dtrace.c revision 269520
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 * $FreeBSD: stable/10/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c 269520 2014-08-04 15:36:22Z markj $
22 */
23
24/*
25 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 * Copyright (c) 2012 by Delphix. All rights reserved.
28 */
29
30/*
31 * DTrace - Dynamic Tracing for Solaris
32 *
33 * This is the implementation of the Solaris Dynamic Tracing framework
34 * (DTrace).  The user-visible interface to DTrace is described at length in
35 * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
36 * library, the in-kernel DTrace framework, and the DTrace providers are
37 * described in the block comments in the <sys/dtrace.h> header file.  The
38 * internal architecture of DTrace is described in the block comments in the
39 * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
40 * implementation very much assume mastery of all of these sources; if one has
41 * an unanswered question about the implementation, one should consult them
42 * first.
43 *
44 * The functions here are ordered roughly as follows:
45 *
46 *   - Probe context functions
47 *   - Probe hashing functions
48 *   - Non-probe context utility functions
49 *   - Matching functions
50 *   - Provider-to-Framework API functions
51 *   - Probe management functions
52 *   - DIF object functions
53 *   - Format functions
54 *   - Predicate functions
55 *   - ECB functions
56 *   - Buffer functions
57 *   - Enabling functions
58 *   - DOF functions
59 *   - Anonymous enabling functions
60 *   - Consumer state functions
61 *   - Helper functions
62 *   - Hook functions
63 *   - Driver cookbook functions
64 *
65 * Each group of functions begins with a block comment labelled the "DTrace
66 * [Group] Functions", allowing one to find each block by searching forward
67 * on capital-f functions.
68 */
69#include <sys/errno.h>
70#if !defined(sun)
71#include <sys/time.h>
72#endif
73#include <sys/stat.h>
74#include <sys/modctl.h>
75#include <sys/conf.h>
76#include <sys/systm.h>
77#if defined(sun)
78#include <sys/ddi.h>
79#include <sys/sunddi.h>
80#endif
81#include <sys/cpuvar.h>
82#include <sys/kmem.h>
83#if defined(sun)
84#include <sys/strsubr.h>
85#endif
86#include <sys/sysmacros.h>
87#include <sys/dtrace_impl.h>
88#include <sys/atomic.h>
89#include <sys/cmn_err.h>
90#if defined(sun)
91#include <sys/mutex_impl.h>
92#include <sys/rwlock_impl.h>
93#endif
94#include <sys/ctf_api.h>
95#if defined(sun)
96#include <sys/panic.h>
97#include <sys/priv_impl.h>
98#endif
99#include <sys/policy.h>
100#if defined(sun)
101#include <sys/cred_impl.h>
102#include <sys/procfs_isa.h>
103#endif
104#include <sys/taskq.h>
105#if defined(sun)
106#include <sys/mkdev.h>
107#include <sys/kdi.h>
108#endif
109#include <sys/zone.h>
110#include <sys/socket.h>
111#include <netinet/in.h>
112#include "strtolctype.h"
113
114/* FreeBSD includes: */
115#if !defined(sun)
116#include <sys/callout.h>
117#include <sys/ctype.h>
118#include <sys/eventhandler.h>
119#include <sys/limits.h>
120#include <sys/kdb.h>
121#include <sys/kernel.h>
122#include <sys/malloc.h>
123#include <sys/sysctl.h>
124#include <sys/lock.h>
125#include <sys/mutex.h>
126#include <sys/rwlock.h>
127#include <sys/sx.h>
128#include <sys/dtrace_bsd.h>
129#include <netinet/in.h>
130#include "dtrace_cddl.h"
131#include "dtrace_debug.c"
132#endif
133
134/*
135 * DTrace Tunable Variables
136 *
137 * The following variables may be tuned by adding a line to /etc/system that
138 * includes both the name of the DTrace module ("dtrace") and the name of the
139 * variable.  For example:
140 *
141 *   set dtrace:dtrace_destructive_disallow = 1
142 *
143 * In general, the only variables that one should be tuning this way are those
144 * that affect system-wide DTrace behavior, and for which the default behavior
145 * is undesirable.  Most of these variables are tunable on a per-consumer
146 * basis using DTrace options, and need not be tuned on a system-wide basis.
147 * When tuning these variables, avoid pathological values; while some attempt
148 * is made to verify the integrity of these variables, they are not considered
149 * part of the supported interface to DTrace, and they are therefore not
150 * checked comprehensively.  Further, these variables should not be tuned
151 * dynamically via "mdb -kw" or other means; they should only be tuned via
152 * /etc/system.
153 */
154int		dtrace_destructive_disallow = 0;
155dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
156size_t		dtrace_difo_maxsize = (256 * 1024);
157dtrace_optval_t	dtrace_dof_maxsize = (8 * 1024 * 1024);
158size_t		dtrace_global_maxsize = (16 * 1024);
159size_t		dtrace_actions_max = (16 * 1024);
160size_t		dtrace_retain_max = 1024;
161dtrace_optval_t	dtrace_helper_actions_max = 128;
162dtrace_optval_t	dtrace_helper_providers_max = 32;
163dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
164size_t		dtrace_strsize_default = 256;
165dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
166dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
167dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
168dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
169dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
170dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
171dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
172dtrace_optval_t	dtrace_nspec_default = 1;
173dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
174dtrace_optval_t dtrace_stackframes_default = 20;
175dtrace_optval_t dtrace_ustackframes_default = 20;
176dtrace_optval_t dtrace_jstackframes_default = 50;
177dtrace_optval_t dtrace_jstackstrsize_default = 512;
178int		dtrace_msgdsize_max = 128;
179hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
180hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
181int		dtrace_devdepth_max = 32;
182int		dtrace_err_verbose;
183hrtime_t	dtrace_deadman_interval = NANOSEC;
184hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
185hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
186hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
187#if !defined(sun)
188int		dtrace_memstr_max = 4096;
189#endif
190
191/*
192 * DTrace External Variables
193 *
194 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
195 * available to DTrace consumers via the backtick (`) syntax.  One of these,
196 * dtrace_zero, is made deliberately so:  it is provided as a source of
197 * well-known, zero-filled memory.  While this variable is not documented,
198 * it is used by some translators as an implementation detail.
199 */
200const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
201
202/*
203 * DTrace Internal Variables
204 */
205#if defined(sun)
206static dev_info_t	*dtrace_devi;		/* device info */
207#endif
208#if defined(sun)
209static vmem_t		*dtrace_arena;		/* probe ID arena */
210static vmem_t		*dtrace_minor;		/* minor number arena */
211#else
212static taskq_t		*dtrace_taskq;		/* task queue */
213static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
214#endif
215static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
216static int		dtrace_nprobes;		/* number of probes */
217static dtrace_provider_t *dtrace_provider;	/* provider list */
218static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
219static int		dtrace_opens;		/* number of opens */
220static int		dtrace_helpers;		/* number of helpers */
221static int		dtrace_getf;		/* number of unpriv getf()s */
222#if defined(sun)
223static void		*dtrace_softstate;	/* softstate pointer */
224#endif
225static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
226static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
227static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
228static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
229static int		dtrace_toxranges;	/* number of toxic ranges */
230static int		dtrace_toxranges_max;	/* size of toxic range array */
231static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
232static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
233static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
234static kthread_t	*dtrace_panicked;	/* panicking thread */
235static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
236static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
237static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
238static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
239static dtrace_genid_t	dtrace_retained_gen;	/* current retained enab gen */
240static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
241static int		dtrace_dynvar_failclean; /* dynvars failed to clean */
242#if !defined(sun)
243static struct mtx	dtrace_unr_mtx;
244MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
245int		dtrace_in_probe;	/* non-zero if executing a probe */
246#if defined(__i386__) || defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
247uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
248#endif
249static eventhandler_tag	dtrace_kld_load_tag;
250static eventhandler_tag	dtrace_kld_unload_try_tag;
251#endif
252
253/*
254 * DTrace Locking
255 * DTrace is protected by three (relatively coarse-grained) locks:
256 *
257 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
258 *     including enabling state, probes, ECBs, consumer state, helper state,
259 *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
260 *     probe context is lock-free -- synchronization is handled via the
261 *     dtrace_sync() cross call mechanism.
262 *
263 * (2) dtrace_provider_lock is required when manipulating provider state, or
264 *     when provider state must be held constant.
265 *
266 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
267 *     when meta provider state must be held constant.
268 *
269 * The lock ordering between these three locks is dtrace_meta_lock before
270 * dtrace_provider_lock before dtrace_lock.  (In particular, there are
271 * several places where dtrace_provider_lock is held by the framework as it
272 * calls into the providers -- which then call back into the framework,
273 * grabbing dtrace_lock.)
274 *
275 * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
276 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
277 * role as a coarse-grained lock; it is acquired before both of these locks.
278 * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
279 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
280 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
281 * acquired _between_ dtrace_provider_lock and dtrace_lock.
282 */
283static kmutex_t		dtrace_lock;		/* probe state lock */
284static kmutex_t		dtrace_provider_lock;	/* provider state lock */
285static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
286
287#if !defined(sun)
288/* XXX FreeBSD hacks. */
289#define cr_suid		cr_svuid
290#define cr_sgid		cr_svgid
291#define	ipaddr_t	in_addr_t
292#define mod_modname	pathname
293#define vuprintf	vprintf
294#define ttoproc(_a)	((_a)->td_proc)
295#define crgetzoneid(_a)	0
296#define	NCPU		MAXCPU
297#define SNOCD		0
298#define CPU_ON_INTR(_a)	0
299
300#define PRIV_EFFECTIVE		(1 << 0)
301#define PRIV_DTRACE_KERNEL	(1 << 1)
302#define PRIV_DTRACE_PROC	(1 << 2)
303#define PRIV_DTRACE_USER	(1 << 3)
304#define PRIV_PROC_OWNER		(1 << 4)
305#define PRIV_PROC_ZONE		(1 << 5)
306#define PRIV_ALL		~0
307
308SYSCTL_DECL(_debug_dtrace);
309SYSCTL_DECL(_kern_dtrace);
310#endif
311
312#if defined(sun)
313#define curcpu	CPU->cpu_id
314#endif
315
316
317/*
318 * DTrace Provider Variables
319 *
320 * These are the variables relating to DTrace as a provider (that is, the
321 * provider of the BEGIN, END, and ERROR probes).
322 */
323static dtrace_pattr_t	dtrace_provider_attr = {
324{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
325{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
326{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
327{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
328{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
329};
330
331static void
332dtrace_nullop(void)
333{}
334
335static dtrace_pops_t	dtrace_provider_ops = {
336	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
337	(void (*)(void *, modctl_t *))dtrace_nullop,
338	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
339	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
340	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
341	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
342	NULL,
343	NULL,
344	NULL,
345	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
346};
347
348static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
349static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
350dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
351
352/*
353 * DTrace Helper Tracing Variables
354 */
355uint32_t dtrace_helptrace_next = 0;
356uint32_t dtrace_helptrace_nlocals;
357char	*dtrace_helptrace_buffer;
358int	dtrace_helptrace_bufsize = 512 * 1024;
359
360#ifdef DEBUG
361int	dtrace_helptrace_enabled = 1;
362#else
363int	dtrace_helptrace_enabled = 0;
364#endif
365
366/*
367 * DTrace Error Hashing
368 *
369 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
370 * table.  This is very useful for checking coverage of tests that are
371 * expected to induce DIF or DOF processing errors, and may be useful for
372 * debugging problems in the DIF code generator or in DOF generation .  The
373 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
374 */
375#ifdef DEBUG
376static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
377static const char *dtrace_errlast;
378static kthread_t *dtrace_errthread;
379static kmutex_t dtrace_errlock;
380#endif
381
382/*
383 * DTrace Macros and Constants
384 *
385 * These are various macros that are useful in various spots in the
386 * implementation, along with a few random constants that have no meaning
387 * outside of the implementation.  There is no real structure to this cpp
388 * mishmash -- but is there ever?
389 */
390#define	DTRACE_HASHSTR(hash, probe)	\
391	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
392
393#define	DTRACE_HASHNEXT(hash, probe)	\
394	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
395
396#define	DTRACE_HASHPREV(hash, probe)	\
397	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
398
399#define	DTRACE_HASHEQ(hash, lhs, rhs)	\
400	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
401	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
402
403#define	DTRACE_AGGHASHSIZE_SLEW		17
404
405#define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
406
407/*
408 * The key for a thread-local variable consists of the lower 61 bits of the
409 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
410 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
411 * equal to a variable identifier.  This is necessary (but not sufficient) to
412 * assure that global associative arrays never collide with thread-local
413 * variables.  To guarantee that they cannot collide, we must also define the
414 * order for keying dynamic variables.  That order is:
415 *
416 *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
417 *
418 * Because the variable-key and the tls-key are in orthogonal spaces, there is
419 * no way for a global variable key signature to match a thread-local key
420 * signature.
421 */
422#if defined(sun)
423#define	DTRACE_TLS_THRKEY(where) { \
424	uint_t intr = 0; \
425	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
426	for (; actv; actv >>= 1) \
427		intr++; \
428	ASSERT(intr < (1 << 3)); \
429	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
430	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
431}
432#else
433#define	DTRACE_TLS_THRKEY(where) { \
434	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
435	uint_t intr = 0; \
436	uint_t actv = _c->cpu_intr_actv; \
437	for (; actv; actv >>= 1) \
438		intr++; \
439	ASSERT(intr < (1 << 3)); \
440	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
441	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
442}
443#endif
444
445#define	DT_BSWAP_8(x)	((x) & 0xff)
446#define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
447#define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
448#define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
449
450#define	DT_MASK_LO 0x00000000FFFFFFFFULL
451
452#define	DTRACE_STORE(type, tomax, offset, what) \
453	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
454
455#ifndef __x86
456#define	DTRACE_ALIGNCHECK(addr, size, flags)				\
457	if (addr & (size - 1)) {					\
458		*flags |= CPU_DTRACE_BADALIGN;				\
459		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
460		return (0);						\
461	}
462#else
463#define	DTRACE_ALIGNCHECK(addr, size, flags)
464#endif
465
466/*
467 * Test whether a range of memory starting at testaddr of size testsz falls
468 * within the range of memory described by addr, sz.  We take care to avoid
469 * problems with overflow and underflow of the unsigned quantities, and
470 * disallow all negative sizes.  Ranges of size 0 are allowed.
471 */
472#define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
473	((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
474	(testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
475	(testaddr) + (testsz) >= (testaddr))
476
477/*
478 * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
479 * alloc_sz on the righthand side of the comparison in order to avoid overflow
480 * or underflow in the comparison with it.  This is simpler than the INRANGE
481 * check above, because we know that the dtms_scratch_ptr is valid in the
482 * range.  Allocations of size zero are allowed.
483 */
484#define	DTRACE_INSCRATCH(mstate, alloc_sz) \
485	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
486	(mstate)->dtms_scratch_ptr >= (alloc_sz))
487
488#define	DTRACE_LOADFUNC(bits)						\
489/*CSTYLED*/								\
490uint##bits##_t								\
491dtrace_load##bits(uintptr_t addr)					\
492{									\
493	size_t size = bits / NBBY;					\
494	/*CSTYLED*/							\
495	uint##bits##_t rval;						\
496	int i;								\
497	volatile uint16_t *flags = (volatile uint16_t *)		\
498	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
499									\
500	DTRACE_ALIGNCHECK(addr, size, flags);				\
501									\
502	for (i = 0; i < dtrace_toxranges; i++) {			\
503		if (addr >= dtrace_toxrange[i].dtt_limit)		\
504			continue;					\
505									\
506		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
507			continue;					\
508									\
509		/*							\
510		 * This address falls within a toxic region; return 0.	\
511		 */							\
512		*flags |= CPU_DTRACE_BADADDR;				\
513		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
514		return (0);						\
515	}								\
516									\
517	*flags |= CPU_DTRACE_NOFAULT;					\
518	/*CSTYLED*/							\
519	rval = *((volatile uint##bits##_t *)addr);			\
520	*flags &= ~CPU_DTRACE_NOFAULT;					\
521									\
522	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
523}
524
525#ifdef _LP64
526#define	dtrace_loadptr	dtrace_load64
527#else
528#define	dtrace_loadptr	dtrace_load32
529#endif
530
531#define	DTRACE_DYNHASH_FREE	0
532#define	DTRACE_DYNHASH_SINK	1
533#define	DTRACE_DYNHASH_VALID	2
534
535#define	DTRACE_MATCH_NEXT	0
536#define	DTRACE_MATCH_DONE	1
537#define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
538#define	DTRACE_STATE_ALIGN	64
539
540#define	DTRACE_FLAGS2FLT(flags)						\
541	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
542	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
543	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
544	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
545	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
546	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
547	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
548	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
549	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
550	DTRACEFLT_UNKNOWN)
551
552#define	DTRACEACT_ISSTRING(act)						\
553	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
554	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
555
556/* Function prototype definitions: */
557static size_t dtrace_strlen(const char *, size_t);
558static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
559static void dtrace_enabling_provide(dtrace_provider_t *);
560static int dtrace_enabling_match(dtrace_enabling_t *, int *);
561static void dtrace_enabling_matchall(void);
562static void dtrace_enabling_reap(void);
563static dtrace_state_t *dtrace_anon_grab(void);
564static uint64_t dtrace_helper(int, dtrace_mstate_t *,
565    dtrace_state_t *, uint64_t, uint64_t);
566static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
567static void dtrace_buffer_drop(dtrace_buffer_t *);
568static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
569static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
570    dtrace_state_t *, dtrace_mstate_t *);
571static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
572    dtrace_optval_t);
573static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
574static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
575uint16_t dtrace_load16(uintptr_t);
576uint32_t dtrace_load32(uintptr_t);
577uint64_t dtrace_load64(uintptr_t);
578uint8_t dtrace_load8(uintptr_t);
579void dtrace_dynvar_clean(dtrace_dstate_t *);
580dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
581    size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
582uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
583static int dtrace_priv_proc(dtrace_state_t *);
584static void dtrace_getf_barrier(void);
585
586/*
587 * DTrace Probe Context Functions
588 *
589 * These functions are called from probe context.  Because probe context is
590 * any context in which C may be called, arbitrarily locks may be held,
591 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
592 * As a result, functions called from probe context may only call other DTrace
593 * support functions -- they may not interact at all with the system at large.
594 * (Note that the ASSERT macro is made probe-context safe by redefining it in
595 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
596 * loads are to be performed from probe context, they _must_ be in terms of
597 * the safe dtrace_load*() variants.
598 *
599 * Some functions in this block are not actually called from probe context;
600 * for these functions, there will be a comment above the function reading
601 * "Note:  not called from probe context."
602 */
603void
604dtrace_panic(const char *format, ...)
605{
606	va_list alist;
607
608	va_start(alist, format);
609	dtrace_vpanic(format, alist);
610	va_end(alist);
611}
612
613int
614dtrace_assfail(const char *a, const char *f, int l)
615{
616	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
617
618	/*
619	 * We just need something here that even the most clever compiler
620	 * cannot optimize away.
621	 */
622	return (a[(uintptr_t)f]);
623}
624
625/*
626 * Atomically increment a specified error counter from probe context.
627 */
628static void
629dtrace_error(uint32_t *counter)
630{
631	/*
632	 * Most counters stored to in probe context are per-CPU counters.
633	 * However, there are some error conditions that are sufficiently
634	 * arcane that they don't merit per-CPU storage.  If these counters
635	 * are incremented concurrently on different CPUs, scalability will be
636	 * adversely affected -- but we don't expect them to be white-hot in a
637	 * correctly constructed enabling...
638	 */
639	uint32_t oval, nval;
640
641	do {
642		oval = *counter;
643
644		if ((nval = oval + 1) == 0) {
645			/*
646			 * If the counter would wrap, set it to 1 -- assuring
647			 * that the counter is never zero when we have seen
648			 * errors.  (The counter must be 32-bits because we
649			 * aren't guaranteed a 64-bit compare&swap operation.)
650			 * To save this code both the infamy of being fingered
651			 * by a priggish news story and the indignity of being
652			 * the target of a neo-puritan witch trial, we're
653			 * carefully avoiding any colorful description of the
654			 * likelihood of this condition -- but suffice it to
655			 * say that it is only slightly more likely than the
656			 * overflow of predicate cache IDs, as discussed in
657			 * dtrace_predicate_create().
658			 */
659			nval = 1;
660		}
661	} while (dtrace_cas32(counter, oval, nval) != oval);
662}
663
664/*
665 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
666 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
667 */
668DTRACE_LOADFUNC(8)
669DTRACE_LOADFUNC(16)
670DTRACE_LOADFUNC(32)
671DTRACE_LOADFUNC(64)
672
673static int
674dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
675{
676	if (dest < mstate->dtms_scratch_base)
677		return (0);
678
679	if (dest + size < dest)
680		return (0);
681
682	if (dest + size > mstate->dtms_scratch_ptr)
683		return (0);
684
685	return (1);
686}
687
688static int
689dtrace_canstore_statvar(uint64_t addr, size_t sz,
690    dtrace_statvar_t **svars, int nsvars)
691{
692	int i;
693
694	for (i = 0; i < nsvars; i++) {
695		dtrace_statvar_t *svar = svars[i];
696
697		if (svar == NULL || svar->dtsv_size == 0)
698			continue;
699
700		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
701			return (1);
702	}
703
704	return (0);
705}
706
707/*
708 * Check to see if the address is within a memory region to which a store may
709 * be issued.  This includes the DTrace scratch areas, and any DTrace variable
710 * region.  The caller of dtrace_canstore() is responsible for performing any
711 * alignment checks that are needed before stores are actually executed.
712 */
713static int
714dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
715    dtrace_vstate_t *vstate)
716{
717	/*
718	 * First, check to see if the address is in scratch space...
719	 */
720	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
721	    mstate->dtms_scratch_size))
722		return (1);
723
724	/*
725	 * Now check to see if it's a dynamic variable.  This check will pick
726	 * up both thread-local variables and any global dynamically-allocated
727	 * variables.
728	 */
729	if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
730	    vstate->dtvs_dynvars.dtds_size)) {
731		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
732		uintptr_t base = (uintptr_t)dstate->dtds_base +
733		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
734		uintptr_t chunkoffs;
735
736		/*
737		 * Before we assume that we can store here, we need to make
738		 * sure that it isn't in our metadata -- storing to our
739		 * dynamic variable metadata would corrupt our state.  For
740		 * the range to not include any dynamic variable metadata,
741		 * it must:
742		 *
743		 *	(1) Start above the hash table that is at the base of
744		 *	the dynamic variable space
745		 *
746		 *	(2) Have a starting chunk offset that is beyond the
747		 *	dtrace_dynvar_t that is at the base of every chunk
748		 *
749		 *	(3) Not span a chunk boundary
750		 *
751		 */
752		if (addr < base)
753			return (0);
754
755		chunkoffs = (addr - base) % dstate->dtds_chunksize;
756
757		if (chunkoffs < sizeof (dtrace_dynvar_t))
758			return (0);
759
760		if (chunkoffs + sz > dstate->dtds_chunksize)
761			return (0);
762
763		return (1);
764	}
765
766	/*
767	 * Finally, check the static local and global variables.  These checks
768	 * take the longest, so we perform them last.
