalid");
13178		return (NULL);
13179	}
13180
13181	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
13182		dtrace_dof_error(dof, "referenced section is not loadable");
13183		return (NULL);
13184	}
13185
13186	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
13187		dtrace_dof_error(dof, "referenced section is the wrong type");
13188		return (NULL);
13189	}
13190
13191	return (sec);
13192}
13193
13194static dtrace_probedesc_t *
13195dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
13196{
13197	dof_probedesc_t *probe;
13198	dof_sec_t *strtab;
13199	uintptr_t daddr = (uintptr_t)dof;
13200	uintptr_t str;
13201	size_t size;
13202
13203	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
13204		dtrace_dof_error(dof, "invalid probe section");
13205		return (NULL);
13206	}
13207
13208	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13209		dtrace_dof_error(dof, "bad alignment in probe description");
13210		return (NULL);
13211	}
13212
13213	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
13214		dtrace_dof_error(dof, "truncated probe description");
13215		return (NULL);
13216	}
13217
13218	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
13219	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
13220
13221	if (strtab == NULL)
13222		return (NULL);
13223
13224	str = daddr + strtab->dofs_offset;
13225	size = strtab->dofs_size;
13226
13227	if (probe->dofp_provider >= strtab->dofs_size) {
13228		dtrace_dof_error(dof, "corrupt probe provider");
13229		return (NULL);
13230	}
13231
13232	(void) strncpy(desc->dtpd_provider,
13233	    (char *)(str + probe->dofp_provider),
13234	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
13235
13236	if (probe->dofp_mod >= strtab->dofs_size) {
13237		dtrace_dof_error(dof, "corrupt probe module");
13238		return (NULL);
13239	}
13240
13241	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
13242	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
13243
13244	if (probe->dofp_func >= strtab->dofs_size) {
13245		dtrace_dof_error(dof, "corrupt probe function");
13246		return (NULL);
13247	}
13248
13249	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
13250	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
13251
13252	if (probe->dofp_name >= strtab->dofs_size) {
13253		dtrace_dof_error(dof, "corrupt probe name");
13254		return (NULL);
13255	}
13256
13257	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
13258	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
13259
13260	return (desc);
13261}
13262
13263static dtrace_difo_t *
13264dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13265    cred_t *cr)
13266{
13267	dtrace_difo_t *dp;
13268	size_t ttl = 0;
13269	dof_difohdr_t *dofd;
13270	uintptr_t daddr = (uintptr_t)dof;
13271	size_t max = dtrace_difo_maxsize;
13272	int i, l, n;
13273
13274	static const struct {
13275		int section;
13276		int bufoffs;
13277		int lenoffs;
13278		int entsize;
13279		int align;
13280		const char *msg;
13281	} difo[] = {
13282		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
13283		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
13284		sizeof (dif_instr_t), "multiple DIF sections" },
13285
13286		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
13287		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
13288		sizeof (uint64_t), "multiple integer tables" },
13289
13290		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
13291		offsetof(dtrace_difo_t, dtdo_strlen), 0,
13292		sizeof (char), "multiple string tables" },
13293
13294		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
13295		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
13296		sizeof (uint_t), "multiple variable tables" },
13297
13298		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
13299	};
13300
13301	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
13302		dtrace_dof_error(dof, "invalid DIFO header section");
13303		return (NULL);
13304	}
13305
13306	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13307		dtrace_dof_error(dof, "bad alignment in DIFO header");
13308		return (NULL);
13309	}
13310
13311	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
13312	    sec->dofs_size % sizeof (dof_secidx_t)) {
13313		dtrace_dof_error(dof, "bad size in DIFO header");
13314		return (NULL);
13315	}
13316
13317	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13318	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
13319
13320	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
13321	dp->dtdo_rtype = dofd->dofd_rtype;
13322
13323	for (l = 0; l < n; l++) {
13324		dof_sec_t *subsec;
13325		void **bufp;
13326		uint32_t *lenp;
13327
13328		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
13329		    dofd->dofd_links[l])) == NULL)
13330			goto err; /* invalid section link */
13331
13332		if (ttl + subsec->dofs_size > max) {
13333			dtrace_dof_error(dof, "exceeds maximum size");
13334			goto err;
13335		}
13336
13337		ttl += subsec->dofs_size;
13338
13339		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
13340			if (subsec->dofs_type != difo[i].section)
13341				continue;
13342
13343			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
13344				dtrace_dof_error(dof, "section not loaded");
13345				goto err;
13346			}
13347
13348			if (subsec->dofs_align != difo[i].align) {
13349				dtrace_dof_error(dof, "bad alignment");
13350				goto err;
13351			}
13352
13353			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
13354			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
13355
13356			if (*bufp != NULL) {
13357				dtrace_dof_error(dof, difo[i].msg);
13358				goto err;
13359			}
13360
13361			if (difo[i].entsize != subsec->dofs_entsize) {
13362				dtrace_dof_error(dof, "entry size mismatch");
13363				goto err;
13364			}
13365
13366			if (subsec->dofs_entsize != 0 &&
13367			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
13368				dtrace_dof_error(dof, "corrupt entry size");
13369				goto err;
13370			}
13371
13372			*lenp = subsec->dofs_size;
13373			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
13374			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
13375			    *bufp, subsec->dofs_size);
13376
13377			if (subsec->dofs_entsize != 0)
13378				*lenp /= subsec->dofs_entsize;
13379
13380			break;
13381		}
13382
13383		/*
13384		 * If we encounter a loadable DIFO sub-section that is not
13385		 * known to us, assume this is a broken program and fail.
13386		 */
13387		if (difo[i].section == DOF_SECT_NONE &&
13388		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
13389			dtrace_dof_error(dof, "unrecognized DIFO subsection");
13390			goto err;
13391		}
13392	}
13393
13394	if (dp->dtdo_buf == NULL) {
13395		/*
13396		 * We can't have a DIF object without DIF text.
13397		 */
13398		dtrace_dof_error(dof, "missing DIF text");
13399		goto err;
13400	}
13401
13402	/*
13403	 * Before we validate the DIF object, run through the variable table
13404	 * looking for the strings -- if any of their size are under, we'll set
13405	 * their size to be the system-wide default string size.  Note that
13406	 * this should _not_ happen if the "strsize" option has been set --
13407	 * in this case, the compiler should have set the size to reflect the
13408	 * setting of the option.
13409	 */
13410	for (i = 0; i < dp->dtdo_varlen; i++) {
13411		dtrace_difv_t *v = &dp->dtdo_vartab[i];
13412		dtrace_diftype_t *t = &v->dtdv_type;
13413
13414		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
13415			continue;
13416
13417		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
13418			t->dtdt_size = dtrace_strsize_default;
13419	}
13420
13421	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
13422		goto err;
13423
13424	dtrace_difo_init(dp, vstate);
13425	return (dp);
13426
13427err:
13428	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
13429	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
13430	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
13431	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
13432
13433	kmem_free(dp, sizeof (dtrace_difo_t));
13434	return (NULL);
13435}
13436
13437static dtrace_predicate_t *
13438dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13439    cred_t *cr)
13440{
13441	dtrace_difo_t *dp;
13442
13443	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
13444		return (NULL);
13445
13446	return (dtrace_predicate_create(dp));
13447}
13448
13449static dtrace_actdesc_t *
13450dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13451    cred_t *cr)
13452{
13453	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
13454	dof_actdesc_t *desc;
13455	dof_sec_t *difosec;
13456	size_t offs;
13457	uintptr_t daddr = (uintptr_t)dof;
13458	uint64_t arg;
13459	dtrace_actkind_t kind;
13460
13461	if (sec->dofs_type != DOF_SECT_ACTDESC) {
13462		dtrace_dof_error(dof, "invalid action section");
13463		return (NULL);
13464	}
13465
13466	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
13467		dtrace_dof_error(dof, "truncated action description");
13468		return (NULL);
13469	}
13470
13471	if (sec->dofs_align != sizeof (uint64_t)) {
13472		dtrace_dof_error(dof, "bad alignment in action description");
13473		return (NULL);
13474	}
13475
13476	if (sec->dofs_size < sec->dofs_entsize) {
13477		dtrace_dof_error(dof, "section entry size exceeds total size");
13478		return (NULL);
13479	}
13480
13481	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
13482		dtrace_dof_error(dof, "bad entry size in action description");
13483		return (NULL);
13484	}
13485
13486	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
13487		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
13488		return (NULL);
13489	}
13490
13491	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
13492		desc = (dof_actdesc_t *)(daddr +
13493		    (uintptr_t)sec->dofs_offset + offs);
13494		kind = (dtrace_actkind_t)desc->dofa_kind;
13495
13496		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
13497		    (kind != DTRACEACT_PRINTA ||
13498		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
13499		    (kind == DTRACEACT_DIFEXPR &&
13500		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
13501			dof_sec_t *strtab;
13502			char *str, *fmt;
13503			uint64_t i;
13504
13505			/*
13506			 * The argument to these actions is an index into the
13507			 * DOF string table.  For printf()-like actions, this
13508			 * is the format string.  For print(), this is the
13509			 * CTF type of the expression result.
13510			 */
13511			if ((strtab = dtrace_dof_sect(dof,
13512			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
13513				goto err;
13514
13515			str = (char *)((uintptr_t)dof +
13516			    (uintptr_t)strtab->dofs_offset);
13517
13518			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
13519				if (str[i] == '\0')
13520					break;
13521			}
13522
13523			if (i >= strtab->dofs_size) {
13524				dtrace_dof_error(dof, "bogus format string");
13525				goto err;
13526			}
13527
13528			if (i == desc->dofa_arg) {
13529				dtrace_dof_error(dof, "empty format string");
13530				goto err;
13531			}
13532
13533			i -= desc->dofa_arg;
13534			fmt = kmem_alloc(i + 1, KM_SLEEP);
13535			bcopy(&str[desc->dofa_arg], fmt, i + 1);
13536			arg = (uint64_t)(uintptr_t)fmt;
13537		} else {
13538			if (kind == DTRACEACT_PRINTA) {
13539				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
13540				arg = 0;
13541			} else {
13542				arg = desc->dofa_arg;
13543			}
13544		}
13545
13546		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
13547		    desc->dofa_uarg, arg);
13548
13549		if (last != NULL) {
13550			last->dtad_next = act;
13551		} else {
13552			first = act;
13553		}
13554
13555		last = act;
13556
13557		if (desc->dofa_difo == DOF_SECIDX_NONE)
13558			continue;
13559
13560		if ((difosec = dtrace_dof_sect(dof,
13561		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
13562			goto err;
13563
13564		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
13565
13566		if (act->dtad_difo == NULL)
13567			goto err;
13568	}
13569
13570	ASSERT(first != NULL);
13571	return (first);
13572
13573err:
13574	for (act = first; act != NULL; act = next) {
13575		next = act->dtad_next;
13576		dtrace_actdesc_release(act, vstate);
13577	}
13578
13579	return (NULL);
13580}
13581
13582static dtrace_ecbdesc_t *
13583dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13584    cred_t *cr)
13585{
13586	dtrace_ecbdesc_t *ep;
13587	dof_ecbdesc_t *ecb;
13588	dtrace_probedesc_t *desc;
13589	dtrace_predicate_t *pred = NULL;
13590
13591	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
13592		dtrace_dof_error(dof, "truncated ECB description");
13593		return (NULL);
13594	}
13595
13596	if (sec->dofs_align != sizeof (uint64_t)) {
13597		dtrace_dof_error(dof, "bad alignment in ECB description");
13598		return (NULL);
13599	}
13600
13601	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
13602	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
13603
13604	if (sec == NULL)
13605		return (NULL);
13606
13607	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
13608	ep->dted_uarg = ecb->dofe_uarg;
13609	desc = &ep->dted_probe;
13610
13611	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
13612		goto err;
13613
13614	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
13615		if ((sec = dtrace_dof_sect(dof,
13616		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
13617			goto err;
13618
13619		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
13620			goto err;
13621
13622		ep->dted_pred.dtpdd_predicate = pred;
13623	}
13624
13625	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
13626		if ((sec = dtrace_dof_sect(dof,
13627		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
13628			goto err;
13629
13630		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
13631
13632		if (ep->dted_action == NULL)
13633			goto err;
13634	}
13635
13636	return (ep);
13637
13638err:
13639	if (pred != NULL)
13640		dtrace_predicate_release(pred, vstate);
13641	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
13642	return (NULL);
13643}
13644
13645/*
13646 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
13647 * specified DOF.  At present, this amounts to simply adding 'ubase' to the
13648 * site of any user SETX relocations to account for load object base address.
13649 * In the future, if we need other relocations, this function can be extended.
13650 */
13651static int
13652dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
13653{
13654	uintptr_t daddr = (uintptr_t)dof;
13655	dof_relohdr_t *dofr =
13656	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13657	dof_sec_t *ss, *rs, *ts;
13658	dof_relodesc_t *r;
13659	uint_t i, n;
13660
13661	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
13662	    sec->dofs_align != sizeof (dof_secidx_t)) {
13663		dtrace_dof_error(dof, "invalid relocation header");
13664		return (-1);
13665	}
13666
13667	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
13668	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
13669	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
13670
13671	if (ss == NULL || rs == NULL || ts == NULL)
13672		return (-1); /* dtrace_dof_error() has been called already */
13673
13674	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
13675	    rs->dofs_align != sizeof (uint64_t)) {
13676		dtrace_dof_error(dof, "invalid relocation section");
13677		return (-1);
13678	}
13679
13680	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
13681	n = rs->dofs_size / rs->dofs_entsize;
13682
13683	for (i = 0; i < n; i++) {
13684		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
13685
13686		switch (r->dofr_type) {
13687		case DOF_RELO_NONE:
13688			break;
13689		case DOF_RELO_SETX:
13690			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
13691			    sizeof (uint64_t) > ts->dofs_size) {
13692				dtrace_dof_error(dof, "bad relocation offset");
13693				return (-1);
13694			}
13695
13696			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
13697				dtrace_dof_error(dof, "misaligned setx relo");
13698				return (-1);
13699			}
13700
13701			*(uint64_t *)taddr += ubase;
13702			break;
13703		default:
13704			dtrace_dof_error(dof, "invalid relocation type");
13705			return (-1);
13706		}
13707
13708		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
13709	}
13710
13711	return (0);
13712}
13713
13714/*
13715 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
13716 * header:  it should be at the front of a memory region that is at least
13717 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
13718 * size.  It need not be validated in any other way.
13719 */
13720static int
13721dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
13722    dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
13723{
13724	uint64_t len = dof->dofh_loadsz, seclen;
13725	uintptr_t daddr = (uintptr_t)dof;
13726	dtrace_ecbdesc_t *ep;
13727	dtrace_enabling_t *enab;
13728	uint_t i;
13729
13730	ASSERT(MUTEX_HELD(&dtrace_lock));
13731	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
13732
13733	/*
13734	 * Check the DOF header identification bytes.  In addition to checking
13735	 * valid settings, we also verify that unused bits/bytes are zeroed so
13736	 * we can use them later without fear of regressing existing binaries.
13737	 */
13738	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
13739	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
13740		dtrace_dof_error(dof, "DOF magic string mismatch");
13741		return (-1);
13742	}
13743
13744	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
13745	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
13746		dtrace_dof_error(dof, "DOF has invalid data model");
13747		return (-1);
13748	}
13749
13750	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
13751		dtrace_dof_error(dof, "DOF encoding mismatch");
13752		return (-1);
13753	}
13754
13755	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
13756	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
13757		dtrace_dof_error(dof, "DOF version mismatch");
13758		return (-1);
13759	}
13760
13761	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
13762		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
13763		return (-1);
13764	}
13765
13766	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
13767		dtrace_dof_error(dof, "DOF uses too many integer registers");
13768		return (-1);
13769	}
13770
13771	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
13772		dtrace_dof_error(dof, "DOF uses too many tuple registers");
13773		return (-1);
13774	}
13775
13776	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
13777		if (dof->dofh_ident[i] != 0) {
13778			dtrace_dof_error(dof, "DOF has invalid ident byte set");
13779			return (-1);
13780		}
13781	}
13782
13783	if (dof->dofh_flags & ~DOF_FL_VALID) {
13784		dtrace_dof_error(dof, "DOF has invalid flag bits set");
13785		return (-1);
13786	}
13787
13788	if (dof->dofh_secsize == 0) {
13789		dtrace_dof_error(dof, "zero section header size");
13790		return (-1);
13791	}
13792
13793	/*
13794	 * Check that the section headers don't exceed the amount of DOF
13795	 * data.  Note that we cast the section size and number of sections
13796	 * to uint64_t's to prevent possible overflow in the multiplication.
13797	 */
13798	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
13799
13800	if (dof->dofh_secoff > len || seclen > len ||
13801	    dof->dofh_secoff + seclen > len) {
13802		dtrace_dof_error(dof, "truncated section headers");
13803		return (-1);
13804	}
13805
13806	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
13807		dtrace_dof_error(dof, "misaligned section headers");
13808		return (-1);
13809	}
13810
13811	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
13812		dtrace_dof_error(dof, "misaligned section size");
13813		return (-1);
13814	}
13815
13816	/*
13817	 * Take an initial pass through the section headers to be sure that
13818	 * the headers don't have stray offsets.  If the 'noprobes' flag is
13819	 * set, do not permit sections relating to providers, probes, or args.
