dtrace.c revision 277547
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 * $FreeBSD: stable/10/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c 277547 2015-01-23 00:27:08Z delphij $
22 */
23
24/*
25 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 * Copyright (c) 2012 by Delphix. All rights reserved.
28 */
29
30/*
31 * DTrace - Dynamic Tracing for Solaris
32 *
33 * This is the implementation of the Solaris Dynamic Tracing framework
34 * (DTrace).  The user-visible interface to DTrace is described at length in
35 * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
36 * library, the in-kernel DTrace framework, and the DTrace providers are
37 * described in the block comments in the <sys/dtrace.h> header file.  The
38 * internal architecture of DTrace is described in the block comments in the
39 * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
40 * implementation very much assume mastery of all of these sources; if one has
41 * an unanswered question about the implementation, one should consult them
42 * first.
43 *
44 * The functions here are ordered roughly as follows:
45 *
46 *   - Probe context functions
47 *   - Probe hashing functions
48 *   - Non-probe context utility functions
49 *   - Matching functions
50 *   - Provider-to-Framework API functions
51 *   - Probe management functions
52 *   - DIF object functions
53 *   - Format functions
54 *   - Predicate functions
55 *   - ECB functions
56 *   - Buffer functions
57 *   - Enabling functions
58 *   - DOF functions
59 *   - Anonymous enabling functions
60 *   - Consumer state functions
61 *   - Helper functions
62 *   - Hook functions
63 *   - Driver cookbook functions
64 *
65 * Each group of functions begins with a block comment labelled the "DTrace
66 * [Group] Functions", allowing one to find each block by searching forward
67 * on capital-f functions.
68 */
69#include <sys/errno.h>
70#if !defined(sun)
71#include <sys/time.h>
72#endif
73#include <sys/stat.h>
74#include <sys/modctl.h>
75#include <sys/conf.h>
76#include <sys/systm.h>
77#if defined(sun)
78#include <sys/ddi.h>
79#include <sys/sunddi.h>
80#endif
81#include <sys/cpuvar.h>
82#include <sys/kmem.h>
83#if defined(sun)
84#include <sys/strsubr.h>
85#endif
86#include <sys/sysmacros.h>
87#include <sys/dtrace_impl.h>
88#include <sys/atomic.h>
89#include <sys/cmn_err.h>
90#if defined(sun)
91#include <sys/mutex_impl.h>
92#include <sys/rwlock_impl.h>
93#endif
94#include <sys/ctf_api.h>
95#if defined(sun)
96#include <sys/panic.h>
97#include <sys/priv_impl.h>
98#endif
99#include <sys/policy.h>
100#if defined(sun)
101#include <sys/cred_impl.h>
102#include <sys/procfs_isa.h>
103#endif
104#include <sys/taskq.h>
105#if defined(sun)
106#include <sys/mkdev.h>
107#include <sys/kdi.h>
108#endif
109#include <sys/zone.h>
110#include <sys/socket.h>
111#include <netinet/in.h>
112#include "strtolctype.h"
113
114/* FreeBSD includes: */
115#if !defined(sun)
116#include <sys/callout.h>
117#include <sys/ctype.h>
118#include <sys/eventhandler.h>
119#include <sys/limits.h>
120#include <sys/kdb.h>
121#include <sys/kernel.h>
122#include <sys/malloc.h>
123#include <sys/sysctl.h>
124#include <sys/lock.h>
125#include <sys/mutex.h>
126#include <sys/rwlock.h>
127#include <sys/sx.h>
128#include <sys/dtrace_bsd.h>
129#include <netinet/in.h>
130#include "dtrace_cddl.h"
131#include "dtrace_debug.c"
132#endif
133
134/*
135 * DTrace Tunable Variables
136 *
137 * The following variables may be tuned by adding a line to /etc/system that
138 * includes both the name of the DTrace module ("dtrace") and the name of the
139 * variable.  For example:
140 *
141 *   set dtrace:dtrace_destructive_disallow = 1
142 *
143 * In general, the only variables that one should be tuning this way are those
144 * that affect system-wide DTrace behavior, and for which the default behavior
145 * is undesirable.  Most of these variables are tunable on a per-consumer
146 * basis using DTrace options, and need not be tuned on a system-wide basis.
147 * When tuning these variables, avoid pathological values; while some attempt
148 * is made to verify the integrity of these variables, they are not considered
149 * part of the supported interface to DTrace, and they are therefore not
150 * checked comprehensively.  Further, these variables should not be tuned
151 * dynamically via "mdb -kw" or other means; they should only be tuned via
152 * /etc/system.
153 */
154int		dtrace_destructive_disallow = 0;
155dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
156size_t		dtrace_difo_maxsize = (256 * 1024);
157dtrace_optval_t	dtrace_dof_maxsize = (8 * 1024 * 1024);
158size_t		dtrace_global_maxsize = (16 * 1024);
159size_t		dtrace_actions_max = (16 * 1024);
160size_t		dtrace_retain_max = 1024;
161dtrace_optval_t	dtrace_helper_actions_max = 128;
162dtrace_optval_t	dtrace_helper_providers_max = 32;
163dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
164size_t		dtrace_strsize_default = 256;
165dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
166dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
167dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
168dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
169dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
170dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
171dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
172dtrace_optval_t	dtrace_nspec_default = 1;
173dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
174dtrace_optval_t dtrace_stackframes_default = 20;
175dtrace_optval_t dtrace_ustackframes_default = 20;
176dtrace_optval_t dtrace_jstackframes_default = 50;
177dtrace_optval_t dtrace_jstackstrsize_default = 512;
178int		dtrace_msgdsize_max = 128;
179hrtime_t	dtrace_chill_max = MSEC2NSEC(500);		/* 500 ms */
180hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
181int		dtrace_devdepth_max = 32;
182int		dtrace_err_verbose;
183hrtime_t	dtrace_deadman_interval = NANOSEC;
184hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
185hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
186hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
187#if !defined(sun)
188int		dtrace_memstr_max = 4096;
189#endif
190
191/*
192 * DTrace External Variables
193 *
194 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
195 * available to DTrace consumers via the backtick (`) syntax.  One of these,
196 * dtrace_zero, is made deliberately so:  it is provided as a source of
197 * well-known, zero-filled memory.  While this variable is not documented,
198 * it is used by some translators as an implementation detail.
199 */
200const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
201
202/*
203 * DTrace Internal Variables
204 */
205#if defined(sun)
206static dev_info_t	*dtrace_devi;		/* device info */
207#endif
208#if defined(sun)
209static vmem_t		*dtrace_arena;		/* probe ID arena */
210static vmem_t		*dtrace_minor;		/* minor number arena */
211#else
212static taskq_t		*dtrace_taskq;		/* task queue */
213static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
214#endif
215static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
216static int		dtrace_nprobes;		/* number of probes */
217static dtrace_provider_t *dtrace_provider;	/* provider list */
218static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
219static int		dtrace_opens;		/* number of opens */
220static int		dtrace_helpers;		/* number of helpers */
221static int		dtrace_getf;		/* number of unpriv getf()s */
222#if defined(sun)
223static void		*dtrace_softstate;	/* softstate pointer */
224#endif
225static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
226static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
227static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
228static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
229static int		dtrace_toxranges;	/* number of toxic ranges */
230static int		dtrace_toxranges_max;	/* size of toxic range array */
231static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
232static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
233static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
234static kthread_t	*dtrace_panicked;	/* panicking thread */
235static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
236static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
237static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
238static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
239static dtrace_genid_t	dtrace_retained_gen;	/* current retained enab gen */
240static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
241static int		dtrace_dynvar_failclean; /* dynvars failed to clean */
242#if !defined(sun)
243static struct mtx	dtrace_unr_mtx;
244MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
245int		dtrace_in_probe;	/* non-zero if executing a probe */
246#if defined(__i386__) || defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
247uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
248#endif
249static eventhandler_tag	dtrace_kld_load_tag;
250static eventhandler_tag	dtrace_kld_unload_try_tag;
251#endif
252
253/*
254 * DTrace Locking
255 * DTrace is protected by three (relatively coarse-grained) locks:
256 *
257 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
258 *     including enabling state, probes, ECBs, consumer state, helper state,
259 *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
260 *     probe context is lock-free -- synchronization is handled via the
261 *     dtrace_sync() cross call mechanism.
262 *
263 * (2) dtrace_provider_lock is required when manipulating provider state, or
264 *     when provider state must be held constant.
265 *
266 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
267 *     when meta provider state must be held constant.
268 *
269 * The lock ordering between these three locks is dtrace_meta_lock before
270 * dtrace_provider_lock before dtrace_lock.  (In particular, there are
271 * several places where dtrace_provider_lock is held by the framework as it
272 * calls into the providers -- which then call back into the framework,
273 * grabbing dtrace_lock.)
274 *
275 * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
276 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
277 * role as a coarse-grained lock; it is acquired before both of these locks.
278 * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
279 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
280 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
281 * acquired _between_ dtrace_provider_lock and dtrace_lock.
282 */
283static kmutex_t		dtrace_lock;		/* probe state lock */
284static kmutex_t		dtrace_provider_lock;	/* provider state lock */
285static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
286
287#if !defined(sun)
288/* XXX FreeBSD hacks. */
289#define cr_suid		cr_svuid
290#define cr_sgid		cr_svgid
291#define	ipaddr_t	in_addr_t
292#define mod_modname	pathname
293#define vuprintf	vprintf
294#define ttoproc(_a)	((_a)->td_proc)
295#define crgetzoneid(_a)	0
296#define	NCPU		MAXCPU
297#define SNOCD		0
298#define CPU_ON_INTR(_a)	0
299
300#define PRIV_EFFECTIVE		(1 << 0)
301#define PRIV_DTRACE_KERNEL	(1 << 1)
302#define PRIV_DTRACE_PROC	(1 << 2)
303#define PRIV_DTRACE_USER	(1 << 3)
304#define PRIV_PROC_OWNER		(1 << 4)
305#define PRIV_PROC_ZONE		(1 << 5)
306#define PRIV_ALL		~0
307
308SYSCTL_DECL(_debug_dtrace);
309SYSCTL_DECL(_kern_dtrace);
310#endif
311
312#if defined(sun)
313#define curcpu	CPU->cpu_id
314#endif
315
316
317/*
318 * DTrace Provider Variables
319 *
320 * These are the variables relating to DTrace as a provider (that is, the
321 * provider of the BEGIN, END, and ERROR probes).
322 */
323static dtrace_pattr_t	dtrace_provider_attr = {
324{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
325{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
326{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
327{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
328{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
329};
330
331static void
332dtrace_nullop(void)
333{}
334
335static dtrace_pops_t	dtrace_provider_ops = {
336	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
337	(void (*)(void *, modctl_t *))dtrace_nullop,
338	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
339	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
340	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
341	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
342	NULL,
343	NULL,
344	NULL,
345	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
346};
347
348static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
349static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
350dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
351
352/*
353 * DTrace Helper Tracing Variables
354 */
355uint32_t dtrace_helptrace_next = 0;
356uint32_t dtrace_helptrace_nlocals;
357char	*dtrace_helptrace_buffer;
358int	dtrace_helptrace_bufsize = 512 * 1024;
359
360#ifdef DEBUG
361int	dtrace_helptrace_enabled = 1;
362#else
363int	dtrace_helptrace_enabled = 0;
364#endif
365
366/*
367 * DTrace Error Hashing
368 *
369 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
370 * table.  This is very useful for checking coverage of tests that are
371 * expected to induce DIF or DOF processing errors, and may be useful for
372 * debugging problems in the DIF code generator or in DOF generation .  The
373 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
374 */
375#ifdef DEBUG
376static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
377static const char *dtrace_errlast;
378static kthread_t *dtrace_errthread;
379static kmutex_t dtrace_errlock;
380#endif
381
382/*
383 * DTrace Macros and Constants
384 *
385 * These are various macros that are useful in various spots in the
386 * implementation, along with a few random constants that have no meaning
387 * outside of the implementation.  There is no real structure to this cpp
388 * mishmash -- but is there ever?
389 */
390#define	DTRACE_HASHSTR(hash, probe)	\
391	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
392
393#define	DTRACE_HASHNEXT(hash, probe)	\
394	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
395
396#define	DTRACE_HASHPREV(hash, probe)	\
397	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
398
399#define	DTRACE_HASHEQ(hash, lhs, rhs)	\
400	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
401	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
402
403#define	DTRACE_AGGHASHSIZE_SLEW		17
404
405#define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
406
407/*
408 * The key for a thread-local variable consists of the lower 61 bits of the
409 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
410 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
411 * equal to a variable identifier.  This is necessary (but not sufficient) to
412 * assure that global associative arrays never collide with thread-local
413 * variables.  To guarantee that they cannot collide, we must also define the
414 * order for keying dynamic variables.  That order is:
415 *
416 *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
417 *
418 * Because the variable-key and the tls-key are in orthogonal spaces, there is
419 * no way for a global variable key signature to match a thread-local key
420 * signature.
421 */
422#if defined(sun)
423#define	DTRACE_TLS_THRKEY(where) { \
424	uint_t intr = 0; \
425	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
426	for (; actv; actv >>= 1) \
427		intr++; \
428	ASSERT(intr < (1 << 3)); \
429	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
430	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
431}
432#else
433#define	DTRACE_TLS_THRKEY(where) { \
434	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
435	uint_t intr = 0; \
436	uint_t actv = _c->cpu_intr_actv; \
437	for (; actv; actv >>= 1) \
438		intr++; \
439	ASSERT(intr < (1 << 3)); \
440	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
441	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
442}
443#endif
444
445#define	DT_BSWAP_8(x)	((x) & 0xff)
446#define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
447#define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
448#define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
449
450#define	DT_MASK_LO 0x00000000FFFFFFFFULL
451
452#define	DTRACE_STORE(type, tomax, offset, what) \
453	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
454
455#ifndef __x86
456#define	DTRACE_ALIGNCHECK(addr, size, flags)				\
457	if (addr & (size - 1)) {					\
458		*flags |= CPU_DTRACE_BADALIGN;				\
459		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
460		return (0);						\
461	}
462#else
463#define	DTRACE_ALIGNCHECK(addr, size, flags)
464#endif
465
466/*
467 * Test whether a range of memory starting at testaddr of size testsz falls
468 * within the range of memory described by addr, sz.  We take care to avoid
469 * problems with overflow and underflow of the unsigned quantities, and
470 * disallow all negative sizes.  Ranges of size 0 are allowed.
471 */
472#define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
473	((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
474	(testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
475	(testaddr) + (testsz) >= (testaddr))
476
477/*
478 * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
479 * alloc_sz on the righthand side of the comparison in order to avoid overflow
480 * or underflow in the comparison with it.  This is simpler than the INRANGE
481 * check above, because we know that the dtms_scratch_ptr is valid in the
482 * range.  Allocations of size zero are allowed.
483 */
484#define	DTRACE_INSCRATCH(mstate, alloc_sz) \
485	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
486	(mstate)->dtms_scratch_ptr >= (alloc_sz))
487
488#define	DTRACE_LOADFUNC(bits)						\
489/*CSTYLED*/								\
490uint##bits##_t								\
491dtrace_load##bits(uintptr_t addr)					\
492{									\
493	size_t size = bits / NBBY;					\
494	/*CSTYLED*/							\
495	uint##bits##_t rval;						\
496	int i;								\
497	volatile uint16_t *flags = (volatile uint16_t *)		\
498	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
499									\
500	DTRACE_ALIGNCHECK(addr, size, flags);				\
501									\
502	for (i = 0; i < dtrace_toxranges; i++) {			\
503		if (addr >= dtrace_toxrange[i].dtt_limit)		\
504			continue;					\
505									\
506		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
507			continue;					\
508									\
509		/*							\
510		 * This address falls within a toxic region; return 0.	\
511		 */							\
512		*flags |= CPU_DTRACE_BADADDR;				\
513		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
514		return (0);						\
515	}								\
516									\
517	*flags |= CPU_DTRACE_NOFAULT;					\
518	/*CSTYLED*/							\
519	rval = *((volatile uint##bits##_t *)addr);			\
520	*flags &= ~CPU_DTRACE_NOFAULT;					\
521									\
522	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
523}
524
525#ifdef _LP64
526#define	dtrace_loadptr	dtrace_load64
527#else
528#define	dtrace_loadptr	dtrace_load32
529#endif
530
531#define	DTRACE_DYNHASH_FREE	0
532#define	DTRACE_DYNHASH_SINK	1
533#define	DTRACE_DYNHASH_VALID	2
534
535#define	DTRACE_MATCH_NEXT	0
536#define	DTRACE_MATCH_DONE	1
537#define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
538#define	DTRACE_STATE_ALIGN	64
539
540#define	DTRACE_FLAGS2FLT(flags)						\
541	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
542	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
543	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
544	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
545	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
546	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
547	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
548	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
549	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
550	DTRACEFLT_UNKNOWN)
551
552#define	DTRACEACT_ISSTRING(act)						\
553	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
554	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
555
556/* Function prototype definitions: */
557static size_t dtrace_strlen(const char *, size_t);
558static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
559static void dtrace_enabling_provide(dtrace_provider_t *);
560static int dtrace_enabling_match(dtrace_enabling_t *, int *);
561static void dtrace_enabling_matchall(void);
562static void dtrace_enabling_reap(void);
563static dtrace_state_t *dtrace_anon_grab(void);
564static uint64_t dtrace_helper(int, dtrace_mstate_t *,
565    dtrace_state_t *, uint64_t, uint64_t);
566static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
567static void dtrace_buffer_drop(dtrace_buffer_t *);
568static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
569static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
570    dtrace_state_t *, dtrace_mstate_t *);
571static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
572    dtrace_optval_t);
573static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
574static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
575uint16_t dtrace_load16(uintptr_t);
576uint32_t dtrace_load32(uintptr_t);
577uint64_t dtrace_load64(uintptr_t);
578uint8_t dtrace_load8(uintptr_t);
579void dtrace_dynvar_clean(dtrace_dstate_t *);
580dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
581    size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
582uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
583static int dtrace_priv_proc(dtrace_state_t *);
584static void dtrace_getf_barrier(void);
585
586/*
587 * DTrace Probe Context Functions
588 *
589 * These functions are called from probe context.  Because probe context is
590 * any context in which C may be called, arbitrarily locks may be held,
591 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
592 * As a result, functions called from probe context may only call other DTrace
593 * support functions -- they may not interact at all with the system at large.
594 * (Note that the ASSERT macro is made probe-context safe by redefining it in
595 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
596 * loads are to be performed from probe context, they _must_ be in terms of
597 * the safe dtrace_load*() variants.
598 *
599 * Some functions in this block are not actually called from probe context;
600 * for these functions, there will be a comment above the function reading
601 * "Note:  not called from probe context."
602 */
603void
604dtrace_panic(const char *format, ...)
605{
606	va_list alist;
607
608	va_start(alist, format);
609	dtrace_vpanic(format, alist);
610	va_end(alist);
611}
612
613int
614dtrace_assfail(const char *a, const char *f, int l)
615{
616	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
617
618	/*
619	 * We just need something here that even the most clever compiler
620	 * cannot optimize away.
621	 */
622	return (a[(uintptr_t)f]);
623}
624
625/*
626 * Atomically increment a specified error counter from probe context.
627 */
628static void
629dtrace_error(uint32_t *counter)
630{
631	/*
632	 * Most counters stored to in probe context are per-CPU counters.
633	 * However, there are some error conditions that are sufficiently
634	 * arcane that they don't merit per-CPU storage.  If these counters
635	 * are incremented concurrently on different CPUs, scalability will be
636	 * adversely affected -- but we don't expect them to be white-hot in a
637	 * correctly constructed enabling...
638	 */
639	uint32_t oval, nval;
640
641	do {
642		oval = *counter;
643
644		if ((nval = oval + 1) == 0) {
645			/*
646			 * If the counter would wrap, set it to 1 -- assuring
647			 * that the counter is never zero when we have seen
648			 * errors.  (The counter must be 32-bits because we
649			 * aren't guaranteed a 64-bit compare&swap operation.)
650			 * To save this code both the infamy of being fingered
651			 * by a priggish news story and the indignity of being
652			 * the target of a neo-puritan witch trial, we're
653			 * carefully avoiding any colorful description of the
654			 * likelihood of this condition -- but suffice it to
655			 * say that it is only slightly more likely than the
656			 * overflow of predicate cache IDs, as discussed in
657			 * dtrace_predicate_create().
658			 */
659			nval = 1;
660		}
661	} while (dtrace_cas32(counter, oval, nval) != oval);
662}
663
664/*
665 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
666 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
667 */
668DTRACE_LOADFUNC(8)
669DTRACE_LOADFUNC(16)
670DTRACE_LOADFUNC(32)
671DTRACE_LOADFUNC(64)
672
673static int
674dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
675{
676	if (dest < mstate->dtms_scratch_base)
677		return (0);
678
679	if (dest + size < dest)
680		return (0);
681
682	if (dest + size > mstate->dtms_scratch_ptr)
683		return (0);
684
685	return (1);
686}
687
688static int
689dtrace_canstore_statvar(uint64_t addr, size_t sz,
690    dtrace_statvar_t **svars, int nsvars)
691{
692	int i;
693
694	for (i = 0; i < nsvars; i++) {
695		dtrace_statvar_t *svar = svars[i];
696
697		if (svar == NULL || svar->dtsv_size == 0)
698			continue;
699
700		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
701			return (1);
702	}
703
704	return (0);
705}
706
707/*
708 * Check to see if the address is within a memory region to which a store may
709 * be issued.  This includes the DTrace scratch areas, and any DTrace variable
710 * region.  The caller of dtrace_canstore() is responsible for performing any
711 * alignment checks that are needed before stores are actually executed.
712 */
713static int
714dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
715    dtrace_vstate_t *vstate)
716{
717	/*
718	 * First, check to see if the address is in scratch space...
719	 */
720	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
721	    mstate->dtms_scratch_size))
722		return (1);
723
724	/*
725	 * Now check to see if it's a dynamic variable.  This check will pick
726	 * up both thread-local variables and any global dynamically-allocated
727	 * variables.
728	 */
729	if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
730	    vstate->dtvs_dynvars.dtds_size)) {
731		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
732		uintptr_t base = (uintptr_t)dstate->dtds_base +
733		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
734		uintptr_t chunkoffs;
735
736		/*
737		 * Before we assume that we can store here, we need to make
738		 * sure that it isn't in our metadata -- storing to our
739		 * dynamic variable metadata would corrupt our state.  For
740		 * the range to not include any dynamic variable metadata,
741		 * it must:
742		 *
743		 *	(1) Start above the hash table that is at the base of
744		 *	the dynamic variable space
745		 *
746		 *	(2) Have a starting chunk offset that is beyond the
747		 *	dtrace_dynvar_t that is at the base of every chunk
748		 *
749		 *	(3) Not span a chunk boundary
750		 *
751		 */
752		if (addr < base)
753			return (0);
754
755		chunkoffs = (addr - base) % dstate->dtds_chunksize;
756
757		if (chunkoffs < sizeof (dtrace_dynvar_t))
758			return (0);
759
760		if (chunkoffs + sz > dstate->dtds_chunksize)
761			return (0);
762
763		return (1);
764	}
765
766	/*
767	 * Finally, check the static local and global variables.  These checks
768	 * take the longest, so we perform them last.
769	 */
770	if (dtrace_canstore_statvar(addr, sz,
771	    vstate->dtvs_locals, vstate->dtvs_nlocals))
772		return (1);
773
774	if (dtrace_canstore_statvar(addr, sz,
775	    vstate->dtvs_globals, vstate->dtvs_nglobals))
776		return (1);
777
778	return (0);
779}
780
781
782/*
783 * Convenience routine to check to see if the address is within a memory
784 * region in which a load may be issued given the user's privilege level;
785 * if not, it sets the appropriate error flags and loads 'addr' into the
786 * illegal value slot.
787 *
788 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
789 * appropriate memory access protection.
790 */
791static int
792dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
793    dtrace_vstate_t *vstate)
794{
795	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
796	file_t *fp;
797
798	/*
799	 * If we hold the privilege to read from kernel memory, then
800	 * everything is readable.
801	 */
802	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
803		return (1);
804
805	/*
806	 * You can obviously read that which you can store.
807	 */
808	if (dtrace_canstore(addr, sz, mstate, vstate))
809		return (1);
810
811	/*
812	 * We're allowed to read from our own string table.
813	 */
814	if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
815	    mstate->dtms_difo->dtdo_strlen))
816		return (1);
817
818	if (vstate->dtvs_state != NULL &&
819	    dtrace_priv_proc(vstate->dtvs_state)) {
820		proc_t *p;
821
822		/*
823		 * When we have privileges to the current process, there are
824		 * several context-related kernel structures that are safe to
825		 * read, even absent the privilege to read from kernel memory.
826		 * These reads are safe because these structures contain only
827		 * state that (1) we're permitted to read, (2) is harmless or
828		 * (3) contains pointers to additional kernel state that we're
829		 * not permitted to read (and as such, do not present an
830		 * opportunity for privilege escalation).  Finally (and
831		 * critically), because of the nature of their relation with
832		 * the current thread context, the memory associated with these
833		 * structures cannot change over the duration of probe context,
834		 * and it is therefore impossible for this memory to be
835		 * deallocated and reallocated as something else while it's
836		 * being operated upon.
837		 */
838		if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t)))
839			return (1);
840
841		if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
842		    sz, curthread->t_procp, sizeof (proc_t))) {
843			return (1);
844		}
845
846		if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
847		    curthread->t_cred, sizeof (cred_t))) {
848			return (1);
849		}
850
851#if defined(sun)
852		if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
853		    &(p->p_pidp->pid_id), sizeof (pid_t))) {
854			return (1);
855		}
856
857		if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
858		    curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
859			return (1);
860		}
861#endif
862	}
863
864	if ((fp = mstate->dtms_getf) != NULL) {
865		uintptr_t psz = sizeof (void *);
866		vnode_t *vp;
867		vnodeops_t *op;
868
869		/*
870		 * When getf() returns a file_t, the enabling is implicitly
871		 * granted the (transient) right to read the returned file_t
872		 * as well as the v_path and v_op->vnop_name of the underlying
873		 * vnode.  These accesses are allowed after a successful
874		 * getf() because the members that they refer to cannot change
875		 * once set -- and the barrier logic in the kernel's closef()
876		 * path assures that the file_t and its referenced vode_t
877		 * cannot themselves be stale (that is, it impossible for
878		 * either dtms_getf itself or its f_vnode member to reference
879		 * freed memory).
880		 */
881		if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t)))
882			return (1);
883
884		if ((vp = fp->f_vnode) != NULL) {
885#if defined(sun)
886			if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz))
887				return (1);
888			if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz,
889			    vp->v_path, strlen(vp->v_path) + 1)) {
890				return (1);
891			}
892#endif
893
894			if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz))
895				return (1);
896
897#if defined(sun)
898			if ((op = vp->v_op) != NULL &&
899			    DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
900				return (1);
901			}
902
903			if (op != NULL && op->vnop_name != NULL &&
904			    DTRACE_INRANGE(addr, sz, op->vnop_name,
905			    strlen(op->vnop_name) + 1)) {
906				return (1);
907			}
908#endif
909		}
910	}
911
912	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
913	*illval = addr;
914	return (0);
915}
916
917/*
918 * Convenience routine to check to see if a given string is within a memory
919 * region in which a load may be issued given the user's privilege level;
920 * this exists so that we don't need to issue unnecessary dtrace_strlen()
921 * calls in the event that the user has all privileges.
922 */
923static int
924dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
925    dtrace_vstate_t *vstate)
926{
927	size_t strsz;
928
929	/*
930	 * If we hold the privilege to read from kernel memory, then
931	 * everything is readable.
932	 */
933	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
934		return (1);
935
936	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
937	if (dtrace_canload(addr, strsz, mstate, vstate))
938		return (1);
939
940	return (0);
941}
942
943/*
944 * Convenience routine to check to see if a given variable is within a memory
945 * region in which a load may be issued given the user's privilege level.
946 */
947static int
948dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
949    dtrace_vstate_t *vstate)
950{
951	size_t sz;
952	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
953
954	/*
955	 * If we hold the privilege to read from kernel memory, then
956	 * everything is readable.
957	 */
958	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
959		return (1);
960
961	if (type->dtdt_kind == DIF_TYPE_STRING)
962		sz = dtrace_strlen(src,
963		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
964	else
965		sz = type->dtdt_size;
966
967	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
968}
969
970/*
971 * Convert a string to a signed integer using safe loads.
972 *
973 * NOTE: This function uses various macros from strtolctype.h to manipulate
974 * digit values, etc -- these have all been checked to ensure they make
975 * no additional function calls.
976 */
977static int64_t
978dtrace_strtoll(char *input, int base, size_t limit)
979{
980	uintptr_t pos = (uintptr_t)input;
981	int64_t val = 0;
982	int x;
983	boolean_t neg = B_FALSE;
984	char c, cc, ccc;
985	uintptr_t end = pos + limit;
986
987	/*
988	 * Consume any whitespace preceding digits.
989	 */
990	while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
991		pos++;
992
993	/*
994	 * Handle an explicit sign if one is present.
995	 */
996	if (c == '-' || c == '+') {
997		if (c == '-')
998			neg = B_TRUE;
999		c = dtrace_load8(++pos);
1000	}
1001
1002	/*
1003	 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1004	 * if present.
1005	 */
1006	if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
1007	    cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
1008		pos += 2;
1009		c = ccc;
1010	}
1011
1012	/*
1013	 * Read in contiguous digits until the first non-digit character.
1014	 */
1015	for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
1016	    c = dtrace_load8(++pos))
1017		val = val * base + x;
1018
1019	return (neg ? -val : val);
1020}
1021
1022/*
1023 * Compare two strings using safe loads.
1024 */
1025static int
1026dtrace_strncmp(char *s1, char *s2, size_t limit)
1027{
1028	uint8_t c1, c2;
1029	volatile uint16_t *flags;
1030
1031	if (s1 == s2 || limit == 0)
1032		return (0);
1033
1034	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1035
1036	do {
1037		if (s1 == NULL) {
1038			c1 = '\0';
1039		} else {
1040			c1 = dtrace_load8((uintptr_t)s1++);
1041		}
1042
1043		if (s2 == NULL) {
1044			c2 = '\0';
1045		} else {
1046			c2 = dtrace_load8((uintptr_t)s2++);
1047		}
1048
1049		if (c1 != c2)
1050			return (c1 - c2);
1051	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1052
1053	return (0);
1054}
1055
1056/*
1057 * Compute strlen(s) for a string using safe memory accesses.  The additional
1058 * len parameter is used to specify a maximum length to ensure completion.
1059 */
1060static size_t
1061dtrace_strlen(const char *s, size_t lim)
1062{
1063	uint_t len;
1064
1065	for (len = 0; len != lim; len++) {
1066		if (dtrace_load8((uintptr_t)s++) == '\0')
1067			break;
1068	}
1069
1070	return (len);
1071}
1072
1073/*
1074 * Check if an address falls within a toxic region.
1075 */
1076static int
1077dtrace_istoxic(uintptr_t kaddr, size_t size)
1078{
1079	uintptr_t taddr, tsize;
1080	int i;
1081
1082	for (i = 0; i < dtrace_toxranges; i++) {
1083		taddr = dtrace_toxrange[i].dtt_base;
1084		tsize = dtrace_toxrange[i].dtt_limit - taddr;
1085
1086		if (kaddr - taddr < tsize) {
1087			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1088			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
1089			return (1);
1090		}
1091
1092		if (taddr - kaddr < size) {
1093			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1094			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
1095			return (1);
1096		}
1097	}
1098
1099	return (0);
1100}
1101
1102/*
1103 * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
1104 * memory specified by the DIF program.  The dst is assumed to be safe memory
1105 * that we can store to directly because it is managed by DTrace.  As with
1106 * standard bcopy, overlapping copies are handled properly.
1107 */
1108static void
1109dtrace_bcopy(const void *src, void *dst, size_t len)
1110{
1111	if (len != 0) {
1112		uint8_t *s1 = dst;
1113		const uint8_t *s2 = src;
1114
1115		if (s1 <= s2) {
1116			do {
1117				*s1++ = dtrace_load8((uintptr_t)s2++);
1118			} while (--len != 0);
1119		} else {
1120			s2 += len;
1121			s1 += len;
1122
1123			do {
1124				*--s1 = dtrace_load8((uintptr_t)--s2);
1125			} while (--len != 0);
1126		}
1127	}
1128}
1129
1130/*
1131 * Copy src to dst using safe memory accesses, up to either the specified
1132 * length, or the point that a nul byte is encountered.  The src is assumed to
1133 * be unsafe memory specified by the DIF program.  The dst is assumed to be
1134 * safe memory that we can store to directly because it is managed by DTrace.
1135 * Unlike dtrace_bcopy(), overlapping regions are not handled.
1136 */
1137static void
1138dtrace_strcpy(const void *src, void *dst, size_t len)
1139{
1140	if (len != 0) {
1141		uint8_t *s1 = dst, c;
1142		const uint8_t *s2 = src;
1143
1144		do {
1145			*s1++ = c = dtrace_load8((uintptr_t)s2++);
1146		} while (--len != 0 && c != '\0');
1147	}
1148}
1149
1150/*
1151 * Copy src to dst, deriving the size and type from the specified (BYREF)
1152 * variable type.  The src is assumed to be unsafe memory specified by the DIF
1153 * program.  The dst is assumed to be DTrace variable memory that is of the
1154 * specified type; we assume that we can store to directly.
1155 */
1156static void
1157dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1158{
1159	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1160
1161	if (type->dtdt_kind == DIF_TYPE_STRING) {
1162		dtrace_strcpy(src, dst, type->dtdt_size);
1163	} else {
1164		dtrace_bcopy(src, dst, type->dtdt_size);
1165	}
1166}
1167
1168/*
1169 * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1170 * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1171 * safe memory that we can access directly because it is managed by DTrace.
1172 */
1173static int
1174dtrace_bcmp(const void *s1, const void *s2, size_t len)
1175{
1176	volatile uint16_t *flags;
1177
1178	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1179
1180	if (s1 == s2)
1181		return (0);
1182
1183	if (s1 == NULL || s2 == NULL)
1184		return (1);
1185
1186	if (s1 != s2 && len != 0) {
1187		const uint8_t *ps1 = s1;
1188		const uint8_t *ps2 = s2;
1189
1190		do {
1191			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1192				return (1);
1193		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1194	}
1195	return (0);
1196}
1197
1198/*
1199 * Zero the specified region using a simple byte-by-byte loop.  Note that this
1200 * is for safe DTrace-managed memory only.
1201 */
1202static void
1203dtrace_bzero(void *dst, size_t len)
1204{
1205	uchar_t *cp;
1206
1207	for (cp = dst; len != 0; len--)
1208		*cp++ = 0;
1209}
1210
1211static void
1212dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1213{
1214	uint64_t result[2];
1215
1216	result[0] = addend1[0] + addend2[0];
1217	result[1] = addend1[1] + addend2[1] +
1218	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1219
1220	sum[0] = result[0];
1221	sum[1] = result[1];
1222}
1223
1224/*
1225 * Shift the 128-bit value in a by b. If b is positive, shift left.
1226 * If b is negative, shift right.
1227 */
1228static void
1229dtrace_shift_128(uint64_t *a, int b)
1230{
1231	uint64_t mask;
1232
1233	if (b == 0)
1234		return;
1235
1236	if (b < 0) {
1237		b = -b;
1238		if (b >= 64) {
1239			a[0] = a[1] >> (b - 64);
1240			a[1] = 0;
1241		} else {
1242			a[0] >>= b;
1243			mask = 1LL << (64 - b);
1244			mask -= 1;
1245			a[0] |= ((a[1] & mask) << (64 - b));
1246			a[1] >>= b;
1247		}
1248	} else {
1249		if (b >= 64) {
1250			a[1] = a[0] << (b - 64);
1251			a[0] = 0;
1252		} else {
1253			a[1] <<= b;
1254			mask = a[0] >> (64 - b);
1255			a[1] |= mask;
1256			a[0] <<= b;
1257		}
1258	}
1259}
1260
1261/*
1262 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1263 * use native multiplication on those, and then re-combine into the
1264 * resulting 128-bit value.
1265 *
1266 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1267 *     hi1 * hi2 << 64 +
1268 *     hi1 * lo2 << 32 +
1269 *     hi2 * lo1 << 32 +
1270 *     lo1 * lo2
1271 */
1272static void
1273dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1274{
1275	uint64_t hi1, hi2, lo1, lo2;
1276	uint64_t tmp[2];
1277
1278	hi1 = factor1 >> 32;
1279	hi2 = factor2 >> 32;
1280
1281	lo1 = factor1 & DT_MASK_LO;
1282	lo2 = factor2 & DT_MASK_LO;
1283
1284	product[0] = lo1 * lo2;
1285	product[1] = hi1 * hi2;
1286
1287	tmp[0] = hi1 * lo2;
1288	tmp[1] = 0;
1289	dtrace_shift_128(tmp, 32);
1290	dtrace_add_128(product, tmp, product);
1291
1292	tmp[0] = hi2 * lo1;
1293	tmp[1] = 0;
1294	dtrace_shift_128(tmp, 32);
1295	dtrace_add_128(product, tmp, product);
1296}
1297
1298/*
1299 * This privilege check should be used by actions and subroutines to
1300 * verify that the user credentials of the process that enabled the
1301 * invoking ECB match the target credentials
1302 */
1303static int
1304dtrace_priv_proc_common_user(dtrace_state_t *state)
1305{
1306	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1307
1308	/*
1309	 * We should always have a non-NULL state cred here, since if cred
1310	 * is null (anonymous tracing), we fast-path bypass this routine.
1311	 */
1312	ASSERT(s_cr != NULL);
1313
1314	if ((cr = CRED()) != NULL &&
1315	    s_cr->cr_uid == cr->cr_uid &&
1316	    s_cr->cr_uid == cr->cr_ruid &&
1317	    s_cr->cr_uid == cr->cr_suid &&
1318	    s_cr->cr_gid == cr->cr_gid &&
1319	    s_cr->cr_gid == cr->cr_rgid &&
1320	    s_cr->cr_gid == cr->cr_sgid)
1321		return (1);
1322
1323	return (0);
1324}
1325
1326/*
1327 * This privilege check should be used by actions and subroutines to
1328 * verify that the zone of the process that enabled the invoking ECB
1329 * matches the target credentials
1330 */
1331static int
1332dtrace_priv_proc_common_zone(dtrace_state_t *state)
1333{
1334#if defined(sun)
1335	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1336
1337	/*
1338	 * We should always have a non-NULL state cred here, since if cred
1339	 * is null (anonymous tracing), we fast-path bypass this routine.
1340	 */
1341	ASSERT(s_cr != NULL);
1342
1343	if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1344		return (1);
1345
1346	return (0);
1347#else
1348	return (1);
1349#endif
1350}
1351
1352/*
1353 * This privilege check should be used by actions and subroutines to
1354 * verify that the process has not setuid or changed credentials.
1355 */
1356static int
1357dtrace_priv_proc_common_nocd(void)
1358{
1359	proc_t *proc;
1360
1361	if ((proc = ttoproc(curthread)) != NULL &&
1362	    !(proc->p_flag & SNOCD))
1363		return (1);
1364
1365	return (0);
1366}
1367
1368static int
1369dtrace_priv_proc_destructive(dtrace_state_t *state)
1370{
1371	int action = state->dts_cred.dcr_action;
1372
1373	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1374	    dtrace_priv_proc_common_zone(state) == 0)
1375		goto bad;
1376
1377	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1378	    dtrace_priv_proc_common_user(state) == 0)
1379		goto bad;
1380
1381	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1382	    dtrace_priv_proc_common_nocd() == 0)
1383		goto bad;
1384
1385	return (1);
1386
1387bad:
1388	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1389
1390	return (0);
1391}
1392
1393static int
1394dtrace_priv_proc_control(dtrace_state_t *state)
1395{
1396	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1397		return (1);
1398
1399	if (dtrace_priv_proc_common_zone(state) &&
1400	    dtrace_priv_proc_common_user(state) &&
1401	    dtrace_priv_proc_common_nocd())
1402		return (1);
1403
1404	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1405
1406	return (0);
1407}
1408
1409static int
1410dtrace_priv_proc(dtrace_state_t *state)
1411{
1412	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1413		return (1);
1414
1415	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1416
1417	return (0);
1418}
1419
1420static int
1421dtrace_priv_kernel(dtrace_state_t *state)
1422{
1423	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1424		return (1);
1425
1426	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1427
1428	return (0);
1429}
1430
1431static int
1432dtrace_priv_kernel_destructive(dtrace_state_t *state)
1433{
1434	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1435		return (1);
1436
1437	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1438
1439	return (0);
1440}
1441
1442/*
1443 * Determine if the dte_cond of the specified ECB allows for processing of
1444 * the current probe to continue.  Note that this routine may allow continued
1445 * processing, but with access(es) stripped from the mstate's dtms_access
1446 * field.
1447 */
1448static int
1449dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1450    dtrace_ecb_t *ecb)
1451{
1452	dtrace_probe_t *probe = ecb->dte_probe;
1453	dtrace_provider_t *prov = probe->dtpr_provider;
1454	dtrace_pops_t *pops = &prov->dtpv_pops;
1455	int mode = DTRACE_MODE_NOPRIV_DROP;
1456
1457	ASSERT(ecb->dte_cond);
1458
1459#if defined(sun)
1460	if (pops->dtps_mode != NULL) {
1461		mode = pops->dtps_mode(prov->dtpv_arg,
1462		    probe->dtpr_id, probe->dtpr_arg);
1463
1464		ASSERT((mode & DTRACE_MODE_USER) ||
1465		    (mode & DTRACE_MODE_KERNEL));
1466		ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) ||
1467		    (mode & DTRACE_MODE_NOPRIV_DROP));
1468	}
1469
1470	/*
1471	 * If the dte_cond bits indicate that this consumer is only allowed to
1472	 * see user-mode firings of this probe, call the provider's dtps_mode()
1473	 * entry point to check that the probe was fired while in a user
1474	 * context.  If that's not the case, use the policy specified by the
1475	 * provider to determine if we drop the probe or merely restrict
1476	 * operation.
1477	 */
1478	if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1479		ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1480
1481		if (!(mode & DTRACE_MODE_USER)) {
1482			if (mode & DTRACE_MODE_NOPRIV_DROP)
1483				return (0);
1484
1485			mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1486		}
1487	}
1488#endif
1489
1490	/*
1491	 * This is more subtle than it looks. We have to be absolutely certain
1492	 * that CRED() isn't going to change out from under us so it's only
1493	 * legit to examine that structure if we're in constrained situations.
1494	 * Currently, the only times we'll this check is if a non-super-user
1495	 * has enabled the profile or syscall providers -- providers that
1496	 * allow visibility of all processes. For the profile case, the check
1497	 * above will ensure that we're examining a user context.
1498	 */
1499	if (ecb->dte_cond & DTRACE_COND_OWNER) {
1500		cred_t *cr;
1501		cred_t *s_cr = state->dts_cred.dcr_cred;
1502		proc_t *proc;
1503
1504		ASSERT(s_cr != NULL);
1505
1506		if ((cr = CRED()) == NULL ||
1507		    s_cr->cr_uid != cr->cr_uid ||
1508		    s_cr->cr_uid != cr->cr_ruid ||
1509		    s_cr->cr_uid != cr->cr_suid ||
1510		    s_cr->cr_gid != cr->cr_gid ||
1511		    s_cr->cr_gid != cr->cr_rgid ||
1512		    s_cr->cr_gid != cr->cr_sgid ||
1513		    (proc = ttoproc(curthread)) == NULL ||
1514		    (proc->p_flag & SNOCD)) {
1515			if (mode & DTRACE_MODE_NOPRIV_DROP)
1516				return (0);
1517
1518#if defined(sun)
1519			mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1520#endif
1521		}
1522	}
1523
1524#if defined(sun)
1525	/*
1526	 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1527	 * in our zone, check to see if our mode policy is to restrict rather
1528	 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1529	 * and DTRACE_ACCESS_ARGS
1530	 */
1531	if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1532		cred_t *cr;
1533		cred_t *s_cr = state->dts_cred.dcr_cred;
1534
1535		ASSERT(s_cr != NULL);
1536
1537		if ((cr = CRED()) == NULL ||
1538		    s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1539			if (mode & DTRACE_MODE_NOPRIV_DROP)
1540				return (0);
1541
1542			mstate->dtms_access &=
1543			    ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1544		}
1545	}
1546#endif
1547
1548	return (1);
1549}
1550
1551/*
1552 * Note:  not called from probe context.  This function is called
1553 * asynchronously (and at a regular interval) from outside of probe context to
1554 * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1555 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1556 */
1557void
1558dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1559{
1560	dtrace_dynvar_t *dirty;
1561	dtrace_dstate_percpu_t *dcpu;
1562	dtrace_dynvar_t **rinsep;
1563	int i, j, work = 0;
1564
1565	for (i = 0; i < NCPU; i++) {
1566		dcpu = &dstate->dtds_percpu[i];
1567		rinsep = &dcpu->dtdsc_rinsing;
1568
1569		/*
1570		 * If the dirty list is NULL, there is no dirty work to do.
1571		 */
1572		if (dcpu->dtdsc_dirty == NULL)
1573			continue;
1574
1575		if (dcpu->dtdsc_rinsing != NULL) {
1576			/*
1577			 * If the rinsing list is non-NULL, then it is because
1578			 * this CPU was selected to accept another CPU's
1579			 * dirty list -- and since that time, dirty buffers
1580			 * have accumulated.  This is a highly unlikely
1581			 * condition, but we choose to ignore the dirty
1582			 * buffers -- they'll be picked up a future cleanse.
1583			 */
1584			continue;
1585		}
1586
1587		if (dcpu->dtdsc_clean != NULL) {
1588			/*
1589			 * If the clean list is non-NULL, then we're in a
1590			 * situation where a CPU has done deallocations (we
1591			 * have a non-NULL dirty list) but no allocations (we
1592			 * also have a non-NULL clean list).  We can't simply
1593			 * move the dirty list into the clean list on this
1594			 * CPU, yet we also don't want to allow this condition
1595			 * to persist, lest a short clean list prevent a
1596			 * massive dirty list from being cleaned (which in
1597			 * turn could lead to otherwise avoidable dynamic
1598			 * drops).  To deal with this, we look for some CPU
1599			 * with a NULL clean list, NULL dirty list, and NULL
1600			 * rinsing list -- and then we borrow this CPU to
1601			 * rinse our dirty list.
1602			 */
1603			for (j = 0; j < NCPU; j++) {
1604				dtrace_dstate_percpu_t *rinser;
1605
1606				rinser = &dstate->dtds_percpu[j];
1607
1608				if (rinser->dtdsc_rinsing != NULL)
1609					continue;
1610
1611				if (rinser->dtdsc_dirty != NULL)
1612					continue;
1613
1614				if (rinser->dtdsc_clean != NULL)
1615					continue;
1616
1617				rinsep = &rinser->dtdsc_rinsing;
1618				break;
1619			}
1620
1621			if (j == NCPU) {
1622				/*
1623				 * We were unable to find another CPU that
1624				 * could accept this dirty list -- we are
1625				 * therefore unable to clean it now.
1626				 */
1627				dtrace_dynvar_failclean++;
1628				continue;
1629			}
1630		}
1631
1632		work = 1;
1633
1634		/*
1635		 * Atomically move the dirty list aside.
1636		 */
1637		do {
1638			dirty = dcpu->dtdsc_dirty;
1639
1640			/*
1641			 * Before we zap the dirty list, set the rinsing list.
1642			 * (This allows for a potential assertion in
1643			 * dtrace_dynvar():  if a free dynamic variable appears
1644			 * on a hash chain, either the dirty list or the
1645			 * rinsing list for some CPU must be non-NULL.)
1646			 */
1647			*rinsep = dirty;
1648			dtrace_membar_producer();
1649		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1650		    dirty, NULL) != dirty);
1651	}
1652
1653	if (!work) {
1654		/*
1655		 * We have no work to do; we can simply return.
1656		 */
1657		return;
1658	}
1659
1660	dtrace_sync();
1661
1662	for (i = 0; i < NCPU; i++) {
1663		dcpu = &dstate->dtds_percpu[i];
1664
1665		if (dcpu->dtdsc_rinsing == NULL)
1666			continue;
1667
1668		/*
1669		 * We are now guaranteed that no hash chain contains a pointer
1670		 * into this dirty list; we can make it clean.
1671		 */
1672		ASSERT(dcpu->dtdsc_clean == NULL);
1673		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1674		dcpu->dtdsc_rinsing = NULL;
1675	}
1676
1677	/*
1678	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1679	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1680	 * This prevents a race whereby a CPU incorrectly decides that
1681	 * the state should be something other than DTRACE_DSTATE_CLEAN
1682	 * after dtrace_dynvar_clean() has completed.
1683	 */
1684	dtrace_sync();
1685
1686	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1687}
1688
1689/*
1690 * Depending on the value of the op parameter, this function looks-up,
1691 * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1692 * allocation is requested, this function will return a pointer to a
1693 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1694 * variable can be allocated.  If NULL is returned, the appropriate counter
1695 * will be incremented.
1696 */
1697dtrace_dynvar_t *
1698dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1699    dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1700    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1701{
1702	uint64_t hashval = DTRACE_DYNHASH_VALID;
1703	dtrace_dynhash_t *hash = dstate->dtds_hash;
1704	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1705	processorid_t me = curcpu, cpu = me;
1706	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1707	size_t bucket, ksize;
1708	size_t chunksize = dstate->dtds_chunksize;
1709	uintptr_t kdata, lock, nstate;
1710	uint_t i;
1711
1712	ASSERT(nkeys != 0);
1713
1714	/*
1715	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1716	 * algorithm.  For the by-value portions, we perform the algorithm in
1717	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1718	 * bit, and seems to have only a minute effect on distribution.  For
1719	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1720	 * over each referenced byte.  It's painful to do this, but it's much
1721	 * better than pathological hash distribution.  The efficacy of the
1722	 * hashing algorithm (and a comparison with other algorithms) may be
1723	 * found by running the ::dtrace_dynstat MDB dcmd.
1724	 */
1725	for (i = 0; i < nkeys; i++) {
1726		if (key[i].dttk_size == 0) {
1727			uint64_t val = key[i].dttk_value;
1728
1729			hashval += (val >> 48) & 0xffff;
1730			hashval += (hashval << 10);
1731			hashval ^= (hashval >> 6);
1732
1733			hashval += (val >> 32) & 0xffff;
1734			hashval += (hashval << 10);
1735			hashval ^= (hashval >> 6);
1736
1737			hashval += (val >> 16) & 0xffff;
1738			hashval += (hashval << 10);
1739			hashval ^= (hashval >> 6);
1740
1741			hashval += val & 0xffff;
1742			hashval += (hashval << 10);
1743			hashval ^= (hashval >> 6);
1744		} else {
1745			/*
1746			 * This is incredibly painful, but it beats the hell
1747			 * out of the alternative.
1748			 */
1749			uint64_t j, size = key[i].dttk_size;
1750			uintptr_t base = (uintptr_t)key[i].dttk_value;
1751
1752			if (!dtrace_canload(base, size, mstate, vstate))
1753				break;
1754
1755			for (j = 0; j < size; j++) {
1756				hashval += dtrace_load8(base + j);
1757				hashval += (hashval << 10);
1758				hashval ^= (hashval >> 6);
1759			}
1760		}
1761	}
1762
1763	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1764		return (NULL);
1765
1766	hashval += (hashval << 3);
1767	hashval ^= (hashval >> 11);
1768	hashval += (hashval << 15);
1769
1770	/*
1771	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1772	 * comes out to be one of our two sentinel hash values.  If this
1773	 * actually happens, we set the hashval to be a value known to be a
1774	 * non-sentinel value.
1775	 */
1776	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1777		hashval = DTRACE_DYNHASH_VALID;
1778
1779	/*
1780	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1781	 * important here, tricks can be pulled to reduce it.  (However, it's
1782	 * critical that hash collisions be kept to an absolute minimum;
1783	 * they're much more painful than a divide.)  It's better to have a
1784	 * solution that generates few collisions and still keeps things
1785	 * relatively simple.
1786	 */
1787	bucket = hashval % dstate->dtds_hashsize;
1788
1789	if (op == DTRACE_DYNVAR_DEALLOC) {
1790		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1791
1792		for (;;) {
1793			while ((lock = *lockp) & 1)
1794				continue;
1795
1796			if (dtrace_casptr((volatile void *)lockp,
1797			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1798				break;
1799		}
1800
1801		dtrace_membar_producer();
1802	}
1803
1804top:
1805	prev = NULL;
1806	lock = hash[bucket].dtdh_lock;
1807
1808	dtrace_membar_consumer();
1809
1810	start = hash[bucket].dtdh_chain;
1811	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1812	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1813	    op != DTRACE_DYNVAR_DEALLOC));
1814
1815	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1816		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1817		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1818
1819		if (dvar->dtdv_hashval != hashval) {
1820			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1821				/*
1822				 * We've reached the sink, and therefore the
1823				 * end of the hash chain; we can kick out of
1824				 * the loop knowing that we have seen a valid
1825				 * snapshot of state.
1826				 */
1827				ASSERT(dvar->dtdv_next == NULL);
1828				ASSERT(dvar == &dtrace_dynhash_sink);
1829				break;
1830			}
1831
1832			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1833				/*
1834				 * We've gone off the rails:  somewhere along
1835				 * the line, one of the members of this hash
1836				 * chain was deleted.  Note that we could also
1837				 * detect this by simply letting this loop run
1838				 * to completion, as we would eventually hit
1839				 * the end of the dirty list.  However, we
1840				 * want to avoid running the length of the
1841				 * dirty list unnecessarily (it might be quite
1842				 * long), so we catch this as early as
1843				 * possible by detecting the hash marker.  In
1844				 * this case, we simply set dvar to NULL and
1845				 * break; the conditional after the loop will
1846				 * send us back to top.
1847				 */
1848				dvar = NULL;
1849				break;
1850			}
1851
1852			goto next;
1853		}
1854
1855		if (dtuple->dtt_nkeys != nkeys)
1856			goto next;
1857
1858		for (i = 0; i < nkeys; i++, dkey++) {
1859			if (dkey->dttk_size != key[i].dttk_size)
1860				goto next; /* size or type mismatch */
1861
1862			if (dkey->dttk_size != 0) {
1863				if (dtrace_bcmp(
1864				    (void *)(uintptr_t)key[i].dttk_value,
1865				    (void *)(uintptr_t)dkey->dttk_value,
1866				    dkey->dttk_size))
1867					goto next;
1868			} else {
1869				if (dkey->dttk_value != key[i].dttk_value)
1870					goto next;
1871			}
1872		}
1873
1874		if (op != DTRACE_DYNVAR_DEALLOC)
1875			return (dvar);
1876
1877		ASSERT(dvar->dtdv_next == NULL ||
1878		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1879
1880		if (prev != NULL) {
1881			ASSERT(hash[bucket].dtdh_chain != dvar);
1882			ASSERT(start != dvar);
1883			ASSERT(prev->dtdv_next == dvar);
1884			prev->dtdv_next = dvar->dtdv_next;
1885		} else {
1886			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1887			    start, dvar->dtdv_next) != start) {
1888				/*
1889				 * We have failed to atomically swing the
1890				 * hash table head pointer, presumably because
1891				 * of a conflicting allocation on another CPU.
1892				 * We need to reread the hash chain and try
1893				 * again.
1894				 */
1895				goto top;
1896			}
1897		}
1898
1899		dtrace_membar_producer();
1900
1901		/*
1902		 * Now set the hash value to indicate that it's free.
1903		 */
1904		ASSERT(hash[bucket].dtdh_chain != dvar);
1905		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1906
1907		dtrace_membar_producer();
1908
1909		/*
1910		 * Set the next pointer to point at the dirty list, and
1911		 * atomically swing the dirty pointer to the newly freed dvar.
1912		 */
1913		do {
1914			next = dcpu->dtdsc_dirty;
1915			dvar->dtdv_next = next;
1916		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1917
1918		/*
1919		 * Finally, unlock this hash bucket.
1920		 */
1921		ASSERT(hash[bucket].dtdh_lock == lock);
1922		ASSERT(lock & 1);
1923		hash[bucket].dtdh_lock++;
1924
1925		return (NULL);
1926next:
1927		prev = dvar;
1928		continue;
1929	}
1930
1931	if (dvar == NULL) {
1932		/*
1933		 * If dvar is NULL, it is because we went off the rails:
1934		 * one of the elements that we traversed in the hash chain
1935		 * was deleted while we were traversing it.  In this case,
1936		 * we assert that we aren't doing a dealloc (deallocs lock
1937		 * the hash bucket to prevent themselves from racing with
1938		 * one another), and retry the hash chain traversal.
1939		 */
1940		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1941		goto top;
1942	}
1943
1944	if (op != DTRACE_DYNVAR_ALLOC) {
1945		/*
1946		 * If we are not to allocate a new variable, we want to
1947		 * return NULL now.  Before we return, check that the value
1948		 * of the lock word hasn't changed.  If it has, we may have
1949		 * seen an inconsistent snapshot.
1950		 */
1951		if (op == DTRACE_DYNVAR_NOALLOC) {
1952			if (hash[bucket].dtdh_lock != lock)
1953				goto top;
1954		} else {
1955			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1956			ASSERT(hash[bucket].dtdh_lock == lock);
1957			ASSERT(lock & 1);
1958			hash[bucket].dtdh_lock++;
1959		}
1960
1961		return (NULL);
1962	}
1963
1964	/*
1965	 * We need to allocate a new dynamic variable.  The size we need is the
1966	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1967	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1968	 * the size of any referred-to data (dsize).  We then round the final
1969	 * size up to the chunksize for allocation.
1970	 */
1971	for (ksize = 0, i = 0; i < nkeys; i++)
1972		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1973
1974	/*
1975	 * This should be pretty much impossible, but could happen if, say,
1976	 * strange DIF specified the tuple.  Ideally, this should be an
1977	 * assertion and not an error condition -- but that requires that the
1978	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1979	 * bullet-proof.  (That is, it must not be able to be fooled by
1980	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1981	 * solving this would presumably not amount to solving the Halting
1982	 * Problem -- but it still seems awfully hard.
1983	 */
1984	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1985	    ksize + dsize > chunksize) {
1986		dcpu->dtdsc_drops++;
1987		return (NULL);
1988	}
1989
1990	nstate = DTRACE_DSTATE_EMPTY;
1991
1992	do {
1993retry:
1994		free = dcpu->dtdsc_free;
1995
1996		if (free == NULL) {
1997			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1998			void *rval;
1999
2000			if (clean == NULL) {
2001				/*
2002				 * We're out of dynamic variable space on
2003				 * this CPU.  Unless we have tried all CPUs,
2004				 * we'll try to allocate from a different
2005				 * CPU.
2006				 */
2007				switch (dstate->dtds_state) {
2008				case DTRACE_DSTATE_CLEAN: {
2009					void *sp = &dstate->dtds_state;
2010
2011					if (++cpu >= NCPU)
2012						cpu = 0;
2013
2014					if (dcpu->dtdsc_dirty != NULL &&
2015					    nstate == DTRACE_DSTATE_EMPTY)
2016						nstate = DTRACE_DSTATE_DIRTY;
2017
2018					if (dcpu->dtdsc_rinsing != NULL)
2019						nstate = DTRACE_DSTATE_RINSING;
2020
2021					dcpu = &dstate->dtds_percpu[cpu];
2022
2023					if (cpu != me)
2024						goto retry;
2025
2026					(void) dtrace_cas32(sp,
2027					    DTRACE_DSTATE_CLEAN, nstate);
2028
2029					/*
2030					 * To increment the correct bean
2031					 * counter, take another lap.
2032					 */
2033					goto retry;
2034				}
2035
2036				case DTRACE_DSTATE_DIRTY:
2037					dcpu->dtdsc_dirty_drops++;
2038					break;
2039
2040				case DTRACE_DSTATE_RINSING:
2041					dcpu->dtdsc_rinsing_drops++;
2042					break;
2043
2044				case DTRACE_DSTATE_EMPTY:
2045					dcpu->dtdsc_drops++;
2046					break;
2047				}
2048
2049				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
2050				return (NULL);
2051			}
2052
2053			/*
2054			 * The clean list appears to be non-empty.  We want to
2055			 * move the clean list to the free list; we start by
2056			 * moving the clean pointer aside.
2057			 */
2058			if (dtrace_casptr(&dcpu->dtdsc_clean,
2059			    clean, NULL) != clean) {
2060				/*
2061				 * We are in one of two situations:
2062				 *
2063				 *  (a)	The clean list was switched to the
2064				 *	free list by another CPU.
2065				 *
2066				 *  (b)	The clean list was added to by the
2067				 *	cleansing cyclic.
2068				 *
2069				 * In either of these situations, we can
2070				 * just reattempt the free list allocation.
2071				 */
2072				goto retry;
2073			}
2074
2075			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
2076
2077			/*
2078			 * Now we'll move the clean list to our free list.
2079			 * It's impossible for this to fail:  the only way
2080			 * the free list can be updated is through this
2081			 * code path, and only one CPU can own the clean list.
2082			 * Thus, it would only be possible for this to fail if
2083			 * this code were racing with dtrace_dynvar_clean().
2084			 * (That is, if dtrace_dynvar_clean() updated the clean
2085			 * list, and we ended up racing to update the free
2086			 * list.)  This race is prevented by the dtrace_sync()
2087			 * in dtrace_dynvar_clean() -- which flushes the
2088			 * owners of the clean lists out before resetting
2089			 * the clean lists.
2090			 */
2091			dcpu = &dstate->dtds_percpu[me];
2092			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2093			ASSERT(rval == NULL);
2094			goto retry;
2095		}
2096
2097		dvar = free;
2098		new_free = dvar->dtdv_next;
2099	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2100
2101	/*
2102	 * We have now allocated a new chunk.  We copy the tuple keys into the
2103	 * tuple array and copy any referenced key data into the data space
2104	 * following the tuple array.  As we do this, we relocate dttk_value
2105	 * in the final tuple to point to the key data address in the chunk.
2106	 */
2107	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2108	dvar->dtdv_data = (void *)(kdata + ksize);
2109	dvar->dtdv_tuple.dtt_nkeys = nkeys;
2110
2111	for (i = 0; i < nkeys; i++) {
2112		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2113		size_t kesize = key[i].dttk_size;
2114
2115		if (kesize != 0) {
2116			dtrace_bcopy(
2117			    (const void *)(uintptr_t)key[i].dttk_value,
2118			    (void *)kdata, kesize);
2119			dkey->dttk_value = kdata;
2120			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2121		} else {
2122			dkey->dttk_value = key[i].dttk_value;
2123		}
2124
2125		dkey->dttk_size = kesize;
2126	}
2127
2128	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2129	dvar->dtdv_hashval = hashval;
2130	dvar->dtdv_next = start;
2131
2132	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2133		return (dvar);
2134
2135	/*
2136	 * The cas has failed.  Either another CPU is adding an element to
2137	 * this hash chain, or another CPU is deleting an element from this
2138	 * hash chain.  The simplest way to deal with both of these cases
2139	 * (though not necessarily the most efficient) is to free our
2140	 * allocated block and tail-call ourselves.  Note that the free is
2141	 * to the dirty list and _not_ to the free list.  This is to prevent
2142	 * races with allocators, above.
2143	 */
2144	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2145
2146	dtrace_membar_producer();
2147
2148	do {
2149		free = dcpu->dtdsc_dirty;
2150		dvar->dtdv_next = free;
2151	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2152
2153	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
2154}
2155
2156/*ARGSUSED*/
2157static void
2158dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2159{
2160	if ((int64_t)nval < (int64_t)*oval)
2161		*oval = nval;
2162}
2163
2164/*ARGSUSED*/
2165static void
2166dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2167{
2168	if ((int64_t)nval > (int64_t)*oval)
2169		*oval = nval;
2170}
2171
2172static void
2173dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2174{
2175	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2176	int64_t val = (int64_t)nval;
2177
2178	if (val < 0) {
2179		for (i = 0; i < zero; i++) {
2180			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2181				quanta[i] += incr;
2182				return;
2183			}
2184		}
2185	} else {
2186		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2187			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2188				quanta[i - 1] += incr;
2189				return;
2190			}
2191		}
2192
2193		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2194		return;
2195	}
2196
2197	ASSERT(0);
2198}
2199
2200static void
2201dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2202{
2203	uint64_t arg = *lquanta++;
2204	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2205	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2206	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2207	int32_t val = (int32_t)nval, level;
2208
2209	ASSERT(step != 0);
2210	ASSERT(levels != 0);
2211
2212	if (val < base) {
2213		/*
2214		 * This is an underflow.
2215		 */
2216		lquanta[0] += incr;
2217		return;
2218	}
2219
2220	level = (val - base) / step;
2221
2222	if (level < levels) {
2223		lquanta[level + 1] += incr;
2224		return;
2225	}
2226
2227	/*
2228	 * This is an overflow.
2229	 */
2230	lquanta[levels + 1] += incr;
2231}
2232
2233static int
2234dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2235    uint16_t high, uint16_t nsteps, int64_t value)
2236{
2237	int64_t this = 1, last, next;
2238	int base = 1, order;
2239
2240	ASSERT(factor <= nsteps);
2241	ASSERT(nsteps % factor == 0);
2242
2243	for (order = 0; order < low; order++)
2244		this *= factor;
2245
2246	/*
2247	 * If our value is less than our factor taken to the power of the
2248	 * low order of magnitude, it goes into the zeroth bucket.
2249	 */
2250	if (value < (last = this))
2251		return (0);
2252
2253	for (this *= factor; order <= high; order++) {
2254		int nbuckets = this > nsteps ? nsteps : this;
2255
2256		if ((next = this * factor) < this) {
2257			/*
2258			 * We should not generally get log/linear quantizations
2259			 * with a high magnitude that allows 64-bits to
2260			 * overflow, but we nonetheless protect against this
2261			 * by explicitly checking for overflow, and clamping
2262			 * our value accordingly.
2263			 */
2264			value = this - 1;
2265		}
2266
2267		if (value < this) {
2268			/*
2269			 * If our value lies within this order of magnitude,
2270			 * determine its position by taking the offset within
2271			 * the order of magnitude, dividing by the bucket
2272			 * width, and adding to our (accumulated) base.