769	 */
770	if (dtrace_canstore_statvar(addr, sz,
771	    vstate->dtvs_locals, vstate->dtvs_nlocals))
772		return (1);
773
774	if (dtrace_canstore_statvar(addr, sz,
775	    vstate->dtvs_globals, vstate->dtvs_nglobals))
776		return (1);
777
778	return (0);
779}
780
781
782/*
783 * Convenience routine to check to see if the address is within a memory
784 * region in which a load may be issued given the user's privilege level;
785 * if not, it sets the appropriate error flags and loads 'addr' into the
786 * illegal value slot.
787 *
788 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
789 * appropriate memory access protection.
790 */
791static int
792dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
793    dtrace_vstate_t *vstate)
794{
795	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
796	file_t *fp;
797
798	/*
799	 * If we hold the privilege to read from kernel memory, then
800	 * everything is readable.
801	 */
802	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
803		return (1);
804
805	/*
806	 * You can obviously read that which you can store.
807	 */
808	if (dtrace_canstore(addr, sz, mstate, vstate))
809		return (1);
810
811	/*
812	 * We're allowed to read from our own string table.
813	 */
814	if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
815	    mstate->dtms_difo->dtdo_strlen))
816		return (1);
817
818	if (vstate->dtvs_state != NULL &&
819	    dtrace_priv_proc(vstate->dtvs_state)) {
820		proc_t *p;
821
822		/*
823		 * When we have privileges to the current process, there are
824		 * several context-related kernel structures that are safe to
825		 * read, even absent the privilege to read from kernel memory.
826		 * These reads are safe because these structures contain only
827		 * state that (1) we're permitted to read, (2) is harmless or
828		 * (3) contains pointers to additional kernel state that we're
829		 * not permitted to read (and as such, do not present an
830		 * opportunity for privilege escalation).  Finally (and
831		 * critically), because of the nature of their relation with
832		 * the current thread context, the memory associated with these
833		 * structures cannot change over the duration of probe context,
834		 * and it is therefore impossible for this memory to be
835		 * deallocated and reallocated as something else while it's
836		 * being operated upon.
837		 */
838		if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t)))
839			return (1);
840
841		if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
842		    sz, curthread->t_procp, sizeof (proc_t))) {
843			return (1);
844		}
845
846		if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
847		    curthread->t_cred, sizeof (cred_t))) {
848			return (1);
849		}
850
851#if defined(sun)
852		if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
853		    &(p->p_pidp->pid_id), sizeof (pid_t))) {
854			return (1);
855		}
856
857		if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
858		    curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
859			return (1);
860		}
861#endif
862	}
863
864	if ((fp = mstate->dtms_getf) != NULL) {
865		uintptr_t psz = sizeof (void *);
866		vnode_t *vp;
867		vnodeops_t *op;
868
869		/*
870		 * When getf() returns a file_t, the enabling is implicitly
871		 * granted the (transient) right to read the returned file_t
872		 * as well as the v_path and v_op->vnop_name of the underlying
873		 * vnode.  These accesses are allowed after a successful
874		 * getf() because the members that they refer to cannot change
875		 * once set -- and the barrier logic in the kernel's closef()
876		 * path assures that the file_t and its referenced vode_t
877		 * cannot themselves be stale (that is, it impossible for
878		 * either dtms_getf itself or its f_vnode member to reference
879		 * freed memory).
880		 */
881		if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t)))
882			return (1);
883
884		if ((vp = fp->f_vnode) != NULL) {
885#if defined(sun)
886			if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz))
887				return (1);
888			if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz,
889			    vp->v_path, strlen(vp->v_path) + 1)) {
890				return (1);
891			}
892#endif
893
894			if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz))
895				return (1);
896
897#if defined(sun)
898			if ((op = vp->v_op) != NULL &&
899			    DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
900				return (1);
901			}
902
903			if (op != NULL && op->vnop_name != NULL &&
904			    DTRACE_INRANGE(addr, sz, op->vnop_name,
905			    strlen(op->vnop_name) + 1)) {
906				return (1);
907			}
908#endif
909		}
910	}
911
912	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
913	*illval = addr;
914	return (0);
915}
916
917/*
918 * Convenience routine to check to see if a given string is within a memory
919 * region in which a load may be issued given the user's privilege level;
920 * this exists so that we don't need to issue unnecessary dtrace_strlen()
921 * calls in the event that the user has all privileges.
922 */
923static int
924dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
925    dtrace_vstate_t *vstate)
926{
927	size_t strsz;
928
929	/*
930	 * If we hold the privilege to read from kernel memory, then
931	 * everything is readable.
932	 */
933	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
934		return (1);
935
936	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
937	if (dtrace_canload(addr, strsz, mstate, vstate))
938		return (1);
939
940	return (0);
941}
942
943/*
944 * Convenience routine to check to see if a given variable is within a memory
945 * region in which a load may be issued given the user's privilege level.
946 */
947static int
948dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
949    dtrace_vstate_t *vstate)
950{
951	size_t sz;
952	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
953
954	/*
955	 * If we hold the privilege to read from kernel memory, then
956	 * everything is readable.
957	 */
958	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
959		return (1);
960
961	if (type->dtdt_kind == DIF_TYPE_STRING)
962		sz = dtrace_strlen(src,
963		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
964	else
965		sz = type->dtdt_size;
966
967	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
968}
969
970/*
971 * Convert a string to a signed integer using safe loads.
972 *
973 * NOTE: This function uses various macros from strtolctype.h to manipulate
974 * digit values, etc -- these have all been checked to ensure they make
975 * no additional function calls.
976 */
977static int64_t
978dtrace_strtoll(char *input, int base, size_t limit)
979{
980	uintptr_t pos = (uintptr_t)input;
981	int64_t val = 0;
982	int x;
983	boolean_t neg = B_FALSE;
984	char c, cc, ccc;
985	uintptr_t end = pos + limit;
986
987	/*
988	 * Consume any whitespace preceding digits.
989	 */
990	while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
991		pos++;
992
993	/*
994	 * Handle an explicit sign if one is present.
995	 */
996	if (c == '-' || c == '+') {
997		if (c == '-')
998			neg = B_TRUE;
999		c = dtrace_load8(++pos);
1000	}
1001
1002	/*
1003	 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1004	 * if present.
1005	 */
1006	if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
1007	    cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
1008		pos += 2;
1009		c = ccc;
1010	}
1011
1012	/*
1013	 * Read in contiguous digits until the first non-digit character.
1014	 */
1015	for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
1016	    c = dtrace_load8(++pos))
1017		val = val * base + x;
1018
1019	return (neg ? -val : val);
1020}
1021
1022/*
1023 * Compare two strings using safe loads.
1024 */
1025static int
1026dtrace_strncmp(char *s1, char *s2, size_t limit)
1027{
1028	uint8_t c1, c2;
1029	volatile uint16_t *flags;
1030
1031	if (s1 == s2 || limit == 0)
1032		return (0);
1033
1034	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1035
1036	do {
1037		if (s1 == NULL) {
1038			c1 = '\0';
1039		} else {
1040			c1 = dtrace_load8((uintptr_t)s1++);
1041		}
1042
1043		if (s2 == NULL) {
1044			c2 = '\0';
1045		} else {
1046			c2 = dtrace_load8((uintptr_t)s2++);
1047		}
1048
1049		if (c1 != c2)
1050			return (c1 - c2);
1051	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1052
1053	return (0);
1054}
1055
1056/*
1057 * Compute strlen(s) for a string using safe memory accesses.  The additional
1058 * len parameter is used to specify a maximum length to ensure completion.
1059 */
1060static size_t
1061dtrace_strlen(const char *s, size_t lim)
1062{
1063	uint_t len;
1064
1065	for (len = 0; len != lim; len++) {
1066		if (dtrace_load8((uintptr_t)s++) == '\0')
1067			break;
1068	}
1069
1070	return (len);
1071}
1072
1073/*
1074 * Check if an address falls within a toxic region.
1075 */
1076static int
1077dtrace_istoxic(uintptr_t kaddr, size_t size)
1078{
1079	uintptr_t taddr, tsize;
1080	int i;
1081
1082	for (i = 0; i < dtrace_toxranges; i++) {
1083		taddr = dtrace_toxrange[i].dtt_base;
1084		tsize = dtrace_toxrange[i].dtt_limit - taddr;
1085
1086		if (kaddr - taddr < tsize) {
1087			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1088			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
1089			return (1);
1090		}
1091
1092		if (taddr - kaddr < size) {
1093			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1094			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
1095			return (1);
1096		}
1097	}
1098
1099	return (0);
1100}
1101
1102/*
1103 * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
1104 * memory specified by the DIF program.  The dst is assumed to be safe memory
1105 * that we can store to directly because it is managed by DTrace.  As with
1106 * standard bcopy, overlapping copies are handled properly.
1107 */
1108static void
1109dtrace_bcopy(const void *src, void *dst, size_t len)
1110{
1111	if (len != 0) {
1112		uint8_t *s1 = dst;
1113		const uint8_t *s2 = src;
1114
1115		if (s1 <= s2) {
1116			do {
1117				*s1++ = dtrace_load8((uintptr_t)s2++);
1118			} while (--len != 0);
1119		} else {
1120			s2 += len;
1121			s1 += len;
1122
1123			do {
1124				*--s1 = dtrace_load8((uintptr_t)--s2);
1125			} while (--len != 0);
1126		}
1127	}
1128}
1129
1130/*
1131 * Copy src to dst using safe memory accesses, up to either the specified
1132 * length, or the point that a nul byte is encountered.  The src is assumed to
1133 * be unsafe memory specified by the DIF program.  The dst is assumed to be
1134 * safe memory that we can store to directly because it is managed by DTrace.
1135 * Unlike dtrace_bcopy(), overlapping regions are not handled.
1136 */
1137static void
1138dtrace_strcpy(const void *src, void *dst, size_t len)
1139{
1140	if (len != 0) {
1141		uint8_t *s1 = dst, c;
1142		const uint8_t *s2 = src;
1143
1144		do {
1145			*s1++ = c = dtrace_load8((uintptr_t)s2++);
1146		} while (--len != 0 && c != '\0');
1147	}
1148}
1149
1150/*
1151 * Copy src to dst, deriving the size and type from the specified (BYREF)
1152 * variable type.  The src is assumed to be unsafe memory specified by the DIF
1153 * program.  The dst is assumed to be DTrace variable memory that is of the
1154 * specified type; we assume that we can store to directly.
1155 */
1156static void
1157dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1158{
1159	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1160
1161	if (type->dtdt_kind == DIF_TYPE_STRING) {
1162		dtrace_strcpy(src, dst, type->dtdt_size);
1163	} else {
1164		dtrace_bcopy(src, dst, type->dtdt_size);
1165	}
1166}
1167
1168/*
1169 * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1170 * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1171 * safe memory that we can access directly because it is managed by DTrace.
1172 */
1173static int
1174dtrace_bcmp(const void *s1, const void *s2, size_t len)
1175{
1176	volatile uint16_t *flags;
1177
1178	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1179
1180	if (s1 == s2)
1181		return (0);
1182
1183	if (s1 == NULL || s2 == NULL)
1184		return (1);
1185
1186	if (s1 != s2 && len != 0) {
1187		const uint8_t *ps1 = s1;
1188		const uint8_t *ps2 = s2;
1189
1190		do {
1191			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1192				return (1);
1193		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1194	}
1195	return (0);
1196}
1197
1198/*
1199 * Zero the specified region using a simple byte-by-byte loop.  Note that this
1200 * is for safe DTrace-managed memory only.
1201 */
1202static void
1203dtrace_bzero(void *dst, size_t len)
1204{
1205	uchar_t *cp;
1206
1207	for (cp = dst; len != 0; len--)
1208		*cp++ = 0;
1209}
1210
1211static void
1212dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1213{
1214	uint64_t result[2];
1215
1216	result[0] = addend1[0] + addend2[0];
1217	result[1] = addend1[1] + addend2[1] +
1218	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1219
1220	sum[0] = result[0];
1221	sum[1] = result[1];
1222}
1223
1224/*
1225 * Shift the 128-bit value in a by b. If b is positive, shift left.
1226 * If b is negative, shift right.
1227 */
1228static void
1229dtrace_shift_128(uint64_t *a, int b)
1230{
1231	uint64_t mask;
1232
1233	if (b == 0)
1234		return;
1235
1236	if (b < 0) {
1237		b = -b;
1238		if (b >= 64) {
1239			a[0] = a[1] >> (b - 64);
1240			a[1] = 0;
1241		} else {
1242			a[0] >>= b;
1243			mask = 1LL << (64 - b);
1244			mask -= 1;
1245			a[0] |= ((a[1] & mask) << (64 - b));
1246			a[1] >>= b;
1247		}
1248	} else {
1249		if (b >= 64) {
1250			a[1] = a[0] << (b - 64);
1251			a[0] = 0;
1252		} else {
1253			a[1] <<= b;
1254			mask = a[0] >> (64 - b);
1255			a[1] |= mask;
1256			a[0] <<= b;
1257		}
1258	}
1259}
1260
1261/*
1262 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1263 * use native multiplication on those, and then re-combine into the
1264 * resulting 128-bit value.
1265 *
1266 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1267 *     hi1 * hi2 << 64 +
1268 *     hi1 * lo2 << 32 +
1269 *     hi2 * lo1 << 32 +
1270 *     lo1 * lo2
1271 */
1272static void
1273dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1274{
1275	uint64_t hi1, hi2, lo1, lo2;
1276	uint64_t tmp[2];
1277
1278	hi1 = factor1 >> 32;
1279	hi2 = factor2 >> 32;
1280
1281	lo1 = factor1 & DT_MASK_LO;
1282	lo2 = factor2 & DT_MASK_LO;
1283
1284	product[0] = lo1 * lo2;
1285	product[1] = hi1 * hi2;
1286
1287	tmp[0] = hi1 * lo2;
1288	tmp[1] = 0;
1289	dtrace_shift_128(tmp, 32);
1290	dtrace_add_128(product, tmp, product);
1291
1292	tmp[0] = hi2 * lo1;
1293	tmp[1] = 0;
1294	dtrace_shift_128(tmp, 32);
1295	dtrace_add_128(product, tmp, product);
1296}
1297
1298/*
1299 * This privilege check should be used by actions and subroutines to
1300 * verify that the user credentials of the process that enabled the
1301 * invoking ECB match the target credentials
1302 */
1303static int
1304dtrace_priv_proc_common_user(dtrace_state_t *state)
1305{
1306	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1307
1308	/*
1309	 * We should always have a non-NULL state cred here, since if cred
1310	 * is null (anonymous tracing), we fast-path bypass this routine.
1311	 */
1312	ASSERT(s_cr != NULL);
1313
1314	if ((cr = CRED()) != NULL &&
1315	    s_cr->cr_uid == cr->cr_uid &&
1316	    s_cr->cr_uid == cr->cr_ruid &&
1317	    s_cr->cr_uid == cr->cr_suid &&
1318	    s_cr->cr_gid == cr->cr_gid &&
1319	    s_cr->cr_gid == cr->cr_rgid &&
1320	    s_cr->cr_gid == cr->cr_sgid)
1321		return (1);
1322
1323	return (0);
1324}
1325
1326/*
1327 * This privilege check should be used by actions and subroutines to
1328 * verify that the zone of the process that enabled the invoking ECB
1329 * matches the target credentials
1330 */
1331static int
1332dtrace_priv_proc_common_zone(dtrace_state_t *state)
1333{
1334#if defined(sun)
1335	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1336
1337	/*
1338	 * We should always have a non-NULL state cred here, since if cred
1339	 * is null (anonymous tracing), we fast-path bypass this routine.
1340	 */
1341	ASSERT(s_cr != NULL);
1342
1343	if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1344		return (1);
1345
1346	return (0);
1347#else
1348	return (1);
1349#endif
1350}
1351
1352/*
1353 * This privilege check should be used by actions and subroutines to
1354 * verify that the process has not setuid or changed credentials.
1355 */
1356static int
1357dtrace_priv_proc_common_nocd(void)
1358{
1359	proc_t *proc;
1360
1361	if ((proc = ttoproc(curthread)) != NULL &&
1362	    !(proc->p_flag & SNOCD))
1363		return (1);
1364
1365	return (0);
1366}
1367
1368static int
1369dtrace_priv_proc_destructive(dtrace_state_t *state)
1370{
1371	int action = state->dts_cred.dcr_action;
1372
1373	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1374	    dtrace_priv_proc_common_zone(state) == 0)
1375		goto bad;
1376
1377	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1378	    dtrace_priv_proc_common_user(state) == 0)
1379		goto bad;
1380
1381	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1382	    dtrace_priv_proc_common_nocd() == 0)
1383		goto bad;
1384
1385	return (1);
1386
1387bad:
1388	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1389
1390	return (0);
1391}
1392
1393static int
1394dtrace_priv_proc_control(dtrace_state_t *state)
1395{
1396	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1397		return (1);
1398
1399	if (dtrace_priv_proc_common_zone(state) &&
1400	    dtrace_priv_proc_common_user(state) &&
1401	    dtrace_priv_proc_common_nocd())
1402		return (1);
1403
1404	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1405
1406	return (0);
1407}
1408
1409static int
1410dtrace_priv_proc(dtrace_state_t *state)
1411{
1412	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1413		return (1);
1414
1415	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1416
1417	return (0);
1418}
1419
1420static int
1421dtrace_priv_kernel(dtrace_state_t *state)
1422{
1423	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1424		return (1);
1425
1426	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1427
1428	return (0);
1429}
1430
1431static int
1432dtrace_priv_kernel_destructive(dtrace_state_t *state)
1433{
1434	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1435		return (1);
1436
1437	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1438
1439	return (0);
1440}
1441
1442/*
1443 * Determine if the dte_cond of the specified ECB allows for processing of
1444 * the current probe to continue.  Note that this routine may allow continued
1445 * processing, but with access(es) stripped from the mstate's dtms_access
1446 * field.
1447 */
1448static int
1449dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1450    dtrace_ecb_t *ecb)
1451{
1452	dtrace_probe_t *probe = ecb->dte_probe;
1453	dtrace_provider_t *prov = probe->dtpr_provider;
1454	dtrace_pops_t *pops = &prov->dtpv_pops;
1455	int mode = DTRACE_MODE_NOPRIV_DROP;
1456
1457	ASSERT(ecb->dte_cond);
1458
1459#if defined(sun)
1460	if (pops->dtps_mode != NULL) {
1461		mode = pops->dtps_mode(prov->dtpv_arg,
1462		    probe->dtpr_id, probe->dtpr_arg);
1463
1464		ASSERT((mode & DTRACE_MODE_USER) ||
1465		    (mode & DTRACE_MODE_KERNEL));
1466		ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) ||
1467		    (mode & DTRACE_MODE_NOPRIV_DROP));
1468	}
1469
1470	/*
1471	 * If the dte_cond bits indicate that this consumer is only allowed to
1472	 * see user-mode firings of this probe, call the provider's dtps_mode()
1473	 * entry point to check that the probe was fired while in a user
1474	 * context.  If that's not the case, use the policy specified by the
1475	 * provider to determine if we drop the probe or merely restrict
1476	 * operation.
1477	 */
1478	if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1479		ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1480
1481		if (!(mode & DTRACE_MODE_USER)) {
1482			if (mode & DTRACE_MODE_NOPRIV_DROP)
1483				return (0);
1484
1485			mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1486		}
1487	}
1488#endif
1489
1490	/*
1491	 * This is more subtle than it looks. We have to be absolutely certain
1492	 * that CRED() isn't going to change out from under us so it's only
1493	 * legit to examine that structure if we're in constrained situations.
1494	 * Currently, the only times we'll this check is if a non-super-user
1495	 * has enabled the profile or syscall providers -- providers that
1496	 * allow visibility of all processes. For the profile case, the check
1497	 * above will ensure that we're examining a user context.
1498	 */
1499	if (ecb->dte_cond & DTRACE_COND_OWNER) {
1500		cred_t *cr;
1501		cred_t *s_cr = state->dts_cred.dcr_cred;
1502		proc_t *proc;
1503
1504		ASSERT(s_cr != NULL);
1505
1506		if ((cr = CRED()) == NULL ||
1507		    s_cr->cr_uid != cr->cr_uid ||
1508		    s_cr->cr_uid != cr->cr_ruid ||
1509		    s_cr->cr_uid != cr->cr_suid ||
1510		    s_cr->cr_gid != cr->cr_gid ||
1511		    s_cr->cr_gid != cr->cr_rgid ||
1512		    s_cr->cr_gid != cr->cr_sgid ||
1513		    (proc = ttoproc(curthread)) == NULL ||
1514		    (proc->p_flag & SNOCD)) {
1515			if (mode & DTRACE_MODE_NOPRIV_DROP)
1516				return (0);
1517
1518#if defined(sun)
1519			mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1520#endif
1521		}
1522	}
1523
1524#if defined(sun)
1525	/*
1526	 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1527	 * in our zone, check to see if our mode policy is to restrict rather
1528	 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1529	 * and DTRACE_ACCESS_ARGS
1530	 */
1531	if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1532		cred_t *cr;
1533		cred_t *s_cr = state->dts_cred.dcr_cred;
1534
1535		ASSERT(s_cr != NULL);
1536
1537		if ((cr = CRED()) == NULL ||
1538		    s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1539			if (mode & DTRACE_MODE_NOPRIV_DROP)
1540				return (0);
1541
1542			mstate->dtms_access &=
1543			    ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1544		}
1545	}
1546#endif
1547
1548	return (1);
1549}
1550
1551/*
1552 * Note:  not called from probe context.  This function is called
1553 * asynchronously (and at a regular interval) from outside of probe context to
1554 * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1555 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1556 */
1557void
1558dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1559{
1560	dtrace_dynvar_t *dirty;
1561	dtrace_dstate_percpu_t *dcpu;
1562	dtrace_dynvar_t **rinsep;
1563	int i, j, work = 0;
1564
1565	for (i = 0; i < NCPU; i++) {
1566		dcpu = &dstate->dtds_percpu[i];
1567		rinsep = &dcpu->dtdsc_rinsing;
1568
1569		/*
1570		 * If the dirty list is NULL, there is no dirty work to do.
1571		 */
1572		if (dcpu->dtdsc_dirty == NULL)
1573			continue;
1574
1575		if (dcpu->dtdsc_rinsing != NULL) {
1576			/*
1577			 * If the rinsing list is non-NULL, then it is because
1578			 * this CPU was selected to accept another CPU's
1579			 * dirty list -- and since that time, dirty buffers
1580			 * have accumulated.  This is a highly unlikely
1581			 * condition, but we choose to ignore the dirty
1582			 * buffers -- they'll be picked up a future cleanse.
1583			 */
1584			continue;
1585		}
1586
1587		if (dcpu->dtdsc_clean != NULL) {
1588			/*
1589			 * If the clean list is non-NULL, then we're in a
1590			 * situation where a CPU has done deallocations (we
1591			 * have a non-NULL dirty list) but no allocations (we
1592			 * also have a non-NULL clean list).  We can't simply
1593			 * move the dirty list into the clean list on this
1594			 * CPU, yet we also don't want to allow this condition
1595			 * to persist, lest a short clean list prevent a
1596			 * massive dirty list from being cleaned (which in
1597			 * turn could lead to otherwise avoidable dynamic
1598			 * drops).  To deal with this, we look for some CPU
1599			 * with a NULL clean list, NULL dirty list, and NULL
1600			 * rinsing list -- and then we borrow this CPU to
1601			 * rinse our dirty list.