13820	 */
13821	for (i = 0; i < dof->dofh_secnum; i++) {
13822		dof_sec_t *sec = (dof_sec_t *)(daddr +
13823		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13824
13825		if (noprobes) {
13826			switch (sec->dofs_type) {
13827			case DOF_SECT_PROVIDER:
13828			case DOF_SECT_PROBES:
13829			case DOF_SECT_PRARGS:
13830			case DOF_SECT_PROFFS:
13831				dtrace_dof_error(dof, "illegal sections "
13832				    "for enabling");
13833				return (-1);
13834			}
13835		}
13836
13837		if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
13838		    !(sec->dofs_flags & DOF_SECF_LOAD)) {
13839			dtrace_dof_error(dof, "loadable section with load "
13840			    "flag unset");
13841			return (-1);
13842		}
13843
13844		if (!(sec->dofs_flags & DOF_SECF_LOAD))
13845			continue; /* just ignore non-loadable sections */
13846
13847		if (!ISP2(sec->dofs_align)) {
13848			dtrace_dof_error(dof, "bad section alignment");
13849			return (-1);
13850		}
13851
13852		if (sec->dofs_offset & (sec->dofs_align - 1)) {
13853			dtrace_dof_error(dof, "misaligned section");
13854			return (-1);
13855		}
13856
13857		if (sec->dofs_offset > len || sec->dofs_size > len ||
13858		    sec->dofs_offset + sec->dofs_size > len) {
13859			dtrace_dof_error(dof, "corrupt section header");
13860			return (-1);
13861		}
13862
13863		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
13864		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
13865			dtrace_dof_error(dof, "non-terminating string table");
13866			return (-1);
13867		}
13868	}
13869
13870	/*
13871	 * Take a second pass through the sections and locate and perform any
13872	 * relocations that are present.  We do this after the first pass to
13873	 * be sure that all sections have had their headers validated.
13874	 */
13875	for (i = 0; i < dof->dofh_secnum; i++) {
13876		dof_sec_t *sec = (dof_sec_t *)(daddr +
13877		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13878
13879		if (!(sec->dofs_flags & DOF_SECF_LOAD))
13880			continue; /* skip sections that are not loadable */
13881
13882		switch (sec->dofs_type) {
13883		case DOF_SECT_URELHDR:
13884			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
13885				return (-1);
13886			break;
13887		}
13888	}
13889
13890	if ((enab = *enabp) == NULL)
13891		enab = *enabp = dtrace_enabling_create(vstate);
13892
13893	for (i = 0; i < dof->dofh_secnum; i++) {
13894		dof_sec_t *sec = (dof_sec_t *)(daddr +
13895		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13896
13897		if (sec->dofs_type != DOF_SECT_ECBDESC)
13898			continue;
13899
13900		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
13901			dtrace_enabling_destroy(enab);
13902			*enabp = NULL;
13903			return (-1);
13904		}
13905
13906		dtrace_enabling_add(enab, ep);
13907	}
13908
13909	return (0);
13910}
13911
13912/*
13913 * Process DOF for any options.  This routine assumes that the DOF has been
13914 * at least processed by dtrace_dof_slurp().
13915 */
13916static int
13917dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
13918{
13919	int i, rval;
13920	uint32_t entsize;
13921	size_t offs;
13922	dof_optdesc_t *desc;
13923
13924	for (i = 0; i < dof->dofh_secnum; i++) {
13925		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
13926		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13927
13928		if (sec->dofs_type != DOF_SECT_OPTDESC)
13929			continue;
13930
13931		if (sec->dofs_align != sizeof (uint64_t)) {
13932			dtrace_dof_error(dof, "bad alignment in "
13933			    "option description");
13934			return (EINVAL);
13935		}
13936
13937		if ((entsize = sec->dofs_entsize) == 0) {
13938			dtrace_dof_error(dof, "zeroed option entry size");
13939			return (EINVAL);
13940		}
13941
13942		if (entsize < sizeof (dof_optdesc_t)) {
13943			dtrace_dof_error(dof, "bad option entry size");
13944			return (EINVAL);
13945		}
13946
13947		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
13948			desc = (dof_optdesc_t *)((uintptr_t)dof +
13949			    (uintptr_t)sec->dofs_offset + offs);
13950
13951			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
13952				dtrace_dof_error(dof, "non-zero option string");
13953				return (EINVAL);
13954			}
13955
13956			if (desc->dofo_value == DTRACEOPT_UNSET) {
13957				dtrace_dof_error(dof, "unset option");
13958				return (EINVAL);
13959			}
13960
13961			if ((rval = dtrace_state_option(state,
13962			    desc->dofo_option, desc->dofo_value)) != 0) {
13963				dtrace_dof_error(dof, "rejected option");
13964				return (rval);
13965			}
13966		}
13967	}
13968
13969	return (0);
13970}
13971
13972/*
13973 * DTrace Consumer State Functions
13974 */
13975static int
13976dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
13977{
13978	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
13979	void *base;
13980	uintptr_t limit;
13981	dtrace_dynvar_t *dvar, *next, *start;
13982	int i;
13983
13984	ASSERT(MUTEX_HELD(&dtrace_lock));
13985	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
13986
13987	bzero(dstate, sizeof (dtrace_dstate_t));
13988
13989	if ((dstate->dtds_chunksize = chunksize) == 0)
13990		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
13991
13992	VERIFY(dstate->dtds_chunksize < LONG_MAX);
13993
13994	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
13995		size = min;
13996
13997	if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
13998		return (ENOMEM);
13999
14000	dstate->dtds_size = size;
14001	dstate->dtds_base = base;
14002	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
14003	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
14004
14005	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
14006
14007	if (hashsize != 1 && (hashsize & 1))
14008		hashsize--;
14009
14010	dstate->dtds_hashsize = hashsize;
14011	dstate->dtds_hash = dstate->dtds_base;
14012
14013	/*
14014	 * Set all of our hash buckets to point to the single sink, and (if
14015	 * it hasn't already been set), set the sink's hash value to be the
14016	 * sink sentinel value.  The sink is needed for dynamic variable
14017	 * lookups to know that they have iterated over an entire, valid hash
14018	 * chain.
14019	 */
14020	for (i = 0; i < hashsize; i++)
14021		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
14022
14023	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
14024		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
14025
14026	/*
14027	 * Determine number of active CPUs.  Divide free list evenly among
14028	 * active CPUs.
14029	 */
14030	start = (dtrace_dynvar_t *)
14031	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
14032	limit = (uintptr_t)base + size;
14033
14034	VERIFY((uintptr_t)start < limit);
14035	VERIFY((uintptr_t)start >= (uintptr_t)base);
14036
14037	maxper = (limit - (uintptr_t)start) / NCPU;
14038	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
14039
14040#ifndef illumos
14041	CPU_FOREACH(i) {
14042#else
14043	for (i = 0; i < NCPU; i++) {
14044#endif
14045		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
14046
14047		/*
14048		 * If we don't even have enough chunks to make it once through
14049		 * NCPUs, we're just going to allocate everything to the first
14050		 * CPU.  And if we're on the last CPU, we're going to allocate
14051		 * whatever is left over.  In either case, we set the limit to
14052		 * be the limit of the dynamic variable space.
14053		 */
14054		if (maxper == 0 || i == NCPU - 1) {
14055			limit = (uintptr_t)base + size;
14056			start = NULL;
14057		} else {
14058			limit = (uintptr_t)start + maxper;
14059			start = (dtrace_dynvar_t *)limit;
14060		}
14061
14062		VERIFY(limit <= (uintptr_t)base + size);
14063
14064		for (;;) {
14065			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
14066			    dstate->dtds_chunksize);
14067
14068			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
14069				break;
14070
14071			VERIFY((uintptr_t)dvar >= (uintptr_t)base &&
14072			    (uintptr_t)dvar <= (uintptr_t)base + size);
14073			dvar->dtdv_next = next;
14074			dvar = next;
14075		}
14076
14077		if (maxper == 0)
14078			break;
14079	}
14080
14081	return (0);
14082}
14083
14084static void
14085dtrace_dstate_fini(dtrace_dstate_t *dstate)
14086{
14087	ASSERT(MUTEX_HELD(&cpu_lock));
14088
14089	if (dstate->dtds_base == NULL)
14090		return;
14091
14092	kmem_free(dstate->dtds_base, dstate->dtds_size);
14093	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
14094}
14095
14096static void
14097dtrace_vstate_fini(dtrace_vstate_t *vstate)
14098{
14099	/*
14100	 * Logical XOR, where are you?
14101	 */
14102	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
14103
14104	if (vstate->dtvs_nglobals > 0) {
14105		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
14106		    sizeof (dtrace_statvar_t *));
14107	}
14108
14109	if (vstate->dtvs_ntlocals > 0) {
14110		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
14111		    sizeof (dtrace_difv_t));
14112	}
14113
14114	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
14115
14116	if (vstate->dtvs_nlocals > 0) {
14117		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
14118		    sizeof (dtrace_statvar_t *));
14119	}
14120}
14121
14122#ifdef illumos
14123static void
14124dtrace_state_clean(dtrace_state_t *state)
14125{
14126	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14127		return;
14128
14129	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14130	dtrace_speculation_clean(state);
14131}
14132
14133static void
14134dtrace_state_deadman(dtrace_state_t *state)
14135{
14136	hrtime_t now;
14137
14138	dtrace_sync();
14139
14140	now = dtrace_gethrtime();
14141
14142	if (state != dtrace_anon.dta_state &&
14143	    now - state->dts_laststatus >= dtrace_deadman_user)
14144		return;
14145
14146	/*
14147	 * We must be sure that dts_alive never appears to be less than the
14148	 * value upon entry to dtrace_state_deadman(), and because we lack a
14149	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14150	 * store INT64_MAX to it, followed by a memory barrier, followed by
14151	 * the new value.  This assures that dts_alive never appears to be
14152	 * less than its true value, regardless of the order in which the
14153	 * stores to the underlying storage are issued.
14154	 */
14155	state->dts_alive = INT64_MAX;
14156	dtrace_membar_producer();
14157	state->dts_alive = now;
14158}
14159#else	/* !illumos */
14160static void
14161dtrace_state_clean(void *arg)
14162{
14163	dtrace_state_t *state = arg;
14164	dtrace_optval_t *opt = state->dts_options;
14165
14166	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14167		return;
14168
14169	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14170	dtrace_speculation_clean(state);
14171
14172	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
14173	    dtrace_state_clean, state);
14174}
14175
14176static void
14177dtrace_state_deadman(void *arg)
14178{
14179	dtrace_state_t *state = arg;
14180	hrtime_t now;
14181
14182	dtrace_sync();
14183
14184	dtrace_debug_output();
14185
14186	now = dtrace_gethrtime();
14187
14188	if (state != dtrace_anon.dta_state &&
14189	    now - state->dts_laststatus >= dtrace_deadman_user)
14190		return;
14191
14192	/*
14193	 * We must be sure that dts_alive never appears to be less than the
14194	 * value upon entry to dtrace_state_deadman(), and because we lack a
14195	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14196	 * store INT64_MAX to it, followed by a memory barrier, followed by
14197	 * the new value.  This assures that dts_alive never appears to be
14198	 * less than its true value, regardless of the order in which the
14199	 * stores to the underlying storage are issued.
14200	 */
14201	state->dts_alive = INT64_MAX;
14202	dtrace_membar_producer();
14203	state->dts_alive = now;
14204
14205	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
14206	    dtrace_state_deadman, state);
14207}
14208#endif	/* illumos */
14209
14210static dtrace_state_t *
14211#ifdef illumos
14212dtrace_state_create(dev_t *devp, cred_t *cr)
14213#else
14214dtrace_state_create(struct cdev *dev)
14215#endif
14216{
14217#ifdef illumos
14218	minor_t minor;
14219	major_t major;
14220#else
14221	cred_t *cr = NULL;
14222	int m = 0;
14223#endif
14224	char c[30];
14225	dtrace_state_t *state;
14226	dtrace_optval_t *opt;
14227	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
14228
14229	ASSERT(MUTEX_HELD(&dtrace_lock));
14230	ASSERT(MUTEX_HELD(&cpu_lock));
14231
14232#ifdef illumos
14233	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
14234	    VM_BESTFIT | VM_SLEEP);
14235
14236	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
14237		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14238		return (NULL);
14239	}
14240
14241	state = ddi_get_soft_state(dtrace_softstate, minor);
14242#else
14243	if (dev != NULL) {
14244		cr = dev->si_cred;
14245		m = dev2unit(dev);
14246	}
14247
14248	/* Allocate memory for the state. */
14249	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
14250#endif
14251
14252	state->dts_epid = DTRACE_EPIDNONE + 1;
14253
14254	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
14255#ifdef illumos
14256	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
14257	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
14258
14259	if (devp != NULL) {
14260		major = getemajor(*devp);
14261	} else {
14262		major = ddi_driver_major(dtrace_devi);
14263	}
14264
14265	state->dts_dev = makedevice(major, minor);
14266
14267	if (devp != NULL)
14268		*devp = state->dts_dev;
14269#else
14270	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
14271	state->dts_dev = dev;
14272#endif
14273
14274	/*
14275	 * We allocate NCPU buffers.  On the one hand, this can be quite
14276	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
14277	 * other hand, it saves an additional memory reference in the probe
14278	 * path.
14279	 */
14280	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
14281	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
14282
14283#ifdef illumos
14284	state->dts_cleaner = CYCLIC_NONE;
14285	state->dts_deadman = CYCLIC_NONE;
14286#else
14287	callout_init(&state->dts_cleaner, CALLOUT_MPSAFE);
14288	callout_init(&state->dts_deadman, CALLOUT_MPSAFE);
14289#endif
14290	state->dts_vstate.dtvs_state = state;
14291
14292	for (i = 0; i < DTRACEOPT_MAX; i++)
14293		state->dts_options[i] = DTRACEOPT_UNSET;
14294
14295	/*
14296	 * Set the default options.
14297	 */
14298	opt = state->dts_options;
14299	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
14300	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
14301	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
14302	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
14303	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
14304	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
14305	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
14306	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
14307	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
14308	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
14309	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
14310	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
14311	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
14312	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
14313
14314	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
14315
14316	/*
14317	 * Depending on the user credentials, we set flag bits which alter probe
14318	 * visibility or the amount of destructiveness allowed.  In the case of
14319	 * actual anonymous tracing, or the possession of all privileges, all of
14320	 * the normal checks are bypassed.
14321	 */
14322	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
14323		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
14324		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
14325	} else {
14326		/*
14327		 * Set up the credentials for this instantiation.  We take a
14328		 * hold on the credential to prevent it from disappearing on
14329		 * us; this in turn prevents the zone_t referenced by this
14330		 * credential from disappearing.  This means that we can
14331		 * examine the credential and the zone from probe context.
14332		 */
14333		crhold(cr);
14334		state->dts_cred.dcr_cred = cr;
14335
14336		/*
14337		 * CRA_PROC means "we have *some* privilege for dtrace" and
14338		 * unlocks the use of variables like pid, zonename, etc.
14339		 */
14340		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
14341		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14342			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
14343		}
14344
14345		/*
14346		 * dtrace_user allows use of syscall and profile providers.
14347		 * If the user also has proc_owner and/or proc_zone, we
14348		 * extend the scope to include additional visibility and
14349		 * destructive power.
14350		 */
14351		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
14352			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
14353				state->dts_cred.dcr_visible |=
14354				    DTRACE_CRV_ALLPROC;
14355
14356				state->dts_cred.dcr_action |=
14357				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14358			}
14359
14360			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
14361				state->dts_cred.dcr_visible |=
14362				    DTRACE_CRV_ALLZONE;
14363
14364				state->dts_cred.dcr_action |=
14365				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14366			}
14367
14368			/*
14369			 * If we have all privs in whatever zone this is,
14370			 * we can do destructive things to processes which
14371			 * have altered credentials.
14372			 */
14373#ifdef illumos
14374			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14375			    cr->cr_zone->zone_privset)) {
14376				state->dts_cred.dcr_action |=
14377				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14378			}
14379#endif
14380		}
14381
14382		/*
14383		 * Holding the dtrace_kernel privilege also implies that
14384		 * the user has the dtrace_user privilege from a visibility
14385		 * perspective.  But without further privileges, some
14386		 * destructive actions are not available.
14387		 */
14388		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
14389			/*
14390			 * Make all probes in all zones visible.  However,
14391			 * this doesn't mean that all actions become available
14392			 * to all zones.
14393			 */
14394			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
14395			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
14396
14397			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
14398			    DTRACE_CRA_PROC;
14399			/*
14400			 * Holding proc_owner means that destructive actions
14401			 * for *this* zone are allowed.
14402			 */
14403			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14404				state->dts_cred.dcr_action |=
14405				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14406
14407			/*
14408			 * Holding proc_zone means that destructive actions
14409			 * for this user/group ID in all zones is allowed.
14410			 */
14411			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14412				state->dts_cred.dcr_action |=
14413				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14414
14415#ifdef illumos
14416			/*
14417			 * If we have all privs in whatever zone this is,
14418			 * we can do destructive things to processes which
14419			 * have altered credentials.
14420			 */
14421			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14422			    cr->cr_zone->zone_privset)) {
14423				state->dts_cred.dcr_action |=
14424				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14425			}
14426#endif
14427		}
14428
14429		/*
14430		 * Holding the dtrace_proc privilege gives control over fasttrap
14431		 * and pid providers.  We need to grant wider destructive
14432		 * privileges in the event that the user has proc_owner and/or
14433		 * proc_zone.
14434		 */
14435		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14436			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14437				state->dts_cred.dcr_action |=
14438				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14439
14440			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14441				state->dts_cred.dcr_action |=
14442				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14443		}
14444	}
14445
14446	return (state);
14447}
14448
14449static int
14450dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
14451{
14452	dtrace_optval_t *opt = state->dts_options, size;
14453	processorid_t cpu = 0;;
14454	int flags = 0, rval, factor, divisor = 1;
14455
14456	ASSERT(MUTEX_HELD(&dtrace_lock));
14457	ASSERT(MUTEX_HELD(&cpu_lock));
14458	ASSERT(which < DTRACEOPT_MAX);
14459	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
14460	    (state == dtrace_anon.dta_state &&
14461	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
14462
14463	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
14464		return (0);
14465
14466	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
14467		cpu = opt[DTRACEOPT_CPU];
14468
14469	if (which == DTRACEOPT_SPECSIZE)
14470		flags |= DTRACEBUF_NOSWITCH;
14471
14472	if (which == DTRACEOPT_BUFSIZE) {
14473		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
14474			flags |= DTRACEBUF_RING;
14475
14476		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
14477			flags |= DTRACEBUF_FILL;
14478
14479		if (state != dtrace_anon.dta_state ||
14480		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14481			flags |= DTRACEBUF_INACTIVE;
14482	}
14483
14484	for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
14485		/*
14486		 * The size must be 8-byte aligned.  If the size is not 8-byte
14487		 * aligned, drop it down by the difference.