2273			 */
2274			return (base + (value - last) / (this / nbuckets));
2275		}
2276
2277		base += nbuckets - (nbuckets / factor);
2278		last = this;
2279		this = next;
2280	}
2281
2282	/*
2283	 * Our value is greater than or equal to our factor taken to the
2284	 * power of one plus the high magnitude -- return the top bucket.
2285	 */
2286	return (base);
2287}
2288
2289static void
2290dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2291{
2292	uint64_t arg = *llquanta++;
2293	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2294	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2295	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2296	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2297
2298	llquanta[dtrace_aggregate_llquantize_bucket(factor,
2299	    low, high, nsteps, nval)] += incr;
2300}
2301
2302/*ARGSUSED*/
2303static void
2304dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2305{
2306	data[0]++;
2307	data[1] += nval;
2308}
2309
2310/*ARGSUSED*/
2311static void
2312dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2313{
2314	int64_t snval = (int64_t)nval;
2315	uint64_t tmp[2];
2316
2317	data[0]++;
2318	data[1] += nval;
2319
2320	/*
2321	 * What we want to say here is:
2322	 *
2323	 * data[2] += nval * nval;
2324	 *
2325	 * But given that nval is 64-bit, we could easily overflow, so
2326	 * we do this as 128-bit arithmetic.
2327	 */
2328	if (snval < 0)
2329		snval = -snval;
2330
2331	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2332	dtrace_add_128(data + 2, tmp, data + 2);
2333}
2334
2335/*ARGSUSED*/
2336static void
2337dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2338{
2339	*oval = *oval + 1;
2340}
2341
2342/*ARGSUSED*/
2343static void
2344dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2345{
2346	*oval += nval;
2347}
2348
2349/*
2350 * Aggregate given the tuple in the principal data buffer, and the aggregating
2351 * action denoted by the specified dtrace_aggregation_t.  The aggregation
2352 * buffer is specified as the buf parameter.  This routine does not return
2353 * failure; if there is no space in the aggregation buffer, the data will be
2354 * dropped, and a corresponding counter incremented.
2355 */
2356static void
2357dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2358    intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2359{
2360	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2361	uint32_t i, ndx, size, fsize;
2362	uint32_t align = sizeof (uint64_t) - 1;
2363	dtrace_aggbuffer_t *agb;
2364	dtrace_aggkey_t *key;
2365	uint32_t hashval = 0, limit, isstr;
2366	caddr_t tomax, data, kdata;
2367	dtrace_actkind_t action;
2368	dtrace_action_t *act;
2369	uintptr_t offs;
2370
2371	if (buf == NULL)
2372		return;
2373
2374	if (!agg->dtag_hasarg) {
2375		/*
2376		 * Currently, only quantize() and lquantize() take additional
2377		 * arguments, and they have the same semantics:  an increment
2378		 * value that defaults to 1 when not present.  If additional
2379		 * aggregating actions take arguments, the setting of the
2380		 * default argument value will presumably have to become more
2381		 * sophisticated...
2382		 */
2383		arg = 1;
2384	}
2385
2386	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2387	size = rec->dtrd_offset - agg->dtag_base;
2388	fsize = size + rec->dtrd_size;
2389
2390	ASSERT(dbuf->dtb_tomax != NULL);
2391	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2392
2393	if ((tomax = buf->dtb_tomax) == NULL) {
2394		dtrace_buffer_drop(buf);
2395		return;
2396	}
2397
2398	/*
2399	 * The metastructure is always at the bottom of the buffer.
2400	 */
2401	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2402	    sizeof (dtrace_aggbuffer_t));
2403
2404	if (buf->dtb_offset == 0) {
2405		/*
2406		 * We just kludge up approximately 1/8th of the size to be
2407		 * buckets.  If this guess ends up being routinely
2408		 * off-the-mark, we may need to dynamically readjust this
2409		 * based on past performance.
2410		 */
2411		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2412
2413		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2414		    (uintptr_t)tomax || hashsize == 0) {
2415			/*
2416			 * We've been given a ludicrously small buffer;
2417			 * increment our drop count and leave.
2418			 */
2419			dtrace_buffer_drop(buf);
2420			return;
2421		}
2422
2423		/*
2424		 * And now, a pathetic attempt to try to get a an odd (or
2425		 * perchance, a prime) hash size for better hash distribution.
2426		 */
2427		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2428			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2429
2430		agb->dtagb_hashsize = hashsize;
2431		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2432		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2433		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2434
2435		for (i = 0; i < agb->dtagb_hashsize; i++)
2436			agb->dtagb_hash[i] = NULL;
2437	}
2438
2439	ASSERT(agg->dtag_first != NULL);
2440	ASSERT(agg->dtag_first->dta_intuple);
2441
2442	/*
2443	 * Calculate the hash value based on the key.  Note that we _don't_
2444	 * include the aggid in the hashing (but we will store it as part of
2445	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2446	 * algorithm: a simple, quick algorithm that has no known funnels, and
2447	 * gets good distribution in practice.  The efficacy of the hashing
2448	 * algorithm (and a comparison with other algorithms) may be found by
2449	 * running the ::dtrace_aggstat MDB dcmd.
2450	 */
2451	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2452		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2453		limit = i + act->dta_rec.dtrd_size;
2454		ASSERT(limit <= size);
2455		isstr = DTRACEACT_ISSTRING(act);
2456
2457		for (; i < limit; i++) {
2458			hashval += data[i];
2459			hashval += (hashval << 10);
2460			hashval ^= (hashval >> 6);
2461
2462			if (isstr && data[i] == '\0')
2463				break;
2464		}
2465	}
2466
2467	hashval += (hashval << 3);
2468	hashval ^= (hashval >> 11);
2469	hashval += (hashval << 15);
2470
2471	/*
2472	 * Yes, the divide here is expensive -- but it's generally the least
2473	 * of the performance issues given the amount of data that we iterate
2474	 * over to compute hash values, compare data, etc.
2475	 */
2476	ndx = hashval % agb->dtagb_hashsize;
2477
2478	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2479		ASSERT((caddr_t)key >= tomax);
2480		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2481
2482		if (hashval != key->dtak_hashval || key->dtak_size != size)
2483			continue;
2484
2485		kdata = key->dtak_data;
2486		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2487
2488		for (act = agg->dtag_first; act->dta_intuple;
2489		    act = act->dta_next) {
2490			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2491			limit = i + act->dta_rec.dtrd_size;
2492			ASSERT(limit <= size);
2493			isstr = DTRACEACT_ISSTRING(act);
2494
2495			for (; i < limit; i++) {
2496				if (kdata[i] != data[i])
2497					goto next;
2498
2499				if (isstr && data[i] == '\0')
2500					break;
2501			}
2502		}
2503
2504		if (action != key->dtak_action) {
2505			/*
2506			 * We are aggregating on the same value in the same
2507			 * aggregation with two different aggregating actions.
2508			 * (This should have been picked up in the compiler,
2509			 * so we may be dealing with errant or devious DIF.)
2510			 * This is an error condition; we indicate as much,
2511			 * and return.
2512			 */
2513			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2514			return;
2515		}
2516
2517		/*
2518		 * This is a hit:  we need to apply the aggregator to
2519		 * the value at this key.
2520		 */
2521		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2522		return;
2523next:
2524		continue;
2525	}
2526
2527	/*
2528	 * We didn't find it.  We need to allocate some zero-filled space,
2529	 * link it into the hash table appropriately, and apply the aggregator
2530	 * to the (zero-filled) value.
2531	 */
2532	offs = buf->dtb_offset;
2533	while (offs & (align - 1))
2534		offs += sizeof (uint32_t);
2535
2536	/*
2537	 * If we don't have enough room to both allocate a new key _and_
2538	 * its associated data, increment the drop count and return.
2539	 */
2540	if ((uintptr_t)tomax + offs + fsize >
2541	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2542		dtrace_buffer_drop(buf);
2543		return;
2544	}
2545
2546	/*CONSTCOND*/
2547	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2548	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2549	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2550
2551	key->dtak_data = kdata = tomax + offs;
2552	buf->dtb_offset = offs + fsize;
2553
2554	/*
2555	 * Now copy the data across.
2556	 */
2557	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2558
2559	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2560		kdata[i] = data[i];
2561
2562	/*
2563	 * Because strings are not zeroed out by default, we need to iterate
2564	 * looking for actions that store strings, and we need to explicitly
2565	 * pad these strings out with zeroes.
2566	 */
2567	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2568		int nul;
2569
2570		if (!DTRACEACT_ISSTRING(act))
2571			continue;
2572
2573		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2574		limit = i + act->dta_rec.dtrd_size;
2575		ASSERT(limit <= size);
2576
2577		for (nul = 0; i < limit; i++) {
2578			if (nul) {
2579				kdata[i] = '\0';
2580				continue;
2581			}
2582
2583			if (data[i] != '\0')
2584				continue;
2585
2586			nul = 1;
2587		}
2588	}
2589
2590	for (i = size; i < fsize; i++)
2591		kdata[i] = 0;
2592
2593	key->dtak_hashval = hashval;
2594	key->dtak_size = size;
2595	key->dtak_action = action;
2596	key->dtak_next = agb->dtagb_hash[ndx];
2597	agb->dtagb_hash[ndx] = key;
2598
2599	/*
2600	 * Finally, apply the aggregator.
2601	 */
2602	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2603	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2604}
2605
2606/*
2607 * Given consumer state, this routine finds a speculation in the INACTIVE
2608 * state and transitions it into the ACTIVE state.  If there is no speculation
2609 * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2610 * incremented -- it is up to the caller to take appropriate action.
2611 */
2612static int
2613dtrace_speculation(dtrace_state_t *state)
2614{
2615	int i = 0;
2616	dtrace_speculation_state_t current;
2617	uint32_t *stat = &state->dts_speculations_unavail, count;
2618
2619	while (i < state->dts_nspeculations) {
2620		dtrace_speculation_t *spec = &state->dts_speculations[i];
2621
2622		current = spec->dtsp_state;
2623
2624		if (current != DTRACESPEC_INACTIVE) {
2625			if (current == DTRACESPEC_COMMITTINGMANY ||
2626			    current == DTRACESPEC_COMMITTING ||
2627			    current == DTRACESPEC_DISCARDING)
2628				stat = &state->dts_speculations_busy;
2629			i++;
2630			continue;
2631		}
2632
2633		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2634		    current, DTRACESPEC_ACTIVE) == current)
2635			return (i + 1);
2636	}
2637
2638	/*
2639	 * We couldn't find a speculation.  If we found as much as a single
2640	 * busy speculation buffer, we'll attribute this failure as "busy"
2641	 * instead of "unavail".
2642	 */
2643	do {
2644		count = *stat;
2645	} while (dtrace_cas32(stat, count, count + 1) != count);
2646
2647	return (0);
2648}
2649
2650/*
2651 * This routine commits an active speculation.  If the specified speculation
2652 * is not in a valid state to perform a commit(), this routine will silently do
2653 * nothing.  The state of the specified speculation is transitioned according
2654 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2655 */
2656static void
2657dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2658    dtrace_specid_t which)
2659{
2660	dtrace_speculation_t *spec;
2661	dtrace_buffer_t *src, *dest;
2662	uintptr_t daddr, saddr, dlimit, slimit;
2663	dtrace_speculation_state_t current, new = 0;
2664	intptr_t offs;
2665	uint64_t timestamp;
2666
2667	if (which == 0)
2668		return;
2669
2670	if (which > state->dts_nspeculations) {
2671		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2672		return;
2673	}
2674
2675	spec = &state->dts_speculations[which - 1];
2676	src = &spec->dtsp_buffer[cpu];
2677	dest = &state->dts_buffer[cpu];
2678
2679	do {
2680		current = spec->dtsp_state;
2681
2682		if (current == DTRACESPEC_COMMITTINGMANY)
2683			break;
2684
2685		switch (current) {
2686		case DTRACESPEC_INACTIVE:
2687		case DTRACESPEC_DISCARDING:
2688			return;
2689
2690		case DTRACESPEC_COMMITTING:
2691			/*
2692			 * This is only possible if we are (a) commit()'ing
2693			 * without having done a prior speculate() on this CPU
2694			 * and (b) racing with another commit() on a different
2695			 * CPU.  There's nothing to do -- we just assert that
2696			 * our offset is 0.
2697			 */
2698			ASSERT(src->dtb_offset == 0);
2699			return;
2700
2701		case DTRACESPEC_ACTIVE:
2702			new = DTRACESPEC_COMMITTING;
2703			break;
2704
2705		case DTRACESPEC_ACTIVEONE:
2706			/*
2707			 * This speculation is active on one CPU.  If our
2708			 * buffer offset is non-zero, we know that the one CPU
2709			 * must be us.  Otherwise, we are committing on a
2710			 * different CPU from the speculate(), and we must
2711			 * rely on being asynchronously cleaned.
2712			 */
2713			if (src->dtb_offset != 0) {
2714				new = DTRACESPEC_COMMITTING;
2715				break;
2716			}
2717			/*FALLTHROUGH*/
2718
2719		case DTRACESPEC_ACTIVEMANY:
2720			new = DTRACESPEC_COMMITTINGMANY;
2721			break;
2722
2723		default:
2724			ASSERT(0);
2725		}
2726	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2727	    current, new) != current);
2728
2729	/*
2730	 * We have set the state to indicate that we are committing this
2731	 * speculation.  Now reserve the necessary space in the destination
2732	 * buffer.
2733	 */
2734	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2735	    sizeof (uint64_t), state, NULL)) < 0) {
2736		dtrace_buffer_drop(dest);
2737		goto out;
2738	}
2739
2740	/*
2741	 * We have sufficient space to copy the speculative buffer into the
2742	 * primary buffer.  First, modify the speculative buffer, filling
2743	 * in the timestamp of all entries with the current time.  The data
2744	 * must have the commit() time rather than the time it was traced,
2745	 * so that all entries in the primary buffer are in timestamp order.
2746	 */
2747	timestamp = dtrace_gethrtime();
2748	saddr = (uintptr_t)src->dtb_tomax;
2749	slimit = saddr + src->dtb_offset;
2750	while (saddr < slimit) {
2751		size_t size;
2752		dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2753
2754		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2755			saddr += sizeof (dtrace_epid_t);
2756			continue;
2757		}
2758		ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2759		size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2760
2761		ASSERT3U(saddr + size, <=, slimit);
2762		ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2763		ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2764
2765		DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2766
2767		saddr += size;
2768	}
2769
2770	/*
2771	 * Copy the buffer across.  (Note that this is a
2772	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2773	 * a serious performance issue, a high-performance DTrace-specific
2774	 * bcopy() should obviously be invented.)
2775	 */
2776	daddr = (uintptr_t)dest->dtb_tomax + offs;
2777	dlimit = daddr + src->dtb_offset;
2778	saddr = (uintptr_t)src->dtb_tomax;
2779
2780	/*
2781	 * First, the aligned portion.
2782	 */
2783	while (dlimit - daddr >= sizeof (uint64_t)) {
2784		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2785
2786		daddr += sizeof (uint64_t);
2787		saddr += sizeof (uint64_t);
2788	}
2789
2790	/*
2791	 * Now any left-over bit...
2792	 */
2793	while (dlimit - daddr)
2794		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2795
2796	/*
2797	 * Finally, commit the reserved space in the destination buffer.
2798	 */
2799	dest->dtb_offset = offs + src->dtb_offset;
2800
2801out:
2802	/*
2803	 * If we're lucky enough to be the only active CPU on this speculation
2804	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2805	 */
2806	if (current == DTRACESPEC_ACTIVE ||
2807	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2808		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2809		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2810
2811		ASSERT(rval == DTRACESPEC_COMMITTING);
2812	}
2813
2814	src->dtb_offset = 0;
2815	src->dtb_xamot_drops += src->dtb_drops;
2816	src->dtb_drops = 0;
2817}
2818
2819/*
2820 * This routine discards an active speculation.  If the specified speculation
2821 * is not in a valid state to perform a discard(), this routine will silently
2822 * do nothing.  The state of the specified speculation is transitioned
2823 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2824 */
2825static void
2826dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2827    dtrace_specid_t which)
2828{
2829	dtrace_speculation_t *spec;
2830	dtrace_speculation_state_t current, new = 0;
2831	dtrace_buffer_t *buf;
2832
2833	if (which == 0)
2834		return;
2835
2836	if (which > state->dts_nspeculations) {
2837		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2838		return;
2839	}
2840
2841	spec = &state->dts_speculations[which - 1];
2842	buf = &spec->dtsp_buffer[cpu];
2843
2844	do {
2845		current = spec->dtsp_state;
2846
2847		switch (current) {
2848		case DTRACESPEC_INACTIVE:
2849		case DTRACESPEC_COMMITTINGMANY:
2850		case DTRACESPEC_COMMITTING:
2851		case DTRACESPEC_DISCARDING:
2852			return;
2853
2854		case DTRACESPEC_ACTIVE:
2855		case DTRACESPEC_ACTIVEMANY:
2856			new = DTRACESPEC_DISCARDING;
2857			break;
2858
2859		case DTRACESPEC_ACTIVEONE:
2860			if (buf->dtb_offset != 0) {
2861				new = DTRACESPEC_INACTIVE;
2862			} else {
2863				new = DTRACESPEC_DISCARDING;
2864			}
2865			break;
2866
2867		default:
2868			ASSERT(0);
2869		}
2870	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2871	    current, new) != current);
2872
2873	buf->dtb_offset = 0;
2874	buf->dtb_drops = 0;
2875}
2876
2877/*
2878 * Note:  not called from probe context.  This function is called
2879 * asynchronously from cross call context to clean any speculations that are
2880 * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2881 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2882 * speculation.
2883 */
2884static void
2885dtrace_speculation_clean_here(dtrace_state_t *state)
2886{
2887	dtrace_icookie_t cookie;
2888	processorid_t cpu = curcpu;
2889	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2890	dtrace_specid_t i;
2891
2892	cookie = dtrace_interrupt_disable();
2893
2894	if (dest->dtb_tomax == NULL) {
2895		dtrace_interrupt_enable(cookie);
2896		return;
2897	}
2898
2899	for (i = 0; i < state->dts_nspeculations; i++) {
2900		dtrace_speculation_t *spec = &state->dts_speculations[i];
2901		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2902
2903		if (src->dtb_tomax == NULL)
2904			continue;
2905
2906		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2907			src->dtb_offset = 0;
2908			continue;
2909		}
2910
2911		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2912			continue;
2913
2914		if (src->dtb_offset == 0)
2915			continue;
2916
2917		dtrace_speculation_commit(state, cpu, i + 1);
2918	}
2919
2920	dtrace_interrupt_enable(cookie);
2921}
2922
2923/*
2924 * Note:  not called from probe context.  This function is called
2925 * asynchronously (and at a regular interval) to clean any speculations that
2926 * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2927 * is work to be done, it cross calls all CPUs to perform that work;
2928 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2929 * INACTIVE state until they have been cleaned by all CPUs.
2930 */
2931static void
2932dtrace_speculation_clean(dtrace_state_t *state)
2933{
2934	int work = 0, rv;
2935	dtrace_specid_t i;
2936
2937	for (i = 0; i < state->dts_nspeculations; i++) {
2938		dtrace_speculation_t *spec = &state->dts_speculations[i];
2939
2940		ASSERT(!spec->dtsp_cleaning);
2941
2942		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2943		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2944			continue;
2945
2946		work++;
2947		spec->dtsp_cleaning = 1;
2948	}
2949
2950	if (!work)
2951		return;
2952
2953	dtrace_xcall(DTRACE_CPUALL,
2954	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2955
2956	/*
2957	 * We now know that all CPUs have committed or discarded their
2958	 * speculation buffers, as appropriate.  We can now set the state
2959	 * to inactive.
2960	 */
2961	for (i = 0; i < state->dts_nspeculations; i++) {
2962		dtrace_speculation_t *spec = &state->dts_speculations[i];
2963		dtrace_speculation_state_t current, new;
2964
2965		if (!spec->dtsp_cleaning)
2966			continue;
2967
2968		current = spec->dtsp_state;
2969		ASSERT(current == DTRACESPEC_DISCARDING ||
2970		    current == DTRACESPEC_COMMITTINGMANY);
2971
2972		new = DTRACESPEC_INACTIVE;
2973
2974		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2975		ASSERT(rv == current);
2976		spec->dtsp_cleaning = 0;
2977	}
2978}
2979
2980/*
2981 * Called as part of a speculate() to get the speculative buffer associated
2982 * with a given speculation.  Returns NULL if the specified speculation is not
2983 * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2984 * the active CPU is not the specified CPU -- the speculation will be
2985 * atomically transitioned into the ACTIVEMANY state.
2986 */
2987static dtrace_buffer_t *
2988dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2989    dtrace_specid_t which)
2990{
2991	dtrace_speculation_t *spec;
2992	dtrace_speculation_state_t current, new = 0;
2993	dtrace_buffer_t *buf;
2994
2995	if (which == 0)
2996		return (NULL);
2997
2998	if (which > state->dts_nspeculations) {
2999		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3000		return (NULL);
3001	}
3002
3003	spec = &state->dts_speculations[which - 1];
3004	buf = &spec->dtsp_buffer[cpuid];
3005
3006	do {
3007		current = spec->dtsp_state;
3008
3009		switch (current) {
3010		case DTRACESPEC_INACTIVE:
3011		case DTRACESPEC_COMMITTINGMANY:
3012		case DTRACESPEC_DISCARDING:
3013			return (NULL);
3014
3015		case DTRACESPEC_COMMITTING:
3016			ASSERT(buf->dtb_offset == 0);
3017			return (NULL);
3018
3019		case DTRACESPEC_ACTIVEONE:
3020			/*
3021			 * This speculation is currently active on one CPU.
3022			 * Check the offset in the buffer; if it's non-zero,
3023			 * that CPU must be us (and we leave the state alone).
3024			 * If it's zero, assume that we're starting on a new
3025			 * CPU -- and change the state to indicate that the
3026			 * speculation is active on more than one CPU.
3027			 */
3028			if (buf->dtb_offset != 0)
3029				return (buf);
3030
3031			new = DTRACESPEC_ACTIVEMANY;
3032			break;
3033
3034		case DTRACESPEC_ACTIVEMANY:
3035			return (buf);
3036
3037		case DTRACESPEC_ACTIVE:
3038			new = DTRACESPEC_ACTIVEONE;
3039			break;
3040
3041		default:
3042			ASSERT(0);
3043		}
3044	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3045	    current, new) != current);
3046
3047	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
3048	return (buf);
3049}
3050
3051/*
3052 * Return a string.  In the event that the user lacks the privilege to access
3053 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3054 * don't fail access checking.
3055 *
3056 * dtrace_dif_variable() uses this routine as a helper for various
3057 * builtin values such as 'execname' and 'probefunc.'
3058 */
3059uintptr_t
3060dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
3061    dtrace_mstate_t *mstate)
3062{
3063	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3064	uintptr_t ret;
3065	size_t strsz;
3066
3067	/*
3068	 * The easy case: this probe is allowed to read all of memory, so
3069	 * we can just return this as a vanilla pointer.
3070	 */
3071	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3072		return (addr);
3073
3074	/*
3075	 * This is the tougher case: we copy the string in question from
3076	 * kernel memory into scratch memory and return it that way: this
3077	 * ensures that we won't trip up when access checking tests the
3078	 * BYREF return value.
3079	 */
3080	strsz = dtrace_strlen((char *)addr, size) + 1;
3081
3082	if (mstate->dtms_scratch_ptr + strsz >
3083	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3084		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3085		return (0);
3086	}
3087
3088	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3089	    strsz);
3090	ret = mstate->dtms_scratch_ptr;
3091	mstate->dtms_scratch_ptr += strsz;
3092	return (ret);
3093}
3094
3095/*
3096 * Return a string from a memoy address which is known to have one or
3097 * more concatenated, individually zero terminated, sub-strings.
3098 * In the event that the user lacks the privilege to access
3099 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3100 * don't fail access checking.
3101 *
3102 * dtrace_dif_variable() uses this routine as a helper for various
3103 * builtin values such as 'execargs'.
3104 */
3105static uintptr_t
3106dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
3107    dtrace_mstate_t *mstate)
3108{
3109	char *p;
3110	size_t i;
3111	uintptr_t ret;
3112
3113	if (mstate->dtms_scratch_ptr + strsz >
3114	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3115		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3116		return (0);
3117	}
3118
3119	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3120	    strsz);
3121
3122	/* Replace sub-string termination characters with a space. */
3123	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
3124	    p++, i++)
3125		if (*p == '\0')
3126			*p = ' ';
3127
3128	ret = mstate->dtms_scratch_ptr;
3129	mstate->dtms_scratch_ptr += strsz;
3130	return (ret);
3131}
3132
3133/*
3134 * This function implements the DIF emulator's variable lookups.  The emulator
3135 * passes a reserved variable identifier and optional built-in array index.
3136 */
3137static uint64_t
3138dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3139    uint64_t ndx)
3140{
3141	/*
3142	 * If we're accessing one of the uncached arguments, we'll turn this
3143	 * into a reference in the args array.
3144	 */
3145	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3146		ndx = v - DIF_VAR_ARG0;
3147		v = DIF_VAR_ARGS;
3148	}
3149
3150	switch (v) {
3151	case DIF_VAR_ARGS:
3152		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3153		if (ndx >= sizeof (mstate->dtms_arg) /
3154		    sizeof (mstate->dtms_arg[0])) {
3155			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3156			dtrace_provider_t *pv;
3157			uint64_t val;
3158
3159			pv = mstate->dtms_probe->dtpr_provider;
3160			if (pv->dtpv_pops.dtps_getargval != NULL)
3161				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3162				    mstate->dtms_probe->dtpr_id,
3163				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
3164			else
3165				val = dtrace_getarg(ndx, aframes);
3166
3167			/*
3168			 * This is regrettably required to keep the compiler
3169			 * from tail-optimizing the call to dtrace_getarg().
3170			 * The condition always evaluates to true, but the
3171			 * compiler has no way of figuring that out a priori.
3172			 * (None of this would be necessary if the compiler
3173			 * could be relied upon to _always_ tail-optimize
3174			 * the call to dtrace_getarg() -- but it can't.)
3175			 */
3176			if (mstate->dtms_probe != NULL)
3177				return (val);
3178
3179			ASSERT(0);
3180		}
3181
3182		return (mstate->dtms_arg[ndx]);
3183
3184#if defined(sun)
3185	case DIF_VAR_UREGS: {
3186		klwp_t *lwp;
3187
3188		if (!dtrace_priv_proc(state))
3189			return (0);
3190
3191		if ((lwp = curthread->t_lwp) == NULL) {
3192			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3193			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
3194			return (0);
3195		}
3196
3197		return (dtrace_getreg(lwp->lwp_regs, ndx));
3198		return (0);
3199	}
3200#else
3201	case DIF_VAR_UREGS: {
3202		struct trapframe *tframe;
3203
3204		if (!dtrace_priv_proc(state))
3205			return (0);
3206
3207		if ((tframe = curthread->td_frame) == NULL) {
3208			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3209			cpu_core[curcpu].cpuc_dtrace_illval = 0;
3210			return (0);
3211		}
3212
3213		return (dtrace_getreg(tframe, ndx));
3214	}
3215#endif
3216
3217	case DIF_VAR_CURTHREAD:
3218		if (!dtrace_priv_proc(state))
3219			return (0);
3220		return ((uint64_t)(uintptr_t)curthread);
3221
3222	case DIF_VAR_TIMESTAMP:
3223		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3224			mstate->dtms_timestamp = dtrace_gethrtime();
3225			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3226		}
3227		return (mstate->dtms_timestamp);
3228
3229	case DIF_VAR_VTIMESTAMP:
3230		ASSERT(dtrace_vtime_references != 0);
3231		return (curthread->t_dtrace_vtime);
3232
3233	case DIF_VAR_WALLTIMESTAMP:
3234		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3235			mstate->dtms_walltimestamp = dtrace_gethrestime();
3236			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3237		}
3238		return (mstate->dtms_walltimestamp);
3239
3240#if defined(sun)
3241	case DIF_VAR_IPL:
3242		if (!dtrace_priv_kernel(state))
3243			return (0);
3244		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3245			mstate->dtms_ipl = dtrace_getipl();
3246			mstate->dtms_present |= DTRACE_MSTATE_IPL;
3247		}
3248		return (mstate->dtms_ipl);
3249#endif
3250
3251	case DIF_VAR_EPID:
3252		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3253		return (mstate->dtms_epid);
3254
3255	case DIF_VAR_ID:
3256		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3257		return (mstate->dtms_probe->dtpr_id);
3258
3259	case DIF_VAR_STACKDEPTH:
3260		if (!dtrace_priv_kernel(state))
3261			return (0);
3262		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3263			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3264
3265			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3266			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3267		}
3268		return (mstate->dtms_stackdepth);
3269
3270	case DIF_VAR_USTACKDEPTH:
3271		if (!dtrace_priv_proc(state))
3272			return (0);
3273		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3274			/*
3275			 * See comment in DIF_VAR_PID.
3276			 */
3277			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3278			    CPU_ON_INTR(CPU)) {
3279				mstate->dtms_ustackdepth = 0;
3280			} else {
3281				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3282				mstate->dtms_ustackdepth =
3283				    dtrace_getustackdepth();
3284				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3285			}
3286			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3287		}
3288		return (mstate->dtms_ustackdepth);
3289
3290	case DIF_VAR_CALLER:
3291		if (!dtrace_priv_kernel(state))
3292			return (0);
3293		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3294			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3295
3296			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3297				/*
3298				 * If this is an unanchored probe, we are
3299				 * required to go through the slow path:
3300				 * dtrace_caller() only guarantees correct
3301				 * results for anchored probes.
3302				 */
3303				pc_t caller[2] = {0, 0};
3304
3305				dtrace_getpcstack(caller, 2, aframes,
3306				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3307				mstate->dtms_caller = caller[1];
3308			} else if ((mstate->dtms_caller =
3309			    dtrace_caller(aframes)) == -1) {
3310				/*
3311				 * We have failed to do this the quick way;
3312				 * we must resort to the slower approach of
3313				 * calling dtrace_getpcstack().
3314				 */
3315				pc_t caller = 0;
3316
3317				dtrace_getpcstack(&caller, 1, aframes, NULL);
3318				mstate->dtms_caller = caller;
3319			}
3320
3321			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3322		}
3323		return (mstate->dtms_caller);
3324
3325	case DIF_VAR_UCALLER:
3326		if (!dtrace_priv_proc(state))
3327			return (0);
3328
3329		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3330			uint64_t ustack[3];
3331
3332			/*
3333			 * dtrace_getupcstack() fills in the first uint64_t
3334			 * with the current PID.  The second uint64_t will
3335			 * be the program counter at user-level.  The third
3336			 * uint64_t will contain the caller, which is what
3337			 * we're after.
3338			 */
3339			ustack[2] = 0;
3340			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3341			dtrace_getupcstack(ustack, 3);
3342			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3343			mstate->dtms_ucaller = ustack[2];
3344			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3345		}
3346
3347		return (mstate->dtms_ucaller);
3348
3349	case DIF_VAR_PROBEPROV:
3350		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3351		return (dtrace_dif_varstr(
3352		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3353		    state, mstate));
3354
3355	case DIF_VAR_PROBEMOD:
3356		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3357		return (dtrace_dif_varstr(
3358		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3359		    state, mstate));
3360
3361	case DIF_VAR_PROBEFUNC:
3362		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3363		return (dtrace_dif_varstr(
3364		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3365		    state, mstate));
3366
3367	case DIF_VAR_PROBENAME:
3368		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3369		return (dtrace_dif_varstr(
3370		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3371		    state, mstate));
3372
3373	case DIF_VAR_PID:
3374		if (!dtrace_priv_proc(state))
3375			return (0);
3376
3377#if defined(sun)
3378		/*
3379		 * Note that we are assuming that an unanchored probe is
3380		 * always due to a high-level interrupt.  (And we're assuming
3381		 * that there is only a single high level interrupt.)
3382		 */
3383		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3384			return (pid0.pid_id);
3385
3386		/*
3387		 * It is always safe to dereference one's own t_procp pointer:
3388		 * it always points to a valid, allocated proc structure.
3389		 * Further, it is always safe to dereference the p_pidp member
3390		 * of one's own proc structure.  (These are truisms becuase
3391		 * threads and processes don't clean up their own state --
3392		 * they leave that task to whomever reaps them.)
3393		 */
3394		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3395#else
3396		return ((uint64_t)curproc->p_pid);
3397#endif
3398
3399	case DIF_VAR_PPID:
3400		if (!dtrace_priv_proc(state))
3401			return (0);
3402
3403#if defined(sun)
3404		/*
3405		 * See comment in DIF_VAR_PID.
3406		 */
3407		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3408			return (pid0.pid_id);
3409
3410		/*
3411		 * It is always safe to dereference one's own t_procp pointer:
3412		 * it always points to a valid, allocated proc structure.
3413		 * (This is true because threads don't clean up their own
3414		 * state -- they leave that task to whomever reaps them.)
3415		 */
3416		return ((uint64_t)curthread->t_procp->p_ppid);
3417#else
3418		if (curproc->p_pid == proc0.p_pid)
3419			return (curproc->p_pid);
3420		else
3421			return (curproc->p_pptr->p_pid);
3422#endif
3423
3424	case DIF_VAR_TID:
3425#if defined(sun)
3426		/*
3427		 * See comment in DIF_VAR_PID.
3428		 */
3429		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3430			return (0);
3431#endif
3432
3433		return ((uint64_t)curthread->t_tid);
3434
3435	case DIF_VAR_EXECARGS: {
3436		struct pargs *p_args = curthread->td_proc->p_args;
3437
3438		if (p_args == NULL)
3439			return(0);
3440
3441		return (dtrace_dif_varstrz(
3442		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3443	}
3444
3445	case DIF_VAR_EXECNAME:
3446#if defined(sun)
3447		if (!dtrace_priv_proc(state))
3448			return (0);
3449
3450		/*
3451		 * See comment in DIF_VAR_PID.
3452		 */
3453		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3454			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3455
3456		/*
3457		 * It is always safe to dereference one's own t_procp pointer:
3458		 * it always points to a valid, allocated proc structure.
3459		 * (This is true because threads don't clean up their own
3460		 * state -- they leave that task to whomever reaps them.)
3461		 */
3462		return (dtrace_dif_varstr(
3463		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3464		    state, mstate));
3465#else
3466		return (dtrace_dif_varstr(
3467		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3468#endif
3469
3470	case DIF_VAR_ZONENAME:
3471#if defined(sun)
3472		if (!dtrace_priv_proc(state))
3473			return (0);
3474
3475		/*
3476		 * See comment in DIF_VAR_PID.
3477		 */
3478		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3479			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3480
3481		/*
3482		 * It is always safe to dereference one's own t_procp pointer:
3483		 * it always points to a valid, allocated proc structure.
3484		 * (This is true because threads don't clean up their own
3485		 * state -- they leave that task to whomever reaps them.)
3486		 */
3487		return (dtrace_dif_varstr(
3488		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3489		    state, mstate));
3490#else
3491		return (0);
3492#endif
3493
3494	case DIF_VAR_UID:
3495		if (!dtrace_priv_proc(state))
3496			return (0);
3497
3498#if defined(sun)
3499		/*
3500		 * See comment in DIF_VAR_PID.
3501		 */
3502		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3503			return ((uint64_t)p0.p_cred->cr_uid);
3504#endif
3505
3506		/*
3507		 * It is always safe to dereference one's own t_procp pointer:
3508		 * it always points to a valid, allocated proc structure.
3509		 * (This is true because threads don't clean up their own
3510		 * state -- they leave that task to whomever reaps them.)
3511		 *
3512		 * Additionally, it is safe to dereference one's own process
3513		 * credential, since this is never NULL after process birth.
3514		 */
3515		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3516
3517	case DIF_VAR_GID:
3518		if (!dtrace_priv_proc(state))
3519			return (0);
3520
3521#if defined(sun)
3522		/*
3523		 * See comment in DIF_VAR_PID.
3524		 */
3525		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3526			return ((uint64_t)p0.p_cred->cr_gid);
3527#endif
3528
3529		/*
3530		 * It is always safe to dereference one's own t_procp pointer:
3531		 * it always points to a valid, allocated proc structure.
3532		 * (This is true because threads don't clean up their own
3533		 * state -- they leave that task to whomever reaps them.)
3534		 *
3535		 * Additionally, it is safe to dereference one's own process
3536		 * credential, since this is never NULL after process birth.
3537		 */
3538		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3539
3540	case DIF_VAR_ERRNO: {
3541#if defined(sun)
3542		klwp_t *lwp;
3543		if (!dtrace_priv_proc(state))
3544			return (0);
3545
3546		/*
3547		 * See comment in DIF_VAR_PID.
3548		 */
3549		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3550			return (0);
3551
3552		/*
3553		 * It is always safe to dereference one's own t_lwp pointer in
3554		 * the event that this pointer is non-NULL.  (This is true
3555		 * because threads and lwps don't clean up their own state --
3556		 * they leave that task to whomever reaps them.)
3557		 */
3558		if ((lwp = curthread->t_lwp) == NULL)
3559			return (0);
3560
3561		return ((uint64_t)lwp->lwp_errno);
3562#else
3563		return (curthread->td_errno);
3564#endif
3565	}
3566#if !defined(sun)
3567	case DIF_VAR_CPU: {
3568		return curcpu;
3569	}
3570#endif
3571	default:
3572		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3573		return (0);
3574	}
3575}
3576
3577
3578typedef enum dtrace_json_state {
3579	DTRACE_JSON_REST = 1,
3580	DTRACE_JSON_OBJECT,
3581	DTRACE_JSON_STRING,
3582	DTRACE_JSON_STRING_ESCAPE,
3583	DTRACE_JSON_STRING_ESCAPE_UNICODE,
3584	DTRACE_JSON_COLON,
3585	DTRACE_JSON_COMMA,
3586	DTRACE_JSON_VALUE,
3587	DTRACE_JSON_IDENTIFIER,
3588	DTRACE_JSON_NUMBER,
3589	DTRACE_JSON_NUMBER_FRAC,
3590	DTRACE_JSON_NUMBER_EXP,
3591	DTRACE_JSON_COLLECT_OBJECT
3592} dtrace_json_state_t;
3593
3594/*
3595 * This function possesses just enough knowledge about JSON to extract a single
3596 * value from a JSON string and store it in the scratch buffer.  It is able
3597 * to extract nested object values, and members of arrays by index.
3598 *
3599 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3600 * be looked up as we descend into the object tree.  e.g.
3601 *
3602 *    foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3603 *       with nelems = 5.
3604 *
3605 * The run time of this function must be bounded above by strsize to limit the
3606 * amount of work done in probe context.  As such, it is implemented as a
3607 * simple state machine, reading one character at a time using safe loads
3608 * until we find the requested element, hit a parsing error or run off the
3609 * end of the object or string.
3610 *
3611 * As there is no way for a subroutine to return an error without interrupting
3612 * clause execution, we simply return NULL in the event of a missing key or any
3613 * other error condition.  Each NULL return in this function is commented with
3614 * the error condition it represents -- parsing or otherwise.
3615 *
3616 * The set of states for the state machine closely matches the JSON
3617 * specification (http://json.org/).  Briefly:
3618 *
3619 *   DTRACE_JSON_REST:
3620 *     Skip whitespace until we find either a top-level Object, moving
3621 *     to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3622 *
3623 *   DTRACE_JSON_OBJECT:
3624 *     Locate the next key String in an Object.  Sets a flag to denote
3625 *     the next String as a key string and moves to DTRACE_JSON_STRING.
3626 *
3627 *   DTRACE_JSON_COLON:
3628 *     Skip whitespace until we find the colon that separates key Strings
3629 *     from their values.  Once found, move to DTRACE_JSON_VALUE.
3630 *
3631 *   DTRACE_JSON_VALUE:
3632 *     Detects the type of the next value (String, Number, Identifier, Object
3633 *     or Array) and routes to the states that process that type.  Here we also
3634 *     deal with the element selector list if we are requested to traverse down
3635 *     into the object tree.
3636 *
3637 *   DTRACE_JSON_COMMA:
3638 *     Skip whitespace until we find the comma that separates key-value pairs
3639 *     in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3640 *     (similarly DTRACE_JSON_VALUE).  All following literal value processing
3641 *     states return to this state at the end of their value, unless otherwise
3642 *     noted.
3643 *
3644 *   DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3645 *     Processes a Number literal from the JSON, including any exponent
3646 *     component that may be present.  Numbers are returned as strings, which
3647 *     may be passed to strtoll() if an integer is required.
3648 *
3649 *   DTRACE_JSON_IDENTIFIER:
3650 *     Processes a "true", "false" or "null" literal in the JSON.
3651 *
3652 *   DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3653 *   DTRACE_JSON_STRING_ESCAPE_UNICODE:
3654 *     Processes a String literal from the JSON, whether the String denotes
3655 *     a key, a value or part of a larger Object.  Handles all escape sequences
3656 *     present in the specification, including four-digit unicode characters,
3657 *     but merely includes the escape sequence without converting it to the
3658 *     actual escaped character.  If the String is flagged as a key, we
3659 *     move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3660 *
3661 *   DTRACE_JSON_COLLECT_OBJECT:
3662 *     This state collects an entire Object (or Array), correctly handling
3663 *     embedded strings.  If the full element selector list matches this nested
3664 *     object, we return the Object in full as a string.  If not, we use this
3665 *     state to skip to the next value at this level and continue processing.
3666 *
3667 * NOTE: This function uses various macros from strtolctype.h to manipulate
3668 * digit values, etc -- these have all been checked to ensure they make
3669 * no additional function calls.
3670 */
3671static char *
3672dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3673    char *dest)
3674{
3675	dtrace_json_state_t state = DTRACE_JSON_REST;
3676	int64_t array_elem = INT64_MIN;
3677	int64_t array_pos = 0;
3678	uint8_t escape_unicount = 0;
3679	boolean_t string_is_key = B_FALSE;
3680	boolean_t collect_object = B_FALSE;
3681	boolean_t found_key = B_FALSE;
3682	boolean_t in_array = B_FALSE;
3683	uint32_t braces = 0, brackets = 0;
3684	char *elem = elemlist;
3685	char *dd = dest;
3686	uintptr_t cur;
3687
3688	for (cur = json; cur < json + size; cur++) {
3689		char cc = dtrace_load8(cur);
3690		if (cc == '\0')
3691			return (NULL);
3692
3693		switch (state) {
3694		case DTRACE_JSON_REST:
3695			if (isspace(cc))
3696				break;
3697
3698			if (cc == '{') {
3699				state = DTRACE_JSON_OBJECT;
3700				break;
3701			}
3702
3703			if (cc == '[') {
3704				in_array = B_TRUE;
3705				array_pos = 0;
3706				array_elem = dtrace_strtoll(elem, 10, size);
3707				found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3708				state = DTRACE_JSON_VALUE;
3709				break;
3710			}
3711
3712			/*
3713			 * ERROR: expected to find a top-level object or array.
3714			 */
3715			return (NULL);
3716		case DTRACE_JSON_OBJECT:
3717			if (isspace(cc))
3718				break;
3719
3720			if (cc == '"') {
3721				state = DTRACE_JSON_STRING;
3722				string_is_key = B_TRUE;
3723				break;
3724			}
3725
3726			/*
3727			 * ERROR: either the object did not start with a key
3728			 * string, or we've run off the end of the object
3729			 * without finding the requested key.
3730			 */
3731			return (NULL);
3732		case DTRACE_JSON_STRING:
3733			if (cc == '\\') {
3734				*dd++ = '\\';
3735				state = DTRACE_JSON_STRING_ESCAPE;
3736				break;
3737			}
3738
3739			if (cc == '"') {
3740				if (collect_object) {
3741					/*
3742					 * We don't reset the dest here, as
3743					 * the string is part of a larger
3744					 * object being collected.
3745					 */
3746					*dd++ = cc;
3747					collect_object = B_FALSE;
3748					state = DTRACE_JSON_COLLECT_OBJECT;
3749					break;
3750				}
3751				*dd = '\0';
3752				dd = dest; /* reset string buffer */
3753				if (string_is_key) {
3754					if (dtrace_strncmp(dest, elem,
3755					    size) == 0)
3756						found_key = B_TRUE;
3757				} else if (found_key) {
3758					if (nelems > 1) {
3759						/*
3760						 * We expected an object, not
3761						 * this string.
3762						 */
3763						return (NULL);
3764					}
3765					return (dest);
3766				}
3767				state = string_is_key ? DTRACE_JSON_COLON :
3768				    DTRACE_JSON_COMMA;
3769				string_is_key = B_FALSE;
3770				break;
3771			}
3772
3773			*dd++ = cc;
3774			break;
3775		case DTRACE_JSON_STRING_ESCAPE:
3776			*dd++ = cc;
3777			if (cc == 'u') {
3778				escape_unicount = 0;
3779				state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3780			} else {
3781				state = DTRACE_JSON_STRING;
3782			}
3783			break;
3784		case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3785			if (!isxdigit(cc)) {
3786				/*
3787				 * ERROR: invalid unicode escape, expected
3788				 * four valid hexidecimal digits.
3789				 */
3790				return (NULL);
3791			}
3792
3793			*dd++ = cc;
3794			if (++escape_unicount == 4)
3795				state = DTRACE_JSON_STRING;
3796			break;
3797		case DTRACE_JSON_COLON:
3798			if (isspace(cc))
3799				break;
3800
3801			if (cc == ':') {
3802				state = DTRACE_JSON_VALUE;
3803				break;
3804			}
3805
3806			/*
3807			 * ERROR: expected a colon.
3808			 */
3809			return (NULL);
3810		case DTRACE_JSON_COMMA:
3811			if (isspace(cc))
3812				break;
3813
3814			if (cc == ',') {
3815				if (in_array) {
3816					state = DTRACE_JSON_VALUE;
3817					if (++array_pos == array_elem)
3818						found_key = B_TRUE;
3819				} else {
3820					state = DTRACE_JSON_OBJECT;
3821				}
3822				break;
3823			}
3824
3825			/*
3826			 * ERROR: either we hit an unexpected character, or
3827			 * we reached the end of the object or array without
3828			 * finding the requested key.
3829			 */
3830			return (NULL);
3831		case DTRACE_JSON_IDENTIFIER:
3832			if (islower(cc)) {
3833				*dd++ = cc;
3834				break;
3835			}
3836
3837			*dd = '\0';
3838			dd = dest; /* reset string buffer */
3839
3840			if (dtrace_strncmp(dest, "true", 5) == 0 ||
3841			    dtrace_strncmp(dest, "false", 6) == 0 ||
3842			    dtrace_strncmp(dest, "null", 5) == 0) {
3843				if (found_key) {
3844					if (nelems > 1) {
3845						/*
3846						 * ERROR: We expected an object,
3847						 * not this identifier.
3848						 */
3849						return (NULL);
3850					}
3851					return (dest);
3852				} else {
3853					cur--;
3854					state = DTRACE_JSON_COMMA;
3855					break;
3856				}
3857			}
3858
3859			/*
3860			 * ERROR: we did not recognise the identifier as one
3861			 * of those in the JSON specification.
3862			 */
3863			return (NULL);
3864		case DTRACE_JSON_NUMBER:
3865			if (cc == '.') {
3866				*dd++ = cc;
3867				state = DTRACE_JSON_NUMBER_FRAC;
3868				break;
3869			}
3870
3871			if (cc == 'x' || cc == 'X') {
3872				/*
3873				 * ERROR: specification explicitly excludes
3874				 * hexidecimal or octal numbers.
3875				 */
3876				return (NULL);
3877			}
3878
3879			/* FALLTHRU */
3880		case DTRACE_JSON_NUMBER_FRAC:
3881			if (cc == 'e' || cc == 'E') {
3882				*dd++ = cc;
3883				state = DTRACE_JSON_NUMBER_EXP;
3884				break;
3885			}
3886
3887			if (cc == '+' || cc == '-') {
3888				/*
3889				 * ERROR: expect sign as part of exponent only.
3890				 */
3891				return (NULL);
3892			}
3893			/* FALLTHRU */
3894		case DTRACE_JSON_NUMBER_EXP:
3895			if (isdigit(cc) || cc == '+' || cc == '-') {
3896				*dd++ = cc;
3897				break;
3898			}
3899
3900			*dd = '\0';
3901			dd = dest; /* reset string buffer */
3902			if (found_key) {
3903				if (nelems > 1) {
3904					/*
3905					 * ERROR: We expected an object, not
3906					 * this number.
3907					 */
3908					return (NULL);
3909				}
3910				return (dest);
3911			}
3912
3913			cur--;
3914			state = DTRACE_JSON_COMMA;
3915			break;
3916		case DTRACE_JSON_VALUE:
3917			if (isspace(cc))
3918				break;
3919
3920			if (cc == '{' || cc == '[') {
3921				if (nelems > 1 && found_key) {
3922					in_array = cc == '[' ? B_TRUE : B_FALSE;
3923					/*
3924					 * If our element selector directs us
3925					 * to descend into this nested object,
3926					 * then move to the next selector
3927					 * element in the list and restart the
3928					 * state machine.
3929					 */
3930					while (*elem != '\0')
3931						elem++;
3932					elem++; /* skip the inter-element NUL */
3933					nelems--;
3934					dd = dest;
3935					if (in_array) {
3936						state = DTRACE_JSON_VALUE;
3937						array_pos = 0;
3938						array_elem = dtrace_strtoll(
3939						    elem, 10, size);
3940						found_key = array_elem == 0 ?
3941						    B_TRUE : B_FALSE;
3942					} else {
3943						found_key = B_FALSE;
3944						state = DTRACE_JSON_OBJECT;
3945					}
3946					break;
3947				}
3948
3949				/*
3950				 * Otherwise, we wish to either skip this
3951				 * nested object or return it in full.
3952				 */
3953				if (cc == '[')
3954					brackets = 1;
3955				else
3956					braces = 1;
3957				*dd++ = cc;
3958				state = DTRACE_JSON_COLLECT_OBJECT;
3959				break;
3960			}
3961
3962			if (cc == '"') {
3963				state = DTRACE_JSON_STRING;
3964				break;
3965			}
3966
3967			if (islower(cc)) {
3968				/*
3969				 * Here we deal with true, false and null.
3970				 */
3971				*dd++ = cc;
3972				state = DTRACE_JSON_IDENTIFIER;
3973				break;
3974			}
3975
3976			if (cc == '-' || isdigit(cc)) {
3977				*dd++ = cc;
3978				state = DTRACE_JSON_NUMBER;
3979				break;
3980			}
3981
3982			/*
3983			 * ERROR: unexpected character at start of value.
3984			 */
3985			return (NULL);
3986		case DTRACE_JSON_COLLECT_OBJECT:
3987			if (cc == '\0')
3988				/*
3989				 * ERROR: unexpected end of input.
3990				 */
3991				return (NULL);
3992
3993			*dd++ = cc;
3994			if (cc == '"') {
3995				collect_object = B_TRUE;
3996				state = DTRACE_JSON_STRING;
3997				break;
3998			}
3999
4000			if (cc == ']') {
4001				if (brackets-- == 0) {
4002					/*
4003					 * ERROR: unbalanced brackets.
4004					 */
4005					return (NULL);
4006				}
4007			} else if (cc == '}') {
4008				if (braces-- == 0) {
4009					/*
4010					 * ERROR: unbalanced braces.
4011					 */
4012					return (NULL);
4013				}
4014			} else if (cc == '{') {
4015				braces++;
4016			} else if (cc == '[') {
4017				brackets++;
4018			}
4019
4020			if (brackets == 0 && braces == 0) {
4021				if (found_key) {
4022					*dd = '\0';
4023					return (dest);
4024				}
4025				dd = dest; /* reset string buffer */
4026				state = DTRACE_JSON_COMMA;
4027			}
4028			break;
4029		}
4030	}
4031	return (NULL);
4032}
4033
4034/*
4035 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4036 * Notice that we don't bother validating the proper number of arguments or
4037 * their types in the tuple stack.  This isn't needed because all argument
4038 * interpretation is safe because of our load safety -- the worst that can
4039 * happen is that a bogus program can obtain bogus results.
4040 */
4041static void
4042dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
4043    dtrace_key_t *tupregs, int nargs,
4044    dtrace_mstate_t *mstate, dtrace_state_t *state)
4045{
4046	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4047	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4048	dtrace_vstate_t *vstate = &state->dts_vstate;
4049
4050#if defined(sun)
4051	union {
4052		mutex_impl_t mi;
4053		uint64_t mx;
4054	} m;
4055
4056	union {
4057		krwlock_t ri;
4058		uintptr_t rw;
4059	} r;
4060#else
4061	struct thread *lowner;
4062	union {
4063		struct lock_object *li;
4064		uintptr_t lx;
4065	} l;
4066#endif
4067
4068	switch (subr) {
4069	case DIF_SUBR_RAND:
4070		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
4071		break;
4072
4073#if defined(sun)
4074	case DIF_SUBR_MUTEX_OWNED:
4075		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4076		    mstate, vstate)) {
4077			regs[rd] = 0;
4078			break;
4079		}
4080
4081		m.mx = dtrace_load64(tupregs[0].dttk_value);
4082		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
4083			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
4084		else
4085			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
4086		break;
4087
4088	case DIF_SUBR_MUTEX_OWNER:
4089		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4090		    mstate, vstate)) {
4091			regs[rd] = 0;
4092			break;
4093		}
4094
4095		m.mx = dtrace_load64(tupregs[0].dttk_value);
4096		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
4097		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
4098			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
4099		else
4100			regs[rd] = 0;
4101		break;
4102
4103	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4104		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4105		    mstate, vstate)) {
4106			regs[rd] = 0;
4107			break;
4108		}
4109
4110		m.mx = dtrace_load64(tupregs[0].dttk_value);
4111		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
4112		break;
4113
4114	case DIF_SUBR_MUTEX_TYPE_SPIN:
4115		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4116		    mstate, vstate)) {
4117			regs[rd] = 0;
4118			break;
4119		}
4120
4121		m.mx = dtrace_load64(tupregs[0].dttk_value);
4122		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
4123		break;
4124
4125	case DIF_SUBR_RW_READ_HELD: {
4126		uintptr_t tmp;
4127
4128		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4129		    mstate, vstate)) {
4130			regs[rd] = 0;
4131			break;
4132		}
4133
4134		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4135		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
4136		break;
4137	}
4138
4139	case DIF_SUBR_RW_WRITE_HELD:
4140		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4141		    mstate, vstate)) {
4142			regs[rd] = 0;
4143			break;
4144		}
4145
4146		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4147		regs[rd] = _RW_WRITE_HELD(&r.ri);
4148		break;
4149
4150	case DIF_SUBR_RW_ISWRITER:
4151		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4152		    mstate, vstate)) {
4153			regs[rd] = 0;
4154			break;
4155		}
4156
4157		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4158		regs[rd] = _RW_ISWRITER(&r.ri);
4159		break;
4160
4161#else
4162	case DIF_SUBR_MUTEX_OWNED:
4163		if (!dtrace_canload(tupregs[0].dttk_value,
4164			sizeof (struct lock_object), mstate, vstate)) {
4165			regs[rd] = 0;
4166			break;
4167		}
4168		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4169		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4170		break;
4171
4172	case DIF_SUBR_MUTEX_OWNER:
4173		if (!dtrace_canload(tupregs[0].dttk_value,
4174			sizeof (struct lock_object), mstate, vstate)) {
4175			regs[rd] = 0;
4176			break;
4177		}
4178		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4179		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4180		regs[rd] = (uintptr_t)lowner;
4181		break;
4182
4183	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4184		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4185		    mstate, vstate)) {
4186			regs[rd] = 0;
4187			break;
4188		}
4189		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4190		/* XXX - should be only LC_SLEEPABLE? */
4191		regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
4192		    (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
4193		break;
4194
4195	case DIF_SUBR_MUTEX_TYPE_SPIN:
4196		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4197		    mstate, vstate)) {
4198			regs[rd] = 0;
4199			break;
4200		}
4201		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4202		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
4203		break;
4204
4205	case DIF_SUBR_RW_READ_HELD:
4206	case DIF_SUBR_SX_SHARED_HELD:
4207		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4208		    mstate, vstate)) {
4209			regs[rd] = 0;
4210			break;
4211		}
4212		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4213		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4214		    lowner == NULL;
4215		break;
4216
4217	case DIF_SUBR_RW_WRITE_HELD:
4218	case DIF_SUBR_SX_EXCLUSIVE_HELD:
4219		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4220		    mstate, vstate)) {
4221			regs[rd] = 0;
4222			break;
4223		}
4224		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4225		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4226		regs[rd] = (lowner == curthread);
4227		break;
4228
4229	case DIF_SUBR_RW_ISWRITER:
4230	case DIF_SUBR_SX_ISEXCLUSIVE:
4231		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4232		    mstate, vstate)) {
4233			regs[rd] = 0;
4234			break;
4235		}
4236		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4237		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4238		    lowner != NULL;
4239		break;
4240#endif /* ! defined(sun) */
4241
4242	case DIF_SUBR_BCOPY: {
4243		/*
4244		 * We need to be sure that the destination is in the scratch
4245		 * region -- no other region is allowed.
4246		 */
4247		uintptr_t src = tupregs[0].dttk_value;
4248		uintptr_t dest = tupregs[1].dttk_value;
4249		size_t size = tupregs[2].dttk_value;
4250
4251		if (!dtrace_inscratch(dest, size, mstate)) {
4252			*flags |= CPU_DTRACE_BADADDR;
4253			*illval = regs[rd];
4254			break;
4255		}
4256
4257		if (!dtrace_canload(src, size, mstate, vstate)) {
4258			regs[rd] = 0;
4259			break;
4260		}
4261
4262		dtrace_bcopy((void *)src, (void *)dest, size);
4263		break;
4264	}
4265
4266	case DIF_SUBR_ALLOCA:
4267	case DIF_SUBR_COPYIN: {
4268		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4269		uint64_t size =
4270		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4271		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4272
4273		/*
4274		 * This action doesn't require any credential checks since
4275		 * probes will not activate in user contexts to which the
4276		 * enabling user does not have permissions.
4277		 */
4278
4279		/*
4280		 * Rounding up the user allocation size could have overflowed
4281		 * a large, bogus allocation (like -1ULL) to 0.
4282		 */
4283		if (scratch_size < size ||
4284		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
4285			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4286			regs[rd] = 0;
4287			break;
4288		}
4289
4290		if (subr == DIF_SUBR_COPYIN) {
4291			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4292			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4293			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4294		}
4295
4296		mstate->dtms_scratch_ptr += scratch_size;
4297		regs[rd] = dest;
4298		break;
4299	}
4300
4301	case DIF_SUBR_COPYINTO: {
4302		uint64_t size = tupregs[1].dttk_value;
4303		uintptr_t dest = tupregs[2].dttk_value;
4304
4305		/*
4306		 * This action doesn't require any credential checks since
4307		 * probes will not activate in user contexts to which the
4308		 * enabling user does not have permissions.
4309		 */
4310		if (!dtrace_inscratch(dest, size, mstate)) {
4311			*flags |= CPU_DTRACE_BADADDR;
4312			*illval = regs[rd];
4313			break;
4314		}
4315
4316		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4317		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4318		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4319		break;
4320	}
4321
4322	case DIF_SUBR_COPYINSTR: {
4323		uintptr_t dest = mstate->dtms_scratch_ptr;
4324		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4325
4326		if (nargs > 1 && tupregs[1].dttk_value < size)
4327			size = tupregs[1].dttk_value + 1;
4328
4329		/*
4330		 * This action doesn't require any credential checks since
4331		 * probes will not activate in user contexts to which the
4332		 * enabling user does not have permissions.
4333		 */
4334		if (!DTRACE_INSCRATCH(mstate, size)) {
4335			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4336			regs[rd] = 0;
4337			break;
4338		}
4339
4340		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4341		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4342		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4343
4344		((char *)dest)[size - 1] = '\0';
4345		mstate->dtms_scratch_ptr += size;
4346		regs[rd] = dest;
4347		break;
4348	}
4349
4350#if defined(sun)
4351	case DIF_SUBR_MSGSIZE:
4352	case DIF_SUBR_MSGDSIZE: {
4353		uintptr_t baddr = tupregs[0].dttk_value, daddr;
4354		uintptr_t wptr, rptr;
4355		size_t count = 0;
4356		int cont = 0;
4357
4358		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
4359
4360			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4361			    vstate)) {
4362				regs[rd] = 0;
4363				break;
4364			}
4365
4366			wptr = dtrace_loadptr(baddr +
4367			    offsetof(mblk_t, b_wptr));
4368
4369			rptr = dtrace_loadptr(baddr +
4370			    offsetof(mblk_t, b_rptr));
4371
4372			if (wptr < rptr) {
4373				*flags |= CPU_DTRACE_BADADDR;
4374				*illval = tupregs[0].dttk_value;
4375				break;
4376			}
4377
4378			daddr = dtrace_loadptr(baddr +
4379			    offsetof(mblk_t, b_datap));
4380
4381			baddr = dtrace_loadptr(baddr +
4382			    offsetof(mblk_t, b_cont));
4383
4384			/*
4385			 * We want to prevent against denial-of-service here,
4386			 * so we're only going to search the list for
4387			 * dtrace_msgdsize_max mblks.
4388			 */
4389			if (cont++ > dtrace_msgdsize_max) {
4390				*flags |= CPU_DTRACE_ILLOP;
4391				break;
4392			}
4393
4394			if (subr == DIF_SUBR_MSGDSIZE) {
4395				if (dtrace_load8(daddr +
4396				    offsetof(dblk_t, db_type)) != M_DATA)
4397					continue;
4398			}
4399
4400			count += wptr - rptr;
4401		}
4402
4403		if (!(*flags & CPU_DTRACE_FAULT))
4404			regs[rd] = count;
4405
4406		break;
4407	}
4408#endif
4409
4410	case DIF_SUBR_PROGENYOF: {
4411		pid_t pid = tupregs[0].dttk_value;
4412		proc_t *p;
4413		int rval = 0;
4414
4415		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4416
4417		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4418#if defined(sun)
4419			if (p->p_pidp->pid_id == pid) {
4420#else
4421			if (p->p_pid == pid) {
4422#endif
4423				rval = 1;
4424				break;
4425			}
4426		}
4427
4428		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4429
4430		regs[rd] = rval;
4431		break;
4432	}
4433
4434	case DIF_SUBR_SPECULATION:
4435		regs[rd] = dtrace_speculation(state);
4436		break;
4437
4438	case DIF_SUBR_COPYOUT: {
4439		uintptr_t kaddr = tupregs[0].dttk_value;
4440		uintptr_t uaddr = tupregs[1].dttk_value;
4441		uint64_t size = tupregs[2].dttk_value;
4442
4443		if (!dtrace_destructive_disallow &&
4444		    dtrace_priv_proc_control(state) &&
4445		    !dtrace_istoxic(kaddr, size)) {
4446			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4447			dtrace_copyout(kaddr, uaddr, size, flags);
4448			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4449		}
4450		break;
4451	}
4452
4453	case DIF_SUBR_COPYOUTSTR: {
4454		uintptr_t kaddr = tupregs[0].dttk_value;
4455		uintptr_t uaddr = tupregs[1].dttk_value;
4456		uint64_t size = tupregs[2].dttk_value;
4457
4458		if (!dtrace_destructive_disallow &&
4459		    dtrace_priv_proc_control(state) &&
4460		    !dtrace_istoxic(kaddr, size)) {
4461			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4462			dtrace_copyoutstr(kaddr, uaddr, size, flags);
4463			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4464		}
4465		break;
4466	}
4467
4468	case DIF_SUBR_STRLEN: {
4469		size_t sz;
4470		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4471		sz = dtrace_strlen((char *)addr,
4472		    state->dts_options[DTRACEOPT_STRSIZE]);
4473
4474		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
4475			regs[rd] = 0;
4476			break;
4477		}
4478
4479		regs[rd] = sz;
4480
4481		break;
4482	}
4483
4484	case DIF_SUBR_STRCHR:
4485	case DIF_SUBR_STRRCHR: {
4486		/*
4487		 * We're going to iterate over the string looking for the
4488		 * specified character.  We will iterate until we have reached
4489		 * the string length or we have found the character.  If this
4490		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4491		 * of the specified character instead of the first.
4492		 */
4493		uintptr_t saddr = tupregs[0].dttk_value;
4494		uintptr_t addr = tupregs[0].dttk_value;
4495		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
4496		char c, target = (char)tupregs[1].dttk_value;
4497
4498		for (regs[rd] = 0; addr < limit; addr++) {
4499			if ((c = dtrace_load8(addr)) == target) {
4500				regs[rd] = addr;
4501
4502				if (subr == DIF_SUBR_STRCHR)
4503					break;
4504			}
4505
4506			if (c == '\0')
4507				break;
4508		}
4509
4510		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
4511			regs[rd] = 0;
4512			break;
4513		}
4514
4515		break;
4516	}
4517
4518	case DIF_SUBR_STRSTR:
4519	case DIF_SUBR_INDEX:
4520	case DIF_SUBR_RINDEX: {
4521		/*
4522		 * We're going to iterate over the string looking for the
4523		 * specified string.  We will iterate until we have reached
4524		 * the string length or we have found the string.  (Yes, this
4525		 * is done in the most naive way possible -- but considering
4526		 * that the string we're searching for is likely to be
4527		 * relatively short, the complexity of Rabin-Karp or similar
4528		 * hardly seems merited.)
4529		 */
4530		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4531		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4532		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4533		size_t len = dtrace_strlen(addr, size);
4534		size_t sublen = dtrace_strlen(substr, size);
4535		char *limit = addr + len, *orig = addr;
4536		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4537		int inc = 1;
4538
4539		regs[rd] = notfound;
4540
4541		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4542			regs[rd] = 0;
4543			break;
4544		}
4545
4546		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4547		    vstate)) {
4548			regs[rd] = 0;
4549			break;
4550		}
4551
4552		/*
4553		 * strstr() and index()/rindex() have similar semantics if
4554		 * both strings are the empty string: strstr() returns a
4555		 * pointer to the (empty) string, and index() and rindex()
4556		 * both return index 0 (regardless of any position argument).
4557		 */
4558		if (sublen == 0 && len == 0) {
4559			if (subr == DIF_SUBR_STRSTR)
4560				regs[rd] = (uintptr_t)addr;
4561			else
4562				regs[rd] = 0;
4563			break;
4564		}
4565
4566		if (subr != DIF_SUBR_STRSTR) {
4567			if (subr == DIF_SUBR_RINDEX) {
4568				limit = orig - 1;
4569				addr += len;
4570				inc = -1;
4571			}
4572
4573			/*
4574			 * Both index() and rindex() take an optional position
4575			 * argument that denotes the starting position.