1602			 */
1603			for (j = 0; j < NCPU; j++) {
1604				dtrace_dstate_percpu_t *rinser;
1605
1606				rinser = &dstate->dtds_percpu[j];
1607
1608				if (rinser->dtdsc_rinsing != NULL)
1609					continue;
1610
1611				if (rinser->dtdsc_dirty != NULL)
1612					continue;
1613
1614				if (rinser->dtdsc_clean != NULL)
1615					continue;
1616
1617				rinsep = &rinser->dtdsc_rinsing;
1618				break;
1619			}
1620
1621			if (j == NCPU) {
1622				/*
1623				 * We were unable to find another CPU that
1624				 * could accept this dirty list -- we are
1625				 * therefore unable to clean it now.
1626				 */
1627				dtrace_dynvar_failclean++;
1628				continue;
1629			}
1630		}
1631
1632		work = 1;
1633
1634		/*
1635		 * Atomically move the dirty list aside.
1636		 */
1637		do {
1638			dirty = dcpu->dtdsc_dirty;
1639
1640			/*
1641			 * Before we zap the dirty list, set the rinsing list.
1642			 * (This allows for a potential assertion in
1643			 * dtrace_dynvar():  if a free dynamic variable appears
1644			 * on a hash chain, either the dirty list or the
1645			 * rinsing list for some CPU must be non-NULL.)
1646			 */
1647			*rinsep = dirty;
1648			dtrace_membar_producer();
1649		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1650		    dirty, NULL) != dirty);
1651	}
1652
1653	if (!work) {
1654		/*
1655		 * We have no work to do; we can simply return.
1656		 */
1657		return;
1658	}
1659
1660	dtrace_sync();
1661
1662	for (i = 0; i < NCPU; i++) {
1663		dcpu = &dstate->dtds_percpu[i];
1664
1665		if (dcpu->dtdsc_rinsing == NULL)
1666			continue;
1667
1668		/*
1669		 * We are now guaranteed that no hash chain contains a pointer
1670		 * into this dirty list; we can make it clean.
1671		 */
1672		ASSERT(dcpu->dtdsc_clean == NULL);
1673		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1674		dcpu->dtdsc_rinsing = NULL;
1675	}
1676
1677	/*
1678	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1679	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1680	 * This prevents a race whereby a CPU incorrectly decides that
1681	 * the state should be something other than DTRACE_DSTATE_CLEAN
1682	 * after dtrace_dynvar_clean() has completed.
1683	 */
1684	dtrace_sync();
1685
1686	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1687}
1688
1689/*
1690 * Depending on the value of the op parameter, this function looks-up,
1691 * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1692 * allocation is requested, this function will return a pointer to a
1693 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1694 * variable can be allocated.  If NULL is returned, the appropriate counter
1695 * will be incremented.
1696 */
1697dtrace_dynvar_t *
1698dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1699    dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1700    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1701{
1702	uint64_t hashval = DTRACE_DYNHASH_VALID;
1703	dtrace_dynhash_t *hash = dstate->dtds_hash;
1704	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1705	processorid_t me = curcpu, cpu = me;
1706	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1707	size_t bucket, ksize;
1708	size_t chunksize = dstate->dtds_chunksize;
1709	uintptr_t kdata, lock, nstate;
1710	uint_t i;
1711
1712	ASSERT(nkeys != 0);
1713
1714	/*
1715	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1716	 * algorithm.  For the by-value portions, we perform the algorithm in
1717	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1718	 * bit, and seems to have only a minute effect on distribution.  For
1719	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1720	 * over each referenced byte.  It's painful to do this, but it's much
1721	 * better than pathological hash distribution.  The efficacy of the
1722	 * hashing algorithm (and a comparison with other algorithms) may be
1723	 * found by running the ::dtrace_dynstat MDB dcmd.
1724	 */
1725	for (i = 0; i < nkeys; i++) {
1726		if (key[i].dttk_size == 0) {
1727			uint64_t val = key[i].dttk_value;
1728
1729			hashval += (val >> 48) & 0xffff;
1730			hashval += (hashval << 10);
1731			hashval ^= (hashval >> 6);
1732
1733			hashval += (val >> 32) & 0xffff;
1734			hashval += (hashval << 10);
1735			hashval ^= (hashval >> 6);
1736
1737			hashval += (val >> 16) & 0xffff;
1738			hashval += (hashval << 10);
1739			hashval ^= (hashval >> 6);
1740
1741			hashval += val & 0xffff;
1742			hashval += (hashval << 10);
1743			hashval ^= (hashval >> 6);
1744		} else {
1745			/*
1746			 * This is incredibly painful, but it beats the hell
1747			 * out of the alternative.
1748			 */
1749			uint64_t j, size = key[i].dttk_size;
1750			uintptr_t base = (uintptr_t)key[i].dttk_value;
1751
1752			if (!dtrace_canload(base, size, mstate, vstate))
1753				break;
1754
1755			for (j = 0; j < size; j++) {
1756				hashval += dtrace_load8(base + j);
1757				hashval += (hashval << 10);
1758				hashval ^= (hashval >> 6);
1759			}
1760		}
1761	}
1762
1763	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1764		return (NULL);
1765
1766	hashval += (hashval << 3);
1767	hashval ^= (hashval >> 11);
1768	hashval += (hashval << 15);
1769
1770	/*
1771	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1772	 * comes out to be one of our two sentinel hash values.  If this
1773	 * actually happens, we set the hashval to be a value known to be a
1774	 * non-sentinel value.
1775	 */
1776	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1777		hashval = DTRACE_DYNHASH_VALID;
1778
1779	/*
1780	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1781	 * important here, tricks can be pulled to reduce it.  (However, it's
1782	 * critical that hash collisions be kept to an absolute minimum;
1783	 * they're much more painful than a divide.)  It's better to have a
1784	 * solution that generates few collisions and still keeps things
1785	 * relatively simple.
1786	 */
1787	bucket = hashval % dstate->dtds_hashsize;
1788
1789	if (op == DTRACE_DYNVAR_DEALLOC) {
1790		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1791
1792		for (;;) {
1793			while ((lock = *lockp) & 1)
1794				continue;
1795
1796			if (dtrace_casptr((volatile void *)lockp,
1797			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1798				break;
1799		}
1800
1801		dtrace_membar_producer();
1802	}
1803
1804top:
1805	prev = NULL;
1806	lock = hash[bucket].dtdh_lock;
1807
1808	dtrace_membar_consumer();
1809
1810	start = hash[bucket].dtdh_chain;
1811	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1812	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1813	    op != DTRACE_DYNVAR_DEALLOC));
1814
1815	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1816		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1817		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1818
1819		if (dvar->dtdv_hashval != hashval) {
1820			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1821				/*
1822				 * We've reached the sink, and therefore the
1823				 * end of the hash chain; we can kick out of
1824				 * the loop knowing that we have seen a valid
1825				 * snapshot of state.
1826				 */
1827				ASSERT(dvar->dtdv_next == NULL);
1828				ASSERT(dvar == &dtrace_dynhash_sink);
1829				break;
1830			}
1831
1832			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1833				/*
1834				 * We've gone off the rails:  somewhere along
1835				 * the line, one of the members of this hash
1836				 * chain was deleted.  Note that we could also
1837				 * detect this by simply letting this loop run
1838				 * to completion, as we would eventually hit
1839				 * the end of the dirty list.  However, we
1840				 * want to avoid running the length of the
1841				 * dirty list unnecessarily (it might be quite
1842				 * long), so we catch this as early as
1843				 * possible by detecting the hash marker.  In
1844				 * this case, we simply set dvar to NULL and
1845				 * break; the conditional after the loop will
1846				 * send us back to top.
1847				 */
1848				dvar = NULL;
1849				break;
1850			}
1851
1852			goto next;
1853		}
1854
1855		if (dtuple->dtt_nkeys != nkeys)
1856			goto next;
1857
1858		for (i = 0; i < nkeys; i++, dkey++) {
1859			if (dkey->dttk_size != key[i].dttk_size)
1860				goto next; /* size or type mismatch */
1861
1862			if (dkey->dttk_size != 0) {
1863				if (dtrace_bcmp(
1864				    (void *)(uintptr_t)key[i].dttk_value,
1865				    (void *)(uintptr_t)dkey->dttk_value,
1866				    dkey->dttk_size))
1867					goto next;
1868			} else {
1869				if (dkey->dttk_value != key[i].dttk_value)
1870					goto next;
1871			}
1872		}
1873
1874		if (op != DTRACE_DYNVAR_DEALLOC)
1875			return (dvar);
1876
1877		ASSERT(dvar->dtdv_next == NULL ||
1878		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1879
1880		if (prev != NULL) {
1881			ASSERT(hash[bucket].dtdh_chain != dvar);
1882			ASSERT(start != dvar);
1883			ASSERT(prev->dtdv_next == dvar);
1884			prev->dtdv_next = dvar->dtdv_next;
1885		} else {
1886			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1887			    start, dvar->dtdv_next) != start) {
1888				/*
1889				 * We have failed to atomically swing the
1890				 * hash table head pointer, presumably because
1891				 * of a conflicting allocation on another CPU.
1892				 * We need to reread the hash chain and try
1893				 * again.
1894				 */
1895				goto top;
1896			}
1897		}
1898
1899		dtrace_membar_producer();
1900
1901		/*
1902		 * Now set the hash value to indicate that it's free.
1903		 */
1904		ASSERT(hash[bucket].dtdh_chain != dvar);
1905		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1906
1907		dtrace_membar_producer();
1908
1909		/*
1910		 * Set the next pointer to point at the dirty list, and
1911		 * atomically swing the dirty pointer to the newly freed dvar.
1912		 */
1913		do {
1914			next = dcpu->dtdsc_dirty;
1915			dvar->dtdv_next = next;
1916		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1917
1918		/*
1919		 * Finally, unlock this hash bucket.
1920		 */
1921		ASSERT(hash[bucket].dtdh_lock == lock);
1922		ASSERT(lock & 1);
1923		hash[bucket].dtdh_lock++;
1924
1925		return (NULL);
1926next:
1927		prev = dvar;
1928		continue;
1929	}
1930
1931	if (dvar == NULL) {
1932		/*
1933		 * If dvar is NULL, it is because we went off the rails:
1934		 * one of the elements that we traversed in the hash chain
1935		 * was deleted while we were traversing it.  In this case,
1936		 * we assert that we aren't doing a dealloc (deallocs lock
1937		 * the hash bucket to prevent themselves from racing with
1938		 * one another), and retry the hash chain traversal.
1939		 */
1940		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1941		goto top;
1942	}
1943
1944	if (op != DTRACE_DYNVAR_ALLOC) {
1945		/*
1946		 * If we are not to allocate a new variable, we want to
1947		 * return NULL now.  Before we return, check that the value
1948		 * of the lock word hasn't changed.  If it has, we may have
1949		 * seen an inconsistent snapshot.
1950		 */
1951		if (op == DTRACE_DYNVAR_NOALLOC) {
1952			if (hash[bucket].dtdh_lock != lock)
1953				goto top;
1954		} else {
1955			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1956			ASSERT(hash[bucket].dtdh_lock == lock);
1957			ASSERT(lock & 1);
1958			hash[bucket].dtdh_lock++;
1959		}
1960
1961		return (NULL);
1962	}
1963
1964	/*
1965	 * We need to allocate a new dynamic variable.  The size we need is the
1966	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1967	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1968	 * the size of any referred-to data (dsize).  We then round the final
1969	 * size up to the chunksize for allocation.
1970	 */
1971	for (ksize = 0, i = 0; i < nkeys; i++)
1972		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1973
1974	/*
1975	 * This should be pretty much impossible, but could happen if, say,
1976	 * strange DIF specified the tuple.  Ideally, this should be an
1977	 * assertion and not an error condition -- but that requires that the
1978	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1979	 * bullet-proof.  (That is, it must not be able to be fooled by
1980	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1981	 * solving this would presumably not amount to solving the Halting
1982	 * Problem -- but it still seems awfully hard.
1983	 */
1984	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1985	    ksize + dsize > chunksize) {
1986		dcpu->dtdsc_drops++;
1987		return (NULL);
1988	}
1989
1990	nstate = DTRACE_DSTATE_EMPTY;
1991
1992	do {
1993retry:
1994		free = dcpu->dtdsc_free;
1995
1996		if (free == NULL) {
1997			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1998			void *rval;
1999
2000			if (clean == NULL) {
2001				/*
2002				 * We're out of dynamic variable space on
2003				 * this CPU.  Unless we have tried all CPUs,
2004				 * we'll try to allocate from a different
2005				 * CPU.
2006				 */
2007				switch (dstate->dtds_state) {
2008				case DTRACE_DSTATE_CLEAN: {
2009					void *sp = &dstate->dtds_state;
2010
2011					if (++cpu >= NCPU)
2012						cpu = 0;
2013
2014					if (dcpu->dtdsc_dirty != NULL &&
2015					    nstate == DTRACE_DSTATE_EMPTY)
2016						nstate = DTRACE_DSTATE_DIRTY;
2017
2018					if (dcpu->dtdsc_rinsing != NULL)
2019						nstate = DTRACE_DSTATE_RINSING;
2020
2021					dcpu = &dstate->dtds_percpu[cpu];
2022
2023					if (cpu != me)
2024						goto retry;
2025
2026					(void) dtrace_cas32(sp,
2027					    DTRACE_DSTATE_CLEAN, nstate);
2028
2029					/*
2030					 * To increment the correct bean
2031					 * counter, take another lap.
2032					 */
2033					goto retry;
2034				}
2035
2036				case DTRACE_DSTATE_DIRTY:
2037					dcpu->dtdsc_dirty_drops++;
2038					break;
2039
2040				case DTRACE_DSTATE_RINSING:
2041					dcpu->dtdsc_rinsing_drops++;
2042					break;
2043
2044				case DTRACE_DSTATE_EMPTY:
2045					dcpu->dtdsc_drops++;
2046					break;
2047				}
2048
2049				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
2050				return (NULL);
2051			}
2052
2053			/*
2054			 * The clean list appears to be non-empty.  We want to
2055			 * move the clean list to the free list; we start by
2056			 * moving the clean pointer aside.
2057			 */
2058			if (dtrace_casptr(&dcpu->dtdsc_clean,
2059			    clean, NULL) != clean) {
2060				/*
2061				 * We are in one of two situations:
2062				 *
2063				 *  (a)	The clean list was switched to the
2064				 *	free list by another CPU.
2065				 *
2066				 *  (b)	The clean list was added to by the
2067				 *	cleansing cyclic.
2068				 *
2069				 * In either of these situations, we can
2070				 * just reattempt the free list allocation.
2071				 */
2072				goto retry;
2073			}
2074
2075			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
2076
2077			/*
2078			 * Now we'll move the clean list to our free list.
2079			 * It's impossible for this to fail:  the only way
2080			 * the free list can be updated is through this
2081			 * code path, and only one CPU can own the clean list.
2082			 * Thus, it would only be possible for this to fail if
2083			 * this code were racing with dtrace_dynvar_clean().
2084			 * (That is, if dtrace_dynvar_clean() updated the clean
2085			 * list, and we ended up racing to update the free
2086			 * list.)  This race is prevented by the dtrace_sync()
2087			 * in dtrace_dynvar_clean() -- which flushes the
2088			 * owners of the clean lists out before resetting
2089			 * the clean lists.
2090			 */
2091			dcpu = &dstate->dtds_percpu[me];
2092			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2093			ASSERT(rval == NULL);
2094			goto retry;
2095		}
2096
2097		dvar = free;
2098		new_free = dvar->dtdv_next;
2099	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2100
2101	/*
2102	 * We have now allocated a new chunk.  We copy the tuple keys into the
2103	 * tuple array and copy any referenced key data into the data space
2104	 * following the tuple array.  As we do this, we relocate dttk_value
2105	 * in the final tuple to point to the key data address in the chunk.
2106	 */
2107	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2108	dvar->dtdv_data = (void *)(kdata + ksize);
2109	dvar->dtdv_tuple.dtt_nkeys = nkeys;
2110
2111	for (i = 0; i < nkeys; i++) {
2112		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2113		size_t kesize = key[i].dttk_size;
2114
2115		if (kesize != 0) {
2116			dtrace_bcopy(
2117			    (const void *)(uintptr_t)key[i].dttk_value,
2118			    (void *)kdata, kesize);
2119			dkey->dttk_value = kdata;
2120			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2121		} else {
2122			dkey->dttk_value = key[i].dttk_value;
2123		}
2124
2125		dkey->dttk_size = kesize;
2126	}
2127
2128	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2129	dvar->dtdv_hashval = hashval;
2130	dvar->dtdv_next = start;
2131
2132	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2133		return (dvar);
2134
2135	/*
2136	 * The cas has failed.  Either another CPU is adding an element to
2137	 * this hash chain, or another CPU is deleting an element from this
2138	 * hash chain.  The simplest way to deal with both of these cases
2139	 * (though not necessarily the most efficient) is to free our
2140	 * allocated block and tail-call ourselves.  Note that the free is
2141	 * to the dirty list and _not_ to the free list.  This is to prevent
2142	 * races with allocators, above.
2143	 */
2144	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2145
2146	dtrace_membar_producer();
2147
2148	do {
2149		free = dcpu->dtdsc_dirty;
2150		dvar->dtdv_next = free;
2151	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2152
2153	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
2154}
2155
2156/*ARGSUSED*/
2157static void
2158dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2159{
2160	if ((int64_t)nval < (int64_t)*oval)
2161		*oval = nval;
2162}
2163
2164/*ARGSUSED*/
2165static void
2166dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2167{
2168	if ((int64_t)nval > (int64_t)*oval)
2169		*oval = nval;
2170}
2171
2172static void
2173dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2174{
2175	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2176	int64_t val = (int64_t)nval;
2177
2178	if (val < 0) {
2179		for (i = 0; i < zero; i++) {
2180			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2181				quanta[i] += incr;
2182				return;
2183			}
2184		}
2185	} else {
2186		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2187			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2188				quanta[i - 1] += incr;
2189				return;
2190			}
2191		}
2192
2193		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2194		return;
2195	}
2196
2197	ASSERT(0);
2198}
2199
2200static void
2201dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2202{
2203	uint64_t arg = *lquanta++;
2204	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2205	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2206	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2207	int32_t val = (int32_t)nval, level;
2208
2209	ASSERT(step != 0);
2210	ASSERT(levels != 0);
2211
2212	if (val < base) {
2213		/*
2214		 * This is an underflow.
2215		 */
2216		lquanta[0] += incr;
2217		return;
2218	}
2219
2220	level = (val - base) / step;
2221
2222	if (level < levels) {
2223		lquanta[level + 1] += incr;
2224		return;
2225	}
2226
2227	/*
2228	 * This is an overflow.
2229	 */
2230	lquanta[levels + 1] += incr;
2231}
2232
2233static int
2234dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2235    uint16_t high, uint16_t nsteps, int64_t value)
2236{
2237	int64_t this = 1, last, next;
2238	int base = 1, order;
2239
2240	ASSERT(factor <= nsteps);
2241	ASSERT(nsteps % factor == 0);
2242
2243	for (order = 0; order < low; order++)
2244		this *= factor;
2245
2246	/*
2247	 * If our value is less than our factor taken to the power of the
2248	 * low order of magnitude, it goes into the zeroth bucket.
2249	 */
2250	if (value < (last = this))
2251		return (0);
2252
2253	for (this *= factor; order <= high; order++) {
2254		int nbuckets = this > nsteps ? nsteps : this;
2255
2256		if ((next = this * factor) < this) {
2257			/*
2258			 * We should not generally get log/linear quantizations
2259			 * with a high magnitude that allows 64-bits to
2260			 * overflow, but we nonetheless protect against this
2261			 * by explicitly checking for overflow, and clamping
2262			 * our value accordingly.
2263			 */
2264			value = this - 1;
2265		}
2266
2267		if (value < this) {
2268			/*
2269			 * If our value lies within this order of magnitude,
2270			 * determine its position by taking the offset within
2271			 * the order of magnitude, dividing by the bucket
2272			 * width, and adding to our (accumulated) base.
2273			 */
2274			return (base + (value - last) / (this / nbuckets));
2275		}
2276
2277		base += nbuckets - (nbuckets / factor);
2278		last = this;
2279		this = next;
2280	}
2281
2282	/*
2283	 * Our value is greater than or equal to our factor taken to the
2284	 * power of one plus the high magnitude -- return the top bucket.
2285	 */
2286	return (base);
2287}
2288
2289static void
2290dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2291{
2292	uint64_t arg = *llquanta++;
2293	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2294	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2295	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2296	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2297
2298	llquanta[dtrace_aggregate_llquantize_bucket(factor,
2299	    low, high, nsteps, nval)] += incr;
2300}
2301
2302/*ARGSUSED*/
2303static void
2304dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2305{
2306	data[0]++;
2307	data[1] += nval;
2308}
2309
2310/*ARGSUSED*/
2311static void
2312dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2313{
2314	int64_t snval = (int64_t)nval;
2315	uint64_t tmp[2];
2316
2317	data[0]++;
2318	data[1] += nval;
2319
2320	/*
2321	 * What we want to say here is:
2322	 *
2323	 * data[2] += nval * nval;
2324	 *
2325	 * But given that nval is 64-bit, we could easily overflow, so
2326	 * we do this as 128-bit arithmetic.
2327	 */
2328	if (snval < 0)
2329		snval = -snval;
2330
2331	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2332	dtrace_add_128(data + 2, tmp, data + 2);
2333}
2334
2335/*ARGSUSED*/
2336static void
2337dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2338{
2339	*oval = *oval + 1;
2340}
2341
2342/*ARGSUSED*/
2343static void
2344dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2345{
2346	*oval += nval;
2347}
2348
2349/*
2350 * Aggregate given the tuple in the principal data buffer, and the aggregating
2351 * action denoted by the specified dtrace_aggregation_t.  The aggregation
2352 * buffer is specified as the buf parameter.  This routine does not return
2353 * failure; if there is no space in the aggregation buffer, the data will be
2354 * dropped, and a corresponding counter incremented.
2355 */
2356static void
2357dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2358    intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2359{
2360	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2361	uint32_t i, ndx, size, fsize;
2362	uint32_t align = sizeof (uint64_t) - 1;
2363	dtrace_aggbuffer_t *agb;
2364	dtrace_aggkey_t *key;
2365	uint32_t hashval = 0, limit, isstr;
2366	caddr_t tomax, data, kdata;
2367	dtrace_actkind_t action;
2368	dtrace_action_t *act;
2369	uintptr_t offs;
2370
2371	if (buf == NULL)
2372		return;
2373
2374	if (!agg->dtag_hasarg) {
2375		/*
2376		 * Currently, only quantize() and lquantize() take additional
2377		 * arguments, and they have the same semantics:  an increment
2378		 * value that defaults to 1 when not present.  If additional
2379		 * aggregating actions take arguments, the setting of the
2380		 * default argument value will presumably have to become more
2381		 * sophisticated...