14488		 */
14489		if (size & (sizeof (uint64_t) - 1))
14490			size -= size & (sizeof (uint64_t) - 1);
14491
14492		if (size < state->dts_reserve) {
14493			/*
14494			 * Buffers always must be large enough to accommodate
14495			 * their prereserved space.  We return E2BIG instead
14496			 * of ENOMEM in this case to allow for user-level
14497			 * software to differentiate the cases.
14498			 */
14499			return (E2BIG);
14500		}
14501
14502		rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
14503
14504		if (rval != ENOMEM) {
14505			opt[which] = size;
14506			return (rval);
14507		}
14508
14509		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14510			return (rval);
14511
14512		for (divisor = 2; divisor < factor; divisor <<= 1)
14513			continue;
14514	}
14515
14516	return (ENOMEM);
14517}
14518
14519static int
14520dtrace_state_buffers(dtrace_state_t *state)
14521{
14522	dtrace_speculation_t *spec = state->dts_speculations;
14523	int rval, i;
14524
14525	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
14526	    DTRACEOPT_BUFSIZE)) != 0)
14527		return (rval);
14528
14529	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
14530	    DTRACEOPT_AGGSIZE)) != 0)
14531		return (rval);
14532
14533	for (i = 0; i < state->dts_nspeculations; i++) {
14534		if ((rval = dtrace_state_buffer(state,
14535		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
14536			return (rval);
14537	}
14538
14539	return (0);
14540}
14541
14542static void
14543dtrace_state_prereserve(dtrace_state_t *state)
14544{
14545	dtrace_ecb_t *ecb;
14546	dtrace_probe_t *probe;
14547
14548	state->dts_reserve = 0;
14549
14550	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
14551		return;
14552
14553	/*
14554	 * If our buffer policy is a "fill" buffer policy, we need to set the
14555	 * prereserved space to be the space required by the END probes.
14556	 */
14557	probe = dtrace_probes[dtrace_probeid_end - 1];
14558	ASSERT(probe != NULL);
14559
14560	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
14561		if (ecb->dte_state != state)
14562			continue;
14563
14564		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
14565	}
14566}
14567
14568static int
14569dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
14570{
14571	dtrace_optval_t *opt = state->dts_options, sz, nspec;
14572	dtrace_speculation_t *spec;
14573	dtrace_buffer_t *buf;
14574#ifdef illumos
14575	cyc_handler_t hdlr;
14576	cyc_time_t when;
14577#endif
14578	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14579	dtrace_icookie_t cookie;
14580
14581	mutex_enter(&cpu_lock);
14582	mutex_enter(&dtrace_lock);
14583
14584	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14585		rval = EBUSY;
14586		goto out;
14587	}
14588
14589	/*
14590	 * Before we can perform any checks, we must prime all of the
14591	 * retained enablings that correspond to this state.
14592	 */
14593	dtrace_enabling_prime(state);
14594
14595	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
14596		rval = EACCES;
14597		goto out;
14598	}
14599
14600	dtrace_state_prereserve(state);
14601
14602	/*
14603	 * Now we want to do is try to allocate our speculations.
14604	 * We do not automatically resize the number of speculations; if
14605	 * this fails, we will fail the operation.
14606	 */
14607	nspec = opt[DTRACEOPT_NSPEC];
14608	ASSERT(nspec != DTRACEOPT_UNSET);
14609
14610	if (nspec > INT_MAX) {
14611		rval = ENOMEM;
14612		goto out;
14613	}
14614
14615	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
14616	    KM_NOSLEEP | KM_NORMALPRI);
14617
14618	if (spec == NULL) {
14619		rval = ENOMEM;
14620		goto out;
14621	}
14622
14623	state->dts_speculations = spec;
14624	state->dts_nspeculations = (int)nspec;
14625
14626	for (i = 0; i < nspec; i++) {
14627		if ((buf = kmem_zalloc(bufsize,
14628		    KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
14629			rval = ENOMEM;
14630			goto err;
14631		}
14632
14633		spec[i].dtsp_buffer = buf;
14634	}
14635
14636	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
14637		if (dtrace_anon.dta_state == NULL) {
14638			rval = ENOENT;
14639			goto out;
14640		}
14641
14642		if (state->dts_necbs != 0) {
14643			rval = EALREADY;
14644			goto out;
14645		}
14646
14647		state->dts_anon = dtrace_anon_grab();
14648		ASSERT(state->dts_anon != NULL);
14649		state = state->dts_anon;
14650
14651		/*
14652		 * We want "grabanon" to be set in the grabbed state, so we'll
14653		 * copy that option value from the grabbing state into the
14654		 * grabbed state.
14655		 */
14656		state->dts_options[DTRACEOPT_GRABANON] =
14657		    opt[DTRACEOPT_GRABANON];
14658
14659		*cpu = dtrace_anon.dta_beganon;
14660
14661		/*
14662		 * If the anonymous state is active (as it almost certainly
14663		 * is if the anonymous enabling ultimately matched anything),
14664		 * we don't allow any further option processing -- but we
14665		 * don't return failure.
14666		 */
14667		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14668			goto out;
14669	}
14670
14671	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
14672	    opt[DTRACEOPT_AGGSIZE] != 0) {
14673		if (state->dts_aggregations == NULL) {
14674			/*
14675			 * We're not going to create an aggregation buffer
14676			 * because we don't have any ECBs that contain
14677			 * aggregations -- set this option to 0.
14678			 */
14679			opt[DTRACEOPT_AGGSIZE] = 0;
14680		} else {
14681			/*
14682			 * If we have an aggregation buffer, we must also have
14683			 * a buffer to use as scratch.
14684			 */
14685			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
14686			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
14687				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
14688			}
14689		}
14690	}
14691
14692	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
14693	    opt[DTRACEOPT_SPECSIZE] != 0) {
14694		if (!state->dts_speculates) {
14695			/*
14696			 * We're not going to create speculation buffers
14697			 * because we don't have any ECBs that actually
14698			 * speculate -- set the speculation size to 0.
14699			 */
14700			opt[DTRACEOPT_SPECSIZE] = 0;
14701		}
14702	}
14703
14704	/*
14705	 * The bare minimum size for any buffer that we're actually going to
14706	 * do anything to is sizeof (uint64_t).
14707	 */
14708	sz = sizeof (uint64_t);
14709
14710	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
14711	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
14712	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
14713		/*
14714		 * A buffer size has been explicitly set to 0 (or to a size
14715		 * that will be adjusted to 0) and we need the space -- we
14716		 * need to return failure.  We return ENOSPC to differentiate
14717		 * it from failing to allocate a buffer due to failure to meet
14718		 * the reserve (for which we return E2BIG).
14719		 */
14720		rval = ENOSPC;
14721		goto out;
14722	}
14723
14724	if ((rval = dtrace_state_buffers(state)) != 0)
14725		goto err;
14726
14727	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
14728		sz = dtrace_dstate_defsize;
14729
14730	do {
14731		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
14732
14733		if (rval == 0)
14734			break;
14735
14736		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14737			goto err;
14738	} while (sz >>= 1);
14739
14740	opt[DTRACEOPT_DYNVARSIZE] = sz;
14741
14742	if (rval != 0)
14743		goto err;
14744
14745	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
14746		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
14747
14748	if (opt[DTRACEOPT_CLEANRATE] == 0)
14749		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
14750
14751	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
14752		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
14753
14754	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
14755		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
14756
14757	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
14758#ifdef illumos
14759	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
14760	hdlr.cyh_arg = state;
14761	hdlr.cyh_level = CY_LOW_LEVEL;
14762
14763	when.cyt_when = 0;
14764	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
14765
14766	state->dts_cleaner = cyclic_add(&hdlr, &when);
14767
14768	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
14769	hdlr.cyh_arg = state;
14770	hdlr.cyh_level = CY_LOW_LEVEL;
14771
14772	when.cyt_when = 0;
14773	when.cyt_interval = dtrace_deadman_interval;
14774
14775	state->dts_deadman = cyclic_add(&hdlr, &when);
14776#else
14777	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
14778	    dtrace_state_clean, state);
14779	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
14780	    dtrace_state_deadman, state);
14781#endif
14782
14783	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
14784
14785#ifdef illumos
14786	if (state->dts_getf != 0 &&
14787	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14788		/*
14789		 * We don't have kernel privs but we have at least one call
14790		 * to getf(); we need to bump our zone's count, and (if
14791		 * this is the first enabling to have an unprivileged call
14792		 * to getf()) we need to hook into closef().
14793		 */
14794		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
14795
14796		if (dtrace_getf++ == 0) {
14797			ASSERT(dtrace_closef == NULL);
14798			dtrace_closef = dtrace_getf_barrier;
14799		}
14800	}
14801#endif
14802
14803	/*
14804	 * Now it's time to actually fire the BEGIN probe.  We need to disable
14805	 * interrupts here both to record the CPU on which we fired the BEGIN
14806	 * probe (the data from this CPU will be processed first at user
14807	 * level) and to manually activate the buffer for this CPU.
14808	 */
14809	cookie = dtrace_interrupt_disable();
14810	*cpu = curcpu;
14811	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
14812	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
14813
14814	dtrace_probe(dtrace_probeid_begin,
14815	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14816	dtrace_interrupt_enable(cookie);
14817	/*
14818	 * We may have had an exit action from a BEGIN probe; only change our
14819	 * state to ACTIVE if we're still in WARMUP.
14820	 */
14821	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
14822	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
14823
14824	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
14825		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
14826
14827	/*
14828	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
14829	 * want each CPU to transition its principal buffer out of the
14830	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
14831	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
14832	 * atomically transition from processing none of a state's ECBs to
14833	 * processing all of them.
14834	 */
14835	dtrace_xcall(DTRACE_CPUALL,
14836	    (dtrace_xcall_t)dtrace_buffer_activate, state);
14837	goto out;
14838
14839err:
14840	dtrace_buffer_free(state->dts_buffer);
14841	dtrace_buffer_free(state->dts_aggbuffer);
14842
14843	if ((nspec = state->dts_nspeculations) == 0) {
14844		ASSERT(state->dts_speculations == NULL);
14845		goto out;
14846	}
14847
14848	spec = state->dts_speculations;
14849	ASSERT(spec != NULL);
14850
14851	for (i = 0; i < state->dts_nspeculations; i++) {
14852		if ((buf = spec[i].dtsp_buffer) == NULL)
14853			break;
14854
14855		dtrace_buffer_free(buf);
14856		kmem_free(buf, bufsize);
14857	}
14858
14859	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14860	state->dts_nspeculations = 0;
14861	state->dts_speculations = NULL;
14862
14863out:
14864	mutex_exit(&dtrace_lock);
14865	mutex_exit(&cpu_lock);
14866
14867	return (rval);
14868}
14869
14870static int
14871dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
14872{
14873	dtrace_icookie_t cookie;
14874
14875	ASSERT(MUTEX_HELD(&dtrace_lock));
14876
14877	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
14878	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
14879		return (EINVAL);
14880
14881	/*
14882	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
14883	 * to be sure that every CPU has seen it.  See below for the details
14884	 * on why this is done.
14885	 */
14886	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
14887	dtrace_sync();
14888
14889	/*
14890	 * By this point, it is impossible for any CPU to be still processing
14891	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
14892	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
14893	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
14894	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
14895	 * iff we're in the END probe.
14896	 */
14897	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
14898	dtrace_sync();
14899	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
14900
14901	/*
14902	 * Finally, we can release the reserve and call the END probe.  We
14903	 * disable interrupts across calling the END probe to allow us to
14904	 * return the CPU on which we actually called the END probe.  This
14905	 * allows user-land to be sure that this CPU's principal buffer is
14906	 * processed last.
14907	 */
14908	state->dts_reserve = 0;
14909
14910	cookie = dtrace_interrupt_disable();
14911	*cpu = curcpu;
14912	dtrace_probe(dtrace_probeid_end,
14913	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14914	dtrace_interrupt_enable(cookie);
14915
14916	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
14917	dtrace_sync();
14918
14919#ifdef illumos
14920	if (state->dts_getf != 0 &&
14921	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14922		/*
14923		 * We don't have kernel privs but we have at least one call
14924		 * to getf(); we need to lower our zone's count, and (if
14925		 * this is the last enabling to have an unprivileged call
14926		 * to getf()) we need to clear the closef() hook.
14927		 */
14928		ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
14929		ASSERT(dtrace_closef == dtrace_getf_barrier);
14930		ASSERT(dtrace_getf > 0);
14931
14932		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
14933
14934		if (--dtrace_getf == 0)
14935			dtrace_closef = NULL;
14936	}
14937#endif
14938
14939	return (0);
14940}
14941
14942static int
14943dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
14944    dtrace_optval_t val)
14945{
14946	ASSERT(MUTEX_HELD(&dtrace_lock));
14947
14948	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14949		return (EBUSY);
14950
14951	if (option >= DTRACEOPT_MAX)
14952		return (EINVAL);
14953
14954	if (option != DTRACEOPT_CPU && val < 0)
14955		return (EINVAL);
14956
14957	switch (option) {
14958	case DTRACEOPT_DESTRUCTIVE:
14959		if (dtrace_destructive_disallow)
14960			return (EACCES);
14961
14962		state->dts_cred.dcr_destructive = 1;
14963		break;
14964
14965	case DTRACEOPT_BUFSIZE:
14966	case DTRACEOPT_DYNVARSIZE:
14967	case DTRACEOPT_AGGSIZE:
14968	case DTRACEOPT_SPECSIZE:
14969	case DTRACEOPT_STRSIZE:
14970		if (val < 0)
14971			return (EINVAL);
14972
14973		if (val >= LONG_MAX) {
14974			/*
14975			 * If this is an otherwise negative value, set it to
14976			 * the highest multiple of 128m less than LONG_MAX.
14977			 * Technically, we're adjusting the size without
14978			 * regard to the buffer resizing policy, but in fact,
14979			 * this has no effect -- if we set the buffer size to
14980			 * ~LONG_MAX and the buffer policy is ultimately set to
14981			 * be "manual", the buffer allocation is guaranteed to
14982			 * fail, if only because the allocation requires two
14983			 * buffers.  (We set the the size to the highest
14984			 * multiple of 128m because it ensures that the size
14985			 * will remain a multiple of a megabyte when
14986			 * repeatedly halved -- all the way down to 15m.)
14987			 */
14988			val = LONG_MAX - (1 << 27) + 1;
14989		}
14990	}
14991
14992	state->dts_options[option] = val;
14993
14994	return (0);
14995}
14996
14997static void
14998dtrace_state_destroy(dtrace_state_t *state)
14999{
15000	dtrace_ecb_t *ecb;
15001	dtrace_vstate_t *vstate = &state->dts_vstate;
15002#ifdef illumos
15003	minor_t minor = getminor(state->dts_dev);
15004#endif
15005	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
15006	dtrace_speculation_t *spec = state->dts_speculations;
15007	int nspec = state->dts_nspeculations;
15008	uint32_t match;
15009
15010	ASSERT(MUTEX_HELD(&dtrace_lock));
15011	ASSERT(MUTEX_HELD(&cpu_lock));
15012
15013	/*
15014	 * First, retract any retained enablings for this state.
15015	 */
15016	dtrace_enabling_retract(state);
15017	ASSERT(state->dts_nretained == 0);
15018
15019	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
15020	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
15021		/*
15022		 * We have managed to come into dtrace_state_destroy() on a
15023		 * hot enabling -- almost certainly because of a disorderly
15024		 * shutdown of a consumer.  (That is, a consumer that is
15025		 * exiting without having called dtrace_stop().) In this case,
15026		 * we're going to set our activity to be KILLED, and then
15027		 * issue a sync to be sure that everyone is out of probe
15028		 * context before we start blowing away ECBs.
15029		 */
15030		state->dts_activity = DTRACE_ACTIVITY_KILLED;
15031		dtrace_sync();
15032	}
15033
15034	/*
15035	 * Release the credential hold we took in dtrace_state_create().
15036	 */
15037	if (state->dts_cred.dcr_cred != NULL)
15038		crfree(state->dts_cred.dcr_cred);
15039
15040	/*
15041	 * Now we can safely disable and destroy any enabled probes.  Because
15042	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
15043	 * (especially if they're all enabled), we take two passes through the
15044	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
15045	 * in the second we disable whatever is left over.
15046	 */
15047	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
15048		for (i = 0; i < state->dts_necbs; i++) {
15049			if ((ecb = state->dts_ecbs[i]) == NULL)
15050				continue;
15051
15052			if (match && ecb->dte_probe != NULL) {
15053				dtrace_probe_t *probe = ecb->dte_probe;
15054				dtrace_provider_t *prov = probe->dtpr_provider;
15055
15056				if (!(prov->dtpv_priv.dtpp_flags & match))
15057					continue;
15058			}
15059
15060			dtrace_ecb_disable(ecb);
15061			dtrace_ecb_destroy(ecb);
15062		}
15063
15064		if (!match)
15065			break;
15066	}
15067
15068	/*
15069	 * Before we free the buffers, perform one more sync to assure that
15070	 * every CPU is out of probe context.