4576			 */
4577			if (nargs == 3) {
4578				int64_t pos = (int64_t)tupregs[2].dttk_value;
4579
4580				/*
4581				 * If the position argument to index() is
4582				 * negative, Perl implicitly clamps it at
4583				 * zero.  This semantic is a little surprising
4584				 * given the special meaning of negative
4585				 * positions to similar Perl functions like
4586				 * substr(), but it appears to reflect a
4587				 * notion that index() can start from a
4588				 * negative index and increment its way up to
4589				 * the string.  Given this notion, Perl's
4590				 * rindex() is at least self-consistent in
4591				 * that it implicitly clamps positions greater
4592				 * than the string length to be the string
4593				 * length.  Where Perl completely loses
4594				 * coherence, however, is when the specified
4595				 * substring is the empty string ("").  In
4596				 * this case, even if the position is
4597				 * negative, rindex() returns 0 -- and even if
4598				 * the position is greater than the length,
4599				 * index() returns the string length.  These
4600				 * semantics violate the notion that index()
4601				 * should never return a value less than the
4602				 * specified position and that rindex() should
4603				 * never return a value greater than the
4604				 * specified position.  (One assumes that
4605				 * these semantics are artifacts of Perl's
4606				 * implementation and not the results of
4607				 * deliberate design -- it beggars belief that
4608				 * even Larry Wall could desire such oddness.)
4609				 * While in the abstract one would wish for
4610				 * consistent position semantics across
4611				 * substr(), index() and rindex() -- or at the
4612				 * very least self-consistent position
4613				 * semantics for index() and rindex() -- we
4614				 * instead opt to keep with the extant Perl
4615				 * semantics, in all their broken glory.  (Do
4616				 * we have more desire to maintain Perl's
4617				 * semantics than Perl does?  Probably.)
4618				 */
4619				if (subr == DIF_SUBR_RINDEX) {
4620					if (pos < 0) {
4621						if (sublen == 0)
4622							regs[rd] = 0;
4623						break;
4624					}
4625
4626					if (pos > len)
4627						pos = len;
4628				} else {
4629					if (pos < 0)
4630						pos = 0;
4631
4632					if (pos >= len) {
4633						if (sublen == 0)
4634							regs[rd] = len;
4635						break;
4636					}
4637				}
4638
4639				addr = orig + pos;
4640			}
4641		}
4642
4643		for (regs[rd] = notfound; addr != limit; addr += inc) {
4644			if (dtrace_strncmp(addr, substr, sublen) == 0) {
4645				if (subr != DIF_SUBR_STRSTR) {
4646					/*
4647					 * As D index() and rindex() are
4648					 * modeled on Perl (and not on awk),
4649					 * we return a zero-based (and not a
4650					 * one-based) index.  (For you Perl
4651					 * weenies: no, we're not going to add
4652					 * $[ -- and shouldn't you be at a con
4653					 * or something?)
4654					 */
4655					regs[rd] = (uintptr_t)(addr - orig);
4656					break;
4657				}
4658
4659				ASSERT(subr == DIF_SUBR_STRSTR);
4660				regs[rd] = (uintptr_t)addr;
4661				break;
4662			}
4663		}
4664
4665		break;
4666	}
4667
4668	case DIF_SUBR_STRTOK: {
4669		uintptr_t addr = tupregs[0].dttk_value;
4670		uintptr_t tokaddr = tupregs[1].dttk_value;
4671		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4672		uintptr_t limit, toklimit = tokaddr + size;
4673		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
4674		char *dest = (char *)mstate->dtms_scratch_ptr;
4675		int i;
4676
4677		/*
4678		 * Check both the token buffer and (later) the input buffer,
4679		 * since both could be non-scratch addresses.
4680		 */
4681		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
4682			regs[rd] = 0;
4683			break;
4684		}
4685
4686		if (!DTRACE_INSCRATCH(mstate, size)) {
4687			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4688			regs[rd] = 0;
4689			break;
4690		}
4691
4692		if (addr == 0) {
4693			/*
4694			 * If the address specified is NULL, we use our saved
4695			 * strtok pointer from the mstate.  Note that this
4696			 * means that the saved strtok pointer is _only_
4697			 * valid within multiple enablings of the same probe --
4698			 * it behaves like an implicit clause-local variable.
4699			 */
4700			addr = mstate->dtms_strtok;
4701		} else {
4702			/*
4703			 * If the user-specified address is non-NULL we must
4704			 * access check it.  This is the only time we have
4705			 * a chance to do so, since this address may reside
4706			 * in the string table of this clause-- future calls
4707			 * (when we fetch addr from mstate->dtms_strtok)
4708			 * would fail this access check.
4709			 */
4710			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
4711				regs[rd] = 0;
4712				break;
4713			}
4714		}
4715
4716		/*
4717		 * First, zero the token map, and then process the token
4718		 * string -- setting a bit in the map for every character
4719		 * found in the token string.
4720		 */
4721		for (i = 0; i < sizeof (tokmap); i++)
4722			tokmap[i] = 0;
4723
4724		for (; tokaddr < toklimit; tokaddr++) {
4725			if ((c = dtrace_load8(tokaddr)) == '\0')
4726				break;
4727
4728			ASSERT((c >> 3) < sizeof (tokmap));
4729			tokmap[c >> 3] |= (1 << (c & 0x7));
4730		}
4731
4732		for (limit = addr + size; addr < limit; addr++) {
4733			/*
4734			 * We're looking for a character that is _not_ contained
4735			 * in the token string.
4736			 */
4737			if ((c = dtrace_load8(addr)) == '\0')
4738				break;
4739
4740			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4741				break;
4742		}
4743
4744		if (c == '\0') {
4745			/*
4746			 * We reached the end of the string without finding
4747			 * any character that was not in the token string.
4748			 * We return NULL in this case, and we set the saved
4749			 * address to NULL as well.
4750			 */
4751			regs[rd] = 0;
4752			mstate->dtms_strtok = 0;
4753			break;
4754		}
4755
4756		/*
4757		 * From here on, we're copying into the destination string.
4758		 */
4759		for (i = 0; addr < limit && i < size - 1; addr++) {
4760			if ((c = dtrace_load8(addr)) == '\0')
4761				break;
4762
4763			if (tokmap[c >> 3] & (1 << (c & 0x7)))
4764				break;
4765
4766			ASSERT(i < size);
4767			dest[i++] = c;
4768		}
4769
4770		ASSERT(i < size);
4771		dest[i] = '\0';
4772		regs[rd] = (uintptr_t)dest;
4773		mstate->dtms_scratch_ptr += size;
4774		mstate->dtms_strtok = addr;
4775		break;
4776	}
4777
4778	case DIF_SUBR_SUBSTR: {
4779		uintptr_t s = tupregs[0].dttk_value;
4780		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4781		char *d = (char *)mstate->dtms_scratch_ptr;
4782		int64_t index = (int64_t)tupregs[1].dttk_value;
4783		int64_t remaining = (int64_t)tupregs[2].dttk_value;
4784		size_t len = dtrace_strlen((char *)s, size);
4785		int64_t i;
4786
4787		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4788			regs[rd] = 0;
4789			break;
4790		}
4791
4792		if (!DTRACE_INSCRATCH(mstate, size)) {
4793			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4794			regs[rd] = 0;
4795			break;
4796		}
4797
4798		if (nargs <= 2)
4799			remaining = (int64_t)size;
4800
4801		if (index < 0) {
4802			index += len;
4803
4804			if (index < 0 && index + remaining > 0) {
4805				remaining += index;
4806				index = 0;
4807			}
4808		}
4809
4810		if (index >= len || index < 0) {
4811			remaining = 0;
4812		} else if (remaining < 0) {
4813			remaining += len - index;
4814		} else if (index + remaining > size) {
4815			remaining = size - index;
4816		}
4817
4818		for (i = 0; i < remaining; i++) {
4819			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4820				break;
4821		}
4822
4823		d[i] = '\0';
4824
4825		mstate->dtms_scratch_ptr += size;
4826		regs[rd] = (uintptr_t)d;
4827		break;
4828	}
4829
4830	case DIF_SUBR_JSON: {
4831		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4832		uintptr_t json = tupregs[0].dttk_value;
4833		size_t jsonlen = dtrace_strlen((char *)json, size);
4834		uintptr_t elem = tupregs[1].dttk_value;
4835		size_t elemlen = dtrace_strlen((char *)elem, size);
4836
4837		char *dest = (char *)mstate->dtms_scratch_ptr;
4838		char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
4839		char *ee = elemlist;
4840		int nelems = 1;
4841		uintptr_t cur;
4842
4843		if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
4844		    !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
4845			regs[rd] = 0;
4846			break;
4847		}
4848
4849		if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
4850			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4851			regs[rd] = 0;
4852			break;
4853		}
4854
4855		/*
4856		 * Read the element selector and split it up into a packed list
4857		 * of strings.
4858		 */
4859		for (cur = elem; cur < elem + elemlen; cur++) {
4860			char cc = dtrace_load8(cur);
4861
4862			if (cur == elem && cc == '[') {
4863				/*
4864				 * If the first element selector key is
4865				 * actually an array index then ignore the
4866				 * bracket.
4867				 */
4868				continue;
4869			}
4870
4871			if (cc == ']')
4872				continue;
4873
4874			if (cc == '.' || cc == '[') {
4875				nelems++;
4876				cc = '\0';
4877			}
4878
4879			*ee++ = cc;
4880		}
4881		*ee++ = '\0';
4882
4883		if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
4884		    nelems, dest)) != 0)
4885			mstate->dtms_scratch_ptr += jsonlen + 1;
4886		break;
4887	}
4888
4889	case DIF_SUBR_TOUPPER:
4890	case DIF_SUBR_TOLOWER: {
4891		uintptr_t s = tupregs[0].dttk_value;
4892		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4893		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4894		size_t len = dtrace_strlen((char *)s, size);
4895		char lower, upper, convert;
4896		int64_t i;
4897
4898		if (subr == DIF_SUBR_TOUPPER) {
4899			lower = 'a';
4900			upper = 'z';
4901			convert = 'A';
4902		} else {
4903			lower = 'A';
4904			upper = 'Z';
4905			convert = 'a';
4906		}
4907
4908		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4909			regs[rd] = 0;
4910			break;
4911		}
4912
4913		if (!DTRACE_INSCRATCH(mstate, size)) {
4914			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4915			regs[rd] = 0;
4916			break;
4917		}
4918
4919		for (i = 0; i < size - 1; i++) {
4920			if ((c = dtrace_load8(s + i)) == '\0')
4921				break;
4922
4923			if (c >= lower && c <= upper)
4924				c = convert + (c - lower);
4925
4926			dest[i] = c;
4927		}
4928
4929		ASSERT(i < size);
4930		dest[i] = '\0';
4931		regs[rd] = (uintptr_t)dest;
4932		mstate->dtms_scratch_ptr += size;
4933		break;
4934	}
4935
4936#if defined(sun)
4937	case DIF_SUBR_GETMAJOR:
4938#ifdef _LP64
4939		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4940#else
4941		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4942#endif
4943		break;
4944
4945	case DIF_SUBR_GETMINOR:
4946#ifdef _LP64
4947		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4948#else
4949		regs[rd] = tupregs[0].dttk_value & MAXMIN;
4950#endif
4951		break;
4952
4953	case DIF_SUBR_DDI_PATHNAME: {
4954		/*
4955		 * This one is a galactic mess.  We are going to roughly
4956		 * emulate ddi_pathname(), but it's made more complicated
4957		 * by the fact that we (a) want to include the minor name and
4958		 * (b) must proceed iteratively instead of recursively.
4959		 */
4960		uintptr_t dest = mstate->dtms_scratch_ptr;
4961		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4962		char *start = (char *)dest, *end = start + size - 1;
4963		uintptr_t daddr = tupregs[0].dttk_value;
4964		int64_t minor = (int64_t)tupregs[1].dttk_value;
4965		char *s;
4966		int i, len, depth = 0;
4967
4968		/*
4969		 * Due to all the pointer jumping we do and context we must
4970		 * rely upon, we just mandate that the user must have kernel
4971		 * read privileges to use this routine.
4972		 */
4973		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4974			*flags |= CPU_DTRACE_KPRIV;
4975			*illval = daddr;
4976			regs[rd] = 0;
4977		}
4978
4979		if (!DTRACE_INSCRATCH(mstate, size)) {
4980			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4981			regs[rd] = 0;
4982			break;
4983		}
4984
4985		*end = '\0';
4986
4987		/*
4988		 * We want to have a name for the minor.  In order to do this,
4989		 * we need to walk the minor list from the devinfo.  We want
4990		 * to be sure that we don't infinitely walk a circular list,
4991		 * so we check for circularity by sending a scout pointer
4992		 * ahead two elements for every element that we iterate over;
4993		 * if the list is circular, these will ultimately point to the
4994		 * same element.  You may recognize this little trick as the
4995		 * answer to a stupid interview question -- one that always
4996		 * seems to be asked by those who had to have it laboriously
4997		 * explained to them, and who can't even concisely describe
4998		 * the conditions under which one would be forced to resort to
4999		 * this technique.  Needless to say, those conditions are
5000		 * found here -- and probably only here.  Is this the only use
5001		 * of this infamous trick in shipping, production code?  If it
5002		 * isn't, it probably should be...
5003		 */
5004		if (minor != -1) {
5005			uintptr_t maddr = dtrace_loadptr(daddr +
5006			    offsetof(struct dev_info, devi_minor));
5007
5008			uintptr_t next = offsetof(struct ddi_minor_data, next);
5009			uintptr_t name = offsetof(struct ddi_minor_data,
5010			    d_minor) + offsetof(struct ddi_minor, name);
5011			uintptr_t dev = offsetof(struct ddi_minor_data,
5012			    d_minor) + offsetof(struct ddi_minor, dev);
5013			uintptr_t scout;
5014
5015			if (maddr != NULL)
5016				scout = dtrace_loadptr(maddr + next);
5017
5018			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5019				uint64_t m;
5020#ifdef _LP64
5021				m = dtrace_load64(maddr + dev) & MAXMIN64;
5022#else
5023				m = dtrace_load32(maddr + dev) & MAXMIN;
5024#endif
5025				if (m != minor) {
5026					maddr = dtrace_loadptr(maddr + next);
5027
5028					if (scout == NULL)
5029						continue;
5030
5031					scout = dtrace_loadptr(scout + next);
5032
5033					if (scout == NULL)
5034						continue;
5035
5036					scout = dtrace_loadptr(scout + next);
5037
5038					if (scout == NULL)
5039						continue;
5040
5041					if (scout == maddr) {
5042						*flags |= CPU_DTRACE_ILLOP;
5043						break;
5044					}
5045
5046					continue;
5047				}
5048
5049				/*
5050				 * We have the minor data.  Now we need to
5051				 * copy the minor's name into the end of the
5052				 * pathname.
5053				 */
5054				s = (char *)dtrace_loadptr(maddr + name);
5055				len = dtrace_strlen(s, size);
5056
5057				if (*flags & CPU_DTRACE_FAULT)
5058					break;
5059
5060				if (len != 0) {
5061					if ((end -= (len + 1)) < start)
5062						break;
5063
5064					*end = ':';
5065				}
5066
5067				for (i = 1; i <= len; i++)
5068					end[i] = dtrace_load8((uintptr_t)s++);
5069				break;
5070			}
5071		}
5072
5073		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5074			ddi_node_state_t devi_state;
5075
5076			devi_state = dtrace_load32(daddr +
5077			    offsetof(struct dev_info, devi_node_state));
5078
5079			if (*flags & CPU_DTRACE_FAULT)
5080				break;
5081
5082			if (devi_state >= DS_INITIALIZED) {
5083				s = (char *)dtrace_loadptr(daddr +
5084				    offsetof(struct dev_info, devi_addr));
5085				len = dtrace_strlen(s, size);
5086
5087				if (*flags & CPU_DTRACE_FAULT)
5088					break;
5089
5090				if (len != 0) {
5091					if ((end -= (len + 1)) < start)
5092						break;
5093
5094					*end = '@';
5095				}
5096
5097				for (i = 1; i <= len; i++)
5098					end[i] = dtrace_load8((uintptr_t)s++);
5099			}
5100
5101			/*
5102			 * Now for the node name...
5103			 */
5104			s = (char *)dtrace_loadptr(daddr +
5105			    offsetof(struct dev_info, devi_node_name));
5106
5107			daddr = dtrace_loadptr(daddr +
5108			    offsetof(struct dev_info, devi_parent));
5109
5110			/*
5111			 * If our parent is NULL (that is, if we're the root
5112			 * node), we're going to use the special path
5113			 * "devices".
5114			 */
5115			if (daddr == 0)
5116				s = "devices";
5117
5118			len = dtrace_strlen(s, size);
5119			if (*flags & CPU_DTRACE_FAULT)
5120				break;
5121
5122			if ((end -= (len + 1)) < start)
5123				break;
5124
5125			for (i = 1; i <= len; i++)
5126				end[i] = dtrace_load8((uintptr_t)s++);
5127			*end = '/';
5128
5129			if (depth++ > dtrace_devdepth_max) {
5130				*flags |= CPU_DTRACE_ILLOP;
5131				break;
5132			}
5133		}
5134
5135		if (end < start)
5136			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5137
5138		if (daddr == 0) {
5139			regs[rd] = (uintptr_t)end;
5140			mstate->dtms_scratch_ptr += size;
5141		}
5142
5143		break;
5144	}
5145#endif
5146
5147	case DIF_SUBR_STRJOIN: {
5148		char *d = (char *)mstate->dtms_scratch_ptr;
5149		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5150		uintptr_t s1 = tupregs[0].dttk_value;
5151		uintptr_t s2 = tupregs[1].dttk_value;
5152		int i = 0;
5153
5154		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
5155		    !dtrace_strcanload(s2, size, mstate, vstate)) {
5156			regs[rd] = 0;
5157			break;
5158		}
5159
5160		if (!DTRACE_INSCRATCH(mstate, size)) {
5161			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5162			regs[rd] = 0;
5163			break;
5164		}
5165
5166		for (;;) {
5167			if (i >= size) {
5168				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5169				regs[rd] = 0;
5170				break;
5171			}
5172
5173			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
5174				i--;
5175				break;
5176			}
5177		}
5178
5179		for (;;) {
5180			if (i >= size) {
5181				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5182				regs[rd] = 0;
5183				break;
5184			}
5185
5186			if ((d[i++] = dtrace_load8(s2++)) == '\0')
5187				break;
5188		}
5189
5190		if (i < size) {
5191			mstate->dtms_scratch_ptr += i;
5192			regs[rd] = (uintptr_t)d;
5193		}
5194
5195		break;
5196	}
5197
5198	case DIF_SUBR_STRTOLL: {
5199		uintptr_t s = tupregs[0].dttk_value;
5200		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5201		int base = 10;
5202
5203		if (nargs > 1) {
5204			if ((base = tupregs[1].dttk_value) <= 1 ||
5205			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5206				*flags |= CPU_DTRACE_ILLOP;
5207				break;
5208			}
5209		}
5210
5211		if (!dtrace_strcanload(s, size, mstate, vstate)) {
5212			regs[rd] = INT64_MIN;
5213			break;
5214		}
5215
5216		regs[rd] = dtrace_strtoll((char *)s, base, size);
5217		break;
5218	}
5219
5220	case DIF_SUBR_LLTOSTR: {
5221		int64_t i = (int64_t)tupregs[0].dttk_value;
5222		uint64_t val, digit;
5223		uint64_t size = 65;	/* enough room for 2^64 in binary */
5224		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
5225		int base = 10;
5226
5227		if (nargs > 1) {
5228			if ((base = tupregs[1].dttk_value) <= 1 ||
5229			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5230				*flags |= CPU_DTRACE_ILLOP;
5231				break;
5232			}
5233		}
5234
5235		val = (base == 10 && i < 0) ? i * -1 : i;
5236
5237		if (!DTRACE_INSCRATCH(mstate, size)) {
5238			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5239			regs[rd] = 0;
5240			break;
5241		}
5242
5243		for (*end-- = '\0'; val; val /= base) {
5244			if ((digit = val % base) <= '9' - '0') {
5245				*end-- = '0' + digit;
5246			} else {
5247				*end-- = 'a' + (digit - ('9' - '0') - 1);
5248			}
5249		}
5250
5251		if (i == 0 && base == 16)
5252			*end-- = '0';
5253
5254		if (base == 16)
5255			*end-- = 'x';
5256
5257		if (i == 0 || base == 8 || base == 16)
5258			*end-- = '0';
5259
5260		if (i < 0 && base == 10)
5261			*end-- = '-';
5262
5263		regs[rd] = (uintptr_t)end + 1;
5264		mstate->dtms_scratch_ptr += size;
5265		break;
5266	}
5267
5268	case DIF_SUBR_HTONS:
5269	case DIF_SUBR_NTOHS:
5270#if BYTE_ORDER == BIG_ENDIAN
5271		regs[rd] = (uint16_t)tupregs[0].dttk_value;
5272#else
5273		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
5274#endif
5275		break;
5276
5277
5278	case DIF_SUBR_HTONL:
5279	case DIF_SUBR_NTOHL:
5280#if BYTE_ORDER == BIG_ENDIAN
5281		regs[rd] = (uint32_t)tupregs[0].dttk_value;
5282#else
5283		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5284#endif
5285		break;
5286
5287
5288	case DIF_SUBR_HTONLL:
5289	case DIF_SUBR_NTOHLL:
5290#if BYTE_ORDER == BIG_ENDIAN
5291		regs[rd] = (uint64_t)tupregs[0].dttk_value;
5292#else
5293		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5294#endif
5295		break;
5296
5297
5298	case DIF_SUBR_DIRNAME:
5299	case DIF_SUBR_BASENAME: {
5300		char *dest = (char *)mstate->dtms_scratch_ptr;
5301		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5302		uintptr_t src = tupregs[0].dttk_value;
5303		int i, j, len = dtrace_strlen((char *)src, size);
5304		int lastbase = -1, firstbase = -1, lastdir = -1;
5305		int start, end;
5306
5307		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5308			regs[rd] = 0;
5309			break;
5310		}
5311
5312		if (!DTRACE_INSCRATCH(mstate, size)) {
5313			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5314			regs[rd] = 0;
5315			break;
5316		}
5317
5318		/*
5319		 * The basename and dirname for a zero-length string is
5320		 * defined to be "."
5321		 */
5322		if (len == 0) {
5323			len = 1;
5324			src = (uintptr_t)".";
5325		}
5326
5327		/*
5328		 * Start from the back of the string, moving back toward the
5329		 * front until we see a character that isn't a slash.  That
5330		 * character is the last character in the basename.
5331		 */
5332		for (i = len - 1; i >= 0; i--) {
5333			if (dtrace_load8(src + i) != '/')
5334				break;
5335		}
5336
5337		if (i >= 0)
5338			lastbase = i;
5339
5340		/*
5341		 * Starting from the last character in the basename, move
5342		 * towards the front until we find a slash.  The character
5343		 * that we processed immediately before that is the first
5344		 * character in the basename.
5345		 */
5346		for (; i >= 0; i--) {
5347			if (dtrace_load8(src + i) == '/')
5348				break;
5349		}
5350
5351		if (i >= 0)
5352			firstbase = i + 1;
5353
5354		/*
5355		 * Now keep going until we find a non-slash character.  That
5356		 * character is the last character in the dirname.
5357		 */
5358		for (; i >= 0; i--) {
5359			if (dtrace_load8(src + i) != '/')
5360				break;
5361		}
5362
5363		if (i >= 0)
5364			lastdir = i;
5365
5366		ASSERT(!(lastbase == -1 && firstbase != -1));
5367		ASSERT(!(firstbase == -1 && lastdir != -1));
5368
5369		if (lastbase == -1) {
5370			/*
5371			 * We didn't find a non-slash character.  We know that
5372			 * the length is non-zero, so the whole string must be
5373			 * slashes.  In either the dirname or the basename
5374			 * case, we return '/'.
5375			 */
5376			ASSERT(firstbase == -1);
5377			firstbase = lastbase = lastdir = 0;
5378		}
5379
5380		if (firstbase == -1) {
5381			/*
5382			 * The entire string consists only of a basename
5383			 * component.  If we're looking for dirname, we need
5384			 * to change our string to be just "."; if we're
5385			 * looking for a basename, we'll just set the first
5386			 * character of the basename to be 0.
5387			 */
5388			if (subr == DIF_SUBR_DIRNAME) {
5389				ASSERT(lastdir == -1);
5390				src = (uintptr_t)".";
5391				lastdir = 0;
5392			} else {
5393				firstbase = 0;
5394			}
5395		}
5396
5397		if (subr == DIF_SUBR_DIRNAME) {
5398			if (lastdir == -1) {
5399				/*
5400				 * We know that we have a slash in the name --
5401				 * or lastdir would be set to 0, above.  And
5402				 * because lastdir is -1, we know that this
5403				 * slash must be the first character.  (That
5404				 * is, the full string must be of the form
5405				 * "/basename".)  In this case, the last
5406				 * character of the directory name is 0.
5407				 */
5408				lastdir = 0;
5409			}
5410
5411			start = 0;
5412			end = lastdir;
5413		} else {
5414			ASSERT(subr == DIF_SUBR_BASENAME);
5415			ASSERT(firstbase != -1 && lastbase != -1);
5416			start = firstbase;
5417			end = lastbase;
5418		}
5419
5420		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5421			dest[j] = dtrace_load8(src + i);
5422
5423		dest[j] = '\0';
5424		regs[rd] = (uintptr_t)dest;
5425		mstate->dtms_scratch_ptr += size;
5426		break;
5427	}
5428
5429	case DIF_SUBR_GETF: {
5430		uintptr_t fd = tupregs[0].dttk_value;
5431		struct filedesc *fdp;
5432		file_t *fp;
5433
5434		if (!dtrace_priv_proc(state)) {
5435			regs[rd] = 0;
5436			break;
5437		}
5438		fdp = curproc->p_fd;
5439		FILEDESC_SLOCK(fdp);
5440		fp = fget_locked(fdp, fd);
5441		mstate->dtms_getf = fp;
5442		regs[rd] = (uintptr_t)fp;
5443		FILEDESC_SUNLOCK(fdp);
5444		break;
5445	}
5446
5447	case DIF_SUBR_CLEANPATH: {
5448		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5449		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5450		uintptr_t src = tupregs[0].dttk_value;
5451		int i = 0, j = 0;
5452#if defined(sun)
5453		zone_t *z;
5454#endif
5455
5456		if (!dtrace_strcanload(src, size, mstate, vstate)) {
5457			regs[rd] = 0;
5458			break;
5459		}
5460
5461		if (!DTRACE_INSCRATCH(mstate, size)) {
5462			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5463			regs[rd] = 0;
5464			break;
5465		}
5466
5467		/*
5468		 * Move forward, loading each character.
5469		 */
5470		do {
5471			c = dtrace_load8(src + i++);
5472next:
5473			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
5474				break;
5475
5476			if (c != '/') {
5477				dest[j++] = c;
5478				continue;
5479			}
5480
5481			c = dtrace_load8(src + i++);
5482
5483			if (c == '/') {
5484				/*
5485				 * We have two slashes -- we can just advance
5486				 * to the next character.
5487				 */
5488				goto next;
5489			}
5490
5491			if (c != '.') {
5492				/*
5493				 * This is not "." and it's not ".." -- we can
5494				 * just store the "/" and this character and
5495				 * drive on.
5496				 */
5497				dest[j++] = '/';
5498				dest[j++] = c;
5499				continue;
5500			}
5501
5502			c = dtrace_load8(src + i++);
5503
5504			if (c == '/') {
5505				/*
5506				 * This is a "/./" component.  We're not going
5507				 * to store anything in the destination buffer;
5508				 * we're just going to go to the next component.
5509				 */
5510				goto next;
5511			}
5512
5513			if (c != '.') {
5514				/*
5515				 * This is not ".." -- we can just store the
5516				 * "/." and this character and continue
5517				 * processing.
5518				 */
5519				dest[j++] = '/';
5520				dest[j++] = '.';
5521				dest[j++] = c;
5522				continue;
5523			}
5524
5525			c = dtrace_load8(src + i++);
5526
5527			if (c != '/' && c != '\0') {
5528				/*
5529				 * This is not ".." -- it's "..[mumble]".
5530				 * We'll store the "/.." and this character
5531				 * and continue processing.
5532				 */
5533				dest[j++] = '/';
5534				dest[j++] = '.';
5535				dest[j++] = '.';
5536				dest[j++] = c;
5537				continue;
5538			}
5539
5540			/*
5541			 * This is "/../" or "/..\0".  We need to back up
5542			 * our destination pointer until we find a "/".
5543			 */
5544			i--;
5545			while (j != 0 && dest[--j] != '/')
5546				continue;
5547
5548			if (c == '\0')
5549				dest[++j] = '/';
5550		} while (c != '\0');
5551
5552		dest[j] = '\0';
5553
5554#if defined(sun)
5555		if (mstate->dtms_getf != NULL &&
5556		    !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5557		    (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5558			/*
5559			 * If we've done a getf() as a part of this ECB and we
5560			 * don't have kernel access (and we're not in the global
5561			 * zone), check if the path we cleaned up begins with
5562			 * the zone's root path, and trim it off if so.  Note
5563			 * that this is an output cleanliness issue, not a
5564			 * security issue: knowing one's zone root path does
5565			 * not enable privilege escalation.
5566			 */
5567			if (strstr(dest, z->zone_rootpath) == dest)
5568				dest += strlen(z->zone_rootpath) - 1;
5569		}
5570#endif
5571
5572		regs[rd] = (uintptr_t)dest;
5573		mstate->dtms_scratch_ptr += size;
5574		break;
5575	}
5576
5577	case DIF_SUBR_INET_NTOA:
5578	case DIF_SUBR_INET_NTOA6:
5579	case DIF_SUBR_INET_NTOP: {
5580		size_t size;
5581		int af, argi, i;
5582		char *base, *end;
5583
5584		if (subr == DIF_SUBR_INET_NTOP) {
5585			af = (int)tupregs[0].dttk_value;
5586			argi = 1;
5587		} else {
5588			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5589			argi = 0;
5590		}
5591
5592		if (af == AF_INET) {
5593			ipaddr_t ip4;
5594			uint8_t *ptr8, val;
5595
5596			/*
5597			 * Safely load the IPv4 address.
5598			 */
5599			ip4 = dtrace_load32(tupregs[argi].dttk_value);
5600
5601			/*
5602			 * Check an IPv4 string will fit in scratch.
5603			 */
5604			size = INET_ADDRSTRLEN;
5605			if (!DTRACE_INSCRATCH(mstate, size)) {
5606				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5607				regs[rd] = 0;
5608				break;
5609			}
5610			base = (char *)mstate->dtms_scratch_ptr;
5611			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5612
5613			/*
5614			 * Stringify as a dotted decimal quad.
5615			 */
5616			*end-- = '\0';
5617			ptr8 = (uint8_t *)&ip4;
5618			for (i = 3; i >= 0; i--) {
5619				val = ptr8[i];
5620
5621				if (val == 0) {
5622					*end-- = '0';
5623				} else {
5624					for (; val; val /= 10) {
5625						*end-- = '0' + (val % 10);
5626					}
5627				}
5628
5629				if (i > 0)
5630					*end-- = '.';
5631			}
5632			ASSERT(end + 1 >= base);
5633
5634		} else if (af == AF_INET6) {
5635			struct in6_addr ip6;
5636			int firstzero, tryzero, numzero, v6end;
5637			uint16_t val;
5638			const char digits[] = "0123456789abcdef";
5639
5640			/*
5641			 * Stringify using RFC 1884 convention 2 - 16 bit
5642			 * hexadecimal values with a zero-run compression.
5643			 * Lower case hexadecimal digits are used.
5644			 * 	eg, fe80::214:4fff:fe0b:76c8.
5645			 * The IPv4 embedded form is returned for inet_ntop,
5646			 * just the IPv4 string is returned for inet_ntoa6.
5647			 */
5648
5649			/*
5650			 * Safely load the IPv6 address.
5651			 */
5652			dtrace_bcopy(
5653			    (void *)(uintptr_t)tupregs[argi].dttk_value,
5654			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5655
5656			/*
5657			 * Check an IPv6 string will fit in scratch.
5658			 */
5659			size = INET6_ADDRSTRLEN;
5660			if (!DTRACE_INSCRATCH(mstate, size)) {
5661				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5662				regs[rd] = 0;
5663				break;
5664			}
5665			base = (char *)mstate->dtms_scratch_ptr;
5666			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5667			*end-- = '\0';
5668
5669			/*
5670			 * Find the longest run of 16 bit zero values
5671			 * for the single allowed zero compression - "::".
5672			 */
5673			firstzero = -1;
5674			tryzero = -1;
5675			numzero = 1;
5676			for (i = 0; i < sizeof (struct in6_addr); i++) {
5677#if defined(sun)
5678				if (ip6._S6_un._S6_u8[i] == 0 &&
5679#else
5680				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5681#endif
5682				    tryzero == -1 && i % 2 == 0) {
5683					tryzero = i;
5684					continue;
5685				}
5686
5687				if (tryzero != -1 &&
5688#if defined(sun)
5689				    (ip6._S6_un._S6_u8[i] != 0 ||
5690#else
5691				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
5692#endif
5693				    i == sizeof (struct in6_addr) - 1)) {
5694
5695					if (i - tryzero <= numzero) {
5696						tryzero = -1;
5697						continue;
5698					}
5699
5700					firstzero = tryzero;
5701					numzero = i - i % 2 - tryzero;
5702					tryzero = -1;
5703
5704#if defined(sun)
5705					if (ip6._S6_un._S6_u8[i] == 0 &&
5706#else
5707					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5708#endif
5709					    i == sizeof (struct in6_addr) - 1)
5710						numzero += 2;
5711				}
5712			}
5713			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5714
5715			/*
5716			 * Check for an IPv4 embedded address.
5717			 */
5718			v6end = sizeof (struct in6_addr) - 2;
5719			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5720			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
5721				for (i = sizeof (struct in6_addr) - 1;
5722				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
5723					ASSERT(end >= base);
5724
5725#if defined(sun)
5726					val = ip6._S6_un._S6_u8[i];
5727#else
5728					val = ip6.__u6_addr.__u6_addr8[i];
5729#endif
5730
5731					if (val == 0) {
5732						*end-- = '0';
5733					} else {
5734						for (; val; val /= 10) {
5735							*end-- = '0' + val % 10;
5736						}
5737					}
5738
5739					if (i > DTRACE_V4MAPPED_OFFSET)
5740						*end-- = '.';
5741				}
5742
5743				if (subr == DIF_SUBR_INET_NTOA6)
5744					goto inetout;
5745
5746				/*
5747				 * Set v6end to skip the IPv4 address that
5748				 * we have already stringified.
5749				 */
5750				v6end = 10;
5751			}
5752
5753			/*
5754			 * Build the IPv6 string by working through the
5755			 * address in reverse.
5756			 */
5757			for (i = v6end; i >= 0; i -= 2) {
5758				ASSERT(end >= base);
5759
5760				if (i == firstzero + numzero - 2) {
5761					*end-- = ':';
5762					*end-- = ':';
5763					i -= numzero - 2;
5764					continue;
5765				}
5766
5767				if (i < 14 && i != firstzero - 2)
5768					*end-- = ':';
5769
5770#if defined(sun)
5771				val = (ip6._S6_un._S6_u8[i] << 8) +
5772				    ip6._S6_un._S6_u8[i + 1];
5773#else
5774				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
5775				    ip6.__u6_addr.__u6_addr8[i + 1];
5776#endif
5777
5778				if (val == 0) {
5779					*end-- = '0';
5780				} else {
5781					for (; val; val /= 16) {
5782						*end-- = digits[val % 16];
5783					}
5784				}
5785			}
5786			ASSERT(end + 1 >= base);
5787
5788		} else {
5789			/*
5790			 * The user didn't use AH_INET or AH_INET6.
5791			 */
5792			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5793			regs[rd] = 0;
5794			break;
5795		}
5796
5797inetout:	regs[rd] = (uintptr_t)end + 1;
5798		mstate->dtms_scratch_ptr += size;
5799		break;
5800	}
5801
5802	case DIF_SUBR_MEMREF: {
5803		uintptr_t size = 2 * sizeof(uintptr_t);
5804		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
5805		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
5806
5807		/* address and length */
5808		memref[0] = tupregs[0].dttk_value;
5809		memref[1] = tupregs[1].dttk_value;
5810
5811		regs[rd] = (uintptr_t) memref;
5812		mstate->dtms_scratch_ptr += scratch_size;
5813		break;
5814	}
5815
5816#if !defined(sun)
5817	case DIF_SUBR_MEMSTR: {
5818		char *str = (char *)mstate->dtms_scratch_ptr;
5819		uintptr_t mem = tupregs[0].dttk_value;
5820		char c = tupregs[1].dttk_value;
5821		size_t size = tupregs[2].dttk_value;
5822		uint8_t n;
5823		int i;
5824
5825		regs[rd] = 0;
5826
5827		if (size == 0)
5828			break;
5829
5830		if (!dtrace_canload(mem, size - 1, mstate, vstate))
5831			break;
5832
5833		if (!DTRACE_INSCRATCH(mstate, size)) {
5834			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5835			break;
5836		}
5837
5838		if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) {
5839			*flags |= CPU_DTRACE_ILLOP;
5840			break;
5841		}
5842
5843		for (i = 0; i < size - 1; i++) {
5844			n = dtrace_load8(mem++);
5845			str[i] = (n == 0) ? c : n;
5846		}
5847		str[size - 1] = 0;
5848
5849		regs[rd] = (uintptr_t)str;
5850		mstate->dtms_scratch_ptr += size;
5851		break;
5852	}
5853#endif
5854
5855	case DIF_SUBR_TYPEREF: {
5856		uintptr_t size = 4 * sizeof(uintptr_t);
5857		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
5858		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
5859
5860		/* address, num_elements, type_str, type_len */
5861		typeref[0] = tupregs[0].dttk_value;
5862		typeref[1] = tupregs[1].dttk_value;
5863		typeref[2] = tupregs[2].dttk_value;
5864		typeref[3] = tupregs[3].dttk_value;
5865
5866		regs[rd] = (uintptr_t) typeref;
5867		mstate->dtms_scratch_ptr += scratch_size;
5868		break;
5869	}
5870	}
5871}
5872
5873/*
5874 * Emulate the execution of DTrace IR instructions specified by the given
5875 * DIF object.  This function is deliberately void of assertions as all of
5876 * the necessary checks are handled by a call to dtrace_difo_validate().
5877 */
5878static uint64_t
5879dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
5880    dtrace_vstate_t *vstate, dtrace_state_t *state)
5881{
5882	const dif_instr_t *text = difo->dtdo_buf;
5883	const uint_t textlen = difo->dtdo_len;
5884	const char *strtab = difo->dtdo_strtab;
5885	const uint64_t *inttab = difo->dtdo_inttab;
5886
5887	uint64_t rval = 0;
5888	dtrace_statvar_t *svar;
5889	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
5890	dtrace_difv_t *v;
5891	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5892	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
5893
5894	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
5895	uint64_t regs[DIF_DIR_NREGS];
5896	uint64_t *tmp;
5897
5898	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
5899	int64_t cc_r;
5900	uint_t pc = 0, id, opc = 0;
5901	uint8_t ttop = 0;
5902	dif_instr_t instr;
5903	uint_t r1, r2, rd;
5904
5905	/*
5906	 * We stash the current DIF object into the machine state: we need it
5907	 * for subsequent access checking.
5908	 */
5909	mstate->dtms_difo = difo;
5910
5911	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
5912
5913	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
5914		opc = pc;
5915
5916		instr = text[pc++];
5917		r1 = DIF_INSTR_R1(instr);
5918		r2 = DIF_INSTR_R2(instr);
5919		rd = DIF_INSTR_RD(instr);
5920
5921		switch (DIF_INSTR_OP(instr)) {
5922		case DIF_OP_OR:
5923			regs[rd] = regs[r1] | regs[r2];
5924			break;
5925		case DIF_OP_XOR:
5926			regs[rd] = regs[r1] ^ regs[r2];
5927			break;
5928		case DIF_OP_AND:
5929			regs[rd] = regs[r1] & regs[r2];
5930			break;
5931		case DIF_OP_SLL:
5932			regs[rd] = regs[r1] << regs[r2];
5933			break;
5934		case DIF_OP_SRL:
5935			regs[rd] = regs[r1] >> regs[r2];
5936			break;
5937		case DIF_OP_SUB:
5938			regs[rd] = regs[r1] - regs[r2];
5939			break;
5940		case DIF_OP_ADD:
5941			regs[rd] = regs[r1] + regs[r2];
5942			break;
5943		case DIF_OP_MUL:
5944			regs[rd] = regs[r1] * regs[r2];
5945			break;
5946		case DIF_OP_SDIV:
5947			if (regs[r2] == 0) {
5948				regs[rd] = 0;
5949				*flags |= CPU_DTRACE_DIVZERO;
5950			} else {
5951				regs[rd] = (int64_t)regs[r1] /
5952				    (int64_t)regs[r2];
5953			}
5954			break;
5955
5956		case DIF_OP_UDIV:
5957			if (regs[r2] == 0) {
5958				regs[rd] = 0;
5959				*flags |= CPU_DTRACE_DIVZERO;
5960			} else {
5961				regs[rd] = regs[r1] / regs[r2];
5962			}
5963			break;
5964
5965		case DIF_OP_SREM:
5966			if (regs[r2] == 0) {
5967				regs[rd] = 0;
5968				*flags |= CPU_DTRACE_DIVZERO;
5969			} else {
5970				regs[rd] = (int64_t)regs[r1] %
5971				    (int64_t)regs[r2];
5972			}
5973			break;
5974
5975		case DIF_OP_UREM:
5976			if (regs[r2] == 0) {
5977				regs[rd] = 0;
5978				*flags |= CPU_DTRACE_DIVZERO;
5979			} else {
5980				regs[rd] = regs[r1] % regs[r2];
5981			}
5982			break;
5983
5984		case DIF_OP_NOT:
5985			regs[rd] = ~regs[r1];
5986			break;
5987		case DIF_OP_MOV:
5988			regs[rd] = regs[r1];
5989			break;
5990		case DIF_OP_CMP:
5991			cc_r = regs[r1] - regs[r2];
5992			cc_n = cc_r < 0;
5993			cc_z = cc_r == 0;
5994			cc_v = 0;
5995			cc_c = regs[r1] < regs[r2];
5996			break;
5997		case DIF_OP_TST:
5998			cc_n = cc_v = cc_c = 0;
5999			cc_z = regs[r1] == 0;
6000			break;
6001		case DIF_OP_BA:
6002			pc = DIF_INSTR_LABEL(instr);
6003			break;
6004		case DIF_OP_BE:
6005			if (cc_z)
6006				pc = DIF_INSTR_LABEL(instr);
6007			break;
6008		case DIF_OP_BNE:
6009			if (cc_z == 0)
6010				pc = DIF_INSTR_LABEL(instr);
6011			break;
6012		case DIF_OP_BG:
6013			if ((cc_z | (cc_n ^ cc_v)) == 0)
6014				pc = DIF_INSTR_LABEL(instr);
6015			break;
6016		case DIF_OP_BGU:
6017			if ((cc_c | cc_z) == 0)
6018				pc = DIF_INSTR_LABEL(instr);
6019			break;
6020		case DIF_OP_BGE:
6021			if ((cc_n ^ cc_v) == 0)
6022				pc = DIF_INSTR_LABEL(instr);
6023			break;
6024		case DIF_OP_BGEU:
6025			if (cc_c == 0)
6026				pc = DIF_INSTR_LABEL(instr);
6027			break;
6028		case DIF_OP_BL:
6029			if (cc_n ^ cc_v)
6030				pc = DIF_INSTR_LABEL(instr);
6031			break;
6032		case DIF_OP_BLU:
6033			if (cc_c)
6034				pc = DIF_INSTR_LABEL(instr);
6035			break;
6036		case DIF_OP_BLE:
6037			if (cc_z | (cc_n ^ cc_v))
6038				pc = DIF_INSTR_LABEL(instr);
6039			break;
6040		case DIF_OP_BLEU:
6041			if (cc_c | cc_z)
6042				pc = DIF_INSTR_LABEL(instr);
6043			break;
6044		case DIF_OP_RLDSB:
6045			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6046				break;
6047			/*FALLTHROUGH*/
6048		case DIF_OP_LDSB:
6049			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
6050			break;
6051		case DIF_OP_RLDSH:
6052			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6053				break;
6054			/*FALLTHROUGH*/
6055		case DIF_OP_LDSH:
6056			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
6057			break;
6058		case DIF_OP_RLDSW:
6059			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6060				break;
6061			/*FALLTHROUGH*/
6062		case DIF_OP_LDSW:
6063			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
6064			break;
6065		case DIF_OP_RLDUB:
6066			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6067				break;
6068			/*FALLTHROUGH*/
6069		case DIF_OP_LDUB:
6070			regs[rd] = dtrace_load8(regs[r1]);
6071			break;
6072		case DIF_OP_RLDUH:
6073			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6074				break;
6075			/*FALLTHROUGH*/
6076		case DIF_OP_LDUH:
6077			regs[rd] = dtrace_load16(regs[r1]);
6078			break;
6079		case DIF_OP_RLDUW:
6080			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6081				break;
6082			/*FALLTHROUGH*/
6083		case DIF_OP_LDUW:
6084			regs[rd] = dtrace_load32(regs[r1]);
6085			break;
6086		case DIF_OP_RLDX:
6087			if (!dtrace_canload(regs[r1], 8, mstate, vstate))
6088				break;
6089			/*FALLTHROUGH*/
6090		case DIF_OP_LDX:
6091			regs[rd] = dtrace_load64(regs[r1]);
6092			break;
6093		case DIF_OP_ULDSB:
6094			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6095			regs[rd] = (int8_t)
6096			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6097			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6098			break;
6099		case DIF_OP_ULDSH:
6100			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6101			regs[rd] = (int16_t)
6102			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6103			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6104			break;
6105		case DIF_OP_ULDSW:
6106			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6107			regs[rd] = (int32_t)
6108			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6109			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6110			break;
6111		case DIF_OP_ULDUB:
6112			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6113			regs[rd] =
6114			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6115			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6116			break;
6117		case DIF_OP_ULDUH:
6118			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6119			regs[rd] =
6120			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6121			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6122			break;
6123		case DIF_OP_ULDUW:
6124			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6125			regs[rd] =
6126			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6127			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6128			break;
6129		case DIF_OP_ULDX:
6130			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6131			regs[rd] =
6132			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
6133			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6134			break;
6135		case DIF_OP_RET:
6136			rval = regs[rd];
6137			pc = textlen;
6138			break;
6139		case DIF_OP_NOP:
6140			break;
6141		case DIF_OP_SETX:
6142			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
6143			break;
6144		case DIF_OP_SETS:
6145			regs[rd] = (uint64_t)(uintptr_t)
6146			    (strtab + DIF_INSTR_STRING(instr));
6147			break;
6148		case DIF_OP_SCMP: {
6149			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
6150			uintptr_t s1 = regs[r1];
6151			uintptr_t s2 = regs[r2];
6152
6153			if (s1 != 0 &&
6154			    !dtrace_strcanload(s1, sz, mstate, vstate))
6155				break;
6156			if (s2 != 0 &&
6157			    !dtrace_strcanload(s2, sz, mstate, vstate))
6158				break;
6159
6160			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
6161
6162			cc_n = cc_r < 0;
6163			cc_z = cc_r == 0;
6164			cc_v = cc_c = 0;
6165			break;
6166		}
6167		case DIF_OP_LDGA:
6168			regs[rd] = dtrace_dif_variable(mstate, state,
6169			    r1, regs[r2]);
6170			break;
6171		case DIF_OP_LDGS:
6172			id = DIF_INSTR_VAR(instr);
6173
6174			if (id >= DIF_VAR_OTHER_UBASE) {
6175				uintptr_t a;
6176
6177				id -= DIF_VAR_OTHER_UBASE;
6178				svar = vstate->dtvs_globals[id];
6179				ASSERT(svar != NULL);
6180				v = &svar->dtsv_var;
6181
6182				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
6183					regs[rd] = svar->dtsv_data;
6184					break;
6185				}
6186
6187				a = (uintptr_t)svar->dtsv_data;
6188
6189				if (*(uint8_t *)a == UINT8_MAX) {
6190					/*
6191					 * If the 0th byte is set to UINT8_MAX
6192					 * then this is to be treated as a
6193					 * reference to a NULL variable.
6194					 */
6195					regs[rd] = 0;
6196				} else {
6197					regs[rd] = a + sizeof (uint64_t);
6198				}
6199
6200				break;
6201			}
6202
6203			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
6204			break;
6205
6206		case DIF_OP_STGS:
6207			id = DIF_INSTR_VAR(instr);
6208
6209			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6210			id -= DIF_VAR_OTHER_UBASE;
6211
6212			svar = vstate->dtvs_globals[id];
6213			ASSERT(svar != NULL);
6214			v = &svar->dtsv_var;
6215
6216			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6217				uintptr_t a = (uintptr_t)svar->dtsv_data;
6218
6219				ASSERT(a != 0);
6220				ASSERT(svar->dtsv_size != 0);
6221
6222				if (regs[rd] == 0) {
6223					*(uint8_t *)a = UINT8_MAX;
6224					break;
6225				} else {
6226					*(uint8_t *)a = 0;
6227					a += sizeof (uint64_t);
6228				}
6229				if (!dtrace_vcanload(
6230				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6231				    mstate, vstate))
6232					break;
6233
6234				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6235				    (void *)a, &v->dtdv_type);
6236				break;
6237			}
6238
6239			svar->dtsv_data = regs[rd];
6240			break;
6241
6242		case DIF_OP_LDTA:
6243			/*
6244			 * There are no DTrace built-in thread-local arrays at
6245			 * present.  This opcode is saved for future work.
6246			 */
6247			*flags |= CPU_DTRACE_ILLOP;
6248			regs[rd] = 0;
6249			break;
6250
6251		case DIF_OP_LDLS:
6252			id = DIF_INSTR_VAR(instr);
6253
6254			if (id < DIF_VAR_OTHER_UBASE) {
6255				/*
6256				 * For now, this has no meaning.
6257				 */
6258				regs[rd] = 0;
6259				break;
6260			}
6261
6262			id -= DIF_VAR_OTHER_UBASE;
6263
6264			ASSERT(id < vstate->dtvs_nlocals);
6265			ASSERT(vstate->dtvs_locals != NULL);
6266
6267			svar = vstate->dtvs_locals[id];
6268			ASSERT(svar != NULL);
6269			v = &svar->dtsv_var;
6270
6271			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6272				uintptr_t a = (uintptr_t)svar->dtsv_data;
6273				size_t sz = v->dtdv_type.dtdt_size;
6274
6275				sz += sizeof (uint64_t);
6276				ASSERT(svar->dtsv_size == NCPU * sz);
6277				a += curcpu * sz;
6278
6279				if (*(uint8_t *)a == UINT8_MAX) {
6280					/*
6281					 * If the 0th byte is set to UINT8_MAX
6282					 * then this is to be treated as a
6283					 * reference to a NULL variable.
6284					 */
6285					regs[rd] = 0;
6286				} else {
6287					regs[rd] = a + sizeof (uint64_t);
6288				}
6289
6290				break;
6291			}
6292
6293			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6294			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6295			regs[rd] = tmp[curcpu];
6296			break;
6297
6298		case DIF_OP_STLS:
6299			id = DIF_INSTR_VAR(instr);
6300
6301			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6302			id -= DIF_VAR_OTHER_UBASE;
6303			ASSERT(id < vstate->dtvs_nlocals);
6304
6305			ASSERT(vstate->dtvs_locals != NULL);
6306			svar = vstate->dtvs_locals[id];
6307			ASSERT(svar != NULL);
6308			v = &svar->dtsv_var;
6309
6310			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6311				uintptr_t a = (uintptr_t)svar->dtsv_data;
6312				size_t sz = v->dtdv_type.dtdt_size;
6313
6314				sz += sizeof (uint64_t);
6315				ASSERT(svar->dtsv_size == NCPU * sz);
6316				a += curcpu * sz;
6317
6318				if (regs[rd] == 0) {
6319					*(uint8_t *)a = UINT8_MAX;
6320					break;
6321				} else {
6322					*(uint8_t *)a = 0;
6323					a += sizeof (uint64_t);
6324				}
6325
6326				if (!dtrace_vcanload(
6327				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6328				    mstate, vstate))
6329					break;
6330
6331				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6332				    (void *)a, &v->dtdv_type);
6333				break;
6334			}
6335
6336			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6337			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6338			tmp[curcpu] = regs[rd];
6339			break;
6340
6341		case DIF_OP_LDTS: {
6342			dtrace_dynvar_t *dvar;
6343			dtrace_key_t *key;
6344
6345			id = DIF_INSTR_VAR(instr);
6346			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6347			id -= DIF_VAR_OTHER_UBASE;
6348			v = &vstate->dtvs_tlocals[id];
6349
6350			key = &tupregs[DIF_DTR_NREGS];
6351			key[0].dttk_value = (uint64_t)id;
6352			key[0].dttk_size = 0;
6353			DTRACE_TLS_THRKEY(key[1].dttk_value);
6354			key[1].dttk_size = 0;
6355
6356			dvar = dtrace_dynvar(dstate, 2, key,
6357			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6358			    mstate, vstate);
6359
6360			if (dvar == NULL) {
6361				regs[rd] = 0;
6362				break;
6363			}
6364
6365			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6366				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6367			} else {
6368				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6369			}
6370
6371			break;
6372		}
6373
6374		case DIF_OP_STTS: {
6375			dtrace_dynvar_t *dvar;
6376			dtrace_key_t *key;
6377
6378			id = DIF_INSTR_VAR(instr);
6379			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6380			id -= DIF_VAR_OTHER_UBASE;
6381
6382			key = &tupregs[DIF_DTR_NREGS];
6383			key[0].dttk_value = (uint64_t)id;
6384			key[0].dttk_size = 0;
6385			DTRACE_TLS_THRKEY(key[1].dttk_value);
6386			key[1].dttk_size = 0;
6387			v = &vstate->dtvs_tlocals[id];
6388
6389			dvar = dtrace_dynvar(dstate, 2, key,
6390			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6391			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6392			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6393			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6394
6395			/*
6396			 * Given that we're storing to thread-local data,
6397			 * we need to flush our predicate cache.
6398			 */
6399			curthread->t_predcache = 0;
6400
6401			if (dvar == NULL)
6402				break;
6403
6404			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6405				if (!dtrace_vcanload(
6406				    (void *)(uintptr_t)regs[rd],
6407				    &v->dtdv_type, mstate, vstate))
6408					break;
6409
6410				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6411				    dvar->dtdv_data, &v->dtdv_type);
6412			} else {
6413				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6414			}
6415
6416			break;
6417		}
6418
6419		case DIF_OP_SRA:
6420			regs[rd] = (int64_t)regs[r1] >> regs[r2];
6421			break;
6422
6423		case DIF_OP_CALL:
6424			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6425			    regs, tupregs, ttop, mstate, state);
6426			break;
6427
6428		case DIF_OP_PUSHTR:
6429			if (ttop == DIF_DTR_NREGS) {
6430				*flags |= CPU_DTRACE_TUPOFLOW;
6431				break;
6432			}
6433
6434			if (r1 == DIF_TYPE_STRING) {
6435				/*
6436				 * If this is a string type and the size is 0,
6437				 * we'll use the system-wide default string
6438				 * size.  Note that we are _not_ looking at
6439				 * the value of the DTRACEOPT_STRSIZE option;
6440				 * had this been set, we would expect to have
6441				 * a non-zero size value in the "pushtr".
6442				 */
6443				tupregs[ttop].dttk_size =
6444				    dtrace_strlen((char *)(uintptr_t)regs[rd],
6445				    regs[r2] ? regs[r2] :
6446				    dtrace_strsize_default) + 1;
6447			} else {
6448				tupregs[ttop].dttk_size = regs[r2];
6449			}
6450
6451			tupregs[ttop++].dttk_value = regs[rd];
6452			break;
6453
6454		case DIF_OP_PUSHTV:
6455			if (ttop == DIF_DTR_NREGS) {
6456				*flags |= CPU_DTRACE_TUPOFLOW;
6457				break;
6458			}
6459
6460			tupregs[ttop].dttk_value = regs[rd];
6461			tupregs[ttop++].dttk_size = 0;
6462			break;
6463
6464		case DIF_OP_POPTS:
6465			if (ttop != 0)
6466				ttop--;
6467			break;
6468
6469		case DIF_OP_FLUSHTS:
6470			ttop = 0;
6471			break;
6472
6473		case DIF_OP_LDGAA:
6474		case DIF_OP_LDTAA: {
6475			dtrace_dynvar_t *dvar;
6476			dtrace_key_t *key = tupregs;
6477			uint_t nkeys = ttop;
6478
6479			id = DIF_INSTR_VAR(instr);
6480			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6481			id -= DIF_VAR_OTHER_UBASE;
6482
6483			key[nkeys].dttk_value = (uint64_t)id;
6484			key[nkeys++].dttk_size = 0;
6485
6486			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6487				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6488				key[nkeys++].dttk_size = 0;
6489				v = &vstate->dtvs_tlocals[id];
6490			} else {
6491				v = &vstate->dtvs_globals[id]->dtsv_var;
6492			}
6493
6494			dvar = dtrace_dynvar(dstate, nkeys, key,
6495			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6496			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6497			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6498
6499			if (dvar == NULL) {
6500				regs[rd] = 0;
6501				break;
6502			}
6503
6504			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6505				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6506			} else {
6507				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6508			}
6509
6510			break;
6511		}
6512
6513		case DIF_OP_STGAA:
6514		case DIF_OP_STTAA: {
6515			dtrace_dynvar_t *dvar;
6516			dtrace_key_t *key = tupregs;
6517			uint_t nkeys = ttop;
6518
6519			id = DIF_INSTR_VAR(instr);
6520			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6521			id -= DIF_VAR_OTHER_UBASE;
6522
6523			key[nkeys].dttk_value = (uint64_t)id;
6524			key[nkeys++].dttk_size = 0;
6525
6526			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6527				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6528				key[nkeys++].dttk_size = 0;
6529				v = &vstate->dtvs_tlocals[id];
6530			} else {
6531				v = &vstate->dtvs_globals[id]->dtsv_var;
6532			}
6533
6534			dvar = dtrace_dynvar(dstate, nkeys, key,
6535			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6536			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6537			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6538			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6539
6540			if (dvar == NULL)
6541				break;
6542
6543			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6544				if (!dtrace_vcanload(
6545				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6546				    mstate, vstate))
6547					break;
6548
6549				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6550				    dvar->dtdv_data, &v->dtdv_type);
6551			} else {
6552				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6553			}
6554
6555			break;
6556		}
6557
6558		case DIF_OP_ALLOCS: {
6559			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6560			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6561
6562			/*
6563			 * Rounding up the user allocation size could have
6564			 * overflowed large, bogus allocations (like -1ULL) to
6565			 * 0.
6566			 */
6567			if (size < regs[r1] ||
6568			    !DTRACE_INSCRATCH(mstate, size)) {
6569				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6570				regs[rd] = 0;
6571				break;
6572			}
6573
6574			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6575			mstate->dtms_scratch_ptr += size;
6576			regs[rd] = ptr;
6577			break;
6578		}
6579
6580		case DIF_OP_COPYS:
6581			if (!dtrace_canstore(regs[rd], regs[r2],
6582			    mstate, vstate)) {
6583				*flags |= CPU_DTRACE_BADADDR;
6584				*illval = regs[rd];
6585				break;
6586			}
6587
6588			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6589				break;
6590
6591			dtrace_bcopy((void *)(uintptr_t)regs[r1],
6592			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6593			break;
6594
6595		case DIF_OP_STB:
6596			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6597				*flags |= CPU_DTRACE_BADADDR;
6598				*illval = regs[rd];
6599				break;
6600			}
6601			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6602			break;
6603
6604		case DIF_OP_STH:
6605			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6606				*flags |= CPU_DTRACE_BADADDR;
6607				*illval = regs[rd];
6608				break;
6609			}
6610			if (regs[rd] & 1) {
6611				*flags |= CPU_DTRACE_BADALIGN;
6612				*illval = regs[rd];
6613				break;
6614			}
6615			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6616			break;
6617
6618		case DIF_OP_STW:
6619			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6620				*flags |= CPU_DTRACE_BADADDR;
6621				*illval = regs[rd];
6622				break;
6623			}
6624			if (regs[rd] & 3) {
6625				*flags |= CPU_DTRACE_BADALIGN;
6626				*illval = regs[rd];
6627				break;
6628			}
6629			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6630			break;
6631
6632		case DIF_OP_STX:
6633			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6634				*flags |= CPU_DTRACE_BADADDR;
6635				*illval = regs[rd];
6636				break;
6637			}
6638			if (regs[rd] & 7) {
6639				*flags |= CPU_DTRACE_BADALIGN;
6640				*illval = regs[rd];
6641				break;
6642			}
6643			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6644			break;
6645		}
6646	}
6647
6648	if (!(*flags & CPU_DTRACE_FAULT))
6649		return (rval);
6650
6651	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6652	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6653
6654	return (0);
6655}
6656
6657static void
6658dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6659{
6660	dtrace_probe_t *probe = ecb->dte_probe;
6661	dtrace_provider_t *prov = probe->dtpr_provider;
6662	char c[DTRACE_FULLNAMELEN + 80], *str;
6663	char *msg = "dtrace: breakpoint action at probe ";
6664	char *ecbmsg = " (ecb ";
6665	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6666	uintptr_t val = (uintptr_t)ecb;
6667	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6668
6669	if (dtrace_destructive_disallow)
6670		return;
6671
6672	/*
6673	 * It's impossible to be taking action on the NULL probe.
6674	 */
6675	ASSERT(probe != NULL);
6676
6677	/*
6678	 * This is a poor man's (destitute man's?) sprintf():  we want to
6679	 * print the provider name, module name, function name and name of
6680	 * the probe, along with the hex address of the ECB with the breakpoint
6681	 * action -- all of which we must place in the character buffer by
6682	 * hand.
6683	 */
6684	while (*msg != '\0')
6685		c[i++] = *msg++;
6686
6687	for (str = prov->dtpv_name; *str != '\0'; str++)
6688		c[i++] = *str;
6689	c[i++] = ':';
6690
6691	for (str = probe->dtpr_mod; *str != '\0'; str++)
6692		c[i++] = *str;
6693	c[i++] = ':';
6694
6695	for (str = probe->dtpr_func; *str != '\0'; str++)
6696		c[i++] = *str;
6697	c[i++] = ':';
6698
6699	for (str = probe->dtpr_name; *str != '\0'; str++)
6700		c[i++] = *str;
6701
6702	while (*ecbmsg != '\0')
6703		c[i++] = *ecbmsg++;
6704
6705	while (shift >= 0) {
6706		mask = (uintptr_t)0xf << shift;
6707
6708		if (val >= ((uintptr_t)1 << shift))
6709			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6710		shift -= 4;
6711	}
6712
6713	c[i++] = ')';
6714	c[i] = '\0';
6715
6716#if defined(sun)
6717	debug_enter(c);
6718#else
6719	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
6720#endif
6721}
6722
6723static void
6724dtrace_action_panic(dtrace_ecb_t *ecb)
6725{
6726	dtrace_probe_t *probe = ecb->dte_probe;
6727
6728	/*
6729	 * It's impossible to be taking action on the NULL probe.
6730	 */
6731	ASSERT(probe != NULL);
6732
6733	if (dtrace_destructive_disallow)
6734		return;
6735
6736	if (dtrace_panicked != NULL)
6737		return;
6738
6739	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6740		return;
6741
6742	/*
6743	 * We won the right to panic.  (We want to be sure that only one
6744	 * thread calls panic() from dtrace_probe(), and that panic() is
6745	 * called exactly once.)
6746	 */
6747	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6748	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6749	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6750}
6751
6752static void
6753dtrace_action_raise(uint64_t sig)
6754{
6755	if (dtrace_destructive_disallow)
6756		return;
6757
6758	if (sig >= NSIG) {
6759		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6760		return;
6761	}
6762
6763#if defined(sun)
6764	/*
6765	 * raise() has a queue depth of 1 -- we ignore all subsequent
6766	 * invocations of the raise() action.
6767	 */
6768	if (curthread->t_dtrace_sig == 0)
6769		curthread->t_dtrace_sig = (uint8_t)sig;
6770
6771	curthread->t_sig_check = 1;
6772	aston(curthread);
6773#else
6774	struct proc *p = curproc;
6775	PROC_LOCK(p);
6776	kern_psignal(p, sig);
6777	PROC_UNLOCK(p);
6778#endif
6779}
6780
6781static void
6782dtrace_action_stop(void)
6783{
6784	if (dtrace_destructive_disallow)
6785		return;
6786
6787#if defined(sun)
6788	if (!curthread->t_dtrace_stop) {
6789		curthread->t_dtrace_stop = 1;
6790		curthread->t_sig_check = 1;
6791		aston(curthread);
6792	}
6793#else
6794	struct proc *p = curproc;
6795	PROC_LOCK(p);
6796	kern_psignal(p, SIGSTOP);
6797	PROC_UNLOCK(p);
6798#endif
6799}
6800
6801static void
6802dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
6803{
6804	hrtime_t now;
6805	volatile uint16_t *flags;
6806#if defined(sun)
6807	cpu_t *cpu = CPU;
6808#else
6809	cpu_t *cpu = &solaris_cpu[curcpu];
6810#endif
6811
6812	if (dtrace_destructive_disallow)
6813		return;
6814
6815	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
6816
6817	now = dtrace_gethrtime();
6818
6819	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
6820		/*
6821		 * We need to advance the mark to the current time.
6822		 */
6823		cpu->cpu_dtrace_chillmark = now;
6824		cpu->cpu_dtrace_chilled = 0;
6825	}
6826
6827	/*
6828	 * Now check to see if the requested chill time would take us over
6829	 * the maximum amount of time allowed in the chill interval.  (Or
6830	 * worse, if the calculation itself induces overflow.)