2382		 */
2383		arg = 1;
2384	}
2385
2386	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2387	size = rec->dtrd_offset - agg->dtag_base;
2388	fsize = size + rec->dtrd_size;
2389
2390	ASSERT(dbuf->dtb_tomax != NULL);
2391	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2392
2393	if ((tomax = buf->dtb_tomax) == NULL) {
2394		dtrace_buffer_drop(buf);
2395		return;
2396	}
2397
2398	/*
2399	 * The metastructure is always at the bottom of the buffer.
2400	 */
2401	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2402	    sizeof (dtrace_aggbuffer_t));
2403
2404	if (buf->dtb_offset == 0) {
2405		/*
2406		 * We just kludge up approximately 1/8th of the size to be
2407		 * buckets.  If this guess ends up being routinely
2408		 * off-the-mark, we may need to dynamically readjust this
2409		 * based on past performance.
2410		 */
2411		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2412
2413		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2414		    (uintptr_t)tomax || hashsize == 0) {
2415			/*
2416			 * We've been given a ludicrously small buffer;
2417			 * increment our drop count and leave.
2418			 */
2419			dtrace_buffer_drop(buf);
2420			return;
2421		}
2422
2423		/*
2424		 * And now, a pathetic attempt to try to get a an odd (or
2425		 * perchance, a prime) hash size for better hash distribution.
2426		 */
2427		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2428			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2429
2430		agb->dtagb_hashsize = hashsize;
2431		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2432		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2433		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2434
2435		for (i = 0; i < agb->dtagb_hashsize; i++)
2436			agb->dtagb_hash[i] = NULL;
2437	}
2438
2439	ASSERT(agg->dtag_first != NULL);
2440	ASSERT(agg->dtag_first->dta_intuple);
2441
2442	/*
2443	 * Calculate the hash value based on the key.  Note that we _don't_
2444	 * include the aggid in the hashing (but we will store it as part of
2445	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2446	 * algorithm: a simple, quick algorithm that has no known funnels, and
2447	 * gets good distribution in practice.  The efficacy of the hashing
2448	 * algorithm (and a comparison with other algorithms) may be found by
2449	 * running the ::dtrace_aggstat MDB dcmd.
2450	 */
2451	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2452		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2453		limit = i + act->dta_rec.dtrd_size;
2454		ASSERT(limit <= size);
2455		isstr = DTRACEACT_ISSTRING(act);
2456
2457		for (; i < limit; i++) {
2458			hashval += data[i];
2459			hashval += (hashval << 10);
2460			hashval ^= (hashval >> 6);
2461
2462			if (isstr && data[i] == '\0')
2463				break;
2464		}
2465	}
2466
2467	hashval += (hashval << 3);
2468	hashval ^= (hashval >> 11);
2469	hashval += (hashval << 15);
2470
2471	/*
2472	 * Yes, the divide here is expensive -- but it's generally the least
2473	 * of the performance issues given the amount of data that we iterate
2474	 * over to compute hash values, compare data, etc.
2475	 */
2476	ndx = hashval % agb->dtagb_hashsize;
2477
2478	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2479		ASSERT((caddr_t)key >= tomax);
2480		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2481
2482		if (hashval != key->dtak_hashval || key->dtak_size != size)
2483			continue;
2484
2485		kdata = key->dtak_data;
2486		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2487
2488		for (act = agg->dtag_first; act->dta_intuple;
2489		    act = act->dta_next) {
2490			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2491			limit = i + act->dta_rec.dtrd_size;
2492			ASSERT(limit <= size);
2493			isstr = DTRACEACT_ISSTRING(act);
2494
2495			for (; i < limit; i++) {
2496				if (kdata[i] != data[i])
2497					goto next;
2498
2499				if (isstr && data[i] == '\0')
2500					break;
2501			}
2502		}
2503
2504		if (action != key->dtak_action) {
2505			/*
2506			 * We are aggregating on the same value in the same
2507			 * aggregation with two different aggregating actions.
2508			 * (This should have been picked up in the compiler,
2509			 * so we may be dealing with errant or devious DIF.)
2510			 * This is an error condition; we indicate as much,
2511			 * and return.
2512			 */
2513			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2514			return;
2515		}
2516
2517		/*
2518		 * This is a hit:  we need to apply the aggregator to
2519		 * the value at this key.
2520		 */
2521		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2522		return;
2523next:
2524		continue;
2525	}
2526
2527	/*
2528	 * We didn't find it.  We need to allocate some zero-filled space,
2529	 * link it into the hash table appropriately, and apply the aggregator
2530	 * to the (zero-filled) value.
2531	 */
2532	offs = buf->dtb_offset;
2533	while (offs & (align - 1))
2534		offs += sizeof (uint32_t);
2535
2536	/*
2537	 * If we don't have enough room to both allocate a new key _and_
2538	 * its associated data, increment the drop count and return.
2539	 */
2540	if ((uintptr_t)tomax + offs + fsize >
2541	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2542		dtrace_buffer_drop(buf);
2543		return;
2544	}
2545
2546	/*CONSTCOND*/
2547	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2548	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2549	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2550
2551	key->dtak_data = kdata = tomax + offs;
2552	buf->dtb_offset = offs + fsize;
2553
2554	/*
2555	 * Now copy the data across.
2556	 */
2557	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2558
2559	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2560		kdata[i] = data[i];
2561
2562	/*
2563	 * Because strings are not zeroed out by default, we need to iterate
2564	 * looking for actions that store strings, and we need to explicitly
2565	 * pad these strings out with zeroes.
2566	 */
2567	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2568		int nul;
2569
2570		if (!DTRACEACT_ISSTRING(act))
2571			continue;
2572
2573		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2574		limit = i + act->dta_rec.dtrd_size;
2575		ASSERT(limit <= size);
2576
2577		for (nul = 0; i < limit; i++) {
2578			if (nul) {
2579				kdata[i] = '\0';
2580				continue;
2581			}
2582
2583			if (data[i] != '\0')
2584				continue;
2585
2586			nul = 1;
2587		}
2588	}
2589
2590	for (i = size; i < fsize; i++)
2591		kdata[i] = 0;
2592
2593	key->dtak_hashval = hashval;
2594	key->dtak_size = size;
2595	key->dtak_action = action;
2596	key->dtak_next = agb->dtagb_hash[ndx];
2597	agb->dtagb_hash[ndx] = key;
2598
2599	/*
2600	 * Finally, apply the aggregator.
2601	 */
2602	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2603	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2604}
2605
2606/*
2607 * Given consumer state, this routine finds a speculation in the INACTIVE
2608 * state and transitions it into the ACTIVE state.  If there is no speculation
2609 * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2610 * incremented -- it is up to the caller to take appropriate action.
2611 */
2612static int
2613dtrace_speculation(dtrace_state_t *state)
2614{
2615	int i = 0;
2616	dtrace_speculation_state_t current;
2617	uint32_t *stat = &state->dts_speculations_unavail, count;
2618
2619	while (i < state->dts_nspeculations) {
2620		dtrace_speculation_t *spec = &state->dts_speculations[i];
2621
2622		current = spec->dtsp_state;
2623
2624		if (current != DTRACESPEC_INACTIVE) {
2625			if (current == DTRACESPEC_COMMITTINGMANY ||
2626			    current == DTRACESPEC_COMMITTING ||
2627			    current == DTRACESPEC_DISCARDING)
2628				stat = &state->dts_speculations_busy;
2629			i++;
2630			continue;
2631		}
2632
2633		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2634		    current, DTRACESPEC_ACTIVE) == current)
2635			return (i + 1);
2636	}
2637
2638	/*
2639	 * We couldn't find a speculation.  If we found as much as a single
2640	 * busy speculation buffer, we'll attribute this failure as "busy"
2641	 * instead of "unavail".
2642	 */
2643	do {
2644		count = *stat;
2645	} while (dtrace_cas32(stat, count, count + 1) != count);
2646
2647	return (0);
2648}
2649
2650/*
2651 * This routine commits an active speculation.  If the specified speculation
2652 * is not in a valid state to perform a commit(), this routine will silently do
2653 * nothing.  The state of the specified speculation is transitioned according
2654 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2655 */
2656static void
2657dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2658    dtrace_specid_t which)
2659{
2660	dtrace_speculation_t *spec;
2661	dtrace_buffer_t *src, *dest;
2662	uintptr_t daddr, saddr, dlimit, slimit;
2663	dtrace_speculation_state_t current, new = 0;
2664	intptr_t offs;
2665	uint64_t timestamp;
2666
2667	if (which == 0)
2668		return;
2669
2670	if (which > state->dts_nspeculations) {
2671		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2672		return;
2673	}
2674
2675	spec = &state->dts_speculations[which - 1];
2676	src = &spec->dtsp_buffer[cpu];
2677	dest = &state->dts_buffer[cpu];
2678
2679	do {
2680		current = spec->dtsp_state;
2681
2682		if (current == DTRACESPEC_COMMITTINGMANY)
2683			break;
2684
2685		switch (current) {
2686		case DTRACESPEC_INACTIVE:
2687		case DTRACESPEC_DISCARDING:
2688			return;
2689
2690		case DTRACESPEC_COMMITTING:
2691			/*
2692			 * This is only possible if we are (a) commit()'ing
2693			 * without having done a prior speculate() on this CPU
2694			 * and (b) racing with another commit() on a different
2695			 * CPU.  There's nothing to do -- we just assert that
2696			 * our offset is 0.
2697			 */
2698			ASSERT(src->dtb_offset == 0);
2699			return;
2700
2701		case DTRACESPEC_ACTIVE:
2702			new = DTRACESPEC_COMMITTING;
2703			break;
2704
2705		case DTRACESPEC_ACTIVEONE:
2706			/*
2707			 * This speculation is active on one CPU.  If our
2708			 * buffer offset is non-zero, we know that the one CPU
2709			 * must be us.  Otherwise, we are committing on a
2710			 * different CPU from the speculate(), and we must
2711			 * rely on being asynchronously cleaned.
2712			 */
2713			if (src->dtb_offset != 0) {
2714				new = DTRACESPEC_COMMITTING;
2715				break;
2716			}
2717			/*FALLTHROUGH*/
2718
2719		case DTRACESPEC_ACTIVEMANY:
2720			new = DTRACESPEC_COMMITTINGMANY;
2721			break;
2722
2723		default:
2724			ASSERT(0);
2725		}
2726	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2727	    current, new) != current);
2728
2729	/*
2730	 * We have set the state to indicate that we are committing this
2731	 * speculation.  Now reserve the necessary space in the destination
2732	 * buffer.
2733	 */
2734	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2735	    sizeof (uint64_t), state, NULL)) < 0) {
2736		dtrace_buffer_drop(dest);
2737		goto out;
2738	}
2739
2740	/*
2741	 * We have sufficient space to copy the speculative buffer into the
2742	 * primary buffer.  First, modify the speculative buffer, filling
2743	 * in the timestamp of all entries with the current time.  The data
2744	 * must have the commit() time rather than the time it was traced,
2745	 * so that all entries in the primary buffer are in timestamp order.
2746	 */
2747	timestamp = dtrace_gethrtime();
2748	saddr = (uintptr_t)src->dtb_tomax;
2749	slimit = saddr + src->dtb_offset;
2750	while (saddr < slimit) {
2751		size_t size;
2752		dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2753
2754		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2755			saddr += sizeof (dtrace_epid_t);
2756			continue;
2757		}
2758		ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2759		size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2760
2761		ASSERT3U(saddr + size, <=, slimit);
2762		ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2763		ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2764
2765		DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2766
2767		saddr += size;
2768	}
2769
2770	/*
2771	 * Copy the buffer across.  (Note that this is a
2772	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2773	 * a serious performance issue, a high-performance DTrace-specific
2774	 * bcopy() should obviously be invented.)
2775	 */
2776	daddr = (uintptr_t)dest->dtb_tomax + offs;
2777	dlimit = daddr + src->dtb_offset;
2778	saddr = (uintptr_t)src->dtb_tomax;
2779
2780	/*
2781	 * First, the aligned portion.
2782	 */
2783	while (dlimit - daddr >= sizeof (uint64_t)) {
2784		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2785
2786		daddr += sizeof (uint64_t);
2787		saddr += sizeof (uint64_t);
2788	}
2789
2790	/*
2791	 * Now any left-over bit...
2792	 */
2793	while (dlimit - daddr)
2794		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2795
2796	/*
2797	 * Finally, commit the reserved space in the destination buffer.
2798	 */
2799	dest->dtb_offset = offs + src->dtb_offset;
2800
2801out:
2802	/*
2803	 * If we're lucky enough to be the only active CPU on this speculation
2804	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2805	 */
2806	if (current == DTRACESPEC_ACTIVE ||
2807	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2808		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2809		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2810
2811		ASSERT(rval == DTRACESPEC_COMMITTING);
2812	}
2813
2814	src->dtb_offset = 0;
2815	src->dtb_xamot_drops += src->dtb_drops;
2816	src->dtb_drops = 0;
2817}
2818
2819/*
2820 * This routine discards an active speculation.  If the specified speculation
2821 * is not in a valid state to perform a discard(), this routine will silently
2822 * do nothing.  The state of the specified speculation is transitioned
2823 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2824 */
2825static void
2826dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2827    dtrace_specid_t which)
2828{
2829	dtrace_speculation_t *spec;
2830	dtrace_speculation_state_t current, new = 0;
2831	dtrace_buffer_t *buf;
2832
2833	if (which == 0)
2834		return;
2835
2836	if (which > state->dts_nspeculations) {
2837		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2838		return;
2839	}
2840
2841	spec = &state->dts_speculations[which - 1];
2842	buf = &spec->dtsp_buffer[cpu];
2843
2844	do {
2845		current = spec->dtsp_state;
2846
2847		switch (current) {
2848		case DTRACESPEC_INACTIVE:
2849		case DTRACESPEC_COMMITTINGMANY:
2850		case DTRACESPEC_COMMITTING:
2851		case DTRACESPEC_DISCARDING:
2852			return;
2853
2854		case DTRACESPEC_ACTIVE:
2855		case DTRACESPEC_ACTIVEMANY:
2856			new = DTRACESPEC_DISCARDING;
2857			break;
2858
2859		case DTRACESPEC_ACTIVEONE:
2860			if (buf->dtb_offset != 0) {
2861				new = DTRACESPEC_INACTIVE;
2862			} else {
2863				new = DTRACESPEC_DISCARDING;
2864			}
2865			break;
2866
2867		default:
2868			ASSERT(0);
2869		}
2870	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2871	    current, new) != current);
2872
2873	buf->dtb_offset = 0;
2874	buf->dtb_drops = 0;
2875}
2876
2877/*
2878 * Note:  not called from probe context.  This function is called
2879 * asynchronously from cross call context to clean any speculations that are
2880 * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2881 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2882 * speculation.
2883 */
2884static void
2885dtrace_speculation_clean_here(dtrace_state_t *state)
2886{
2887	dtrace_icookie_t cookie;
2888	processorid_t cpu = curcpu;
2889	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2890	dtrace_specid_t i;
2891
2892	cookie = dtrace_interrupt_disable();
2893
2894	if (dest->dtb_tomax == NULL) {
2895		dtrace_interrupt_enable(cookie);
2896		return;
2897	}
2898
2899	for (i = 0; i < state->dts_nspeculations; i++) {
2900		dtrace_speculation_t *spec = &state->dts_speculations[i];
2901		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2902
2903		if (src->dtb_tomax == NULL)
2904			continue;
2905
2906		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2907			src->dtb_offset = 0;
2908			continue;
2909		}
2910
2911		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2912			continue;
2913
2914		if (src->dtb_offset == 0)
2915			continue;
2916
2917		dtrace_speculation_commit(state, cpu, i + 1);
2918	}
2919
2920	dtrace_interrupt_enable(cookie);
2921}
2922
2923/*
2924 * Note:  not called from probe context.  This function is called
2925 * asynchronously (and at a regular interval) to clean any speculations that
2926 * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2927 * is work to be done, it cross calls all CPUs to perform that work;
2928 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2929 * INACTIVE state until they have been cleaned by all CPUs.
2930 */
2931static void
2932dtrace_speculation_clean(dtrace_state_t *state)
2933{
2934	int work = 0, rv;
2935	dtrace_specid_t i;
2936
2937	for (i = 0; i < state->dts_nspeculations; i++) {
2938		dtrace_speculation_t *spec = &state->dts_speculations[i];
2939
2940		ASSERT(!spec->dtsp_cleaning);
2941
2942		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2943		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2944			continue;
2945
2946		work++;
2947		spec->dtsp_cleaning = 1;
2948	}
2949
2950	if (!work)
2951		return;
2952
2953	dtrace_xcall(DTRACE_CPUALL,
2954	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2955
2956	/*
2957	 * We now know that all CPUs have committed or discarded their
2958	 * speculation buffers, as appropriate.  We can now set the state
2959	 * to inactive.
2960	 */
2961	for (i = 0; i < state->dts_nspeculations; i++) {
2962		dtrace_speculation_t *spec = &state->dts_speculations[i];
2963		dtrace_speculation_state_t current, new;
2964
2965		if (!spec->dtsp_cleaning)
2966			continue;
2967
2968		current = spec->dtsp_state;
2969		ASSERT(current == DTRACESPEC_DISCARDING ||
2970		    current == DTRACESPEC_COMMITTINGMANY);
2971
2972		new = DTRACESPEC_INACTIVE;
2973
2974		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2975		ASSERT(rv == current);
2976		spec->dtsp_cleaning = 0;
2977	}
2978}
2979
2980/*
2981 * Called as part of a speculate() to get the speculative buffer associated
2982 * with a given speculation.  Returns NULL if the specified speculation is not
2983 * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2984 * the active CPU is not the specified CPU -- the speculation will be
2985 * atomically transitioned into the ACTIVEMANY state.
2986 */
2987static dtrace_buffer_t *
2988dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2989    dtrace_specid_t which)
2990{
2991	dtrace_speculation_t *spec;
2992	dtrace_speculation_state_t current, new = 0;
2993	dtrace_buffer_t *buf;
2994
2995	if (which == 0)
2996		return (NULL);
2997
2998	if (which > state->dts_nspeculations) {
2999		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3000		return (NULL);
3001	}
3002
3003	spec = &state->dts_speculations[which - 1];
3004	buf = &spec->dtsp_buffer[cpuid];
3005
3006	do {
3007		current = spec->dtsp_state;
3008
3009		switch (current) {
3010		case DTRACESPEC_INACTIVE:
3011		case DTRACESPEC_COMMITTINGMANY:
3012		case DTRACESPEC_DISCARDING:
3013			return (NULL);
3014
3015		case DTRACESPEC_COMMITTING:
3016			ASSERT(buf->dtb_offset == 0);
3017			return (NULL);
3018
3019		case DTRACESPEC_ACTIVEONE:
3020			/*
3021			 * This speculation is currently active on one CPU.
3022			 * Check the offset in the buffer; if it's non-zero,
3023			 * that CPU must be us (and we leave the state alone).
3024			 * If it's zero, assume that we're starting on a new
3025			 * CPU -- and change the state to indicate that the
3026			 * speculation is active on more than one CPU.
3027			 */
3028			if (buf->dtb_offset != 0)
3029				return (buf);
3030
3031			new = DTRACESPEC_ACTIVEMANY;
3032			break;
3033
3034		case DTRACESPEC_ACTIVEMANY:
3035			return (buf);
3036
3037		case DTRACESPEC_ACTIVE:
3038			new = DTRACESPEC_ACTIVEONE;
3039			break;
3040
3041		default:
3042			ASSERT(0);
3043		}
3044	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3045	    current, new) != current);
3046
3047	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
3048	return (buf);
3049}
3050
3051/*
3052 * Return a string.  In the event that the user lacks the privilege to access
3053 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3054 * don't fail access checking.
3055 *
3056 * dtrace_dif_variable() uses this routine as a helper for various
3057 * builtin values such as 'execname' and 'probefunc.'
3058 */
3059uintptr_t
3060dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
3061    dtrace_mstate_t *mstate)
3062{
3063	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3064	uintptr_t ret;
3065	size_t strsz;
3066
3067	/*
3068	 * The easy case: this probe is allowed to read all of memory, so
3069	 * we can just return this as a vanilla pointer.
3070	 */
3071	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3072		return (addr);
3073
3074	/*
3075	 * This is the tougher case: we copy the string in question from
3076	 * kernel memory into scratch memory and return it that way: this
3077	 * ensures that we won't trip up when access checking tests the
3078	 * BYREF return value.
3079	 */
3080	strsz = dtrace_strlen((char *)addr, size) + 1;
3081
3082	if (mstate->dtms_scratch_ptr + strsz >
3083	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3084		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3085		return (0);
3086	}
3087
3088	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3089	    strsz);
3090	ret = mstate->dtms_scratch_ptr;
3091	mstate->dtms_scratch_ptr += strsz;
3092	return (ret);
3093}
3094
3095/*
3096 * Return a string from a memoy address which is known to have one or
3097 * more concatenated, individually zero terminated, sub-strings.
3098 * In the event that the user lacks the privilege to access
3099 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3100 * don't fail access checking.
3101 *
3102 * dtrace_dif_variable() uses this routine as a helper for various
3103 * builtin values such as 'execargs'.
3104 */
3105static uintptr_t
3106dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
3107    dtrace_mstate_t *mstate)
3108{
3109	char *p;
3110	size_t i;
3111	uintptr_t ret;
3112
3113	if (mstate->dtms_scratch_ptr + strsz >
3114	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3115		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3116		return (0);
3117	}
3118
3119	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3120	    strsz);
3121
3122	/* Replace sub-string termination characters with a space. */
3123	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
3124	    p++, i++)
3125		if (*p == '\0')
3126			*p = ' ';
3127
3128	ret = mstate->dtms_scratch_ptr;
3129	mstate->dtms_scratch_ptr += strsz;
3130	return (ret);
3131}
3132
3133/*
3134 * This function implements the DIF emulator's variable lookups.  The emulator
3135 * passes a reserved variable identifier and optional built-in array index.
3136 */
3137static uint64_t
3138dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3139    uint64_t ndx)
3140{
3141	/*
3142	 * If we're accessing one of the uncached arguments, we'll turn this
3143	 * into a reference in the args array.
3144	 */
3145	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3146		ndx = v - DIF_VAR_ARG0;
3147		v = DIF_VAR_ARGS;
3148	}
3149
3150	switch (v) {
3151	case DIF_VAR_ARGS:
3152		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3153		if (ndx >= sizeof (mstate->dtms_arg) /
3154		    sizeof (mstate->dtms_arg[0])) {
3155			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3156			dtrace_provider_t *pv;
3157			uint64_t val;
3158
3159			pv = mstate->dtms_probe->dtpr_provider;
3160			if (pv->dtpv_pops.dtps_getargval != NULL)
3161				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3162				    mstate->dtms_probe->dtpr_id,
3163				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
3164			else
3165				val = dtrace_getarg(ndx, aframes);
3166
3167			/*
3168			 * This is regrettably required to keep the compiler
3169			 * from tail-optimizing the call to dtrace_getarg().
3170			 * The condition always evaluates to true, but the
3171			 * compiler has no way of figuring that out a priori.
3172			 * (None of this would be necessary if the compiler
3173			 * could be relied upon to _always_ tail-optimize
3174			 * the call to dtrace_getarg() -- but it can't.)