15071	 */
15072	dtrace_sync();
15073
15074	dtrace_buffer_free(state->dts_buffer);
15075	dtrace_buffer_free(state->dts_aggbuffer);
15076
15077	for (i = 0; i < nspec; i++)
15078		dtrace_buffer_free(spec[i].dtsp_buffer);
15079
15080#ifdef illumos
15081	if (state->dts_cleaner != CYCLIC_NONE)
15082		cyclic_remove(state->dts_cleaner);
15083
15084	if (state->dts_deadman != CYCLIC_NONE)
15085		cyclic_remove(state->dts_deadman);
15086#else
15087	callout_stop(&state->dts_cleaner);
15088	callout_drain(&state->dts_cleaner);
15089	callout_stop(&state->dts_deadman);
15090	callout_drain(&state->dts_deadman);
15091#endif
15092
15093	dtrace_dstate_fini(&vstate->dtvs_dynvars);
15094	dtrace_vstate_fini(vstate);
15095	if (state->dts_ecbs != NULL)
15096		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
15097
15098	if (state->dts_aggregations != NULL) {
15099#ifdef DEBUG
15100		for (i = 0; i < state->dts_naggregations; i++)
15101			ASSERT(state->dts_aggregations[i] == NULL);
15102#endif
15103		ASSERT(state->dts_naggregations > 0);
15104		kmem_free(state->dts_aggregations,
15105		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
15106	}
15107
15108	kmem_free(state->dts_buffer, bufsize);
15109	kmem_free(state->dts_aggbuffer, bufsize);
15110
15111	for (i = 0; i < nspec; i++)
15112		kmem_free(spec[i].dtsp_buffer, bufsize);
15113
15114	if (spec != NULL)
15115		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15116
15117	dtrace_format_destroy(state);
15118
15119	if (state->dts_aggid_arena != NULL) {
15120#ifdef illumos
15121		vmem_destroy(state->dts_aggid_arena);
15122#else
15123		delete_unrhdr(state->dts_aggid_arena);
15124#endif
15125		state->dts_aggid_arena = NULL;
15126	}
15127#ifdef illumos
15128	ddi_soft_state_free(dtrace_softstate, minor);
15129	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
15130#endif
15131}
15132
15133/*
15134 * DTrace Anonymous Enabling Functions
15135 */
15136static dtrace_state_t *
15137dtrace_anon_grab(void)
15138{
15139	dtrace_state_t *state;
15140
15141	ASSERT(MUTEX_HELD(&dtrace_lock));
15142
15143	if ((state = dtrace_anon.dta_state) == NULL) {
15144		ASSERT(dtrace_anon.dta_enabling == NULL);
15145		return (NULL);
15146	}
15147
15148	ASSERT(dtrace_anon.dta_enabling != NULL);
15149	ASSERT(dtrace_retained != NULL);
15150
15151	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
15152	dtrace_anon.dta_enabling = NULL;
15153	dtrace_anon.dta_state = NULL;
15154
15155	return (state);
15156}
15157
15158static void
15159dtrace_anon_property(void)
15160{
15161	int i, rv;
15162	dtrace_state_t *state;
15163	dof_hdr_t *dof;
15164	char c[32];		/* enough for "dof-data-" + digits */
15165
15166	ASSERT(MUTEX_HELD(&dtrace_lock));
15167	ASSERT(MUTEX_HELD(&cpu_lock));
15168
15169	for (i = 0; ; i++) {
15170		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
15171
15172		dtrace_err_verbose = 1;
15173
15174		if ((dof = dtrace_dof_property(c)) == NULL) {
15175			dtrace_err_verbose = 0;
15176			break;
15177		}
15178
15179#ifdef illumos
15180		/*
15181		 * We want to create anonymous state, so we need to transition
15182		 * the kernel debugger to indicate that DTrace is active.  If
15183		 * this fails (e.g. because the debugger has modified text in
15184		 * some way), we won't continue with the processing.
15185		 */
15186		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15187			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
15188			    "enabling ignored.");
15189			dtrace_dof_destroy(dof);
15190			break;
15191		}
15192#endif
15193
15194		/*
15195		 * If we haven't allocated an anonymous state, we'll do so now.
15196		 */
15197		if ((state = dtrace_anon.dta_state) == NULL) {
15198#ifdef illumos
15199			state = dtrace_state_create(NULL, NULL);
15200#else
15201			state = dtrace_state_create(NULL);
15202#endif
15203			dtrace_anon.dta_state = state;
15204
15205			if (state == NULL) {
15206				/*
15207				 * This basically shouldn't happen:  the only
15208				 * failure mode from dtrace_state_create() is a
15209				 * failure of ddi_soft_state_zalloc() that
15210				 * itself should never happen.  Still, the
15211				 * interface allows for a failure mode, and
15212				 * we want to fail as gracefully as possible:
15213				 * we'll emit an error message and cease
15214				 * processing anonymous state in this case.
15215				 */
15216				cmn_err(CE_WARN, "failed to create "
15217				    "anonymous state");
15218				dtrace_dof_destroy(dof);
15219				break;
15220			}
15221		}
15222
15223		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
15224		    &dtrace_anon.dta_enabling, 0, B_TRUE);
15225
15226		if (rv == 0)
15227			rv = dtrace_dof_options(dof, state);
15228
15229		dtrace_err_verbose = 0;
15230		dtrace_dof_destroy(dof);
15231
15232		if (rv != 0) {
15233			/*
15234			 * This is malformed DOF; chuck any anonymous state
15235			 * that we created.
15236			 */
15237			ASSERT(dtrace_anon.dta_enabling == NULL);
15238			dtrace_state_destroy(state);
15239			dtrace_anon.dta_state = NULL;
15240			break;
15241		}
15242
15243		ASSERT(dtrace_anon.dta_enabling != NULL);
15244	}
15245
15246	if (dtrace_anon.dta_enabling != NULL) {
15247		int rval;
15248
15249		/*
15250		 * dtrace_enabling_retain() can only fail because we are
15251		 * trying to retain more enablings than are allowed -- but
15252		 * we only have one anonymous enabling, and we are guaranteed
15253		 * to be allowed at least one retained enabling; we assert
15254		 * that dtrace_enabling_retain() returns success.
15255		 */
15256		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
15257		ASSERT(rval == 0);
15258
15259		dtrace_enabling_dump(dtrace_anon.dta_enabling);
15260	}
15261}
15262
15263/*
15264 * DTrace Helper Functions
15265 */
15266static void
15267dtrace_helper_trace(dtrace_helper_action_t *helper,
15268    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
15269{
15270	uint32_t size, next, nnext, i;
15271	dtrace_helptrace_t *ent, *buffer;
15272	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
15273
15274	if ((buffer = dtrace_helptrace_buffer) == NULL)
15275		return;
15276
15277	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
15278
15279	/*
15280	 * What would a tracing framework be without its own tracing
15281	 * framework?  (Well, a hell of a lot simpler, for starters...)
15282	 */
15283	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
15284	    sizeof (uint64_t) - sizeof (uint64_t);
15285
15286	/*
15287	 * Iterate until we can allocate a slot in the trace buffer.
15288	 */
15289	do {
15290		next = dtrace_helptrace_next;
15291
15292		if (next + size < dtrace_helptrace_bufsize) {
15293			nnext = next + size;
15294		} else {
15295			nnext = size;
15296		}
15297	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
15298
15299	/*
15300	 * We have our slot; fill it in.
15301	 */
15302	if (nnext == size) {
15303		dtrace_helptrace_wrapped++;
15304		next = 0;
15305	}
15306
15307	ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
15308	ent->dtht_helper = helper;
15309	ent->dtht_where = where;
15310	ent->dtht_nlocals = vstate->dtvs_nlocals;
15311
15312	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
15313	    mstate->dtms_fltoffs : -1;
15314	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
15315	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
15316
15317	for (i = 0; i < vstate->dtvs_nlocals; i++) {
15318		dtrace_statvar_t *svar;
15319
15320		if ((svar = vstate->dtvs_locals[i]) == NULL)
15321			continue;
15322
15323		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
15324		ent->dtht_locals[i] =
15325		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
15326	}
15327}
15328
15329static uint64_t
15330dtrace_helper(int which, dtrace_mstate_t *mstate,
15331    dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
15332{
15333	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
15334	uint64_t sarg0 = mstate->dtms_arg[0];
15335	uint64_t sarg1 = mstate->dtms_arg[1];
15336	uint64_t rval = 0;
15337	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
15338	dtrace_helper_action_t *helper;
15339	dtrace_vstate_t *vstate;
15340	dtrace_difo_t *pred;
15341	int i, trace = dtrace_helptrace_buffer != NULL;
15342
15343	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
15344
15345	if (helpers == NULL)
15346		return (0);
15347
15348	if ((helper = helpers->dthps_actions[which]) == NULL)
15349		return (0);
15350
15351	vstate = &helpers->dthps_vstate;
15352	mstate->dtms_arg[0] = arg0;
15353	mstate->dtms_arg[1] = arg1;
15354
15355	/*
15356	 * Now iterate over each helper.  If its predicate evaluates to 'true',
15357	 * we'll call the corresponding actions.  Note that the below calls
15358	 * to dtrace_dif_emulate() may set faults in machine state.  This is
15359	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
15360	 * the stored DIF offset with its own (which is the desired behavior).
15361	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
15362	 * from machine state; this is okay, too.
15363	 */
15364	for (; helper != NULL; helper = helper->dtha_next) {
15365		if ((pred = helper->dtha_predicate) != NULL) {
15366			if (trace)
15367				dtrace_helper_trace(helper, mstate, vstate, 0);
15368
15369			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
15370				goto next;
15371
15372			if (*flags & CPU_DTRACE_FAULT)
15373				goto err;
15374		}
15375
15376		for (i = 0; i < helper->dtha_nactions; i++) {
15377			if (trace)
15378				dtrace_helper_trace(helper,
15379				    mstate, vstate, i + 1);
15380
15381			rval = dtrace_dif_emulate(helper->dtha_actions[i],
15382			    mstate, vstate, state);
15383
15384			if (*flags & CPU_DTRACE_FAULT)
15385				goto err;
15386		}
15387
15388next:
15389		if (trace)
15390			dtrace_helper_trace(helper, mstate, vstate,
15391			    DTRACE_HELPTRACE_NEXT);
15392	}
15393
15394	if (trace)
15395		dtrace_helper_trace(helper, mstate, vstate,
15396		    DTRACE_HELPTRACE_DONE);
15397
15398	/*
15399	 * Restore the arg0 that we saved upon entry.
15400	 */
15401	mstate->dtms_arg[0] = sarg0;
15402	mstate->dtms_arg[1] = sarg1;
15403
15404	return (rval);
15405
15406err:
15407	if (trace)
15408		dtrace_helper_trace(helper, mstate, vstate,
15409		    DTRACE_HELPTRACE_ERR);
15410
15411	/*
15412	 * Restore the arg0 that we saved upon entry.
15413	 */
15414	mstate->dtms_arg[0] = sarg0;
15415	mstate->dtms_arg[1] = sarg1;
15416
15417	return (0);
15418}
15419
15420static void
15421dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
15422    dtrace_vstate_t *vstate)
15423{
15424	int i;
15425
15426	if (helper->dtha_predicate != NULL)
15427		dtrace_difo_release(helper->dtha_predicate, vstate);
15428
15429	for (i = 0; i < helper->dtha_nactions; i++) {
15430		ASSERT(helper->dtha_actions[i] != NULL);
15431		dtrace_difo_release(helper->dtha_actions[i], vstate);
15432	}
15433
15434	kmem_free(helper->dtha_actions,
15435	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
15436	kmem_free(helper, sizeof (dtrace_helper_action_t));
15437}
15438
15439static int
15440dtrace_helper_destroygen(int gen)
15441{
15442	proc_t *p = curproc;
15443	dtrace_helpers_t *help = p->p_dtrace_helpers;
15444	dtrace_vstate_t *vstate;
15445	int i;
15446
15447	ASSERT(MUTEX_HELD(&dtrace_lock));
15448
15449	if (help == NULL || gen > help->dthps_generation)
15450		return (EINVAL);
15451
15452	vstate = &help->dthps_vstate;
15453
15454	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15455		dtrace_helper_action_t *last = NULL, *h, *next;
15456
15457		for (h = help->dthps_actions[i]; h != NULL; h = next) {
15458			next = h->dtha_next;
15459
15460			if (h->dtha_generation == gen) {
15461				if (last != NULL) {
15462					last->dtha_next = next;
15463				} else {
15464					help->dthps_actions[i] = next;
15465				}
15466
15467				dtrace_helper_action_destroy(h, vstate);
15468			} else {
15469				last = h;
15470			}
15471		}
15472	}
15473
15474	/*
15475	 * Interate until we've cleared out all helper providers with the
15476	 * given generation number.
15477	 */
15478	for (;;) {
15479		dtrace_helper_provider_t *prov;
15480
15481		/*
15482		 * Look for a helper provider with the right generation. We
15483		 * have to start back at the beginning of the list each time
15484		 * because we drop dtrace_lock. It's unlikely that we'll make
15485		 * more than two passes.
15486		 */
15487		for (i = 0; i < help->dthps_nprovs; i++) {
15488			prov = help->dthps_provs[i];
15489
15490			if (prov->dthp_generation == gen)
15491				break;
15492		}
15493
15494		/*
15495		 * If there were no matches, we're done.
15496		 */
15497		if (i == help->dthps_nprovs)
15498			break;
15499
15500		/*
15501		 * Move the last helper provider into this slot.
15502		 */
15503		help->dthps_nprovs--;
15504		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
15505		help->dthps_provs[help->dthps_nprovs] = NULL;
15506
15507		mutex_exit(&dtrace_lock);
15508
15509		/*
15510		 * If we have a meta provider, remove this helper provider.
15511		 */
15512		mutex_enter(&dtrace_meta_lock);
15513		if (dtrace_meta_pid != NULL) {
15514			ASSERT(dtrace_deferred_pid == NULL);
15515			dtrace_helper_provider_remove(&prov->dthp_prov,
15516			    p->p_pid);
15517		}
15518		mutex_exit(&dtrace_meta_lock);
15519
15520		dtrace_helper_provider_destroy(prov);
15521
15522		mutex_enter(&dtrace_lock);
15523	}
15524
15525	return (0);
15526}
15527
15528static int
15529dtrace_helper_validate(dtrace_helper_action_t *helper)
15530{
15531	int err = 0, i;
15532	dtrace_difo_t *dp;
15533
15534	if ((dp = helper->dtha_predicate) != NULL)
15535		err += dtrace_difo_validate_helper(dp);
15536
15537	for (i = 0; i < helper->dtha_nactions; i++)
15538		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
15539
15540	return (err == 0);
15541}
15542
15543static int
15544dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
15545{
15546	dtrace_helpers_t *help;
15547	dtrace_helper_action_t *helper, *last;
15548	dtrace_actdesc_t *act;
15549	dtrace_vstate_t *vstate;
15550	dtrace_predicate_t *pred;
15551	int count = 0, nactions = 0, i;
15552
15553	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
15554		return (EINVAL);
15555
15556	help = curproc->p_dtrace_helpers;
15557	last = help->dthps_actions[which];
15558	vstate = &help->dthps_vstate;
15559
15560	for (count = 0; last != NULL; last = last->dtha_next) {
15561		count++;
15562		if (last->dtha_next == NULL)
15563			break;
15564	}
15565
15566	/*
15567	 * If we already have dtrace_helper_actions_max helper actions for this
15568	 * helper action type, we'll refuse to add a new one.
15569	 */
15570	if (count >= dtrace_helper_actions_max)
15571		return (ENOSPC);
15572
15573	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
15574	helper->dtha_generation = help->dthps_generation;
15575
15576	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
15577		ASSERT(pred->dtp_difo != NULL);
15578		dtrace_difo_hold(pred->dtp_difo);
15579		helper->dtha_predicate = pred->dtp_difo;
15580	}
15581
15582	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
15583		if (act->dtad_kind != DTRACEACT_DIFEXPR)
15584			goto err;
15585
15586		if (act->dtad_difo == NULL)
15587			goto err;
15588
15589		nactions++;
15590	}
15591
15592	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
15593	    (helper->dtha_nactions = nactions), KM_SLEEP);
15594
15595	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
15596		dtrace_difo_hold(act->dtad_difo);
15597		helper->dtha_actions[i++] = act->dtad_difo;
15598	}
15599
15600	if (!dtrace_helper_validate(helper))
15601		goto err;
15602
15603	if (last == NULL) {
15604		help->dthps_actions[which] = helper;
15605	} else {
15606		last->dtha_next = helper;
15607	}
15608
15609	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
15610		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
15611		dtrace_helptrace_next = 0;
15612	}
15613
15614	return (0);
15615err:
15616	dtrace_helper_action_destroy(helper, vstate);
15617	return (EINVAL);
15618}
15619
15620static void
15621dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
15622    dof_helper_t *dofhp)
15623{
15624	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
15625
15626	mutex_enter(&dtrace_meta_lock);
15627	mutex_enter(&dtrace_lock);
15628
15629	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
15630		/*
15631		 * If the dtrace module is loaded but not attached, or if
15632		 * there aren't isn't a meta provider registered to deal with
15633		 * these provider descriptions, we need to postpone creating
15634		 * the actual providers until later.
15635		 */
15636
15637		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
15638		    dtrace_deferred_pid != help) {
15639			help->dthps_deferred = 1;
15640			help->dthps_pid = p->p_pid;
15641			help->dthps_next = dtrace_deferred_pid;
15642			help->dthps_prev = NULL;
15643			if (dtrace_deferred_pid != NULL)
15644				dtrace_deferred_pid->dthps_prev = help;
15645			dtrace_deferred_pid = help;
15646		}
15647
15648		mutex_exit(&dtrace_lock);
15649
15650	} else if (dofhp != NULL) {
15651		/*
15652		 * If the dtrace module is loaded and we have a particular
15653		 * helper provider description, pass that off to the
15654		 * meta provider.
15655		 */
15656
15657		mutex_exit(&dtrace_lock);
15658
15659		dtrace_helper_provide(dofhp, p->p_pid);
15660
15661	} else {
15662		/*
15663		 * Otherwise, just pass all the helper provider descriptions
15664		 * off to the meta provider.