6831	 */
6832	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
6833	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
6834		*flags |= CPU_DTRACE_ILLOP;
6835		return;
6836	}
6837
6838	while (dtrace_gethrtime() - now < val)
6839		continue;
6840
6841	/*
6842	 * Normally, we assure that the value of the variable "timestamp" does
6843	 * not change within an ECB.  The presence of chill() represents an
6844	 * exception to this rule, however.
6845	 */
6846	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
6847	cpu->cpu_dtrace_chilled += val;
6848}
6849
6850static void
6851dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
6852    uint64_t *buf, uint64_t arg)
6853{
6854	int nframes = DTRACE_USTACK_NFRAMES(arg);
6855	int strsize = DTRACE_USTACK_STRSIZE(arg);
6856	uint64_t *pcs = &buf[1], *fps;
6857	char *str = (char *)&pcs[nframes];
6858	int size, offs = 0, i, j;
6859	uintptr_t old = mstate->dtms_scratch_ptr, saved;
6860	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
6861	char *sym;
6862
6863	/*
6864	 * Should be taking a faster path if string space has not been
6865	 * allocated.
6866	 */
6867	ASSERT(strsize != 0);
6868
6869	/*
6870	 * We will first allocate some temporary space for the frame pointers.
6871	 */
6872	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6873	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
6874	    (nframes * sizeof (uint64_t));
6875
6876	if (!DTRACE_INSCRATCH(mstate, size)) {
6877		/*
6878		 * Not enough room for our frame pointers -- need to indicate
6879		 * that we ran out of scratch space.
6880		 */
6881		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6882		return;
6883	}
6884
6885	mstate->dtms_scratch_ptr += size;
6886	saved = mstate->dtms_scratch_ptr;
6887
6888	/*
6889	 * Now get a stack with both program counters and frame pointers.
6890	 */
6891	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6892	dtrace_getufpstack(buf, fps, nframes + 1);
6893	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6894
6895	/*
6896	 * If that faulted, we're cooked.
6897	 */
6898	if (*flags & CPU_DTRACE_FAULT)
6899		goto out;
6900
6901	/*
6902	 * Now we want to walk up the stack, calling the USTACK helper.  For
6903	 * each iteration, we restore the scratch pointer.
6904	 */
6905	for (i = 0; i < nframes; i++) {
6906		mstate->dtms_scratch_ptr = saved;
6907
6908		if (offs >= strsize)
6909			break;
6910
6911		sym = (char *)(uintptr_t)dtrace_helper(
6912		    DTRACE_HELPER_ACTION_USTACK,
6913		    mstate, state, pcs[i], fps[i]);
6914
6915		/*
6916		 * If we faulted while running the helper, we're going to
6917		 * clear the fault and null out the corresponding string.
6918		 */
6919		if (*flags & CPU_DTRACE_FAULT) {
6920			*flags &= ~CPU_DTRACE_FAULT;
6921			str[offs++] = '\0';
6922			continue;
6923		}
6924
6925		if (sym == NULL) {
6926			str[offs++] = '\0';
6927			continue;
6928		}
6929
6930		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6931
6932		/*
6933		 * Now copy in the string that the helper returned to us.
6934		 */
6935		for (j = 0; offs + j < strsize; j++) {
6936			if ((str[offs + j] = sym[j]) == '\0')
6937				break;
6938		}
6939
6940		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6941
6942		offs += j + 1;
6943	}
6944
6945	if (offs >= strsize) {
6946		/*
6947		 * If we didn't have room for all of the strings, we don't
6948		 * abort processing -- this needn't be a fatal error -- but we
6949		 * still want to increment a counter (dts_stkstroverflows) to
6950		 * allow this condition to be warned about.  (If this is from
6951		 * a jstack() action, it is easily tuned via jstackstrsize.)
6952		 */
6953		dtrace_error(&state->dts_stkstroverflows);
6954	}
6955
6956	while (offs < strsize)
6957		str[offs++] = '\0';
6958
6959out:
6960	mstate->dtms_scratch_ptr = old;
6961}
6962
6963static void
6964dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
6965    size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
6966{
6967	volatile uint16_t *flags;
6968	uint64_t val = *valp;
6969	size_t valoffs = *valoffsp;
6970
6971	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
6972	ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
6973
6974	/*
6975	 * If this is a string, we're going to only load until we find the zero
6976	 * byte -- after which we'll store zero bytes.
6977	 */
6978	if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
6979		char c = '\0' + 1;
6980		size_t s;
6981
6982		for (s = 0; s < size; s++) {
6983			if (c != '\0' && dtkind == DIF_TF_BYREF) {
6984				c = dtrace_load8(val++);
6985			} else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
6986				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6987				c = dtrace_fuword8((void *)(uintptr_t)val++);
6988				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6989				if (*flags & CPU_DTRACE_FAULT)
6990					break;
6991			}
6992
6993			DTRACE_STORE(uint8_t, tomax, valoffs++, c);
6994
6995			if (c == '\0' && intuple)
6996				break;
6997		}
6998	} else {
6999		uint8_t c;
7000		while (valoffs < end) {
7001			if (dtkind == DIF_TF_BYREF) {
7002				c = dtrace_load8(val++);
7003			} else if (dtkind == DIF_TF_BYUREF) {
7004				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7005				c = dtrace_fuword8((void *)(uintptr_t)val++);
7006				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7007				if (*flags & CPU_DTRACE_FAULT)
7008					break;
7009			}
7010
7011			DTRACE_STORE(uint8_t, tomax,
7012			    valoffs++, c);
7013		}
7014	}
7015
7016	*valp = val;
7017	*valoffsp = valoffs;
7018}
7019
7020/*
7021 * If you're looking for the epicenter of DTrace, you just found it.  This
7022 * is the function called by the provider to fire a probe -- from which all
7023 * subsequent probe-context DTrace activity emanates.
7024 */
7025void
7026dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
7027    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
7028{
7029	processorid_t cpuid;
7030	dtrace_icookie_t cookie;
7031	dtrace_probe_t *probe;
7032	dtrace_mstate_t mstate;
7033	dtrace_ecb_t *ecb;
7034	dtrace_action_t *act;
7035	intptr_t offs;
7036	size_t size;
7037	int vtime, onintr;
7038	volatile uint16_t *flags;
7039	hrtime_t now;
7040
7041	if (panicstr != NULL)
7042		return;
7043
7044#if defined(sun)
7045	/*
7046	 * Kick out immediately if this CPU is still being born (in which case
7047	 * curthread will be set to -1) or the current thread can't allow
7048	 * probes in its current context.
7049	 */
7050	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
7051		return;
7052#endif
7053
7054	cookie = dtrace_interrupt_disable();
7055	probe = dtrace_probes[id - 1];
7056	cpuid = curcpu;
7057	onintr = CPU_ON_INTR(CPU);
7058
7059	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
7060	    probe->dtpr_predcache == curthread->t_predcache) {
7061		/*
7062		 * We have hit in the predicate cache; we know that
7063		 * this predicate would evaluate to be false.
7064		 */
7065		dtrace_interrupt_enable(cookie);
7066		return;
7067	}
7068
7069#if defined(sun)
7070	if (panic_quiesce) {
7071#else
7072	if (panicstr != NULL) {
7073#endif
7074		/*
7075		 * We don't trace anything if we're panicking.
7076		 */
7077		dtrace_interrupt_enable(cookie);
7078		return;
7079	}
7080
7081	now = dtrace_gethrtime();
7082	vtime = dtrace_vtime_references != 0;
7083
7084	if (vtime && curthread->t_dtrace_start)
7085		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
7086
7087	mstate.dtms_difo = NULL;
7088	mstate.dtms_probe = probe;
7089	mstate.dtms_strtok = 0;
7090	mstate.dtms_arg[0] = arg0;
7091	mstate.dtms_arg[1] = arg1;
7092	mstate.dtms_arg[2] = arg2;
7093	mstate.dtms_arg[3] = arg3;
7094	mstate.dtms_arg[4] = arg4;
7095
7096	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
7097
7098	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
7099		dtrace_predicate_t *pred = ecb->dte_predicate;
7100		dtrace_state_t *state = ecb->dte_state;
7101		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
7102		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
7103		dtrace_vstate_t *vstate = &state->dts_vstate;
7104		dtrace_provider_t *prov = probe->dtpr_provider;
7105		uint64_t tracememsize = 0;
7106		int committed = 0;
7107		caddr_t tomax;
7108
7109		/*
7110		 * A little subtlety with the following (seemingly innocuous)
7111		 * declaration of the automatic 'val':  by looking at the
7112		 * code, you might think that it could be declared in the
7113		 * action processing loop, below.  (That is, it's only used in
7114		 * the action processing loop.)  However, it must be declared
7115		 * out of that scope because in the case of DIF expression
7116		 * arguments to aggregating actions, one iteration of the
7117		 * action loop will use the last iteration's value.
7118		 */
7119		uint64_t val = 0;
7120
7121		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
7122		mstate.dtms_getf = NULL;
7123
7124		*flags &= ~CPU_DTRACE_ERROR;
7125
7126		if (prov == dtrace_provider) {
7127			/*
7128			 * If dtrace itself is the provider of this probe,
7129			 * we're only going to continue processing the ECB if
7130			 * arg0 (the dtrace_state_t) is equal to the ECB's
7131			 * creating state.  (This prevents disjoint consumers
7132			 * from seeing one another's metaprobes.)
7133			 */
7134			if (arg0 != (uint64_t)(uintptr_t)state)
7135				continue;
7136		}
7137
7138		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
7139			/*
7140			 * We're not currently active.  If our provider isn't
7141			 * the dtrace pseudo provider, we're not interested.
7142			 */
7143			if (prov != dtrace_provider)
7144				continue;
7145
7146			/*
7147			 * Now we must further check if we are in the BEGIN
7148			 * probe.  If we are, we will only continue processing
7149			 * if we're still in WARMUP -- if one BEGIN enabling
7150			 * has invoked the exit() action, we don't want to
7151			 * evaluate subsequent BEGIN enablings.
7152			 */
7153			if (probe->dtpr_id == dtrace_probeid_begin &&
7154			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
7155				ASSERT(state->dts_activity ==
7156				    DTRACE_ACTIVITY_DRAINING);
7157				continue;
7158			}
7159		}
7160
7161		if (ecb->dte_cond) {
7162			/*
7163			 * If the dte_cond bits indicate that this
7164			 * consumer is only allowed to see user-mode firings
7165			 * of this probe, call the provider's dtps_usermode()
7166			 * entry point to check that the probe was fired
7167			 * while in a user context. Skip this ECB if that's
7168			 * not the case.
7169			 */
7170			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
7171			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
7172			    probe->dtpr_id, probe->dtpr_arg) == 0)
7173				continue;
7174
7175#if defined(sun)
7176			/*
7177			 * This is more subtle than it looks. We have to be
7178			 * absolutely certain that CRED() isn't going to
7179			 * change out from under us so it's only legit to
7180			 * examine that structure if we're in constrained
7181			 * situations. Currently, the only times we'll this
7182			 * check is if a non-super-user has enabled the
7183			 * profile or syscall providers -- providers that
7184			 * allow visibility of all processes. For the
7185			 * profile case, the check above will ensure that
7186			 * we're examining a user context.
7187			 */
7188			if (ecb->dte_cond & DTRACE_COND_OWNER) {
7189				cred_t *cr;
7190				cred_t *s_cr =
7191				    ecb->dte_state->dts_cred.dcr_cred;
7192				proc_t *proc;
7193
7194				ASSERT(s_cr != NULL);
7195
7196				if ((cr = CRED()) == NULL ||
7197				    s_cr->cr_uid != cr->cr_uid ||
7198				    s_cr->cr_uid != cr->cr_ruid ||
7199				    s_cr->cr_uid != cr->cr_suid ||
7200				    s_cr->cr_gid != cr->cr_gid ||
7201				    s_cr->cr_gid != cr->cr_rgid ||
7202				    s_cr->cr_gid != cr->cr_sgid ||
7203				    (proc = ttoproc(curthread)) == NULL ||
7204				    (proc->p_flag & SNOCD))
7205					continue;
7206			}
7207
7208			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
7209				cred_t *cr;
7210				cred_t *s_cr =
7211				    ecb->dte_state->dts_cred.dcr_cred;
7212
7213				ASSERT(s_cr != NULL);
7214
7215				if ((cr = CRED()) == NULL ||
7216				    s_cr->cr_zone->zone_id !=
7217				    cr->cr_zone->zone_id)
7218					continue;
7219			}
7220#endif
7221		}
7222
7223		if (now - state->dts_alive > dtrace_deadman_timeout) {
7224			/*
7225			 * We seem to be dead.  Unless we (a) have kernel
7226			 * destructive permissions (b) have explicitly enabled
7227			 * destructive actions and (c) destructive actions have
7228			 * not been disabled, we're going to transition into
7229			 * the KILLED state, from which no further processing
7230			 * on this state will be performed.
7231			 */
7232			if (!dtrace_priv_kernel_destructive(state) ||
7233			    !state->dts_cred.dcr_destructive ||
7234			    dtrace_destructive_disallow) {
7235				void *activity = &state->dts_activity;
7236				dtrace_activity_t current;
7237
7238				do {
7239					current = state->dts_activity;
7240				} while (dtrace_cas32(activity, current,
7241				    DTRACE_ACTIVITY_KILLED) != current);
7242
7243				continue;
7244			}
7245		}
7246
7247		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
7248		    ecb->dte_alignment, state, &mstate)) < 0)
7249			continue;
7250
7251		tomax = buf->dtb_tomax;
7252		ASSERT(tomax != NULL);
7253
7254		if (ecb->dte_size != 0) {
7255			dtrace_rechdr_t dtrh;
7256			if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
7257				mstate.dtms_timestamp = dtrace_gethrtime();
7258				mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7259			}
7260			ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
7261			dtrh.dtrh_epid = ecb->dte_epid;
7262			DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
7263			    mstate.dtms_timestamp);
7264			*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
7265		}
7266
7267		mstate.dtms_epid = ecb->dte_epid;
7268		mstate.dtms_present |= DTRACE_MSTATE_EPID;
7269
7270		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
7271			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
7272		else
7273			mstate.dtms_access = 0;
7274
7275		if (pred != NULL) {
7276			dtrace_difo_t *dp = pred->dtp_difo;
7277			int rval;
7278
7279			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
7280
7281			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
7282				dtrace_cacheid_t cid = probe->dtpr_predcache;
7283
7284				if (cid != DTRACE_CACHEIDNONE && !onintr) {
7285					/*
7286					 * Update the predicate cache...
7287					 */
7288					ASSERT(cid == pred->dtp_cacheid);
7289					curthread->t_predcache = cid;
7290				}
7291
7292				continue;
7293			}
7294		}
7295
7296		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
7297		    act != NULL; act = act->dta_next) {
7298			size_t valoffs;
7299			dtrace_difo_t *dp;
7300			dtrace_recdesc_t *rec = &act->dta_rec;
7301
7302			size = rec->dtrd_size;
7303			valoffs = offs + rec->dtrd_offset;
7304
7305			if (DTRACEACT_ISAGG(act->dta_kind)) {
7306				uint64_t v = 0xbad;
7307				dtrace_aggregation_t *agg;
7308
7309				agg = (dtrace_aggregation_t *)act;
7310
7311				if ((dp = act->dta_difo) != NULL)
7312					v = dtrace_dif_emulate(dp,
7313					    &mstate, vstate, state);
7314
7315				if (*flags & CPU_DTRACE_ERROR)
7316					continue;
7317
7318				/*
7319				 * Note that we always pass the expression
7320				 * value from the previous iteration of the
7321				 * action loop.  This value will only be used
7322				 * if there is an expression argument to the
7323				 * aggregating action, denoted by the
7324				 * dtag_hasarg field.
7325				 */
7326				dtrace_aggregate(agg, buf,
7327				    offs, aggbuf, v, val);
7328				continue;
7329			}
7330
7331			switch (act->dta_kind) {
7332			case DTRACEACT_STOP:
7333				if (dtrace_priv_proc_destructive(state))
7334					dtrace_action_stop();
7335				continue;
7336
7337			case DTRACEACT_BREAKPOINT:
7338				if (dtrace_priv_kernel_destructive(state))
7339					dtrace_action_breakpoint(ecb);
7340				continue;
7341
7342			case DTRACEACT_PANIC:
7343				if (dtrace_priv_kernel_destructive(state))
7344					dtrace_action_panic(ecb);
7345				continue;
7346
7347			case DTRACEACT_STACK:
7348				if (!dtrace_priv_kernel(state))
7349					continue;
7350
7351				dtrace_getpcstack((pc_t *)(tomax + valoffs),
7352				    size / sizeof (pc_t), probe->dtpr_aframes,
7353				    DTRACE_ANCHORED(probe) ? NULL :
7354				    (uint32_t *)arg0);
7355				continue;
7356
7357			case DTRACEACT_JSTACK:
7358			case DTRACEACT_USTACK:
7359				if (!dtrace_priv_proc(state))
7360					continue;
7361
7362				/*
7363				 * See comment in DIF_VAR_PID.
7364				 */
7365				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
7366				    CPU_ON_INTR(CPU)) {
7367					int depth = DTRACE_USTACK_NFRAMES(
7368					    rec->dtrd_arg) + 1;
7369
7370					dtrace_bzero((void *)(tomax + valoffs),
7371					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
7372					    + depth * sizeof (uint64_t));
7373
7374					continue;
7375				}
7376
7377				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
7378				    curproc->p_dtrace_helpers != NULL) {
7379					/*
7380					 * This is the slow path -- we have
7381					 * allocated string space, and we're
7382					 * getting the stack of a process that
7383					 * has helpers.  Call into a separate
7384					 * routine to perform this processing.
7385					 */
7386					dtrace_action_ustack(&mstate, state,
7387					    (uint64_t *)(tomax + valoffs),
7388					    rec->dtrd_arg);
7389					continue;
7390				}
7391
7392				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7393				dtrace_getupcstack((uint64_t *)
7394				    (tomax + valoffs),
7395				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
7396				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7397				continue;
7398
7399			default:
7400				break;
7401			}
7402
7403			dp = act->dta_difo;
7404			ASSERT(dp != NULL);
7405
7406			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
7407
7408			if (*flags & CPU_DTRACE_ERROR)
7409				continue;
7410
7411			switch (act->dta_kind) {
7412			case DTRACEACT_SPECULATE: {
7413				dtrace_rechdr_t *dtrh;
7414
7415				ASSERT(buf == &state->dts_buffer[cpuid]);
7416				buf = dtrace_speculation_buffer(state,
7417				    cpuid, val);
7418
7419				if (buf == NULL) {
7420					*flags |= CPU_DTRACE_DROP;
7421					continue;
7422				}
7423
7424				offs = dtrace_buffer_reserve(buf,
7425				    ecb->dte_needed, ecb->dte_alignment,
7426				    state, NULL);
7427
7428				if (offs < 0) {
7429					*flags |= CPU_DTRACE_DROP;
7430					continue;
7431				}
7432
7433				tomax = buf->dtb_tomax;
7434				ASSERT(tomax != NULL);
7435
7436				if (ecb->dte_size == 0)
7437					continue;
7438
7439				ASSERT3U(ecb->dte_size, >=,
7440				    sizeof (dtrace_rechdr_t));
7441				dtrh = ((void *)(tomax + offs));
7442				dtrh->dtrh_epid = ecb->dte_epid;
7443				/*
7444				 * When the speculation is committed, all of
7445				 * the records in the speculative buffer will
7446				 * have their timestamps set to the commit
7447				 * time.  Until then, it is set to a sentinel
7448				 * value, for debugability.
7449				 */
7450				DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7451				continue;
7452			}
7453
7454			case DTRACEACT_PRINTM: {
7455				/* The DIF returns a 'memref'. */
7456				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
7457
7458				/* Get the size from the memref. */
7459				size = memref[1];
7460
7461				/*
7462				 * Check if the size exceeds the allocated
7463				 * buffer size.
7464				 */
7465				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
7466					/* Flag a drop! */
7467					*flags |= CPU_DTRACE_DROP;
7468					continue;
7469				}
7470
7471				/* Store the size in the buffer first. */
7472				DTRACE_STORE(uintptr_t, tomax,
7473				    valoffs, size);
7474
7475				/*
7476				 * Offset the buffer address to the start
7477				 * of the data.
7478				 */
7479				valoffs += sizeof(uintptr_t);
7480
7481				/*
7482				 * Reset to the memory address rather than
7483				 * the memref array, then let the BYREF
7484				 * code below do the work to store the
7485				 * memory data in the buffer.
7486				 */
7487				val = memref[0];
7488				break;
7489			}
7490
7491			case DTRACEACT_PRINTT: {
7492				/* The DIF returns a 'typeref'. */
7493				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
7494				char c = '\0' + 1;
7495				size_t s;
7496
7497				/*
7498				 * Get the type string length and round it
7499				 * up so that the data that follows is
7500				 * aligned for easy access.
7501				 */
7502				size_t typs = strlen((char *) typeref[2]) + 1;
7503				typs = roundup(typs,  sizeof(uintptr_t));
7504
7505				/*
7506				 *Get the size from the typeref using the
7507				 * number of elements and the type size.
7508				 */
7509				size = typeref[1] * typeref[3];
7510
7511				/*
7512				 * Check if the size exceeds the allocated
7513				 * buffer size.
7514				 */
7515				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
7516					/* Flag a drop! */
7517					*flags |= CPU_DTRACE_DROP;
7518
7519				}
7520
7521				/* Store the size in the buffer first. */
7522				DTRACE_STORE(uintptr_t, tomax,
7523				    valoffs, size);
7524				valoffs += sizeof(uintptr_t);
7525
7526				/* Store the type size in the buffer. */
7527				DTRACE_STORE(uintptr_t, tomax,
7528				    valoffs, typeref[3]);
7529				valoffs += sizeof(uintptr_t);
7530
7531				val = typeref[2];
7532
7533				for (s = 0; s < typs; s++) {
7534					if (c != '\0')
7535						c = dtrace_load8(val++);
7536
7537					DTRACE_STORE(uint8_t, tomax,
7538					    valoffs++, c);
7539				}
7540
7541				/*
7542				 * Reset to the memory address rather than
7543				 * the typeref array, then let the BYREF
7544				 * code below do the work to store the
7545				 * memory data in the buffer.
7546				 */
7547				val = typeref[0];
7548				break;
7549			}
7550
7551			case DTRACEACT_CHILL:
7552				if (dtrace_priv_kernel_destructive(state))
7553					dtrace_action_chill(&mstate, val);
7554				continue;
7555
7556			case DTRACEACT_RAISE:
7557				if (dtrace_priv_proc_destructive(state))
7558					dtrace_action_raise(val);
7559				continue;
7560
7561			case DTRACEACT_COMMIT:
7562				ASSERT(!committed);
7563
7564				/*
7565				 * We need to commit our buffer state.
7566				 */
7567				if (ecb->dte_size)
7568					buf->dtb_offset = offs + ecb->dte_size;
7569				buf = &state->dts_buffer[cpuid];
7570				dtrace_speculation_commit(state, cpuid, val);
7571				committed = 1;
7572				continue;
7573
7574			case DTRACEACT_DISCARD:
7575				dtrace_speculation_discard(state, cpuid, val);
7576				continue;
7577
7578			case DTRACEACT_DIFEXPR:
7579			case DTRACEACT_LIBACT:
7580			case DTRACEACT_PRINTF:
7581			case DTRACEACT_PRINTA:
7582			case DTRACEACT_SYSTEM:
7583			case DTRACEACT_FREOPEN:
7584			case DTRACEACT_TRACEMEM:
7585				break;
7586
7587			case DTRACEACT_TRACEMEM_DYNSIZE:
7588				tracememsize = val;
7589				break;
7590
7591			case DTRACEACT_SYM:
7592			case DTRACEACT_MOD:
7593				if (!dtrace_priv_kernel(state))
7594					continue;
7595				break;
7596
7597			case DTRACEACT_USYM:
7598			case DTRACEACT_UMOD:
7599			case DTRACEACT_UADDR: {
7600#if defined(sun)
7601				struct pid *pid = curthread->t_procp->p_pidp;
7602#endif
7603
7604				if (!dtrace_priv_proc(state))
7605					continue;
7606
7607				DTRACE_STORE(uint64_t, tomax,
7608#if defined(sun)
7609				    valoffs, (uint64_t)pid->pid_id);
7610#else
7611				    valoffs, (uint64_t) curproc->p_pid);
7612#endif
7613				DTRACE_STORE(uint64_t, tomax,
7614				    valoffs + sizeof (uint64_t), val);
7615
7616				continue;
7617			}
7618
7619			case DTRACEACT_EXIT: {
7620				/*
7621				 * For the exit action, we are going to attempt
7622				 * to atomically set our activity to be
7623				 * draining.  If this fails (either because
7624				 * another CPU has beat us to the exit action,
7625				 * or because our current activity is something
7626				 * other than ACTIVE or WARMUP), we will
7627				 * continue.  This assures that the exit action
7628				 * can be successfully recorded at most once
7629				 * when we're in the ACTIVE state.  If we're
7630				 * encountering the exit() action while in
7631				 * COOLDOWN, however, we want to honor the new
7632				 * status code.  (We know that we're the only
7633				 * thread in COOLDOWN, so there is no race.)
7634				 */
7635				void *activity = &state->dts_activity;
7636				dtrace_activity_t current = state->dts_activity;
7637
7638				if (current == DTRACE_ACTIVITY_COOLDOWN)
7639					break;
7640
7641				if (current != DTRACE_ACTIVITY_WARMUP)
7642					current = DTRACE_ACTIVITY_ACTIVE;
7643
7644				if (dtrace_cas32(activity, current,
7645				    DTRACE_ACTIVITY_DRAINING) != current) {
7646					*flags |= CPU_DTRACE_DROP;
7647					continue;
7648				}
7649
7650				break;
7651			}
7652
7653			default:
7654				ASSERT(0);
7655			}
7656
7657			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7658			    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7659				uintptr_t end = valoffs + size;
7660
7661				if (tracememsize != 0 &&
7662				    valoffs + tracememsize < end) {
7663					end = valoffs + tracememsize;
7664					tracememsize = 0;
7665				}
7666
7667				if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7668				    !dtrace_vcanload((void *)(uintptr_t)val,
7669				    &dp->dtdo_rtype, &mstate, vstate))
7670					continue;
7671
7672				dtrace_store_by_ref(dp, tomax, size, &valoffs,
7673				    &val, end, act->dta_intuple,
7674				    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7675				    DIF_TF_BYREF: DIF_TF_BYUREF);
7676				continue;
7677			}
7678
7679			switch (size) {
7680			case 0:
7681				break;
7682
7683			case sizeof (uint8_t):
7684				DTRACE_STORE(uint8_t, tomax, valoffs, val);
7685				break;
7686			case sizeof (uint16_t):
7687				DTRACE_STORE(uint16_t, tomax, valoffs, val);
7688				break;
7689			case sizeof (uint32_t):
7690				DTRACE_STORE(uint32_t, tomax, valoffs, val);
7691				break;
7692			case sizeof (uint64_t):
7693				DTRACE_STORE(uint64_t, tomax, valoffs, val);
7694				break;
7695			default:
7696				/*
7697				 * Any other size should have been returned by
7698				 * reference, not by value.
7699				 */
7700				ASSERT(0);
7701				break;
7702			}
7703		}
7704
7705		if (*flags & CPU_DTRACE_DROP)
7706			continue;
7707
7708		if (*flags & CPU_DTRACE_FAULT) {
7709			int ndx;
7710			dtrace_action_t *err;
7711
7712			buf->dtb_errors++;
7713
7714			if (probe->dtpr_id == dtrace_probeid_error) {
7715				/*
7716				 * There's nothing we can do -- we had an
7717				 * error on the error probe.  We bump an
7718				 * error counter to at least indicate that
7719				 * this condition happened.
7720				 */
7721				dtrace_error(&state->dts_dblerrors);
7722				continue;
7723			}
7724
7725			if (vtime) {
7726				/*
7727				 * Before recursing on dtrace_probe(), we
7728				 * need to explicitly clear out our start
7729				 * time to prevent it from being accumulated
7730				 * into t_dtrace_vtime.
7731				 */
7732				curthread->t_dtrace_start = 0;
7733			}
7734
7735			/*
7736			 * Iterate over the actions to figure out which action
7737			 * we were processing when we experienced the error.
7738			 * Note that act points _past_ the faulting action; if
7739			 * act is ecb->dte_action, the fault was in the
7740			 * predicate, if it's ecb->dte_action->dta_next it's
7741			 * in action #1, and so on.
7742			 */
7743			for (err = ecb->dte_action, ndx = 0;
7744			    err != act; err = err->dta_next, ndx++)
7745				continue;
7746
7747			dtrace_probe_error(state, ecb->dte_epid, ndx,
7748			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7749			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7750			    cpu_core[cpuid].cpuc_dtrace_illval);
7751
7752			continue;
7753		}
7754
7755		if (!committed)
7756			buf->dtb_offset = offs + ecb->dte_size;
7757	}
7758
7759	if (vtime)
7760		curthread->t_dtrace_start = dtrace_gethrtime();
7761
7762	dtrace_interrupt_enable(cookie);
7763}
7764
7765/*
7766 * DTrace Probe Hashing Functions
7767 *
7768 * The functions in this section (and indeed, the functions in remaining
7769 * sections) are not _called_ from probe context.  (Any exceptions to this are
7770 * marked with a "Note:".)  Rather, they are called from elsewhere in the
7771 * DTrace framework to look-up probes in, add probes to and remove probes from
7772 * the DTrace probe hashes.  (Each probe is hashed by each element of the
7773 * probe tuple -- allowing for fast lookups, regardless of what was
7774 * specified.)
7775 */
7776static uint_t
7777dtrace_hash_str(const char *p)
7778{
7779	unsigned int g;
7780	uint_t hval = 0;
7781
7782	while (*p) {
7783		hval = (hval << 4) + *p++;
7784		if ((g = (hval & 0xf0000000)) != 0)
7785			hval ^= g >> 24;
7786		hval &= ~g;
7787	}
7788	return (hval);
7789}
7790
7791static dtrace_hash_t *
7792dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
7793{
7794	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
7795
7796	hash->dth_stroffs = stroffs;
7797	hash->dth_nextoffs = nextoffs;
7798	hash->dth_prevoffs = prevoffs;
7799
7800	hash->dth_size = 1;
7801	hash->dth_mask = hash->dth_size - 1;
7802
7803	hash->dth_tab = kmem_zalloc(hash->dth_size *
7804	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
7805
7806	return (hash);
7807}
7808
7809static void
7810dtrace_hash_destroy(dtrace_hash_t *hash)
7811{
7812#ifdef DEBUG
7813	int i;
7814
7815	for (i = 0; i < hash->dth_size; i++)
7816		ASSERT(hash->dth_tab[i] == NULL);
7817#endif
7818
7819	kmem_free(hash->dth_tab,
7820	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
7821	kmem_free(hash, sizeof (dtrace_hash_t));
7822}
7823
7824static void
7825dtrace_hash_resize(dtrace_hash_t *hash)
7826{
7827	int size = hash->dth_size, i, ndx;
7828	int new_size = hash->dth_size << 1;
7829	int new_mask = new_size - 1;
7830	dtrace_hashbucket_t **new_tab, *bucket, *next;
7831
7832	ASSERT((new_size & new_mask) == 0);
7833
7834	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
7835
7836	for (i = 0; i < size; i++) {
7837		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
7838			dtrace_probe_t *probe = bucket->dthb_chain;
7839
7840			ASSERT(probe != NULL);
7841			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
7842
7843			next = bucket->dthb_next;
7844			bucket->dthb_next = new_tab[ndx];
7845			new_tab[ndx] = bucket;
7846		}
7847	}
7848
7849	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
7850	hash->dth_tab = new_tab;
7851	hash->dth_size = new_size;
7852	hash->dth_mask = new_mask;
7853}
7854
7855static void
7856dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
7857{
7858	int hashval = DTRACE_HASHSTR(hash, new);
7859	int ndx = hashval & hash->dth_mask;
7860	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7861	dtrace_probe_t **nextp, **prevp;
7862
7863	for (; bucket != NULL; bucket = bucket->dthb_next) {
7864		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
7865			goto add;
7866	}
7867
7868	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
7869		dtrace_hash_resize(hash);
7870		dtrace_hash_add(hash, new);
7871		return;
7872	}
7873
7874	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
7875	bucket->dthb_next = hash->dth_tab[ndx];
7876	hash->dth_tab[ndx] = bucket;
7877	hash->dth_nbuckets++;
7878
7879add:
7880	nextp = DTRACE_HASHNEXT(hash, new);
7881	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
7882	*nextp = bucket->dthb_chain;
7883
7884	if (bucket->dthb_chain != NULL) {
7885		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
7886		ASSERT(*prevp == NULL);
7887		*prevp = new;
7888	}
7889
7890	bucket->dthb_chain = new;
7891	bucket->dthb_len++;
7892}
7893
7894static dtrace_probe_t *
7895dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
7896{
7897	int hashval = DTRACE_HASHSTR(hash, template);
7898	int ndx = hashval & hash->dth_mask;
7899	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7900
7901	for (; bucket != NULL; bucket = bucket->dthb_next) {
7902		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7903			return (bucket->dthb_chain);
7904	}
7905
7906	return (NULL);
7907}
7908
7909static int
7910dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
7911{
7912	int hashval = DTRACE_HASHSTR(hash, template);
7913	int ndx = hashval & hash->dth_mask;
7914	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7915
7916	for (; bucket != NULL; bucket = bucket->dthb_next) {
7917		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7918			return (bucket->dthb_len);
7919	}
7920
7921	return (0);
7922}
7923
7924static void
7925dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
7926{
7927	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
7928	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7929
7930	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
7931	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
7932
7933	/*
7934	 * Find the bucket that we're removing this probe from.
7935	 */
7936	for (; bucket != NULL; bucket = bucket->dthb_next) {
7937		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
7938			break;
7939	}
7940
7941	ASSERT(bucket != NULL);
7942
7943	if (*prevp == NULL) {
7944		if (*nextp == NULL) {
7945			/*
7946			 * The removed probe was the only probe on this
7947			 * bucket; we need to remove the bucket.
7948			 */
7949			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
7950
7951			ASSERT(bucket->dthb_chain == probe);
7952			ASSERT(b != NULL);
7953
7954			if (b == bucket) {
7955				hash->dth_tab[ndx] = bucket->dthb_next;
7956			} else {
7957				while (b->dthb_next != bucket)
7958					b = b->dthb_next;
7959				b->dthb_next = bucket->dthb_next;
7960			}
7961
7962			ASSERT(hash->dth_nbuckets > 0);
7963			hash->dth_nbuckets--;
7964			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
7965			return;
7966		}
7967
7968		bucket->dthb_chain = *nextp;
7969	} else {
7970		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
7971	}
7972
7973	if (*nextp != NULL)
7974		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
7975}
7976
7977/*
7978 * DTrace Utility Functions
7979 *
7980 * These are random utility functions that are _not_ called from probe context.
7981 */
7982static int
7983dtrace_badattr(const dtrace_attribute_t *a)
7984{
7985	return (a->dtat_name > DTRACE_STABILITY_MAX ||
7986	    a->dtat_data > DTRACE_STABILITY_MAX ||
7987	    a->dtat_class > DTRACE_CLASS_MAX);
7988}
7989
7990/*
7991 * Return a duplicate copy of a string.  If the specified string is NULL,
7992 * this function returns a zero-length string.
7993 */
7994static char *
7995dtrace_strdup(const char *str)
7996{
7997	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
7998
7999	if (str != NULL)
8000		(void) strcpy(new, str);
8001
8002	return (new);
8003}
8004
8005#define	DTRACE_ISALPHA(c)	\
8006	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
8007
8008static int
8009dtrace_badname(const char *s)
8010{
8011	char c;
8012
8013	if (s == NULL || (c = *s++) == '\0')
8014		return (0);
8015
8016	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
8017		return (1);
8018
8019	while ((c = *s++) != '\0') {
8020		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
8021		    c != '-' && c != '_' && c != '.' && c != '`')
8022			return (1);
8023	}
8024
8025	return (0);
8026}
8027
8028static void
8029dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
8030{
8031	uint32_t priv;
8032
8033#if defined(sun)
8034	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
8035		/*
8036		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
8037		 */
8038		priv = DTRACE_PRIV_ALL;
8039	} else {
8040		*uidp = crgetuid(cr);
8041		*zoneidp = crgetzoneid(cr);
8042
8043		priv = 0;
8044		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
8045			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
8046		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
8047			priv |= DTRACE_PRIV_USER;
8048		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
8049			priv |= DTRACE_PRIV_PROC;
8050		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
8051			priv |= DTRACE_PRIV_OWNER;
8052		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
8053			priv |= DTRACE_PRIV_ZONEOWNER;
8054	}
8055#else
8056	priv = DTRACE_PRIV_ALL;
8057#endif
8058
8059	*privp = priv;
8060}
8061
8062#ifdef DTRACE_ERRDEBUG
8063static void
8064dtrace_errdebug(const char *str)
8065{
8066	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
8067	int occupied = 0;
8068
8069	mutex_enter(&dtrace_errlock);
8070	dtrace_errlast = str;
8071	dtrace_errthread = curthread;
8072
8073	while (occupied++ < DTRACE_ERRHASHSZ) {
8074		if (dtrace_errhash[hval].dter_msg == str) {
8075			dtrace_errhash[hval].dter_count++;
8076			goto out;
8077		}
8078
8079		if (dtrace_errhash[hval].dter_msg != NULL) {
8080			hval = (hval + 1) % DTRACE_ERRHASHSZ;
8081			continue;
8082		}
8083
8084		dtrace_errhash[hval].dter_msg = str;
8085		dtrace_errhash[hval].dter_count = 1;
8086		goto out;
8087	}
8088
8089	panic("dtrace: undersized error hash");
8090out:
8091	mutex_exit(&dtrace_errlock);
8092}
8093#endif
8094
8095/*
8096 * DTrace Matching Functions
8097 *
8098 * These functions are used to match groups of probes, given some elements of
8099 * a probe tuple, or some globbed expressions for elements of a probe tuple.
8100 */
8101static int
8102dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
8103    zoneid_t zoneid)
8104{
8105	if (priv != DTRACE_PRIV_ALL) {
8106		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
8107		uint32_t match = priv & ppriv;
8108
8109		/*
8110		 * No PRIV_DTRACE_* privileges...
8111		 */
8112		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
8113		    DTRACE_PRIV_KERNEL)) == 0)
8114			return (0);
8115
8116		/*
8117		 * No matching bits, but there were bits to match...
8118		 */
8119		if (match == 0 && ppriv != 0)
8120			return (0);
8121
8122		/*
8123		 * Need to have permissions to the process, but don't...
8124		 */
8125		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
8126		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
8127			return (0);
8128		}
8129
8130		/*
8131		 * Need to be in the same zone unless we possess the
8132		 * privilege to examine all zones.
8133		 */
8134		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
8135		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
8136			return (0);
8137		}
8138	}
8139
8140	return (1);
8141}
8142
8143/*
8144 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
8145 * consists of input pattern strings and an ops-vector to evaluate them.
8146 * This function returns >0 for match, 0 for no match, and <0 for error.
8147 */
8148static int
8149dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
8150    uint32_t priv, uid_t uid, zoneid_t zoneid)
8151{
8152	dtrace_provider_t *pvp = prp->dtpr_provider;
8153	int rv;
8154
8155	if (pvp->dtpv_defunct)
8156		return (0);
8157
8158	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
8159		return (rv);
8160
8161	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
8162		return (rv);
8163
8164	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
8165		return (rv);
8166
8167	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
8168		return (rv);
8169
8170	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
8171		return (0);
8172
8173	return (rv);
8174}
8175
8176/*
8177 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
8178 * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
8179 * libc's version, the kernel version only applies to 8-bit ASCII strings.
8180 * In addition, all of the recursion cases except for '*' matching have been
8181 * unwound.  For '*', we still implement recursive evaluation, but a depth
8182 * counter is maintained and matching is aborted if we recurse too deep.
8183 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
8184 */
8185static int
8186dtrace_match_glob(const char *s, const char *p, int depth)
8187{
8188	const char *olds;
8189	char s1, c;
8190	int gs;
8191
8192	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
8193		return (-1);
8194
8195	if (s == NULL)
8196		s = ""; /* treat NULL as empty string */
8197
8198top:
8199	olds = s;
8200	s1 = *s++;
8201
8202	if (p == NULL)
8203		return (0);
8204
8205	if ((c = *p++) == '\0')
8206		return (s1 == '\0');
8207
8208	switch (c) {
8209	case '[': {
8210		int ok = 0, notflag = 0;
8211		char lc = '\0';
8212
8213		if (s1 == '\0')
8214			return (0);
8215
8216		if (*p == '!') {
8217			notflag = 1;
8218			p++;
8219		}
8220
8221		if ((c = *p++) == '\0')
8222			return (0);
8223
8224		do {
8225			if (c == '-' && lc != '\0' && *p != ']') {
8226				if ((c = *p++) == '\0')
8227					return (0);
8228				if (c == '\\' && (c = *p++) == '\0')
8229					return (0);
8230
8231				if (notflag) {
8232					if (s1 < lc || s1 > c)
8233						ok++;
8234					else
8235						return (0);
8236				} else if (lc <= s1 && s1 <= c)
8237					ok++;
8238
8239			} else if (c == '\\' && (c = *p++) == '\0')
8240				return (0);
8241
8242			lc = c; /* save left-hand 'c' for next iteration */
8243
8244			if (notflag) {
8245				if (s1 != c)
8246					ok++;
8247				else
8248					return (0);
8249			} else if (s1 == c)
8250				ok++;
8251
8252			if ((c = *p++) == '\0')
8253				return (0);
8254
8255		} while (c != ']');
8256
8257		if (ok)
8258			goto top;
8259
8260		return (0);
8261	}
8262
8263	case '\\':
8264		if ((c = *p++) == '\0')
8265			return (0);
8266		/*FALLTHRU*/
8267
8268	default:
8269		if (c != s1)
8270			return (0);
8271		/*FALLTHRU*/
8272
8273	case '?':
8274		if (s1 != '\0')
8275			goto top;
8276		return (0);
8277
8278	case '*':
8279		while (*p == '*')
8280			p++; /* consecutive *'s are identical to a single one */
8281
8282		if (*p == '\0')
8283			return (1);
8284
8285		for (s = olds; *s != '\0'; s++) {
8286			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
8287				return (gs);
8288		}
8289
8290		return (0);
8291	}
8292}
8293
8294/*ARGSUSED*/
8295static int
8296dtrace_match_string(const char *s, const char *p, int depth)
8297{
8298	return (s != NULL && strcmp(s, p) == 0);
8299}
8300
8301/*ARGSUSED*/
8302static int
8303dtrace_match_nul(const char *s, const char *p, int depth)
8304{
8305	return (1); /* always match the empty pattern */
8306}
8307
8308/*ARGSUSED*/
8309static int
8310dtrace_match_nonzero(const char *s, const char *p, int depth)
8311{
8312	return (s != NULL && s[0] != '\0');
8313}
8314
8315static int
8316dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
8317    zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
8318{
8319	dtrace_probe_t template, *probe;
8320	dtrace_hash_t *hash = NULL;
8321	int len, best = INT_MAX, nmatched = 0;
8322	dtrace_id_t i;
8323
8324	ASSERT(MUTEX_HELD(&dtrace_lock));
8325
8326	/*
8327	 * If the probe ID is specified in the key, just lookup by ID and
8328	 * invoke the match callback once if a matching probe is found.
8329	 */
8330	if (pkp->dtpk_id != DTRACE_IDNONE) {
8331		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
8332		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
8333			(void) (*matched)(probe, arg);
8334			nmatched++;
8335		}
8336		return (nmatched);
8337	}
8338
8339	template.dtpr_mod = (char *)pkp->dtpk_mod;
8340	template.dtpr_func = (char *)pkp->dtpk_func;
8341	template.dtpr_name = (char *)pkp->dtpk_name;
8342
8343	/*
8344	 * We want to find the most distinct of the module name, function
8345	 * name, and name.  So for each one that is not a glob pattern or
8346	 * empty string, we perform a lookup in the corresponding hash and
8347	 * use the hash table with the fewest collisions to do our search.
8348	 */
8349	if (pkp->dtpk_mmatch == &dtrace_match_string &&
8350	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
8351		best = len;
8352		hash = dtrace_bymod;
8353	}
8354
8355	if (pkp->dtpk_fmatch == &dtrace_match_string &&
8356	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
8357		best = len;
8358		hash = dtrace_byfunc;
8359	}
8360
8361	if (pkp->dtpk_nmatch == &dtrace_match_string &&
8362	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
8363		best = len;
8364		hash = dtrace_byname;
8365	}
8366
8367	/*
8368	 * If we did not select a hash table, iterate over every probe and
8369	 * invoke our callback for each one that matches our input probe key.
8370	 */
8371	if (hash == NULL) {
8372		for (i = 0; i < dtrace_nprobes; i++) {
8373			if ((probe = dtrace_probes[i]) == NULL ||
8374			    dtrace_match_probe(probe, pkp, priv, uid,
8375			    zoneid) <= 0)
8376				continue;
8377
8378			nmatched++;
8379
8380			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8381				break;
8382		}
8383
8384		return (nmatched);
8385	}
8386
8387	/*
8388	 * If we selected a hash table, iterate over each probe of the same key
8389	 * name and invoke the callback for every probe that matches the other
8390	 * attributes of our input probe key.
8391	 */
8392	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
8393	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
8394
8395		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
8396			continue;
8397
8398		nmatched++;
8399
8400		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8401			break;
8402	}
8403
8404	return (nmatched);
8405}
8406
8407/*
8408 * Return the function pointer dtrace_probecmp() should use to compare the
8409 * specified pattern with a string.  For NULL or empty patterns, we select
8410 * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
8411 * For non-empty non-glob strings, we use dtrace_match_string().
8412 */
8413static dtrace_probekey_f *
8414dtrace_probekey_func(const char *p)
8415{
8416	char c;
8417
8418	if (p == NULL || *p == '\0')
8419		return (&dtrace_match_nul);
8420
8421	while ((c = *p++) != '\0') {
8422		if (c == '[' || c == '?' || c == '*' || c == '\\')
8423			return (&dtrace_match_glob);
8424	}
8425
8426	return (&dtrace_match_string);
8427}
8428
8429/*
8430 * Build a probe comparison key for use with dtrace_match_probe() from the
8431 * given probe description.  By convention, a null key only matches anchored
8432 * probes: if each field is the empty string, reset dtpk_fmatch to
8433 * dtrace_match_nonzero().
8434 */
8435static void
8436dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
8437{
8438	pkp->dtpk_prov = pdp->dtpd_provider;
8439	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
8440
8441	pkp->dtpk_mod = pdp->dtpd_mod;
8442	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
8443
8444	pkp->dtpk_func = pdp->dtpd_func;
8445	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
8446
8447	pkp->dtpk_name = pdp->dtpd_name;
8448	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
8449
8450	pkp->dtpk_id = pdp->dtpd_id;
8451
8452	if (pkp->dtpk_id == DTRACE_IDNONE &&
8453	    pkp->dtpk_pmatch == &dtrace_match_nul &&
8454	    pkp->dtpk_mmatch == &dtrace_match_nul &&
8455	    pkp->dtpk_fmatch == &dtrace_match_nul &&
8456	    pkp->dtpk_nmatch == &dtrace_match_nul)
8457		pkp->dtpk_fmatch = &dtrace_match_nonzero;
8458}
8459
8460/*
8461 * DTrace Provider-to-Framework API Functions
8462 *
8463 * These functions implement much of the Provider-to-Framework API, as
8464 * described in <sys/dtrace.h>.  The parts of the API not in this section are
8465 * the functions in the API for probe management (found below), and
8466 * dtrace_probe() itself (found above).
8467 */
8468
8469/*
8470 * Register the calling provider with the DTrace framework.  This should
8471 * generally be called by DTrace providers in their attach(9E) entry point.
8472 */
8473int
8474dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
8475    cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
8476{
8477	dtrace_provider_t *provider;
8478
8479	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
8480		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8481		    "arguments", name ? name : "<NULL>");
8482		return (EINVAL);
8483	}
8484
8485	if (name[0] == '\0' || dtrace_badname(name)) {
8486		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8487		    "provider name", name);
8488		return (EINVAL);
8489	}
8490
8491	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
8492	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
8493	    pops->dtps_destroy == NULL ||
8494	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
8495		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8496		    "provider ops", name);
8497		return (EINVAL);
8498	}
8499
8500	if (dtrace_badattr(&pap->dtpa_provider) ||
8501	    dtrace_badattr(&pap->dtpa_mod) ||
8502	    dtrace_badattr(&pap->dtpa_func) ||
8503	    dtrace_badattr(&pap->dtpa_name) ||
8504	    dtrace_badattr(&pap->dtpa_args)) {
8505		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8506		    "provider attributes", name);
8507		return (EINVAL);
8508	}
8509
8510	if (priv & ~DTRACE_PRIV_ALL) {
8511		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8512		    "privilege attributes", name);
8513		return (EINVAL);
8514	}
8515
8516	if ((priv & DTRACE_PRIV_KERNEL) &&
8517	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
8518	    pops->dtps_usermode == NULL) {
8519		cmn_err(CE_WARN, "failed to register provider '%s': need "
8520		    "dtps_usermode() op for given privilege attributes", name);
8521		return (EINVAL);
8522	}
8523
8524	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
8525	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8526	(void) strcpy(provider->dtpv_name, name);
8527
8528	provider->dtpv_attr = *pap;
8529	provider->dtpv_priv.dtpp_flags = priv;
8530	if (cr != NULL) {
8531		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8532		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8533	}
8534	provider->dtpv_pops = *pops;
8535
8536	if (pops->dtps_provide == NULL) {
8537		ASSERT(pops->dtps_provide_module != NULL);
8538		provider->dtpv_pops.dtps_provide =
8539		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
8540	}
8541
8542	if (pops->dtps_provide_module == NULL) {
8543		ASSERT(pops->dtps_provide != NULL);
8544		provider->dtpv_pops.dtps_provide_module =
8545		    (void (*)(void *, modctl_t *))dtrace_nullop;
8546	}
8547
8548	if (pops->dtps_suspend == NULL) {
8549		ASSERT(pops->dtps_resume == NULL);
8550		provider->dtpv_pops.dtps_suspend =
8551		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8552		provider->dtpv_pops.dtps_resume =
8553		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8554	}
8555
8556	provider->dtpv_arg = arg;
8557	*idp = (dtrace_provider_id_t)provider;
8558
8559	if (pops == &dtrace_provider_ops) {
8560		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8561		ASSERT(MUTEX_HELD(&dtrace_lock));
8562		ASSERT(dtrace_anon.dta_enabling == NULL);
8563
8564		/*
8565		 * We make sure that the DTrace provider is at the head of
8566		 * the provider chain.
8567		 */
8568		provider->dtpv_next = dtrace_provider;
8569		dtrace_provider = provider;
8570		return (0);
8571	}
8572
8573	mutex_enter(&dtrace_provider_lock);
8574	mutex_enter(&dtrace_lock);
8575
8576	/*
8577	 * If there is at least one provider registered, we'll add this
8578	 * provider after the first provider.
8579	 */
8580	if (dtrace_provider != NULL) {
8581		provider->dtpv_next = dtrace_provider->dtpv_next;
8582		dtrace_provider->dtpv_next = provider;
8583	} else {
8584		dtrace_provider = provider;
8585	}
8586
8587	if (dtrace_retained != NULL) {
8588		dtrace_enabling_provide(provider);
8589
8590		/*
8591		 * Now we need to call dtrace_enabling_matchall() -- which
8592		 * will acquire cpu_lock and dtrace_lock.  We therefore need
8593		 * to drop all of our locks before calling into it...
8594		 */
8595		mutex_exit(&dtrace_lock);
8596		mutex_exit(&dtrace_provider_lock);
8597		dtrace_enabling_matchall();
8598
8599		return (0);
8600	}
8601
8602	mutex_exit(&dtrace_lock);
8603	mutex_exit(&dtrace_provider_lock);
8604
8605	return (0);
8606}
8607
8608/*
8609 * Unregister the specified provider from the DTrace framework.  This should
8610 * generally be called by DTrace providers in their detach(9E) entry point.
8611 */
8612int
8613dtrace_unregister(dtrace_provider_id_t id)
8614{
8615	dtrace_provider_t *old = (dtrace_provider_t *)id;
8616	dtrace_provider_t *prev = NULL;
8617	int i, self = 0, noreap = 0;
8618	dtrace_probe_t *probe, *first = NULL;
8619
8620	if (old->dtpv_pops.dtps_enable ==
8621	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
8622		/*
8623		 * If DTrace itself is the provider, we're called with locks
8624		 * already held.
8625		 */
8626		ASSERT(old == dtrace_provider);
8627#if defined(sun)
8628		ASSERT(dtrace_devi != NULL);
8629#endif
8630		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8631		ASSERT(MUTEX_HELD(&dtrace_lock));
8632		self = 1;
8633
8634		if (dtrace_provider->dtpv_next != NULL) {
8635			/*
8636			 * There's another provider here; return failure.
8637			 */
8638			return (EBUSY);
8639		}
8640	} else {
8641		mutex_enter(&dtrace_provider_lock);
8642#if defined(sun)
8643		mutex_enter(&mod_lock);
8644#endif
8645		mutex_enter(&dtrace_lock);
8646	}
8647
8648	/*
8649	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8650	 * probes, we refuse to let providers slither away, unless this
8651	 * provider has already been explicitly invalidated.
8652	 */
8653	if (!old->dtpv_defunct &&
8654	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8655	    dtrace_anon.dta_state->dts_necbs > 0))) {
8656		if (!self) {
8657			mutex_exit(&dtrace_lock);
8658#if defined(sun)
8659			mutex_exit(&mod_lock);
8660#endif
8661			mutex_exit(&dtrace_provider_lock);
8662		}
8663		return (EBUSY);
8664	}
8665
8666	/*
8667	 * Attempt to destroy the probes associated with this provider.
8668	 */
8669	for (i = 0; i < dtrace_nprobes; i++) {
8670		if ((probe = dtrace_probes[i]) == NULL)
8671			continue;
8672
8673		if (probe->dtpr_provider != old)
8674			continue;
8675
8676		if (probe->dtpr_ecb == NULL)
8677			continue;
8678
8679		/*
8680		 * If we are trying to unregister a defunct provider, and the
8681		 * provider was made defunct within the interval dictated by
8682		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8683		 * attempt to reap our enablings.  To denote that the provider
8684		 * should reattempt to unregister itself at some point in the
8685		 * future, we will return a differentiable error code (EAGAIN
8686		 * instead of EBUSY) in this case.
8687		 */
8688		if (dtrace_gethrtime() - old->dtpv_defunct >
8689		    dtrace_unregister_defunct_reap)
8690			noreap = 1;
8691
8692		if (!self) {
8693			mutex_exit(&dtrace_lock);
8694#if defined(sun)
8695			mutex_exit(&mod_lock);
8696#endif
8697			mutex_exit(&dtrace_provider_lock);
8698		}
8699
8700		if (noreap)
8701			return (EBUSY);
8702
8703		(void) taskq_dispatch(dtrace_taskq,
8704		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8705
8706		return (EAGAIN);
8707	}
8708
8709	/*
8710	 * All of the probes for this provider are disabled; we can safely
8711	 * remove all of them from their hash chains and from the probe array.
8712	 */
8713	for (i = 0; i < dtrace_nprobes; i++) {
8714		if ((probe = dtrace_probes[i]) == NULL)
8715			continue;
8716
8717		if (probe->dtpr_provider != old)
8718			continue;
8719
8720		dtrace_probes[i] = NULL;
8721
8722		dtrace_hash_remove(dtrace_bymod, probe);
8723		dtrace_hash_remove(dtrace_byfunc, probe);
8724		dtrace_hash_remove(dtrace_byname, probe);
8725
8726		if (first == NULL) {
8727			first = probe;
8728			probe->dtpr_nextmod = NULL;
8729		} else {
8730			probe->dtpr_nextmod = first;
8731			first = probe;
8732		}
8733	}
8734
8735	/*
8736	 * The provider's probes have been removed from the hash chains and
8737	 * from the probe array.  Now issue a dtrace_sync() to be sure that
8738	 * everyone has cleared out from any probe array processing.
8739	 */
8740	dtrace_sync();
8741
8742	for (probe = first; probe != NULL; probe = first) {
8743		first = probe->dtpr_nextmod;
8744
8745		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8746		    probe->dtpr_arg);
8747		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8748		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8749		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8750#if defined(sun)
8751		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
8752#else
8753		free_unr(dtrace_arena, probe->dtpr_id);
8754#endif
8755		kmem_free(probe, sizeof (dtrace_probe_t));
8756	}
8757
8758	if ((prev = dtrace_provider) == old) {
8759#if defined(sun)
8760		ASSERT(self || dtrace_devi == NULL);
8761		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
8762#endif
8763		dtrace_provider = old->dtpv_next;
8764	} else {
8765		while (prev != NULL && prev->dtpv_next != old)
8766			prev = prev->dtpv_next;
8767
8768		if (prev == NULL) {
8769			panic("attempt to unregister non-existent "
8770			    "dtrace provider %p\n", (void *)id);
8771		}
8772
8773		prev->dtpv_next = old->dtpv_next;
8774	}
8775
8776	if (!self) {
8777		mutex_exit(&dtrace_lock);
8778#if defined(sun)
8779		mutex_exit(&mod_lock);
8780#endif
8781		mutex_exit(&dtrace_provider_lock);
8782	}
8783
8784	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
8785	kmem_free(old, sizeof (dtrace_provider_t));
8786
8787	return (0);
8788}
8789
8790/*
8791 * Invalidate the specified provider.  All subsequent probe lookups for the
8792 * specified provider will fail, but its probes will not be removed.
8793 */
8794void
8795dtrace_invalidate(dtrace_provider_id_t id)
8796{
8797	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
8798
8799	ASSERT(pvp->dtpv_pops.dtps_enable !=
8800	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
8801
8802	mutex_enter(&dtrace_provider_lock);
8803	mutex_enter(&dtrace_lock);
8804
8805	pvp->dtpv_defunct = dtrace_gethrtime();
8806
8807	mutex_exit(&dtrace_lock);
8808	mutex_exit(&dtrace_provider_lock);
8809}
8810
8811/*
8812 * Indicate whether or not DTrace has attached.
8813 */
8814int
8815dtrace_attached(void)
8816{
8817	/*
8818	 * dtrace_provider will be non-NULL iff the DTrace driver has
8819	 * attached.  (It's non-NULL because DTrace is always itself a
8820	 * provider.)
8821	 */
8822	return (dtrace_provider != NULL);
8823}
8824
8825/*
8826 * Remove all the unenabled probes for the given provider.  This function is
8827 * not unlike dtrace_unregister(), except that it doesn't remove the provider
8828 * -- just as many of its associated probes as it can.
8829 */
8830int
8831dtrace_condense(dtrace_provider_id_t id)
8832{
8833	dtrace_provider_t *prov = (dtrace_provider_t *)id;
8834	int i;
8835	dtrace_probe_t *probe;
8836
8837	/*
8838	 * Make sure this isn't the dtrace provider itself.
8839	 */
8840	ASSERT(prov->dtpv_pops.dtps_enable !=
8841	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
8842
8843	mutex_enter(&dtrace_provider_lock);
8844	mutex_enter(&dtrace_lock);
8845
8846	/*
8847	 * Attempt to destroy the probes associated with this provider.
8848	 */
8849	for (i = 0; i < dtrace_nprobes; i++) {
8850		if ((probe = dtrace_probes[i]) == NULL)
8851			continue;
8852
8853		if (probe->dtpr_provider != prov)
8854			continue;
8855
8856		if (probe->dtpr_ecb != NULL)
8857			continue;
8858
8859		dtrace_probes[i] = NULL;
8860
8861		dtrace_hash_remove(dtrace_bymod, probe);
8862		dtrace_hash_remove(dtrace_byfunc, probe);
8863		dtrace_hash_remove(dtrace_byname, probe);
8864
8865		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
8866		    probe->dtpr_arg);
8867		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8868		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8869		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8870		kmem_free(probe, sizeof (dtrace_probe_t));
8871#if defined(sun)
8872		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
8873#else
8874		free_unr(dtrace_arena, i + 1);
8875#endif
8876	}
8877
8878	mutex_exit(&dtrace_lock);
8879	mutex_exit(&dtrace_provider_lock);
8880
8881	return (0);
8882}
8883
8884/*
8885 * DTrace Probe Management Functions
8886 *
8887 * The functions in this section perform the DTrace probe management,
8888 * including functions to create probes, look-up probes, and call into the
8889 * providers to request that probes be provided.  Some of these functions are
8890 * in the Provider-to-Framework API; these functions can be identified by the
8891 * fact that they are not declared "static".
8892 */
8893
8894/*
8895 * Create a probe with the specified module name, function name, and name.
8896 */
8897dtrace_id_t
8898dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
8899    const char *func, const char *name, int aframes, void *arg)
8900{
8901	dtrace_probe_t *probe, **probes;
8902	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
8903	dtrace_id_t id;
8904
8905	if (provider == dtrace_provider) {
8906		ASSERT(MUTEX_HELD(&dtrace_lock));
8907	} else {
8908		mutex_enter(&dtrace_lock);
8909	}
8910
8911#if defined(sun)
8912	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
8913	    VM_BESTFIT | VM_SLEEP);
8914#else
8915	id = alloc_unr(dtrace_arena);
8916#endif
8917	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
8918
8919	probe->dtpr_id = id;
8920	probe->dtpr_gen = dtrace_probegen++;
8921	probe->dtpr_mod = dtrace_strdup(mod);
8922	probe->dtpr_func = dtrace_strdup(func);
8923	probe->dtpr_name = dtrace_strdup(name);
8924	probe->dtpr_arg = arg;
8925	probe->dtpr_aframes = aframes;
8926	probe->dtpr_provider = provider;
8927
8928	dtrace_hash_add(dtrace_bymod, probe);
8929	dtrace_hash_add(dtrace_byfunc, probe);
8930	dtrace_hash_add(dtrace_byname, probe);
8931
8932	if (id - 1 >= dtrace_nprobes) {
8933		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
8934		size_t nsize = osize << 1;
8935
8936		if (nsize == 0) {
8937			ASSERT(osize == 0);
8938			ASSERT(dtrace_probes == NULL);
8939			nsize = sizeof (dtrace_probe_t *);
8940		}
8941
8942		probes = kmem_zalloc(nsize, KM_SLEEP);
8943
8944		if (dtrace_probes == NULL) {
8945			ASSERT(osize == 0);
8946			dtrace_probes = probes;
8947			dtrace_nprobes = 1;
8948		} else {
8949			dtrace_probe_t **oprobes = dtrace_probes;
8950
8951			bcopy(oprobes, probes, osize);
8952			dtrace_membar_producer();
8953			dtrace_probes = probes;
8954
8955			dtrace_sync();
8956
8957			/*
8958			 * All CPUs are now seeing the new probes array; we can
8959			 * safely free the old array.
8960			 */
8961			kmem_free(oprobes, osize);
8962			dtrace_nprobes <<= 1;
8963		}
8964
8965		ASSERT(id - 1 < dtrace_nprobes);
8966	}
8967
8968	ASSERT(dtrace_probes[id - 1] == NULL);
8969	dtrace_probes[id - 1] = probe;
8970
8971	if (provider != dtrace_provider)
8972		mutex_exit(&dtrace_lock);
8973
8974	return (id);
8975}
8976
8977static dtrace_probe_t *
8978dtrace_probe_lookup_id(dtrace_id_t id)
8979{
8980	ASSERT(MUTEX_HELD(&dtrace_lock));
8981
8982	if (id == 0 || id > dtrace_nprobes)
8983		return (NULL);
8984
8985	return (dtrace_probes[id - 1]);
8986}
8987
8988static int
8989dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
8990{
8991	*((dtrace_id_t *)arg) = probe->dtpr_id;
8992
8993	return (DTRACE_MATCH_DONE);
8994}
8995
8996/*
8997 * Look up a probe based on provider and one or more of module name, function
8998 * name and probe name.
8999 */
9000dtrace_id_t
9001dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
9002    char *func, char *name)
9003{
9004	dtrace_probekey_t pkey;
9005	dtrace_id_t id;
9006	int match;
9007
9008	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
9009	pkey.dtpk_pmatch = &dtrace_match_string;
9010	pkey.dtpk_mod = mod;
9011	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
9012	pkey.dtpk_func = func;
9013	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
9014	pkey.dtpk_name = name;
9015	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
9016	pkey.dtpk_id = DTRACE_IDNONE;
9017
9018	mutex_enter(&dtrace_lock);
9019	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
9020	    dtrace_probe_lookup_match, &id);
9021	mutex_exit(&dtrace_lock);
9022
9023	ASSERT(match == 1 || match == 0);
9024	return (match ? id : 0);
9025}
9026
9027/*
9028 * Returns the probe argument associated with the specified probe.
9029 */
9030void *
9031dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
9032{
9033	dtrace_probe_t *probe;
9034	void *rval = NULL;
9035
9036	mutex_enter(&dtrace_lock);
9037
9038	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
9039	    probe->dtpr_provider == (dtrace_provider_t *)id)
9040		rval = probe->dtpr_arg;
9041
9042	mutex_exit(&dtrace_lock);
9043
9044	return (rval);
9045}
9046
9047/*
9048 * Copy a probe into a probe description.
9049 */
9050static void
9051dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
9052{
9053	bzero(pdp, sizeof (dtrace_probedesc_t));
9054	pdp->dtpd_id = prp->dtpr_id;
9055
9056	(void) strncpy(pdp->dtpd_provider,
9057	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
9058
9059	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
9060	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
9061	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
9062}
9063
9064/*
9065 * Called to indicate that a probe -- or probes -- should be provided by a
9066 * specfied provider.  If the specified description is NULL, the provider will
9067 * be told to provide all of its probes.  (This is done whenever a new
9068 * consumer comes along, or whenever a retained enabling is to be matched.) If
9069 * the specified description is non-NULL, the provider is given the
9070 * opportunity to dynamically provide the specified probe, allowing providers
9071 * to support the creation of probes on-the-fly.  (So-called _autocreated_
9072 * probes.)  If the provider is NULL, the operations will be applied to all
9073 * providers; if the provider is non-NULL the operations will only be applied
9074 * to the specified provider.  The dtrace_provider_lock must be held, and the
9075 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
9076 * will need to grab the dtrace_lock when it reenters the framework through
9077 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
9078 */
9079static void
9080dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
9081{
9082#if defined(sun)
9083	modctl_t *ctl;
9084#endif
9085	int all = 0;
9086
9087	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
9088
9089	if (prv == NULL) {
9090		all = 1;
9091		prv = dtrace_provider;
9092	}
9093
9094	do {
9095		/*
9096		 * First, call the blanket provide operation.