3175			 */
3176			if (mstate->dtms_probe != NULL)
3177				return (val);
3178
3179			ASSERT(0);
3180		}
3181
3182		return (mstate->dtms_arg[ndx]);
3183
3184#if defined(sun)
3185	case DIF_VAR_UREGS: {
3186		klwp_t *lwp;
3187
3188		if (!dtrace_priv_proc(state))
3189			return (0);
3190
3191		if ((lwp = curthread->t_lwp) == NULL) {
3192			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3193			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
3194			return (0);
3195		}
3196
3197		return (dtrace_getreg(lwp->lwp_regs, ndx));
3198		return (0);
3199	}
3200#else
3201	case DIF_VAR_UREGS: {
3202		struct trapframe *tframe;
3203
3204		if (!dtrace_priv_proc(state))
3205			return (0);
3206
3207		if ((tframe = curthread->td_frame) == NULL) {
3208			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3209			cpu_core[curcpu].cpuc_dtrace_illval = 0;
3210			return (0);
3211		}
3212
3213		return (dtrace_getreg(tframe, ndx));
3214	}
3215#endif
3216
3217	case DIF_VAR_CURTHREAD:
3218		if (!dtrace_priv_proc(state))
3219			return (0);
3220		return ((uint64_t)(uintptr_t)curthread);
3221
3222	case DIF_VAR_TIMESTAMP:
3223		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3224			mstate->dtms_timestamp = dtrace_gethrtime();
3225			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3226		}
3227		return (mstate->dtms_timestamp);
3228
3229	case DIF_VAR_VTIMESTAMP:
3230		ASSERT(dtrace_vtime_references != 0);
3231		return (curthread->t_dtrace_vtime);
3232
3233	case DIF_VAR_WALLTIMESTAMP:
3234		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3235			mstate->dtms_walltimestamp = dtrace_gethrestime();
3236			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3237		}
3238		return (mstate->dtms_walltimestamp);
3239
3240#if defined(sun)
3241	case DIF_VAR_IPL:
3242		if (!dtrace_priv_kernel(state))
3243			return (0);
3244		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3245			mstate->dtms_ipl = dtrace_getipl();
3246			mstate->dtms_present |= DTRACE_MSTATE_IPL;
3247		}
3248		return (mstate->dtms_ipl);
3249#endif
3250
3251	case DIF_VAR_EPID:
3252		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3253		return (mstate->dtms_epid);
3254
3255	case DIF_VAR_ID:
3256		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3257		return (mstate->dtms_probe->dtpr_id);
3258
3259	case DIF_VAR_STACKDEPTH:
3260		if (!dtrace_priv_kernel(state))
3261			return (0);
3262		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3263			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3264
3265			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3266			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3267		}
3268		return (mstate->dtms_stackdepth);
3269
3270	case DIF_VAR_USTACKDEPTH:
3271		if (!dtrace_priv_proc(state))
3272			return (0);
3273		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3274			/*
3275			 * See comment in DIF_VAR_PID.
3276			 */
3277			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3278			    CPU_ON_INTR(CPU)) {
3279				mstate->dtms_ustackdepth = 0;
3280			} else {
3281				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3282				mstate->dtms_ustackdepth =
3283				    dtrace_getustackdepth();
3284				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3285			}
3286			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3287		}
3288		return (mstate->dtms_ustackdepth);
3289
3290	case DIF_VAR_CALLER:
3291		if (!dtrace_priv_kernel(state))
3292			return (0);
3293		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3294			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3295
3296			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3297				/*
3298				 * If this is an unanchored probe, we are
3299				 * required to go through the slow path:
3300				 * dtrace_caller() only guarantees correct
3301				 * results for anchored probes.
3302				 */
3303				pc_t caller[2] = {0, 0};
3304
3305				dtrace_getpcstack(caller, 2, aframes,
3306				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3307				mstate->dtms_caller = caller[1];
3308			} else if ((mstate->dtms_caller =
3309			    dtrace_caller(aframes)) == -1) {
3310				/*
3311				 * We have failed to do this the quick way;
3312				 * we must resort to the slower approach of
3313				 * calling dtrace_getpcstack().
3314				 */
3315				pc_t caller = 0;
3316
3317				dtrace_getpcstack(&caller, 1, aframes, NULL);
3318				mstate->dtms_caller = caller;
3319			}
3320
3321			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3322		}
3323		return (mstate->dtms_caller);
3324
3325	case DIF_VAR_UCALLER:
3326		if (!dtrace_priv_proc(state))
3327			return (0);
3328
3329		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3330			uint64_t ustack[3];
3331
3332			/*
3333			 * dtrace_getupcstack() fills in the first uint64_t
3334			 * with the current PID.  The second uint64_t will
3335			 * be the program counter at user-level.  The third
3336			 * uint64_t will contain the caller, which is what
3337			 * we're after.
3338			 */
3339			ustack[2] = 0;
3340			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3341			dtrace_getupcstack(ustack, 3);
3342			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3343			mstate->dtms_ucaller = ustack[2];
3344			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3345		}
3346
3347		return (mstate->dtms_ucaller);
3348
3349	case DIF_VAR_PROBEPROV:
3350		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3351		return (dtrace_dif_varstr(
3352		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3353		    state, mstate));
3354
3355	case DIF_VAR_PROBEMOD:
3356		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3357		return (dtrace_dif_varstr(
3358		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3359		    state, mstate));
3360
3361	case DIF_VAR_PROBEFUNC:
3362		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3363		return (dtrace_dif_varstr(
3364		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3365		    state, mstate));
3366
3367	case DIF_VAR_PROBENAME:
3368		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3369		return (dtrace_dif_varstr(
3370		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3371		    state, mstate));
3372
3373	case DIF_VAR_PID:
3374		if (!dtrace_priv_proc(state))
3375			return (0);
3376
3377#if defined(sun)
3378		/*
3379		 * Note that we are assuming that an unanchored probe is
3380		 * always due to a high-level interrupt.  (And we're assuming
3381		 * that there is only a single high level interrupt.)
3382		 */
3383		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3384			return (pid0.pid_id);
3385
3386		/*
3387		 * It is always safe to dereference one's own t_procp pointer:
3388		 * it always points to a valid, allocated proc structure.
3389		 * Further, it is always safe to dereference the p_pidp member
3390		 * of one's own proc structure.  (These are truisms becuase
3391		 * threads and processes don't clean up their own state --
3392		 * they leave that task to whomever reaps them.)
3393		 */
3394		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3395#else
3396		return ((uint64_t)curproc->p_pid);
3397#endif
3398
3399	case DIF_VAR_PPID:
3400		if (!dtrace_priv_proc(state))
3401			return (0);
3402
3403#if defined(sun)
3404		/*
3405		 * See comment in DIF_VAR_PID.
3406		 */
3407		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3408			return (pid0.pid_id);
3409
3410		/*
3411		 * It is always safe to dereference one's own t_procp pointer:
3412		 * it always points to a valid, allocated proc structure.
3413		 * (This is true because threads don't clean up their own
3414		 * state -- they leave that task to whomever reaps them.)
3415		 */
3416		return ((uint64_t)curthread->t_procp->p_ppid);
3417#else
3418		return ((uint64_t)curproc->p_pptr->p_pid);
3419#endif
3420
3421	case DIF_VAR_TID:
3422#if defined(sun)
3423		/*
3424		 * See comment in DIF_VAR_PID.
3425		 */
3426		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3427			return (0);
3428#endif
3429
3430		return ((uint64_t)curthread->t_tid);
3431
3432	case DIF_VAR_EXECARGS: {
3433		struct pargs *p_args = curthread->td_proc->p_args;
3434
3435		if (p_args == NULL)
3436			return(0);
3437
3438		return (dtrace_dif_varstrz(
3439		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3440	}
3441
3442	case DIF_VAR_EXECNAME:
3443#if defined(sun)
3444		if (!dtrace_priv_proc(state))
3445			return (0);
3446
3447		/*
3448		 * See comment in DIF_VAR_PID.
3449		 */
3450		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3451			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3452
3453		/*
3454		 * It is always safe to dereference one's own t_procp pointer:
3455		 * it always points to a valid, allocated proc structure.
3456		 * (This is true because threads don't clean up their own
3457		 * state -- they leave that task to whomever reaps them.)
3458		 */
3459		return (dtrace_dif_varstr(
3460		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3461		    state, mstate));
3462#else
3463		return (dtrace_dif_varstr(
3464		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3465#endif
3466
3467	case DIF_VAR_ZONENAME:
3468#if defined(sun)
3469		if (!dtrace_priv_proc(state))
3470			return (0);
3471
3472		/*
3473		 * See comment in DIF_VAR_PID.
3474		 */
3475		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3476			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3477
3478		/*
3479		 * It is always safe to dereference one's own t_procp pointer:
3480		 * it always points to a valid, allocated proc structure.
3481		 * (This is true because threads don't clean up their own
3482		 * state -- they leave that task to whomever reaps them.)
3483		 */
3484		return (dtrace_dif_varstr(
3485		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3486		    state, mstate));
3487#else
3488		return (0);
3489#endif
3490
3491	case DIF_VAR_UID:
3492		if (!dtrace_priv_proc(state))
3493			return (0);
3494
3495#if defined(sun)
3496		/*
3497		 * See comment in DIF_VAR_PID.
3498		 */
3499		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3500			return ((uint64_t)p0.p_cred->cr_uid);
3501#endif
3502
3503		/*
3504		 * It is always safe to dereference one's own t_procp pointer:
3505		 * it always points to a valid, allocated proc structure.
3506		 * (This is true because threads don't clean up their own
3507		 * state -- they leave that task to whomever reaps them.)
3508		 *
3509		 * Additionally, it is safe to dereference one's own process
3510		 * credential, since this is never NULL after process birth.
3511		 */
3512		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3513
3514	case DIF_VAR_GID:
3515		if (!dtrace_priv_proc(state))
3516			return (0);
3517
3518#if defined(sun)
3519		/*
3520		 * See comment in DIF_VAR_PID.
3521		 */
3522		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3523			return ((uint64_t)p0.p_cred->cr_gid);
3524#endif
3525
3526		/*
3527		 * It is always safe to dereference one's own t_procp pointer:
3528		 * it always points to a valid, allocated proc structure.
3529		 * (This is true because threads don't clean up their own
3530		 * state -- they leave that task to whomever reaps them.)
3531		 *
3532		 * Additionally, it is safe to dereference one's own process
3533		 * credential, since this is never NULL after process birth.
3534		 */
3535		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3536
3537	case DIF_VAR_ERRNO: {
3538#if defined(sun)
3539		klwp_t *lwp;
3540		if (!dtrace_priv_proc(state))
3541			return (0);
3542
3543		/*
3544		 * See comment in DIF_VAR_PID.
3545		 */
3546		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3547			return (0);
3548
3549		/*
3550		 * It is always safe to dereference one's own t_lwp pointer in
3551		 * the event that this pointer is non-NULL.  (This is true
3552		 * because threads and lwps don't clean up their own state --
3553		 * they leave that task to whomever reaps them.)
3554		 */
3555		if ((lwp = curthread->t_lwp) == NULL)
3556			return (0);
3557
3558		return ((uint64_t)lwp->lwp_errno);
3559#else
3560		return (curthread->td_errno);
3561#endif
3562	}
3563#if !defined(sun)
3564	case DIF_VAR_CPU: {
3565		return curcpu;
3566	}
3567#endif
3568	default:
3569		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3570		return (0);
3571	}
3572}
3573
3574
3575typedef enum dtrace_json_state {
3576	DTRACE_JSON_REST = 1,
3577	DTRACE_JSON_OBJECT,
3578	DTRACE_JSON_STRING,
3579	DTRACE_JSON_STRING_ESCAPE,
3580	DTRACE_JSON_STRING_ESCAPE_UNICODE,
3581	DTRACE_JSON_COLON,
3582	DTRACE_JSON_COMMA,
3583	DTRACE_JSON_VALUE,
3584	DTRACE_JSON_IDENTIFIER,
3585	DTRACE_JSON_NUMBER,
3586	DTRACE_JSON_NUMBER_FRAC,
3587	DTRACE_JSON_NUMBER_EXP,
3588	DTRACE_JSON_COLLECT_OBJECT
3589} dtrace_json_state_t;
3590
3591/*
3592 * This function possesses just enough knowledge about JSON to extract a single
3593 * value from a JSON string and store it in the scratch buffer.  It is able
3594 * to extract nested object values, and members of arrays by index.
3595 *
3596 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3597 * be looked up as we descend into the object tree.  e.g.
3598 *
3599 *    foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3600 *       with nelems = 5.
3601 *
3602 * The run time of this function must be bounded above by strsize to limit the
3603 * amount of work done in probe context.  As such, it is implemented as a
3604 * simple state machine, reading one character at a time using safe loads
3605 * until we find the requested element, hit a parsing error or run off the
3606 * end of the object or string.
3607 *
3608 * As there is no way for a subroutine to return an error without interrupting
3609 * clause execution, we simply return NULL in the event of a missing key or any
3610 * other error condition.  Each NULL return in this function is commented with
3611 * the error condition it represents -- parsing or otherwise.
3612 *
3613 * The set of states for the state machine closely matches the JSON
3614 * specification (http://json.org/).  Briefly:
3615 *
3616 *   DTRACE_JSON_REST:
3617 *     Skip whitespace until we find either a top-level Object, moving
3618 *     to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3619 *
3620 *   DTRACE_JSON_OBJECT:
3621 *     Locate the next key String in an Object.  Sets a flag to denote
3622 *     the next String as a key string and moves to DTRACE_JSON_STRING.
3623 *
3624 *   DTRACE_JSON_COLON:
3625 *     Skip whitespace until we find the colon that separates key Strings
3626 *     from their values.  Once found, move to DTRACE_JSON_VALUE.
3627 *
3628 *   DTRACE_JSON_VALUE:
3629 *     Detects the type of the next value (String, Number, Identifier, Object
3630 *     or Array) and routes to the states that process that type.  Here we also
3631 *     deal with the element selector list if we are requested to traverse down
3632 *     into the object tree.
3633 *
3634 *   DTRACE_JSON_COMMA:
3635 *     Skip whitespace until we find the comma that separates key-value pairs
3636 *     in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3637 *     (similarly DTRACE_JSON_VALUE).  All following literal value processing
3638 *     states return to this state at the end of their value, unless otherwise
3639 *     noted.
3640 *
3641 *   DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3642 *     Processes a Number literal from the JSON, including any exponent
3643 *     component that may be present.  Numbers are returned as strings, which
3644 *     may be passed to strtoll() if an integer is required.
3645 *
3646 *   DTRACE_JSON_IDENTIFIER:
3647 *     Processes a "true", "false" or "null" literal in the JSON.
3648 *
3649 *   DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3650 *   DTRACE_JSON_STRING_ESCAPE_UNICODE:
3651 *     Processes a String literal from the JSON, whether the String denotes
3652 *     a key, a value or part of a larger Object.  Handles all escape sequences
3653 *     present in the specification, including four-digit unicode characters,
3654 *     but merely includes the escape sequence without converting it to the
3655 *     actual escaped character.  If the String is flagged as a key, we
3656 *     move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3657 *
3658 *   DTRACE_JSON_COLLECT_OBJECT:
3659 *     This state collects an entire Object (or Array), correctly handling
3660 *     embedded strings.  If the full element selector list matches this nested
3661 *     object, we return the Object in full as a string.  If not, we use this
3662 *     state to skip to the next value at this level and continue processing.
3663 *
3664 * NOTE: This function uses various macros from strtolctype.h to manipulate
3665 * digit values, etc -- these have all been checked to ensure they make
3666 * no additional function calls.
3667 */
3668static char *
3669dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3670    char *dest)
3671{
3672	dtrace_json_state_t state = DTRACE_JSON_REST;
3673	int64_t array_elem = INT64_MIN;
3674	int64_t array_pos = 0;
3675	uint8_t escape_unicount = 0;
3676	boolean_t string_is_key = B_FALSE;
3677	boolean_t collect_object = B_FALSE;
3678	boolean_t found_key = B_FALSE;
3679	boolean_t in_array = B_FALSE;
3680	uint32_t braces = 0, brackets = 0;
3681	char *elem = elemlist;
3682	char *dd = dest;
3683	uintptr_t cur;
3684
3685	for (cur = json; cur < json + size; cur++) {
3686		char cc = dtrace_load8(cur);
3687		if (cc == '\0')
3688			return (NULL);
3689
3690		switch (state) {
3691		case DTRACE_JSON_REST:
3692			if (isspace(cc))
3693				break;
3694
3695			if (cc == '{') {
3696				state = DTRACE_JSON_OBJECT;
3697				break;
3698			}
3699
3700			if (cc == '[') {
3701				in_array = B_TRUE;
3702				array_pos = 0;
3703				array_elem = dtrace_strtoll(elem, 10, size);
3704				found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3705				state = DTRACE_JSON_VALUE;
3706				break;
3707			}
3708
3709			/*
3710			 * ERROR: expected to find a top-level object or array.
3711			 */
3712			return (NULL);
3713		case DTRACE_JSON_OBJECT:
3714			if (isspace(cc))
3715				break;
3716
3717			if (cc == '"') {
3718				state = DTRACE_JSON_STRING;
3719				string_is_key = B_TRUE;
3720				break;
3721			}
3722
3723			/*
3724			 * ERROR: either the object did not start with a key
3725			 * string, or we've run off the end of the object
3726			 * without finding the requested key.
3727			 */
3728			return (NULL);
3729		case DTRACE_JSON_STRING:
3730			if (cc == '\\') {
3731				*dd++ = '\\';
3732				state = DTRACE_JSON_STRING_ESCAPE;
3733				break;
3734			}
3735
3736			if (cc == '"') {
3737				if (collect_object) {
3738					/*
3739					 * We don't reset the dest here, as
3740					 * the string is part of a larger
3741					 * object being collected.
3742					 */
3743					*dd++ = cc;
3744					collect_object = B_FALSE;
3745					state = DTRACE_JSON_COLLECT_OBJECT;
3746					break;
3747				}
3748				*dd = '\0';
3749				dd = dest; /* reset string buffer */
3750				if (string_is_key) {
3751					if (dtrace_strncmp(dest, elem,
3752					    size) == 0)
3753						found_key = B_TRUE;
3754				} else if (found_key) {
3755					if (nelems > 1) {
3756						/*
3757						 * We expected an object, not
3758						 * this string.
3759						 */
3760						return (NULL);
3761					}
3762					return (dest);
3763				}
3764				state = string_is_key ? DTRACE_JSON_COLON :
3765				    DTRACE_JSON_COMMA;
3766				string_is_key = B_FALSE;
3767				break;
3768			}
3769
3770			*dd++ = cc;
3771			break;
3772		case DTRACE_JSON_STRING_ESCAPE:
3773			*dd++ = cc;
3774			if (cc == 'u') {
3775				escape_unicount = 0;
3776				state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3777			} else {
3778				state = DTRACE_JSON_STRING;
3779			}
3780			break;
3781		case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3782			if (!isxdigit(cc)) {
3783				/*
3784				 * ERROR: invalid unicode escape, expected
3785				 * four valid hexidecimal digits.
3786				 */
3787				return (NULL);
3788			}
3789
3790			*dd++ = cc;
3791			if (++escape_unicount == 4)
3792				state = DTRACE_JSON_STRING;
3793			break;
3794		case DTRACE_JSON_COLON:
3795			if (isspace(cc))
3796				break;
3797
3798			if (cc == ':') {
3799				state = DTRACE_JSON_VALUE;
3800				break;
3801			}
3802
3803			/*
3804			 * ERROR: expected a colon.
3805			 */
3806			return (NULL);
3807		case DTRACE_JSON_COMMA:
3808			if (isspace(cc))
3809				break;
3810
3811			if (cc == ',') {
3812				if (in_array) {
3813					state = DTRACE_JSON_VALUE;
3814					if (++array_pos == array_elem)
3815						found_key = B_TRUE;
3816				} else {
3817					state = DTRACE_JSON_OBJECT;
3818				}
3819				break;
3820			}
3821
3822			/*
3823			 * ERROR: either we hit an unexpected character, or
3824			 * we reached the end of the object or array without
3825			 * finding the requested key.
3826			 */
3827			return (NULL);
3828		case DTRACE_JSON_IDENTIFIER:
3829			if (islower(cc)) {
3830				*dd++ = cc;
3831				break;
3832			}
3833
3834			*dd = '\0';
3835			dd = dest; /* reset string buffer */
3836
3837			if (dtrace_strncmp(dest, "true", 5) == 0 ||
3838			    dtrace_strncmp(dest, "false", 6) == 0 ||
3839			    dtrace_strncmp(dest, "null", 5) == 0) {
3840				if (found_key) {
3841					if (nelems > 1) {
3842						/*
3843						 * ERROR: We expected an object,
3844						 * not this identifier.
3845						 */
3846						return (NULL);
3847					}
3848					return (dest);
3849				} else {
3850					cur--;
3851					state = DTRACE_JSON_COMMA;
3852					break;
3853				}
3854			}
3855
3856			/*
3857			 * ERROR: we did not recognise the identifier as one
3858			 * of those in the JSON specification.
3859			 */
3860			return (NULL);
3861		case DTRACE_JSON_NUMBER:
3862			if (cc == '.') {
3863				*dd++ = cc;
3864				state = DTRACE_JSON_NUMBER_FRAC;
3865				break;
3866			}
3867
3868			if (cc == 'x' || cc == 'X') {
3869				/*
3870				 * ERROR: specification explicitly excludes
3871				 * hexidecimal or octal numbers.
3872				 */
3873				return (NULL);
3874			}
3875
3876			/* FALLTHRU */
3877		case DTRACE_JSON_NUMBER_FRAC:
3878			if (cc == 'e' || cc == 'E') {
3879				*dd++ = cc;
3880				state = DTRACE_JSON_NUMBER_EXP;
3881				break;
3882			}
3883
3884			if (cc == '+' || cc == '-') {
3885				/*
3886				 * ERROR: expect sign as part of exponent only.
3887				 */
3888				return (NULL);
3889			}
3890			/* FALLTHRU */
3891		case DTRACE_JSON_NUMBER_EXP:
3892			if (isdigit(cc) || cc == '+' || cc == '-') {
3893				*dd++ = cc;
3894				break;
3895			}
3896
3897			*dd = '\0';
3898			dd = dest; /* reset string buffer */
3899			if (found_key) {
3900				if (nelems > 1) {
3901					/*
3902					 * ERROR: We expected an object, not
3903					 * this number.
3904					 */
3905					return (NULL);
3906				}
3907				return (dest);
3908			}
3909
3910			cur--;
3911			state = DTRACE_JSON_COMMA;
3912			break;
3913		case DTRACE_JSON_VALUE:
3914			if (isspace(cc))
3915				break;
3916
3917			if (cc == '{' || cc == '[') {
3918				if (nelems > 1 && found_key) {
3919					in_array = cc == '[' ? B_TRUE : B_FALSE;
3920					/*
3921					 * If our element selector directs us
3922					 * to descend into this nested object,
3923					 * then move to the next selector
3924					 * element in the list and restart the
3925					 * state machine.