15665		 */
15666
15667		int i;
15668		mutex_exit(&dtrace_lock);
15669
15670		for (i = 0; i < help->dthps_nprovs; i++) {
15671			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
15672			    p->p_pid);
15673		}
15674	}
15675
15676	mutex_exit(&dtrace_meta_lock);
15677}
15678
15679static int
15680dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
15681{
15682	dtrace_helpers_t *help;
15683	dtrace_helper_provider_t *hprov, **tmp_provs;
15684	uint_t tmp_maxprovs, i;
15685
15686	ASSERT(MUTEX_HELD(&dtrace_lock));
15687
15688	help = curproc->p_dtrace_helpers;
15689	ASSERT(help != NULL);
15690
15691	/*
15692	 * If we already have dtrace_helper_providers_max helper providers,
15693	 * we're refuse to add a new one.
15694	 */
15695	if (help->dthps_nprovs >= dtrace_helper_providers_max)
15696		return (ENOSPC);
15697
15698	/*
15699	 * Check to make sure this isn't a duplicate.
15700	 */
15701	for (i = 0; i < help->dthps_nprovs; i++) {
15702		if (dofhp->dofhp_dof ==
15703		    help->dthps_provs[i]->dthp_prov.dofhp_dof)
15704			return (EALREADY);
15705	}
15706
15707	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
15708	hprov->dthp_prov = *dofhp;
15709	hprov->dthp_ref = 1;
15710	hprov->dthp_generation = gen;
15711
15712	/*
15713	 * Allocate a bigger table for helper providers if it's already full.
15714	 */
15715	if (help->dthps_maxprovs == help->dthps_nprovs) {
15716		tmp_maxprovs = help->dthps_maxprovs;
15717		tmp_provs = help->dthps_provs;
15718
15719		if (help->dthps_maxprovs == 0)
15720			help->dthps_maxprovs = 2;
15721		else
15722			help->dthps_maxprovs *= 2;
15723		if (help->dthps_maxprovs > dtrace_helper_providers_max)
15724			help->dthps_maxprovs = dtrace_helper_providers_max;
15725
15726		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
15727
15728		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
15729		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15730
15731		if (tmp_provs != NULL) {
15732			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
15733			    sizeof (dtrace_helper_provider_t *));
15734			kmem_free(tmp_provs, tmp_maxprovs *
15735			    sizeof (dtrace_helper_provider_t *));
15736		}
15737	}
15738
15739	help->dthps_provs[help->dthps_nprovs] = hprov;
15740	help->dthps_nprovs++;
15741
15742	return (0);
15743}
15744
15745static void
15746dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
15747{
15748	mutex_enter(&dtrace_lock);
15749
15750	if (--hprov->dthp_ref == 0) {
15751		dof_hdr_t *dof;
15752		mutex_exit(&dtrace_lock);
15753		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
15754		dtrace_dof_destroy(dof);
15755		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
15756	} else {
15757		mutex_exit(&dtrace_lock);
15758	}
15759}
15760
15761static int
15762dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
15763{
15764	uintptr_t daddr = (uintptr_t)dof;
15765	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
15766	dof_provider_t *provider;
15767	dof_probe_t *probe;
15768	uint8_t *arg;
15769	char *strtab, *typestr;
15770	dof_stridx_t typeidx;
15771	size_t typesz;
15772	uint_t nprobes, j, k;
15773
15774	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
15775
15776	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
15777		dtrace_dof_error(dof, "misaligned section offset");
15778		return (-1);
15779	}
15780
15781	/*
15782	 * The section needs to be large enough to contain the DOF provider
15783	 * structure appropriate for the given version.
15784	 */
15785	if (sec->dofs_size <
15786	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
15787	    offsetof(dof_provider_t, dofpv_prenoffs) :
15788	    sizeof (dof_provider_t))) {
15789		dtrace_dof_error(dof, "provider section too small");
15790		return (-1);
15791	}
15792
15793	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
15794	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
15795	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
15796	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
15797	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
15798
15799	if (str_sec == NULL || prb_sec == NULL ||
15800	    arg_sec == NULL || off_sec == NULL)
15801		return (-1);
15802
15803	enoff_sec = NULL;
15804
15805	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
15806	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
15807	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
15808	    provider->dofpv_prenoffs)) == NULL)
15809		return (-1);
15810
15811	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
15812
15813	if (provider->dofpv_name >= str_sec->dofs_size ||
15814	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
15815		dtrace_dof_error(dof, "invalid provider name");
15816		return (-1);
15817	}
15818
15819	if (prb_sec->dofs_entsize == 0 ||
15820	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
15821		dtrace_dof_error(dof, "invalid entry size");
15822		return (-1);
15823	}
15824
15825	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
15826		dtrace_dof_error(dof, "misaligned entry size");
15827		return (-1);
15828	}
15829
15830	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
15831		dtrace_dof_error(dof, "invalid entry size");
15832		return (-1);
15833	}
15834
15835	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
15836		dtrace_dof_error(dof, "misaligned section offset");
15837		return (-1);
15838	}
15839
15840	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
15841		dtrace_dof_error(dof, "invalid entry size");
15842		return (-1);
15843	}
15844
15845	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
15846
15847	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
15848
15849	/*
15850	 * Take a pass through the probes to check for errors.
15851	 */
15852	for (j = 0; j < nprobes; j++) {
15853		probe = (dof_probe_t *)(uintptr_t)(daddr +
15854		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
15855
15856		if (probe->dofpr_func >= str_sec->dofs_size) {
15857			dtrace_dof_error(dof, "invalid function name");
15858			return (-1);
15859		}
15860
15861		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
15862			dtrace_dof_error(dof, "function name too long");
15863			/*
15864			 * Keep going if the function name is too long.
15865			 * Unlike provider and probe names, we cannot reasonably
15866			 * impose restrictions on function names, since they're
15867			 * a property of the code being instrumented. We will
15868			 * skip this probe in dtrace_helper_provide_one().
15869			 */
15870		}
15871
15872		if (probe->dofpr_name >= str_sec->dofs_size ||
15873		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
15874			dtrace_dof_error(dof, "invalid probe name");
15875			return (-1);
15876		}
15877
15878		/*
15879		 * The offset count must not wrap the index, and the offsets
15880		 * must also not overflow the section's data.
15881		 */
15882		if (probe->dofpr_offidx + probe->dofpr_noffs <
15883		    probe->dofpr_offidx ||
15884		    (probe->dofpr_offidx + probe->dofpr_noffs) *
15885		    off_sec->dofs_entsize > off_sec->dofs_size) {
15886			dtrace_dof_error(dof, "invalid probe offset");
15887			return (-1);
15888		}
15889
15890		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
15891			/*
15892			 * If there's no is-enabled offset section, make sure
15893			 * there aren't any is-enabled offsets. Otherwise
15894			 * perform the same checks as for probe offsets
15895			 * (immediately above).
15896			 */
15897			if (enoff_sec == NULL) {
15898				if (probe->dofpr_enoffidx != 0 ||
15899				    probe->dofpr_nenoffs != 0) {
15900					dtrace_dof_error(dof, "is-enabled "
15901					    "offsets with null section");
15902					return (-1);
15903				}
15904			} else if (probe->dofpr_enoffidx +
15905			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
15906			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
15907			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
15908				dtrace_dof_error(dof, "invalid is-enabled "
15909				    "offset");
15910				return (-1);
15911			}
15912
15913			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
15914				dtrace_dof_error(dof, "zero probe and "
15915				    "is-enabled offsets");
15916				return (-1);
15917			}
15918		} else if (probe->dofpr_noffs == 0) {
15919			dtrace_dof_error(dof, "zero probe offsets");
15920			return (-1);
15921		}
15922
15923		if (probe->dofpr_argidx + probe->dofpr_xargc <
15924		    probe->dofpr_argidx ||
15925		    (probe->dofpr_argidx + probe->dofpr_xargc) *
15926		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
15927			dtrace_dof_error(dof, "invalid args");
15928			return (-1);
15929		}
15930
15931		typeidx = probe->dofpr_nargv;
15932		typestr = strtab + probe->dofpr_nargv;
15933		for (k = 0; k < probe->dofpr_nargc; k++) {
15934			if (typeidx >= str_sec->dofs_size) {
15935				dtrace_dof_error(dof, "bad "
15936				    "native argument type");
15937				return (-1);
15938			}
15939
15940			typesz = strlen(typestr) + 1;
15941			if (typesz > DTRACE_ARGTYPELEN) {
15942				dtrace_dof_error(dof, "native "
15943				    "argument type too long");
15944				return (-1);
15945			}
15946			typeidx += typesz;
15947			typestr += typesz;
15948		}
15949
15950		typeidx = probe->dofpr_xargv;
15951		typestr = strtab + probe->dofpr_xargv;
15952		for (k = 0; k < probe->dofpr_xargc; k++) {
15953			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
15954				dtrace_dof_error(dof, "bad "
15955				    "native argument index");
15956				return (-1);
15957			}
15958
15959			if (typeidx >= str_sec->dofs_size) {
15960				dtrace_dof_error(dof, "bad "
15961				    "translated argument type");
15962				return (-1);
15963			}
15964
15965			typesz = strlen(typestr) + 1;
15966			if (typesz > DTRACE_ARGTYPELEN) {
15967				dtrace_dof_error(dof, "translated argument "
15968				    "type too long");
15969				return (-1);
15970			}
15971
15972			typeidx += typesz;
15973			typestr += typesz;
15974		}
15975	}
15976
15977	return (0);
15978}
15979
15980static int
15981dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
15982{
15983	dtrace_helpers_t *help;
15984	dtrace_vstate_t *vstate;
15985	dtrace_enabling_t *enab = NULL;
15986	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
15987	uintptr_t daddr = (uintptr_t)dof;
15988
15989	ASSERT(MUTEX_HELD(&dtrace_lock));
15990
15991	if ((help = curproc->p_dtrace_helpers) == NULL)
15992		help = dtrace_helpers_create(curproc);
15993
15994	vstate = &help->dthps_vstate;
15995
15996	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
15997	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
15998		dtrace_dof_destroy(dof);
15999		return (rv);
16000	}
16001
16002	/*
16003	 * Look for helper providers and validate their descriptions.
16004	 */
16005	if (dhp != NULL) {
16006		for (i = 0; i < dof->dofh_secnum; i++) {
16007			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
16008			    dof->dofh_secoff + i * dof->dofh_secsize);
16009
16010			if (sec->dofs_type != DOF_SECT_PROVIDER)
16011				continue;
16012
16013			if (dtrace_helper_provider_validate(dof, sec) != 0) {
16014				dtrace_enabling_destroy(enab);
16015				dtrace_dof_destroy(dof);
16016				return (-1);
16017			}
16018
16019			nprovs++;
16020		}
16021	}
16022
16023	/*
16024	 * Now we need to walk through the ECB descriptions in the enabling.
16025	 */
16026	for (i = 0; i < enab->dten_ndesc; i++) {
16027		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
16028		dtrace_probedesc_t *desc = &ep->dted_probe;
16029
16030		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
16031			continue;
16032
16033		if (strcmp(desc->dtpd_mod, "helper") != 0)
16034			continue;
16035
16036		if (strcmp(desc->dtpd_func, "ustack") != 0)
16037			continue;
16038
16039		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
16040		    ep)) != 0) {
16041			/*
16042			 * Adding this helper action failed -- we are now going
16043			 * to rip out the entire generation and return failure.
16044			 */
16045			(void) dtrace_helper_destroygen(help->dthps_generation);
16046			dtrace_enabling_destroy(enab);
16047			dtrace_dof_destroy(dof);
16048			return (-1);
16049		}
16050
16051		nhelpers++;
16052	}
16053
16054	if (nhelpers < enab->dten_ndesc)
16055		dtrace_dof_error(dof, "unmatched helpers");
16056
16057	gen = help->dthps_generation++;
16058	dtrace_enabling_destroy(enab);
16059
16060	if (dhp != NULL && nprovs > 0) {
16061		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
16062		if (dtrace_helper_provider_add(dhp, gen) == 0) {
16063			mutex_exit(&dtrace_lock);
16064			dtrace_helper_provider_register(curproc, help, dhp);
16065			mutex_enter(&dtrace_lock);
16066
16067			destroy = 0;
16068		}
16069	}
16070
16071	if (destroy)
16072		dtrace_dof_destroy(dof);
16073
16074	return (gen);
16075}
16076
16077static dtrace_helpers_t *
16078dtrace_helpers_create(proc_t *p)
16079{
16080	dtrace_helpers_t *help;
16081
16082	ASSERT(MUTEX_HELD(&dtrace_lock));
16083	ASSERT(p->p_dtrace_helpers == NULL);
16084
16085	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
16086	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
16087	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
16088
16089	p->p_dtrace_helpers = help;
16090	dtrace_helpers++;
16091
16092	return (help);
16093}
16094
16095#ifdef illumos
16096static
16097#endif
16098void
16099dtrace_helpers_destroy(proc_t *p)
16100{
16101	dtrace_helpers_t *help;
16102	dtrace_vstate_t *vstate;
16103#ifdef illumos
16104	proc_t *p = curproc;
16105#endif
16106	int i;
16107
16108	mutex_enter(&dtrace_lock);
16109
16110	ASSERT(p->p_dtrace_helpers != NULL);
16111	ASSERT(dtrace_helpers > 0);
16112
16113	help = p->p_dtrace_helpers;
16114	vstate = &help->dthps_vstate;
16115
16116	/*
16117	 * We're now going to lose the help from this process.
16118	 */
16119	p->p_dtrace_helpers = NULL;
16120	dtrace_sync();
16121
16122	/*
16123	 * Destory the helper actions.
16124	 */
16125	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16126		dtrace_helper_action_t *h, *next;
16127
16128		for (h = help->dthps_actions[i]; h != NULL; h = next) {
16129			next = h->dtha_next;
16130			dtrace_helper_action_destroy(h, vstate);
16131			h = next;
16132		}
16133	}
16134
16135	mutex_exit(&dtrace_lock);
16136
16137	/*
16138	 * Destroy the helper providers.
16139	 */
16140	if (help->dthps_maxprovs > 0) {
16141		mutex_enter(&dtrace_meta_lock);
16142		if (dtrace_meta_pid != NULL) {
16143			ASSERT(dtrace_deferred_pid == NULL);
16144
16145			for (i = 0; i < help->dthps_nprovs; i++) {
16146				dtrace_helper_provider_remove(
16147				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
16148			}
16149		} else {
16150			mutex_enter(&dtrace_lock);
16151			ASSERT(help->dthps_deferred == 0 ||
16152			    help->dthps_next != NULL ||
16153			    help->dthps_prev != NULL ||
16154			    help == dtrace_deferred_pid);
16155
16156			/*
16157			 * Remove the helper from the deferred list.
16158			 */
16159			if (help->dthps_next != NULL)
16160				help->dthps_next->dthps_prev = help->dthps_prev;
16161			if (help->dthps_prev != NULL)
16162				help->dthps_prev->dthps_next = help->dthps_next;
16163			if (dtrace_deferred_pid == help) {
16164				dtrace_deferred_pid = help->dthps_next;
16165				ASSERT(help->dthps_prev == NULL);
16166			}
16167
16168			mutex_exit(&dtrace_lock);
16169		}
16170
16171		mutex_exit(&dtrace_meta_lock);
16172
16173		for (i = 0; i < help->dthps_nprovs; i++) {
16174			dtrace_helper_provider_destroy(help->dthps_provs[i]);
16175		}
16176
16177		kmem_free(help->dthps_provs, help->dthps_maxprovs *
16178		    sizeof (dtrace_helper_provider_t *));
16179	}
16180
16181	mutex_enter(&dtrace_lock);
16182
16183	dtrace_vstate_fini(&help->dthps_vstate);
16184	kmem_free(help->dthps_actions,
16185	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
16186	kmem_free(help, sizeof (dtrace_helpers_t));
16187
16188	--dtrace_helpers;
16189	mutex_exit(&dtrace_lock);
16190}
16191
16192#ifdef illumos
16193static
16194#endif
16195void
16196dtrace_helpers_duplicate(proc_t *from, proc_t *to)
16197{
16198	dtrace_helpers_t *help, *newhelp;
16199	dtrace_helper_action_t *helper, *new, *last;
16200	dtrace_difo_t *dp;
16201	dtrace_vstate_t *vstate;
16202	int i, j, sz, hasprovs = 0;
16203
16204	mutex_enter(&dtrace_lock);
16205	ASSERT(from->p_dtrace_helpers != NULL);
16206	ASSERT(dtrace_helpers > 0);
16207
16208	help = from->p_dtrace_helpers;
16209	newhelp = dtrace_helpers_create(to);
16210	ASSERT(to->p_dtrace_helpers != NULL);
16211
16212	newhelp->dthps_generation = help->dthps_generation;
16213	vstate = &newhelp->dthps_vstate;
16214
16215	/*
16216	 * Duplicate the helper actions.
16217	 */
16218	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16219		if ((helper = help->dthps_actions[i]) == NULL)
16220			continue;
16221
16222		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
16223			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
16224			    KM_SLEEP);
16225			new->dtha_generation = helper->dtha_generation;
16226
16227			if ((dp = helper->dtha_predicate) != NULL) {
16228				dp = dtrace_difo_duplicate(dp, vstate);
16229				new->dtha_predicate = dp;
16230			}
16231
16232			new->dtha_nactions = helper->dtha_nactions;
16233			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
16234			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
16235
16236			for (j = 0; j < new->dtha_nactions; j++) {
16237				dtrace_difo_t *dp = helper->dtha_actions[j];
16238
16239				ASSERT(dp != NULL);
16240				dp = dtrace_difo_duplicate(dp, vstate);
16241				new->dtha_actions[j] = dp;
16242			}
16243
16244			if (last != NULL) {
16245				last->dtha_next = new;
16246			} else {
16247				newhelp->dthps_actions[i] = new;
16248			}
16249
16250			last = new;
16251		}
16252	}
16253
16254	/*
16255	 * Duplicate the helper providers and register them with the
16256	 * DTrace framework.