9097		 */
9098		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
9099
9100#if defined(sun)
9101		/*
9102		 * Now call the per-module provide operation.  We will grab
9103		 * mod_lock to prevent the list from being modified.  Note
9104		 * that this also prevents the mod_busy bits from changing.
9105		 * (mod_busy can only be changed with mod_lock held.)
9106		 */
9107		mutex_enter(&mod_lock);
9108
9109		ctl = &modules;
9110		do {
9111			if (ctl->mod_busy || ctl->mod_mp == NULL)
9112				continue;
9113
9114			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
9115
9116		} while ((ctl = ctl->mod_next) != &modules);
9117
9118		mutex_exit(&mod_lock);
9119#endif
9120	} while (all && (prv = prv->dtpv_next) != NULL);
9121}
9122
9123#if defined(sun)
9124/*
9125 * Iterate over each probe, and call the Framework-to-Provider API function
9126 * denoted by offs.
9127 */
9128static void
9129dtrace_probe_foreach(uintptr_t offs)
9130{
9131	dtrace_provider_t *prov;
9132	void (*func)(void *, dtrace_id_t, void *);
9133	dtrace_probe_t *probe;
9134	dtrace_icookie_t cookie;
9135	int i;
9136
9137	/*
9138	 * We disable interrupts to walk through the probe array.  This is
9139	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
9140	 * won't see stale data.
9141	 */
9142	cookie = dtrace_interrupt_disable();
9143
9144	for (i = 0; i < dtrace_nprobes; i++) {
9145		if ((probe = dtrace_probes[i]) == NULL)
9146			continue;
9147
9148		if (probe->dtpr_ecb == NULL) {
9149			/*
9150			 * This probe isn't enabled -- don't call the function.
9151			 */
9152			continue;
9153		}
9154
9155		prov = probe->dtpr_provider;
9156		func = *((void(**)(void *, dtrace_id_t, void *))
9157		    ((uintptr_t)&prov->dtpv_pops + offs));
9158
9159		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
9160	}
9161
9162	dtrace_interrupt_enable(cookie);
9163}
9164#endif
9165
9166static int
9167dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
9168{
9169	dtrace_probekey_t pkey;
9170	uint32_t priv;
9171	uid_t uid;
9172	zoneid_t zoneid;
9173
9174	ASSERT(MUTEX_HELD(&dtrace_lock));
9175	dtrace_ecb_create_cache = NULL;
9176
9177	if (desc == NULL) {
9178		/*
9179		 * If we're passed a NULL description, we're being asked to
9180		 * create an ECB with a NULL probe.
9181		 */
9182		(void) dtrace_ecb_create_enable(NULL, enab);
9183		return (0);
9184	}
9185
9186	dtrace_probekey(desc, &pkey);
9187	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
9188	    &priv, &uid, &zoneid);
9189
9190	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
9191	    enab));
9192}
9193
9194/*
9195 * DTrace Helper Provider Functions
9196 */
9197static void
9198dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
9199{
9200	attr->dtat_name = DOF_ATTR_NAME(dofattr);
9201	attr->dtat_data = DOF_ATTR_DATA(dofattr);
9202	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
9203}
9204
9205static void
9206dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
9207    const dof_provider_t *dofprov, char *strtab)
9208{
9209	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
9210	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
9211	    dofprov->dofpv_provattr);
9212	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
9213	    dofprov->dofpv_modattr);
9214	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
9215	    dofprov->dofpv_funcattr);
9216	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
9217	    dofprov->dofpv_nameattr);
9218	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
9219	    dofprov->dofpv_argsattr);
9220}
9221
9222static void
9223dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9224{
9225	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9226	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9227	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
9228	dof_provider_t *provider;
9229	dof_probe_t *probe;
9230	uint32_t *off, *enoff;
9231	uint8_t *arg;
9232	char *strtab;
9233	uint_t i, nprobes;
9234	dtrace_helper_provdesc_t dhpv;
9235	dtrace_helper_probedesc_t dhpb;
9236	dtrace_meta_t *meta = dtrace_meta_pid;
9237	dtrace_mops_t *mops = &meta->dtm_mops;
9238	void *parg;
9239
9240	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9241	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9242	    provider->dofpv_strtab * dof->dofh_secsize);
9243	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9244	    provider->dofpv_probes * dof->dofh_secsize);
9245	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9246	    provider->dofpv_prargs * dof->dofh_secsize);
9247	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9248	    provider->dofpv_proffs * dof->dofh_secsize);
9249
9250	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9251	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
9252	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
9253	enoff = NULL;
9254
9255	/*
9256	 * See dtrace_helper_provider_validate().
9257	 */
9258	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
9259	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
9260		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9261		    provider->dofpv_prenoffs * dof->dofh_secsize);
9262		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
9263	}
9264
9265	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
9266
9267	/*
9268	 * Create the provider.
9269	 */
9270	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9271
9272	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
9273		return;
9274
9275	meta->dtm_count++;
9276
9277	/*
9278	 * Create the probes.
9279	 */
9280	for (i = 0; i < nprobes; i++) {
9281		probe = (dof_probe_t *)(uintptr_t)(daddr +
9282		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
9283
9284		dhpb.dthpb_mod = dhp->dofhp_mod;
9285		dhpb.dthpb_func = strtab + probe->dofpr_func;
9286		dhpb.dthpb_name = strtab + probe->dofpr_name;
9287		dhpb.dthpb_base = probe->dofpr_addr;
9288		dhpb.dthpb_offs = off + probe->dofpr_offidx;
9289		dhpb.dthpb_noffs = probe->dofpr_noffs;
9290		if (enoff != NULL) {
9291			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
9292			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
9293		} else {
9294			dhpb.dthpb_enoffs = NULL;
9295			dhpb.dthpb_nenoffs = 0;
9296		}
9297		dhpb.dthpb_args = arg + probe->dofpr_argidx;
9298		dhpb.dthpb_nargc = probe->dofpr_nargc;
9299		dhpb.dthpb_xargc = probe->dofpr_xargc;
9300		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
9301		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
9302
9303		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
9304	}
9305}
9306
9307static void
9308dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
9309{
9310	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9311	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9312	int i;
9313
9314	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9315
9316	for (i = 0; i < dof->dofh_secnum; i++) {
9317		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9318		    dof->dofh_secoff + i * dof->dofh_secsize);
9319
9320		if (sec->dofs_type != DOF_SECT_PROVIDER)
9321			continue;
9322
9323		dtrace_helper_provide_one(dhp, sec, pid);
9324	}
9325
9326	/*
9327	 * We may have just created probes, so we must now rematch against
9328	 * any retained enablings.  Note that this call will acquire both
9329	 * cpu_lock and dtrace_lock; the fact that we are holding
9330	 * dtrace_meta_lock now is what defines the ordering with respect to
9331	 * these three locks.
9332	 */
9333	dtrace_enabling_matchall();
9334}
9335
9336static void
9337dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9338{
9339	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9340	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9341	dof_sec_t *str_sec;
9342	dof_provider_t *provider;
9343	char *strtab;
9344	dtrace_helper_provdesc_t dhpv;
9345	dtrace_meta_t *meta = dtrace_meta_pid;
9346	dtrace_mops_t *mops = &meta->dtm_mops;
9347
9348	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9349	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9350	    provider->dofpv_strtab * dof->dofh_secsize);
9351
9352	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9353
9354	/*
9355	 * Create the provider.
9356	 */
9357	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9358
9359	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
9360
9361	meta->dtm_count--;
9362}
9363
9364static void
9365dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
9366{
9367	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9368	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9369	int i;
9370
9371	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9372
9373	for (i = 0; i < dof->dofh_secnum; i++) {
9374		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9375		    dof->dofh_secoff + i * dof->dofh_secsize);
9376
9377		if (sec->dofs_type != DOF_SECT_PROVIDER)
9378			continue;
9379
9380		dtrace_helper_provider_remove_one(dhp, sec, pid);
9381	}
9382}
9383
9384/*
9385 * DTrace Meta Provider-to-Framework API Functions
9386 *
9387 * These functions implement the Meta Provider-to-Framework API, as described
9388 * in <sys/dtrace.h>.
9389 */
9390int
9391dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
9392    dtrace_meta_provider_id_t *idp)
9393{
9394	dtrace_meta_t *meta;
9395	dtrace_helpers_t *help, *next;
9396	int i;
9397
9398	*idp = DTRACE_METAPROVNONE;
9399
9400	/*
9401	 * We strictly don't need the name, but we hold onto it for
9402	 * debuggability. All hail error queues!
9403	 */
9404	if (name == NULL) {
9405		cmn_err(CE_WARN, "failed to register meta-provider: "
9406		    "invalid name");
9407		return (EINVAL);
9408	}
9409
9410	if (mops == NULL ||
9411	    mops->dtms_create_probe == NULL ||
9412	    mops->dtms_provide_pid == NULL ||
9413	    mops->dtms_remove_pid == NULL) {
9414		cmn_err(CE_WARN, "failed to register meta-register %s: "
9415		    "invalid ops", name);
9416		return (EINVAL);
9417	}
9418
9419	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
9420	meta->dtm_mops = *mops;
9421	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
9422	(void) strcpy(meta->dtm_name, name);
9423	meta->dtm_arg = arg;
9424
9425	mutex_enter(&dtrace_meta_lock);
9426	mutex_enter(&dtrace_lock);
9427
9428	if (dtrace_meta_pid != NULL) {
9429		mutex_exit(&dtrace_lock);
9430		mutex_exit(&dtrace_meta_lock);
9431		cmn_err(CE_WARN, "failed to register meta-register %s: "
9432		    "user-land meta-provider exists", name);
9433		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
9434		kmem_free(meta, sizeof (dtrace_meta_t));
9435		return (EINVAL);
9436	}
9437
9438	dtrace_meta_pid = meta;
9439	*idp = (dtrace_meta_provider_id_t)meta;
9440
9441	/*
9442	 * If there are providers and probes ready to go, pass them
9443	 * off to the new meta provider now.
9444	 */
9445
9446	help = dtrace_deferred_pid;
9447	dtrace_deferred_pid = NULL;
9448
9449	mutex_exit(&dtrace_lock);
9450
9451	while (help != NULL) {
9452		for (i = 0; i < help->dthps_nprovs; i++) {
9453			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
9454			    help->dthps_pid);
9455		}
9456
9457		next = help->dthps_next;
9458		help->dthps_next = NULL;
9459		help->dthps_prev = NULL;
9460		help->dthps_deferred = 0;
9461		help = next;
9462	}
9463
9464	mutex_exit(&dtrace_meta_lock);
9465
9466	return (0);
9467}
9468
9469int
9470dtrace_meta_unregister(dtrace_meta_provider_id_t id)
9471{
9472	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
9473
9474	mutex_enter(&dtrace_meta_lock);
9475	mutex_enter(&dtrace_lock);
9476
9477	if (old == dtrace_meta_pid) {
9478		pp = &dtrace_meta_pid;
9479	} else {
9480		panic("attempt to unregister non-existent "
9481		    "dtrace meta-provider %p\n", (void *)old);
9482	}
9483
9484	if (old->dtm_count != 0) {
9485		mutex_exit(&dtrace_lock);
9486		mutex_exit(&dtrace_meta_lock);
9487		return (EBUSY);
9488	}
9489
9490	*pp = NULL;
9491
9492	mutex_exit(&dtrace_lock);
9493	mutex_exit(&dtrace_meta_lock);
9494
9495	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
9496	kmem_free(old, sizeof (dtrace_meta_t));
9497
9498	return (0);
9499}
9500
9501
9502/*
9503 * DTrace DIF Object Functions
9504 */
9505static int
9506dtrace_difo_err(uint_t pc, const char *format, ...)
9507{
9508	if (dtrace_err_verbose) {
9509		va_list alist;
9510
9511		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
9512		va_start(alist, format);
9513		(void) vuprintf(format, alist);
9514		va_end(alist);
9515	}
9516
9517#ifdef DTRACE_ERRDEBUG
9518	dtrace_errdebug(format);
9519#endif
9520	return (1);
9521}
9522
9523/*
9524 * Validate a DTrace DIF object by checking the IR instructions.  The following
9525 * rules are currently enforced by dtrace_difo_validate():
9526 *
9527 * 1. Each instruction must have a valid opcode
9528 * 2. Each register, string, variable, or subroutine reference must be valid
9529 * 3. No instruction can modify register %r0 (must be zero)
9530 * 4. All instruction reserved bits must be set to zero
9531 * 5. The last instruction must be a "ret" instruction
9532 * 6. All branch targets must reference a valid instruction _after_ the branch
9533 */
9534static int
9535dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
9536    cred_t *cr)
9537{
9538	int err = 0, i;
9539	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9540	int kcheckload;
9541	uint_t pc;
9542
9543	kcheckload = cr == NULL ||
9544	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
9545
9546	dp->dtdo_destructive = 0;
9547
9548	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9549		dif_instr_t instr = dp->dtdo_buf[pc];
9550
9551		uint_t r1 = DIF_INSTR_R1(instr);
9552		uint_t r2 = DIF_INSTR_R2(instr);
9553		uint_t rd = DIF_INSTR_RD(instr);
9554		uint_t rs = DIF_INSTR_RS(instr);
9555		uint_t label = DIF_INSTR_LABEL(instr);
9556		uint_t v = DIF_INSTR_VAR(instr);
9557		uint_t subr = DIF_INSTR_SUBR(instr);
9558		uint_t type = DIF_INSTR_TYPE(instr);
9559		uint_t op = DIF_INSTR_OP(instr);
9560
9561		switch (op) {
9562		case DIF_OP_OR:
9563		case DIF_OP_XOR:
9564		case DIF_OP_AND:
9565		case DIF_OP_SLL:
9566		case DIF_OP_SRL:
9567		case DIF_OP_SRA:
9568		case DIF_OP_SUB:
9569		case DIF_OP_ADD:
9570		case DIF_OP_MUL:
9571		case DIF_OP_SDIV:
9572		case DIF_OP_UDIV:
9573		case DIF_OP_SREM:
9574		case DIF_OP_UREM:
9575		case DIF_OP_COPYS:
9576			if (r1 >= nregs)
9577				err += efunc(pc, "invalid register %u\n", r1);
9578			if (r2 >= nregs)
9579				err += efunc(pc, "invalid register %u\n", r2);
9580			if (rd >= nregs)
9581				err += efunc(pc, "invalid register %u\n", rd);
9582			if (rd == 0)
9583				err += efunc(pc, "cannot write to %r0\n");
9584			break;
9585		case DIF_OP_NOT:
9586		case DIF_OP_MOV:
9587		case DIF_OP_ALLOCS:
9588			if (r1 >= nregs)
9589				err += efunc(pc, "invalid register %u\n", r1);
9590			if (r2 != 0)
9591				err += efunc(pc, "non-zero reserved bits\n");
9592			if (rd >= nregs)
9593				err += efunc(pc, "invalid register %u\n", rd);
9594			if (rd == 0)
9595				err += efunc(pc, "cannot write to %r0\n");
9596			break;
9597		case DIF_OP_LDSB:
9598		case DIF_OP_LDSH:
9599		case DIF_OP_LDSW:
9600		case DIF_OP_LDUB:
9601		case DIF_OP_LDUH:
9602		case DIF_OP_LDUW:
9603		case DIF_OP_LDX:
9604			if (r1 >= nregs)
9605				err += efunc(pc, "invalid register %u\n", r1);
9606			if (r2 != 0)
9607				err += efunc(pc, "non-zero reserved bits\n");
9608			if (rd >= nregs)
9609				err += efunc(pc, "invalid register %u\n", rd);
9610			if (rd == 0)
9611				err += efunc(pc, "cannot write to %r0\n");
9612			if (kcheckload)
9613				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9614				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9615			break;
9616		case DIF_OP_RLDSB:
9617		case DIF_OP_RLDSH:
9618		case DIF_OP_RLDSW:
9619		case DIF_OP_RLDUB:
9620		case DIF_OP_RLDUH:
9621		case DIF_OP_RLDUW:
9622		case DIF_OP_RLDX:
9623			if (r1 >= nregs)
9624				err += efunc(pc, "invalid register %u\n", r1);
9625			if (r2 != 0)
9626				err += efunc(pc, "non-zero reserved bits\n");
9627			if (rd >= nregs)
9628				err += efunc(pc, "invalid register %u\n", rd);
9629			if (rd == 0)
9630				err += efunc(pc, "cannot write to %r0\n");
9631			break;
9632		case DIF_OP_ULDSB:
9633		case DIF_OP_ULDSH:
9634		case DIF_OP_ULDSW:
9635		case DIF_OP_ULDUB:
9636		case DIF_OP_ULDUH:
9637		case DIF_OP_ULDUW:
9638		case DIF_OP_ULDX:
9639			if (r1 >= nregs)
9640				err += efunc(pc, "invalid register %u\n", r1);
9641			if (r2 != 0)
9642				err += efunc(pc, "non-zero reserved bits\n");
9643			if (rd >= nregs)
9644				err += efunc(pc, "invalid register %u\n", rd);
9645			if (rd == 0)
9646				err += efunc(pc, "cannot write to %r0\n");
9647			break;
9648		case DIF_OP_STB:
9649		case DIF_OP_STH:
9650		case DIF_OP_STW:
9651		case DIF_OP_STX:
9652			if (r1 >= nregs)
9653				err += efunc(pc, "invalid register %u\n", r1);
9654			if (r2 != 0)
9655				err += efunc(pc, "non-zero reserved bits\n");
9656			if (rd >= nregs)
9657				err += efunc(pc, "invalid register %u\n", rd);
9658			if (rd == 0)
9659				err += efunc(pc, "cannot write to 0 address\n");
9660			break;
9661		case DIF_OP_CMP:
9662		case DIF_OP_SCMP:
9663			if (r1 >= nregs)
9664				err += efunc(pc, "invalid register %u\n", r1);
9665			if (r2 >= nregs)
9666				err += efunc(pc, "invalid register %u\n", r2);
9667			if (rd != 0)
9668				err += efunc(pc, "non-zero reserved bits\n");
9669			break;
9670		case DIF_OP_TST:
9671			if (r1 >= nregs)
9672				err += efunc(pc, "invalid register %u\n", r1);
9673			if (r2 != 0 || rd != 0)
9674				err += efunc(pc, "non-zero reserved bits\n");
9675			break;
9676		case DIF_OP_BA:
9677		case DIF_OP_BE:
9678		case DIF_OP_BNE:
9679		case DIF_OP_BG:
9680		case DIF_OP_BGU:
9681		case DIF_OP_BGE:
9682		case DIF_OP_BGEU:
9683		case DIF_OP_BL:
9684		case DIF_OP_BLU:
9685		case DIF_OP_BLE:
9686		case DIF_OP_BLEU:
9687			if (label >= dp->dtdo_len) {
9688				err += efunc(pc, "invalid branch target %u\n",
9689				    label);
9690			}
9691			if (label <= pc) {
9692				err += efunc(pc, "backward branch to %u\n",
9693				    label);
9694			}
9695			break;
9696		case DIF_OP_RET:
9697			if (r1 != 0 || r2 != 0)
9698				err += efunc(pc, "non-zero reserved bits\n");
9699			if (rd >= nregs)
9700				err += efunc(pc, "invalid register %u\n", rd);
9701			break;
9702		case DIF_OP_NOP:
9703		case DIF_OP_POPTS:
9704		case DIF_OP_FLUSHTS:
9705			if (r1 != 0 || r2 != 0 || rd != 0)
9706				err += efunc(pc, "non-zero reserved bits\n");
9707			break;
9708		case DIF_OP_SETX:
9709			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9710				err += efunc(pc, "invalid integer ref %u\n",
9711				    DIF_INSTR_INTEGER(instr));
9712			}
9713			if (rd >= nregs)
9714				err += efunc(pc, "invalid register %u\n", rd);
9715			if (rd == 0)
9716				err += efunc(pc, "cannot write to %r0\n");
9717			break;
9718		case DIF_OP_SETS:
9719			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9720				err += efunc(pc, "invalid string ref %u\n",
9721				    DIF_INSTR_STRING(instr));
9722			}
9723			if (rd >= nregs)
9724				err += efunc(pc, "invalid register %u\n", rd);
9725			if (rd == 0)
9726				err += efunc(pc, "cannot write to %r0\n");
9727			break;
9728		case DIF_OP_LDGA:
9729		case DIF_OP_LDTA:
9730			if (r1 > DIF_VAR_ARRAY_MAX)
9731				err += efunc(pc, "invalid array %u\n", r1);
9732			if (r2 >= nregs)
9733				err += efunc(pc, "invalid register %u\n", r2);
9734			if (rd >= nregs)
9735				err += efunc(pc, "invalid register %u\n", rd);
9736			if (rd == 0)
9737				err += efunc(pc, "cannot write to %r0\n");
9738			break;
9739		case DIF_OP_LDGS:
9740		case DIF_OP_LDTS:
9741		case DIF_OP_LDLS:
9742		case DIF_OP_LDGAA:
9743		case DIF_OP_LDTAA:
9744			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9745				err += efunc(pc, "invalid variable %u\n", v);
9746			if (rd >= nregs)
9747				err += efunc(pc, "invalid register %u\n", rd);
9748			if (rd == 0)
9749				err += efunc(pc, "cannot write to %r0\n");
9750			break;
9751		case DIF_OP_STGS:
9752		case DIF_OP_STTS:
9753		case DIF_OP_STLS:
9754		case DIF_OP_STGAA:
9755		case DIF_OP_STTAA:
9756			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
9757				err += efunc(pc, "invalid variable %u\n", v);
9758			if (rs >= nregs)
9759				err += efunc(pc, "invalid register %u\n", rd);
9760			break;
9761		case DIF_OP_CALL:
9762			if (subr > DIF_SUBR_MAX)
9763				err += efunc(pc, "invalid subr %u\n", subr);
9764			if (rd >= nregs)
9765				err += efunc(pc, "invalid register %u\n", rd);
9766			if (rd == 0)
9767				err += efunc(pc, "cannot write to %r0\n");
9768
9769			if (subr == DIF_SUBR_COPYOUT ||
9770			    subr == DIF_SUBR_COPYOUTSTR) {
9771				dp->dtdo_destructive = 1;
9772			}
9773
9774			if (subr == DIF_SUBR_GETF) {
9775				/*
9776				 * If we have a getf() we need to record that
9777				 * in our state.  Note that our state can be
9778				 * NULL if this is a helper -- but in that
9779				 * case, the call to getf() is itself illegal,
9780				 * and will be caught (slightly later) when
9781				 * the helper is validated.
9782				 */
9783				if (vstate->dtvs_state != NULL)
9784					vstate->dtvs_state->dts_getf++;
9785			}
9786
9787			break;
9788		case DIF_OP_PUSHTR:
9789			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
9790				err += efunc(pc, "invalid ref type %u\n", type);
9791			if (r2 >= nregs)
9792				err += efunc(pc, "invalid register %u\n", r2);
9793			if (rs >= nregs)
9794				err += efunc(pc, "invalid register %u\n", rs);
9795			break;
9796		case DIF_OP_PUSHTV:
9797			if (type != DIF_TYPE_CTF)
9798				err += efunc(pc, "invalid val type %u\n", type);
9799			if (r2 >= nregs)
9800				err += efunc(pc, "invalid register %u\n", r2);
9801			if (rs >= nregs)
9802				err += efunc(pc, "invalid register %u\n", rs);
9803			break;
9804		default:
9805			err += efunc(pc, "invalid opcode %u\n",
9806			    DIF_INSTR_OP(instr));
9807		}
9808	}
9809
9810	if (dp->dtdo_len != 0 &&
9811	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
9812		err += efunc(dp->dtdo_len - 1,
9813		    "expected 'ret' as last DIF instruction\n");
9814	}
9815
9816	if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
9817		/*
9818		 * If we're not returning by reference, the size must be either
9819		 * 0 or the size of one of the base types.
9820		 */
9821		switch (dp->dtdo_rtype.dtdt_size) {
9822		case 0:
9823		case sizeof (uint8_t):
9824		case sizeof (uint16_t):
9825		case sizeof (uint32_t):
9826		case sizeof (uint64_t):
9827			break;
9828
9829		default:
9830			err += efunc(dp->dtdo_len - 1, "bad return size\n");
9831		}
9832	}
9833
9834	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
9835		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
9836		dtrace_diftype_t *vt, *et;
9837		uint_t id, ndx;
9838
9839		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
9840		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
9841		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
9842			err += efunc(i, "unrecognized variable scope %d\n",
9843			    v->dtdv_scope);
9844			break;
9845		}
9846
9847		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
9848		    v->dtdv_kind != DIFV_KIND_SCALAR) {
9849			err += efunc(i, "unrecognized variable type %d\n",
9850			    v->dtdv_kind);
9851			break;
9852		}
9853
9854		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
9855			err += efunc(i, "%d exceeds variable id limit\n", id);
9856			break;
9857		}
9858
9859		if (id < DIF_VAR_OTHER_UBASE)
9860			continue;
9861
9862		/*
9863		 * For user-defined variables, we need to check that this
9864		 * definition is identical to any previous definition that we
9865		 * encountered.
9866		 */
9867		ndx = id - DIF_VAR_OTHER_UBASE;
9868
9869		switch (v->dtdv_scope) {
9870		case DIFV_SCOPE_GLOBAL:
9871			if (ndx < vstate->dtvs_nglobals) {
9872				dtrace_statvar_t *svar;
9873
9874				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
9875					existing = &svar->dtsv_var;
9876			}
9877
9878			break;
9879
9880		case DIFV_SCOPE_THREAD:
9881			if (ndx < vstate->dtvs_ntlocals)
9882				existing = &vstate->dtvs_tlocals[ndx];
9883			break;
9884
9885		case DIFV_SCOPE_LOCAL:
9886			if (ndx < vstate->dtvs_nlocals) {
9887				dtrace_statvar_t *svar;
9888
9889				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
9890					existing = &svar->dtsv_var;
9891			}
9892
9893			break;
9894		}
9895
9896		vt = &v->dtdv_type;
9897
9898		if (vt->dtdt_flags & DIF_TF_BYREF) {
9899			if (vt->dtdt_size == 0) {
9900				err += efunc(i, "zero-sized variable\n");
9901				break;
9902			}
9903
9904			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
9905			    vt->dtdt_size > dtrace_global_maxsize) {
9906				err += efunc(i, "oversized by-ref global\n");
9907				break;
9908			}
9909		}
9910
9911		if (existing == NULL || existing->dtdv_id == 0)
9912			continue;
9913
9914		ASSERT(existing->dtdv_id == v->dtdv_id);
9915		ASSERT(existing->dtdv_scope == v->dtdv_scope);
9916
9917		if (existing->dtdv_kind != v->dtdv_kind)
9918			err += efunc(i, "%d changed variable kind\n", id);
9919
9920		et = &existing->dtdv_type;
9921
9922		if (vt->dtdt_flags != et->dtdt_flags) {
9923			err += efunc(i, "%d changed variable type flags\n", id);
9924			break;
9925		}
9926
9927		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
9928			err += efunc(i, "%d changed variable type size\n", id);
9929			break;
9930		}
9931	}
9932
9933	return (err);
9934}
9935
9936/*
9937 * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
9938 * are much more constrained than normal DIFOs.  Specifically, they may
9939 * not:
9940 *
9941 * 1. Make calls to subroutines other than copyin(), copyinstr() or
9942 *    miscellaneous string routines
9943 * 2. Access DTrace variables other than the args[] array, and the
9944 *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
9945 * 3. Have thread-local variables.
9946 * 4. Have dynamic variables.
9947 */
9948static int
9949dtrace_difo_validate_helper(dtrace_difo_t *dp)
9950{
9951	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9952	int err = 0;
9953	uint_t pc;
9954
9955	for (pc = 0; pc < dp->dtdo_len; pc++) {
9956		dif_instr_t instr = dp->dtdo_buf[pc];
9957
9958		uint_t v = DIF_INSTR_VAR(instr);
9959		uint_t subr = DIF_INSTR_SUBR(instr);
9960		uint_t op = DIF_INSTR_OP(instr);
9961
9962		switch (op) {
9963		case DIF_OP_OR:
9964		case DIF_OP_XOR:
9965		case DIF_OP_AND:
9966		case DIF_OP_SLL:
9967		case DIF_OP_SRL:
9968		case DIF_OP_SRA:
9969		case DIF_OP_SUB:
9970		case DIF_OP_ADD:
9971		case DIF_OP_MUL:
9972		case DIF_OP_SDIV:
9973		case DIF_OP_UDIV:
9974		case DIF_OP_SREM:
9975		case DIF_OP_UREM:
9976		case DIF_OP_COPYS:
9977		case DIF_OP_NOT:
9978		case DIF_OP_MOV:
9979		case DIF_OP_RLDSB:
9980		case DIF_OP_RLDSH:
9981		case DIF_OP_RLDSW:
9982		case DIF_OP_RLDUB:
9983		case DIF_OP_RLDUH:
9984		case DIF_OP_RLDUW:
9985		case DIF_OP_RLDX:
9986		case DIF_OP_ULDSB:
9987		case DIF_OP_ULDSH:
9988		case DIF_OP_ULDSW:
9989		case DIF_OP_ULDUB:
9990		case DIF_OP_ULDUH:
9991		case DIF_OP_ULDUW:
9992		case DIF_OP_ULDX:
9993		case DIF_OP_STB:
9994		case DIF_OP_STH:
9995		case DIF_OP_STW:
9996		case DIF_OP_STX:
9997		case DIF_OP_ALLOCS:
9998		case DIF_OP_CMP:
9999		case DIF_OP_SCMP:
10000		case DIF_OP_TST:
10001		case DIF_OP_BA:
10002		case DIF_OP_BE:
10003		case DIF_OP_BNE:
10004		case DIF_OP_BG:
10005		case DIF_OP_BGU:
10006		case DIF_OP_BGE:
10007		case DIF_OP_BGEU:
10008		case DIF_OP_BL:
10009		case DIF_OP_BLU:
10010		case DIF_OP_BLE:
10011		case DIF_OP_BLEU:
10012		case DIF_OP_RET:
10013		case DIF_OP_NOP:
10014		case DIF_OP_POPTS:
10015		case DIF_OP_FLUSHTS:
10016		case DIF_OP_SETX:
10017		case DIF_OP_SETS:
10018		case DIF_OP_LDGA:
10019		case DIF_OP_LDLS:
10020		case DIF_OP_STGS:
10021		case DIF_OP_STLS:
10022		case DIF_OP_PUSHTR:
10023		case DIF_OP_PUSHTV:
10024			break;
10025
10026		case DIF_OP_LDGS:
10027			if (v >= DIF_VAR_OTHER_UBASE)
10028				break;
10029
10030			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
10031				break;
10032
10033			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
10034			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
10035			    v == DIF_VAR_EXECARGS ||
10036			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
10037			    v == DIF_VAR_UID || v == DIF_VAR_GID)
10038				break;
10039
10040			err += efunc(pc, "illegal variable %u\n", v);
10041			break;
10042
10043		case DIF_OP_LDTA:
10044		case DIF_OP_LDTS:
10045		case DIF_OP_LDGAA:
10046		case DIF_OP_LDTAA:
10047			err += efunc(pc, "illegal dynamic variable load\n");
10048			break;
10049
10050		case DIF_OP_STTS:
10051		case DIF_OP_STGAA:
10052		case DIF_OP_STTAA:
10053			err += efunc(pc, "illegal dynamic variable store\n");
10054			break;
10055
10056		case DIF_OP_CALL:
10057			if (subr == DIF_SUBR_ALLOCA ||
10058			    subr == DIF_SUBR_BCOPY ||
10059			    subr == DIF_SUBR_COPYIN ||
10060			    subr == DIF_SUBR_COPYINTO ||
10061			    subr == DIF_SUBR_COPYINSTR ||
10062			    subr == DIF_SUBR_INDEX ||
10063			    subr == DIF_SUBR_INET_NTOA ||
10064			    subr == DIF_SUBR_INET_NTOA6 ||
10065			    subr == DIF_SUBR_INET_NTOP ||
10066			    subr == DIF_SUBR_JSON ||
10067			    subr == DIF_SUBR_LLTOSTR ||
10068			    subr == DIF_SUBR_STRTOLL ||
10069			    subr == DIF_SUBR_RINDEX ||
10070			    subr == DIF_SUBR_STRCHR ||
10071			    subr == DIF_SUBR_STRJOIN ||
10072			    subr == DIF_SUBR_STRRCHR ||
10073			    subr == DIF_SUBR_STRSTR ||
10074			    subr == DIF_SUBR_HTONS ||
10075			    subr == DIF_SUBR_HTONL ||
10076			    subr == DIF_SUBR_HTONLL ||
10077			    subr == DIF_SUBR_NTOHS ||
10078			    subr == DIF_SUBR_NTOHL ||
10079			    subr == DIF_SUBR_NTOHLL ||
10080			    subr == DIF_SUBR_MEMREF ||
10081#if !defined(sun)
10082			    subr == DIF_SUBR_MEMSTR ||
10083#endif
10084			    subr == DIF_SUBR_TYPEREF)
10085				break;
10086
10087			err += efunc(pc, "invalid subr %u\n", subr);
10088			break;
10089
10090		default:
10091			err += efunc(pc, "invalid opcode %u\n",
10092			    DIF_INSTR_OP(instr));
10093		}
10094	}
10095
10096	return (err);
10097}
10098
10099/*
10100 * Returns 1 if the expression in the DIF object can be cached on a per-thread
10101 * basis; 0 if not.
10102 */
10103static int
10104dtrace_difo_cacheable(dtrace_difo_t *dp)
10105{
10106	int i;
10107
10108	if (dp == NULL)
10109		return (0);
10110
10111	for (i = 0; i < dp->dtdo_varlen; i++) {
10112		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10113
10114		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
10115			continue;
10116
10117		switch (v->dtdv_id) {
10118		case DIF_VAR_CURTHREAD:
10119		case DIF_VAR_PID:
10120		case DIF_VAR_TID:
10121		case DIF_VAR_EXECARGS:
10122		case DIF_VAR_EXECNAME:
10123		case DIF_VAR_ZONENAME:
10124			break;
10125
10126		default:
10127			return (0);
10128		}
10129	}
10130
10131	/*
10132	 * This DIF object may be cacheable.  Now we need to look for any
10133	 * array loading instructions, any memory loading instructions, or
10134	 * any stores to thread-local variables.
10135	 */
10136	for (i = 0; i < dp->dtdo_len; i++) {
10137		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
10138
10139		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
10140		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
10141		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
10142		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
10143			return (0);
10144	}
10145
10146	return (1);
10147}
10148
10149static void
10150dtrace_difo_hold(dtrace_difo_t *dp)
10151{
10152	int i;
10153
10154	ASSERT(MUTEX_HELD(&dtrace_lock));
10155
10156	dp->dtdo_refcnt++;
10157	ASSERT(dp->dtdo_refcnt != 0);
10158
10159	/*
10160	 * We need to check this DIF object for references to the variable
10161	 * DIF_VAR_VTIMESTAMP.
10162	 */
10163	for (i = 0; i < dp->dtdo_varlen; i++) {
10164		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10165
10166		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10167			continue;
10168
10169		if (dtrace_vtime_references++ == 0)
10170			dtrace_vtime_enable();
10171	}
10172}
10173
10174/*
10175 * This routine calculates the dynamic variable chunksize for a given DIF
10176 * object.  The calculation is not fool-proof, and can probably be tricked by
10177 * malicious DIF -- but it works for all compiler-generated DIF.  Because this
10178 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
10179 * if a dynamic variable size exceeds the chunksize.
10180 */
10181static void
10182dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10183{
10184	uint64_t sval = 0;
10185	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
10186	const dif_instr_t *text = dp->dtdo_buf;
10187	uint_t pc, srd = 0;
10188	uint_t ttop = 0;
10189	size_t size, ksize;
10190	uint_t id, i;
10191
10192	for (pc = 0; pc < dp->dtdo_len; pc++) {
10193		dif_instr_t instr = text[pc];
10194		uint_t op = DIF_INSTR_OP(instr);
10195		uint_t rd = DIF_INSTR_RD(instr);
10196		uint_t r1 = DIF_INSTR_R1(instr);
10197		uint_t nkeys = 0;
10198		uchar_t scope = 0;
10199
10200		dtrace_key_t *key = tupregs;
10201
10202		switch (op) {
10203		case DIF_OP_SETX:
10204			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
10205			srd = rd;
10206			continue;
10207
10208		case DIF_OP_STTS:
10209			key = &tupregs[DIF_DTR_NREGS];
10210			key[0].dttk_size = 0;
10211			key[1].dttk_size = 0;
10212			nkeys = 2;
10213			scope = DIFV_SCOPE_THREAD;
10214			break;
10215
10216		case DIF_OP_STGAA:
10217		case DIF_OP_STTAA:
10218			nkeys = ttop;
10219
10220			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
10221				key[nkeys++].dttk_size = 0;
10222
10223			key[nkeys++].dttk_size = 0;
10224
10225			if (op == DIF_OP_STTAA) {
10226				scope = DIFV_SCOPE_THREAD;
10227			} else {
10228				scope = DIFV_SCOPE_GLOBAL;
10229			}
10230
10231			break;
10232
10233		case DIF_OP_PUSHTR:
10234			if (ttop == DIF_DTR_NREGS)
10235				return;
10236
10237			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
10238				/*
10239				 * If the register for the size of the "pushtr"
10240				 * is %r0 (or the value is 0) and the type is
10241				 * a string, we'll use the system-wide default
10242				 * string size.
10243				 */
10244				tupregs[ttop++].dttk_size =
10245				    dtrace_strsize_default;
10246			} else {
10247				if (srd == 0)
10248					return;
10249
10250				tupregs[ttop++].dttk_size = sval;
10251			}
10252
10253			break;
10254
10255		case DIF_OP_PUSHTV:
10256			if (ttop == DIF_DTR_NREGS)
10257				return;
10258
10259			tupregs[ttop++].dttk_size = 0;
10260			break;
10261
10262		case DIF_OP_FLUSHTS:
10263			ttop = 0;
10264			break;
10265
10266		case DIF_OP_POPTS:
10267			if (ttop != 0)
10268				ttop--;
10269			break;
10270		}
10271
10272		sval = 0;
10273		srd = 0;
10274
10275		if (nkeys == 0)
10276			continue;
10277
10278		/*
10279		 * We have a dynamic variable allocation; calculate its size.
10280		 */
10281		for (ksize = 0, i = 0; i < nkeys; i++)
10282			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
10283
10284		size = sizeof (dtrace_dynvar_t);
10285		size += sizeof (dtrace_key_t) * (nkeys - 1);
10286		size += ksize;
10287
10288		/*
10289		 * Now we need to determine the size of the stored data.
10290		 */
10291		id = DIF_INSTR_VAR(instr);
10292
10293		for (i = 0; i < dp->dtdo_varlen; i++) {
10294			dtrace_difv_t *v = &dp->dtdo_vartab[i];
10295
10296			if (v->dtdv_id == id && v->dtdv_scope == scope) {
10297				size += v->dtdv_type.dtdt_size;
10298				break;
10299			}
10300		}
10301
10302		if (i == dp->dtdo_varlen)
10303			return;
10304
10305		/*
10306		 * We have the size.  If this is larger than the chunk size
10307		 * for our dynamic variable state, reset the chunk size.
10308		 */
10309		size = P2ROUNDUP(size, sizeof (uint64_t));
10310
10311		if (size > vstate->dtvs_dynvars.dtds_chunksize)
10312			vstate->dtvs_dynvars.dtds_chunksize = size;
10313	}
10314}
10315
10316static void
10317dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10318{
10319	int i, oldsvars, osz, nsz, otlocals, ntlocals;
10320	uint_t id;
10321
10322	ASSERT(MUTEX_HELD(&dtrace_lock));
10323	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
10324
10325	for (i = 0; i < dp->dtdo_varlen; i++) {
10326		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10327		dtrace_statvar_t *svar, ***svarp = NULL;
10328		size_t dsize = 0;
10329		uint8_t scope = v->dtdv_scope;
10330		int *np = NULL;
10331
10332		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10333			continue;
10334
10335		id -= DIF_VAR_OTHER_UBASE;
10336
10337		switch (scope) {
10338		case DIFV_SCOPE_THREAD:
10339			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
10340				dtrace_difv_t *tlocals;
10341
10342				if ((ntlocals = (otlocals << 1)) == 0)
10343					ntlocals = 1;
10344
10345				osz = otlocals * sizeof (dtrace_difv_t);
10346				nsz = ntlocals * sizeof (dtrace_difv_t);
10347
10348				tlocals = kmem_zalloc(nsz, KM_SLEEP);
10349
10350				if (osz != 0) {
10351					bcopy(vstate->dtvs_tlocals,
10352					    tlocals, osz);
10353					kmem_free(vstate->dtvs_tlocals, osz);
10354				}
10355
10356				vstate->dtvs_tlocals = tlocals;
10357				vstate->dtvs_ntlocals = ntlocals;
10358			}
10359
10360			vstate->dtvs_tlocals[id] = *v;
10361			continue;
10362
10363		case DIFV_SCOPE_LOCAL:
10364			np = &vstate->dtvs_nlocals;
10365			svarp = &vstate->dtvs_locals;
10366
10367			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10368				dsize = NCPU * (v->dtdv_type.dtdt_size +
10369				    sizeof (uint64_t));
10370			else
10371				dsize = NCPU * sizeof (uint64_t);
10372
10373			break;
10374
10375		case DIFV_SCOPE_GLOBAL:
10376			np = &vstate->dtvs_nglobals;
10377			svarp = &vstate->dtvs_globals;
10378
10379			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10380				dsize = v->dtdv_type.dtdt_size +
10381				    sizeof (uint64_t);
10382
10383			break;
10384
10385		default:
10386			ASSERT(0);
10387		}
10388
10389		while (id >= (oldsvars = *np)) {
10390			dtrace_statvar_t **statics;
10391			int newsvars, oldsize, newsize;
10392
10393			if ((newsvars = (oldsvars << 1)) == 0)
10394				newsvars = 1;
10395
10396			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
10397			newsize = newsvars * sizeof (dtrace_statvar_t *);
10398
10399			statics = kmem_zalloc(newsize, KM_SLEEP);
10400
10401			if (oldsize != 0) {
10402				bcopy(*svarp, statics, oldsize);
10403				kmem_free(*svarp, oldsize);
10404			}
10405
10406			*svarp = statics;
10407			*np = newsvars;
10408		}
10409
10410		if ((svar = (*svarp)[id]) == NULL) {
10411			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
10412			svar->dtsv_var = *v;
10413
10414			if ((svar->dtsv_size = dsize) != 0) {
10415				svar->dtsv_data = (uint64_t)(uintptr_t)
10416				    kmem_zalloc(dsize, KM_SLEEP);
10417			}
10418
10419			(*svarp)[id] = svar;
10420		}
10421
10422		svar->dtsv_refcnt++;
10423	}
10424
10425	dtrace_difo_chunksize(dp, vstate);
10426	dtrace_difo_hold(dp);
10427}
10428
10429static dtrace_difo_t *
10430dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10431{
10432	dtrace_difo_t *new;
10433	size_t sz;
10434
10435	ASSERT(dp->dtdo_buf != NULL);
10436	ASSERT(dp->dtdo_refcnt != 0);
10437
10438	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10439
10440	ASSERT(dp->dtdo_buf != NULL);
10441	sz = dp->dtdo_len * sizeof (dif_instr_t);
10442	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
10443	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
10444	new->dtdo_len = dp->dtdo_len;
10445
10446	if (dp->dtdo_strtab != NULL) {
10447		ASSERT(dp->dtdo_strlen != 0);
10448		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
10449		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
10450		new->dtdo_strlen = dp->dtdo_strlen;
10451	}
10452
10453	if (dp->dtdo_inttab != NULL) {
10454		ASSERT(dp->dtdo_intlen != 0);
10455		sz = dp->dtdo_intlen * sizeof (uint64_t);
10456		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
10457		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
10458		new->dtdo_intlen = dp->dtdo_intlen;
10459	}
10460
10461	if (dp->dtdo_vartab != NULL) {
10462		ASSERT(dp->dtdo_varlen != 0);
10463		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
10464		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
10465		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
10466		new->dtdo_varlen = dp->dtdo_varlen;
10467	}
10468
10469	dtrace_difo_init(new, vstate);
10470	return (new);
10471}
10472
10473static void
10474dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10475{
10476	int i;
10477
10478	ASSERT(dp->dtdo_refcnt == 0);
10479
10480	for (i = 0; i < dp->dtdo_varlen; i++) {
10481		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10482		dtrace_statvar_t *svar, **svarp = NULL;
10483		uint_t id;
10484		uint8_t scope = v->dtdv_scope;
10485		int *np = NULL;
10486
10487		switch (scope) {
10488		case DIFV_SCOPE_THREAD:
10489			continue;
10490
10491		case DIFV_SCOPE_LOCAL:
10492			np = &vstate->dtvs_nlocals;
10493			svarp = vstate->dtvs_locals;
10494			break;
10495
10496		case DIFV_SCOPE_GLOBAL:
10497			np = &vstate->dtvs_nglobals;
10498			svarp = vstate->dtvs_globals;
10499			break;
10500
10501		default:
10502			ASSERT(0);
10503		}
10504
10505		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10506			continue;
10507
10508		id -= DIF_VAR_OTHER_UBASE;
10509		ASSERT(id < *np);
10510
10511		svar = svarp[id];
10512		ASSERT(svar != NULL);
10513		ASSERT(svar->dtsv_refcnt > 0);
10514
10515		if (--svar->dtsv_refcnt > 0)
10516			continue;
10517
10518		if (svar->dtsv_size != 0) {
10519			ASSERT(svar->dtsv_data != 0);
10520			kmem_free((void *)(uintptr_t)svar->dtsv_data,
10521			    svar->dtsv_size);
10522		}
10523
10524		kmem_free(svar, sizeof (dtrace_statvar_t));
10525		svarp[id] = NULL;
10526	}
10527
10528	if (dp->dtdo_buf != NULL)
10529		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10530	if (dp->dtdo_inttab != NULL)
10531		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10532	if (dp->dtdo_strtab != NULL)
10533		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10534	if (dp->dtdo_vartab != NULL)
10535		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10536
10537	kmem_free(dp, sizeof (dtrace_difo_t));
10538}
10539
10540static void
10541dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10542{
10543	int i;
10544
10545	ASSERT(MUTEX_HELD(&dtrace_lock));
10546	ASSERT(dp->dtdo_refcnt != 0);
10547
10548	for (i = 0; i < dp->dtdo_varlen; i++) {
10549		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10550
10551		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10552			continue;
10553
10554		ASSERT(dtrace_vtime_references > 0);
10555		if (--dtrace_vtime_references == 0)
10556			dtrace_vtime_disable();
10557	}
10558
10559	if (--dp->dtdo_refcnt == 0)
10560		dtrace_difo_destroy(dp, vstate);
10561}
10562
10563/*
10564 * DTrace Format Functions
10565 */
10566static uint16_t
10567dtrace_format_add(dtrace_state_t *state, char *str)
10568{
10569	char *fmt, **new;
10570	uint16_t ndx, len = strlen(str) + 1;
10571
10572	fmt = kmem_zalloc(len, KM_SLEEP);
10573	bcopy(str, fmt, len);
10574
10575	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10576		if (state->dts_formats[ndx] == NULL) {
10577			state->dts_formats[ndx] = fmt;
10578			return (ndx + 1);
10579		}
10580	}
10581
10582	if (state->dts_nformats == USHRT_MAX) {
10583		/*
10584		 * This is only likely if a denial-of-service attack is being
10585		 * attempted.  As such, it's okay to fail silently here.
10586		 */
10587		kmem_free(fmt, len);
10588		return (0);
10589	}
10590
10591	/*
10592	 * For simplicity, we always resize the formats array to be exactly the
10593	 * number of formats.
10594	 */
10595	ndx = state->dts_nformats++;
10596	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10597
10598	if (state->dts_formats != NULL) {
10599		ASSERT(ndx != 0);
10600		bcopy(state->dts_formats, new, ndx * sizeof (char *));
10601		kmem_free(state->dts_formats, ndx * sizeof (char *));
10602	}
10603
10604	state->dts_formats = new;
10605	state->dts_formats[ndx] = fmt;
10606
10607	return (ndx + 1);
10608}
10609
10610static void
10611dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10612{
10613	char *fmt;
10614
10615	ASSERT(state->dts_formats != NULL);
10616	ASSERT(format <= state->dts_nformats);
10617	ASSERT(state->dts_formats[format - 1] != NULL);
10618
10619	fmt = state->dts_formats[format - 1];
10620	kmem_free(fmt, strlen(fmt) + 1);
10621	state->dts_formats[format - 1] = NULL;
10622}
10623
10624static void
10625dtrace_format_destroy(dtrace_state_t *state)
10626{
10627	int i;
10628
10629	if (state->dts_nformats == 0) {
10630		ASSERT(state->dts_formats == NULL);
10631		return;
10632	}
10633
10634	ASSERT(state->dts_formats != NULL);
10635
10636	for (i = 0; i < state->dts_nformats; i++) {
10637		char *fmt = state->dts_formats[i];
10638
10639		if (fmt == NULL)
10640			continue;
10641
10642		kmem_free(fmt, strlen(fmt) + 1);
10643	}
10644
10645	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10646	state->dts_nformats = 0;
10647	state->dts_formats = NULL;
10648}
10649
10650/*
10651 * DTrace Predicate Functions
10652 */
10653static dtrace_predicate_t *
10654dtrace_predicate_create(dtrace_difo_t *dp)
10655{
10656	dtrace_predicate_t *pred;
10657
10658	ASSERT(MUTEX_HELD(&dtrace_lock));
10659	ASSERT(dp->dtdo_refcnt != 0);
10660
10661	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10662	pred->dtp_difo = dp;
10663	pred->dtp_refcnt = 1;
10664
10665	if (!dtrace_difo_cacheable(dp))
10666		return (pred);
10667
10668	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10669		/*
10670		 * This is only theoretically possible -- we have had 2^32
10671		 * cacheable predicates on this machine.  We cannot allow any
10672		 * more predicates to become cacheable:  as unlikely as it is,
10673		 * there may be a thread caching a (now stale) predicate cache
10674		 * ID. (N.B.: the temptation is being successfully resisted to
10675		 * have this cmn_err() "Holy shit -- we executed this code!")
10676		 */
10677		return (pred);
10678	}
10679
10680	pred->dtp_cacheid = dtrace_predcache_id++;
10681
10682	return (pred);
10683}
10684
10685static void
10686dtrace_predicate_hold(dtrace_predicate_t *pred)
10687{
10688	ASSERT(MUTEX_HELD(&dtrace_lock));
10689	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
10690	ASSERT(pred->dtp_refcnt > 0);
10691
10692	pred->dtp_refcnt++;
10693}
10694
10695static void
10696dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
10697{
10698	dtrace_difo_t *dp = pred->dtp_difo;
10699
10700	ASSERT(MUTEX_HELD(&dtrace_lock));
10701	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
10702	ASSERT(pred->dtp_refcnt > 0);
10703
10704	if (--pred->dtp_refcnt == 0) {
10705		dtrace_difo_release(pred->dtp_difo, vstate);
10706		kmem_free(pred, sizeof (dtrace_predicate_t));
10707	}
10708}
10709
10710/*
10711 * DTrace Action Description Functions
10712 */
10713static dtrace_actdesc_t *
10714dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
10715    uint64_t uarg, uint64_t arg)
10716{
10717	dtrace_actdesc_t *act;
10718
10719#if defined(sun)
10720	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
10721	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
10722#endif
10723
10724	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
10725	act->dtad_kind = kind;
10726	act->dtad_ntuple = ntuple;
10727	act->dtad_uarg = uarg;
10728	act->dtad_arg = arg;
10729	act->dtad_refcnt = 1;
10730
10731	return (act);
10732}
10733
10734static void
10735dtrace_actdesc_hold(dtrace_actdesc_t *act)
10736{
10737	ASSERT(act->dtad_refcnt >= 1);
10738	act->dtad_refcnt++;
10739}
10740
10741static void
10742dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
10743{
10744	dtrace_actkind_t kind = act->dtad_kind;
10745	dtrace_difo_t *dp;
10746
10747	ASSERT(act->dtad_refcnt >= 1);
10748
10749	if (--act->dtad_refcnt != 0)
10750		return;
10751
10752	if ((dp = act->dtad_difo) != NULL)
10753		dtrace_difo_release(dp, vstate);
10754
10755	if (DTRACEACT_ISPRINTFLIKE(kind)) {
10756		char *str = (char *)(uintptr_t)act->dtad_arg;
10757
10758#if defined(sun)
10759		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
10760		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
10761#endif
10762
10763		if (str != NULL)
10764			kmem_free(str, strlen(str) + 1);
10765	}
10766
10767	kmem_free(act, sizeof (dtrace_actdesc_t));
10768}
10769
10770/*
10771 * DTrace ECB Functions
10772 */
10773static dtrace_ecb_t *
10774dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
10775{
10776	dtrace_ecb_t *ecb;
10777	dtrace_epid_t epid;
10778
10779	ASSERT(MUTEX_HELD(&dtrace_lock));
10780
10781	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
10782	ecb->dte_predicate = NULL;
10783	ecb->dte_probe = probe;
10784
10785	/*
10786	 * The default size is the size of the default action: recording
10787	 * the header.
10788	 */
10789	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
10790	ecb->dte_alignment = sizeof (dtrace_epid_t);
10791
10792	epid = state->dts_epid++;
10793
10794	if (epid - 1 >= state->dts_necbs) {
10795		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
10796		int necbs = state->dts_necbs << 1;
10797
10798		ASSERT(epid == state->dts_necbs + 1);
10799
10800		if (necbs == 0) {
10801			ASSERT(oecbs == NULL);
10802			necbs = 1;
10803		}
10804
10805		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
10806
10807		if (oecbs != NULL)
10808			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
10809
10810		dtrace_membar_producer();
10811		state->dts_ecbs = ecbs;
10812
10813		if (oecbs != NULL) {
10814			/*
10815			 * If this state is active, we must dtrace_sync()
10816			 * before we can free the old dts_ecbs array:  we're
10817			 * coming in hot, and there may be active ring
10818			 * buffer processing (which indexes into the dts_ecbs
10819			 * array) on another CPU.
10820			 */
10821			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
10822				dtrace_sync();
10823
10824			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
10825		}
10826
10827		dtrace_membar_producer();
10828		state->dts_necbs = necbs;
10829	}
10830
10831	ecb->dte_state = state;
10832
10833	ASSERT(state->dts_ecbs[epid - 1] == NULL);
10834	dtrace_membar_producer();
10835	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
10836
10837	return (ecb);
10838}
10839
10840static void
10841dtrace_ecb_enable(dtrace_ecb_t *ecb)
10842{
10843	dtrace_probe_t *probe = ecb->dte_probe;
10844
10845	ASSERT(MUTEX_HELD(&cpu_lock));
10846	ASSERT(MUTEX_HELD(&dtrace_lock));
10847	ASSERT(ecb->dte_next == NULL);
10848
10849	if (probe == NULL) {
10850		/*
10851		 * This is the NULL probe -- there's nothing to do.
10852		 */
10853		return;
10854	}
10855
10856	if (probe->dtpr_ecb == NULL) {
10857		dtrace_provider_t *prov = probe->dtpr_provider;
10858
10859		/*
10860		 * We're the first ECB on this probe.
10861		 */
10862		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
10863
10864		if (ecb->dte_predicate != NULL)
10865			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
10866
10867		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
10868		    probe->dtpr_id, probe->dtpr_arg);
10869	} else {
10870		/*
10871		 * This probe is already active.  Swing the last pointer to
10872		 * point to the new ECB, and issue a dtrace_sync() to assure
10873		 * that all CPUs have seen the change.
10874		 */
10875		ASSERT(probe->dtpr_ecb_last != NULL);
10876		probe->dtpr_ecb_last->dte_next = ecb;
10877		probe->dtpr_ecb_last = ecb;
10878		probe->dtpr_predcache = 0;
10879
10880		dtrace_sync();
10881	}
10882}
10883
10884static void
10885dtrace_ecb_resize(dtrace_ecb_t *ecb)
10886{
10887	dtrace_action_t *act;
10888	uint32_t curneeded = UINT32_MAX;
10889	uint32_t aggbase = UINT32_MAX;
10890
10891	/*
10892	 * If we record anything, we always record the dtrace_rechdr_t.  (And
10893	 * we always record it first.)
10894	 */
10895	ecb->dte_size = sizeof (dtrace_rechdr_t);
10896	ecb->dte_alignment = sizeof (dtrace_epid_t);
10897
10898	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10899		dtrace_recdesc_t *rec = &act->dta_rec;
10900		ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
10901
10902		ecb->dte_alignment = MAX(ecb->dte_alignment,
10903		    rec->dtrd_alignment);
10904
10905		if (DTRACEACT_ISAGG(act->dta_kind)) {
10906			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10907
10908			ASSERT(rec->dtrd_size != 0);
10909			ASSERT(agg->dtag_first != NULL);
10910			ASSERT(act->dta_prev->dta_intuple);
10911			ASSERT(aggbase != UINT32_MAX);
10912			ASSERT(curneeded != UINT32_MAX);
10913
10914			agg->dtag_base = aggbase;
10915
10916			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10917			rec->dtrd_offset = curneeded;
10918			curneeded += rec->dtrd_size;
10919			ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
10920
10921			aggbase = UINT32_MAX;
10922			curneeded = UINT32_MAX;
10923		} else if (act->dta_intuple) {
10924			if (curneeded == UINT32_MAX) {
10925				/*
10926				 * This is the first record in a tuple.  Align
10927				 * curneeded to be at offset 4 in an 8-byte
10928				 * aligned block.
10929				 */
10930				ASSERT(act->dta_prev == NULL ||
10931				    !act->dta_prev->dta_intuple);
10932				ASSERT3U(aggbase, ==, UINT32_MAX);
10933				curneeded = P2PHASEUP(ecb->dte_size,
10934				    sizeof (uint64_t), sizeof (dtrace_aggid_t));
10935
10936				aggbase = curneeded - sizeof (dtrace_aggid_t);
10937				ASSERT(IS_P2ALIGNED(aggbase,
10938				    sizeof (uint64_t)));
10939			}
10940			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10941			rec->dtrd_offset = curneeded;
10942			curneeded += rec->dtrd_size;
10943		} else {
10944			/* tuples must be followed by an aggregation */
10945			ASSERT(act->dta_prev == NULL ||
10946			    !act->dta_prev->dta_intuple);
10947
10948			ecb->dte_size = P2ROUNDUP(ecb->dte_size,
10949			    rec->dtrd_alignment);
10950			rec->dtrd_offset = ecb->dte_size;
10951			ecb->dte_size += rec->dtrd_size;
10952			ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
10953		}
10954	}
10955
10956	if ((act = ecb->dte_action) != NULL &&
10957	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
10958	    ecb->dte_size == sizeof (dtrace_rechdr_t)) {
10959		/*
10960		 * If the size is still sizeof (dtrace_rechdr_t), then all
10961		 * actions store no data; set the size to 0.
10962		 */
10963		ecb->dte_size = 0;
10964	}
10965
10966	ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
10967	ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
10968	ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
10969	    ecb->dte_needed);
10970}
10971
10972static dtrace_action_t *
10973dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10974{
10975	dtrace_aggregation_t *agg;
10976	size_t size = sizeof (uint64_t);
10977	int ntuple = desc->dtad_ntuple;
10978	dtrace_action_t *act;
10979	dtrace_recdesc_t *frec;
10980	dtrace_aggid_t aggid;
10981	dtrace_state_t *state = ecb->dte_state;
10982
10983	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
10984	agg->dtag_ecb = ecb;
10985
10986	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
10987
10988	switch (desc->dtad_kind) {
10989	case DTRACEAGG_MIN:
10990		agg->dtag_initial = INT64_MAX;
10991		agg->dtag_aggregate = dtrace_aggregate_min;
10992		break;
10993
10994	case DTRACEAGG_MAX:
10995		agg->dtag_initial = INT64_MIN;
10996		agg->dtag_aggregate = dtrace_aggregate_max;
10997		break;
10998
10999	case DTRACEAGG_COUNT:
11000		agg->dtag_aggregate = dtrace_aggregate_count;
11001		break;
11002
11003	case DTRACEAGG_QUANTIZE:
11004		agg->dtag_aggregate = dtrace_aggregate_quantize;
11005		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
11006		    sizeof (uint64_t);
11007		break;
11008
11009	case DTRACEAGG_LQUANTIZE: {
11010		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
11011		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
11012
11013		agg->dtag_initial = desc->dtad_arg;
11014		agg->dtag_aggregate = dtrace_aggregate_lquantize;
11015
11016		if (step == 0 || levels == 0)
11017			goto err;
11018
11019		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
11020		break;
11021	}
11022
11023	case DTRACEAGG_LLQUANTIZE: {
11024		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
11025		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
11026		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
11027		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
11028		int64_t v;
11029
11030		agg->dtag_initial = desc->dtad_arg;
11031		agg->dtag_aggregate = dtrace_aggregate_llquantize;
11032
11033		if (factor < 2 || low >= high || nsteps < factor)
11034			goto err;
11035
11036		/*
11037		 * Now check that the number of steps evenly divides a power
11038		 * of the factor.  (This assures both integer bucket size and
11039		 * linearity within each magnitude.)
11040		 */
11041		for (v = factor; v < nsteps; v *= factor)
11042			continue;
11043
11044		if ((v % nsteps) || (nsteps % factor))
11045			goto err;
11046
11047		size = (dtrace_aggregate_llquantize_bucket(factor,
11048		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
11049		break;
11050	}
11051
11052	case DTRACEAGG_AVG:
11053		agg->dtag_aggregate = dtrace_aggregate_avg;
11054		size = sizeof (uint64_t) * 2;
11055		break;
11056
11057	case DTRACEAGG_STDDEV:
11058		agg->dtag_aggregate = dtrace_aggregate_stddev;
11059		size = sizeof (uint64_t) * 4;
11060		break;
11061
11062	case DTRACEAGG_SUM:
11063		agg->dtag_aggregate = dtrace_aggregate_sum;
11064		break;
11065
11066	default:
11067		goto err;
11068	}
11069
11070	agg->dtag_action.dta_rec.dtrd_size = size;
11071
11072	if (ntuple == 0)
11073		goto err;
11074
11075	/*
11076	 * We must make sure that we have enough actions for the n-tuple.
11077	 */
11078	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
11079		if (DTRACEACT_ISAGG(act->dta_kind))
11080			break;
11081
11082		if (--ntuple == 0) {
11083			/*
11084			 * This is the action with which our n-tuple begins.
11085			 */
11086			agg->dtag_first = act;
11087			goto success;
11088		}
11089	}
11090
11091	/*
11092	 * This n-tuple is short by ntuple elements.  Return failure.
11093	 */
11094	ASSERT(ntuple != 0);
11095err:
11096	kmem_free(agg, sizeof (dtrace_aggregation_t));
11097	return (NULL);
11098
11099success:
11100	/*
11101	 * If the last action in the tuple has a size of zero, it's actually
11102	 * an expression argument for the aggregating action.
11103	 */
11104	ASSERT(ecb->dte_action_last != NULL);
11105	act = ecb->dte_action_last;
11106
11107	if (act->dta_kind == DTRACEACT_DIFEXPR) {
11108		ASSERT(act->dta_difo != NULL);
11109
11110		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
11111			agg->dtag_hasarg = 1;
11112	}
11113
11114	/*
11115	 * We need to allocate an id for this aggregation.
11116	 */
11117#if defined(sun)
11118	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
11119	    VM_BESTFIT | VM_SLEEP);
11120#else
11121	aggid = alloc_unr(state->dts_aggid_arena);
11122#endif
11123
11124	if (aggid - 1 >= state->dts_naggregations) {
11125		dtrace_aggregation_t **oaggs = state->dts_aggregations;
11126		dtrace_aggregation_t **aggs;
11127		int naggs = state->dts_naggregations << 1;
11128		int onaggs = state->dts_naggregations;
11129
11130		ASSERT(aggid == state->dts_naggregations + 1);
11131
11132		if (naggs == 0) {
11133			ASSERT(oaggs == NULL);
11134			naggs = 1;
11135		}
11136
11137		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
11138
11139		if (oaggs != NULL) {
11140			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
11141			kmem_free(oaggs, onaggs * sizeof (*aggs));
11142		}
11143
11144		state->dts_aggregations = aggs;
11145		state->dts_naggregations = naggs;
11146	}
11147
11148	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
11149	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
11150
11151	frec = &agg->dtag_first->dta_rec;
11152	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
11153		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
11154
11155	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
11156		ASSERT(!act->dta_intuple);
11157		act->dta_intuple = 1;
11158	}
11159
11160	return (&agg->dtag_action);
11161}
11162
11163static void
11164dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
11165{
11166	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11167	dtrace_state_t *state = ecb->dte_state;
11168	dtrace_aggid_t aggid = agg->dtag_id;
11169
11170	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
11171#if defined(sun)
11172	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
11173#else
11174	free_unr(state->dts_aggid_arena, aggid);
11175#endif
11176
11177	ASSERT(state->dts_aggregations[aggid - 1] == agg);
11178	state->dts_aggregations[aggid - 1] = NULL;
11179
11180	kmem_free(agg, sizeof (dtrace_aggregation_t));
11181}
11182
11183static int
11184dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11185{
11186	dtrace_action_t *action, *last;
11187	dtrace_difo_t *dp = desc->dtad_difo;
11188	uint32_t size = 0, align = sizeof (uint8_t), mask;
11189	uint16_t format = 0;
11190	dtrace_recdesc_t *rec;
11191	dtrace_state_t *state = ecb->dte_state;
11192	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
11193	uint64_t arg = desc->dtad_arg;
11194
11195	ASSERT(MUTEX_HELD(&dtrace_lock));
11196	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
11197
11198	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
11199		/*
11200		 * If this is an aggregating action, there must be neither
11201		 * a speculate nor a commit on the action chain.