3926					 */
3927					while (*elem != '\0')
3928						elem++;
3929					elem++; /* skip the inter-element NUL */
3930					nelems--;
3931					dd = dest;
3932					if (in_array) {
3933						state = DTRACE_JSON_VALUE;
3934						array_pos = 0;
3935						array_elem = dtrace_strtoll(
3936						    elem, 10, size);
3937						found_key = array_elem == 0 ?
3938						    B_TRUE : B_FALSE;
3939					} else {
3940						found_key = B_FALSE;
3941						state = DTRACE_JSON_OBJECT;
3942					}
3943					break;
3944				}
3945
3946				/*
3947				 * Otherwise, we wish to either skip this
3948				 * nested object or return it in full.
3949				 */
3950				if (cc == '[')
3951					brackets = 1;
3952				else
3953					braces = 1;
3954				*dd++ = cc;
3955				state = DTRACE_JSON_COLLECT_OBJECT;
3956				break;
3957			}
3958
3959			if (cc == '"') {
3960				state = DTRACE_JSON_STRING;
3961				break;
3962			}
3963
3964			if (islower(cc)) {
3965				/*
3966				 * Here we deal with true, false and null.
3967				 */
3968				*dd++ = cc;
3969				state = DTRACE_JSON_IDENTIFIER;
3970				break;
3971			}
3972
3973			if (cc == '-' || isdigit(cc)) {
3974				*dd++ = cc;
3975				state = DTRACE_JSON_NUMBER;
3976				break;
3977			}
3978
3979			/*
3980			 * ERROR: unexpected character at start of value.
3981			 */
3982			return (NULL);
3983		case DTRACE_JSON_COLLECT_OBJECT:
3984			if (cc == '\0')
3985				/*
3986				 * ERROR: unexpected end of input.
3987				 */
3988				return (NULL);
3989
3990			*dd++ = cc;
3991			if (cc == '"') {
3992				collect_object = B_TRUE;
3993				state = DTRACE_JSON_STRING;
3994				break;
3995			}
3996
3997			if (cc == ']') {
3998				if (brackets-- == 0) {
3999					/*
4000					 * ERROR: unbalanced brackets.
4001					 */
4002					return (NULL);
4003				}
4004			} else if (cc == '}') {
4005				if (braces-- == 0) {
4006					/*
4007					 * ERROR: unbalanced braces.
4008					 */
4009					return (NULL);
4010				}
4011			} else if (cc == '{') {
4012				braces++;
4013			} else if (cc == '[') {
4014				brackets++;
4015			}
4016
4017			if (brackets == 0 && braces == 0) {
4018				if (found_key) {
4019					*dd = '\0';
4020					return (dest);
4021				}
4022				dd = dest; /* reset string buffer */
4023				state = DTRACE_JSON_COMMA;
4024			}
4025			break;
4026		}
4027	}
4028	return (NULL);
4029}
4030
4031/*
4032 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4033 * Notice that we don't bother validating the proper number of arguments or
4034 * their types in the tuple stack.  This isn't needed because all argument
4035 * interpretation is safe because of our load safety -- the worst that can
4036 * happen is that a bogus program can obtain bogus results.
4037 */
4038static void
4039dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
4040    dtrace_key_t *tupregs, int nargs,
4041    dtrace_mstate_t *mstate, dtrace_state_t *state)
4042{
4043	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4044	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4045	dtrace_vstate_t *vstate = &state->dts_vstate;
4046
4047#if defined(sun)
4048	union {
4049		mutex_impl_t mi;
4050		uint64_t mx;
4051	} m;
4052
4053	union {
4054		krwlock_t ri;
4055		uintptr_t rw;
4056	} r;
4057#else
4058	struct thread *lowner;
4059	union {
4060		struct lock_object *li;
4061		uintptr_t lx;
4062	} l;
4063#endif
4064
4065	switch (subr) {
4066	case DIF_SUBR_RAND:
4067		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
4068		break;
4069
4070#if defined(sun)
4071	case DIF_SUBR_MUTEX_OWNED:
4072		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4073		    mstate, vstate)) {
4074			regs[rd] = 0;
4075			break;
4076		}
4077
4078		m.mx = dtrace_load64(tupregs[0].dttk_value);
4079		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
4080			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
4081		else
4082			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
4083		break;
4084
4085	case DIF_SUBR_MUTEX_OWNER:
4086		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4087		    mstate, vstate)) {
4088			regs[rd] = 0;
4089			break;
4090		}
4091
4092		m.mx = dtrace_load64(tupregs[0].dttk_value);
4093		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
4094		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
4095			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
4096		else
4097			regs[rd] = 0;
4098		break;
4099
4100	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4101		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4102		    mstate, vstate)) {
4103			regs[rd] = 0;
4104			break;
4105		}
4106
4107		m.mx = dtrace_load64(tupregs[0].dttk_value);
4108		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
4109		break;
4110
4111	case DIF_SUBR_MUTEX_TYPE_SPIN:
4112		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4113		    mstate, vstate)) {
4114			regs[rd] = 0;
4115			break;
4116		}
4117
4118		m.mx = dtrace_load64(tupregs[0].dttk_value);
4119		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
4120		break;
4121
4122	case DIF_SUBR_RW_READ_HELD: {
4123		uintptr_t tmp;
4124
4125		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4126		    mstate, vstate)) {
4127			regs[rd] = 0;
4128			break;
4129		}
4130
4131		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4132		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
4133		break;
4134	}
4135
4136	case DIF_SUBR_RW_WRITE_HELD:
4137		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4138		    mstate, vstate)) {
4139			regs[rd] = 0;
4140			break;
4141		}
4142
4143		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4144		regs[rd] = _RW_WRITE_HELD(&r.ri);
4145		break;
4146
4147	case DIF_SUBR_RW_ISWRITER:
4148		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4149		    mstate, vstate)) {
4150			regs[rd] = 0;
4151			break;
4152		}
4153
4154		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4155		regs[rd] = _RW_ISWRITER(&r.ri);
4156		break;
4157
4158#else
4159	case DIF_SUBR_MUTEX_OWNED:
4160		if (!dtrace_canload(tupregs[0].dttk_value,
4161			sizeof (struct lock_object), mstate, vstate)) {
4162			regs[rd] = 0;
4163			break;
4164		}
4165		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4166		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4167		break;
4168
4169	case DIF_SUBR_MUTEX_OWNER:
4170		if (!dtrace_canload(tupregs[0].dttk_value,
4171			sizeof (struct lock_object), mstate, vstate)) {
4172			regs[rd] = 0;
4173			break;
4174		}
4175		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4176		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4177		regs[rd] = (uintptr_t)lowner;
4178		break;
4179
4180	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4181		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4182		    mstate, vstate)) {
4183			regs[rd] = 0;
4184			break;
4185		}
4186		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4187		/* XXX - should be only LC_SLEEPABLE? */
4188		regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
4189		    (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
4190		break;
4191
4192	case DIF_SUBR_MUTEX_TYPE_SPIN:
4193		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4194		    mstate, vstate)) {
4195			regs[rd] = 0;
4196			break;
4197		}
4198		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4199		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
4200		break;
4201
4202	case DIF_SUBR_RW_READ_HELD:
4203	case DIF_SUBR_SX_SHARED_HELD:
4204		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4205		    mstate, vstate)) {
4206			regs[rd] = 0;
4207			break;
4208		}
4209		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4210		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4211		    lowner == NULL;
4212		break;
4213
4214	case DIF_SUBR_RW_WRITE_HELD:
4215	case DIF_SUBR_SX_EXCLUSIVE_HELD:
4216		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4217		    mstate, vstate)) {
4218			regs[rd] = 0;
4219			break;
4220		}
4221		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4222		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4223		regs[rd] = (lowner == curthread);
4224		break;
4225
4226	case DIF_SUBR_RW_ISWRITER:
4227	case DIF_SUBR_SX_ISEXCLUSIVE:
4228		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4229		    mstate, vstate)) {
4230			regs[rd] = 0;
4231			break;
4232		}
4233		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4234		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4235		    lowner != NULL;
4236		break;
4237#endif /* ! defined(sun) */
4238
4239	case DIF_SUBR_BCOPY: {
4240		/*
4241		 * We need to be sure that the destination is in the scratch
4242		 * region -- no other region is allowed.
4243		 */
4244		uintptr_t src = tupregs[0].dttk_value;
4245		uintptr_t dest = tupregs[1].dttk_value;
4246		size_t size = tupregs[2].dttk_value;
4247
4248		if (!dtrace_inscratch(dest, size, mstate)) {
4249			*flags |= CPU_DTRACE_BADADDR;
4250			*illval = regs[rd];
4251			break;
4252		}
4253
4254		if (!dtrace_canload(src, size, mstate, vstate)) {
4255			regs[rd] = 0;
4256			break;
4257		}
4258
4259		dtrace_bcopy((void *)src, (void *)dest, size);
4260		break;
4261	}
4262
4263	case DIF_SUBR_ALLOCA:
4264	case DIF_SUBR_COPYIN: {
4265		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4266		uint64_t size =
4267		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4268		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4269
4270		/*
4271		 * This action doesn't require any credential checks since
4272		 * probes will not activate in user contexts to which the
4273		 * enabling user does not have permissions.
4274		 */
4275
4276		/*
4277		 * Rounding up the user allocation size could have overflowed
4278		 * a large, bogus allocation (like -1ULL) to 0.
4279		 */
4280		if (scratch_size < size ||
4281		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
4282			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4283			regs[rd] = 0;
4284			break;
4285		}
4286
4287		if (subr == DIF_SUBR_COPYIN) {
4288			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4289			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4290			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4291		}
4292
4293		mstate->dtms_scratch_ptr += scratch_size;
4294		regs[rd] = dest;
4295		break;
4296	}
4297
4298	case DIF_SUBR_COPYINTO: {
4299		uint64_t size = tupregs[1].dttk_value;
4300		uintptr_t dest = tupregs[2].dttk_value;
4301
4302		/*
4303		 * This action doesn't require any credential checks since
4304		 * probes will not activate in user contexts to which the
4305		 * enabling user does not have permissions.
4306		 */
4307		if (!dtrace_inscratch(dest, size, mstate)) {
4308			*flags |= CPU_DTRACE_BADADDR;
4309			*illval = regs[rd];
4310			break;
4311		}
4312
4313		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4314		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4315		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4316		break;
4317	}
4318
4319	case DIF_SUBR_COPYINSTR: {
4320		uintptr_t dest = mstate->dtms_scratch_ptr;
4321		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4322
4323		if (nargs > 1 && tupregs[1].dttk_value < size)
4324			size = tupregs[1].dttk_value + 1;
4325
4326		/*
4327		 * This action doesn't require any credential checks since
4328		 * probes will not activate in user contexts to which the
4329		 * enabling user does not have permissions.
4330		 */
4331		if (!DTRACE_INSCRATCH(mstate, size)) {
4332			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4333			regs[rd] = 0;
4334			break;
4335		}
4336
4337		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4338		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4339		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4340
4341		((char *)dest)[size - 1] = '\0';
4342		mstate->dtms_scratch_ptr += size;
4343		regs[rd] = dest;
4344		break;
4345	}
4346
4347#if defined(sun)
4348	case DIF_SUBR_MSGSIZE:
4349	case DIF_SUBR_MSGDSIZE: {
4350		uintptr_t baddr = tupregs[0].dttk_value, daddr;
4351		uintptr_t wptr, rptr;
4352		size_t count = 0;
4353		int cont = 0;
4354
4355		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
4356
4357			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4358			    vstate)) {
4359				regs[rd] = 0;
4360				break;
4361			}
4362
4363			wptr = dtrace_loadptr(baddr +
4364			    offsetof(mblk_t, b_wptr));
4365
4366			rptr = dtrace_loadptr(baddr +
4367			    offsetof(mblk_t, b_rptr));
4368
4369			if (wptr < rptr) {
4370				*flags |= CPU_DTRACE_BADADDR;
4371				*illval = tupregs[0].dttk_value;
4372				break;
4373			}
4374
4375			daddr = dtrace_loadptr(baddr +
4376			    offsetof(mblk_t, b_datap));
4377
4378			baddr = dtrace_loadptr(baddr +
4379			    offsetof(mblk_t, b_cont));
4380
4381			/*
4382			 * We want to prevent against denial-of-service here,
4383			 * so we're only going to search the list for
4384			 * dtrace_msgdsize_max mblks.
4385			 */
4386			if (cont++ > dtrace_msgdsize_max) {
4387				*flags |= CPU_DTRACE_ILLOP;
4388				break;
4389			}
4390
4391			if (subr == DIF_SUBR_MSGDSIZE) {
4392				if (dtrace_load8(daddr +
4393				    offsetof(dblk_t, db_type)) != M_DATA)
4394					continue;
4395			}
4396
4397			count += wptr - rptr;
4398		}
4399
4400		if (!(*flags & CPU_DTRACE_FAULT))
4401			regs[rd] = count;
4402
4403		break;
4404	}
4405#endif
4406
4407	case DIF_SUBR_PROGENYOF: {
4408		pid_t pid = tupregs[0].dttk_value;
4409		proc_t *p;
4410		int rval = 0;
4411
4412		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4413
4414		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4415#if defined(sun)
4416			if (p->p_pidp->pid_id == pid) {
4417#else
4418			if (p->p_pid == pid) {
4419#endif
4420				rval = 1;
4421				break;
4422			}
4423		}
4424
4425		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4426
4427		regs[rd] = rval;
4428		break;
4429	}
4430
4431	case DIF_SUBR_SPECULATION:
4432		regs[rd] = dtrace_speculation(state);
4433		break;
4434
4435	case DIF_SUBR_COPYOUT: {
4436		uintptr_t kaddr = tupregs[0].dttk_value;
4437		uintptr_t uaddr = tupregs[1].dttk_value;
4438		uint64_t size = tupregs[2].dttk_value;
4439
4440		if (!dtrace_destructive_disallow &&
4441		    dtrace_priv_proc_control(state) &&
4442		    !dtrace_istoxic(kaddr, size)) {
4443			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4444			dtrace_copyout(kaddr, uaddr, size, flags);
4445			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4446		}
4447		break;
4448	}
4449
4450	case DIF_SUBR_COPYOUTSTR: {
4451		uintptr_t kaddr = tupregs[0].dttk_value;
4452		uintptr_t uaddr = tupregs[1].dttk_value;
4453		uint64_t size = tupregs[2].dttk_value;
4454
4455		if (!dtrace_destructive_disallow &&
4456		    dtrace_priv_proc_control(state) &&
4457		    !dtrace_istoxic(kaddr, size)) {
4458			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4459			dtrace_copyoutstr(kaddr, uaddr, size, flags);
4460			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4461		}
4462		break;
4463	}
4464
4465	case DIF_SUBR_STRLEN: {
4466		size_t sz;
4467		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4468		sz = dtrace_strlen((char *)addr,
4469		    state->dts_options[DTRACEOPT_STRSIZE]);
4470
4471		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
4472			regs[rd] = 0;
4473			break;
4474		}
4475
4476		regs[rd] = sz;
4477
4478		break;
4479	}
4480
4481	case DIF_SUBR_STRCHR:
4482	case DIF_SUBR_STRRCHR: {
4483		/*
4484		 * We're going to iterate over the string looking for the
4485		 * specified character.  We will iterate until we have reached
4486		 * the string length or we have found the character.  If this
4487		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4488		 * of the specified character instead of the first.
4489		 */
4490		uintptr_t saddr = tupregs[0].dttk_value;
4491		uintptr_t addr = tupregs[0].dttk_value;
4492		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
4493		char c, target = (char)tupregs[1].dttk_value;
4494
4495		for (regs[rd] = 0; addr < limit; addr++) {
4496			if ((c = dtrace_load8(addr)) == target) {
4497				regs[rd] = addr;
4498
4499				if (subr == DIF_SUBR_STRCHR)
4500					break;
4501			}
4502
4503			if (c == '\0')
4504				break;
4505		}
4506
4507		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
4508			regs[rd] = 0;
4509			break;
4510		}
4511
4512		break;
4513	}
4514
4515	case DIF_SUBR_STRSTR:
4516	case DIF_SUBR_INDEX:
4517	case DIF_SUBR_RINDEX: {
4518		/*
4519		 * We're going to iterate over the string looking for the
4520		 * specified string.  We will iterate until we have reached
4521		 * the string length or we have found the string.  (Yes, this
4522		 * is done in the most naive way possible -- but considering
4523		 * that the string we're searching for is likely to be
4524		 * relatively short, the complexity of Rabin-Karp or similar
4525		 * hardly seems merited.)
4526		 */
4527		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4528		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4529		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4530		size_t len = dtrace_strlen(addr, size);
4531		size_t sublen = dtrace_strlen(substr, size);
4532		char *limit = addr + len, *orig = addr;
4533		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4534		int inc = 1;
4535
4536		regs[rd] = notfound;
4537
4538		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4539			regs[rd] = 0;
4540			break;
4541		}
4542
4543		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4544		    vstate)) {
4545			regs[rd] = 0;
4546			break;
4547		}
4548
4549		/*
4550		 * strstr() and index()/rindex() have similar semantics if
4551		 * both strings are the empty string: strstr() returns a
4552		 * pointer to the (empty) string, and index() and rindex()
4553		 * both return index 0 (regardless of any position argument).
4554		 */
4555		if (sublen == 0 && len == 0) {
4556			if (subr == DIF_SUBR_STRSTR)
4557				regs[rd] = (uintptr_t)addr;
4558			else
4559				regs[rd] = 0;
4560			break;
4561		}
4562
4563		if (subr != DIF_SUBR_STRSTR) {
4564			if (subr == DIF_SUBR_RINDEX) {
4565				limit = orig - 1;
4566				addr += len;
4567				inc = -1;
4568			}
4569
4570			/*
4571			 * Both index() and rindex() take an optional position
4572			 * argument that denotes the starting position.
4573			 */
4574			if (nargs == 3) {
4575				int64_t pos = (int64_t)tupregs[2].dttk_value;
4576
4577				/*
4578				 * If the position argument to index() is
4579				 * negative, Perl implicitly clamps it at
4580				 * zero.  This semantic is a little surprising
4581				 * given the special meaning of negative
4582				 * positions to similar Perl functions like
4583				 * substr(), but it appears to reflect a
4584				 * notion that index() can start from a
4585				 * negative index and increment its way up to
4586				 * the string.  Given this notion, Perl's
4587				 * rindex() is at least self-consistent in
4588				 * that it implicitly clamps positions greater
4589				 * than the string length to be the string
4590				 * length.  Where Perl completely loses
4591				 * coherence, however, is when the specified
4592				 * substring is the empty string ("").  In
4593				 * this case, even if the position is
4594				 * negative, rindex() returns 0 -- and even if
4595				 * the position is greater than the length,
4596				 * index() returns the string length.  These
4597				 * semantics violate the notion that index()
4598				 * should never return a value less than the
4599				 * specified position and that rindex() should
4600				 * never return a value greater than the
4601				 * specified position.  (One assumes that
4602				 * these semantics are artifacts of Perl's
4603				 * implementation and not the results of
4604				 * deliberate design -- it beggars belief that
4605				 * even Larry Wall could desire such oddness.)
4606				 * While in the abstract one would wish for
4607				 * consistent position semantics across
4608				 * substr(), index() and rindex() -- or at the
4609				 * very least self-consistent position
4610				 * semantics for index() and rindex() -- we
4611				 * instead opt to keep with the extant Perl
4612				 * semantics, in all their broken glory.  (Do
4613				 * we have more desire to maintain Perl's
4614				 * semantics than Perl does?  Probably.)
4615				 */
4616				if (subr == DIF_SUBR_RINDEX) {
4617					if (pos < 0) {
4618						if (sublen == 0)
4619							regs[rd] = 0;
4620						break;
4621					}
4622
4623					if (pos > len)
4624						pos = len;
4625				} else {
4626					if (pos < 0)
4627						pos = 0;
4628
4629					if (pos >= len) {
4630						if (sublen == 0)
4631							regs[rd] = len;
4632						break;
4633					}
4634				}
4635
4636				addr = orig + pos;
4637			}
4638		}
4639
4640		for (regs[rd] = notfound; addr != limit; addr += inc) {
4641			if (dtrace_strncmp(addr, substr, sublen) == 0) {
4642				if (subr != DIF_SUBR_STRSTR) {
4643					/*
4644					 * As D index() and rindex() are
4645					 * modeled on Perl (and not on awk),
4646					 * we return a zero-based (and not a
4647					 * one-based) index.  (For you Perl
4648					 * weenies: no, we're not going to add
4649					 * $[ -- and shouldn't you be at a con
4650					 * or something?)
4651					 */
4652					regs[rd] = (uintptr_t)(addr - orig);
4653					break;
4654				}
4655
4656				ASSERT(subr == DIF_SUBR_STRSTR);
4657				regs[rd] = (uintptr_t)addr;
4658				break;
4659			}
4660		}
4661
4662		break;
4663	}
4664
4665	case DIF_SUBR_STRTOK: {
4666		uintptr_t addr = tupregs[0].dttk_value;
4667		uintptr_t tokaddr = tupregs[1].dttk_value;
4668		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4669		uintptr_t limit, toklimit = tokaddr + size;
4670		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
4671		char *dest = (char *)mstate->dtms_scratch_ptr;
4672		int i;
4673
4674		/*
4675		 * Check both the token buffer and (later) the input buffer,
4676		 * since both could be non-scratch addresses.
4677		 */
4678		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
4679			regs[rd] = 0;
4680			break;
4681		}
4682
4683		if (!DTRACE_INSCRATCH(mstate, size)) {
4684			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4685			regs[rd] = 0;
4686			break;
4687		}
4688
4689		if (addr == 0) {
4690			/*
4691			 * If the address specified is NULL, we use our saved
4692			 * strtok pointer from the mstate.  Note that this
4693			 * means that the saved strtok pointer is _only_
4694			 * valid within multiple enablings of the same probe --
4695			 * it behaves like an implicit clause-local variable.
4696			 */
4697			addr = mstate->dtms_strtok;
4698		} else {
4699			/*
4700			 * If the user-specified address is non-NULL we must
4701			 * access check it.  This is the only time we have
4702			 * a chance to do so, since this address may reside
4703			 * in the string table of this clause-- future calls
4704			 * (when we fetch addr from mstate->dtms_strtok)
4705			 * would fail this access check.
4706			 */
4707			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
4708				regs[rd] = 0;
4709				break;
4710			}
4711		}
4712
4713		/*
4714		 * First, zero the token map, and then process the token
4715		 * string -- setting a bit in the map for every character
4716		 * found in the token string.
4717		 */
4718		for (i = 0; i < sizeof (tokmap); i++)
4719			tokmap[i] = 0;
4720
4721		for (; tokaddr < toklimit; tokaddr++) {
4722			if ((c = dtrace_load8(tokaddr)) == '\0')
4723				break;
4724
4725			ASSERT((c >> 3) < sizeof (tokmap));
4726			tokmap[c >> 3] |= (1 << (c & 0x7));
4727		}
4728
4729		for (limit = addr + size; addr < limit; addr++) {
4730			/*
4731			 * We're looking for a character that is _not_ contained
4732			 * in the token string.
4733			 */
4734			if ((c = dtrace_load8(addr)) == '\0')
4735				break;
4736
4737			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4738				break;
4739		}
4740
4741		if (c == '\0') {
4742			/*
4743			 * We reached the end of the string without finding
4744			 * any character that was not in the token string.