16257	 */
16258	if (help->dthps_nprovs > 0) {
16259		newhelp->dthps_nprovs = help->dthps_nprovs;
16260		newhelp->dthps_maxprovs = help->dthps_nprovs;
16261		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
16262		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16263		for (i = 0; i < newhelp->dthps_nprovs; i++) {
16264			newhelp->dthps_provs[i] = help->dthps_provs[i];
16265			newhelp->dthps_provs[i]->dthp_ref++;
16266		}
16267
16268		hasprovs = 1;
16269	}
16270
16271	mutex_exit(&dtrace_lock);
16272
16273	if (hasprovs)
16274		dtrace_helper_provider_register(to, newhelp, NULL);
16275}
16276
16277/*
16278 * DTrace Hook Functions
16279 */
16280static void
16281dtrace_module_loaded(modctl_t *ctl)
16282{
16283	dtrace_provider_t *prv;
16284
16285	mutex_enter(&dtrace_provider_lock);
16286#ifdef illumos
16287	mutex_enter(&mod_lock);
16288#endif
16289
16290#ifdef illumos
16291	ASSERT(ctl->mod_busy);
16292#endif
16293
16294	/*
16295	 * We're going to call each providers per-module provide operation
16296	 * specifying only this module.
16297	 */
16298	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
16299		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
16300
16301#ifdef illumos
16302	mutex_exit(&mod_lock);
16303#endif
16304	mutex_exit(&dtrace_provider_lock);
16305
16306	/*
16307	 * If we have any retained enablings, we need to match against them.
16308	 * Enabling probes requires that cpu_lock be held, and we cannot hold
16309	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
16310	 * module.  (In particular, this happens when loading scheduling
16311	 * classes.)  So if we have any retained enablings, we need to dispatch
16312	 * our task queue to do the match for us.
16313	 */
16314	mutex_enter(&dtrace_lock);
16315
16316	if (dtrace_retained == NULL) {
16317		mutex_exit(&dtrace_lock);
16318		return;
16319	}
16320
16321	(void) taskq_dispatch(dtrace_taskq,
16322	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
16323
16324	mutex_exit(&dtrace_lock);
16325
16326	/*
16327	 * And now, for a little heuristic sleaze:  in general, we want to
16328	 * match modules as soon as they load.  However, we cannot guarantee
16329	 * this, because it would lead us to the lock ordering violation
16330	 * outlined above.  The common case, of course, is that cpu_lock is
16331	 * _not_ held -- so we delay here for a clock tick, hoping that that's
16332	 * long enough for the task queue to do its work.  If it's not, it's
16333	 * not a serious problem -- it just means that the module that we
16334	 * just loaded may not be immediately instrumentable.
16335	 */
16336	delay(1);
16337}
16338
16339static void
16340#ifdef illumos
16341dtrace_module_unloaded(modctl_t *ctl)
16342#else
16343dtrace_module_unloaded(modctl_t *ctl, int *error)
16344#endif
16345{
16346	dtrace_probe_t template, *probe, *first, *next;
16347	dtrace_provider_t *prov;
16348#ifndef illumos
16349	char modname[DTRACE_MODNAMELEN];
16350	size_t len;
16351#endif
16352
16353#ifdef illumos
16354	template.dtpr_mod = ctl->mod_modname;
16355#else
16356	/* Handle the fact that ctl->filename may end in ".ko". */
16357	strlcpy(modname, ctl->filename, sizeof(modname));
16358	len = strlen(ctl->filename);
16359	if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
16360		modname[len - 3] = '\0';
16361	template.dtpr_mod = modname;
16362#endif
16363
16364	mutex_enter(&dtrace_provider_lock);
16365#ifdef illumos
16366	mutex_enter(&mod_lock);
16367#endif
16368	mutex_enter(&dtrace_lock);
16369
16370#ifndef illumos
16371	if (ctl->nenabled > 0) {
16372		/* Don't allow unloads if a probe is enabled. */
16373		mutex_exit(&dtrace_provider_lock);
16374		mutex_exit(&dtrace_lock);
16375		*error = -1;
16376		printf(
16377	"kldunload: attempt to unload module that has DTrace probes enabled\n");
16378		return;
16379	}
16380#endif
16381
16382	if (dtrace_bymod == NULL) {
16383		/*
16384		 * The DTrace module is loaded (obviously) but not attached;
16385		 * we don't have any work to do.
16386		 */
16387		mutex_exit(&dtrace_provider_lock);
16388#ifdef illumos
16389		mutex_exit(&mod_lock);
16390#endif
16391		mutex_exit(&dtrace_lock);
16392		return;
16393	}
16394
16395	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
16396	    probe != NULL; probe = probe->dtpr_nextmod) {
16397		if (probe->dtpr_ecb != NULL) {
16398			mutex_exit(&dtrace_provider_lock);
16399#ifdef illumos
16400			mutex_exit(&mod_lock);
16401#endif
16402			mutex_exit(&dtrace_lock);
16403
16404			/*
16405			 * This shouldn't _actually_ be possible -- we're
16406			 * unloading a module that has an enabled probe in it.
16407			 * (It's normally up to the provider to make sure that
16408			 * this can't happen.)  However, because dtps_enable()
16409			 * doesn't have a failure mode, there can be an
16410			 * enable/unload race.  Upshot:  we don't want to
16411			 * assert, but we're not going to disable the
16412			 * probe, either.
16413			 */
16414			if (dtrace_err_verbose) {
16415#ifdef illumos
16416				cmn_err(CE_WARN, "unloaded module '%s' had "
16417				    "enabled probes", ctl->mod_modname);
16418#else
16419				cmn_err(CE_WARN, "unloaded module '%s' had "
16420				    "enabled probes", modname);
16421#endif
16422			}
16423
16424			return;
16425		}
16426	}
16427
16428	probe = first;
16429
16430	for (first = NULL; probe != NULL; probe = next) {
16431		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
16432
16433		dtrace_probes[probe->dtpr_id - 1] = NULL;
16434
16435		next = probe->dtpr_nextmod;
16436		dtrace_hash_remove(dtrace_bymod, probe);
16437		dtrace_hash_remove(dtrace_byfunc, probe);
16438		dtrace_hash_remove(dtrace_byname, probe);
16439
16440		if (first == NULL) {
16441			first = probe;
16442			probe->dtpr_nextmod = NULL;
16443		} else {
16444			probe->dtpr_nextmod = first;
16445			first = probe;
16446		}
16447	}
16448
16449	/*
16450	 * We've removed all of the module's probes from the hash chains and
16451	 * from the probe array.  Now issue a dtrace_sync() to be sure that
16452	 * everyone has cleared out from any probe array processing.
16453	 */
16454	dtrace_sync();
16455
16456	for (probe = first; probe != NULL; probe = first) {
16457		first = probe->dtpr_nextmod;
16458		prov = probe->dtpr_provider;
16459		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
16460		    probe->dtpr_arg);
16461		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
16462		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
16463		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
16464#ifdef illumos
16465		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
16466#else
16467		free_unr(dtrace_arena, probe->dtpr_id);
16468#endif
16469		kmem_free(probe, sizeof (dtrace_probe_t));
16470	}
16471
16472	mutex_exit(&dtrace_lock);
16473#ifdef illumos
16474	mutex_exit(&mod_lock);
16475#endif
16476	mutex_exit(&dtrace_provider_lock);
16477}
16478
16479#ifndef illumos
16480static void
16481dtrace_kld_load(void *arg __unused, linker_file_t lf)
16482{
16483
16484	dtrace_module_loaded(lf);
16485}
16486
16487static void
16488dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error)
16489{
16490
16491	if (*error != 0)
16492		/* We already have an error, so don't do anything. */
16493		return;
16494	dtrace_module_unloaded(lf, error);
16495}
16496#endif
16497
16498#ifdef illumos
16499static void
16500dtrace_suspend(void)
16501{
16502	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
16503}
16504
16505static void
16506dtrace_resume(void)
16507{
16508	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
16509}
16510#endif
16511
16512static int
16513dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
16514{
16515	ASSERT(MUTEX_HELD(&cpu_lock));
16516	mutex_enter(&dtrace_lock);
16517
16518	switch (what) {
16519	case CPU_CONFIG: {
16520		dtrace_state_t *state;
16521		dtrace_optval_t *opt, rs, c;
16522
16523		/*
16524		 * For now, we only allocate a new buffer for anonymous state.
16525		 */
16526		if ((state = dtrace_anon.dta_state) == NULL)
16527			break;
16528
16529		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
16530			break;
16531
16532		opt = state->dts_options;
16533		c = opt[DTRACEOPT_CPU];
16534
16535		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
16536			break;
16537
16538		/*
16539		 * Regardless of what the actual policy is, we're going to
16540		 * temporarily set our resize policy to be manual.  We're
16541		 * also going to temporarily set our CPU option to denote
16542		 * the newly configured CPU.
16543		 */
16544		rs = opt[DTRACEOPT_BUFRESIZE];
16545		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
16546		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
16547
16548		(void) dtrace_state_buffers(state);
16549
16550		opt[DTRACEOPT_BUFRESIZE] = rs;
16551		opt[DTRACEOPT_CPU] = c;
16552
16553		break;
16554	}
16555
16556	case CPU_UNCONFIG:
16557		/*
16558		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
16559		 * buffer will be freed when the consumer exits.)
16560		 */
16561		break;
16562
16563	default:
16564		break;
16565	}
16566
16567	mutex_exit(&dtrace_lock);
16568	return (0);
16569}
16570
16571#ifdef illumos
16572static void
16573dtrace_cpu_setup_initial(processorid_t cpu)
16574{
16575	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
16576}
16577#endif
16578
16579static void
16580dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
16581{
16582	if (dtrace_toxranges >= dtrace_toxranges_max) {
16583		int osize, nsize;
16584		dtrace_toxrange_t *range;
16585
16586		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16587
16588		if (osize == 0) {
16589			ASSERT(dtrace_toxrange == NULL);
16590			ASSERT(dtrace_toxranges_max == 0);
16591			dtrace_toxranges_max = 1;
16592		} else {
16593			dtrace_toxranges_max <<= 1;
16594		}
16595
16596		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16597		range = kmem_zalloc(nsize, KM_SLEEP);
16598
16599		if (dtrace_toxrange != NULL) {
16600			ASSERT(osize != 0);
16601			bcopy(dtrace_toxrange, range, osize);
16602			kmem_free(dtrace_toxrange, osize);
16603		}
16604
16605		dtrace_toxrange = range;
16606	}
16607
16608	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
16609	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
16610
16611	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
16612	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
16613	dtrace_toxranges++;
16614}
16615
16616static void
16617dtrace_getf_barrier()
16618{
16619#ifdef illumos
16620	/*
16621	 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
16622	 * that contain calls to getf(), this routine will be called on every
16623	 * closef() before either the underlying vnode is released or the
16624	 * file_t itself is freed.  By the time we are here, it is essential
16625	 * that the file_t can no longer be accessed from a call to getf()
16626	 * in probe context -- that assures that a dtrace_sync() can be used
16627	 * to clear out any enablings referring to the old structures.
16628	 */
16629	if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
16630	    kcred->cr_zone->zone_dtrace_getf != 0)
16631		dtrace_sync();
16632#endif
16633}
16634
16635/*
16636 * DTrace Driver Cookbook Functions
16637 */
16638#ifdef illumos
16639/*ARGSUSED*/
16640static int
16641dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
16642{
16643	dtrace_provider_id_t id;
16644	dtrace_state_t *state = NULL;
16645	dtrace_enabling_t *enab;
16646
16647	mutex_enter(&cpu_lock);
16648	mutex_enter(&dtrace_provider_lock);
16649	mutex_enter(&dtrace_lock);
16650
16651	if (ddi_soft_state_init(&dtrace_softstate,
16652	    sizeof (dtrace_state_t), 0) != 0) {
16653		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
16654		mutex_exit(&cpu_lock);
16655		mutex_exit(&dtrace_provider_lock);
16656		mutex_exit(&dtrace_lock);
16657		return (DDI_FAILURE);
16658	}
16659
16660	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
16661	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
16662	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
16663	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
16664		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
16665		ddi_remove_minor_node(devi, NULL);
16666		ddi_soft_state_fini(&dtrace_softstate);
16667		mutex_exit(&cpu_lock);
16668		mutex_exit(&dtrace_provider_lock);
16669		mutex_exit(&dtrace_lock);
16670		return (DDI_FAILURE);
16671	}
16672
16673	ddi_report_dev(devi);
16674	dtrace_devi = devi;
16675
16676	dtrace_modload = dtrace_module_loaded;
16677	dtrace_modunload = dtrace_module_unloaded;
16678	dtrace_cpu_init = dtrace_cpu_setup_initial;
16679	dtrace_helpers_cleanup = dtrace_helpers_destroy;
16680	dtrace_helpers_fork = dtrace_helpers_duplicate;
16681	dtrace_cpustart_init = dtrace_suspend;
16682	dtrace_cpustart_fini = dtrace_resume;
16683	dtrace_debugger_init = dtrace_suspend;
16684	dtrace_debugger_fini = dtrace_resume;
16685
16686	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16687
16688	ASSERT(MUTEX_HELD(&cpu_lock));
16689
16690	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
16691	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
16692	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
16693	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
16694	    VM_SLEEP | VMC_IDENTIFIER);
16695	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
16696	    1, INT_MAX, 0);
16697
16698	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
16699	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
16700	    NULL, NULL, NULL, NULL, NULL, 0);
16701
16702	ASSERT(MUTEX_HELD(&cpu_lock));
16703	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
16704	    offsetof(dtrace_probe_t, dtpr_nextmod),
16705	    offsetof(dtrace_probe_t, dtpr_prevmod));
16706
16707	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
16708	    offsetof(dtrace_probe_t, dtpr_nextfunc),
16709	    offsetof(dtrace_probe_t, dtpr_prevfunc));
16710
16711	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
16712	    offsetof(dtrace_probe_t, dtpr_nextname),
16713	    offsetof(dtrace_probe_t, dtpr_prevname));
16714
16715	if (dtrace_retain_max < 1) {
16716		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
16717		    "setting to 1", dtrace_retain_max);
16718		dtrace_retain_max = 1;
16719	}
16720
16721	/*
16722	 * Now discover our toxic ranges.
16723	 */
16724	dtrace_toxic_ranges(dtrace_toxrange_add);
16725
16726	/*
16727	 * Before we register ourselves as a provider to our own framework,
16728	 * we would like to assert that dtrace_provider is NULL -- but that's
16729	 * not true if we were loaded as a dependency of a DTrace provider.
16730	 * Once we've registered, we can assert that dtrace_provider is our
16731	 * pseudo provider.
16732	 */
16733	(void) dtrace_register("dtrace", &dtrace_provider_attr,
16734	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
16735
16736	ASSERT(dtrace_provider != NULL);
16737	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
16738
16739	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
16740	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
16741	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
16742	    dtrace_provider, NULL, NULL, "END", 0, NULL);
16743	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
16744	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
16745
16746	dtrace_anon_property();
16747	mutex_exit(&cpu_lock);
16748
16749	/*
16750	 * If there are already providers, we must ask them to provide their
16751	 * probes, and then match any anonymous enabling against them.  Note
16752	 * that there should be no other retained enablings at this time:
16753	 * the only retained enablings at this time should be the anonymous
16754	 * enabling.
16755	 */
16756	if (dtrace_anon.dta_enabling != NULL) {
16757		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
16758
16759		dtrace_enabling_provide(NULL);
16760		state = dtrace_anon.dta_state;
16761
16762		/*
16763		 * We couldn't hold cpu_lock across the above call to
16764		 * dtrace_enabling_provide(), but we must hold it to actually
16765		 * enable the probes.  We have to drop all of our locks, pick
16766		 * up cpu_lock, and regain our locks before matching the
16767		 * retained anonymous enabling.
16768		 */
16769		mutex_exit(&dtrace_lock);
16770		mutex_exit(&dtrace_provider_lock);
16771
16772		mutex_enter(&cpu_lock);
16773		mutex_enter(&dtrace_provider_lock);
16774		mutex_enter(&dtrace_lock);
16775
16776		if ((enab = dtrace_anon.dta_enabling) != NULL)
16777			(void) dtrace_enabling_match(enab, NULL);
16778
16779		mutex_exit(&cpu_lock);
16780	}
16781
16782	mutex_exit(&dtrace_lock);
16783	mutex_exit(&dtrace_provider_lock);
16784
16785	if (state != NULL) {
16786		/*
16787		 * If we created any anonymous state, set it going now.
16788		 */
16789		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
16790	}
16791
16792	return (DDI_SUCCESS);
16793}
16794#endif	/* illumos */
16795
16796#ifndef illumos
16797static void dtrace_dtr(void *);
16798#endif
16799
16800/*ARGSUSED*/
16801static int
16802#ifdef illumos
16803dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
16804#else
16805dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
16806#endif
16807{
16808	dtrace_state_t *state;
16809	uint32_t priv;
16810	uid_t uid;
16811	zoneid_t zoneid;
16812
16813#ifdef illumos
16814	if (getminor(*devp) == DTRACEMNRN_HELPER)
16815		return (0);
16816
16817	/*
16818	 * If this wasn't an open with the "helper" minor, then it must be
16819	 * the "dtrace" minor.
16820	 */
16821	if (getminor(*devp) == DTRACEMNRN_DTRACE)
16822		return (ENXIO);
16823#else
16824	cred_t *cred_p = NULL;
16825	cred_p = dev->si_cred;
16826
16827	/*
16828	 * If no DTRACE_PRIV_* bits are set in the credential, then the
16829	 * caller lacks sufficient permission to do anything with DTrace.