11202		 */
11203		dtrace_action_t *act;
11204
11205		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11206			if (act->dta_kind == DTRACEACT_COMMIT)
11207				return (EINVAL);
11208
11209			if (act->dta_kind == DTRACEACT_SPECULATE)
11210				return (EINVAL);
11211		}
11212
11213		action = dtrace_ecb_aggregation_create(ecb, desc);
11214
11215		if (action == NULL)
11216			return (EINVAL);
11217	} else {
11218		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
11219		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
11220		    dp != NULL && dp->dtdo_destructive)) {
11221			state->dts_destructive = 1;
11222		}
11223
11224		switch (desc->dtad_kind) {
11225		case DTRACEACT_PRINTF:
11226		case DTRACEACT_PRINTA:
11227		case DTRACEACT_SYSTEM:
11228		case DTRACEACT_FREOPEN:
11229		case DTRACEACT_DIFEXPR:
11230			/*
11231			 * We know that our arg is a string -- turn it into a
11232			 * format.
11233			 */
11234			if (arg == 0) {
11235				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
11236				    desc->dtad_kind == DTRACEACT_DIFEXPR);
11237				format = 0;
11238			} else {
11239				ASSERT(arg != 0);
11240#if defined(sun)
11241				ASSERT(arg > KERNELBASE);
11242#endif
11243				format = dtrace_format_add(state,
11244				    (char *)(uintptr_t)arg);
11245			}
11246
11247			/*FALLTHROUGH*/
11248		case DTRACEACT_LIBACT:
11249		case DTRACEACT_TRACEMEM:
11250		case DTRACEACT_TRACEMEM_DYNSIZE:
11251			if (dp == NULL)
11252				return (EINVAL);
11253
11254			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
11255				break;
11256
11257			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
11258				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11259					return (EINVAL);
11260
11261				size = opt[DTRACEOPT_STRSIZE];
11262			}
11263
11264			break;
11265
11266		case DTRACEACT_STACK:
11267			if ((nframes = arg) == 0) {
11268				nframes = opt[DTRACEOPT_STACKFRAMES];
11269				ASSERT(nframes > 0);
11270				arg = nframes;
11271			}
11272
11273			size = nframes * sizeof (pc_t);
11274			break;
11275
11276		case DTRACEACT_JSTACK:
11277			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
11278				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
11279
11280			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
11281				nframes = opt[DTRACEOPT_JSTACKFRAMES];
11282
11283			arg = DTRACE_USTACK_ARG(nframes, strsize);
11284
11285			/*FALLTHROUGH*/
11286		case DTRACEACT_USTACK:
11287			if (desc->dtad_kind != DTRACEACT_JSTACK &&
11288			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
11289				strsize = DTRACE_USTACK_STRSIZE(arg);
11290				nframes = opt[DTRACEOPT_USTACKFRAMES];
11291				ASSERT(nframes > 0);
11292				arg = DTRACE_USTACK_ARG(nframes, strsize);
11293			}
11294
11295			/*
11296			 * Save a slot for the pid.
11297			 */
11298			size = (nframes + 1) * sizeof (uint64_t);
11299			size += DTRACE_USTACK_STRSIZE(arg);
11300			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
11301
11302			break;
11303
11304		case DTRACEACT_SYM:
11305		case DTRACEACT_MOD:
11306			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
11307			    sizeof (uint64_t)) ||
11308			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11309				return (EINVAL);
11310			break;
11311
11312		case DTRACEACT_USYM:
11313		case DTRACEACT_UMOD:
11314		case DTRACEACT_UADDR:
11315			if (dp == NULL ||
11316			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
11317			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11318				return (EINVAL);
11319
11320			/*
11321			 * We have a slot for the pid, plus a slot for the
11322			 * argument.  To keep things simple (aligned with
11323			 * bitness-neutral sizing), we store each as a 64-bit
11324			 * quantity.
11325			 */
11326			size = 2 * sizeof (uint64_t);
11327			break;
11328
11329		case DTRACEACT_STOP:
11330		case DTRACEACT_BREAKPOINT:
11331		case DTRACEACT_PANIC:
11332			break;
11333
11334		case DTRACEACT_CHILL:
11335		case DTRACEACT_DISCARD:
11336		case DTRACEACT_RAISE:
11337			if (dp == NULL)
11338				return (EINVAL);
11339			break;
11340
11341		case DTRACEACT_EXIT:
11342			if (dp == NULL ||
11343			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
11344			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11345				return (EINVAL);
11346			break;
11347
11348		case DTRACEACT_SPECULATE:
11349			if (ecb->dte_size > sizeof (dtrace_rechdr_t))
11350				return (EINVAL);
11351
11352			if (dp == NULL)
11353				return (EINVAL);
11354
11355			state->dts_speculates = 1;
11356			break;
11357
11358		case DTRACEACT_PRINTM:
11359		    	size = dp->dtdo_rtype.dtdt_size;
11360			break;
11361
11362		case DTRACEACT_PRINTT:
11363		    	size = dp->dtdo_rtype.dtdt_size;
11364			break;
11365
11366		case DTRACEACT_COMMIT: {
11367			dtrace_action_t *act = ecb->dte_action;
11368
11369			for (; act != NULL; act = act->dta_next) {
11370				if (act->dta_kind == DTRACEACT_COMMIT)
11371					return (EINVAL);
11372			}
11373
11374			if (dp == NULL)
11375				return (EINVAL);
11376			break;
11377		}
11378
11379		default:
11380			return (EINVAL);
11381		}
11382
11383		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
11384			/*
11385			 * If this is a data-storing action or a speculate,
11386			 * we must be sure that there isn't a commit on the
11387			 * action chain.
11388			 */
11389			dtrace_action_t *act = ecb->dte_action;
11390
11391			for (; act != NULL; act = act->dta_next) {
11392				if (act->dta_kind == DTRACEACT_COMMIT)
11393					return (EINVAL);
11394			}
11395		}
11396
11397		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
11398		action->dta_rec.dtrd_size = size;
11399	}
11400
11401	action->dta_refcnt = 1;
11402	rec = &action->dta_rec;
11403	size = rec->dtrd_size;
11404
11405	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
11406		if (!(size & mask)) {
11407			align = mask + 1;
11408			break;
11409		}
11410	}
11411
11412	action->dta_kind = desc->dtad_kind;
11413
11414	if ((action->dta_difo = dp) != NULL)
11415		dtrace_difo_hold(dp);
11416
11417	rec->dtrd_action = action->dta_kind;
11418	rec->dtrd_arg = arg;
11419	rec->dtrd_uarg = desc->dtad_uarg;
11420	rec->dtrd_alignment = (uint16_t)align;
11421	rec->dtrd_format = format;
11422
11423	if ((last = ecb->dte_action_last) != NULL) {
11424		ASSERT(ecb->dte_action != NULL);
11425		action->dta_prev = last;
11426		last->dta_next = action;
11427	} else {
11428		ASSERT(ecb->dte_action == NULL);
11429		ecb->dte_action = action;
11430	}
11431
11432	ecb->dte_action_last = action;
11433
11434	return (0);
11435}
11436
11437static void
11438dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
11439{
11440	dtrace_action_t *act = ecb->dte_action, *next;
11441	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
11442	dtrace_difo_t *dp;
11443	uint16_t format;
11444
11445	if (act != NULL && act->dta_refcnt > 1) {
11446		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
11447		act->dta_refcnt--;
11448	} else {
11449		for (; act != NULL; act = next) {
11450			next = act->dta_next;
11451			ASSERT(next != NULL || act == ecb->dte_action_last);
11452			ASSERT(act->dta_refcnt == 1);
11453
11454			if ((format = act->dta_rec.dtrd_format) != 0)
11455				dtrace_format_remove(ecb->dte_state, format);
11456
11457			if ((dp = act->dta_difo) != NULL)
11458				dtrace_difo_release(dp, vstate);
11459
11460			if (DTRACEACT_ISAGG(act->dta_kind)) {
11461				dtrace_ecb_aggregation_destroy(ecb, act);
11462			} else {
11463				kmem_free(act, sizeof (dtrace_action_t));
11464			}
11465		}
11466	}
11467
11468	ecb->dte_action = NULL;
11469	ecb->dte_action_last = NULL;
11470	ecb->dte_size = 0;
11471}
11472
11473static void
11474dtrace_ecb_disable(dtrace_ecb_t *ecb)
11475{
11476	/*
11477	 * We disable the ECB by removing it from its probe.
11478	 */
11479	dtrace_ecb_t *pecb, *prev = NULL;
11480	dtrace_probe_t *probe = ecb->dte_probe;
11481
11482	ASSERT(MUTEX_HELD(&dtrace_lock));
11483
11484	if (probe == NULL) {
11485		/*
11486		 * This is the NULL probe; there is nothing to disable.
11487		 */
11488		return;
11489	}
11490
11491	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
11492		if (pecb == ecb)
11493			break;
11494		prev = pecb;
11495	}
11496
11497	ASSERT(pecb != NULL);
11498
11499	if (prev == NULL) {
11500		probe->dtpr_ecb = ecb->dte_next;
11501	} else {
11502		prev->dte_next = ecb->dte_next;
11503	}
11504
11505	if (ecb == probe->dtpr_ecb_last) {
11506		ASSERT(ecb->dte_next == NULL);
11507		probe->dtpr_ecb_last = prev;
11508	}
11509
11510	/*
11511	 * The ECB has been disconnected from the probe; now sync to assure
11512	 * that all CPUs have seen the change before returning.
11513	 */
11514	dtrace_sync();
11515
11516	if (probe->dtpr_ecb == NULL) {
11517		/*
11518		 * That was the last ECB on the probe; clear the predicate
11519		 * cache ID for the probe, disable it and sync one more time
11520		 * to assure that we'll never hit it again.
11521		 */
11522		dtrace_provider_t *prov = probe->dtpr_provider;
11523
11524		ASSERT(ecb->dte_next == NULL);
11525		ASSERT(probe->dtpr_ecb_last == NULL);
11526		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
11527		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
11528		    probe->dtpr_id, probe->dtpr_arg);
11529		dtrace_sync();
11530	} else {
11531		/*
11532		 * There is at least one ECB remaining on the probe.  If there
11533		 * is _exactly_ one, set the probe's predicate cache ID to be
11534		 * the predicate cache ID of the remaining ECB.
11535		 */
11536		ASSERT(probe->dtpr_ecb_last != NULL);
11537		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
11538
11539		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
11540			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
11541
11542			ASSERT(probe->dtpr_ecb->dte_next == NULL);
11543
11544			if (p != NULL)
11545				probe->dtpr_predcache = p->dtp_cacheid;
11546		}
11547
11548		ecb->dte_next = NULL;
11549	}
11550}
11551
11552static void
11553dtrace_ecb_destroy(dtrace_ecb_t *ecb)
11554{
11555	dtrace_state_t *state = ecb->dte_state;
11556	dtrace_vstate_t *vstate = &state->dts_vstate;
11557	dtrace_predicate_t *pred;
11558	dtrace_epid_t epid = ecb->dte_epid;
11559
11560	ASSERT(MUTEX_HELD(&dtrace_lock));
11561	ASSERT(ecb->dte_next == NULL);
11562	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
11563
11564	if ((pred = ecb->dte_predicate) != NULL)
11565		dtrace_predicate_release(pred, vstate);
11566
11567	dtrace_ecb_action_remove(ecb);
11568
11569	ASSERT(state->dts_ecbs[epid - 1] == ecb);
11570	state->dts_ecbs[epid - 1] = NULL;
11571
11572	kmem_free(ecb, sizeof (dtrace_ecb_t));
11573}
11574
11575static dtrace_ecb_t *
11576dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
11577    dtrace_enabling_t *enab)
11578{
11579	dtrace_ecb_t *ecb;
11580	dtrace_predicate_t *pred;
11581	dtrace_actdesc_t *act;
11582	dtrace_provider_t *prov;
11583	dtrace_ecbdesc_t *desc = enab->dten_current;
11584
11585	ASSERT(MUTEX_HELD(&dtrace_lock));
11586	ASSERT(state != NULL);
11587
11588	ecb = dtrace_ecb_add(state, probe);
11589	ecb->dte_uarg = desc->dted_uarg;
11590
11591	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11592		dtrace_predicate_hold(pred);
11593		ecb->dte_predicate = pred;
11594	}
11595
11596	if (probe != NULL) {
11597		/*
11598		 * If the provider shows more leg than the consumer is old
11599		 * enough to see, we need to enable the appropriate implicit
11600		 * predicate bits to prevent the ecb from activating at
11601		 * revealing times.
11602		 *
11603		 * Providers specifying DTRACE_PRIV_USER at register time
11604		 * are stating that they need the /proc-style privilege
11605		 * model to be enforced, and this is what DTRACE_COND_OWNER
11606		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11607		 */
11608		prov = probe->dtpr_provider;
11609		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11610		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11611			ecb->dte_cond |= DTRACE_COND_OWNER;
11612
11613		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11614		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11615			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11616
11617		/*
11618		 * If the provider shows us kernel innards and the user
11619		 * is lacking sufficient privilege, enable the
11620		 * DTRACE_COND_USERMODE implicit predicate.
11621		 */
11622		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11623		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11624			ecb->dte_cond |= DTRACE_COND_USERMODE;
11625	}
11626
11627	if (dtrace_ecb_create_cache != NULL) {
11628		/*
11629		 * If we have a cached ecb, we'll use its action list instead
11630		 * of creating our own (saving both time and space).
11631		 */
11632		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11633		dtrace_action_t *act = cached->dte_action;
11634
11635		if (act != NULL) {
11636			ASSERT(act->dta_refcnt > 0);
11637			act->dta_refcnt++;
11638			ecb->dte_action = act;
11639			ecb->dte_action_last = cached->dte_action_last;
11640			ecb->dte_needed = cached->dte_needed;
11641			ecb->dte_size = cached->dte_size;
11642			ecb->dte_alignment = cached->dte_alignment;
11643		}
11644
11645		return (ecb);
11646	}
11647
11648	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11649		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11650			dtrace_ecb_destroy(ecb);
11651			return (NULL);
11652		}
11653	}
11654
11655	dtrace_ecb_resize(ecb);
11656
11657	return (dtrace_ecb_create_cache = ecb);
11658}
11659
11660static int
11661dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11662{
11663	dtrace_ecb_t *ecb;
11664	dtrace_enabling_t *enab = arg;
11665	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11666
11667	ASSERT(state != NULL);
11668
11669	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11670		/*
11671		 * This probe was created in a generation for which this
11672		 * enabling has previously created ECBs; we don't want to
11673		 * enable it again, so just kick out.
11674		 */
11675		return (DTRACE_MATCH_NEXT);
11676	}
11677
11678	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
11679		return (DTRACE_MATCH_DONE);
11680
11681	dtrace_ecb_enable(ecb);
11682	return (DTRACE_MATCH_NEXT);
11683}
11684
11685static dtrace_ecb_t *
11686dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
11687{
11688	dtrace_ecb_t *ecb;
11689
11690	ASSERT(MUTEX_HELD(&dtrace_lock));
11691
11692	if (id == 0 || id > state->dts_necbs)
11693		return (NULL);
11694
11695	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
11696	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
11697
11698	return (state->dts_ecbs[id - 1]);
11699}
11700
11701static dtrace_aggregation_t *
11702dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
11703{
11704	dtrace_aggregation_t *agg;
11705
11706	ASSERT(MUTEX_HELD(&dtrace_lock));
11707
11708	if (id == 0 || id > state->dts_naggregations)
11709		return (NULL);
11710
11711	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
11712	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
11713	    agg->dtag_id == id);
11714
11715	return (state->dts_aggregations[id - 1]);
11716}
11717
11718/*
11719 * DTrace Buffer Functions
11720 *
11721 * The following functions manipulate DTrace buffers.  Most of these functions
11722 * are called in the context of establishing or processing consumer state;
11723 * exceptions are explicitly noted.
11724 */
11725
11726/*
11727 * Note:  called from cross call context.  This function switches the two
11728 * buffers on a given CPU.  The atomicity of this operation is assured by
11729 * disabling interrupts while the actual switch takes place; the disabling of
11730 * interrupts serializes the execution with any execution of dtrace_probe() on
11731 * the same CPU.
11732 */
11733static void
11734dtrace_buffer_switch(dtrace_buffer_t *buf)
11735{
11736	caddr_t tomax = buf->dtb_tomax;
11737	caddr_t xamot = buf->dtb_xamot;
11738	dtrace_icookie_t cookie;
11739	hrtime_t now;
11740
11741	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11742	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
11743
11744	cookie = dtrace_interrupt_disable();
11745	now = dtrace_gethrtime();
11746	buf->dtb_tomax = xamot;
11747	buf->dtb_xamot = tomax;
11748	buf->dtb_xamot_drops = buf->dtb_drops;
11749	buf->dtb_xamot_offset = buf->dtb_offset;
11750	buf->dtb_xamot_errors = buf->dtb_errors;
11751	buf->dtb_xamot_flags = buf->dtb_flags;
11752	buf->dtb_offset = 0;
11753	buf->dtb_drops = 0;
11754	buf->dtb_errors = 0;
11755	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
11756	buf->dtb_interval = now - buf->dtb_switched;
11757	buf->dtb_switched = now;
11758	dtrace_interrupt_enable(cookie);
11759}
11760
11761/*
11762 * Note:  called from cross call context.  This function activates a buffer
11763 * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
11764 * is guaranteed by the disabling of interrupts.
11765 */
11766static void
11767dtrace_buffer_activate(dtrace_state_t *state)
11768{
11769	dtrace_buffer_t *buf;
11770	dtrace_icookie_t cookie = dtrace_interrupt_disable();
11771
11772	buf = &state->dts_buffer[curcpu];
11773
11774	if (buf->dtb_tomax != NULL) {
11775		/*
11776		 * We might like to assert that the buffer is marked inactive,
11777		 * but this isn't necessarily true:  the buffer for the CPU
11778		 * that processes the BEGIN probe has its buffer activated
11779		 * manually.  In this case, we take the (harmless) action
11780		 * re-clearing the bit INACTIVE bit.
11781		 */
11782		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
11783	}
11784
11785	dtrace_interrupt_enable(cookie);
11786}
11787
11788static int
11789dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
11790    processorid_t cpu, int *factor)
11791{
11792#if defined(sun)
11793	cpu_t *cp;
11794#endif
11795	dtrace_buffer_t *buf;
11796	int allocated = 0, desired = 0;
11797
11798#if defined(sun)
11799	ASSERT(MUTEX_HELD(&cpu_lock));
11800	ASSERT(MUTEX_HELD(&dtrace_lock));
11801
11802	*factor = 1;
11803
11804	if (size > dtrace_nonroot_maxsize &&
11805	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
11806		return (EFBIG);
11807
11808	cp = cpu_list;
11809
11810	do {
11811		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11812			continue;
11813
11814		buf = &bufs[cp->cpu_id];
11815
11816		/*
11817		 * If there is already a buffer allocated for this CPU, it
11818		 * is only possible that this is a DR event.  In this case,
11819		 */
11820		if (buf->dtb_tomax != NULL) {
11821			ASSERT(buf->dtb_size == size);
11822			continue;
11823		}
11824
11825		ASSERT(buf->dtb_xamot == NULL);
11826
11827		if ((buf->dtb_tomax = kmem_zalloc(size,
11828		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11829			goto err;
11830
11831		buf->dtb_size = size;
11832		buf->dtb_flags = flags;
11833		buf->dtb_offset = 0;
11834		buf->dtb_drops = 0;
11835
11836		if (flags & DTRACEBUF_NOSWITCH)
11837			continue;
11838
11839		if ((buf->dtb_xamot = kmem_zalloc(size,
11840		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11841			goto err;
11842	} while ((cp = cp->cpu_next) != cpu_list);
11843
11844	return (0);
11845
11846err:
11847	cp = cpu_list;
11848
11849	do {
11850		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11851			continue;
11852
11853		buf = &bufs[cp->cpu_id];
11854		desired += 2;
11855
11856		if (buf->dtb_xamot != NULL) {
11857			ASSERT(buf->dtb_tomax != NULL);
11858			ASSERT(buf->dtb_size == size);
11859			kmem_free(buf->dtb_xamot, size);
11860			allocated++;
11861		}
11862
11863		if (buf->dtb_tomax != NULL) {
11864			ASSERT(buf->dtb_size == size);
11865			kmem_free(buf->dtb_tomax, size);
11866			allocated++;
11867		}
11868
11869		buf->dtb_tomax = NULL;
11870		buf->dtb_xamot = NULL;
11871		buf->dtb_size = 0;
11872	} while ((cp = cp->cpu_next) != cpu_list);
11873#else
11874	int i;
11875
11876	*factor = 1;
11877#if defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
11878	/*
11879	 * FreeBSD isn't good at limiting the amount of memory we
11880	 * ask to malloc, so let's place a limit here before trying
11881	 * to do something that might well end in tears at bedtime.
11882	 */
11883	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
11884		return (ENOMEM);
11885#endif
11886
11887	ASSERT(MUTEX_HELD(&dtrace_lock));
11888	CPU_FOREACH(i) {
11889		if (cpu != DTRACE_CPUALL && cpu != i)
11890			continue;
11891
11892		buf = &bufs[i];
11893
11894		/*
11895		 * If there is already a buffer allocated for this CPU, it
11896		 * is only possible that this is a DR event.  In this case,
11897		 * the buffer size must match our specified size.
11898		 */
11899		if (buf->dtb_tomax != NULL) {
11900			ASSERT(buf->dtb_size == size);
11901			continue;
11902		}
11903
11904		ASSERT(buf->dtb_xamot == NULL);
11905
11906		if ((buf->dtb_tomax = kmem_zalloc(size,
11907		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11908			goto err;
11909
11910		buf->dtb_size = size;
11911		buf->dtb_flags = flags;
11912		buf->dtb_offset = 0;
11913		buf->dtb_drops = 0;
11914
11915		if (flags & DTRACEBUF_NOSWITCH)
11916			continue;
11917
11918		if ((buf->dtb_xamot = kmem_zalloc(size,
11919		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11920			goto err;
11921	}
11922
11923	return (0);
11924
11925err:
11926	/*
11927	 * Error allocating memory, so free the buffers that were
11928	 * allocated before the failed allocation.
11929	 */
11930	CPU_FOREACH(i) {
11931		if (cpu != DTRACE_CPUALL && cpu != i)
11932			continue;
11933
11934		buf = &bufs[i];
11935		desired += 2;
11936
11937		if (buf->dtb_xamot != NULL) {
11938			ASSERT(buf->dtb_tomax != NULL);
11939			ASSERT(buf->dtb_size == size);
11940			kmem_free(buf->dtb_xamot, size);
11941			allocated++;
11942		}
11943
11944		if (buf->dtb_tomax != NULL) {
11945			ASSERT(buf->dtb_size == size);
11946			kmem_free(buf->dtb_tomax, size);
11947			allocated++;
11948		}
11949
11950		buf->dtb_tomax = NULL;
11951		buf->dtb_xamot = NULL;
11952		buf->dtb_size = 0;
11953
11954	}
11955#endif
11956	*factor = desired / (allocated > 0 ? allocated : 1);
11957
11958	return (ENOMEM);
11959}
11960
11961/*
11962 * Note:  called from probe context.  This function just increments the drop
11963 * count on a buffer.  It has been made a function to allow for the
11964 * possibility of understanding the source of mysterious drop counts.  (A
11965 * problem for which one may be particularly disappointed that DTrace cannot
11966 * be used to understand DTrace.)
11967 */
11968static void
11969dtrace_buffer_drop(dtrace_buffer_t *buf)
11970{
11971	buf->dtb_drops++;
11972}
11973
11974/*
11975 * Note:  called from probe context.  This function is called to reserve space
11976 * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
11977 * mstate.  Returns the new offset in the buffer, or a negative value if an
11978 * error has occurred.
11979 */
11980static intptr_t
11981dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
11982    dtrace_state_t *state, dtrace_mstate_t *mstate)
11983{
11984	intptr_t offs = buf->dtb_offset, soffs;
11985	intptr_t woffs;
11986	caddr_t tomax;
11987	size_t total;
11988
11989	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
11990		return (-1);
11991
11992	if ((tomax = buf->dtb_tomax) == NULL) {
11993		dtrace_buffer_drop(buf);
11994		return (-1);
11995	}
11996
11997	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
11998		while (offs & (align - 1)) {
11999			/*
12000			 * Assert that our alignment is off by a number which
12001			 * is itself sizeof (uint32_t) aligned.
12002			 */
12003			ASSERT(!((align - (offs & (align - 1))) &
12004			    (sizeof (uint32_t) - 1)));
12005			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12006			offs += sizeof (uint32_t);
12007		}
12008
12009		if ((soffs = offs + needed) > buf->dtb_size) {
12010			dtrace_buffer_drop(buf);
12011			return (-1);
12012		}
12013
12014		if (mstate == NULL)
12015			return (offs);
12016
12017		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
12018		mstate->dtms_scratch_size = buf->dtb_size - soffs;
12019		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12020
12021		return (offs);
12022	}
12023
12024	if (buf->dtb_flags & DTRACEBUF_FILL) {
12025		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
12026		    (buf->dtb_flags & DTRACEBUF_FULL))
12027			return (-1);
12028		goto out;
12029	}
12030
12031	total = needed + (offs & (align - 1));
12032
12033	/*
12034	 * For a ring buffer, life is quite a bit more complicated.  Before
12035	 * we can store any padding, we need to adjust our wrapping offset.
12036	 * (If we've never before wrapped or we're not about to, no adjustment
12037	 * is required.)
12038	 */
12039	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
12040	    offs + total > buf->dtb_size) {
12041		woffs = buf->dtb_xamot_offset;
12042
12043		if (offs + total > buf->dtb_size) {
12044			/*
12045			 * We can't fit in the end of the buffer.  First, a
12046			 * sanity check that we can fit in the buffer at all.
12047			 */
12048			if (total > buf->dtb_size) {
12049				dtrace_buffer_drop(buf);
12050				return (-1);
12051			}
12052
12053			/*
12054			 * We're going to be storing at the top of the buffer,
12055			 * so now we need to deal with the wrapped offset.  We
12056			 * only reset our wrapped offset to 0 if it is
12057			 * currently greater than the current offset.  If it
12058			 * is less than the current offset, it is because a
12059			 * previous allocation induced a wrap -- but the
12060			 * allocation didn't subsequently take the space due
12061			 * to an error or false predicate evaluation.  In this
12062			 * case, we'll just leave the wrapped offset alone: if
12063			 * the wrapped offset hasn't been advanced far enough
12064			 * for this allocation, it will be adjusted in the
12065			 * lower loop.
12066			 */
12067			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
12068				if (woffs >= offs)
12069					woffs = 0;
12070			} else {
12071				woffs = 0;
12072			}
12073
12074			/*
12075			 * Now we know that we're going to be storing to the
12076			 * top of the buffer and that there is room for us
12077			 * there.  We need to clear the buffer from the current
12078			 * offset to the end (there may be old gunk there).
12079			 */
12080			while (offs < buf->dtb_size)
12081				tomax[offs++] = 0;
12082
12083			/*
12084			 * We need to set our offset to zero.  And because we
12085			 * are wrapping, we need to set the bit indicating as
12086			 * much.  We can also adjust our needed space back
12087			 * down to the space required by the ECB -- we know
12088			 * that the top of the buffer is aligned.
12089			 */
12090			offs = 0;
12091			total = needed;
12092			buf->dtb_flags |= DTRACEBUF_WRAPPED;
12093		} else {
12094			/*
12095			 * There is room for us in the buffer, so we simply
12096			 * need to check the wrapped offset.
12097			 */
12098			if (woffs < offs) {
12099				/*
12100				 * The wrapped offset is less than the offset.
12101				 * This can happen if we allocated buffer space
12102				 * that induced a wrap, but then we didn't
12103				 * subsequently take the space due to an error
12104				 * or false predicate evaluation.  This is
12105				 * okay; we know that _this_ allocation isn't
12106				 * going to induce a wrap.  We still can't
12107				 * reset the wrapped offset to be zero,
12108				 * however: the space may have been trashed in
12109				 * the previous failed probe attempt.  But at
12110				 * least the wrapped offset doesn't need to
12111				 * be adjusted at all...
12112				 */
12113				goto out;
12114			}
12115		}
12116
12117		while (offs + total > woffs) {
12118			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
12119			size_t size;
12120
12121			if (epid == DTRACE_EPIDNONE) {
12122				size = sizeof (uint32_t);
12123			} else {
12124				ASSERT3U(epid, <=, state->dts_necbs);
12125				ASSERT(state->dts_ecbs[epid - 1] != NULL);
12126
12127				size = state->dts_ecbs[epid - 1]->dte_size;
12128			}
12129
12130			ASSERT(woffs + size <= buf->dtb_size);
12131			ASSERT(size != 0);
12132
12133			if (woffs + size == buf->dtb_size) {
12134				/*
12135				 * We've reached the end of the buffer; we want
12136				 * to set the wrapped offset to 0 and break
12137				 * out.  However, if the offs is 0, then we're
12138				 * in a strange edge-condition:  the amount of
12139				 * space that we want to reserve plus the size
12140				 * of the record that we're overwriting is
12141				 * greater than the size of the buffer.  This
12142				 * is problematic because if we reserve the
12143				 * space but subsequently don't consume it (due
12144				 * to a failed predicate or error) the wrapped
12145				 * offset will be 0 -- yet the EPID at offset 0
12146				 * will not be committed.  This situation is
12147				 * relatively easy to deal with:  if we're in
12148				 * this case, the buffer is indistinguishable
12149				 * from one that hasn't wrapped; we need only
12150				 * finish the job by clearing the wrapped bit,
12151				 * explicitly setting the offset to be 0, and
12152				 * zero'ing out the old data in the buffer.
12153				 */
12154				if (offs == 0) {
12155					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
12156					buf->dtb_offset = 0;
12157					woffs = total;
12158
12159					while (woffs < buf->dtb_size)
12160						tomax[woffs++] = 0;
12161				}
12162
12163				woffs = 0;
12164				break;
12165			}
12166
12167			woffs += size;
12168		}
12169
12170		/*
12171		 * We have a wrapped offset.  It may be that the wrapped offset
12172		 * has become zero -- that's okay.
12173		 */
12174		buf->dtb_xamot_offset = woffs;
12175	}
12176
12177out:
12178	/*
12179	 * Now we can plow the buffer with any necessary padding.
12180	 */
12181	while (offs & (align - 1)) {
12182		/*
12183		 * Assert that our alignment is off by a number which
12184		 * is itself sizeof (uint32_t) aligned.
12185		 */
12186		ASSERT(!((align - (offs & (align - 1))) &
12187		    (sizeof (uint32_t) - 1)));
12188		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12189		offs += sizeof (uint32_t);
12190	}
12191
12192	if (buf->dtb_flags & DTRACEBUF_FILL) {
12193		if (offs + needed > buf->dtb_size - state->dts_reserve) {
12194			buf->dtb_flags |= DTRACEBUF_FULL;
12195			return (-1);
12196		}
12197	}
12198
12199	if (mstate == NULL)
12200		return (offs);
12201
12202	/*
12203	 * For ring buffers and fill buffers, the scratch space is always
12204	 * the inactive buffer.
12205	 */
12206	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
12207	mstate->dtms_scratch_size = buf->dtb_size;
12208	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12209
12210	return (offs);
12211}
12212
12213static void
12214dtrace_buffer_polish(dtrace_buffer_t *buf)
12215{
12216	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
12217	ASSERT(MUTEX_HELD(&dtrace_lock));
12218
12219	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
12220		return;
12221
12222	/*
12223	 * We need to polish the ring buffer.  There are three cases:
12224	 *
12225	 * - The first (and presumably most common) is that there is no gap
12226	 *   between the buffer offset and the wrapped offset.  In this case,
12227	 *   there is nothing in the buffer that isn't valid data; we can
12228	 *   mark the buffer as polished and return.
12229	 *
12230	 * - The second (less common than the first but still more common
12231	 *   than the third) is that there is a gap between the buffer offset
12232	 *   and the wrapped offset, and the wrapped offset is larger than the
12233	 *   buffer offset.  This can happen because of an alignment issue, or
12234	 *   can happen because of a call to dtrace_buffer_reserve() that
12235	 *   didn't subsequently consume the buffer space.  In this case,
12236	 *   we need to zero the data from the buffer offset to the wrapped
12237	 *   offset.
12238	 *
12239	 * - The third (and least common) is that there is a gap between the
12240	 *   buffer offset and the wrapped offset, but the wrapped offset is
12241	 *   _less_ than the buffer offset.  This can only happen because a
12242	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
12243	 *   was not subsequently consumed.  In this case, we need to zero the
12244	 *   space from the offset to the end of the buffer _and_ from the
12245	 *   top of the buffer to the wrapped offset.
12246	 */
12247	if (buf->dtb_offset < buf->dtb_xamot_offset) {
12248		bzero(buf->dtb_tomax + buf->dtb_offset,
12249		    buf->dtb_xamot_offset - buf->dtb_offset);
12250	}
12251
12252	if (buf->dtb_offset > buf->dtb_xamot_offset) {
12253		bzero(buf->dtb_tomax + buf->dtb_offset,
12254		    buf->dtb_size - buf->dtb_offset);
12255		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
12256	}
12257}
12258
12259/*
12260 * This routine determines if data generated at the specified time has likely
12261 * been entirely consumed at user-level.  This routine is called to determine
12262 * if an ECB on a defunct probe (but for an active enabling) can be safely
12263 * disabled and destroyed.
12264 */
12265static int
12266dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
12267{
12268	int i;
12269
12270	for (i = 0; i < NCPU; i++) {
12271		dtrace_buffer_t *buf = &bufs[i];
12272
12273		if (buf->dtb_size == 0)
12274			continue;
12275
12276		if (buf->dtb_flags & DTRACEBUF_RING)
12277			return (0);
12278
12279		if (!buf->dtb_switched && buf->dtb_offset != 0)
12280			return (0);
12281
12282		if (buf->dtb_switched - buf->dtb_interval < when)
12283			return (0);
12284	}
12285
12286	return (1);
12287}
12288
12289static void
12290dtrace_buffer_free(dtrace_buffer_t *bufs)
12291{
12292	int i;
12293
12294	for (i = 0; i < NCPU; i++) {
12295		dtrace_buffer_t *buf = &bufs[i];
12296
12297		if (buf->dtb_tomax == NULL) {
12298			ASSERT(buf->dtb_xamot == NULL);
12299			ASSERT(buf->dtb_size == 0);
12300			continue;
12301		}
12302
12303		if (buf->dtb_xamot != NULL) {
12304			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12305			kmem_free(buf->dtb_xamot, buf->dtb_size);
12306		}
12307
12308		kmem_free(buf->dtb_tomax, buf->dtb_size);
12309		buf->dtb_size = 0;
12310		buf->dtb_tomax = NULL;
12311		buf->dtb_xamot = NULL;
12312	}
12313}
12314
12315/*
12316 * DTrace Enabling Functions
12317 */
12318static dtrace_enabling_t *
12319dtrace_enabling_create(dtrace_vstate_t *vstate)
12320{
12321	dtrace_enabling_t *enab;
12322
12323	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
12324	enab->dten_vstate = vstate;
12325
12326	return (enab);
12327}
12328
12329static void
12330dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
12331{
12332	dtrace_ecbdesc_t **ndesc;
12333	size_t osize, nsize;
12334
12335	/*
12336	 * We can't add to enablings after we've enabled them, or after we've
12337	 * retained them.
12338	 */
12339	ASSERT(enab->dten_probegen == 0);
12340	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12341
12342	if (enab->dten_ndesc < enab->dten_maxdesc) {
12343		enab->dten_desc[enab->dten_ndesc++] = ecb;
12344		return;
12345	}
12346
12347	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12348
12349	if (enab->dten_maxdesc == 0) {
12350		enab->dten_maxdesc = 1;
12351	} else {
12352		enab->dten_maxdesc <<= 1;
12353	}
12354
12355	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
12356
12357	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12358	ndesc = kmem_zalloc(nsize, KM_SLEEP);
12359	bcopy(enab->dten_desc, ndesc, osize);
12360	if (enab->dten_desc != NULL)
12361		kmem_free(enab->dten_desc, osize);
12362
12363	enab->dten_desc = ndesc;
12364	enab->dten_desc[enab->dten_ndesc++] = ecb;
12365}
12366
12367static void
12368dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
12369    dtrace_probedesc_t *pd)
12370{
12371	dtrace_ecbdesc_t *new;
12372	dtrace_predicate_t *pred;
12373	dtrace_actdesc_t *act;
12374
12375	/*
12376	 * We're going to create a new ECB description that matches the
12377	 * specified ECB in every way, but has the specified probe description.
12378	 */
12379	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12380
12381	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
12382		dtrace_predicate_hold(pred);
12383
12384	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
12385		dtrace_actdesc_hold(act);
12386
12387	new->dted_action = ecb->dted_action;
12388	new->dted_pred = ecb->dted_pred;
12389	new->dted_probe = *pd;
12390	new->dted_uarg = ecb->dted_uarg;
12391
12392	dtrace_enabling_add(enab, new);
12393}
12394
12395static void
12396dtrace_enabling_dump(dtrace_enabling_t *enab)
12397{
12398	int i;
12399
12400	for (i = 0; i < enab->dten_ndesc; i++) {
12401		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
12402
12403		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
12404		    desc->dtpd_provider, desc->dtpd_mod,
12405		    desc->dtpd_func, desc->dtpd_name);
12406	}
12407}
12408
12409static void
12410dtrace_enabling_destroy(dtrace_enabling_t *enab)
12411{
12412	int i;
12413	dtrace_ecbdesc_t *ep;
12414	dtrace_vstate_t *vstate = enab->dten_vstate;
12415
12416	ASSERT(MUTEX_HELD(&dtrace_lock));
12417
12418	for (i = 0; i < enab->dten_ndesc; i++) {
12419		dtrace_actdesc_t *act, *next;
12420		dtrace_predicate_t *pred;
12421
12422		ep = enab->dten_desc[i];
12423
12424		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
12425			dtrace_predicate_release(pred, vstate);
12426
12427		for (act = ep->dted_action; act != NULL; act = next) {
12428			next = act->dtad_next;
12429			dtrace_actdesc_release(act, vstate);
12430		}
12431
12432		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12433	}
12434
12435	if (enab->dten_desc != NULL)
12436		kmem_free(enab->dten_desc,
12437		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
12438
12439	/*
12440	 * If this was a retained enabling, decrement the dts_nretained count
12441	 * and take it off of the dtrace_retained list.
12442	 */
12443	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
12444	    dtrace_retained == enab) {
12445		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12446		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
12447		enab->dten_vstate->dtvs_state->dts_nretained--;
12448		dtrace_retained_gen++;
12449	}
12450
12451	if (enab->dten_prev == NULL) {
12452		if (dtrace_retained == enab) {
12453			dtrace_retained = enab->dten_next;
12454
12455			if (dtrace_retained != NULL)
12456				dtrace_retained->dten_prev = NULL;
12457		}
12458	} else {
12459		ASSERT(enab != dtrace_retained);
12460		ASSERT(dtrace_retained != NULL);
12461		enab->dten_prev->dten_next = enab->dten_next;
12462	}
12463
12464	if (enab->dten_next != NULL) {
12465		ASSERT(dtrace_retained != NULL);
12466		enab->dten_next->dten_prev = enab->dten_prev;
12467	}
12468
12469	kmem_free(enab, sizeof (dtrace_enabling_t));
12470}
12471
12472static int
12473dtrace_enabling_retain(dtrace_enabling_t *enab)
12474{
12475	dtrace_state_t *state;
12476
12477	ASSERT(MUTEX_HELD(&dtrace_lock));
12478	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12479	ASSERT(enab->dten_vstate != NULL);
12480
12481	state = enab->dten_vstate->dtvs_state;
12482	ASSERT(state != NULL);
12483
12484	/*
12485	 * We only allow each state to retain dtrace_retain_max enablings.
12486	 */
12487	if (state->dts_nretained >= dtrace_retain_max)
12488		return (ENOSPC);
12489
12490	state->dts_nretained++;
12491	dtrace_retained_gen++;
12492
12493	if (dtrace_retained == NULL) {
12494		dtrace_retained = enab;
12495		return (0);
12496	}
12497
12498	enab->dten_next = dtrace_retained;
12499	dtrace_retained->dten_prev = enab;
12500	dtrace_retained = enab;
12501
12502	return (0);
12503}
12504
12505static int
12506dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
12507    dtrace_probedesc_t *create)
12508{
12509	dtrace_enabling_t *new, *enab;
12510	int found = 0, err = ENOENT;
12511
12512	ASSERT(MUTEX_HELD(&dtrace_lock));
12513	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
12514	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
12515	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
12516	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
12517
12518	new = dtrace_enabling_create(&state->dts_vstate);
12519
12520	/*
12521	 * Iterate over all retained enablings, looking for enablings that
12522	 * match the specified state.
12523	 */
12524	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12525		int i;
12526
12527		/*
12528		 * dtvs_state can only be NULL for helper enablings -- and
12529		 * helper enablings can't be retained.
12530		 */
12531		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12532
12533		if (enab->dten_vstate->dtvs_state != state)
12534			continue;
12535
12536		/*
12537		 * Now iterate over each probe description; we're looking for
12538		 * an exact match to the specified probe description.
12539		 */
12540		for (i = 0; i < enab->dten_ndesc; i++) {
12541			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12542			dtrace_probedesc_t *pd = &ep->dted_probe;
12543
12544			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
12545				continue;
12546
12547			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
12548				continue;
12549
12550			if (strcmp(pd->dtpd_func, match->dtpd_func))
12551				continue;
12552
12553			if (strcmp(pd->dtpd_name, match->dtpd_name))
12554				continue;
12555
12556			/*
12557			 * We have a winning probe!  Add it to our growing
12558			 * enabling.
12559			 */
12560			found = 1;
12561			dtrace_enabling_addlike(new, ep, create);
12562		}
12563	}
12564
12565	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
12566		dtrace_enabling_destroy(new);
12567		return (err);
12568	}
12569
12570	return (0);
12571}
12572
12573static void
12574dtrace_enabling_retract(dtrace_state_t *state)
12575{
12576	dtrace_enabling_t *enab, *next;
12577
12578	ASSERT(MUTEX_HELD(&dtrace_lock));
12579
12580	/*
12581	 * Iterate over all retained enablings, destroy the enablings retained
12582	 * for the specified state.
12583	 */
12584	for (enab = dtrace_retained; enab != NULL; enab = next) {
12585		next = enab->dten_next;
12586
12587		/*
12588		 * dtvs_state can only be NULL for helper enablings -- and
12589		 * helper enablings can't be retained.
12590		 */
12591		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12592
12593		if (enab->dten_vstate->dtvs_state == state) {
12594			ASSERT(state->dts_nretained > 0);
12595			dtrace_enabling_destroy(enab);
12596		}
12597	}
12598
12599	ASSERT(state->dts_nretained == 0);
12600}
12601
12602static int
12603dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
12604{
12605	int i = 0;
12606	int matched = 0;
12607
12608	ASSERT(MUTEX_HELD(&cpu_lock));
12609	ASSERT(MUTEX_HELD(&dtrace_lock));
12610
12611	for (i = 0; i < enab->dten_ndesc; i++) {
12612		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12613
12614		enab->dten_current = ep;
12615		enab->dten_error = 0;
12616
12617		matched += dtrace_probe_enable(&ep->dted_probe, enab);
12618
12619		if (enab->dten_error != 0) {
12620			/*
12621			 * If we get an error half-way through enabling the
12622			 * probes, we kick out -- perhaps with some number of
12623			 * them enabled.  Leaving enabled probes enabled may
12624			 * be slightly confusing for user-level, but we expect
12625			 * that no one will attempt to actually drive on in
12626			 * the face of such errors.  If this is an anonymous
12627			 * enabling (indicated with a NULL nmatched pointer),
12628			 * we cmn_err() a message.  We aren't expecting to
12629			 * get such an error -- such as it can exist at all,
12630			 * it would be a result of corrupted DOF in the driver
12631			 * properties.
12632			 */
12633			if (nmatched == NULL) {
12634				cmn_err(CE_WARN, "dtrace_enabling_match() "
12635				    "error on %p: %d", (void *)ep,
12636				    enab->dten_error);
12637			}
12638
12639			return (enab->dten_error);
12640		}
12641	}
12642
12643	enab->dten_probegen = dtrace_probegen;
12644	if (nmatched != NULL)
12645		*nmatched = matched;
12646
12647	return (0);
12648}
12649
12650static void
12651dtrace_enabling_matchall(void)
12652{
12653	dtrace_enabling_t *enab;
12654
12655	mutex_enter(&cpu_lock);
12656	mutex_enter(&dtrace_lock);
12657
12658	/*
12659	 * Iterate over all retained enablings to see if any probes match
12660	 * against them.  We only perform this operation on enablings for which
12661	 * we have sufficient permissions by virtue of being in the global zone
12662	 * or in the same zone as the DTrace client.  Because we can be called
12663	 * after dtrace_detach() has been called, we cannot assert that there
12664	 * are retained enablings.  We can safely load from dtrace_retained,
12665	 * however:  the taskq_destroy() at the end of dtrace_detach() will
12666	 * block pending our completion.
12667	 */
12668	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12669#if defined(sun)
12670		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
12671
12672		if (INGLOBALZONE(curproc) ||
12673		    cr != NULL && getzoneid() == crgetzoneid(cr))
12674#endif
12675			(void) dtrace_enabling_match(enab, NULL);
12676	}
12677
12678	mutex_exit(&dtrace_lock);
12679	mutex_exit(&cpu_lock);
12680}
12681
12682/*
12683 * If an enabling is to be enabled without having matched probes (that is, if
12684 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
12685 * enabling must be _primed_ by creating an ECB for every ECB description.
12686 * This must be done to assure that we know the number of speculations, the
12687 * number of aggregations, the minimum buffer size needed, etc. before we
12688 * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
12689 * enabling any probes, we create ECBs for every ECB decription, but with a
12690 * NULL probe -- which is exactly what this function does.
12691 */
12692static void
12693dtrace_enabling_prime(dtrace_state_t *state)
12694{
12695	dtrace_enabling_t *enab;
12696	int i;
12697
12698	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12699		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12700
12701		if (enab->dten_vstate->dtvs_state != state)
12702			continue;
12703
12704		/*
12705		 * We don't want to prime an enabling more than once, lest
12706		 * we allow a malicious user to induce resource exhaustion.
12707		 * (The ECBs that result from priming an enabling aren't
12708		 * leaked -- but they also aren't deallocated until the
12709		 * consumer state is destroyed.)
12710		 */
12711		if (enab->dten_primed)
12712			continue;
12713
12714		for (i = 0; i < enab->dten_ndesc; i++) {
12715			enab->dten_current = enab->dten_desc[i];
12716			(void) dtrace_probe_enable(NULL, enab);
12717		}
12718
12719		enab->dten_primed = 1;
12720	}
12721}
12722
12723/*
12724 * Called to indicate that probes should be provided due to retained
12725 * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
12726 * must take an initial lap through the enabling calling the dtps_provide()
12727 * entry point explicitly to allow for autocreated probes.
12728 */
12729static void
12730dtrace_enabling_provide(dtrace_provider_t *prv)
12731{
12732	int i, all = 0;
12733	dtrace_probedesc_t desc;
12734	dtrace_genid_t gen;
12735
12736	ASSERT(MUTEX_HELD(&dtrace_lock));
12737	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
12738
12739	if (prv == NULL) {
12740		all = 1;
12741		prv = dtrace_provider;
12742	}
12743
12744	do {
12745		dtrace_enabling_t *enab;
12746		void *parg = prv->dtpv_arg;
12747
12748retry:
12749		gen = dtrace_retained_gen;
12750		for (enab = dtrace_retained; enab != NULL;
12751		    enab = enab->dten_next) {
12752			for (i = 0; i < enab->dten_ndesc; i++) {
12753				desc = enab->dten_desc[i]->dted_probe;
12754				mutex_exit(&dtrace_lock);
12755				prv->dtpv_pops.dtps_provide(parg, &desc);
12756				mutex_enter(&dtrace_lock);
12757				/*
12758				 * Process the retained enablings again if
12759				 * they have changed while we weren't holding
12760				 * dtrace_lock.
12761				 */
12762				if (gen != dtrace_retained_gen)
12763					goto retry;
12764			}
12765		}
12766	} while (all && (prv = prv->dtpv_next) != NULL);
12767
12768	mutex_exit(&dtrace_lock);
12769	dtrace_probe_provide(NULL, all ? NULL : prv);
12770	mutex_enter(&dtrace_lock);
12771}
12772
12773/*
12774 * Called to reap ECBs that are attached to probes from defunct providers.
12775 */
12776static void
12777dtrace_enabling_reap(void)
12778{
12779	dtrace_provider_t *prov;
12780	dtrace_probe_t *probe;
12781	dtrace_ecb_t *ecb;
12782	hrtime_t when;
12783	int i;
12784
12785	mutex_enter(&cpu_lock);
12786	mutex_enter(&dtrace_lock);
12787
12788	for (i = 0; i < dtrace_nprobes; i++) {
12789		if ((probe = dtrace_probes[i]) == NULL)
12790			continue;
12791
12792		if (probe->dtpr_ecb == NULL)
12793			continue;
12794
12795		prov = probe->dtpr_provider;
12796
12797		if ((when = prov->dtpv_defunct) == 0)
12798			continue;
12799
12800		/*
12801		 * We have ECBs on a defunct provider:  we want to reap these
12802		 * ECBs to allow the provider to unregister.  The destruction
12803		 * of these ECBs must be done carefully:  if we destroy the ECB
12804		 * and the consumer later wishes to consume an EPID that
12805		 * corresponds to the destroyed ECB (and if the EPID metadata
12806		 * has not been previously consumed), the consumer will abort
12807		 * processing on the unknown EPID.  To reduce (but not, sadly,
12808		 * eliminate) the possibility of this, we will only destroy an
12809		 * ECB for a defunct provider if, for the state that
12810		 * corresponds to the ECB:
12811		 *
12812		 *  (a)	There is no speculative tracing (which can effectively
12813		 *	cache an EPID for an arbitrary amount of time).
12814		 *
12815		 *  (b)	The principal buffers have been switched twice since the
12816		 *	provider became defunct.
12817		 *
12818		 *  (c)	The aggregation buffers are of zero size or have been
12819		 *	switched twice since the provider became defunct.
12820		 *
12821		 * We use dts_speculates to determine (a) and call a function
12822		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
12823		 * that as soon as we've been unable to destroy one of the ECBs
12824		 * associated with the probe, we quit trying -- reaping is only
12825		 * fruitful in as much as we can destroy all ECBs associated
12826		 * with the defunct provider's probes.
12827		 */
12828		while ((ecb = probe->dtpr_ecb) != NULL) {
12829			dtrace_state_t *state = ecb->dte_state;
12830			dtrace_buffer_t *buf = state->dts_buffer;
12831			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
12832
12833			if (state->dts_speculates)
12834				break;
12835
12836			if (!dtrace_buffer_consumed(buf, when))
12837				break;
12838
12839			if (!dtrace_buffer_consumed(aggbuf, when))
12840				break;
12841
12842			dtrace_ecb_disable(ecb);
12843			ASSERT(probe->dtpr_ecb != ecb);
12844			dtrace_ecb_destroy(ecb);
12845		}
12846	}
12847
12848	mutex_exit(&dtrace_lock);
12849	mutex_exit(&cpu_lock);
12850}
12851
12852/*
12853 * DTrace DOF Functions
12854 */
12855/*ARGSUSED*/
12856static void
12857dtrace_dof_error(dof_hdr_t *dof, const char *str)
12858{
12859	if (dtrace_err_verbose)
12860		cmn_err(CE_WARN, "failed to process DOF: %s", str);
12861
12862#ifdef DTRACE_ERRDEBUG
12863	dtrace_errdebug(str);
12864#endif
12865}
12866
12867/*
12868 * Create DOF out of a currently enabled state.  Right now, we only create
12869 * DOF containing the run-time options -- but this could be expanded to create
12870 * complete DOF representing the enabled state.
12871 */
12872static dof_hdr_t *
12873dtrace_dof_create(dtrace_state_t *state)
12874{
12875	dof_hdr_t *dof;
12876	dof_sec_t *sec;
12877	dof_optdesc_t *opt;
12878	int i, len = sizeof (dof_hdr_t) +
12879	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
12880	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12881
12882	ASSERT(MUTEX_HELD(&dtrace_lock));
12883
12884	dof = kmem_zalloc(len, KM_SLEEP);
12885	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
12886	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
12887	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
12888	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
12889
12890	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
12891	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
12892	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
12893	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
12894	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
12895	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
12896
12897	dof->dofh_flags = 0;
12898	dof->dofh_hdrsize = sizeof (dof_hdr_t);
12899	dof->dofh_secsize = sizeof (dof_sec_t);
12900	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
12901	dof->dofh_secoff = sizeof (dof_hdr_t);
12902	dof->dofh_loadsz = len;
12903	dof->dofh_filesz = len;
12904	dof->dofh_pad = 0;
12905
12906	/*
12907	 * Fill in the option section header...
12908	 */
12909	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
12910	sec->dofs_type = DOF_SECT_OPTDESC;
12911	sec->dofs_align = sizeof (uint64_t);
12912	sec->dofs_flags = DOF_SECF_LOAD;
12913	sec->dofs_entsize = sizeof (dof_optdesc_t);
12914
12915	opt = (dof_optdesc_t *)((uintptr_t)sec +
12916	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
12917
12918	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
12919	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12920
12921	for (i = 0; i < DTRACEOPT_MAX; i++) {
12922		opt[i].dofo_option = i;
12923		opt[i].dofo_strtab = DOF_SECIDX_NONE;
12924		opt[i].dofo_value = state->dts_options[i];
12925	}
12926
12927	return (dof);
12928}
12929
12930static dof_hdr_t *
12931dtrace_dof_copyin(uintptr_t uarg, int *errp)
12932{
12933	dof_hdr_t hdr, *dof;
12934
12935	ASSERT(!MUTEX_HELD(&dtrace_lock));
12936
12937	/*
12938	 * First, we're going to copyin() the sizeof (dof_hdr_t).
12939	 */
12940	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
12941		dtrace_dof_error(NULL, "failed to copyin DOF header");
12942		*errp = EFAULT;
12943		return (NULL);
12944	}
12945
12946	/*
12947	 * Now we'll allocate the entire DOF and copy it in -- provided
12948	 * that the length isn't outrageous.
12949	 */
12950	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
12951		dtrace_dof_error(&hdr, "load size exceeds maximum");
12952		*errp = E2BIG;
12953		return (NULL);
12954	}
12955
12956	if (hdr.dofh_loadsz < sizeof (hdr)) {
12957		dtrace_dof_error(&hdr, "invalid load size");
12958		*errp = EINVAL;
12959		return (NULL);
12960	}
12961
12962	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
12963
12964	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
12965	    dof->dofh_loadsz != hdr.dofh_loadsz) {
12966		kmem_free(dof, hdr.dofh_loadsz);
12967		*errp = EFAULT;
12968		return (NULL);
12969	}
12970
12971	return (dof);
12972}
12973
12974#if !defined(sun)
12975static __inline uchar_t
12976dtrace_dof_char(char c) {
12977	switch (c) {
12978	case '0':
12979	case '1':
12980	case '2':
12981	case '3':
12982	case '4':
12983	case '5':
12984	case '6':
12985	case '7':
12986	case '8':
12987	case '9':
12988		return (c - '0');
12989	case 'A':
12990	case 'B':
12991	case 'C':
12992	case 'D':
12993	case 'E':
12994	case 'F':
12995		return (c - 'A' + 10);
12996	case 'a':
12997	case 'b':
12998	case 'c':
12999	case 'd':
13000	case 'e':
13001	case 'f':
13002		return (c - 'a' + 10);
13003	}
13004	/* Should not reach here. */
13005	return (0);
13006}
13007#endif
13008
13009static dof_hdr_t *
13010dtrace_dof_property(const char *name)
13011{
13012	uchar_t *buf;
13013	uint64_t loadsz;
13014	unsigned int len, i;
13015	dof_hdr_t *dof;
13016
13017#if defined(sun)
13018	/*
13019	 * Unfortunately, array of values in .conf files are always (and
13020	 * only) interpreted to be integer arrays.  We must read our DOF
13021	 * as an integer array, and then squeeze it into a byte array.
13022	 */
13023	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
13024	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
13025		return (NULL);
13026
13027	for (i = 0; i < len; i++)
13028		buf[i] = (uchar_t)(((int *)buf)[i]);
13029
13030	if (len < sizeof (dof_hdr_t)) {
13031		ddi_prop_free(buf);
13032		dtrace_dof_error(NULL, "truncated header");
13033		return (NULL);
13034	}
13035
13036	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
13037		ddi_prop_free(buf);
13038		dtrace_dof_error(NULL, "truncated DOF");
13039		return (NULL);
13040	}
13041
13042	if (loadsz >= dtrace_dof_maxsize) {
13043		ddi_prop_free(buf);
13044		dtrace_dof_error(NULL, "oversized DOF");
13045		return (NULL);
13046	}
13047
13048	dof = kmem_alloc(loadsz, KM_SLEEP);
13049	bcopy(buf, dof, loadsz);
13050	ddi_prop_free(buf);
13051#else
13052	char *p;
13053	char *p_env;
13054
13055	if ((p_env = getenv(name)) == NULL)
13056		return (NULL);
13057
13058	len = strlen(p_env) / 2;
13059
13060	buf = kmem_alloc(len, KM_SLEEP);
13061
13062	dof = (dof_hdr_t *) buf;
13063
13064	p = p_env;
13065
13066	for (i = 0; i < len; i++) {
13067		buf[i] = (dtrace_dof_char(p[0]) << 4) |
13068		     dtrace_dof_char(p[1]);
13069		p += 2;
13070	}
13071
13072	freeenv(p_env);
13073
13074	if (len < sizeof (dof_hdr_t)) {
13075		kmem_free(buf, 0);
13076		dtrace_dof_error(NULL, "truncated header");
13077		return (NULL);
13078	}
13079
13080	if (len < (loadsz = dof->dofh_loadsz)) {
13081		kmem_free(buf, 0);
13082		dtrace_dof_error(NULL, "truncated DOF");
13083		return (NULL);
13084	}
13085
13086	if (loadsz >= dtrace_dof_maxsize) {
13087		kmem_free(buf, 0);
13088		dtrace_dof_error(NULL, "oversized DOF");
13089		return (NULL);
13090	}
13091#endif
13092
13093	return (dof);
13094}
13095
13096static void
13097dtrace_dof_destroy(dof_hdr_t *dof)
13098{
13099	kmem_free(dof, dof->dofh_loadsz);
13100}
13101
13102/*
13103 * Return the dof_sec_t pointer corresponding to a given section index.  If the
13104 * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
13105 * a type other than DOF_SECT_NONE is specified, the header is checked against
13106 * this type and NULL is returned if the types do not match.
13107 */
13108static dof_sec_t *
13109dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
13110{
13111	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
13112	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
13113
13114	if (i >= dof->dofh_secnum) {
13115		dtrace_dof_error(dof, "referenced section index is invalid");
13116		return (NULL);
13117	}
13118
13119	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
13120		dtrace_dof_error(dof, "referenced section is not loadable");
13121		return (NULL);
13122	}
13123
13124	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
13125		dtrace_dof_error(dof, "referenced section is the wrong type");
13126		return (NULL);
13127	}
13128
13129	return (sec);
13130}
13131
13132static dtrace_probedesc_t *
13133dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
13134{
13135	dof_probedesc_t *probe;
13136	dof_sec_t *strtab;
13137	uintptr_t daddr = (uintptr_t)dof;
13138	uintptr_t str;
13139	size_t size;
13140
13141	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
13142		dtrace_dof_error(dof, "invalid probe section");
13143		return (NULL);
13144	}
13145
13146	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13147		dtrace_dof_error(dof, "bad alignment in probe description");
13148		return (NULL);
13149	}
13150
13151	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
13152		dtrace_dof_error(dof, "truncated probe description");
13153		return (NULL);
13154	}
13155
13156	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
13157	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
13158
13159	if (strtab == NULL)
13160		return (NULL);
13161
13162	str = daddr + strtab->dofs_offset;
13163	size = strtab->dofs_size;
13164
13165	if (probe->dofp_provider >= strtab->dofs_size) {
13166		dtrace_dof_error(dof, "corrupt probe provider");
13167		return (NULL);
13168	}
13169
13170	(void) strncpy(desc->dtpd_provider,
13171	    (char *)(str + probe->dofp_provider),
13172	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
13173
13174	if (probe->dofp_mod >= strtab->dofs_size) {
13175		dtrace_dof_error(dof, "corrupt probe module");
13176		return (NULL);
13177	}
13178
13179	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
13180	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
13181
13182	if (probe->dofp_func >= strtab->dofs_size) {
13183		dtrace_dof_error(dof, "corrupt probe function");
13184		return (NULL);
13185	}
13186
13187	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
13188	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
13189
13190	if (probe->dofp_name >= strtab->dofs_size) {
13191		dtrace_dof_error(dof, "corrupt probe name");
13192		return (NULL);
13193	}
13194
13195	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
13196	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
13197
13198	return (desc);
13199}
13200
13201static dtrace_difo_t *
13202dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13203    cred_t *cr)
13204{
13205	dtrace_difo_t *dp;
13206	size_t ttl = 0;
13207	dof_difohdr_t *dofd;
13208	uintptr_t daddr = (uintptr_t)dof;
13209	size_t max = dtrace_difo_maxsize;
13210	int i, l, n;
13211
13212	static const struct {
13213		int section;
13214		int bufoffs;
13215		int lenoffs;
13216		int entsize;
13217		int align;
13218		const char *msg;
13219	} difo[] = {
13220		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
13221		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
13222		sizeof (dif_instr_t), "multiple DIF sections" },
13223
13224		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
13225		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
13226		sizeof (uint64_t), "multiple integer tables" },
13227
13228		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
13229		offsetof(dtrace_difo_t, dtdo_strlen), 0,
13230		sizeof (char), "multiple string tables" },
13231
13232		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
13233		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
13234		sizeof (uint_t), "multiple variable tables" },
13235
13236		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
13237	};
13238
13239	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
13240		dtrace_dof_error(dof, "invalid DIFO header section");
13241		return (NULL);
13242	}
13243
13244	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13245		dtrace_dof_error(dof, "bad alignment in DIFO header");
13246		return (NULL);
13247	}
13248
13249	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
13250	    sec->dofs_size % sizeof (dof_secidx_t)) {
13251		dtrace_dof_error(dof, "bad size in DIFO header");
13252		return (NULL);
13253	}
13254
13255	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13256	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
13257
13258	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
13259	dp->dtdo_rtype = dofd->dofd_rtype;
13260
13261	for (l = 0; l < n; l++) {
13262		dof_sec_t *subsec;
13263		void **bufp;
13264		uint32_t *lenp;
13265
13266		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
13267		    dofd->dofd_links[l])) == NULL)
13268			goto err; /* invalid section link */
13269
13270		if (ttl + subsec->dofs_size > max) {
13271			dtrace_dof_error(dof, "exceeds maximum size");
13272			goto err;
13273		}
13274
13275		ttl += subsec->dofs_size;
13276
13277		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
13278			if (subsec->dofs_type != difo[i].section)
13279				continue;
13280
13281			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
13282				dtrace_dof_error(dof, "section not loaded");
13283				goto err;
13284			}
13285
13286			if (subsec->dofs_align != difo[i].align) {
13287				dtrace_dof_error(dof, "bad alignment");
13288				goto err;
13289			}
13290
13291			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
13292			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
13293
13294			if (*bufp != NULL) {
13295				dtrace_dof_error(dof, difo[i].msg);
13296				goto err;
13297			}
13298
13299			if (difo[i].entsize != subsec->dofs_entsize) {
13300				dtrace_dof_error(dof, "entry size mismatch");
13301				goto err;
13302			}
13303
13304			if (subsec->dofs_entsize != 0 &&
13305			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
13306				dtrace_dof_error(dof, "corrupt entry size");
13307				goto err;
13308			}
13309
13310			*lenp = subsec->dofs_size;
13311			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
13312			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
13313			    *bufp, subsec->dofs_size);
13314
13315			if (subsec->dofs_entsize != 0)
13316				*lenp /= subsec->dofs_entsize;
13317
13318			break;
13319		}
13320
13321		/*
13322		 * If we encounter a loadable DIFO sub-section that is not
13323		 * known to us, assume this is a broken program and fail.
13324		 */
13325		if (difo[i].section == DOF_SECT_NONE &&
13326		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
13327			dtrace_dof_error(dof, "unrecognized DIFO subsection");
13328			goto err;
13329		}
13330	}
13331
13332	if (dp->dtdo_buf == NULL) {
13333		/*
13334		 * We can't have a DIF object without DIF text.
13335		 */
13336		dtrace_dof_error(dof, "missing DIF text");
13337		goto err;
13338	}
13339
13340	/*
13341	 * Before we validate the DIF object, run through the variable table
13342	 * looking for the strings -- if any of their size are under, we'll set
13343	 * their size to be the system-wide default string size.  Note that
13344	 * this should _not_ happen if the "strsize" option has been set --
13345	 * in this case, the compiler should have set the size to reflect the
13346	 * setting of the option.