4745			 * We return NULL in this case, and we set the saved
4746			 * address to NULL as well.
4747			 */
4748			regs[rd] = 0;
4749			mstate->dtms_strtok = 0;
4750			break;
4751		}
4752
4753		/*
4754		 * From here on, we're copying into the destination string.
4755		 */
4756		for (i = 0; addr < limit && i < size - 1; addr++) {
4757			if ((c = dtrace_load8(addr)) == '\0')
4758				break;
4759
4760			if (tokmap[c >> 3] & (1 << (c & 0x7)))
4761				break;
4762
4763			ASSERT(i < size);
4764			dest[i++] = c;
4765		}
4766
4767		ASSERT(i < size);
4768		dest[i] = '\0';
4769		regs[rd] = (uintptr_t)dest;
4770		mstate->dtms_scratch_ptr += size;
4771		mstate->dtms_strtok = addr;
4772		break;
4773	}
4774
4775	case DIF_SUBR_SUBSTR: {
4776		uintptr_t s = tupregs[0].dttk_value;
4777		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4778		char *d = (char *)mstate->dtms_scratch_ptr;
4779		int64_t index = (int64_t)tupregs[1].dttk_value;
4780		int64_t remaining = (int64_t)tupregs[2].dttk_value;
4781		size_t len = dtrace_strlen((char *)s, size);
4782		int64_t i;
4783
4784		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4785			regs[rd] = 0;
4786			break;
4787		}
4788
4789		if (!DTRACE_INSCRATCH(mstate, size)) {
4790			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4791			regs[rd] = 0;
4792			break;
4793		}
4794
4795		if (nargs <= 2)
4796			remaining = (int64_t)size;
4797
4798		if (index < 0) {
4799			index += len;
4800
4801			if (index < 0 && index + remaining > 0) {
4802				remaining += index;
4803				index = 0;
4804			}
4805		}
4806
4807		if (index >= len || index < 0) {
4808			remaining = 0;
4809		} else if (remaining < 0) {
4810			remaining += len - index;
4811		} else if (index + remaining > size) {
4812			remaining = size - index;
4813		}
4814
4815		for (i = 0; i < remaining; i++) {
4816			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4817				break;
4818		}
4819
4820		d[i] = '\0';
4821
4822		mstate->dtms_scratch_ptr += size;
4823		regs[rd] = (uintptr_t)d;
4824		break;
4825	}
4826
4827	case DIF_SUBR_JSON: {
4828		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4829		uintptr_t json = tupregs[0].dttk_value;
4830		size_t jsonlen = dtrace_strlen((char *)json, size);
4831		uintptr_t elem = tupregs[1].dttk_value;
4832		size_t elemlen = dtrace_strlen((char *)elem, size);
4833
4834		char *dest = (char *)mstate->dtms_scratch_ptr;
4835		char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
4836		char *ee = elemlist;
4837		int nelems = 1;
4838		uintptr_t cur;
4839
4840		if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
4841		    !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
4842			regs[rd] = 0;
4843			break;
4844		}
4845
4846		if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
4847			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4848			regs[rd] = 0;
4849			break;
4850		}
4851
4852		/*
4853		 * Read the element selector and split it up into a packed list
4854		 * of strings.
4855		 */
4856		for (cur = elem; cur < elem + elemlen; cur++) {
4857			char cc = dtrace_load8(cur);
4858
4859			if (cur == elem && cc == '[') {
4860				/*
4861				 * If the first element selector key is
4862				 * actually an array index then ignore the
4863				 * bracket.
4864				 */
4865				continue;
4866			}
4867
4868			if (cc == ']')
4869				continue;
4870
4871			if (cc == '.' || cc == '[') {
4872				nelems++;
4873				cc = '\0';
4874			}
4875
4876			*ee++ = cc;
4877		}
4878		*ee++ = '\0';
4879
4880		if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
4881		    nelems, dest)) != 0)
4882			mstate->dtms_scratch_ptr += jsonlen + 1;
4883		break;
4884	}
4885
4886	case DIF_SUBR_TOUPPER:
4887	case DIF_SUBR_TOLOWER: {
4888		uintptr_t s = tupregs[0].dttk_value;
4889		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4890		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4891		size_t len = dtrace_strlen((char *)s, size);
4892		char lower, upper, convert;
4893		int64_t i;
4894
4895		if (subr == DIF_SUBR_TOUPPER) {
4896			lower = 'a';
4897			upper = 'z';
4898			convert = 'A';
4899		} else {
4900			lower = 'A';
4901			upper = 'Z';
4902			convert = 'a';
4903		}
4904
4905		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4906			regs[rd] = 0;
4907			break;
4908		}
4909
4910		if (!DTRACE_INSCRATCH(mstate, size)) {
4911			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4912			regs[rd] = 0;
4913			break;
4914		}
4915
4916		for (i = 0; i < size - 1; i++) {
4917			if ((c = dtrace_load8(s + i)) == '\0')
4918				break;
4919
4920			if (c >= lower && c <= upper)
4921				c = convert + (c - lower);
4922
4923			dest[i] = c;
4924		}
4925
4926		ASSERT(i < size);
4927		dest[i] = '\0';
4928		regs[rd] = (uintptr_t)dest;
4929		mstate->dtms_scratch_ptr += size;
4930		break;
4931	}
4932
4933#if defined(sun)
4934	case DIF_SUBR_GETMAJOR:
4935#ifdef _LP64
4936		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4937#else
4938		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4939#endif
4940		break;
4941
4942	case DIF_SUBR_GETMINOR:
4943#ifdef _LP64
4944		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4945#else
4946		regs[rd] = tupregs[0].dttk_value & MAXMIN;
4947#endif
4948		break;
4949
4950	case DIF_SUBR_DDI_PATHNAME: {
4951		/*
4952		 * This one is a galactic mess.  We are going to roughly
4953		 * emulate ddi_pathname(), but it's made more complicated
4954		 * by the fact that we (a) want to include the minor name and
4955		 * (b) must proceed iteratively instead of recursively.
4956		 */
4957		uintptr_t dest = mstate->dtms_scratch_ptr;
4958		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4959		char *start = (char *)dest, *end = start + size - 1;
4960		uintptr_t daddr = tupregs[0].dttk_value;
4961		int64_t minor = (int64_t)tupregs[1].dttk_value;
4962		char *s;
4963		int i, len, depth = 0;
4964
4965		/*
4966		 * Due to all the pointer jumping we do and context we must
4967		 * rely upon, we just mandate that the user must have kernel
4968		 * read privileges to use this routine.
4969		 */
4970		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4971			*flags |= CPU_DTRACE_KPRIV;
4972			*illval = daddr;
4973			regs[rd] = 0;
4974		}
4975
4976		if (!DTRACE_INSCRATCH(mstate, size)) {
4977			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4978			regs[rd] = 0;
4979			break;
4980		}
4981
4982		*end = '\0';
4983
4984		/*
4985		 * We want to have a name for the minor.  In order to do this,
4986		 * we need to walk the minor list from the devinfo.  We want
4987		 * to be sure that we don't infinitely walk a circular list,
4988		 * so we check for circularity by sending a scout pointer
4989		 * ahead two elements for every element that we iterate over;
4990		 * if the list is circular, these will ultimately point to the
4991		 * same element.  You may recognize this little trick as the
4992		 * answer to a stupid interview question -- one that always
4993		 * seems to be asked by those who had to have it laboriously
4994		 * explained to them, and who can't even concisely describe
4995		 * the conditions under which one would be forced to resort to
4996		 * this technique.  Needless to say, those conditions are
4997		 * found here -- and probably only here.  Is this the only use
4998		 * of this infamous trick in shipping, production code?  If it
4999		 * isn't, it probably should be...
5000		 */
5001		if (minor != -1) {
5002			uintptr_t maddr = dtrace_loadptr(daddr +
5003			    offsetof(struct dev_info, devi_minor));
5004
5005			uintptr_t next = offsetof(struct ddi_minor_data, next);
5006			uintptr_t name = offsetof(struct ddi_minor_data,
5007			    d_minor) + offsetof(struct ddi_minor, name);
5008			uintptr_t dev = offsetof(struct ddi_minor_data,
5009			    d_minor) + offsetof(struct ddi_minor, dev);
5010			uintptr_t scout;
5011
5012			if (maddr != NULL)
5013				scout = dtrace_loadptr(maddr + next);
5014
5015			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5016				uint64_t m;
5017#ifdef _LP64
5018				m = dtrace_load64(maddr + dev) & MAXMIN64;
5019#else
5020				m = dtrace_load32(maddr + dev) & MAXMIN;
5021#endif
5022				if (m != minor) {
5023					maddr = dtrace_loadptr(maddr + next);
5024
5025					if (scout == NULL)
5026						continue;
5027
5028					scout = dtrace_loadptr(scout + next);
5029
5030					if (scout == NULL)
5031						continue;
5032
5033					scout = dtrace_loadptr(scout + next);
5034
5035					if (scout == NULL)
5036						continue;
5037
5038					if (scout == maddr) {
5039						*flags |= CPU_DTRACE_ILLOP;
5040						break;
5041					}
5042
5043					continue;
5044				}
5045
5046				/*
5047				 * We have the minor data.  Now we need to
5048				 * copy the minor's name into the end of the
5049				 * pathname.
5050				 */
5051				s = (char *)dtrace_loadptr(maddr + name);
5052				len = dtrace_strlen(s, size);
5053
5054				if (*flags & CPU_DTRACE_FAULT)
5055					break;
5056
5057				if (len != 0) {
5058					if ((end -= (len + 1)) < start)
5059						break;
5060
5061					*end = ':';
5062				}
5063
5064				for (i = 1; i <= len; i++)
5065					end[i] = dtrace_load8((uintptr_t)s++);
5066				break;
5067			}
5068		}
5069
5070		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5071			ddi_node_state_t devi_state;
5072
5073			devi_state = dtrace_load32(daddr +
5074			    offsetof(struct dev_info, devi_node_state));
5075
5076			if (*flags & CPU_DTRACE_FAULT)
5077				break;
5078
5079			if (devi_state >= DS_INITIALIZED) {
5080				s = (char *)dtrace_loadptr(daddr +
5081				    offsetof(struct dev_info, devi_addr));
5082				len = dtrace_strlen(s, size);
5083
5084				if (*flags & CPU_DTRACE_FAULT)
5085					break;
5086
5087				if (len != 0) {
5088					if ((end -= (len + 1)) < start)
5089						break;
5090
5091					*end = '@';
5092				}
5093
5094				for (i = 1; i <= len; i++)
5095					end[i] = dtrace_load8((uintptr_t)s++);
5096			}
5097
5098			/*
5099			 * Now for the node name...
5100			 */
5101			s = (char *)dtrace_loadptr(daddr +
5102			    offsetof(struct dev_info, devi_node_name));
5103
5104			daddr = dtrace_loadptr(daddr +
5105			    offsetof(struct dev_info, devi_parent));
5106
5107			/*
5108			 * If our parent is NULL (that is, if we're the root
5109			 * node), we're going to use the special path
5110			 * "devices".
5111			 */
5112			if (daddr == 0)
5113				s = "devices";
5114
5115			len = dtrace_strlen(s, size);
5116			if (*flags & CPU_DTRACE_FAULT)
5117				break;
5118
5119			if ((end -= (len + 1)) < start)
5120				break;
5121
5122			for (i = 1; i <= len; i++)
5123				end[i] = dtrace_load8((uintptr_t)s++);
5124			*end = '/';
5125
5126			if (depth++ > dtrace_devdepth_max) {
5127				*flags |= CPU_DTRACE_ILLOP;
5128				break;
5129			}
5130		}
5131
5132		if (end < start)
5133			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5134
5135		if (daddr == 0) {
5136			regs[rd] = (uintptr_t)end;
5137			mstate->dtms_scratch_ptr += size;
5138		}
5139
5140		break;
5141	}
5142#endif
5143
5144	case DIF_SUBR_STRJOIN: {
5145		char *d = (char *)mstate->dtms_scratch_ptr;
5146		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5147		uintptr_t s1 = tupregs[0].dttk_value;
5148		uintptr_t s2 = tupregs[1].dttk_value;
5149		int i = 0;
5150
5151		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
5152		    !dtrace_strcanload(s2, size, mstate, vstate)) {
5153			regs[rd] = 0;
5154			break;
5155		}
5156
5157		if (!DTRACE_INSCRATCH(mstate, size)) {
5158			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5159			regs[rd] = 0;
5160			break;
5161		}
5162
5163		for (;;) {
5164			if (i >= size) {
5165				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5166				regs[rd] = 0;
5167				break;
5168			}
5169
5170			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
5171				i--;
5172				break;
5173			}
5174		}
5175
5176		for (;;) {
5177			if (i >= size) {
5178				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5179				regs[rd] = 0;
5180				break;
5181			}
5182
5183			if ((d[i++] = dtrace_load8(s2++)) == '\0')
5184				break;
5185		}
5186
5187		if (i < size) {
5188			mstate->dtms_scratch_ptr += i;
5189			regs[rd] = (uintptr_t)d;
5190		}
5191
5192		break;
5193	}
5194
5195	case DIF_SUBR_STRTOLL: {
5196		uintptr_t s = tupregs[0].dttk_value;
5197		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5198		int base = 10;
5199
5200		if (nargs > 1) {
5201			if ((base = tupregs[1].dttk_value) <= 1 ||
5202			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5203				*flags |= CPU_DTRACE_ILLOP;
5204				break;
5205			}
5206		}
5207
5208		if (!dtrace_strcanload(s, size, mstate, vstate)) {
5209			regs[rd] = INT64_MIN;
5210			break;
5211		}
5212
5213		regs[rd] = dtrace_strtoll((char *)s, base, size);
5214		break;
5215	}
5216
5217	case DIF_SUBR_LLTOSTR: {
5218		int64_t i = (int64_t)tupregs[0].dttk_value;
5219		uint64_t val, digit;
5220		uint64_t size = 65;	/* enough room for 2^64 in binary */
5221		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
5222		int base = 10;
5223
5224		if (nargs > 1) {
5225			if ((base = tupregs[1].dttk_value) <= 1 ||
5226			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5227				*flags |= CPU_DTRACE_ILLOP;
5228				break;
5229			}
5230		}
5231
5232		val = (base == 10 && i < 0) ? i * -1 : i;
5233
5234		if (!DTRACE_INSCRATCH(mstate, size)) {
5235			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5236			regs[rd] = 0;
5237			break;
5238		}
5239
5240		for (*end-- = '\0'; val; val /= base) {
5241			if ((digit = val % base) <= '9' - '0') {
5242				*end-- = '0' + digit;
5243			} else {
5244				*end-- = 'a' + (digit - ('9' - '0') - 1);
5245			}
5246		}
5247
5248		if (i == 0 && base == 16)
5249			*end-- = '0';
5250
5251		if (base == 16)
5252			*end-- = 'x';
5253
5254		if (i == 0 || base == 8 || base == 16)
5255			*end-- = '0';
5256
5257		if (i < 0 && base == 10)
5258			*end-- = '-';
5259
5260		regs[rd] = (uintptr_t)end + 1;
5261		mstate->dtms_scratch_ptr += size;
5262		break;
5263	}
5264
5265	case DIF_SUBR_HTONS:
5266	case DIF_SUBR_NTOHS:
5267#if BYTE_ORDER == BIG_ENDIAN
5268		regs[rd] = (uint16_t)tupregs[0].dttk_value;
5269#else
5270		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
5271#endif
5272		break;
5273
5274
5275	case DIF_SUBR_HTONL:
5276	case DIF_SUBR_NTOHL:
5277#if BYTE_ORDER == BIG_ENDIAN
5278		regs[rd] = (uint32_t)tupregs[0].dttk_value;
5279#else
5280		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5281#endif
5282		break;
5283
5284
5285	case DIF_SUBR_HTONLL:
5286	case DIF_SUBR_NTOHLL:
5287#if BYTE_ORDER == BIG_ENDIAN
5288		regs[rd] = (uint64_t)tupregs[0].dttk_value;
5289#else
5290		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5291#endif
5292		break;
5293
5294
5295	case DIF_SUBR_DIRNAME:
5296	case DIF_SUBR_BASENAME: {
5297		char *dest = (char *)mstate->dtms_scratch_ptr;
5298		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5299		uintptr_t src = tupregs[0].dttk_value;
5300		int i, j, len = dtrace_strlen((char *)src, size);
5301		int lastbase = -1, firstbase = -1, lastdir = -1;
5302		int start, end;
5303
5304		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5305			regs[rd] = 0;
5306			break;
5307		}
5308
5309		if (!DTRACE_INSCRATCH(mstate, size)) {
5310			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5311			regs[rd] = 0;
5312			break;
5313		}
5314
5315		/*
5316		 * The basename and dirname for a zero-length string is
5317		 * defined to be "."
5318		 */
5319		if (len == 0) {
5320			len = 1;
5321			src = (uintptr_t)".";
5322		}
5323
5324		/*
5325		 * Start from the back of the string, moving back toward the
5326		 * front until we see a character that isn't a slash.  That
5327		 * character is the last character in the basename.
5328		 */
5329		for (i = len - 1; i >= 0; i--) {
5330			if (dtrace_load8(src + i) != '/')
5331				break;
5332		}
5333
5334		if (i >= 0)
5335			lastbase = i;
5336
5337		/*
5338		 * Starting from the last character in the basename, move
5339		 * towards the front until we find a slash.  The character
5340		 * that we processed immediately before that is the first
5341		 * character in the basename.
5342		 */
5343		for (; i >= 0; i--) {
5344			if (dtrace_load8(src + i) == '/')
5345				break;
5346		}
5347
5348		if (i >= 0)
5349			firstbase = i + 1;
5350
5351		/*
5352		 * Now keep going until we find a non-slash character.  That
5353		 * character is the last character in the dirname.
5354		 */
5355		for (; i >= 0; i--) {
5356			if (dtrace_load8(src + i) != '/')
5357				break;
5358		}
5359
5360		if (i >= 0)
5361			lastdir = i;
5362
5363		ASSERT(!(lastbase == -1 && firstbase != -1));
5364		ASSERT(!(firstbase == -1 && lastdir != -1));
5365
5366		if (lastbase == -1) {
5367			/*
5368			 * We didn't find a non-slash character.  We know that
5369			 * the length is non-zero, so the whole string must be
5370			 * slashes.  In either the dirname or the basename
5371			 * case, we return '/'.
5372			 */
5373			ASSERT(firstbase == -1);
5374			firstbase = lastbase = lastdir = 0;
5375		}
5376
5377		if (firstbase == -1) {
5378			/*
5379			 * The entire string consists only of a basename
5380			 * component.  If we're looking for dirname, we need
5381			 * to change our string to be just "."; if we're
5382			 * looking for a basename, we'll just set the first
5383			 * character of the basename to be 0.
5384			 */
5385			if (subr == DIF_SUBR_DIRNAME) {
5386				ASSERT(lastdir == -1);
5387				src = (uintptr_t)".";
5388				lastdir = 0;
5389			} else {
5390				firstbase = 0;
5391			}
5392		}
5393
5394		if (subr == DIF_SUBR_DIRNAME) {
5395			if (lastdir == -1) {
5396				/*
5397				 * We know that we have a slash in the name --
5398				 * or lastdir would be set to 0, above.  And
5399				 * because lastdir is -1, we know that this
5400				 * slash must be the first character.  (That
5401				 * is, the full string must be of the form
5402				 * "/basename".)  In this case, the last
5403				 * character of the directory name is 0.
5404				 */
5405				lastdir = 0;
5406			}
5407
5408			start = 0;
5409			end = lastdir;
5410		} else {
5411			ASSERT(subr == DIF_SUBR_BASENAME);
5412			ASSERT(firstbase != -1 && lastbase != -1);
5413			start = firstbase;
5414			end = lastbase;
5415		}
5416
5417		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5418			dest[j] = dtrace_load8(src + i);
5419
5420		dest[j] = '\0';
5421		regs[rd] = (uintptr_t)dest;
5422		mstate->dtms_scratch_ptr += size;
5423		break;
5424	}
5425
5426	case DIF_SUBR_GETF: {
5427		uintptr_t fd = tupregs[0].dttk_value;
5428		struct filedesc *fdp;
5429		file_t *fp;
5430
5431		if (!dtrace_priv_proc(state)) {
5432			regs[rd] = 0;
5433			break;
5434		}
5435		fdp = curproc->p_fd;
5436		FILEDESC_SLOCK(fdp);
5437		fp = fget_locked(fdp, fd);
5438		mstate->dtms_getf = fp;
5439		regs[rd] = (uintptr_t)fp;
5440		FILEDESC_SUNLOCK(fdp);
5441		break;
5442	}
5443
5444	case DIF_SUBR_CLEANPATH: {
5445		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5446		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5447		uintptr_t src = tupregs[0].dttk_value;
5448		int i = 0, j = 0;
5449#if defined(sun)
5450		zone_t *z;
5451#endif
5452
5453		if (!dtrace_strcanload(src, size, mstate, vstate)) {
5454			regs[rd] = 0;
5455			break;
5456		}
5457
5458		if (!DTRACE_INSCRATCH(mstate, size)) {
5459			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5460			regs[rd] = 0;
5461			break;
5462		}
5463
5464		/*
5465		 * Move forward, loading each character.
5466		 */
5467		do {
5468			c = dtrace_load8(src + i++);
5469next:
5470			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
5471				break;
5472
5473			if (c != '/') {
5474				dest[j++] = c;
5475				continue;
5476			}
5477
5478			c = dtrace_load8(src + i++);
5479
5480			if (c == '/') {
5481				/*
5482				 * We have two slashes -- we can just advance
5483				 * to the next character.
5484				 */
5485				goto next;
5486			}
5487
5488			if (c != '.') {
5489				/*
5490				 * This is not "." and it's not ".." -- we can
5491				 * just store the "/" and this character and
5492				 * drive on.
5493				 */
5494				dest[j++] = '/';
5495				dest[j++] = c;
5496				continue;
5497			}
5498
5499			c = dtrace_load8(src + i++);
5500
5501			if (c == '/') {
5502				/*
5503				 * This is a "/./" component.  We're not going
5504				 * to store anything in the destination buffer;
5505				 * we're just going to go to the next component.
5506				 */
5507				goto next;
5508			}
5509
5510			if (c != '.') {
5511				/*
5512				 * This is not ".." -- we can just store the
5513				 * "/." and this character and continue
5514				 * processing.
5515				 */
5516				dest[j++] = '/';
5517				dest[j++] = '.';
5518				dest[j++] = c;
5519				continue;
5520			}
5521
5522			c = dtrace_load8(src + i++);
5523
5524			if (c != '/' && c != '\0') {
5525				/*
5526				 * This is not ".." -- it's "..[mumble]".
5527				 * We'll store the "/.." and this character
5528				 * and continue processing.
5529				 */
5530				dest[j++] = '/';
5531				dest[j++] = '.';
5532				dest[j++] = '.';
5533				dest[j++] = c;
5534				continue;
5535			}
5536
5537			/*
5538			 * This is "/../" or "/..\0".  We need to back up
5539			 * our destination pointer until we find a "/".