16830	 */
16831	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
16832	if (priv == DTRACE_PRIV_NONE) {
16833#endif
16834
16835		return (EACCES);
16836	}
16837
16838	/*
16839	 * Ask all providers to provide all their probes.
16840	 */
16841	mutex_enter(&dtrace_provider_lock);
16842	dtrace_probe_provide(NULL, NULL);
16843	mutex_exit(&dtrace_provider_lock);
16844
16845	mutex_enter(&cpu_lock);
16846	mutex_enter(&dtrace_lock);
16847	dtrace_opens++;
16848	dtrace_membar_producer();
16849
16850#ifdef illumos
16851	/*
16852	 * If the kernel debugger is active (that is, if the kernel debugger
16853	 * modified text in some way), we won't allow the open.
16854	 */
16855	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
16856		dtrace_opens--;
16857		mutex_exit(&cpu_lock);
16858		mutex_exit(&dtrace_lock);
16859		return (EBUSY);
16860	}
16861
16862	if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
16863		/*
16864		 * If DTrace helper tracing is enabled, we need to allocate the
16865		 * trace buffer and initialize the values.
16866		 */
16867		dtrace_helptrace_buffer =
16868		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
16869		dtrace_helptrace_next = 0;
16870		dtrace_helptrace_wrapped = 0;
16871		dtrace_helptrace_enable = 0;
16872	}
16873
16874	state = dtrace_state_create(devp, cred_p);
16875#else
16876	state = dtrace_state_create(dev);
16877	devfs_set_cdevpriv(state, dtrace_dtr);
16878#endif
16879
16880	mutex_exit(&cpu_lock);
16881
16882	if (state == NULL) {
16883#ifdef illumos
16884		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
16885			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16886#else
16887		--dtrace_opens;
16888#endif
16889		mutex_exit(&dtrace_lock);
16890		return (EAGAIN);
16891	}
16892
16893	mutex_exit(&dtrace_lock);
16894
16895	return (0);
16896}
16897
16898/*ARGSUSED*/
16899#ifdef illumos
16900static int
16901dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
16902#else
16903static void
16904dtrace_dtr(void *data)
16905#endif
16906{
16907#ifdef illumos
16908	minor_t minor = getminor(dev);
16909	dtrace_state_t *state;
16910#endif
16911	dtrace_helptrace_t *buf = NULL;
16912
16913#ifdef illumos
16914	if (minor == DTRACEMNRN_HELPER)
16915		return (0);
16916
16917	state = ddi_get_soft_state(dtrace_softstate, minor);
16918#else
16919	dtrace_state_t *state = data;
16920#endif
16921
16922	mutex_enter(&cpu_lock);
16923	mutex_enter(&dtrace_lock);
16924
16925#ifdef illumos
16926	if (state->dts_anon)
16927#else
16928	if (state != NULL && state->dts_anon)
16929#endif
16930	{
16931		/*
16932		 * There is anonymous state. Destroy that first.
16933		 */
16934		ASSERT(dtrace_anon.dta_state == NULL);
16935		dtrace_state_destroy(state->dts_anon);
16936	}
16937
16938	if (dtrace_helptrace_disable) {
16939		/*
16940		 * If we have been told to disable helper tracing, set the
16941		 * buffer to NULL before calling into dtrace_state_destroy();
16942		 * we take advantage of its dtrace_sync() to know that no
16943		 * CPU is in probe context with enabled helper tracing
16944		 * after it returns.
16945		 */
16946		buf = dtrace_helptrace_buffer;
16947		dtrace_helptrace_buffer = NULL;
16948	}
16949
16950#ifdef illumos
16951	dtrace_state_destroy(state);
16952#else
16953	if (state != NULL) {
16954		dtrace_state_destroy(state);
16955		kmem_free(state, 0);
16956	}
16957#endif
16958	ASSERT(dtrace_opens > 0);
16959
16960#ifdef illumos
16961	/*
16962	 * Only relinquish control of the kernel debugger interface when there
16963	 * are no consumers and no anonymous enablings.
16964	 */
16965	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
16966		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16967#else
16968	--dtrace_opens;
16969#endif
16970
16971	if (buf != NULL) {
16972		kmem_free(buf, dtrace_helptrace_bufsize);
16973		dtrace_helptrace_disable = 0;
16974	}
16975
16976	mutex_exit(&dtrace_lock);
16977	mutex_exit(&cpu_lock);
16978
16979#ifdef illumos
16980	return (0);
16981#endif
16982}
16983
16984#ifdef illumos
16985/*ARGSUSED*/
16986static int
16987dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
16988{
16989	int rval;
16990	dof_helper_t help, *dhp = NULL;
16991
16992	switch (cmd) {
16993	case DTRACEHIOC_ADDDOF:
16994		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
16995			dtrace_dof_error(NULL, "failed to copyin DOF helper");
16996			return (EFAULT);
16997		}
16998
16999		dhp = &help;
17000		arg = (intptr_t)help.dofhp_dof;
17001		/*FALLTHROUGH*/
17002
17003	case DTRACEHIOC_ADD: {
17004		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
17005
17006		if (dof == NULL)
17007			return (rval);
17008
17009		mutex_enter(&dtrace_lock);
17010
17011		/*
17012		 * dtrace_helper_slurp() takes responsibility for the dof --
17013		 * it may free it now or it may save it and free it later.
17014		 */
17015		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
17016			*rv = rval;
17017			rval = 0;
17018		} else {
17019			rval = EINVAL;
17020		}
17021
17022		mutex_exit(&dtrace_lock);
17023		return (rval);
17024	}
17025
17026	case DTRACEHIOC_REMOVE: {
17027		mutex_enter(&dtrace_lock);
17028		rval = dtrace_helper_destroygen(arg);
17029		mutex_exit(&dtrace_lock);
17030
17031		return (rval);
17032	}
17033
17034	default:
17035		break;
17036	}
17037
17038	return (ENOTTY);
17039}
17040
17041/*ARGSUSED*/
17042static int
17043dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
17044{
17045	minor_t minor = getminor(dev);
17046	dtrace_state_t *state;
17047	int rval;
17048
17049	if (minor == DTRACEMNRN_HELPER)
17050		return (dtrace_ioctl_helper(cmd, arg, rv));
17051
17052	state = ddi_get_soft_state(dtrace_softstate, minor);
17053
17054	if (state->dts_anon) {
17055		ASSERT(dtrace_anon.dta_state == NULL);
17056		state = state->dts_anon;
17057	}
17058
17059	switch (cmd) {
17060	case DTRACEIOC_PROVIDER: {
17061		dtrace_providerdesc_t pvd;
17062		dtrace_provider_t *pvp;
17063
17064		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
17065			return (EFAULT);
17066
17067		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
17068		mutex_enter(&dtrace_provider_lock);
17069
17070		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
17071			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
17072				break;
17073		}
17074
17075		mutex_exit(&dtrace_provider_lock);
17076
17077		if (pvp == NULL)
17078			return (ESRCH);
17079
17080		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
17081		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
17082
17083		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
17084			return (EFAULT);
17085
17086		return (0);
17087	}
17088
17089	case DTRACEIOC_EPROBE: {
17090		dtrace_eprobedesc_t epdesc;
17091		dtrace_ecb_t *ecb;
17092		dtrace_action_t *act;
17093		void *buf;
17094		size_t size;
17095		uintptr_t dest;
17096		int nrecs;
17097
17098		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
17099			return (EFAULT);
17100
17101		mutex_enter(&dtrace_lock);
17102
17103		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
17104			mutex_exit(&dtrace_lock);
17105			return (EINVAL);
17106		}
17107
17108		if (ecb->dte_probe == NULL) {
17109			mutex_exit(&dtrace_lock);
17110			return (EINVAL);
17111		}
17112
17113		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
17114		epdesc.dtepd_uarg = ecb->dte_uarg;
17115		epdesc.dtepd_size = ecb->dte_size;
17116
17117		nrecs = epdesc.dtepd_nrecs;
17118		epdesc.dtepd_nrecs = 0;
17119		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17120			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17121				continue;
17122
17123			epdesc.dtepd_nrecs++;
17124		}
17125
17126		/*
17127		 * Now that we have the size, we need to allocate a temporary
17128		 * buffer in which to store the complete description.  We need
17129		 * the temporary buffer to be able to drop dtrace_lock()
17130		 * across the copyout(), below.
17131		 */
17132		size = sizeof (dtrace_eprobedesc_t) +
17133		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
17134
17135		buf = kmem_alloc(size, KM_SLEEP);
17136		dest = (uintptr_t)buf;
17137
17138		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
17139		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
17140
17141		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17142			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17143				continue;
17144
17145			if (nrecs-- == 0)
17146				break;
17147
17148			bcopy(&act->dta_rec, (void *)dest,
17149			    sizeof (dtrace_recdesc_t));
17150			dest += sizeof (dtrace_recdesc_t);
17151		}
17152
17153		mutex_exit(&dtrace_lock);
17154
17155		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17156			kmem_free(buf, size);
17157			return (EFAULT);
17158		}
17159
17160		kmem_free(buf, size);
17161		return (0);
17162	}
17163
17164	case DTRACEIOC_AGGDESC: {
17165		dtrace_aggdesc_t aggdesc;
17166		dtrace_action_t *act;
17167		dtrace_aggregation_t *agg;
17168		int nrecs;
17169		uint32_t offs;
17170		dtrace_recdesc_t *lrec;
17171		void *buf;
17172		size_t size;
17173		uintptr_t dest;
17174
17175		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
17176			return (EFAULT);
17177
17178		mutex_enter(&dtrace_lock);
17179
17180		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
17181			mutex_exit(&dtrace_lock);
17182			return (EINVAL);
17183		}
17184
17185		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
17186
17187		nrecs = aggdesc.dtagd_nrecs;
17188		aggdesc.dtagd_nrecs = 0;
17189
17190		offs = agg->dtag_base;
17191		lrec = &agg->dtag_action.dta_rec;
17192		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
17193
17194		for (act = agg->dtag_first; ; act = act->dta_next) {
17195			ASSERT(act->dta_intuple ||
17196			    DTRACEACT_ISAGG(act->dta_kind));
17197
17198			/*
17199			 * If this action has a record size of zero, it
17200			 * denotes an argument to the aggregating action.
17201			 * Because the presence of this record doesn't (or
17202			 * shouldn't) affect the way the data is interpreted,
17203			 * we don't copy it out to save user-level the
17204			 * confusion of dealing with a zero-length record.
17205			 */
17206			if (act->dta_rec.dtrd_size == 0) {
17207				ASSERT(agg->dtag_hasarg);
17208				continue;
17209			}
17210
17211			aggdesc.dtagd_nrecs++;
17212
17213			if (act == &agg->dtag_action)
17214				break;
17215		}
17216
17217		/*
17218		 * Now that we have the size, we need to allocate a temporary
17219		 * buffer in which to store the complete description.  We need
17220		 * the temporary buffer to be able to drop dtrace_lock()
17221		 * across the copyout(), below.
17222		 */
17223		size = sizeof (dtrace_aggdesc_t) +
17224		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
17225
17226		buf = kmem_alloc(size, KM_SLEEP);
17227		dest = (uintptr_t)buf;
17228
17229		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
17230		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
17231
17232		for (act = agg->dtag_first; ; act = act->dta_next) {
17233			dtrace_recdesc_t rec = act->dta_rec;
17234
17235			/*
17236			 * See the comment in the above loop for why we pass
17237			 * over zero-length records.
17238			 */
17239			if (rec.dtrd_size == 0) {
17240				ASSERT(agg->dtag_hasarg);
17241				continue;
17242			}
17243
17244			if (nrecs-- == 0)
17245				break;
17246
17247			rec.dtrd_offset -= offs;
17248			bcopy(&rec, (void *)dest, sizeof (rec));
17249			dest += sizeof (dtrace_recdesc_t);
17250
17251			if (act == &agg->dtag_action)
17252				break;
17253		}
17254
17255		mutex_exit(&dtrace_lock);
17256
17257		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17258			kmem_free(buf, size);
17259			return (EFAULT);
17260		}
17261
17262		kmem_free(buf, size);
17263		return (0);
17264	}
17265
17266	case DTRACEIOC_ENABLE: {
17267		dof_hdr_t *dof;
17268		dtrace_enabling_t *enab = NULL;
17269		dtrace_vstate_t *vstate;
17270		int err = 0;
17271
17272		*rv = 0;
17273
17274		/*
17275		 * If a NULL argument has been passed, we take this as our
17276		 * cue to reevaluate our enablings.
17277		 */
17278		if (arg == NULL) {
17279			dtrace_enabling_matchall();
17280
17281			return (0);
17282		}
17283
17284		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
17285			return (rval);
17286
17287		mutex_enter(&cpu_lock);
17288		mutex_enter(&dtrace_lock);
17289		vstate = &state->dts_vstate;
17290
17291		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
17292			mutex_exit(&dtrace_lock);
17293			mutex_exit(&cpu_lock);
17294			dtrace_dof_destroy(dof);
17295			return (EBUSY);
17296		}
17297
17298		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
17299			mutex_exit(&dtrace_lock);
17300			mutex_exit(&cpu_lock);
17301			dtrace_dof_destroy(dof);
17302			return (EINVAL);
17303		}
17304
17305		if ((rval = dtrace_dof_options(dof, state)) != 0) {
17306			dtrace_enabling_destroy(enab);
17307			mutex_exit(&dtrace_lock);
17308			mutex_exit(&cpu_lock);
17309			dtrace_dof_destroy(dof);
17310			return (rval);
17311		}
17312
17313		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
17314			err = dtrace_enabling_retain(enab);
17315		} else {
17316			dtrace_enabling_destroy(enab);
17317		}
17318
17319		mutex_exit(&cpu_lock);
17320		mutex_exit(&dtrace_lock);
17321		dtrace_dof_destroy(dof);
17322
17323		return (err);
17324	}
17325
17326	case DTRACEIOC_REPLICATE: {
17327		dtrace_repldesc_t desc;
17328		dtrace_probedesc_t *match = &desc.dtrpd_match;
17329		dtrace_probedesc_t *create = &desc.dtrpd_create;
17330		int err;
17331
17332		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17333			return (EFAULT);
17334
17335		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17336		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17337		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17338		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17339
17340		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17341		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17342		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17343		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17344
17345		mutex_enter(&dtrace_lock);
17346		err = dtrace_enabling_replicate(state, match, create);
17347		mutex_exit(&dtrace_lock);
17348
17349		return (err);
17350	}
17351
17352	case DTRACEIOC_PROBEMATCH:
17353	case DTRACEIOC_PROBES: {
17354		dtrace_probe_t *probe = NULL;
17355		dtrace_probedesc_t desc;
17356		dtrace_probekey_t pkey;
17357		dtrace_id_t i;
17358		int m = 0;
17359		uint32_t priv;
17360		uid_t uid;
17361		zoneid_t zoneid;
17362
17363		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17364			return (EFAULT);
17365
17366		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17367		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17368		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17369		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17370
17371		/*
17372		 * Before we attempt to match this probe, we want to give
17373		 * all providers the opportunity to provide it.
17374		 */
17375		if (desc.dtpd_id == DTRACE_IDNONE) {
17376			mutex_enter(&dtrace_provider_lock);
17377			dtrace_probe_provide(&desc, NULL);
17378			mutex_exit(&dtrace_provider_lock);
17379			desc.dtpd_id++;
17380		}
17381
17382		if (cmd == DTRACEIOC_PROBEMATCH)  {
17383			dtrace_probekey(&desc, &pkey);
17384			pkey.dtpk_id = DTRACE_IDNONE;
17385		}
17386
17387		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
17388
17389		mutex_enter(&dtrace_lock);
17390
17391		if (cmd == DTRACEIOC_PROBEMATCH) {
17392			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17393				if ((probe = dtrace_probes[i - 1]) != NULL &&
17394				    (m = dtrace_match_probe(probe, &pkey,
17395				    priv, uid, zoneid)) != 0)
17396					break;
17397			}
17398
17399			if (m < 0) {
17400				mutex_exit(&dtrace_lock);
17401				return (EINVAL);
17402			}
17403
17404		} else {
17405			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17406				if ((probe = dtrace_probes[i - 1]) != NULL &&
17407				    dtrace_match_priv(probe, priv, uid, zoneid))
17408					break;
17409			}
17410		}
17411
17412		if (probe == NULL) {
17413			mutex_exit(&dtrace_lock);
17414			return (ESRCH);
17415		}
17416
17417		dtrace_probe_description(probe, &desc);
17418		mutex_exit(&dtrace_lock);
17419
17420		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17421			return (EFAULT);
17422
17423		return (0);
17424	}
17425
17426	case DTRACEIOC_PROBEARG: {
17427		dtrace_argdesc_t desc;
17428		dtrace_probe_t *probe;
17429		dtrace_provider_t *prov;
17430
17431		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17432			return (EFAULT);
17433
17434		if (desc.dtargd_id == DTRACE_IDNONE)
17435			return (EINVAL);
17436
17437		if (desc.dtargd_ndx == DTRACE_ARGNONE)
17438			return (EINVAL);
17439
17440		mutex_enter(&dtrace_provider_lock);
17441		mutex_enter(&mod_lock);
17442		mutex_enter(&dtrace_lock);
17443
17444		if (desc.dtargd_id > dtrace_nprobes) {
17445			mutex_exit(&dtrace_lock);
17446			mutex_exit(&mod_lock);
17447			mutex_exit(&dtrace_provider_lock);
17448			return (EINVAL);
17449		}
17450
17451		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
17452			mutex_exit(&dtrace_lock);
17453			mutex_exit(&mod_lock);
17454			mutex_exit(&dtrace_provider_lock);
17455			return (EINVAL);
17456		}
17457
17458		mutex_exit(&dtrace_lock);
17459
17460		prov = probe->dtpr_provider;
17461
17462		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
17463			/*
17464			 * There isn't any typed information for this probe.
17465			 * Set the argument number to DTRACE_ARGNONE.