13347	 */
13348	for (i = 0; i < dp->dtdo_varlen; i++) {
13349		dtrace_difv_t *v = &dp->dtdo_vartab[i];
13350		dtrace_diftype_t *t = &v->dtdv_type;
13351
13352		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
13353			continue;
13354
13355		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
13356			t->dtdt_size = dtrace_strsize_default;
13357	}
13358
13359	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
13360		goto err;
13361
13362	dtrace_difo_init(dp, vstate);
13363	return (dp);
13364
13365err:
13366	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
13367	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
13368	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
13369	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
13370
13371	kmem_free(dp, sizeof (dtrace_difo_t));
13372	return (NULL);
13373}
13374
13375static dtrace_predicate_t *
13376dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13377    cred_t *cr)
13378{
13379	dtrace_difo_t *dp;
13380
13381	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
13382		return (NULL);
13383
13384	return (dtrace_predicate_create(dp));
13385}
13386
13387static dtrace_actdesc_t *
13388dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13389    cred_t *cr)
13390{
13391	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
13392	dof_actdesc_t *desc;
13393	dof_sec_t *difosec;
13394	size_t offs;
13395	uintptr_t daddr = (uintptr_t)dof;
13396	uint64_t arg;
13397	dtrace_actkind_t kind;
13398
13399	if (sec->dofs_type != DOF_SECT_ACTDESC) {
13400		dtrace_dof_error(dof, "invalid action section");
13401		return (NULL);
13402	}
13403
13404	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
13405		dtrace_dof_error(dof, "truncated action description");
13406		return (NULL);
13407	}
13408
13409	if (sec->dofs_align != sizeof (uint64_t)) {
13410		dtrace_dof_error(dof, "bad alignment in action description");
13411		return (NULL);
13412	}
13413
13414	if (sec->dofs_size < sec->dofs_entsize) {
13415		dtrace_dof_error(dof, "section entry size exceeds total size");
13416		return (NULL);
13417	}
13418
13419	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
13420		dtrace_dof_error(dof, "bad entry size in action description");
13421		return (NULL);
13422	}
13423
13424	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
13425		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
13426		return (NULL);
13427	}
13428
13429	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
13430		desc = (dof_actdesc_t *)(daddr +
13431		    (uintptr_t)sec->dofs_offset + offs);
13432		kind = (dtrace_actkind_t)desc->dofa_kind;
13433
13434		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
13435		    (kind != DTRACEACT_PRINTA ||
13436		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
13437		    (kind == DTRACEACT_DIFEXPR &&
13438		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
13439			dof_sec_t *strtab;
13440			char *str, *fmt;
13441			uint64_t i;
13442
13443			/*
13444			 * The argument to these actions is an index into the
13445			 * DOF string table.  For printf()-like actions, this
13446			 * is the format string.  For print(), this is the
13447			 * CTF type of the expression result.
13448			 */
13449			if ((strtab = dtrace_dof_sect(dof,
13450			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
13451				goto err;
13452
13453			str = (char *)((uintptr_t)dof +
13454			    (uintptr_t)strtab->dofs_offset);
13455
13456			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
13457				if (str[i] == '\0')
13458					break;
13459			}
13460
13461			if (i >= strtab->dofs_size) {
13462				dtrace_dof_error(dof, "bogus format string");
13463				goto err;
13464			}
13465
13466			if (i == desc->dofa_arg) {
13467				dtrace_dof_error(dof, "empty format string");
13468				goto err;
13469			}
13470
13471			i -= desc->dofa_arg;
13472			fmt = kmem_alloc(i + 1, KM_SLEEP);
13473			bcopy(&str[desc->dofa_arg], fmt, i + 1);
13474			arg = (uint64_t)(uintptr_t)fmt;
13475		} else {
13476			if (kind == DTRACEACT_PRINTA) {
13477				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
13478				arg = 0;
13479			} else {
13480				arg = desc->dofa_arg;
13481			}
13482		}
13483
13484		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
13485		    desc->dofa_uarg, arg);
13486
13487		if (last != NULL) {
13488			last->dtad_next = act;
13489		} else {
13490			first = act;
13491		}
13492
13493		last = act;
13494
13495		if (desc->dofa_difo == DOF_SECIDX_NONE)
13496			continue;
13497
13498		if ((difosec = dtrace_dof_sect(dof,
13499		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
13500			goto err;
13501
13502		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
13503
13504		if (act->dtad_difo == NULL)
13505			goto err;
13506	}
13507
13508	ASSERT(first != NULL);
13509	return (first);
13510
13511err:
13512	for (act = first; act != NULL; act = next) {
13513		next = act->dtad_next;
13514		dtrace_actdesc_release(act, vstate);
13515	}
13516
13517	return (NULL);
13518}
13519
13520static dtrace_ecbdesc_t *
13521dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13522    cred_t *cr)
13523{
13524	dtrace_ecbdesc_t *ep;
13525	dof_ecbdesc_t *ecb;
13526	dtrace_probedesc_t *desc;
13527	dtrace_predicate_t *pred = NULL;
13528
13529	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
13530		dtrace_dof_error(dof, "truncated ECB description");
13531		return (NULL);
13532	}
13533
13534	if (sec->dofs_align != sizeof (uint64_t)) {
13535		dtrace_dof_error(dof, "bad alignment in ECB description");
13536		return (NULL);
13537	}
13538
13539	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
13540	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
13541
13542	if (sec == NULL)
13543		return (NULL);
13544
13545	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
13546	ep->dted_uarg = ecb->dofe_uarg;
13547	desc = &ep->dted_probe;
13548
13549	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
13550		goto err;
13551
13552	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
13553		if ((sec = dtrace_dof_sect(dof,
13554		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
13555			goto err;
13556
13557		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
13558			goto err;
13559
13560		ep->dted_pred.dtpdd_predicate = pred;
13561	}
13562
13563	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
13564		if ((sec = dtrace_dof_sect(dof,
13565		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
13566			goto err;
13567
13568		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
13569
13570		if (ep->dted_action == NULL)
13571			goto err;
13572	}
13573
13574	return (ep);
13575
13576err:
13577	if (pred != NULL)
13578		dtrace_predicate_release(pred, vstate);
13579	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
13580	return (NULL);
13581}
13582
13583/*
13584 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
13585 * specified DOF.  At present, this amounts to simply adding 'ubase' to the
13586 * site of any user SETX relocations to account for load object base address.
13587 * In the future, if we need other relocations, this function can be extended.
13588 */
13589static int
13590dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
13591{
13592	uintptr_t daddr = (uintptr_t)dof;
13593	dof_relohdr_t *dofr =
13594	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13595	dof_sec_t *ss, *rs, *ts;
13596	dof_relodesc_t *r;
13597	uint_t i, n;
13598
13599	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
13600	    sec->dofs_align != sizeof (dof_secidx_t)) {
13601		dtrace_dof_error(dof, "invalid relocation header");
13602		return (-1);
13603	}
13604
13605	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
13606	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
13607	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
13608
13609	if (ss == NULL || rs == NULL || ts == NULL)
13610		return (-1); /* dtrace_dof_error() has been called already */
13611
13612	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
13613	    rs->dofs_align != sizeof (uint64_t)) {
13614		dtrace_dof_error(dof, "invalid relocation section");
13615		return (-1);
13616	}
13617
13618	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
13619	n = rs->dofs_size / rs->dofs_entsize;
13620
13621	for (i = 0; i < n; i++) {
13622		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
13623
13624		switch (r->dofr_type) {
13625		case DOF_RELO_NONE:
13626			break;
13627		case DOF_RELO_SETX:
13628			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
13629			    sizeof (uint64_t) > ts->dofs_size) {
13630				dtrace_dof_error(dof, "bad relocation offset");
13631				return (-1);
13632			}
13633
13634			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
13635				dtrace_dof_error(dof, "misaligned setx relo");
13636				return (-1);
13637			}
13638
13639			*(uint64_t *)taddr += ubase;
13640			break;
13641		default:
13642			dtrace_dof_error(dof, "invalid relocation type");
13643			return (-1);
13644		}
13645
13646		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
13647	}
13648
13649	return (0);
13650}
13651
13652/*
13653 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
13654 * header:  it should be at the front of a memory region that is at least
13655 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
13656 * size.  It need not be validated in any other way.
13657 */
13658static int
13659dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
13660    dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
13661{
13662	uint64_t len = dof->dofh_loadsz, seclen;
13663	uintptr_t daddr = (uintptr_t)dof;
13664	dtrace_ecbdesc_t *ep;
13665	dtrace_enabling_t *enab;
13666	uint_t i;
13667
13668	ASSERT(MUTEX_HELD(&dtrace_lock));
13669	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
13670
13671	/*
13672	 * Check the DOF header identification bytes.  In addition to checking
13673	 * valid settings, we also verify that unused bits/bytes are zeroed so
13674	 * we can use them later without fear of regressing existing binaries.
13675	 */
13676	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
13677	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
13678		dtrace_dof_error(dof, "DOF magic string mismatch");
13679		return (-1);
13680	}
13681
13682	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
13683	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
13684		dtrace_dof_error(dof, "DOF has invalid data model");
13685		return (-1);
13686	}
13687
13688	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
13689		dtrace_dof_error(dof, "DOF encoding mismatch");
13690		return (-1);
13691	}
13692
13693	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
13694	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
13695		dtrace_dof_error(dof, "DOF version mismatch");
13696		return (-1);
13697	}
13698
13699	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
13700		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
13701		return (-1);
13702	}
13703
13704	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
13705		dtrace_dof_error(dof, "DOF uses too many integer registers");
13706		return (-1);
13707	}
13708
13709	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
13710		dtrace_dof_error(dof, "DOF uses too many tuple registers");
13711		return (-1);
13712	}
13713
13714	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
13715		if (dof->dofh_ident[i] != 0) {
13716			dtrace_dof_error(dof, "DOF has invalid ident byte set");
13717			return (-1);
13718		}
13719	}
13720
13721	if (dof->dofh_flags & ~DOF_FL_VALID) {
13722		dtrace_dof_error(dof, "DOF has invalid flag bits set");
13723		return (-1);
13724	}
13725
13726	if (dof->dofh_secsize == 0) {
13727		dtrace_dof_error(dof, "zero section header size");
13728		return (-1);
13729	}
13730
13731	/*
13732	 * Check that the section headers don't exceed the amount of DOF
13733	 * data.  Note that we cast the section size and number of sections
13734	 * to uint64_t's to prevent possible overflow in the multiplication.
13735	 */
13736	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
13737
13738	if (dof->dofh_secoff > len || seclen > len ||
13739	    dof->dofh_secoff + seclen > len) {
13740		dtrace_dof_error(dof, "truncated section headers");
13741		return (-1);
13742	}
13743
13744	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
13745		dtrace_dof_error(dof, "misaligned section headers");
13746		return (-1);
13747	}
13748
13749	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
13750		dtrace_dof_error(dof, "misaligned section size");
13751		return (-1);
13752	}
13753
13754	/*
13755	 * Take an initial pass through the section headers to be sure that
13756	 * the headers don't have stray offsets.  If the 'noprobes' flag is
13757	 * set, do not permit sections relating to providers, probes, or args.
13758	 */
13759	for (i = 0; i < dof->dofh_secnum; i++) {
13760		dof_sec_t *sec = (dof_sec_t *)(daddr +
13761		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13762
13763		if (noprobes) {
13764			switch (sec->dofs_type) {
13765			case DOF_SECT_PROVIDER:
13766			case DOF_SECT_PROBES:
13767			case DOF_SECT_PRARGS:
13768			case DOF_SECT_PROFFS:
13769				dtrace_dof_error(dof, "illegal sections "
13770				    "for enabling");
13771				return (-1);
13772			}
13773		}
13774
13775		if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
13776		    !(sec->dofs_flags & DOF_SECF_LOAD)) {
13777			dtrace_dof_error(dof, "loadable section with load "
13778			    "flag unset");
13779			return (-1);
13780		}
13781
13782		if (!(sec->dofs_flags & DOF_SECF_LOAD))
13783			continue; /* just ignore non-loadable sections */
13784
13785		if (!ISP2(sec->dofs_align)) {
13786			dtrace_dof_error(dof, "bad section alignment");
13787			return (-1);
13788		}
13789
13790		if (sec->dofs_offset & (sec->dofs_align - 1)) {
13791			dtrace_dof_error(dof, "misaligned section");
13792			return (-1);
13793		}
13794
13795		if (sec->dofs_offset > len || sec->dofs_size > len ||
13796		    sec->dofs_offset + sec->dofs_size > len) {
13797			dtrace_dof_error(dof, "corrupt section header");
13798			return (-1);
13799		}
13800
13801		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
13802		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
13803			dtrace_dof_error(dof, "non-terminating string table");
13804			return (-1);
13805		}
13806	}
13807
13808	/*
13809	 * Take a second pass through the sections and locate and perform any
13810	 * relocations that are present.  We do this after the first pass to
13811	 * be sure that all sections have had their headers validated.
13812	 */
13813	for (i = 0; i < dof->dofh_secnum; i++) {
13814		dof_sec_t *sec = (dof_sec_t *)(daddr +
13815		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13816
13817		if (!(sec->dofs_flags & DOF_SECF_LOAD))
13818			continue; /* skip sections that are not loadable */
13819
13820		switch (sec->dofs_type) {
13821		case DOF_SECT_URELHDR:
13822			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
13823				return (-1);
13824			break;
13825		}
13826	}
13827
13828	if ((enab = *enabp) == NULL)
13829		enab = *enabp = dtrace_enabling_create(vstate);
13830
13831	for (i = 0; i < dof->dofh_secnum; i++) {
13832		dof_sec_t *sec = (dof_sec_t *)(daddr +
13833		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13834
13835		if (sec->dofs_type != DOF_SECT_ECBDESC)
13836			continue;
13837
13838		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
13839			dtrace_enabling_destroy(enab);
13840			*enabp = NULL;
13841			return (-1);
13842		}
13843
13844		dtrace_enabling_add(enab, ep);
13845	}
13846
13847	return (0);
13848}
13849
13850/*
13851 * Process DOF for any options.  This routine assumes that the DOF has been
13852 * at least processed by dtrace_dof_slurp().
13853 */
13854static int
13855dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
13856{
13857	int i, rval;
13858	uint32_t entsize;
13859	size_t offs;
13860	dof_optdesc_t *desc;
13861
13862	for (i = 0; i < dof->dofh_secnum; i++) {
13863		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
13864		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13865
13866		if (sec->dofs_type != DOF_SECT_OPTDESC)
13867			continue;
13868
13869		if (sec->dofs_align != sizeof (uint64_t)) {
13870			dtrace_dof_error(dof, "bad alignment in "
13871			    "option description");
13872			return (EINVAL);
13873		}
13874
13875		if ((entsize = sec->dofs_entsize) == 0) {
13876			dtrace_dof_error(dof, "zeroed option entry size");
13877			return (EINVAL);
13878		}
13879
13880		if (entsize < sizeof (dof_optdesc_t)) {
13881			dtrace_dof_error(dof, "bad option entry size");
13882			return (EINVAL);
13883		}
13884
13885		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
13886			desc = (dof_optdesc_t *)((uintptr_t)dof +
13887			    (uintptr_t)sec->dofs_offset + offs);
13888
13889			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
13890				dtrace_dof_error(dof, "non-zero option string");
13891				return (EINVAL);
13892			}
13893
13894			if (desc->dofo_value == DTRACEOPT_UNSET) {
13895				dtrace_dof_error(dof, "unset option");
13896				return (EINVAL);
13897			}
13898
13899			if ((rval = dtrace_state_option(state,
13900			    desc->dofo_option, desc->dofo_value)) != 0) {
13901				dtrace_dof_error(dof, "rejected option");
13902				return (rval);
13903			}
13904		}
13905	}
13906
13907	return (0);
13908}
13909
13910/*
13911 * DTrace Consumer State Functions
13912 */
13913static int
13914dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
13915{
13916	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
13917	void *base;
13918	uintptr_t limit;
13919	dtrace_dynvar_t *dvar, *next, *start;
13920	int i;
13921
13922	ASSERT(MUTEX_HELD(&dtrace_lock));
13923	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
13924
13925	bzero(dstate, sizeof (dtrace_dstate_t));
13926
13927	if ((dstate->dtds_chunksize = chunksize) == 0)
13928		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
13929
13930	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
13931		size = min;
13932
13933	if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
13934		return (ENOMEM);
13935
13936	dstate->dtds_size = size;
13937	dstate->dtds_base = base;
13938	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
13939	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
13940
13941	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
13942
13943	if (hashsize != 1 && (hashsize & 1))
13944		hashsize--;
13945
13946	dstate->dtds_hashsize = hashsize;
13947	dstate->dtds_hash = dstate->dtds_base;
13948
13949	/*
13950	 * Set all of our hash buckets to point to the single sink, and (if
13951	 * it hasn't already been set), set the sink's hash value to be the
13952	 * sink sentinel value.  The sink is needed for dynamic variable
13953	 * lookups to know that they have iterated over an entire, valid hash
13954	 * chain.
13955	 */
13956	for (i = 0; i < hashsize; i++)
13957		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
13958
13959	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
13960		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
13961
13962	/*
13963	 * Determine number of active CPUs.  Divide free list evenly among
13964	 * active CPUs.
13965	 */
13966	start = (dtrace_dynvar_t *)
13967	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
13968	limit = (uintptr_t)base + size;
13969
13970	maxper = (limit - (uintptr_t)start) / NCPU;
13971	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
13972
13973#if !defined(sun)
13974	CPU_FOREACH(i) {
13975#else
13976	for (i = 0; i < NCPU; i++) {
13977#endif
13978		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
13979
13980		/*
13981		 * If we don't even have enough chunks to make it once through
13982		 * NCPUs, we're just going to allocate everything to the first
13983		 * CPU.  And if we're on the last CPU, we're going to allocate
13984		 * whatever is left over.  In either case, we set the limit to
13985		 * be the limit of the dynamic variable space.
13986		 */
13987		if (maxper == 0 || i == NCPU - 1) {
13988			limit = (uintptr_t)base + size;
13989			start = NULL;
13990		} else {
13991			limit = (uintptr_t)start + maxper;
13992			start = (dtrace_dynvar_t *)limit;
13993		}
13994
13995		ASSERT(limit <= (uintptr_t)base + size);
13996
13997		for (;;) {
13998			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
13999			    dstate->dtds_chunksize);
14000
14001			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
14002				break;
14003
14004			dvar->dtdv_next = next;
14005			dvar = next;
14006		}
14007
14008		if (maxper == 0)
14009			break;
14010	}
14011
14012	return (0);
14013}
14014
14015static void
14016dtrace_dstate_fini(dtrace_dstate_t *dstate)
14017{
14018	ASSERT(MUTEX_HELD(&cpu_lock));
14019
14020	if (dstate->dtds_base == NULL)
14021		return;
14022
14023	kmem_free(dstate->dtds_base, dstate->dtds_size);
14024	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
14025}
14026
14027static void
14028dtrace_vstate_fini(dtrace_vstate_t *vstate)
14029{
14030	/*
14031	 * Logical XOR, where are you?
14032	 */
14033	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
14034
14035	if (vstate->dtvs_nglobals > 0) {
14036		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
14037		    sizeof (dtrace_statvar_t *));
14038	}
14039
14040	if (vstate->dtvs_ntlocals > 0) {
14041		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
14042		    sizeof (dtrace_difv_t));
14043	}
14044
14045	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
14046
14047	if (vstate->dtvs_nlocals > 0) {
14048		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
14049		    sizeof (dtrace_statvar_t *));
14050	}
14051}
14052
14053#if defined(sun)
14054static void
14055dtrace_state_clean(dtrace_state_t *state)
14056{
14057	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14058		return;
14059
14060	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14061	dtrace_speculation_clean(state);
14062}
14063
14064static void
14065dtrace_state_deadman(dtrace_state_t *state)
14066{
14067	hrtime_t now;
14068
14069	dtrace_sync();
14070
14071	now = dtrace_gethrtime();
14072
14073	if (state != dtrace_anon.dta_state &&
14074	    now - state->dts_laststatus >= dtrace_deadman_user)
14075		return;
14076
14077	/*
14078	 * We must be sure that dts_alive never appears to be less than the
14079	 * value upon entry to dtrace_state_deadman(), and because we lack a
14080	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14081	 * store INT64_MAX to it, followed by a memory barrier, followed by
14082	 * the new value.  This assures that dts_alive never appears to be
14083	 * less than its true value, regardless of the order in which the
14084	 * stores to the underlying storage are issued.
14085	 */
14086	state->dts_alive = INT64_MAX;
14087	dtrace_membar_producer();
14088	state->dts_alive = now;
14089}
14090#else
14091static void
14092dtrace_state_clean(void *arg)
14093{
14094	dtrace_state_t *state = arg;
14095	dtrace_optval_t *opt = state->dts_options;
14096
14097	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14098		return;
14099
14100	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14101	dtrace_speculation_clean(state);
14102
14103	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
14104	    dtrace_state_clean, state);
14105}
14106
14107static void
14108dtrace_state_deadman(void *arg)
14109{
14110	dtrace_state_t *state = arg;
14111	hrtime_t now;
14112
14113	dtrace_sync();
14114
14115	dtrace_debug_output();
14116
14117	now = dtrace_gethrtime();
14118
14119	if (state != dtrace_anon.dta_state &&
14120	    now - state->dts_laststatus >= dtrace_deadman_user)
14121		return;
14122
14123	/*
14124	 * We must be sure that dts_alive never appears to be less than the
14125	 * value upon entry to dtrace_state_deadman(), and because we lack a
14126	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14127	 * store INT64_MAX to it, followed by a memory barrier, followed by
14128	 * the new value.  This assures that dts_alive never appears to be
14129	 * less than its true value, regardless of the order in which the
14130	 * stores to the underlying storage are issued.
14131	 */
14132	state->dts_alive = INT64_MAX;
14133	dtrace_membar_producer();
14134	state->dts_alive = now;
14135
14136	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
14137	    dtrace_state_deadman, state);
14138}
14139#endif
14140
14141static dtrace_state_t *
14142#if defined(sun)
14143dtrace_state_create(dev_t *devp, cred_t *cr)
14144#else
14145dtrace_state_create(struct cdev *dev)
14146#endif
14147{
14148#if defined(sun)
14149	minor_t minor;
14150	major_t major;
14151#else
14152	cred_t *cr = NULL;
14153	int m = 0;
14154#endif
14155	char c[30];
14156	dtrace_state_t *state;
14157	dtrace_optval_t *opt;
14158	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
14159
14160	ASSERT(MUTEX_HELD(&dtrace_lock));
14161	ASSERT(MUTEX_HELD(&cpu_lock));
14162
14163#if defined(sun)
14164	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
14165	    VM_BESTFIT | VM_SLEEP);
14166
14167	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
14168		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14169		return (NULL);
14170	}
14171
14172	state = ddi_get_soft_state(dtrace_softstate, minor);
14173#else
14174	if (dev != NULL) {
14175		cr = dev->si_cred;
14176		m = dev2unit(dev);
14177		}
14178
14179	/* Allocate memory for the state. */
14180	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
14181#endif
14182
14183	state->dts_epid = DTRACE_EPIDNONE + 1;
14184
14185	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
14186#if defined(sun)
14187	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
14188	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
14189
14190	if (devp != NULL) {
14191		major = getemajor(*devp);
14192	} else {
14193		major = ddi_driver_major(dtrace_devi);
14194	}
14195
14196	state->dts_dev = makedevice(major, minor);
14197
14198	if (devp != NULL)
14199		*devp = state->dts_dev;
14200#else
14201	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
14202	state->dts_dev = dev;
14203#endif
14204
14205	/*
14206	 * We allocate NCPU buffers.  On the one hand, this can be quite
14207	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
14208	 * other hand, it saves an additional memory reference in the probe
14209	 * path.
14210	 */
14211	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
14212	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
14213
14214#if defined(sun)
14215	state->dts_cleaner = CYCLIC_NONE;
14216	state->dts_deadman = CYCLIC_NONE;
14217#else
14218	callout_init(&state->dts_cleaner, CALLOUT_MPSAFE);
14219	callout_init(&state->dts_deadman, CALLOUT_MPSAFE);
14220#endif
14221	state->dts_vstate.dtvs_state = state;
14222
14223	for (i = 0; i < DTRACEOPT_MAX; i++)
14224		state->dts_options[i] = DTRACEOPT_UNSET;
14225
14226	/*
14227	 * Set the default options.
14228	 */
14229	opt = state->dts_options;
14230	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
14231	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
14232	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
14233	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
14234	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
14235	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
14236	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
14237	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
14238	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
14239	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
14240	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
14241	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
14242	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
14243	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
14244
14245	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
14246
14247	/*
14248	 * Depending on the user credentials, we set flag bits which alter probe
14249	 * visibility or the amount of destructiveness allowed.  In the case of
14250	 * actual anonymous tracing, or the possession of all privileges, all of
14251	 * the normal checks are bypassed.
14252	 */
14253	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
14254		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
14255		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
14256	} else {
14257		/*
14258		 * Set up the credentials for this instantiation.  We take a
14259		 * hold on the credential to prevent it from disappearing on
14260		 * us; this in turn prevents the zone_t referenced by this
14261		 * credential from disappearing.  This means that we can
14262		 * examine the credential and the zone from probe context.
14263		 */
14264		crhold(cr);
14265		state->dts_cred.dcr_cred = cr;
14266
14267		/*
14268		 * CRA_PROC means "we have *some* privilege for dtrace" and
14269		 * unlocks the use of variables like pid, zonename, etc.
14270		 */
14271		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
14272		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14273			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
14274		}
14275
14276		/*
14277		 * dtrace_user allows use of syscall and profile providers.
14278		 * If the user also has proc_owner and/or proc_zone, we
14279		 * extend the scope to include additional visibility and
14280		 * destructive power.
14281		 */
14282		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
14283			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
14284				state->dts_cred.dcr_visible |=
14285				    DTRACE_CRV_ALLPROC;
14286
14287				state->dts_cred.dcr_action |=
14288				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14289			}
14290
14291			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
14292				state->dts_cred.dcr_visible |=
14293				    DTRACE_CRV_ALLZONE;
14294
14295				state->dts_cred.dcr_action |=
14296				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14297			}
14298
14299			/*
14300			 * If we have all privs in whatever zone this is,
14301			 * we can do destructive things to processes which
14302			 * have altered credentials.
14303			 */
14304#if defined(sun)
14305			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14306			    cr->cr_zone->zone_privset)) {
14307				state->dts_cred.dcr_action |=
14308				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14309			}
14310#endif
14311		}
14312
14313		/*
14314		 * Holding the dtrace_kernel privilege also implies that
14315		 * the user has the dtrace_user privilege from a visibility
14316		 * perspective.  But without further privileges, some
14317		 * destructive actions are not available.
14318		 */
14319		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
14320			/*
14321			 * Make all probes in all zones visible.  However,
14322			 * this doesn't mean that all actions become available
14323			 * to all zones.
14324			 */
14325			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
14326			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
14327
14328			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
14329			    DTRACE_CRA_PROC;
14330			/*
14331			 * Holding proc_owner means that destructive actions
14332			 * for *this* zone are allowed.
14333			 */
14334			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14335				state->dts_cred.dcr_action |=
14336				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14337
14338			/*
14339			 * Holding proc_zone means that destructive actions
14340			 * for this user/group ID in all zones is allowed.
14341			 */
14342			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14343				state->dts_cred.dcr_action |=
14344				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14345
14346#if defined(sun)
14347			/*
14348			 * If we have all privs in whatever zone this is,
14349			 * we can do destructive things to processes which
14350			 * have altered credentials.
14351			 */
14352			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14353			    cr->cr_zone->zone_privset)) {
14354				state->dts_cred.dcr_action |=
14355				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14356			}
14357#endif
14358		}
14359
14360		/*
14361		 * Holding the dtrace_proc privilege gives control over fasttrap
14362		 * and pid providers.  We need to grant wider destructive
14363		 * privileges in the event that the user has proc_owner and/or
14364		 * proc_zone.
14365		 */
14366		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14367			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14368				state->dts_cred.dcr_action |=
14369				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14370
14371			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14372				state->dts_cred.dcr_action |=
14373				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14374		}
14375	}
14376
14377	return (state);
14378}
14379
14380static int
14381dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
14382{
14383	dtrace_optval_t *opt = state->dts_options, size;
14384	processorid_t cpu = 0;;
14385	int flags = 0, rval, factor, divisor = 1;
14386
14387	ASSERT(MUTEX_HELD(&dtrace_lock));
14388	ASSERT(MUTEX_HELD(&cpu_lock));
14389	ASSERT(which < DTRACEOPT_MAX);
14390	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
14391	    (state == dtrace_anon.dta_state &&
14392	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
14393
14394	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
14395		return (0);
14396
14397	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
14398		cpu = opt[DTRACEOPT_CPU];
14399
14400	if (which == DTRACEOPT_SPECSIZE)
14401		flags |= DTRACEBUF_NOSWITCH;
14402
14403	if (which == DTRACEOPT_BUFSIZE) {
14404		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
14405			flags |= DTRACEBUF_RING;
14406
14407		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
14408			flags |= DTRACEBUF_FILL;
14409
14410		if (state != dtrace_anon.dta_state ||
14411		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14412			flags |= DTRACEBUF_INACTIVE;
14413	}
14414
14415	for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
14416		/*
14417		 * The size must be 8-byte aligned.  If the size is not 8-byte
14418		 * aligned, drop it down by the difference.
14419		 */
14420		if (size & (sizeof (uint64_t) - 1))
14421			size -= size & (sizeof (uint64_t) - 1);
14422
14423		if (size < state->dts_reserve) {
14424			/*
14425			 * Buffers always must be large enough to accommodate
14426			 * their prereserved space.  We return E2BIG instead
14427			 * of ENOMEM in this case to allow for user-level
14428			 * software to differentiate the cases.
14429			 */
14430			return (E2BIG);
14431		}
14432
14433		rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
14434
14435		if (rval != ENOMEM) {
14436			opt[which] = size;
14437			return (rval);
14438		}
14439
14440		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14441			return (rval);
14442
14443		for (divisor = 2; divisor < factor; divisor <<= 1)
14444			continue;
14445	}
14446
14447	return (ENOMEM);
14448}
14449
14450static int
14451dtrace_state_buffers(dtrace_state_t *state)
14452{
14453	dtrace_speculation_t *spec = state->dts_speculations;
14454	int rval, i;
14455
14456	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
14457	    DTRACEOPT_BUFSIZE)) != 0)
14458		return (rval);
14459
14460	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
14461	    DTRACEOPT_AGGSIZE)) != 0)
14462		return (rval);
14463
14464	for (i = 0; i < state->dts_nspeculations; i++) {
14465		if ((rval = dtrace_state_buffer(state,
14466		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
14467			return (rval);
14468	}
14469
14470	return (0);
14471}
14472
14473static void
14474dtrace_state_prereserve(dtrace_state_t *state)
14475{
14476	dtrace_ecb_t *ecb;
14477	dtrace_probe_t *probe;
14478
14479	state->dts_reserve = 0;
14480
14481	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
14482		return;
14483
14484	/*
14485	 * If our buffer policy is a "fill" buffer policy, we need to set the
14486	 * prereserved space to be the space required by the END probes.
14487	 */
14488	probe = dtrace_probes[dtrace_probeid_end - 1];
14489	ASSERT(probe != NULL);
14490
14491	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
14492		if (ecb->dte_state != state)
14493			continue;
14494
14495		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
14496	}
14497}
14498
14499static int
14500dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
14501{
14502	dtrace_optval_t *opt = state->dts_options, sz, nspec;
14503	dtrace_speculation_t *spec;
14504	dtrace_buffer_t *buf;
14505#if defined(sun)
14506	cyc_handler_t hdlr;
14507	cyc_time_t when;
14508#endif
14509	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14510	dtrace_icookie_t cookie;
14511
14512	mutex_enter(&cpu_lock);
14513	mutex_enter(&dtrace_lock);
14514
14515	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14516		rval = EBUSY;
14517		goto out;
14518	}
14519
14520	/*
14521	 * Before we can perform any checks, we must prime all of the
14522	 * retained enablings that correspond to this state.
14523	 */
14524	dtrace_enabling_prime(state);
14525
14526	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
14527		rval = EACCES;
14528		goto out;
14529	}
14530
14531	dtrace_state_prereserve(state);
14532
14533	/*
14534	 * Now we want to do is try to allocate our speculations.
14535	 * We do not automatically resize the number of speculations; if
14536	 * this fails, we will fail the operation.
14537	 */
14538	nspec = opt[DTRACEOPT_NSPEC];
14539	ASSERT(nspec != DTRACEOPT_UNSET);
14540
14541	if (nspec > INT_MAX) {
14542		rval = ENOMEM;
14543		goto out;
14544	}
14545
14546	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
14547	    KM_NOSLEEP | KM_NORMALPRI);
14548
14549	if (spec == NULL) {
14550		rval = ENOMEM;
14551		goto out;
14552	}
14553
14554	state->dts_speculations = spec;
14555	state->dts_nspeculations = (int)nspec;
14556
14557	for (i = 0; i < nspec; i++) {
14558		if ((buf = kmem_zalloc(bufsize,
14559		    KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
14560			rval = ENOMEM;
14561			goto err;
14562		}
14563
14564		spec[i].dtsp_buffer = buf;
14565	}
14566
14567	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
14568		if (dtrace_anon.dta_state == NULL) {
14569			rval = ENOENT;
14570			goto out;
14571		}
14572
14573		if (state->dts_necbs != 0) {
14574			rval = EALREADY;
14575			goto out;
14576		}
14577
14578		state->dts_anon = dtrace_anon_grab();
14579		ASSERT(state->dts_anon != NULL);
14580		state = state->dts_anon;
14581
14582		/*
14583		 * We want "grabanon" to be set in the grabbed state, so we'll
14584		 * copy that option value from the grabbing state into the
14585		 * grabbed state.
14586		 */
14587		state->dts_options[DTRACEOPT_GRABANON] =
14588		    opt[DTRACEOPT_GRABANON];
14589
14590		*cpu = dtrace_anon.dta_beganon;
14591
14592		/*
14593		 * If the anonymous state is active (as it almost certainly
14594		 * is if the anonymous enabling ultimately matched anything),
14595		 * we don't allow any further option processing -- but we
14596		 * don't return failure.
14597		 */
14598		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14599			goto out;
14600	}
14601
14602	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
14603	    opt[DTRACEOPT_AGGSIZE] != 0) {
14604		if (state->dts_aggregations == NULL) {
14605			/*
14606			 * We're not going to create an aggregation buffer
14607			 * because we don't have any ECBs that contain
14608			 * aggregations -- set this option to 0.
14609			 */
14610			opt[DTRACEOPT_AGGSIZE] = 0;
14611		} else {
14612			/*
14613			 * If we have an aggregation buffer, we must also have
14614			 * a buffer to use as scratch.
14615			 */
14616			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
14617			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
14618				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
14619			}
14620		}
14621	}
14622
14623	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
14624	    opt[DTRACEOPT_SPECSIZE] != 0) {
14625		if (!state->dts_speculates) {
14626			/*
14627			 * We're not going to create speculation buffers
14628			 * because we don't have any ECBs that actually
14629			 * speculate -- set the speculation size to 0.
14630			 */
14631			opt[DTRACEOPT_SPECSIZE] = 0;
14632		}
14633	}
14634
14635	/*
14636	 * The bare minimum size for any buffer that we're actually going to
14637	 * do anything to is sizeof (uint64_t).
14638	 */
14639	sz = sizeof (uint64_t);
14640
14641	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
14642	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
14643	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
14644		/*
14645		 * A buffer size has been explicitly set to 0 (or to a size
14646		 * that will be adjusted to 0) and we need the space -- we
14647		 * need to return failure.  We return ENOSPC to differentiate
14648		 * it from failing to allocate a buffer due to failure to meet
14649		 * the reserve (for which we return E2BIG).
14650		 */
14651		rval = ENOSPC;
14652		goto out;
14653	}
14654
14655	if ((rval = dtrace_state_buffers(state)) != 0)
14656		goto err;
14657
14658	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
14659		sz = dtrace_dstate_defsize;
14660
14661	do {
14662		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
14663
14664		if (rval == 0)
14665			break;
14666
14667		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14668			goto err;
14669	} while (sz >>= 1);
14670
14671	opt[DTRACEOPT_DYNVARSIZE] = sz;
14672
14673	if (rval != 0)
14674		goto err;
14675
14676	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
14677		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
14678
14679	if (opt[DTRACEOPT_CLEANRATE] == 0)
14680		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
14681
14682	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
14683		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
14684
14685	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
14686		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
14687
14688	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
14689#if defined(sun)
14690	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
14691	hdlr.cyh_arg = state;
14692	hdlr.cyh_level = CY_LOW_LEVEL;
14693
14694	when.cyt_when = 0;
14695	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
14696
14697	state->dts_cleaner = cyclic_add(&hdlr, &when);
14698
14699	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
14700	hdlr.cyh_arg = state;
14701	hdlr.cyh_level = CY_LOW_LEVEL;
14702
14703	when.cyt_when = 0;
14704	when.cyt_interval = dtrace_deadman_interval;
14705
14706	state->dts_deadman = cyclic_add(&hdlr, &when);
14707#else
14708	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
14709	    dtrace_state_clean, state);
14710	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
14711	    dtrace_state_deadman, state);
14712#endif
14713
14714	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
14715
14716#if defined(sun)
14717	if (state->dts_getf != 0 &&
14718	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14719		/*
14720		 * We don't have kernel privs but we have at least one call
14721		 * to getf(); we need to bump our zone's count, and (if
14722		 * this is the first enabling to have an unprivileged call
14723		 * to getf()) we need to hook into closef().
14724		 */
14725		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
14726
14727		if (dtrace_getf++ == 0) {
14728			ASSERT(dtrace_closef == NULL);
14729			dtrace_closef = dtrace_getf_barrier;
14730		}
14731	}
14732#endif
14733
14734	/*
14735	 * Now it's time to actually fire the BEGIN probe.  We need to disable
14736	 * interrupts here both to record the CPU on which we fired the BEGIN
14737	 * probe (the data from this CPU will be processed first at user
14738	 * level) and to manually activate the buffer for this CPU.
14739	 */
14740	cookie = dtrace_interrupt_disable();
14741	*cpu = curcpu;
14742	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
14743	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
14744
14745	dtrace_probe(dtrace_probeid_begin,
14746	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14747	dtrace_interrupt_enable(cookie);
14748	/*
14749	 * We may have had an exit action from a BEGIN probe; only change our
14750	 * state to ACTIVE if we're still in WARMUP.
14751	 */
14752	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
14753	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
14754
14755	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
14756		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
14757
14758	/*
14759	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
14760	 * want each CPU to transition its principal buffer out of the
14761	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
14762	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
14763	 * atomically transition from processing none of a state's ECBs to
14764	 * processing all of them.
14765	 */
14766	dtrace_xcall(DTRACE_CPUALL,
14767	    (dtrace_xcall_t)dtrace_buffer_activate, state);
14768	goto out;
14769
14770err:
14771	dtrace_buffer_free(state->dts_buffer);
14772	dtrace_buffer_free(state->dts_aggbuffer);
14773
14774	if ((nspec = state->dts_nspeculations) == 0) {
14775		ASSERT(state->dts_speculations == NULL);
14776		goto out;
14777	}
14778
14779	spec = state->dts_speculations;
14780	ASSERT(spec != NULL);
14781
14782	for (i = 0; i < state->dts_nspeculations; i++) {
14783		if ((buf = spec[i].dtsp_buffer) == NULL)
14784			break;
14785
14786		dtrace_buffer_free(buf);
14787		kmem_free(buf, bufsize);
14788	}
14789
14790	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14791	state->dts_nspeculations = 0;
14792	state->dts_speculations = NULL;
14793
14794out:
14795	mutex_exit(&dtrace_lock);
14796	mutex_exit(&cpu_lock);
14797
14798	return (rval);
14799}
14800
14801static int
14802dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
14803{
14804	dtrace_icookie_t cookie;
14805
14806	ASSERT(MUTEX_HELD(&dtrace_lock));
14807
14808	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
14809	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
14810		return (EINVAL);
14811
14812	/*
14813	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
14814	 * to be sure that every CPU has seen it.  See below for the details
14815	 * on why this is done.
14816	 */
14817	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
14818	dtrace_sync();
14819
14820	/*
14821	 * By this point, it is impossible for any CPU to be still processing
14822	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
14823	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
14824	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
14825	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
14826	 * iff we're in the END probe.
14827	 */
14828	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
14829	dtrace_sync();
14830	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
14831
14832	/*
14833	 * Finally, we can release the reserve and call the END probe.  We
14834	 * disable interrupts across calling the END probe to allow us to
14835	 * return the CPU on which we actually called the END probe.  This
14836	 * allows user-land to be sure that this CPU's principal buffer is
14837	 * processed last.
14838	 */
14839	state->dts_reserve = 0;
14840
14841	cookie = dtrace_interrupt_disable();
14842	*cpu = curcpu;
14843	dtrace_probe(dtrace_probeid_end,
14844	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14845	dtrace_interrupt_enable(cookie);
14846
14847	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
14848	dtrace_sync();
14849
14850#if defined(sun)
14851	if (state->dts_getf != 0 &&
14852	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14853		/*
14854		 * We don't have kernel privs but we have at least one call
14855		 * to getf(); we need to lower our zone's count, and (if
14856		 * this is the last enabling to have an unprivileged call
14857		 * to getf()) we need to clear the closef() hook.
14858		 */
14859		ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
14860		ASSERT(dtrace_closef == dtrace_getf_barrier);
14861		ASSERT(dtrace_getf > 0);
14862
14863		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
14864
14865		if (--dtrace_getf == 0)
14866			dtrace_closef = NULL;
14867	}
14868#endif
14869
14870	return (0);
14871}
14872
14873static int
14874dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
14875    dtrace_optval_t val)
14876{
14877	ASSERT(MUTEX_HELD(&dtrace_lock));
14878
14879	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14880		return (EBUSY);
14881
14882	if (option >= DTRACEOPT_MAX)
14883		return (EINVAL);
14884
14885	if (option != DTRACEOPT_CPU && val < 0)
14886		return (EINVAL);
14887
14888	switch (option) {
14889	case DTRACEOPT_DESTRUCTIVE:
14890		if (dtrace_destructive_disallow)
14891			return (EACCES);
14892
14893		state->dts_cred.dcr_destructive = 1;
14894		break;
14895
14896	case DTRACEOPT_BUFSIZE:
14897	case DTRACEOPT_DYNVARSIZE:
14898	case DTRACEOPT_AGGSIZE:
14899	case DTRACEOPT_SPECSIZE:
14900	case DTRACEOPT_STRSIZE:
14901		if (val < 0)
14902			return (EINVAL);
14903
14904		if (val >= LONG_MAX) {
14905			/*
14906			 * If this is an otherwise negative value, set it to
14907			 * the highest multiple of 128m less than LONG_MAX.
14908			 * Technically, we're adjusting the size without
14909			 * regard to the buffer resizing policy, but in fact,
14910			 * this has no effect -- if we set the buffer size to
14911			 * ~LONG_MAX and the buffer policy is ultimately set to
14912			 * be "manual", the buffer allocation is guaranteed to
14913			 * fail, if only because the allocation requires two
14914			 * buffers.  (We set the the size to the highest
14915			 * multiple of 128m because it ensures that the size
14916			 * will remain a multiple of a megabyte when
14917			 * repeatedly halved -- all the way down to 15m.)
14918			 */
14919			val = LONG_MAX - (1 << 27) + 1;
14920		}
14921	}
14922
14923	state->dts_options[option] = val;
14924
14925	return (0);
14926}
14927
14928static void
14929dtrace_state_destroy(dtrace_state_t *state)
14930{
14931	dtrace_ecb_t *ecb;
14932	dtrace_vstate_t *vstate = &state->dts_vstate;
14933#if defined(sun)
14934	minor_t minor = getminor(state->dts_dev);
14935#endif
14936	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14937	dtrace_speculation_t *spec = state->dts_speculations;
14938	int nspec = state->dts_nspeculations;
14939	uint32_t match;
14940
14941	ASSERT(MUTEX_HELD(&dtrace_lock));
14942	ASSERT(MUTEX_HELD(&cpu_lock));
14943
14944	/*
14945	 * First, retract any retained enablings for this state.
14946	 */
14947	dtrace_enabling_retract(state);
14948	ASSERT(state->dts_nretained == 0);
14949
14950	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
14951	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
14952		/*
14953		 * We have managed to come into dtrace_state_destroy() on a
14954		 * hot enabling -- almost certainly because of a disorderly
14955		 * shutdown of a consumer.  (That is, a consumer that is
14956		 * exiting without having called dtrace_stop().) In this case,
14957		 * we're going to set our activity to be KILLED, and then
14958		 * issue a sync to be sure that everyone is out of probe
14959		 * context before we start blowing away ECBs.
14960		 */
14961		state->dts_activity = DTRACE_ACTIVITY_KILLED;
14962		dtrace_sync();
14963	}
14964
14965	/*
14966	 * Release the credential hold we took in dtrace_state_create().
14967	 */
14968	if (state->dts_cred.dcr_cred != NULL)
14969		crfree(state->dts_cred.dcr_cred);
14970
14971	/*
14972	 * Now we can safely disable and destroy any enabled probes.  Because
14973	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
14974	 * (especially if they're all enabled), we take two passes through the
14975	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
14976	 * in the second we disable whatever is left over.
14977	 */
14978	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
14979		for (i = 0; i < state->dts_necbs; i++) {
14980			if ((ecb = state->dts_ecbs[i]) == NULL)
14981				continue;
14982
14983			if (match && ecb->dte_probe != NULL) {
14984				dtrace_probe_t *probe = ecb->dte_probe;
14985				dtrace_provider_t *prov = probe->dtpr_provider;
14986
14987				if (!(prov->dtpv_priv.dtpp_flags & match))
14988					continue;
14989			}
14990
14991			dtrace_ecb_disable(ecb);
14992			dtrace_ecb_destroy(ecb);
14993		}
14994
14995		if (!match)
14996			break;
14997	}
14998
14999	/*
15000	 * Before we free the buffers, perform one more sync to assure that
15001	 * every CPU is out of probe context.
15002	 */
15003	dtrace_sync();
15004
15005	dtrace_buffer_free(state->dts_buffer);
15006	dtrace_buffer_free(state->dts_aggbuffer);
15007
15008	for (i = 0; i < nspec; i++)
15009		dtrace_buffer_free(spec[i].dtsp_buffer);
15010
15011#if defined(sun)
15012	if (state->dts_cleaner != CYCLIC_NONE)
15013		cyclic_remove(state->dts_cleaner);
15014
15015	if (state->dts_deadman != CYCLIC_NONE)
15016		cyclic_remove(state->dts_deadman);
15017#else
15018	callout_stop(&state->dts_cleaner);
15019	callout_drain(&state->dts_cleaner);
15020	callout_stop(&state->dts_deadman);
15021	callout_drain(&state->dts_deadman);
15022#endif
15023
15024	dtrace_dstate_fini(&vstate->dtvs_dynvars);
15025	dtrace_vstate_fini(vstate);
15026	if (state->dts_ecbs != NULL)
15027		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
15028
15029	if (state->dts_aggregations != NULL) {
15030#ifdef DEBUG
15031		for (i = 0; i < state->dts_naggregations; i++)
15032			ASSERT(state->dts_aggregations[i] == NULL);
15033#endif
15034		ASSERT(state->dts_naggregations > 0);
15035		kmem_free(state->dts_aggregations,
15036		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
15037	}
15038
15039	kmem_free(state->dts_buffer, bufsize);
15040	kmem_free(state->dts_aggbuffer, bufsize);
15041
15042	for (i = 0; i < nspec; i++)
15043		kmem_free(spec[i].dtsp_buffer, bufsize);
15044
15045	if (spec != NULL)
15046		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15047
15048	dtrace_format_destroy(state);
15049
15050	if (state->dts_aggid_arena != NULL) {
15051#if defined(sun)
15052		vmem_destroy(state->dts_aggid_arena);
15053#else
15054		delete_unrhdr(state->dts_aggid_arena);
15055#endif
15056		state->dts_aggid_arena = NULL;
15057	}
15058#if defined(sun)
15059	ddi_soft_state_free(dtrace_softstate, minor);
15060	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
15061#endif
15062}
15063
15064/*
15065 * DTrace Anonymous Enabling Functions
15066 */
15067static dtrace_state_t *
15068dtrace_anon_grab(void)
15069{
15070	dtrace_state_t *state;
15071
15072	ASSERT(MUTEX_HELD(&dtrace_lock));
15073
15074	if ((state = dtrace_anon.dta_state) == NULL) {
15075		ASSERT(dtrace_anon.dta_enabling == NULL);
15076		return (NULL);
15077	}
15078
15079	ASSERT(dtrace_anon.dta_enabling != NULL);
15080	ASSERT(dtrace_retained != NULL);
15081
15082	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
15083	dtrace_anon.dta_enabling = NULL;
15084	dtrace_anon.dta_state = NULL;
15085
15086	return (state);
15087}
15088
15089static void
15090dtrace_anon_property(void)
15091{
15092	int i, rv;
15093	dtrace_state_t *state;
15094	dof_hdr_t *dof;
15095	char c[32];		/* enough for "dof-data-" + digits */
15096
15097	ASSERT(MUTEX_HELD(&dtrace_lock));
15098	ASSERT(MUTEX_HELD(&cpu_lock));
15099
15100	for (i = 0; ; i++) {
15101		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
15102
15103		dtrace_err_verbose = 1;
15104
15105		if ((dof = dtrace_dof_property(c)) == NULL) {
15106			dtrace_err_verbose = 0;
15107			break;
15108		}
15109
15110#if defined(sun)
15111		/*
15112		 * We want to create anonymous state, so we need to transition
15113		 * the kernel debugger to indicate that DTrace is active.  If
15114		 * this fails (e.g. because the debugger has modified text in
15115		 * some way), we won't continue with the processing.
15116		 */
15117		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15118			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
15119			    "enabling ignored.");
15120			dtrace_dof_destroy(dof);
15121			break;
15122		}
15123#endif
15124
15125		/*
15126		 * If we haven't allocated an anonymous state, we'll do so now.
15127		 */
15128		if ((state = dtrace_anon.dta_state) == NULL) {
15129#if defined(sun)
15130			state = dtrace_state_create(NULL, NULL);
15131#else
15132			state = dtrace_state_create(NULL);
15133#endif
15134			dtrace_anon.dta_state = state;
15135
15136			if (state == NULL) {
15137				/*
15138				 * This basically shouldn't happen:  the only
15139				 * failure mode from dtrace_state_create() is a
15140				 * failure of ddi_soft_state_zalloc() that
15141				 * itself should never happen.  Still, the
15142				 * interface allows for a failure mode, and
15143				 * we want to fail as gracefully as possible:
15144				 * we'll emit an error message and cease
15145				 * processing anonymous state in this case.
15146				 */
15147				cmn_err(CE_WARN, "failed to create "
15148				    "anonymous state");
15149				dtrace_dof_destroy(dof);
15150				break;
15151			}
15152		}
15153
15154		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
15155		    &dtrace_anon.dta_enabling, 0, B_TRUE);
15156
15157		if (rv == 0)
15158			rv = dtrace_dof_options(dof, state);
15159
15160		dtrace_err_verbose = 0;
15161		dtrace_dof_destroy(dof);
15162
15163		if (rv != 0) {
15164			/*
15165			 * This is malformed DOF; chuck any anonymous state
15166			 * that we created.
15167			 */
15168			ASSERT(dtrace_anon.dta_enabling == NULL);
15169			dtrace_state_destroy(state);
15170			dtrace_anon.dta_state = NULL;
15171			break;
15172		}
15173
15174		ASSERT(dtrace_anon.dta_enabling != NULL);
15175	}
15176
15177	if (dtrace_anon.dta_enabling != NULL) {
15178		int rval;
15179
15180		/*
15181		 * dtrace_enabling_retain() can only fail because we are
15182		 * trying to retain more enablings than are allowed -- but
15183		 * we only have one anonymous enabling, and we are guaranteed
15184		 * to be allowed at least one retained enabling; we assert
15185		 * that dtrace_enabling_retain() returns success.
15186		 */
15187		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
15188		ASSERT(rval == 0);
15189
15190		dtrace_enabling_dump(dtrace_anon.dta_enabling);
15191	}
15192}
15193
15194/*
15195 * DTrace Helper Functions
15196 */
15197static void
15198dtrace_helper_trace(dtrace_helper_action_t *helper,
15199    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
15200{
15201	uint32_t size, next, nnext, i;
15202	dtrace_helptrace_t *ent;
15203	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
15204
15205	if (!dtrace_helptrace_enabled)
15206		return;
15207
15208	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
15209
15210	/*
15211	 * What would a tracing framework be without its own tracing
15212	 * framework?  (Well, a hell of a lot simpler, for starters...)
15213	 */
15214	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
15215	    sizeof (uint64_t) - sizeof (uint64_t);
15216
15217	/*
15218	 * Iterate until we can allocate a slot in the trace buffer.
15219	 */
15220	do {
15221		next = dtrace_helptrace_next;
15222
15223		if (next + size < dtrace_helptrace_bufsize) {
15224			nnext = next + size;
15225		} else {
15226			nnext = size;
15227		}
15228	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
15229
15230	/*
15231	 * We have our slot; fill it in.
15232	 */
15233	if (nnext == size)
15234		next = 0;
15235
15236	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
15237	ent->dtht_helper = helper;
15238	ent->dtht_where = where;
15239	ent->dtht_nlocals = vstate->dtvs_nlocals;
15240
15241	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
15242	    mstate->dtms_fltoffs : -1;
15243	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
15244	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
15245
15246	for (i = 0; i < vstate->dtvs_nlocals; i++) {
15247		dtrace_statvar_t *svar;
15248
15249		if ((svar = vstate->dtvs_locals[i]) == NULL)
15250			continue;
15251
15252		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
15253		ent->dtht_locals[i] =
15254		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
15255	}
15256}
15257
15258static uint64_t
15259dtrace_helper(int which, dtrace_mstate_t *mstate,
15260    dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
15261{
15262	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
15263	uint64_t sarg0 = mstate->dtms_arg[0];
15264	uint64_t sarg1 = mstate->dtms_arg[1];
15265	uint64_t rval = 0;
15266	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
15267	dtrace_helper_action_t *helper;
15268	dtrace_vstate_t *vstate;
15269	dtrace_difo_t *pred;
15270	int i, trace = dtrace_helptrace_enabled;
15271
15272	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
15273
15274	if (helpers == NULL)
15275		return (0);
15276
15277	if ((helper = helpers->dthps_actions[which]) == NULL)
15278		return (0);
15279
15280	vstate = &helpers->dthps_vstate;
15281	mstate->dtms_arg[0] = arg0;
15282	mstate->dtms_arg[1] = arg1;
15283
15284	/*
15285	 * Now iterate over each helper.  If its predicate evaluates to 'true',
15286	 * we'll call the corresponding actions.  Note that the below calls
15287	 * to dtrace_dif_emulate() may set faults in machine state.  This is
15288	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
15289	 * the stored DIF offset with its own (which is the desired behavior).
15290	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
15291	 * from machine state; this is okay, too.
15292	 */
15293	for (; helper != NULL; helper = helper->dtha_next) {
15294		if ((pred = helper->dtha_predicate) != NULL) {
15295			if (trace)
15296				dtrace_helper_trace(helper, mstate, vstate, 0);
15297
15298			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
15299				goto next;
15300
15301			if (*flags & CPU_DTRACE_FAULT)
15302				goto err;
15303		}
15304
15305		for (i = 0; i < helper->dtha_nactions; i++) {
15306			if (trace)
15307				dtrace_helper_trace(helper,
15308				    mstate, vstate, i + 1);
15309
15310			rval = dtrace_dif_emulate(helper->dtha_actions[i],
15311			    mstate, vstate, state);
15312
15313			if (*flags & CPU_DTRACE_FAULT)
15314				goto err;
15315		}
15316
15317next:
15318		if (trace)
15319			dtrace_helper_trace(helper, mstate, vstate,
15320			    DTRACE_HELPTRACE_NEXT);
15321	}
15322
15323	if (trace)
15324		dtrace_helper_trace(helper, mstate, vstate,
15325		    DTRACE_HELPTRACE_DONE);
15326
15327	/*
15328	 * Restore the arg0 that we saved upon entry.
15329	 */
15330	mstate->dtms_arg[0] = sarg0;
15331	mstate->dtms_arg[1] = sarg1;
15332
15333	return (rval);
15334
15335err:
15336	if (trace)
15337		dtrace_helper_trace(helper, mstate, vstate,
15338		    DTRACE_HELPTRACE_ERR);
15339
15340	/*
15341	 * Restore the arg0 that we saved upon entry.
15342	 */
15343	mstate->dtms_arg[0] = sarg0;
15344	mstate->dtms_arg[1] = sarg1;
15345
15346	return (0);
15347}
15348
15349static void
15350dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
15351    dtrace_vstate_t *vstate)
15352{
15353	int i;
15354
15355	if (helper->dtha_predicate != NULL)
15356		dtrace_difo_release(helper->dtha_predicate, vstate);
15357
15358	for (i = 0; i < helper->dtha_nactions; i++) {
15359		ASSERT(helper->dtha_actions[i] != NULL);
15360		dtrace_difo_release(helper->dtha_actions[i], vstate);
15361	}
15362
15363	kmem_free(helper->dtha_actions,
15364	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
15365	kmem_free(helper, sizeof (dtrace_helper_action_t));
15366}
15367
15368static int
15369dtrace_helper_destroygen(int gen)
15370{
15371	proc_t *p = curproc;
15372	dtrace_helpers_t *help = p->p_dtrace_helpers;
15373	dtrace_vstate_t *vstate;
15374	int i;
15375
15376	ASSERT(MUTEX_HELD(&dtrace_lock));
15377
15378	if (help == NULL || gen > help->dthps_generation)
15379		return (EINVAL);
15380
15381	vstate = &help->dthps_vstate;
15382
15383	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15384		dtrace_helper_action_t *last = NULL, *h, *next;
15385
15386		for (h = help->dthps_actions[i]; h != NULL; h = next) {
15387			next = h->dtha_next;
15388
15389			if (h->dtha_generation == gen) {
15390				if (last != NULL) {
15391					last->dtha_next = next;
15392				} else {
15393					help->dthps_actions[i] = next;
15394				}
15395
15396				dtrace_helper_action_destroy(h, vstate);
15397			} else {
15398				last = h;
15399			}
15400		}
15401	}
15402
15403	/*
15404	 * Interate until we've cleared out all helper providers with the
15405	 * given generation number.
15406	 */
15407	for (;;) {
15408		dtrace_helper_provider_t *prov;
15409
15410		/*
15411		 * Look for a helper provider with the right generation. We
15412		 * have to start back at the beginning of the list each time
15413		 * because we drop dtrace_lock. It's unlikely that we'll make
15414		 * more than two passes.
15415		 */
15416		for (i = 0; i < help->dthps_nprovs; i++) {
15417			prov = help->dthps_provs[i];
15418
15419			if (prov->dthp_generation == gen)
15420				break;
15421		}
15422
15423		/*
15424		 * If there were no matches, we're done.
15425		 */
15426		if (i == help->dthps_nprovs)
15427			break;
15428
15429		/*
15430		 * Move the last helper provider into this slot.
15431		 */
15432		help->dthps_nprovs--;
15433		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
15434		help->dthps_provs[help->dthps_nprovs] = NULL;
15435
15436		mutex_exit(&dtrace_lock);
15437
15438		/*
15439		 * If we have a meta provider, remove this helper provider.
15440		 */
15441		mutex_enter(&dtrace_meta_lock);
15442		if (dtrace_meta_pid != NULL) {
15443			ASSERT(dtrace_deferred_pid == NULL);
15444			dtrace_helper_provider_remove(&prov->dthp_prov,
15445			    p->p_pid);
15446		}
15447		mutex_exit(&dtrace_meta_lock);
15448
15449		dtrace_helper_provider_destroy(prov);
15450
15451		mutex_enter(&dtrace_lock);
15452	}
15453
15454	return (0);
15455}
15456
15457static int
15458dtrace_helper_validate(dtrace_helper_action_t *helper)
15459{
15460	int err = 0, i;
15461	dtrace_difo_t *dp;
15462
15463	if ((dp = helper->dtha_predicate) != NULL)
15464		err += dtrace_difo_validate_helper(dp);
15465
15466	for (i = 0; i < helper->dtha_nactions; i++)
15467		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
15468
15469	return (err == 0);
15470}
15471
15472static int
15473dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
15474{
15475	dtrace_helpers_t *help;
15476	dtrace_helper_action_t *helper, *last;
15477	dtrace_actdesc_t *act;
15478	dtrace_vstate_t *vstate;
15479	dtrace_predicate_t *pred;
15480	int count = 0, nactions = 0, i;
15481
15482	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
15483		return (EINVAL);
15484
15485	help = curproc->p_dtrace_helpers;
15486	last = help->dthps_actions[which];
15487	vstate = &help->dthps_vstate;
15488
15489	for (count = 0; last != NULL; last = last->dtha_next) {
15490		count++;
15491		if (last->dtha_next == NULL)
15492			break;
15493	}
15494
15495	/*
15496	 * If we already have dtrace_helper_actions_max helper actions for this
15497	 * helper action type, we'll refuse to add a new one.
15498	 */
15499	if (count >= dtrace_helper_actions_max)
15500		return (ENOSPC);
15501
15502	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
15503	helper->dtha_generation = help->dthps_generation;
15504
15505	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
15506		ASSERT(pred->dtp_difo != NULL);
15507		dtrace_difo_hold(pred->dtp_difo);
15508		helper->dtha_predicate = pred->dtp_difo;
15509	}
15510
15511	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
15512		if (act->dtad_kind != DTRACEACT_DIFEXPR)
15513			goto err;
15514
15515		if (act->dtad_difo == NULL)
15516			goto err;
15517
15518		nactions++;
15519	}
15520
15521	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
15522	    (helper->dtha_nactions = nactions), KM_SLEEP);
15523
15524	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
15525		dtrace_difo_hold(act->dtad_difo);
15526		helper->dtha_actions[i++] = act->dtad_difo;
15527	}
15528
15529	if (!dtrace_helper_validate(helper))
15530		goto err;
15531
15532	if (last == NULL) {
15533		help->dthps_actions[which] = helper;
15534	} else {
15535		last->dtha_next = helper;
15536	}
15537
15538	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
15539		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
15540		dtrace_helptrace_next = 0;
15541	}
15542
15543	return (0);
15544err:
15545	dtrace_helper_action_destroy(helper, vstate);
15546	return (EINVAL);
15547}
15548
15549static void
15550dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
15551    dof_helper_t *dofhp)
15552{
15553	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
15554
15555	mutex_enter(&dtrace_meta_lock);
15556	mutex_enter(&dtrace_lock);
15557
15558	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
15559		/*
15560		 * If the dtrace module is loaded but not attached, or if
15561		 * there aren't isn't a meta provider registered to deal with
15562		 * these provider descriptions, we need to postpone creating
15563		 * the actual providers until later.
15564		 */
15565
15566		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
15567		    dtrace_deferred_pid != help) {
15568			help->dthps_deferred = 1;
15569			help->dthps_pid = p->p_pid;
15570			help->dthps_next = dtrace_deferred_pid;
15571			help->dthps_prev = NULL;
15572			if (dtrace_deferred_pid != NULL)
15573				dtrace_deferred_pid->dthps_prev = help;
15574			dtrace_deferred_pid = help;
15575		}
15576
15577		mutex_exit(&dtrace_lock);
15578
15579	} else if (dofhp != NULL) {
15580		/*
15581		 * If the dtrace module is loaded and we have a particular
15582		 * helper provider description, pass that off to the
15583		 * meta provider.
15584		 */
15585
15586		mutex_exit(&dtrace_lock);
15587
15588		dtrace_helper_provide(dofhp, p->p_pid);
15589
15590	} else {
15591		/*
15592		 * Otherwise, just pass all the helper provider descriptions
15593		 * off to the meta provider.
15594		 */
15595
15596		int i;
15597		mutex_exit(&dtrace_lock);
15598
15599		for (i = 0; i < help->dthps_nprovs; i++) {
15600			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
15601			    p->p_pid);
15602		}
15603	}
15604
15605	mutex_exit(&dtrace_meta_lock);
15606}
15607
15608static int
15609dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
15610{
15611	dtrace_helpers_t *help;
15612	dtrace_helper_provider_t *hprov, **tmp_provs;
15613	uint_t tmp_maxprovs, i;
15614
15615	ASSERT(MUTEX_HELD(&dtrace_lock));
15616
15617	help = curproc->p_dtrace_helpers;
15618	ASSERT(help != NULL);
15619
15620	/*
15621	 * If we already have dtrace_helper_providers_max helper providers,
15622	 * we're refuse to add a new one.
15623	 */
15624	if (help->dthps_nprovs >= dtrace_helper_providers_max)
15625		return (ENOSPC);
15626
15627	/*
15628	 * Check to make sure this isn't a duplicate.
15629	 */
15630	for (i = 0; i < help->dthps_nprovs; i++) {
15631		if (dofhp->dofhp_dof ==
15632		    help->dthps_provs[i]->dthp_prov.dofhp_dof)
15633			return (EALREADY);
15634	}
15635
15636	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
15637	hprov->dthp_prov = *dofhp;
15638	hprov->dthp_ref = 1;
15639	hprov->dthp_generation = gen;
15640
15641	/*
15642	 * Allocate a bigger table for helper providers if it's already full.
15643	 */
15644	if (help->dthps_maxprovs == help->dthps_nprovs) {
15645		tmp_maxprovs = help->dthps_maxprovs;
15646		tmp_provs = help->dthps_provs;
15647
15648		if (help->dthps_maxprovs == 0)
15649			help->dthps_maxprovs = 2;
15650		else
15651			help->dthps_maxprovs *= 2;
15652		if (help->dthps_maxprovs > dtrace_helper_providers_max)
15653			help->dthps_maxprovs = dtrace_helper_providers_max;
15654
15655		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
15656
15657		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
15658		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15659
15660		if (tmp_provs != NULL) {
15661			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
15662			    sizeof (dtrace_helper_provider_t *));
15663			kmem_free(tmp_provs, tmp_maxprovs *
15664			    sizeof (dtrace_helper_provider_t *));
15665		}
15666	}
15667
15668	help->dthps_provs[help->dthps_nprovs] = hprov;
15669	help->dthps_nprovs++;
15670
15671	return (0);
15672}
15673
15674static void
15675dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
15676{
15677	mutex_enter(&dtrace_lock);
15678
15679	if (--hprov->dthp_ref == 0) {
15680		dof_hdr_t *dof;
15681		mutex_exit(&dtrace_lock);
15682		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
15683		dtrace_dof_destroy(dof);
15684		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
15685	} else {
15686		mutex_exit(&dtrace_lock);
15687	}
15688}
15689
15690static int
15691dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
15692{
15693	uintptr_t daddr = (uintptr_t)dof;
15694	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
15695	dof_provider_t *provider;
15696	dof_probe_t *probe;
15697	uint8_t *arg;
15698	char *strtab, *typestr;
15699	dof_stridx_t typeidx;
15700	size_t typesz;
15701	uint_t nprobes, j, k;
15702
15703	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
15704
15705	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
15706		dtrace_dof_error(dof, "misaligned section offset");
15707		return (-1);
15708	}
15709
15710	/*
15711	 * The section needs to be large enough to contain the DOF provider
15712	 * structure appropriate for the given version.
15713	 */
15714	if (sec->dofs_size <
15715	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
15716	    offsetof(dof_provider_t, dofpv_prenoffs) :
15717	    sizeof (dof_provider_t))) {
15718		dtrace_dof_error(dof, "provider section too small");
15719		return (-1);
15720	}
15721
15722	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
15723	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
15724	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
15725	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
15726	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
15727
15728	if (str_sec == NULL || prb_sec == NULL ||
15729	    arg_sec == NULL || off_sec == NULL)
15730		return (-1);
15731
15732	enoff_sec = NULL;
15733
15734	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
15735	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
15736	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
15737	    provider->dofpv_prenoffs)) == NULL)
15738		return (-1);
15739
15740	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
15741
15742	if (provider->dofpv_name >= str_sec->dofs_size ||
15743	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
15744		dtrace_dof_error(dof, "invalid provider name");
15745		return (-1);
15746	}
15747
15748	if (prb_sec->dofs_entsize == 0 ||
15749	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
15750		dtrace_dof_error(dof, "invalid entry size");
15751		return (-1);
15752	}
15753
15754	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
15755		dtrace_dof_error(dof, "misaligned entry size");
15756		return (-1);
15757	}
15758
15759	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
15760		dtrace_dof_error(dof, "invalid entry size");
15761		return (-1);
15762	}
15763
15764	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
15765		dtrace_dof_error(dof, "misaligned section offset");
15766		return (-1);
15767	}
15768
15769	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
15770		dtrace_dof_error(dof, "invalid entry size");
15771		return (-1);
15772	}
15773
15774	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
15775
15776	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
15777
15778	/*
15779	 * Take a pass through the probes to check for errors.
15780	 */
15781	for (j = 0; j < nprobes; j++) {
15782		probe = (dof_probe_t *)(uintptr_t)(daddr +
15783		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
15784
15785		if (probe->dofpr_func >= str_sec->dofs_size) {
15786			dtrace_dof_error(dof, "invalid function name");
15787			return (-1);
15788		}
15789
15790		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
15791			dtrace_dof_error(dof, "function name too long");
15792			return (-1);
15793		}
15794
15795		if (probe->dofpr_name >= str_sec->dofs_size ||
15796		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
15797			dtrace_dof_error(dof, "invalid probe name");
15798			return (-1);
15799		}
15800
15801		/*
15802		 * The offset count must not wrap the index, and the offsets
15803		 * must also not overflow the section's data.
15804		 */
15805		if (probe->dofpr_offidx + probe->dofpr_noffs <
15806		    probe->dofpr_offidx ||
15807		    (probe->dofpr_offidx + probe->dofpr_noffs) *
15808		    off_sec->dofs_entsize > off_sec->dofs_size) {
15809			dtrace_dof_error(dof, "invalid probe offset");
15810			return (-1);
15811		}
15812
15813		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
15814			/*
15815			 * If there's no is-enabled offset section, make sure
15816			 * there aren't any is-enabled offsets. Otherwise
15817			 * perform the same checks as for probe offsets
15818			 * (immediately above).
15819			 */
15820			if (enoff_sec == NULL) {
15821				if (probe->dofpr_enoffidx != 0 ||
15822				    probe->dofpr_nenoffs != 0) {
15823					dtrace_dof_error(dof, "is-enabled "
15824					    "offsets with null section");
15825					return (-1);
15826				}
15827			} else if (probe->dofpr_enoffidx +
15828			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
15829			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
15830			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
15831				dtrace_dof_error(dof, "invalid is-enabled "
15832				    "offset");
15833				return (-1);
15834			}
15835
15836			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
15837				dtrace_dof_error(dof, "zero probe and "
15838				    "is-enabled offsets");
15839				return (-1);
15840			}
15841		} else if (probe->dofpr_noffs == 0) {
15842			dtrace_dof_error(dof, "zero probe offsets");
15843			return (-1);
15844		}
15845
15846		if (probe->dofpr_argidx + probe->dofpr_xargc <
15847		    probe->dofpr_argidx ||
15848		    (probe->dofpr_argidx + probe->dofpr_xargc) *
15849		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
15850			dtrace_dof_error(dof, "invalid args");
15851			return (-1);
15852		}
15853
15854		typeidx = probe->dofpr_nargv;
15855		typestr = strtab + probe->dofpr_nargv;
15856		for (k = 0; k < probe->dofpr_nargc; k++) {
15857			if (typeidx >= str_sec->dofs_size) {
15858				dtrace_dof_error(dof, "bad "
15859				    "native argument type");
15860				return (-1);
15861			}
15862
15863			typesz = strlen(typestr) + 1;
15864			if (typesz > DTRACE_ARGTYPELEN) {
15865				dtrace_dof_error(dof, "native "
15866				    "argument type too long");
15867				return (-1);
15868			}
15869			typeidx += typesz;
15870			typestr += typesz;
15871		}
15872
15873		typeidx = probe->dofpr_xargv;
15874		typestr = strtab + probe->dofpr_xargv;
15875		for (k = 0; k < probe->dofpr_xargc; k++) {
15876			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
15877				dtrace_dof_error(dof, "bad "
15878				    "native argument index");
15879				return (-1);
15880			}
15881
15882			if (typeidx >= str_sec->dofs_size) {
15883				dtrace_dof_error(dof, "bad "
15884				    "translated argument type");
15885				return (-1);
15886			}
15887
15888			typesz = strlen(typestr) + 1;
15889			if (typesz > DTRACE_ARGTYPELEN) {
15890				dtrace_dof_error(dof, "translated argument "
15891				    "type too long");
15892				return (-1);
15893			}
15894
15895			typeidx += typesz;
15896			typestr += typesz;
15897		}
15898	}
15899
15900	return (0);
15901}
15902
15903static int
15904dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
15905{
15906	dtrace_helpers_t *help;
15907	dtrace_vstate_t *vstate;
15908	dtrace_enabling_t *enab = NULL;
15909	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
15910	uintptr_t daddr = (uintptr_t)dof;
15911
15912	ASSERT(MUTEX_HELD(&dtrace_lock));
15913
15914	if ((help = curproc->p_dtrace_helpers) == NULL)
15915		help = dtrace_helpers_create(curproc);
15916
15917	vstate = &help->dthps_vstate;
15918
15919	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
15920	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
15921		dtrace_dof_destroy(dof);
15922		return (rv);
15923	}
15924
15925	/*
15926	 * Look for helper providers and validate their descriptions.
15927	 */
15928	if (dhp != NULL) {
15929		for (i = 0; i < dof->dofh_secnum; i++) {
15930			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
15931			    dof->dofh_secoff + i * dof->dofh_secsize);
15932
15933			if (sec->dofs_type != DOF_SECT_PROVIDER)
15934				continue;
15935
15936			if (dtrace_helper_provider_validate(dof, sec) != 0) {
15937				dtrace_enabling_destroy(enab);
15938				dtrace_dof_destroy(dof);
15939				return (-1);
15940			}
15941
15942			nprovs++;
15943		}
15944	}
15945
15946	/*
15947	 * Now we need to walk through the ECB descriptions in the enabling.
15948	 */
15949	for (i = 0; i < enab->dten_ndesc; i++) {
15950		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
15951		dtrace_probedesc_t *desc = &ep->dted_probe;
15952
15953		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
15954			continue;
15955
15956		if (strcmp(desc->dtpd_mod, "helper") != 0)
15957			continue;
15958
15959		if (strcmp(desc->dtpd_func, "ustack") != 0)
15960			continue;
15961
15962		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
15963		    ep)) != 0) {
15964			/*
15965			 * Adding this helper action failed -- we are now going
15966			 * to rip out the entire generation and return failure.
15967			 */
15968			(void) dtrace_helper_destroygen(help->dthps_generation);
15969			dtrace_enabling_destroy(enab);
15970			dtrace_dof_destroy(dof);
15971			return (-1);
15972		}
15973
15974		nhelpers++;
15975	}
15976
15977	if (nhelpers < enab->dten_ndesc)
15978		dtrace_dof_error(dof, "unmatched helpers");
15979
15980	gen = help->dthps_generation++;
15981	dtrace_enabling_destroy(enab);
15982
15983	if (dhp != NULL && nprovs > 0) {
15984		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
15985		if (dtrace_helper_provider_add(dhp, gen) == 0) {
15986			mutex_exit(&dtrace_lock);
15987			dtrace_helper_provider_register(curproc, help, dhp);
15988			mutex_enter(&dtrace_lock);
15989
15990			destroy = 0;
15991		}
15992	}
15993
15994	if (destroy)
15995		dtrace_dof_destroy(dof);
15996
15997	return (gen);
15998}
15999
16000static dtrace_helpers_t *
16001dtrace_helpers_create(proc_t *p)
16002{
16003	dtrace_helpers_t *help;
16004
16005	ASSERT(MUTEX_HELD(&dtrace_lock));
16006	ASSERT(p->p_dtrace_helpers == NULL);
16007
16008	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
16009	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
16010	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
16011
16012	p->p_dtrace_helpers = help;
16013	dtrace_helpers++;
16014
16015	return (help);
16016}
16017
16018#if defined(sun)
16019static
16020#endif
16021void
16022dtrace_helpers_destroy(proc_t *p)
16023{
16024	dtrace_helpers_t *help;
16025	dtrace_vstate_t *vstate;
16026#if defined(sun)
16027	proc_t *p = curproc;
16028#endif
16029	int i;
16030
16031	mutex_enter(&dtrace_lock);
16032
16033	ASSERT(p->p_dtrace_helpers != NULL);
16034	ASSERT(dtrace_helpers > 0);
16035
16036	help = p->p_dtrace_helpers;
16037	vstate = &help->dthps_vstate;
16038
16039	/*
16040	 * We're now going to lose the help from this process.
16041	 */
16042	p->p_dtrace_helpers = NULL;
16043	dtrace_sync();
16044
16045	/*
16046	 * Destory the helper actions.
16047	 */
16048	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16049		dtrace_helper_action_t *h, *next;
16050
16051		for (h = help->dthps_actions[i]; h != NULL; h = next) {
16052			next = h->dtha_next;
16053			dtrace_helper_action_destroy(h, vstate);
16054			h = next;
16055		}
16056	}
16057
16058	mutex_exit(&dtrace_lock);
16059
16060	/*
16061	 * Destroy the helper providers.
16062	 */
16063	if (help->dthps_maxprovs > 0) {
16064		mutex_enter(&dtrace_meta_lock);
16065		if (dtrace_meta_pid != NULL) {
16066			ASSERT(dtrace_deferred_pid == NULL);
16067
16068			for (i = 0; i < help->dthps_nprovs; i++) {
16069				dtrace_helper_provider_remove(
16070				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
16071			}
16072		} else {
16073			mutex_enter(&dtrace_lock);
16074			ASSERT(help->dthps_deferred == 0 ||
16075			    help->dthps_next != NULL ||
16076			    help->dthps_prev != NULL ||
16077			    help == dtrace_deferred_pid);
16078
16079			/*
16080			 * Remove the helper from the deferred list.
16081			 */
16082			if (help->dthps_next != NULL)
16083				help->dthps_next->dthps_prev = help->dthps_prev;
16084			if (help->dthps_prev != NULL)
16085				help->dthps_prev->dthps_next = help->dthps_next;
16086			if (dtrace_deferred_pid == help) {
16087				dtrace_deferred_pid = help->dthps_next;
16088				ASSERT(help->dthps_prev == NULL);
16089			}
16090
16091			mutex_exit(&dtrace_lock);
16092		}
16093
16094		mutex_exit(&dtrace_meta_lock);
16095
16096		for (i = 0; i < help->dthps_nprovs; i++) {
16097			dtrace_helper_provider_destroy(help->dthps_provs[i]);
16098		}
16099
16100		kmem_free(help->dthps_provs, help->dthps_maxprovs *
16101		    sizeof (dtrace_helper_provider_t *));
16102	}
16103
16104	mutex_enter(&dtrace_lock);
16105
16106	dtrace_vstate_fini(&help->dthps_vstate);
16107	kmem_free(help->dthps_actions,
16108	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
16109	kmem_free(help, sizeof (dtrace_helpers_t));
16110
16111	--dtrace_helpers;
16112	mutex_exit(&dtrace_lock);
16113}
16114
16115#if defined(sun)
16116static
16117#endif
16118void
16119dtrace_helpers_duplicate(proc_t *from, proc_t *to)
16120{
16121	dtrace_helpers_t *help, *newhelp;
16122	dtrace_helper_action_t *helper, *new, *last;
16123	dtrace_difo_t *dp;
16124	dtrace_vstate_t *vstate;
16125	int i, j, sz, hasprovs = 0;
16126
16127	mutex_enter(&dtrace_lock);
16128	ASSERT(from->p_dtrace_helpers != NULL);
16129	ASSERT(dtrace_helpers > 0);
16130
16131	help = from->p_dtrace_helpers;
16132	newhelp = dtrace_helpers_create(to);
16133	ASSERT(to->p_dtrace_helpers != NULL);
16134
16135	newhelp->dthps_generation = help->dthps_generation;
16136	vstate = &newhelp->dthps_vstate;
16137
16138	/*
16139	 * Duplicate the helper actions.
16140	 */
16141	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16142		if ((helper = help->dthps_actions[i]) == NULL)
16143			continue;
16144
16145		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
16146			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
16147			    KM_SLEEP);
16148			new->dtha_generation = helper->dtha_generation;
16149
16150			if ((dp = helper->dtha_predicate) != NULL) {
16151				dp = dtrace_difo_duplicate(dp, vstate);
16152				new->dtha_predicate = dp;
16153			}
16154
16155			new->dtha_nactions = helper->dtha_nactions;
16156			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
16157			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
16158
16159			for (j = 0; j < new->dtha_nactions; j++) {
16160				dtrace_difo_t *dp = helper->dtha_actions[j];
16161
16162				ASSERT(dp != NULL);
16163				dp = dtrace_difo_duplicate(dp, vstate);
16164				new->dtha_actions[j] = dp;
16165			}
16166
16167			if (last != NULL) {
16168				last->dtha_next = new;
16169			} else {
16170				newhelp->dthps_actions[i] = new;
16171			}
16172
16173			last = new;
16174		}
16175	}
16176
16177	/*
16178	 * Duplicate the helper providers and register them with the
16179	 * DTrace framework.
16180	 */
16181	if (help->dthps_nprovs > 0) {
16182		newhelp->dthps_nprovs = help->dthps_nprovs;
16183		newhelp->dthps_maxprovs = help->dthps_nprovs;
16184		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
16185		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16186		for (i = 0; i < newhelp->dthps_nprovs; i++) {
16187			newhelp->dthps_provs[i] = help->dthps_provs[i];
16188			newhelp->dthps_provs[i]->dthp_ref++;
16189		}
16190
16191		hasprovs = 1;
16192	}
16193
16194	mutex_exit(&dtrace_lock);
16195
16196	if (hasprovs)
16197		dtrace_helper_provider_register(to, newhelp, NULL);
16198}
16199
16200/*
16201 * DTrace Hook Functions
16202 */
16203static void
16204dtrace_module_loaded(modctl_t *ctl)
16205{
16206	dtrace_provider_t *prv;
16207
16208	mutex_enter(&dtrace_provider_lock);
16209#if defined(sun)
16210	mutex_enter(&mod_lock);
16211#endif
16212
16213#if defined(sun)
16214	ASSERT(ctl->mod_busy);
16215#endif
16216
16217	/*
16218	 * We're going to call each providers per-module provide operation
16219	 * specifying only this module.
16220	 */
16221	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
16222		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
16223
16224#if defined(sun)
16225	mutex_exit(&mod_lock);
16226#endif
16227	mutex_exit(&dtrace_provider_lock);
16228
16229	/*
16230	 * If we have any retained enablings, we need to match against them.
16231	 * Enabling probes requires that cpu_lock be held, and we cannot hold
16232	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
16233	 * module.  (In particular, this happens when loading scheduling
16234	 * classes.)  So if we have any retained enablings, we need to dispatch
16235	 * our task queue to do the match for us.
16236	 */
16237	mutex_enter(&dtrace_lock);
16238
16239	if (dtrace_retained == NULL) {
16240		mutex_exit(&dtrace_lock);
16241		return;
16242	}
16243
16244	(void) taskq_dispatch(dtrace_taskq,
16245	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
16246
16247	mutex_exit(&dtrace_lock);
16248
16249	/*
16250	 * And now, for a little heuristic sleaze:  in general, we want to
16251	 * match modules as soon as they load.  However, we cannot guarantee
16252	 * this, because it would lead us to the lock ordering violation
16253	 * outlined above.  The common case, of course, is that cpu_lock is
16254	 * _not_ held -- so we delay here for a clock tick, hoping that that's
16255	 * long enough for the task queue to do its work.  If it's not, it's
16256	 * not a serious problem -- it just means that the module that we
16257	 * just loaded may not be immediately instrumentable.
16258	 */
16259	delay(1);
16260}
16261
16262static void
16263#if defined(sun)
16264dtrace_module_unloaded(modctl_t *ctl)
16265#else
16266dtrace_module_unloaded(modctl_t *ctl, int *error)
16267#endif
16268{
16269	dtrace_probe_t template, *probe, *first, *next;
16270	dtrace_provider_t *prov;
16271#if !defined(sun)
16272	char modname[DTRACE_MODNAMELEN];
16273	size_t len;
16274#endif
16275
16276#if defined(sun)
16277	template.dtpr_mod = ctl->mod_modname;
16278#else
16279	/* Handle the fact that ctl->filename may end in ".ko". */
16280	strlcpy(modname, ctl->filename, sizeof(modname));
16281	len = strlen(ctl->filename);
16282	if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
16283		modname[len - 3] = '\0';
16284	template.dtpr_mod = modname;
16285#endif
16286
16287	mutex_enter(&dtrace_provider_lock);
16288#if defined(sun)
16289	mutex_enter(&mod_lock);
16290#endif
16291	mutex_enter(&dtrace_lock);
16292
16293#if !defined(sun)
16294	if (ctl->nenabled > 0) {
16295		/* Don't allow unloads if a probe is enabled. */
16296		mutex_exit(&dtrace_provider_lock);
16297		mutex_exit(&dtrace_lock);
16298		*error = -1;
16299		printf(
16300	"kldunload: attempt to unload module that has DTrace probes enabled\n");
16301		return;
16302	}
16303#endif
16304
16305	if (dtrace_bymod == NULL) {
16306		/*
16307		 * The DTrace module is loaded (obviously) but not attached;
16308		 * we don't have any work to do.
16309		 */
16310		mutex_exit(&dtrace_provider_lock);
16311#if defined(sun)
16312		mutex_exit(&mod_lock);
16313#endif
16314		mutex_exit(&dtrace_lock);
16315		return;
16316	}
16317
16318	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
16319	    probe != NULL; probe = probe->dtpr_nextmod) {
16320		if (probe->dtpr_ecb != NULL) {
16321			mutex_exit(&dtrace_provider_lock);
16322#if defined(sun)
16323			mutex_exit(&mod_lock);
16324#endif
16325			mutex_exit(&dtrace_lock);
16326
16327			/*
16328			 * This shouldn't _actually_ be possible -- we're
16329			 * unloading a module that has an enabled probe in it.
16330			 * (It's normally up to the provider to make sure that
16331			 * this can't happen.)  However, because dtps_enable()
16332			 * doesn't have a failure mode, there can be an
16333			 * enable/unload race.  Upshot:  we don't want to
16334			 * assert, but we're not going to disable the
16335			 * probe, either.
16336			 */
16337			if (dtrace_err_verbose) {
16338#if defined(sun)
16339				cmn_err(CE_WARN, "unloaded module '%s' had "
16340				    "enabled probes", ctl->mod_modname);
16341#else
16342				cmn_err(CE_WARN, "unloaded module '%s' had "
16343				    "enabled probes", modname);
16344#endif
16345			}
16346
16347			return;
16348		}
16349	}
16350
16351	probe = first;
16352
16353	for (first = NULL; probe != NULL; probe = next) {
16354		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
16355
16356		dtrace_probes[probe->dtpr_id - 1] = NULL;
16357
16358		next = probe->dtpr_nextmod;
16359		dtrace_hash_remove(dtrace_bymod, probe);
16360		dtrace_hash_remove(dtrace_byfunc, probe);
16361		dtrace_hash_remove(dtrace_byname, probe);
16362
16363		if (first == NULL) {
16364			first = probe;
16365			probe->dtpr_nextmod = NULL;
16366		} else {
16367			probe->dtpr_nextmod = first;
16368			first = probe;
16369		}
16370	}
16371
16372	/*
16373	 * We've removed all of the module's probes from the hash chains and
16374	 * from the probe array.  Now issue a dtrace_sync() to be sure that
16375	 * everyone has cleared out from any probe array processing.
16376	 */
16377	dtrace_sync();
16378
16379	for (probe = first; probe != NULL; probe = first) {
16380		first = probe->dtpr_nextmod;
16381		prov = probe->dtpr_provider;
16382		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
16383		    probe->dtpr_arg);
16384		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
16385		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
16386		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
16387#if defined(sun)
16388		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
16389#else
16390		free_unr(dtrace_arena, probe->dtpr_id);
16391#endif
16392		kmem_free(probe, sizeof (dtrace_probe_t));
16393	}
16394
16395	mutex_exit(&dtrace_lock);
16396#if defined(sun)
16397	mutex_exit(&mod_lock);
16398#endif
16399	mutex_exit(&dtrace_provider_lock);
16400}
16401
16402#if !defined(sun)
16403static void
16404dtrace_kld_load(void *arg __unused, linker_file_t lf)
16405{
16406
16407	dtrace_module_loaded(lf);
16408}
16409
16410static void
16411dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error)
16412{
16413
16414	if (*error != 0)
16415		/* We already have an error, so don't do anything. */
16416		return;
16417	dtrace_module_unloaded(lf, error);
16418}
16419#endif
16420
16421#if defined(sun)
16422static void
16423dtrace_suspend(void)
16424{
16425	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
16426}
16427
16428static void
16429dtrace_resume(void)
16430{
16431	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
16432}
16433#endif
16434
16435static int
16436dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
16437{
16438	ASSERT(MUTEX_HELD(&cpu_lock));
16439	mutex_enter(&dtrace_lock);
16440
16441	switch (what) {
16442	case CPU_CONFIG: {
16443		dtrace_state_t *state;
16444		dtrace_optval_t *opt, rs, c;
16445
16446		/*
16447		 * For now, we only allocate a new buffer for anonymous state.
16448		 */
16449		if ((state = dtrace_anon.dta_state) == NULL)
16450			break;
16451
16452		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
16453			break;
16454
16455		opt = state->dts_options;
16456		c = opt[DTRACEOPT_CPU];
16457
16458		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
16459			break;
16460
16461		/*
16462		 * Regardless of what the actual policy is, we're going to
16463		 * temporarily set our resize policy to be manual.  We're
16464		 * also going to temporarily set our CPU option to denote
16465		 * the newly configured CPU.
16466		 */
16467		rs = opt[DTRACEOPT_BUFRESIZE];
16468		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
16469		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
16470
16471		(void) dtrace_state_buffers(state);
16472
16473		opt[DTRACEOPT_BUFRESIZE] = rs;
16474		opt[DTRACEOPT_CPU] = c;
16475
16476		break;
16477	}
16478
16479	case CPU_UNCONFIG:
16480		/*
16481		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
16482		 * buffer will be freed when the consumer exits.)
16483		 */
16484		break;
16485
16486	default:
16487		break;
16488	}
16489
16490	mutex_exit(&dtrace_lock);
16491	return (0);
16492}
16493
16494#if defined(sun)
16495static void
16496dtrace_cpu_setup_initial(processorid_t cpu)
16497{
16498	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
16499}
16500#endif
16501
16502static void
16503dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
16504{
16505	if (dtrace_toxranges >= dtrace_toxranges_max) {
16506		int osize, nsize;
16507		dtrace_toxrange_t *range;
16508
16509		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16510
16511		if (osize == 0) {
16512			ASSERT(dtrace_toxrange == NULL);
16513			ASSERT(dtrace_toxranges_max == 0);
16514			dtrace_toxranges_max = 1;
16515		} else {
16516			dtrace_toxranges_max <<= 1;
16517		}
16518
16519		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16520		range = kmem_zalloc(nsize, KM_SLEEP);
16521
16522		if (dtrace_toxrange != NULL) {
16523			ASSERT(osize != 0);
16524			bcopy(dtrace_toxrange, range, osize);
16525			kmem_free(dtrace_toxrange, osize);
16526		}
16527
16528		dtrace_toxrange = range;
16529	}
16530
16531	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
16532	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
16533
16534	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
16535	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
16536	dtrace_toxranges++;
16537}
16538
16539static void
16540dtrace_getf_barrier()
16541{
16542#if defined(sun)
16543	/*
16544	 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
16545	 * that contain calls to getf(), this routine will be called on every
16546	 * closef() before either the underlying vnode is released or the
16547	 * file_t itself is freed.  By the time we are here, it is essential
16548	 * that the file_t can no longer be accessed from a call to getf()
16549	 * in probe context -- that assures that a dtrace_sync() can be used
16550	 * to clear out any enablings referring to the old structures.
16551	 */
16552	if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
16553	    kcred->cr_zone->zone_dtrace_getf != 0)
16554		dtrace_sync();
16555#endif
16556}
16557
16558/*
16559 * DTrace Driver Cookbook Functions
16560 */
16561#if defined(sun)
16562/*ARGSUSED*/
16563static int
16564dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
16565{
16566	dtrace_provider_id_t id;
16567	dtrace_state_t *state = NULL;
16568	dtrace_enabling_t *enab;
16569
16570	mutex_enter(&cpu_lock);
16571	mutex_enter(&dtrace_provider_lock);
16572	mutex_enter(&dtrace_lock);
16573
16574	if (ddi_soft_state_init(&dtrace_softstate,
16575	    sizeof (dtrace_state_t), 0) != 0) {
16576		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
16577		mutex_exit(&cpu_lock);
16578		mutex_exit(&dtrace_provider_lock);
16579		mutex_exit(&dtrace_lock);
16580		return (DDI_FAILURE);
16581	}
16582
16583	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
16584	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
16585	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
16586	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
16587		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
16588		ddi_remove_minor_node(devi, NULL);
16589		ddi_soft_state_fini(&dtrace_softstate);
16590		mutex_exit(&cpu_lock);
16591		mutex_exit(&dtrace_provider_lock);
16592		mutex_exit(&dtrace_lock);
16593		return (DDI_FAILURE);
16594	}
16595
16596	ddi_report_dev(devi);
16597	dtrace_devi = devi;
16598
16599	dtrace_modload = dtrace_module_loaded;
16600	dtrace_modunload = dtrace_module_unloaded;
16601	dtrace_cpu_init = dtrace_cpu_setup_initial;
16602	dtrace_helpers_cleanup = dtrace_helpers_destroy;
16603	dtrace_helpers_fork = dtrace_helpers_duplicate;
16604	dtrace_cpustart_init = dtrace_suspend;
16605	dtrace_cpustart_fini = dtrace_resume;
16606	dtrace_debugger_init = dtrace_suspend;
16607	dtrace_debugger_fini = dtrace_resume;
16608
16609	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16610
16611	ASSERT(MUTEX_HELD(&cpu_lock));
16612
16613	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
16614	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
16615	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
16616	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
16617	    VM_SLEEP | VMC_IDENTIFIER);
16618	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
16619	    1, INT_MAX, 0);
16620
16621	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
16622	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
16623	    NULL, NULL, NULL, NULL, NULL, 0);
16624
16625	ASSERT(MUTEX_HELD(&cpu_lock));
16626	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
16627	    offsetof(dtrace_probe_t, dtpr_nextmod),
16628	    offsetof(dtrace_probe_t, dtpr_prevmod));
16629
16630	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
16631	    offsetof(dtrace_probe_t, dtpr_nextfunc),
16632	    offsetof(dtrace_probe_t, dtpr_prevfunc));
16633
16634	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
16635	    offsetof(dtrace_probe_t, dtpr_nextname),
16636	    offsetof(dtrace_probe_t, dtpr_prevname));
16637
16638	if (dtrace_retain_max < 1) {
16639		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
16640		    "setting to 1", dtrace_retain_max);
16641		dtrace_retain_max = 1;
16642	}
16643
16644	/*
16645	 * Now discover our toxic ranges.
16646	 */
16647	dtrace_toxic_ranges(dtrace_toxrange_add);
16648
16649	/*
16650	 * Before we register ourselves as a provider to our own framework,
16651	 * we would like to assert that dtrace_provider is NULL -- but that's
16652	 * not true if we were loaded as a dependency of a DTrace provider.
16653	 * Once we've registered, we can assert that dtrace_provider is our
16654	 * pseudo provider.
16655	 */
16656	(void) dtrace_register("dtrace", &dtrace_provider_attr,
16657	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
16658
16659	ASSERT(dtrace_provider != NULL);
16660	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
16661
16662	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
16663	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
16664	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
16665	    dtrace_provider, NULL, NULL, "END", 0, NULL);
16666	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
16667	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
16668
16669	dtrace_anon_property();
16670	mutex_exit(&cpu_lock);
16671
16672	/*
16673	 * If DTrace helper tracing is enabled, we need to allocate the
16674	 * trace buffer and initialize the values.
16675	 */
16676	if (dtrace_helptrace_enabled) {
16677		ASSERT(dtrace_helptrace_buffer == NULL);
16678		dtrace_helptrace_buffer =
16679		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
16680		dtrace_helptrace_next = 0;
16681	}
16682
16683	/*
16684	 * If there are already providers, we must ask them to provide their
16685	 * probes, and then match any anonymous enabling against them.  Note
16686	 * that there should be no other retained enablings at this time:
16687	 * the only retained enablings at this time should be the anonymous
16688	 * enabling.
16689	 */
16690	if (dtrace_anon.dta_enabling != NULL) {
16691		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
16692
16693		dtrace_enabling_provide(NULL);
16694		state = dtrace_anon.dta_state;
16695
16696		/*
16697		 * We couldn't hold cpu_lock across the above call to
16698		 * dtrace_enabling_provide(), but we must hold it to actually
16699		 * enable the probes.  We have to drop all of our locks, pick
16700		 * up cpu_lock, and regain our locks before matching the
16701		 * retained anonymous enabling.
16702		 */
16703		mutex_exit(&dtrace_lock);
16704		mutex_exit(&dtrace_provider_lock);
16705
16706		mutex_enter(&cpu_lock);
16707		mutex_enter(&dtrace_provider_lock);
16708		mutex_enter(&dtrace_lock);
16709
16710		if ((enab = dtrace_anon.dta_enabling) != NULL)
16711			(void) dtrace_enabling_match(enab, NULL);
16712
16713		mutex_exit(&cpu_lock);
16714	}
16715
16716	mutex_exit(&dtrace_lock);
16717	mutex_exit(&dtrace_provider_lock);
16718
16719	if (state != NULL) {
16720		/*
16721		 * If we created any anonymous state, set it going now.
16722		 */
16723		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
16724	}
16725
16726	return (DDI_SUCCESS);
16727}
16728#endif
16729
16730#if !defined(sun)
16731static void dtrace_dtr(void *);
16732#endif
16733
16734/*ARGSUSED*/
16735static int
16736#if defined(sun)
16737dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
16738#else
16739dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
16740#endif
16741{
16742	dtrace_state_t *state;
16743	uint32_t priv;
16744	uid_t uid;
16745	zoneid_t zoneid;
16746
16747#if defined(sun)
16748	if (getminor(*devp) == DTRACEMNRN_HELPER)
16749		return (0);
16750
16751	/*
16752	 * If this wasn't an open with the "helper" minor, then it must be
16753	 * the "dtrace" minor.
16754	 */
16755	if (getminor(*devp) == DTRACEMNRN_DTRACE)
16756		return (ENXIO);
16757#else
16758	cred_t *cred_p = NULL;
16759	cred_p = dev->si_cred;
16760
16761	/*
16762	 * If no DTRACE_PRIV_* bits are set in the credential, then the
16763	 * caller lacks sufficient permission to do anything with DTrace.
16764	 */
16765	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
16766	if (priv == DTRACE_PRIV_NONE) {
16767#endif
16768
16769		return (EACCES);
16770	}
16771
16772	/*
16773	 * Ask all providers to provide all their probes.
16774	 */
16775	mutex_enter(&dtrace_provider_lock);
16776	dtrace_probe_provide(NULL, NULL);
16777	mutex_exit(&dtrace_provider_lock);
16778
16779	mutex_enter(&cpu_lock);
16780	mutex_enter(&dtrace_lock);
16781	dtrace_opens++;
16782	dtrace_membar_producer();
16783
16784#if defined(sun)
16785	/*
16786	 * If the kernel debugger is active (that is, if the kernel debugger
16787	 * modified text in some way), we won't allow the open.
16788	 */
16789	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
16790		dtrace_opens--;
16791		mutex_exit(&cpu_lock);
16792		mutex_exit(&dtrace_lock);
16793		return (EBUSY);
16794	}
16795
16796	state = dtrace_state_create(devp, cred_p);
16797#else
16798	state = dtrace_state_create(dev);
16799	devfs_set_cdevpriv(state, dtrace_dtr);
16800#endif
16801
16802	mutex_exit(&cpu_lock);
16803
16804	if (state == NULL) {
16805#if defined(sun)
16806		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
16807			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16808#else
16809		--dtrace_opens;
16810#endif
16811		mutex_exit(&dtrace_lock);
16812		return (EAGAIN);
16813	}
16814
16815	mutex_exit(&dtrace_lock);
16816
16817	return (0);
16818}
16819
16820/*ARGSUSED*/
16821#if defined(sun)
16822static int
16823dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
16824#else
16825static void
16826dtrace_dtr(void *data)
16827#endif
16828{
16829#if defined(sun)
16830	minor_t minor = getminor(dev);
16831	dtrace_state_t *state;
16832
16833	if (minor == DTRACEMNRN_HELPER)
16834		return (0);
16835
16836	state = ddi_get_soft_state(dtrace_softstate, minor);
16837#else
16838	dtrace_state_t *state = data;
16839#endif
16840
16841	mutex_enter(&cpu_lock);
16842	mutex_enter(&dtrace_lock);
16843
16844	if (state != NULL) {
16845		if (state->dts_anon) {
16846			/*
16847			 * There is anonymous state. Destroy that first.
16848			 */
16849			ASSERT(dtrace_anon.dta_state == NULL);
16850			dtrace_state_destroy(state->dts_anon);
16851		}
16852
16853		dtrace_state_destroy(state);
16854
16855#if !defined(sun)
16856		kmem_free(state, 0);
16857#endif
16858	}
16859
16860	ASSERT(dtrace_opens > 0);
16861#if defined(sun)
16862	/*
16863	 * Only relinquish control of the kernel debugger interface when there
16864	 * are no consumers and no anonymous enablings.
16865	 */
16866	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
16867		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16868#else
16869	--dtrace_opens;
16870#endif
16871
16872	mutex_exit(&dtrace_lock);
16873	mutex_exit(&cpu_lock);
16874
16875#if defined(sun)
16876	return (0);
16877#endif
16878}
16879
16880#if defined(sun)
16881/*ARGSUSED*/
16882static int
16883dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
16884{
16885	int rval;
16886	dof_helper_t help, *dhp = NULL;
16887
16888	switch (cmd) {
16889	case DTRACEHIOC_ADDDOF:
16890		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
16891			dtrace_dof_error(NULL, "failed to copyin DOF helper");
16892			return (EFAULT);
16893		}
16894
16895		dhp = &help;
16896		arg = (intptr_t)help.dofhp_dof;
16897		/*FALLTHROUGH*/
16898
16899	case DTRACEHIOC_ADD: {
16900		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
16901
16902		if (dof == NULL)
16903			return (rval);
16904
16905		mutex_enter(&dtrace_lock);
16906
16907		/*
16908		 * dtrace_helper_slurp() takes responsibility for the dof --
16909		 * it may free it now or it may save it and free it later.
16910		 */
16911		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
16912			*rv = rval;
16913			rval = 0;
16914		} else {
16915			rval = EINVAL;
16916		}
16917
16918		mutex_exit(&dtrace_lock);
16919		return (rval);
16920	}
16921
16922	case DTRACEHIOC_REMOVE: {
16923		mutex_enter(&dtrace_lock);
16924		rval = dtrace_helper_destroygen(arg);
16925		mutex_exit(&dtrace_lock);
16926
16927		return (rval);
16928	}
16929
16930	default:
16931		break;
16932	}
16933
16934	return (ENOTTY);
16935}
16936
16937/*ARGSUSED*/
16938static int
16939dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
16940{
16941	minor_t minor = getminor(dev);
16942	dtrace_state_t *state;
16943	int rval;
16944
16945	if (minor == DTRACEMNRN_HELPER)
16946		return (dtrace_ioctl_helper(cmd, arg, rv));
16947
16948	state = ddi_get_soft_state(dtrace_softstate, minor);
16949
16950	if (state->dts_anon) {
16951		ASSERT(dtrace_anon.dta_state == NULL);
16952		state = state->dts_anon;
16953	}
16954
16955	switch (cmd) {
16956	case DTRACEIOC_PROVIDER: {
16957		dtrace_providerdesc_t pvd;
16958		dtrace_provider_t *pvp;
16959
16960		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
16961			return (EFAULT);
16962
16963		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
16964		mutex_enter(&dtrace_provider_lock);
16965
16966		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
16967			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
16968				break;
16969		}
16970
16971		mutex_exit(&dtrace_provider_lock);
16972
16973		if (pvp == NULL)
16974			return (ESRCH);
16975
16976		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
16977		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
16978
16979		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
16980			return (EFAULT);
16981
16982		return (0);
16983	}
16984
16985	case DTRACEIOC_EPROBE: {
16986		dtrace_eprobedesc_t epdesc;
16987		dtrace_ecb_t *ecb;
16988		dtrace_action_t *act;
16989		void *buf;
16990		size_t size;
16991		uintptr_t dest;
16992		int nrecs;
16993
16994		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
16995			return (EFAULT);
16996
16997		mutex_enter(&dtrace_lock);
16998
16999		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
17000			mutex_exit(&dtrace_lock);
17001			return (EINVAL);
17002		}
17003
17004		if (ecb->dte_probe == NULL) {
17005			mutex_exit(&dtrace_lock);
17006			return (EINVAL);
17007		}
17008
17009		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
17010		epdesc.dtepd_uarg = ecb->dte_uarg;
17011		epdesc.dtepd_size = ecb->dte_size;
17012
17013		nrecs = epdesc.dtepd_nrecs;
17014		epdesc.dtepd_nrecs = 0;
17015		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17016			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17017				continue;
17018
17019			epdesc.dtepd_nrecs++;
17020		}
17021
17022		/*
17023		 * Now that we have the size, we need to allocate a temporary
17024		 * buffer in which to store the complete description.  We need
17025		 * the temporary buffer to be able to drop dtrace_lock()
17026		 * across the copyout(), below.
17027		 */
17028		size = sizeof (dtrace_eprobedesc_t) +
17029		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
17030
17031		buf = kmem_alloc(size, KM_SLEEP);
17032		dest = (uintptr_t)buf;
17033
17034		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
17035		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
17036
17037		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17038			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17039				continue;
17040
17041			if (nrecs-- == 0)
17042				break;
17043
17044			bcopy(&act->dta_rec, (void *)dest,
17045			    sizeof (dtrace_recdesc_t));
17046			dest += sizeof (dtrace_recdesc_t);
17047		}
17048
17049		mutex_exit(&dtrace_lock);
17050
17051		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17052			kmem_free(buf, size);
17053			return (EFAULT);
17054		}
17055
17056		kmem_free(buf, size);
17057		return (0);
17058	}
17059
17060	case DTRACEIOC_AGGDESC: {
17061		dtrace_aggdesc_t aggdesc;
17062		dtrace_action_t *act;
17063		dtrace_aggregation_t *agg;
17064		int nrecs;
17065		uint32_t offs;
17066		dtrace_recdesc_t *lrec;
17067		void *buf;
17068		size_t size;
17069		uintptr_t dest;
17070
17071		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
17072			return (EFAULT);
17073
17074		mutex_enter(&dtrace_lock);
17075
17076		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
17077			mutex_exit(&dtrace_lock);
17078			return (EINVAL);
17079		}
17080
17081		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
17082
17083		nrecs = aggdesc.dtagd_nrecs;
17084		aggdesc.dtagd_nrecs = 0;
17085
17086		offs = agg->dtag_base;
17087		lrec = &agg->dtag_action.dta_rec;
17088		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
17089
17090		for (act = agg->dtag_first; ; act = act->dta_next) {
17091			ASSERT(act->dta_intuple ||
17092			    DTRACEACT_ISAGG(act->dta_kind));
17093
17094			/*
17095			 * If this action has a record size of zero, it
17096			 * denotes an argument to the aggregating action.
17097			 * Because the presence of this record doesn't (or
17098			 * shouldn't) affect the way the data is interpreted,
17099			 * we don't copy it out to save user-level the
17100			 * confusion of dealing with a zero-length record.
17101			 */
17102			if (act->dta_rec.dtrd_size == 0) {
17103				ASSERT(agg->dtag_hasarg);
17104				continue;
17105			}
17106
17107			aggdesc.dtagd_nrecs++;
17108
17109			if (act == &agg->dtag_action)
17110				break;
17111		}
17112
17113		/*
17114		 * Now that we have the size, we need to allocate a temporary
17115		 * buffer in which to store the complete description.  We need
17116		 * the temporary buffer to be able to drop dtrace_lock()
17117		 * across the copyout(), below.
17118		 */
17119		size = sizeof (dtrace_aggdesc_t) +
17120		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
17121
17122		buf = kmem_alloc(size, KM_SLEEP);
17123		dest = (uintptr_t)buf;
17124
17125		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
17126		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
17127
17128		for (act = agg->dtag_first; ; act = act->dta_next) {
17129			dtrace_recdesc_t rec = act->dta_rec;
17130
17131			/*
17132			 * See the comment in the above loop for why we pass
17133			 * over zero-length records.
17134			 */
17135			if (rec.dtrd_size == 0) {
17136				ASSERT(agg->dtag_hasarg);
17137				continue;
17138			}
17139
17140			if (nrecs-- == 0)
17141				break;
17142
17143			rec.dtrd_offset -= offs;
17144			bcopy(&rec, (void *)dest, sizeof (rec));
17145			dest += sizeof (dtrace_recdesc_t);
17146
17147			if (act == &agg->dtag_action)
17148				break;
17149		}
17150
17151		mutex_exit(&dtrace_lock);
17152
17153		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17154			kmem_free(buf, size);
17155			return (EFAULT);
17156		}
17157
17158		kmem_free(buf, size);
17159		return (0);
17160	}
17161
17162	case DTRACEIOC_ENABLE: {
17163		dof_hdr_t *dof;
17164		dtrace_enabling_t *enab = NULL;
17165		dtrace_vstate_t *vstate;
17166		int err = 0;
17167
17168		*rv = 0;
17169
17170		/*
17171		 * If a NULL argument has been passed, we take this as our
17172		 * cue to reevaluate our enablings.
17173		 */
17174		if (arg == NULL) {
17175			dtrace_enabling_matchall();
17176
17177			return (0);
17178		}
17179
17180		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
17181			return (rval);
17182
17183		mutex_enter(&cpu_lock);
17184		mutex_enter(&dtrace_lock);
17185		vstate = &state->dts_vstate;
17186
17187		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
17188			mutex_exit(&dtrace_lock);
17189			mutex_exit(&cpu_lock);
17190			dtrace_dof_destroy(dof);
17191			return (EBUSY);
17192		}
17193
17194		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
17195			mutex_exit(&dtrace_lock);
17196			mutex_exit(&cpu_lock);
17197			dtrace_dof_destroy(dof);
17198			return (EINVAL);
17199		}
17200
17201		if ((rval = dtrace_dof_options(dof, state)) != 0) {
17202			dtrace_enabling_destroy(enab);
17203			mutex_exit(&dtrace_lock);
17204			mutex_exit(&cpu_lock);
17205			dtrace_dof_destroy(dof);
17206			return (rval);
17207		}
17208
17209		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
17210			err = dtrace_enabling_retain(enab);
17211		} else {
17212			dtrace_enabling_destroy(enab);
17213		}
17214
17215		mutex_exit(&cpu_lock);
17216		mutex_exit(&dtrace_lock);
17217		dtrace_dof_destroy(dof);
17218
17219		return (err);
17220	}
17221
17222	case DTRACEIOC_REPLICATE: {
17223		dtrace_repldesc_t desc;
17224		dtrace_probedesc_t *match = &desc.dtrpd_match;
17225		dtrace_probedesc_t *create = &desc.dtrpd_create;
17226		int err;
17227
17228		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17229			return (EFAULT);
17230
17231		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17232		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17233		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17234		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17235
17236		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17237		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17238		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17239		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17240
17241		mutex_enter(&dtrace_lock);
17242		err = dtrace_enabling_replicate(state, match, create);
17243		mutex_exit(&dtrace_lock);
17244
17245		return (err);
17246	}
17247
17248	case DTRACEIOC_PROBEMATCH:
17249	case DTRACEIOC_PROBES: {
17250		dtrace_probe_t *probe = NULL;
17251		dtrace_probedesc_t desc;
17252		dtrace_probekey_t pkey;
17253		dtrace_id_t i;
17254		int m = 0;
17255		uint32_t priv;
17256		uid_t uid;
17257		zoneid_t zoneid;
17258
17259		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17260			return (EFAULT);
17261
17262		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17263		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17264		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17265		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17266
17267		/*
17268		 * Before we attempt to match this probe, we want to give
17269		 * all providers the opportunity to provide it.
17270		 */
17271		if (desc.dtpd_id == DTRACE_IDNONE) {
17272			mutex_enter(&dtrace_provider_lock);
17273			dtrace_probe_provide(&desc, NULL);
17274			mutex_exit(&dtrace_provider_lock);
17275			desc.dtpd_id++;
17276		}
17277
17278		if (cmd == DTRACEIOC_PROBEMATCH)  {
17279			dtrace_probekey(&desc, &pkey);
17280			pkey.dtpk_id = DTRACE_IDNONE;
17281		}
17282
17283		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
17284
17285		mutex_enter(&dtrace_lock);
17286
17287		if (cmd == DTRACEIOC_PROBEMATCH) {
17288			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17289				if ((probe = dtrace_probes[i - 1]) != NULL &&
17290				    (m = dtrace_match_probe(probe, &pkey,
17291				    priv, uid, zoneid)) != 0)
17292					break;
17293			}
17294
17295			if (m < 0) {
17296				mutex_exit(&dtrace_lock);
17297				return (EINVAL);
17298			}
17299
17300		} else {
17301			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17302				if ((probe = dtrace_probes[i - 1]) != NULL &&
17303				    dtrace_match_priv(probe, priv, uid, zoneid))
17304					break;
17305			}
17306		}
17307
17308		if (probe == NULL) {
17309			mutex_exit(&dtrace_lock);
17310			return (ESRCH);
17311		}
17312
17313		dtrace_probe_description(probe, &desc);
17314		mutex_exit(&dtrace_lock);
17315
17316		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17317			return (EFAULT);
17318
17319		return (0);
17320	}
17321
17322	case DTRACEIOC_PROBEARG: {
17323		dtrace_argdesc_t desc;
17324		dtrace_probe_t *probe;
17325		dtrace_provider_t *prov;
17326
17327		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17328			return (EFAULT);
17329
17330		if (desc.dtargd_id == DTRACE_IDNONE)
17331			return (EINVAL);
17332
17333		if (desc.dtargd_ndx == DTRACE_ARGNONE)
17334			return (EINVAL);
17335
17336		mutex_enter(&dtrace_provider_lock);
17337		mutex_enter(&mod_lock);
17338		mutex_enter(&dtrace_lock);
17339
17340		if (desc.dtargd_id > dtrace_nprobes) {
17341			mutex_exit(&dtrace_lock);
17342			mutex_exit(&mod_lock);
17343			mutex_exit(&dtrace_provider_lock);
17344			return (EINVAL);
17345		}
17346
17347		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
17348			mutex_exit(&dtrace_lock);
17349			mutex_exit(&mod_lock);
17350			mutex_exit(&dtrace_provider_lock);
17351			return (EINVAL);
17352		}
17353
17354		mutex_exit(&dtrace_lock);
17355
17356		prov = probe->dtpr_provider;
17357
17358		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
17359			/*
17360			 * There isn't any typed information for this probe.
17361			 * Set the argument number to DTRACE_ARGNONE.
17362			 */
17363			desc.dtargd_ndx = DTRACE_ARGNONE;
17364		} else {
17365			desc.dtargd_native[0] = '\0';
17366			desc.dtargd_xlate[0] = '\0';
17367			desc.dtargd_mapping = desc.dtargd_ndx;
17368
17369			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
17370			    probe->dtpr_id, probe->dtpr_arg, &desc);
17371		}
17372
17373		mutex_exit(&mod_lock);
17374		mutex_exit(&dtrace_provider_lock);
17375
17376		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17377			return (EFAULT);
17378
17379		return (0);
17380	}
17381
17382	case DTRACEIOC_GO: {
17383		processorid_t cpuid;
17384		rval = dtrace_state_go(state, &cpuid);
17385
17386		if (rval != 0)
17387			return (rval);
17388
17389		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17390			return (EFAULT);
17391
17392		return (0);
17393	}
17394
17395	case DTRACEIOC_STOP: {
17396		processorid_t cpuid;
17397
17398		mutex_enter(&dtrace_lock);
17399		rval = dtrace_state_stop(state, &cpuid);
17400		mutex_exit(&dtrace_lock);
17401
17402		if (rval != 0)
17403			return (rval);
17404
17405		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17406			return (EFAULT);
17407
17408		return (0);
17409	}
17410
17411	case DTRACEIOC_DOFGET: {
17412		dof_hdr_t hdr, *dof;
17413		uint64_t len;
17414
17415		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
17416			return (EFAULT);
17417
17418		mutex_enter(&dtrace_lock);
17419		dof = dtrace_dof_create(state);
17420		mutex_exit(&dtrace_lock);
17421
17422		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
17423		rval = copyout(dof, (void *)arg, len);
17424		dtrace_dof_destroy(dof);
17425
17426		return (rval == 0 ? 0 : EFAULT);
17427	}
17428
17429	case DTRACEIOC_AGGSNAP:
17430	case DTRACEIOC_BUFSNAP: {
17431		dtrace_bufdesc_t desc;
17432		caddr_t cached;
17433		dtrace_buffer_t *buf;
17434
17435		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17436			return (EFAULT);
17437
17438		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
17439			return (EINVAL);
17440
17441		mutex_enter(&dtrace_lock);
17442
17443		if (cmd == DTRACEIOC_BUFSNAP) {
17444			buf = &state->dts_buffer[desc.dtbd_cpu];
17445		} else {
17446			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
17447		}
17448
17449		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
17450			size_t sz = buf->dtb_offset;
17451
17452			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
17453				mutex_exit(&dtrace_lock);
17454				return (EBUSY);
17455			}
17456
17457			/*
17458			 * If this buffer has already been consumed, we're
17459			 * going to indicate that there's nothing left here
17460			 * to consume.
17461			 */
17462			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
17463				mutex_exit(&dtrace_lock);
17464
17465				desc.dtbd_size = 0;
17466				desc.dtbd_drops = 0;
17467				desc.dtbd_errors = 0;
17468				desc.dtbd_oldest = 0;
17469				sz = sizeof (desc);
17470
17471				if (copyout(&desc, (void *)arg, sz) != 0)
17472					return (EFAULT);
17473
17474				return (0);
17475			}
17476
17477			/*
17478			 * If this is a ring buffer that has wrapped, we want
17479			 * to copy the whole thing out.
17480			 */
17481			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
17482				dtrace_buffer_polish(buf);
17483				sz = buf->dtb_size;
17484			}
17485
17486			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
17487				mutex_exit(&dtrace_lock);
17488				return (EFAULT);
17489			}
17490
17491			desc.dtbd_size = sz;
17492			desc.dtbd_drops = buf->dtb_drops;
17493			desc.dtbd_errors = buf->dtb_errors;
17494			desc.dtbd_oldest = buf->dtb_xamot_offset;
17495			desc.dtbd_timestamp = dtrace_gethrtime();
17496
17497			mutex_exit(&dtrace_lock);
17498
17499			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17500				return (EFAULT);
17501
17502			buf->dtb_flags |= DTRACEBUF_CONSUMED;
17503
17504			return (0);
17505		}
17506
17507		if (buf->dtb_tomax == NULL) {
17508			ASSERT(buf->dtb_xamot == NULL);
17509			mutex_exit(&dtrace_lock);
17510			return (ENOENT);
17511		}
17512
17513		cached = buf->dtb_tomax;
17514		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
17515
17516		dtrace_xcall(desc.dtbd_cpu,
17517		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
17518
17519		state->dts_errors += buf->dtb_xamot_errors;
17520
17521		/*
17522		 * If the buffers did not actually switch, then the cross call
17523		 * did not take place -- presumably because the given CPU is
17524		 * not in the ready set.  If this is the case, we'll return
17525		 * ENOENT.
17526		 */
17527		if (buf->dtb_tomax == cached) {
17528			ASSERT(buf->dtb_xamot != cached);
17529			mutex_exit(&dtrace_lock);
17530			return (ENOENT);
17531		}
17532
17533		ASSERT(cached == buf->dtb_xamot);
17534
17535		/*
17536		 * We have our snapshot; now copy it out.
17537		 */
17538		if (copyout(buf->dtb_xamot, desc.dtbd_data,
17539		    buf->dtb_xamot_offset) != 0) {
17540			mutex_exit(&dtrace_lock);
17541			return (EFAULT);
17542		}
17543
17544		desc.dtbd_size = buf->dtb_xamot_offset;
17545		desc.dtbd_drops = buf->dtb_xamot_drops;
17546		desc.dtbd_errors = buf->dtb_xamot_errors;
17547		desc.dtbd_oldest = 0;
17548		desc.dtbd_timestamp = buf->dtb_switched;
17549
17550		mutex_exit(&dtrace_lock);
17551
17552		/*
17553		 * Finally, copy out the buffer description.
17554		 */
17555		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17556			return (EFAULT);
17557
17558		return (0);
17559	}
17560
17561	case DTRACEIOC_CONF: {
17562		dtrace_conf_t conf;
17563
17564		bzero(&conf, sizeof (conf));
17565		conf.dtc_difversion = DIF_VERSION;
17566		conf.dtc_difintregs = DIF_DIR_NREGS;
17567		conf.dtc_diftupregs = DIF_DTR_NREGS;
17568		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
17569
17570		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
17571			return (EFAULT);
17572
17573		return (0);
17574	}
17575
17576	case DTRACEIOC_STATUS: {
17577		dtrace_status_t stat;
17578		dtrace_dstate_t *dstate;
17579		int i, j;
17580		uint64_t nerrs;
17581
17582		/*
17583		 * See the comment in dtrace_state_deadman() for the reason
17584		 * for setting dts_laststatus to INT64_MAX before setting
17585		 * it to the correct value.
17586		 */
17587		state->dts_laststatus = INT64_MAX;
17588		dtrace_membar_producer();
17589		state->dts_laststatus = dtrace_gethrtime();
17590
17591		bzero(&stat, sizeof (stat));
17592
17593		mutex_enter(&dtrace_lock);
17594
17595		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
17596			mutex_exit(&dtrace_lock);
17597			return (ENOENT);
17598		}
17599
17600		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
17601			stat.dtst_exiting = 1;
17602
17603		nerrs = state->dts_errors;
17604		dstate = &state->dts_vstate.dtvs_dynvars;
17605
17606		for (i = 0; i < NCPU; i++) {
17607			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
17608
17609			stat.dtst_dyndrops += dcpu->dtdsc_drops;
17610			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
17611			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
17612
17613			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
17614				stat.dtst_filled++;
17615
17616			nerrs += state->dts_buffer[i].dtb_errors;
17617
17618			for (j = 0; j < state->dts_nspeculations; j++) {
17619				dtrace_speculation_t *spec;
17620				dtrace_buffer_t *buf;
17621
17622				spec = &state->dts_speculations[j];
17623				buf = &spec->dtsp_buffer[i];
17624				stat.dtst_specdrops += buf->dtb_xamot_drops;
17625			}
17626		}
17627
17628		stat.dtst_specdrops_busy = state->dts_speculations_busy;
17629		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
17630		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
17631		stat.dtst_dblerrors = state->dts_dblerrors;
17632		stat.dtst_killed =
17633		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
17634		stat.dtst_errors = nerrs;
17635
17636		mutex_exit(&dtrace_lock);
17637
17638		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
17639			return (EFAULT);
17640
17641		return (0);
17642	}
17643
17644	case DTRACEIOC_FORMAT: {
17645		dtrace_fmtdesc_t fmt;
17646		char *str;
17647		int len;
17648
17649		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
17650			return (EFAULT);
17651
17652		mutex_enter(&dtrace_lock);
17653
17654		if (fmt.dtfd_format == 0 ||
17655		    fmt.dtfd_format > state->dts_nformats) {
17656			mutex_exit(&dtrace_lock);
17657			return (EINVAL);
17658		}
17659
17660		/*
17661		 * Format strings are allocated contiguously and they are
17662		 * never freed; if a format index is less than the number
17663		 * of formats, we can assert that the format map is non-NULL
17664		 * and that the format for the specified index is non-NULL.
17665		 */
17666		ASSERT(state->dts_formats != NULL);
17667		str = state->dts_formats[fmt.dtfd_format - 1];
17668		ASSERT(str != NULL);
17669
17670		len = strlen(str) + 1;
17671
17672		if (len > fmt.dtfd_length) {
17673			fmt.dtfd_length = len;
17674
17675			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
17676				mutex_exit(&dtrace_lock);
17677				return (EINVAL);
17678			}
17679		} else {
17680			if (copyout(str, fmt.dtfd_string, len) != 0) {
17681				mutex_exit(&dtrace_lock);
17682				return (EINVAL);
17683			}
17684		}
17685
17686		mutex_exit(&dtrace_lock);
17687		return (0);
17688	}
17689
17690	default:
17691		break;
17692	}
17693
17694	return (ENOTTY);
17695}
17696
17697/*ARGSUSED*/
17698static int
17699dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
17700{
17701	dtrace_state_t *state;
17702
17703	switch (cmd) {
17704	case DDI_DETACH:
17705		break;
17706
17707	case DDI_SUSPEND:
17708		return (DDI_SUCCESS);
17709
17710	default:
17711		return (DDI_FAILURE);
17712	}
17713
17714	mutex_enter(&cpu_lock);
17715	mutex_enter(&dtrace_provider_lock);
17716	mutex_enter(&dtrace_lock);
17717
17718	ASSERT(dtrace_opens == 0);
17719
17720	if (dtrace_helpers > 0) {
17721		mutex_exit(&dtrace_provider_lock);
17722		mutex_exit(&dtrace_lock);
17723		mutex_exit(&cpu_lock);
17724		return (DDI_FAILURE);
17725	}
17726
17727	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
17728		mutex_exit(&dtrace_provider_lock);
17729		mutex_exit(&dtrace_lock);
17730		mutex_exit(&cpu_lock);
17731		return (DDI_FAILURE);
17732	}
17733
17734	dtrace_provider = NULL;
17735
17736	if ((state = dtrace_anon_grab()) != NULL) {
17737		/*
17738		 * If there were ECBs on this state, the provider should
17739		 * have not been allowed to detach; assert that there is
17740		 * none.
17741		 */
17742		ASSERT(state->dts_necbs == 0);
17743		dtrace_state_destroy(state);
17744
17745		/*
17746		 * If we're being detached with anonymous state, we need to
17747		 * indicate to the kernel debugger that DTrace is now inactive.
17748		 */
17749		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17750	}
17751
17752	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
17753	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
17754	dtrace_cpu_init = NULL;
17755	dtrace_helpers_cleanup = NULL;
17756	dtrace_helpers_fork = NULL;
17757	dtrace_cpustart_init = NULL;
17758	dtrace_cpustart_fini = NULL;
17759	dtrace_debugger_init = NULL;
17760	dtrace_debugger_fini = NULL;
17761	dtrace_modload = NULL;
17762	dtrace_modunload = NULL;
17763
17764	ASSERT(dtrace_getf == 0);
17765	ASSERT(dtrace_closef == NULL);
17766
17767	mutex_exit(&cpu_lock);
17768
17769	if (dtrace_helptrace_enabled) {
17770		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
17771		dtrace_helptrace_buffer = NULL;
17772	}
17773
17774	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
17775	dtrace_probes = NULL;
17776	dtrace_nprobes = 0;
17777
17778	dtrace_hash_destroy(dtrace_bymod);
17779	dtrace_hash_destroy(dtrace_byfunc);
17780	dtrace_hash_destroy(dtrace_byname);
17781	dtrace_bymod = NULL;
17782	dtrace_byfunc = NULL;
17783	dtrace_byname = NULL;
17784
17785	kmem_cache_destroy(dtrace_state_cache);
17786	vmem_destroy(dtrace_minor);
17787	vmem_destroy(dtrace_arena);
17788
17789	if (dtrace_toxrange != NULL) {
17790		kmem_free(dtrace_toxrange,
17791		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
17792		dtrace_toxrange = NULL;
17793		dtrace_toxranges = 0;
17794		dtrace_toxranges_max = 0;
17795	}
17796
17797	ddi_remove_minor_node(dtrace_devi, NULL);
17798	dtrace_devi = NULL;
17799
17800	ddi_soft_state_fini(&dtrace_softstate);
17801
17802	ASSERT(dtrace_vtime_references == 0);
17803	ASSERT(dtrace_opens == 0);
17804	ASSERT(dtrace_retained == NULL);
17805
17806	mutex_exit(&dtrace_lock);
17807	mutex_exit(&dtrace_provider_lock);
17808
17809	/*
17810	 * We don't destroy the task queue until after we have dropped our
17811	 * locks (taskq_destroy() may block on running tasks).  To prevent
17812	 * attempting to do work after we have effectively detached but before
17813	 * the task queue has been destroyed, all tasks dispatched via the
17814	 * task queue must check that DTrace is still attached before
17815	 * performing any operation.
17816	 */
17817	taskq_destroy(dtrace_taskq);
17818	dtrace_taskq = NULL;
17819
17820	return (DDI_SUCCESS);
17821}
17822#endif
17823
17824#if defined(sun)
17825/*ARGSUSED*/
17826static int
17827dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
17828{
17829	int error;
17830
17831	switch (infocmd) {
17832	case DDI_INFO_DEVT2DEVINFO:
17833		*result = (void *)dtrace_devi;
17834		error = DDI_SUCCESS;
17835		break;
17836	case DDI_INFO_DEVT2INSTANCE:
17837		*result = (void *)0;
17838		error = DDI_SUCCESS;
17839		break;
17840	default:
17841		error = DDI_FAILURE;
17842	}
17843	return (error);
17844}
17845#endif
17846
17847#if defined(sun)
17848static struct cb_ops dtrace_cb_ops = {
17849	dtrace_open,		/* open */
17850	dtrace_close,		/* close */
17851	nulldev,		/* strategy */
17852	nulldev,		/* print */
17853	nodev,			/* dump */
17854	nodev,			/* read */
17855	nodev,			/* write */
17856	dtrace_ioctl,		/* ioctl */
17857	nodev,			/* devmap */
17858	nodev,			/* mmap */
17859	nodev,			/* segmap */
17860	nochpoll,		/* poll */
17861	ddi_prop_op,		/* cb_prop_op */
17862	0,			/* streamtab  */
17863	D_NEW | D_MP		/* Driver compatibility flag */
17864};
17865
17866static struct dev_ops dtrace_ops = {
17867	DEVO_REV,		/* devo_rev */
17868	0,			/* refcnt */
17869	dtrace_info,		/* get_dev_info */
17870	nulldev,		/* identify */
17871	nulldev,		/* probe */
17872	dtrace_attach,		/* attach */
17873	dtrace_detach,		/* detach */
17874	nodev,			/* reset */
17875	&dtrace_cb_ops,		/* driver operations */
17876	NULL,			/* bus operations */
17877	nodev			/* dev power */
17878};
17879
17880static struct modldrv modldrv = {
17881	&mod_driverops,		/* module type (this is a pseudo driver) */
17882	"Dynamic Tracing",	/* name of module */
17883	&dtrace_ops,		/* driver ops */
17884};
17885
17886static struct modlinkage modlinkage = {
17887	MODREV_1,
17888	(void *)&modldrv,
17889	NULL
17890};
17891
17892int
17893_init(void)
17894{
17895	return (mod_install(&modlinkage));
17896}
17897
17898int
17899_info(struct modinfo *modinfop)
17900{
17901	return (mod_info(&modlinkage, modinfop));
17902}
17903
17904int
17905_fini(void)
17906{
17907	return (mod_remove(&modlinkage));
17908}
17909#else
17910
17911static d_ioctl_t	dtrace_ioctl;
17912static d_ioctl_t	dtrace_ioctl_helper;
17913static void		dtrace_load(void *);
17914static int		dtrace_unload(void);
17915static struct cdev	*dtrace_dev;
17916static struct cdev	*helper_dev;
17917
17918void dtrace_invop_init(void);
17919void dtrace_invop_uninit(void);
17920
17921static struct cdevsw dtrace_cdevsw = {
17922	.d_version	= D_VERSION,
17923	.d_ioctl	= dtrace_ioctl,
17924	.d_open		= dtrace_open,
17925	.d_name		= "dtrace",
17926};
17927
17928static struct cdevsw helper_cdevsw = {
17929	.d_version	= D_VERSION,
17930	.d_ioctl	= dtrace_ioctl_helper,
17931	.d_name		= "helper",
17932};
17933
17934#include <dtrace_anon.c>
17935#include <dtrace_ioctl.c>
17936#include <dtrace_load.c>
17937#include <dtrace_modevent.c>
17938#include <dtrace_sysctl.c>
17939#include <dtrace_unload.c>
17940#include <dtrace_vtime.c>
17941#include <dtrace_hacks.c>
17942#include <dtrace_isa.c>
17943
17944SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
17945SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
17946SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
17947
17948DEV_MODULE(dtrace, dtrace_modevent, NULL);
17949MODULE_VERSION(dtrace, 1);
17950MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
17951MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
17952#endif
17953