17466			 */
17467			desc.dtargd_ndx = DTRACE_ARGNONE;
17468		} else {
17469			desc.dtargd_native[0] = '\0';
17470			desc.dtargd_xlate[0] = '\0';
17471			desc.dtargd_mapping = desc.dtargd_ndx;
17472
17473			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
17474			    probe->dtpr_id, probe->dtpr_arg, &desc);
17475		}
17476
17477		mutex_exit(&mod_lock);
17478		mutex_exit(&dtrace_provider_lock);
17479
17480		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17481			return (EFAULT);
17482
17483		return (0);
17484	}
17485
17486	case DTRACEIOC_GO: {
17487		processorid_t cpuid;
17488		rval = dtrace_state_go(state, &cpuid);
17489
17490		if (rval != 0)
17491			return (rval);
17492
17493		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17494			return (EFAULT);
17495
17496		return (0);
17497	}
17498
17499	case DTRACEIOC_STOP: {
17500		processorid_t cpuid;
17501
17502		mutex_enter(&dtrace_lock);
17503		rval = dtrace_state_stop(state, &cpuid);
17504		mutex_exit(&dtrace_lock);
17505
17506		if (rval != 0)
17507			return (rval);
17508
17509		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17510			return (EFAULT);
17511
17512		return (0);
17513	}
17514
17515	case DTRACEIOC_DOFGET: {
17516		dof_hdr_t hdr, *dof;
17517		uint64_t len;
17518
17519		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
17520			return (EFAULT);
17521
17522		mutex_enter(&dtrace_lock);
17523		dof = dtrace_dof_create(state);
17524		mutex_exit(&dtrace_lock);
17525
17526		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
17527		rval = copyout(dof, (void *)arg, len);
17528		dtrace_dof_destroy(dof);
17529
17530		return (rval == 0 ? 0 : EFAULT);
17531	}
17532
17533	case DTRACEIOC_AGGSNAP:
17534	case DTRACEIOC_BUFSNAP: {
17535		dtrace_bufdesc_t desc;
17536		caddr_t cached;
17537		dtrace_buffer_t *buf;
17538
17539		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17540			return (EFAULT);
17541
17542		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
17543			return (EINVAL);
17544
17545		mutex_enter(&dtrace_lock);
17546
17547		if (cmd == DTRACEIOC_BUFSNAP) {
17548			buf = &state->dts_buffer[desc.dtbd_cpu];
17549		} else {
17550			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
17551		}
17552
17553		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
17554			size_t sz = buf->dtb_offset;
17555
17556			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
17557				mutex_exit(&dtrace_lock);
17558				return (EBUSY);
17559			}
17560
17561			/*
17562			 * If this buffer has already been consumed, we're
17563			 * going to indicate that there's nothing left here
17564			 * to consume.
17565			 */
17566			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
17567				mutex_exit(&dtrace_lock);
17568
17569				desc.dtbd_size = 0;
17570				desc.dtbd_drops = 0;
17571				desc.dtbd_errors = 0;
17572				desc.dtbd_oldest = 0;
17573				sz = sizeof (desc);
17574
17575				if (copyout(&desc, (void *)arg, sz) != 0)
17576					return (EFAULT);
17577
17578				return (0);
17579			}
17580
17581			/*
17582			 * If this is a ring buffer that has wrapped, we want
17583			 * to copy the whole thing out.
17584			 */
17585			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
17586				dtrace_buffer_polish(buf);
17587				sz = buf->dtb_size;
17588			}
17589
17590			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
17591				mutex_exit(&dtrace_lock);
17592				return (EFAULT);
17593			}
17594
17595			desc.dtbd_size = sz;
17596			desc.dtbd_drops = buf->dtb_drops;
17597			desc.dtbd_errors = buf->dtb_errors;
17598			desc.dtbd_oldest = buf->dtb_xamot_offset;
17599			desc.dtbd_timestamp = dtrace_gethrtime();
17600
17601			mutex_exit(&dtrace_lock);
17602
17603			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17604				return (EFAULT);
17605
17606			buf->dtb_flags |= DTRACEBUF_CONSUMED;
17607
17608			return (0);
17609		}
17610
17611		if (buf->dtb_tomax == NULL) {
17612			ASSERT(buf->dtb_xamot == NULL);
17613			mutex_exit(&dtrace_lock);
17614			return (ENOENT);
17615		}
17616
17617		cached = buf->dtb_tomax;
17618		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
17619
17620		dtrace_xcall(desc.dtbd_cpu,
17621		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
17622
17623		state->dts_errors += buf->dtb_xamot_errors;
17624
17625		/*
17626		 * If the buffers did not actually switch, then the cross call
17627		 * did not take place -- presumably because the given CPU is
17628		 * not in the ready set.  If this is the case, we'll return
17629		 * ENOENT.
17630		 */
17631		if (buf->dtb_tomax == cached) {
17632			ASSERT(buf->dtb_xamot != cached);
17633			mutex_exit(&dtrace_lock);
17634			return (ENOENT);
17635		}
17636
17637		ASSERT(cached == buf->dtb_xamot);
17638
17639		/*
17640		 * We have our snapshot; now copy it out.
17641		 */
17642		if (copyout(buf->dtb_xamot, desc.dtbd_data,
17643		    buf->dtb_xamot_offset) != 0) {
17644			mutex_exit(&dtrace_lock);
17645			return (EFAULT);
17646		}
17647
17648		desc.dtbd_size = buf->dtb_xamot_offset;
17649		desc.dtbd_drops = buf->dtb_xamot_drops;
17650		desc.dtbd_errors = buf->dtb_xamot_errors;
17651		desc.dtbd_oldest = 0;
17652		desc.dtbd_timestamp = buf->dtb_switched;
17653
17654		mutex_exit(&dtrace_lock);
17655
17656		/*
17657		 * Finally, copy out the buffer description.
17658		 */
17659		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17660			return (EFAULT);
17661
17662		return (0);
17663	}
17664
17665	case DTRACEIOC_CONF: {
17666		dtrace_conf_t conf;
17667
17668		bzero(&conf, sizeof (conf));
17669		conf.dtc_difversion = DIF_VERSION;
17670		conf.dtc_difintregs = DIF_DIR_NREGS;
17671		conf.dtc_diftupregs = DIF_DTR_NREGS;
17672		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
17673
17674		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
17675			return (EFAULT);
17676
17677		return (0);
17678	}
17679
17680	case DTRACEIOC_STATUS: {
17681		dtrace_status_t stat;
17682		dtrace_dstate_t *dstate;
17683		int i, j;
17684		uint64_t nerrs;
17685
17686		/*
17687		 * See the comment in dtrace_state_deadman() for the reason
17688		 * for setting dts_laststatus to INT64_MAX before setting
17689		 * it to the correct value.
17690		 */
17691		state->dts_laststatus = INT64_MAX;
17692		dtrace_membar_producer();
17693		state->dts_laststatus = dtrace_gethrtime();
17694
17695		bzero(&stat, sizeof (stat));
17696
17697		mutex_enter(&dtrace_lock);
17698
17699		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
17700			mutex_exit(&dtrace_lock);
17701			return (ENOENT);
17702		}
17703
17704		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
17705			stat.dtst_exiting = 1;
17706
17707		nerrs = state->dts_errors;
17708		dstate = &state->dts_vstate.dtvs_dynvars;
17709
17710		for (i = 0; i < NCPU; i++) {
17711			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
17712
17713			stat.dtst_dyndrops += dcpu->dtdsc_drops;
17714			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
17715			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
17716
17717			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
17718				stat.dtst_filled++;
17719
17720			nerrs += state->dts_buffer[i].dtb_errors;
17721
17722			for (j = 0; j < state->dts_nspeculations; j++) {
17723				dtrace_speculation_t *spec;
17724				dtrace_buffer_t *buf;
17725
17726				spec = &state->dts_speculations[j];
17727				buf = &spec->dtsp_buffer[i];
17728				stat.dtst_specdrops += buf->dtb_xamot_drops;
17729			}
17730		}
17731
17732		stat.dtst_specdrops_busy = state->dts_speculations_busy;
17733		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
17734		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
17735		stat.dtst_dblerrors = state->dts_dblerrors;
17736		stat.dtst_killed =
17737		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
17738		stat.dtst_errors = nerrs;
17739
17740		mutex_exit(&dtrace_lock);
17741
17742		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
17743			return (EFAULT);
17744
17745		return (0);
17746	}
17747
17748	case DTRACEIOC_FORMAT: {
17749		dtrace_fmtdesc_t fmt;
17750		char *str;
17751		int len;
17752
17753		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
17754			return (EFAULT);
17755
17756		mutex_enter(&dtrace_lock);
17757
17758		if (fmt.dtfd_format == 0 ||
17759		    fmt.dtfd_format > state->dts_nformats) {
17760			mutex_exit(&dtrace_lock);
17761			return (EINVAL);
17762		}
17763
17764		/*
17765		 * Format strings are allocated contiguously and they are
17766		 * never freed; if a format index is less than the number
17767		 * of formats, we can assert that the format map is non-NULL
17768		 * and that the format for the specified index is non-NULL.
17769		 */
17770		ASSERT(state->dts_formats != NULL);
17771		str = state->dts_formats[fmt.dtfd_format - 1];
17772		ASSERT(str != NULL);
17773
17774		len = strlen(str) + 1;
17775
17776		if (len > fmt.dtfd_length) {
17777			fmt.dtfd_length = len;
17778
17779			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
17780				mutex_exit(&dtrace_lock);
17781				return (EINVAL);
17782			}
17783		} else {
17784			if (copyout(str, fmt.dtfd_string, len) != 0) {
17785				mutex_exit(&dtrace_lock);
17786				return (EINVAL);
17787			}
17788		}
17789
17790		mutex_exit(&dtrace_lock);
17791		return (0);
17792	}
17793
17794	default:
17795		break;
17796	}
17797
17798	return (ENOTTY);
17799}
17800
17801/*ARGSUSED*/
17802static int
17803dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
17804{
17805	dtrace_state_t *state;
17806
17807	switch (cmd) {
17808	case DDI_DETACH:
17809		break;
17810
17811	case DDI_SUSPEND:
17812		return (DDI_SUCCESS);
17813
17814	default:
17815		return (DDI_FAILURE);
17816	}
17817
17818	mutex_enter(&cpu_lock);
17819	mutex_enter(&dtrace_provider_lock);
17820	mutex_enter(&dtrace_lock);
17821
17822	ASSERT(dtrace_opens == 0);
17823
17824	if (dtrace_helpers > 0) {
17825		mutex_exit(&dtrace_provider_lock);
17826		mutex_exit(&dtrace_lock);
17827		mutex_exit(&cpu_lock);
17828		return (DDI_FAILURE);
17829	}
17830
17831	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
17832		mutex_exit(&dtrace_provider_lock);
17833		mutex_exit(&dtrace_lock);
17834		mutex_exit(&cpu_lock);
17835		return (DDI_FAILURE);
17836	}
17837
17838	dtrace_provider = NULL;
17839
17840	if ((state = dtrace_anon_grab()) != NULL) {
17841		/*
17842		 * If there were ECBs on this state, the provider should
17843		 * have not been allowed to detach; assert that there is
17844		 * none.
17845		 */
17846		ASSERT(state->dts_necbs == 0);
17847		dtrace_state_destroy(state);
17848
17849		/*
17850		 * If we're being detached with anonymous state, we need to
17851		 * indicate to the kernel debugger that DTrace is now inactive.
17852		 */
17853		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17854	}
17855
17856	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
17857	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
17858	dtrace_cpu_init = NULL;
17859	dtrace_helpers_cleanup = NULL;
17860	dtrace_helpers_fork = NULL;
17861	dtrace_cpustart_init = NULL;
17862	dtrace_cpustart_fini = NULL;
17863	dtrace_debugger_init = NULL;
17864	dtrace_debugger_fini = NULL;
17865	dtrace_modload = NULL;
17866	dtrace_modunload = NULL;
17867
17868	ASSERT(dtrace_getf == 0);
17869	ASSERT(dtrace_closef == NULL);
17870
17871	mutex_exit(&cpu_lock);
17872
17873	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
17874	dtrace_probes = NULL;
17875	dtrace_nprobes = 0;
17876
17877	dtrace_hash_destroy(dtrace_bymod);
17878	dtrace_hash_destroy(dtrace_byfunc);
17879	dtrace_hash_destroy(dtrace_byname);
17880	dtrace_bymod = NULL;
17881	dtrace_byfunc = NULL;
17882	dtrace_byname = NULL;
17883
17884	kmem_cache_destroy(dtrace_state_cache);
17885	vmem_destroy(dtrace_minor);
17886	vmem_destroy(dtrace_arena);
17887
17888	if (dtrace_toxrange != NULL) {
17889		kmem_free(dtrace_toxrange,
17890		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
17891		dtrace_toxrange = NULL;
17892		dtrace_toxranges = 0;
17893		dtrace_toxranges_max = 0;
17894	}
17895
17896	ddi_remove_minor_node(dtrace_devi, NULL);
17897	dtrace_devi = NULL;
17898
17899	ddi_soft_state_fini(&dtrace_softstate);
17900
17901	ASSERT(dtrace_vtime_references == 0);
17902	ASSERT(dtrace_opens == 0);
17903	ASSERT(dtrace_retained == NULL);
17904
17905	mutex_exit(&dtrace_lock);
17906	mutex_exit(&dtrace_provider_lock);
17907
17908	/*
17909	 * We don't destroy the task queue until after we have dropped our
17910	 * locks (taskq_destroy() may block on running tasks).  To prevent
17911	 * attempting to do work after we have effectively detached but before
17912	 * the task queue has been destroyed, all tasks dispatched via the
17913	 * task queue must check that DTrace is still attached before
17914	 * performing any operation.
17915	 */
17916	taskq_destroy(dtrace_taskq);
17917	dtrace_taskq = NULL;
17918
17919	return (DDI_SUCCESS);
17920}
17921#endif
17922
17923#ifdef illumos
17924/*ARGSUSED*/
17925static int
17926dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
17927{
17928	int error;
17929
17930	switch (infocmd) {
17931	case DDI_INFO_DEVT2DEVINFO:
17932		*result = (void *)dtrace_devi;
17933		error = DDI_SUCCESS;
17934		break;
17935	case DDI_INFO_DEVT2INSTANCE:
17936		*result = (void *)0;
17937		error = DDI_SUCCESS;
17938		break;
17939	default:
17940		error = DDI_FAILURE;
17941	}
17942	return (error);
17943}
17944#endif
17945
17946#ifdef illumos
17947static struct cb_ops dtrace_cb_ops = {
17948	dtrace_open,		/* open */
17949	dtrace_close,		/* close */
17950	nulldev,		/* strategy */
17951	nulldev,		/* print */
17952	nodev,			/* dump */
17953	nodev,			/* read */
17954	nodev,			/* write */
17955	dtrace_ioctl,		/* ioctl */
17956	nodev,			/* devmap */
17957	nodev,			/* mmap */
17958	nodev,			/* segmap */
17959	nochpoll,		/* poll */
17960	ddi_prop_op,		/* cb_prop_op */
17961	0,			/* streamtab  */
17962	D_NEW | D_MP		/* Driver compatibility flag */
17963};
17964
17965static struct dev_ops dtrace_ops = {
17966	DEVO_REV,		/* devo_rev */
17967	0,			/* refcnt */
17968	dtrace_info,		/* get_dev_info */
17969	nulldev,		/* identify */
17970	nulldev,		/* probe */
17971	dtrace_attach,		/* attach */
17972	dtrace_detach,		/* detach */
17973	nodev,			/* reset */
17974	&dtrace_cb_ops,		/* driver operations */
17975	NULL,			/* bus operations */
17976	nodev			/* dev power */
17977};
17978
17979static struct modldrv modldrv = {
17980	&mod_driverops,		/* module type (this is a pseudo driver) */
17981	"Dynamic Tracing",	/* name of module */
17982	&dtrace_ops,		/* driver ops */
17983};
17984
17985static struct modlinkage modlinkage = {
17986	MODREV_1,
17987	(void *)&modldrv,
17988	NULL
17989};
17990
17991int
17992_init(void)
17993{
17994	return (mod_install(&modlinkage));
17995}
17996
17997int
17998_info(struct modinfo *modinfop)
17999{
18000	return (mod_info(&modlinkage, modinfop));
18001}
18002
18003int
18004_fini(void)
18005{
18006	return (mod_remove(&modlinkage));
18007}
18008#else
18009
18010static d_ioctl_t	dtrace_ioctl;
18011static d_ioctl_t	dtrace_ioctl_helper;
18012static void		dtrace_load(void *);
18013static int		dtrace_unload(void);
18014static struct cdev	*dtrace_dev;
18015static struct cdev	*helper_dev;
18016
18017void dtrace_invop_init(void);
18018void dtrace_invop_uninit(void);
18019
18020static struct cdevsw dtrace_cdevsw = {
18021	.d_version	= D_VERSION,
18022	.d_ioctl	= dtrace_ioctl,
18023	.d_open		= dtrace_open,
18024	.d_name		= "dtrace",
18025};
18026
18027static struct cdevsw helper_cdevsw = {
18028	.d_version	= D_VERSION,
18029	.d_ioctl	= dtrace_ioctl_helper,
18030	.d_name		= "helper",
18031};
18032
18033#include <dtrace_anon.c>
18034#include <dtrace_ioctl.c>
18035#include <dtrace_load.c>
18036#include <dtrace_modevent.c>
18037#include <dtrace_sysctl.c>
18038#include <dtrace_unload.c>
18039#include <dtrace_vtime.c>
18040#include <dtrace_hacks.c>
18041#include <dtrace_isa.c>
18042
18043SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
18044SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
18045SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
18046
18047DEV_MODULE(dtrace, dtrace_modevent, NULL);
18048MODULE_VERSION(dtrace, 1);
18049MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
18050#endif
18051