5540			 */
5541			i--;
5542			while (j != 0 && dest[--j] != '/')
5543				continue;
5544
5545			if (c == '\0')
5546				dest[++j] = '/';
5547		} while (c != '\0');
5548
5549		dest[j] = '\0';
5550
5551#if defined(sun)
5552		if (mstate->dtms_getf != NULL &&
5553		    !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5554		    (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5555			/*
5556			 * If we've done a getf() as a part of this ECB and we
5557			 * don't have kernel access (and we're not in the global
5558			 * zone), check if the path we cleaned up begins with
5559			 * the zone's root path, and trim it off if so.  Note
5560			 * that this is an output cleanliness issue, not a
5561			 * security issue: knowing one's zone root path does
5562			 * not enable privilege escalation.
5563			 */
5564			if (strstr(dest, z->zone_rootpath) == dest)
5565				dest += strlen(z->zone_rootpath) - 1;
5566		}
5567#endif
5568
5569		regs[rd] = (uintptr_t)dest;
5570		mstate->dtms_scratch_ptr += size;
5571		break;
5572	}
5573
5574	case DIF_SUBR_INET_NTOA:
5575	case DIF_SUBR_INET_NTOA6:
5576	case DIF_SUBR_INET_NTOP: {
5577		size_t size;
5578		int af, argi, i;
5579		char *base, *end;
5580
5581		if (subr == DIF_SUBR_INET_NTOP) {
5582			af = (int)tupregs[0].dttk_value;
5583			argi = 1;
5584		} else {
5585			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5586			argi = 0;
5587		}
5588
5589		if (af == AF_INET) {
5590			ipaddr_t ip4;
5591			uint8_t *ptr8, val;
5592
5593			/*
5594			 * Safely load the IPv4 address.
5595			 */
5596			ip4 = dtrace_load32(tupregs[argi].dttk_value);
5597
5598			/*
5599			 * Check an IPv4 string will fit in scratch.
5600			 */
5601			size = INET_ADDRSTRLEN;
5602			if (!DTRACE_INSCRATCH(mstate, size)) {
5603				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5604				regs[rd] = 0;
5605				break;
5606			}
5607			base = (char *)mstate->dtms_scratch_ptr;
5608			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5609
5610			/*
5611			 * Stringify as a dotted decimal quad.
5612			 */
5613			*end-- = '\0';
5614			ptr8 = (uint8_t *)&ip4;
5615			for (i = 3; i >= 0; i--) {
5616				val = ptr8[i];
5617
5618				if (val == 0) {
5619					*end-- = '0';
5620				} else {
5621					for (; val; val /= 10) {
5622						*end-- = '0' + (val % 10);
5623					}
5624				}
5625
5626				if (i > 0)
5627					*end-- = '.';
5628			}
5629			ASSERT(end + 1 >= base);
5630
5631		} else if (af == AF_INET6) {
5632			struct in6_addr ip6;
5633			int firstzero, tryzero, numzero, v6end;
5634			uint16_t val;
5635			const char digits[] = "0123456789abcdef";
5636
5637			/*
5638			 * Stringify using RFC 1884 convention 2 - 16 bit
5639			 * hexadecimal values with a zero-run compression.
5640			 * Lower case hexadecimal digits are used.
5641			 * 	eg, fe80::214:4fff:fe0b:76c8.
5642			 * The IPv4 embedded form is returned for inet_ntop,
5643			 * just the IPv4 string is returned for inet_ntoa6.
5644			 */
5645
5646			/*
5647			 * Safely load the IPv6 address.
5648			 */
5649			dtrace_bcopy(
5650			    (void *)(uintptr_t)tupregs[argi].dttk_value,
5651			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5652
5653			/*
5654			 * Check an IPv6 string will fit in scratch.
5655			 */
5656			size = INET6_ADDRSTRLEN;
5657			if (!DTRACE_INSCRATCH(mstate, size)) {
5658				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5659				regs[rd] = 0;
5660				break;
5661			}
5662			base = (char *)mstate->dtms_scratch_ptr;
5663			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5664			*end-- = '\0';
5665
5666			/*
5667			 * Find the longest run of 16 bit zero values
5668			 * for the single allowed zero compression - "::".
5669			 */
5670			firstzero = -1;
5671			tryzero = -1;
5672			numzero = 1;
5673			for (i = 0; i < sizeof (struct in6_addr); i++) {
5674#if defined(sun)
5675				if (ip6._S6_un._S6_u8[i] == 0 &&
5676#else
5677				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5678#endif
5679				    tryzero == -1 && i % 2 == 0) {
5680					tryzero = i;
5681					continue;
5682				}
5683
5684				if (tryzero != -1 &&
5685#if defined(sun)
5686				    (ip6._S6_un._S6_u8[i] != 0 ||
5687#else
5688				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
5689#endif
5690				    i == sizeof (struct in6_addr) - 1)) {
5691
5692					if (i - tryzero <= numzero) {
5693						tryzero = -1;
5694						continue;
5695					}
5696
5697					firstzero = tryzero;
5698					numzero = i - i % 2 - tryzero;
5699					tryzero = -1;
5700
5701#if defined(sun)
5702					if (ip6._S6_un._S6_u8[i] == 0 &&
5703#else
5704					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5705#endif
5706					    i == sizeof (struct in6_addr) - 1)
5707						numzero += 2;
5708				}
5709			}
5710			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5711
5712			/*
5713			 * Check for an IPv4 embedded address.
5714			 */
5715			v6end = sizeof (struct in6_addr) - 2;
5716			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5717			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
5718				for (i = sizeof (struct in6_addr) - 1;
5719				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
5720					ASSERT(end >= base);
5721
5722#if defined(sun)
5723					val = ip6._S6_un._S6_u8[i];
5724#else
5725					val = ip6.__u6_addr.__u6_addr8[i];
5726#endif
5727
5728					if (val == 0) {
5729						*end-- = '0';
5730					} else {
5731						for (; val; val /= 10) {
5732							*end-- = '0' + val % 10;
5733						}
5734					}
5735
5736					if (i > DTRACE_V4MAPPED_OFFSET)
5737						*end-- = '.';
5738				}
5739
5740				if (subr == DIF_SUBR_INET_NTOA6)
5741					goto inetout;
5742
5743				/*
5744				 * Set v6end to skip the IPv4 address that
5745				 * we have already stringified.
5746				 */
5747				v6end = 10;
5748			}
5749
5750			/*
5751			 * Build the IPv6 string by working through the
5752			 * address in reverse.
5753			 */
5754			for (i = v6end; i >= 0; i -= 2) {
5755				ASSERT(end >= base);
5756
5757				if (i == firstzero + numzero - 2) {
5758					*end-- = ':';
5759					*end-- = ':';
5760					i -= numzero - 2;
5761					continue;
5762				}
5763
5764				if (i < 14 && i != firstzero - 2)
5765					*end-- = ':';
5766
5767#if defined(sun)
5768				val = (ip6._S6_un._S6_u8[i] << 8) +
5769				    ip6._S6_un._S6_u8[i + 1];
5770#else
5771				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
5772				    ip6.__u6_addr.__u6_addr8[i + 1];
5773#endif
5774
5775				if (val == 0) {
5776					*end-- = '0';
5777				} else {
5778					for (; val; val /= 16) {
5779						*end-- = digits[val % 16];
5780					}
5781				}
5782			}
5783			ASSERT(end + 1 >= base);
5784
5785		} else {
5786			/*
5787			 * The user didn't use AH_INET or AH_INET6.
5788			 */
5789			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5790			regs[rd] = 0;
5791			break;
5792		}
5793
5794inetout:	regs[rd] = (uintptr_t)end + 1;
5795		mstate->dtms_scratch_ptr += size;
5796		break;
5797	}
5798
5799	case DIF_SUBR_MEMREF: {
5800		uintptr_t size = 2 * sizeof(uintptr_t);
5801		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
5802		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
5803
5804		/* address and length */
5805		memref[0] = tupregs[0].dttk_value;
5806		memref[1] = tupregs[1].dttk_value;
5807
5808		regs[rd] = (uintptr_t) memref;
5809		mstate->dtms_scratch_ptr += scratch_size;
5810		break;
5811	}
5812
5813#if !defined(sun)
5814	case DIF_SUBR_MEMSTR: {
5815		char *str = (char *)mstate->dtms_scratch_ptr;
5816		uintptr_t mem = tupregs[0].dttk_value;
5817		char c = tupregs[1].dttk_value;
5818		size_t size = tupregs[2].dttk_value;
5819		uint8_t n;
5820		int i;
5821
5822		regs[rd] = 0;
5823
5824		if (size == 0)
5825			break;
5826
5827		if (!dtrace_canload(mem, size - 1, mstate, vstate))
5828			break;
5829
5830		if (!DTRACE_INSCRATCH(mstate, size)) {
5831			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5832			break;
5833		}
5834
5835		if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) {
5836			*flags |= CPU_DTRACE_ILLOP;
5837			break;
5838		}
5839
5840		for (i = 0; i < size - 1; i++) {
5841			n = dtrace_load8(mem++);
5842			str[i] = (n == 0) ? c : n;
5843		}
5844		str[size - 1] = 0;
5845
5846		regs[rd] = (uintptr_t)str;
5847		mstate->dtms_scratch_ptr += size;
5848		break;
5849	}
5850#endif
5851
5852	case DIF_SUBR_TYPEREF: {
5853		uintptr_t size = 4 * sizeof(uintptr_t);
5854		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
5855		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
5856
5857		/* address, num_elements, type_str, type_len */
5858		typeref[0] = tupregs[0].dttk_value;
5859		typeref[1] = tupregs[1].dttk_value;
5860		typeref[2] = tupregs[2].dttk_value;
5861		typeref[3] = tupregs[3].dttk_value;
5862
5863		regs[rd] = (uintptr_t) typeref;
5864		mstate->dtms_scratch_ptr += scratch_size;
5865		break;
5866	}
5867	}
5868}
5869
5870/*
5871 * Emulate the execution of DTrace IR instructions specified by the given
5872 * DIF object.  This function is deliberately void of assertions as all of
5873 * the necessary checks are handled by a call to dtrace_difo_validate().
5874 */
5875static uint64_t
5876dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
5877    dtrace_vstate_t *vstate, dtrace_state_t *state)
5878{
5879	const dif_instr_t *text = difo->dtdo_buf;
5880	const uint_t textlen = difo->dtdo_len;
5881	const char *strtab = difo->dtdo_strtab;
5882	const uint64_t *inttab = difo->dtdo_inttab;
5883
5884	uint64_t rval = 0;
5885	dtrace_statvar_t *svar;
5886	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
5887	dtrace_difv_t *v;
5888	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5889	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
5890
5891	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
5892	uint64_t regs[DIF_DIR_NREGS];
5893	uint64_t *tmp;
5894
5895	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
5896	int64_t cc_r;
5897	uint_t pc = 0, id, opc = 0;
5898	uint8_t ttop = 0;
5899	dif_instr_t instr;
5900	uint_t r1, r2, rd;
5901
5902	/*
5903	 * We stash the current DIF object into the machine state: we need it
5904	 * for subsequent access checking.
5905	 */
5906	mstate->dtms_difo = difo;
5907
5908	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
5909
5910	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
5911		opc = pc;
5912
5913		instr = text[pc++];
5914		r1 = DIF_INSTR_R1(instr);
5915		r2 = DIF_INSTR_R2(instr);
5916		rd = DIF_INSTR_RD(instr);
5917
5918		switch (DIF_INSTR_OP(instr)) {
5919		case DIF_OP_OR:
5920			regs[rd] = regs[r1] | regs[r2];
5921			break;
5922		case DIF_OP_XOR:
5923			regs[rd] = regs[r1] ^ regs[r2];
5924			break;
5925		case DIF_OP_AND:
5926			regs[rd] = regs[r1] & regs[r2];
5927			break;
5928		case DIF_OP_SLL:
5929			regs[rd] = regs[r1] << regs[r2];
5930			break;
5931		case DIF_OP_SRL:
5932			regs[rd] = regs[r1] >> regs[r2];
5933			break;
5934		case DIF_OP_SUB:
5935			regs[rd] = regs[r1] - regs[r2];
5936			break;
5937		case DIF_OP_ADD:
5938			regs[rd] = regs[r1] + regs[r2];
5939			break;
5940		case DIF_OP_MUL:
5941			regs[rd] = regs[r1] * regs[r2];
5942			break;
5943		case DIF_OP_SDIV:
5944			if (regs[r2] == 0) {
5945				regs[rd] = 0;
5946				*flags |= CPU_DTRACE_DIVZERO;
5947			} else {
5948				regs[rd] = (int64_t)regs[r1] /
5949				    (int64_t)regs[r2];
5950			}
5951			break;
5952
5953		case DIF_OP_UDIV:
5954			if (regs[r2] == 0) {
5955				regs[rd] = 0;
5956				*flags |= CPU_DTRACE_DIVZERO;
5957			} else {
5958				regs[rd] = regs[r1] / regs[r2];
5959			}
5960			break;
5961
5962		case DIF_OP_SREM:
5963			if (regs[r2] == 0) {
5964				regs[rd] = 0;
5965				*flags |= CPU_DTRACE_DIVZERO;
5966			} else {
5967				regs[rd] = (int64_t)regs[r1] %
5968				    (int64_t)regs[r2];
5969			}
5970			break;
5971
5972		case DIF_OP_UREM:
5973			if (regs[r2] == 0) {
5974				regs[rd] = 0;
5975				*flags |= CPU_DTRACE_DIVZERO;
5976			} else {
5977				regs[rd] = regs[r1] % regs[r2];
5978			}
5979			break;
5980
5981		case DIF_OP_NOT:
5982			regs[rd] = ~regs[r1];
5983			break;
5984		case DIF_OP_MOV:
5985			regs[rd] = regs[r1];
5986			break;
5987		case DIF_OP_CMP:
5988			cc_r = regs[r1] - regs[r2];
5989			cc_n = cc_r < 0;
5990			cc_z = cc_r == 0;
5991			cc_v = 0;
5992			cc_c = regs[r1] < regs[r2];
5993			break;
5994		case DIF_OP_TST:
5995			cc_n = cc_v = cc_c = 0;
5996			cc_z = regs[r1] == 0;
5997			break;
5998		case DIF_OP_BA:
5999			pc = DIF_INSTR_LABEL(instr);
6000			break;
6001		case DIF_OP_BE:
6002			if (cc_z)
6003				pc = DIF_INSTR_LABEL(instr);
6004			break;
6005		case DIF_OP_BNE:
6006			if (cc_z == 0)
6007				pc = DIF_INSTR_LABEL(instr);
6008			break;
6009		case DIF_OP_BG:
6010			if ((cc_z | (cc_n ^ cc_v)) == 0)
6011				pc = DIF_INSTR_LABEL(instr);
6012			break;
6013		case DIF_OP_BGU:
6014			if ((cc_c | cc_z) == 0)
6015				pc = DIF_INSTR_LABEL(instr);
6016			break;
6017		case DIF_OP_BGE:
6018			if ((cc_n ^ cc_v) == 0)
6019				pc = DIF_INSTR_LABEL(instr);
6020			break;
6021		case DIF_OP_BGEU:
6022			if (cc_c == 0)
6023				pc = DIF_INSTR_LABEL(instr);
6024			break;
6025		case DIF_OP_BL:
6026			if (cc_n ^ cc_v)
6027				pc = DIF_INSTR_LABEL(instr);
6028			break;
6029		case DIF_OP_BLU:
6030			if (cc_c)
6031				pc = DIF_INSTR_LABEL(instr);
6032			break;
6033		case DIF_OP_BLE:
6034			if (cc_z | (cc_n ^ cc_v))
6035				pc = DIF_INSTR_LABEL(instr);
6036			break;
6037		case DIF_OP_BLEU:
6038			if (cc_c | cc_z)
6039				pc = DIF_INSTR_LABEL(instr);
6040			break;
6041		case DIF_OP_RLDSB:
6042			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6043				break;
6044			/*FALLTHROUGH*/
6045		case DIF_OP_LDSB:
6046			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
6047			break;
6048		case DIF_OP_RLDSH:
6049			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6050				break;
6051			/*FALLTHROUGH*/
6052		case DIF_OP_LDSH:
6053			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
6054			break;
6055		case DIF_OP_RLDSW:
6056			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6057				break;
6058			/*FALLTHROUGH*/
6059		case DIF_OP_LDSW:
6060			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
6061			break;
6062		case DIF_OP_RLDUB:
6063			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6064				break;
6065			/*FALLTHROUGH*/
6066		case DIF_OP_LDUB:
6067			regs[rd] = dtrace_load8(regs[r1]);
6068			break;
6069		case DIF_OP_RLDUH:
6070			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6071				break;
6072			/*FALLTHROUGH*/
6073		case DIF_OP_LDUH:
6074			regs[rd] = dtrace_load16(regs[r1]);
6075			break;
6076		case DIF_OP_RLDUW:
6077			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6078				break;
6079			/*FALLTHROUGH*/
6080		case DIF_OP_LDUW:
6081			regs[rd] = dtrace_load32(regs[r1]);
6082			break;
6083		case DIF_OP_RLDX:
6084			if (!dtrace_canload(regs[r1], 8, mstate, vstate))
6085				break;
6086			/*FALLTHROUGH*/
6087		case DIF_OP_LDX:
6088			regs[rd] = dtrace_load64(regs[r1]);
6089			break;
6090		case DIF_OP_ULDSB:
6091			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6092			regs[rd] = (int8_t)
6093			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6094			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6095			break;
6096		case DIF_OP_ULDSH:
6097			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6098			regs[rd] = (int16_t)
6099			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6100			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6101			break;
6102		case DIF_OP_ULDSW:
6103			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6104			regs[rd] = (int32_t)
6105			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6106			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6107			break;
6108		case DIF_OP_ULDUB:
6109			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6110			regs[rd] =
6111			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6112			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6113			break;
6114		case DIF_OP_ULDUH:
6115			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6116			regs[rd] =
6117			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6118			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6119			break;
6120		case DIF_OP_ULDUW:
6121			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6122			regs[rd] =
6123			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6124			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6125			break;
6126		case DIF_OP_ULDX:
6127			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6128			regs[rd] =
6129			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
6130			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6131			break;
6132		case DIF_OP_RET:
6133			rval = regs[rd];
6134			pc = textlen;
6135			break;
6136		case DIF_OP_NOP:
6137			break;
6138		case DIF_OP_SETX:
6139			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
6140			break;
6141		case DIF_OP_SETS:
6142			regs[rd] = (uint64_t)(uintptr_t)
6143			    (strtab + DIF_INSTR_STRING(instr));
6144			break;
6145		case DIF_OP_SCMP: {
6146			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
6147			uintptr_t s1 = regs[r1];
6148			uintptr_t s2 = regs[r2];
6149
6150			if (s1 != 0 &&
6151			    !dtrace_strcanload(s1, sz, mstate, vstate))
6152				break;
6153			if (s2 != 0 &&
6154			    !dtrace_strcanload(s2, sz, mstate, vstate))
6155				break;
6156
6157			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
6158
6159			cc_n = cc_r < 0;
6160			cc_z = cc_r == 0;
6161			cc_v = cc_c = 0;
6162			break;
6163		}
6164		case DIF_OP_LDGA:
6165			regs[rd] = dtrace_dif_variable(mstate, state,
6166			    r1, regs[r2]);
6167			break;
6168		case DIF_OP_LDGS:
6169			id = DIF_INSTR_VAR(instr);
6170
6171			if (id >= DIF_VAR_OTHER_UBASE) {
6172				uintptr_t a;
6173
6174				id -= DIF_VAR_OTHER_UBASE;
6175				svar = vstate->dtvs_globals[id];
6176				ASSERT(svar != NULL);
6177				v = &svar->dtsv_var;
6178
6179				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
6180					regs[rd] = svar->dtsv_data;
6181					break;
6182				}
6183
6184				a = (uintptr_t)svar->dtsv_data;
6185
6186				if (*(uint8_t *)a == UINT8_MAX) {
6187					/*
6188					 * If the 0th byte is set to UINT8_MAX
6189					 * then this is to be treated as a
6190					 * reference to a NULL variable.
6191					 */
6192					regs[rd] = 0;
6193				} else {
6194					regs[rd] = a + sizeof (uint64_t);
6195				}
6196
6197				break;
6198			}
6199
6200			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
6201			break;
6202
6203		case DIF_OP_STGS:
6204			id = DIF_INSTR_VAR(instr);
6205
6206			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6207			id -= DIF_VAR_OTHER_UBASE;
6208
6209			svar = vstate->dtvs_globals[id];
6210			ASSERT(svar != NULL);
6211			v = &svar->dtsv_var;
6212
6213			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6214				uintptr_t a = (uintptr_t)svar->dtsv_data;
6215
6216				ASSERT(a != 0);
6217				ASSERT(svar->dtsv_size != 0);
6218
6219				if (regs[rd] == 0) {
6220					*(uint8_t *)a = UINT8_MAX;
6221					break;
6222				} else {
6223					*(uint8_t *)a = 0;
6224					a += sizeof (uint64_t);
6225				}
6226				if (!dtrace_vcanload(
6227				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6228				    mstate, vstate))
6229					break;
6230
6231				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6232				    (void *)a, &v->dtdv_type);
6233				break;
6234			}
6235
6236			svar->dtsv_data = regs[rd];
6237			break;
6238
6239		case DIF_OP_LDTA:
6240			/*
6241			 * There are no DTrace built-in thread-local arrays at
6242			 * present.  This opcode is saved for future work.
6243			 */
6244			*flags |= CPU_DTRACE_ILLOP;
6245			regs[rd] = 0;
6246			break;
6247
6248		case DIF_OP_LDLS:
6249			id = DIF_INSTR_VAR(instr);
6250
6251			if (id < DIF_VAR_OTHER_UBASE) {
6252				/*
6253				 * For now, this has no meaning.
6254				 */
6255				regs[rd] = 0;
6256				break;
6257			}
6258
6259			id -= DIF_VAR_OTHER_UBASE;
6260
6261			ASSERT(id < vstate->dtvs_nlocals);
6262			ASSERT(vstate->dtvs_locals != NULL);
6263
6264			svar = vstate->dtvs_locals[id];
6265			ASSERT(svar != NULL);
6266			v = &svar->dtsv_var;
6267
6268			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6269				uintptr_t a = (uintptr_t)svar->dtsv_data;
6270				size_t sz = v->dtdv_type.dtdt_size;
6271
6272				sz += sizeof (uint64_t);
6273				ASSERT(svar->dtsv_size == NCPU * sz);
6274				a += curcpu * sz;
6275
6276				if (*(uint8_t *)a == UINT8_MAX) {
6277					/*
6278					 * If the 0th byte is set to UINT8_MAX
6279					 * then this is to be treated as a
6280					 * reference to a NULL variable.
6281					 */
6282					regs[rd] = 0;
6283				} else {
6284					regs[rd] = a + sizeof (uint64_t);
6285				}
6286
6287				break;
6288			}
6289
6290			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6291			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6292			regs[rd] = tmp[curcpu];
6293			break;
6294
6295		case DIF_OP_STLS:
6296			id = DIF_INSTR_VAR(instr);
6297
6298			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6299			id -= DIF_VAR_OTHER_UBASE;
6300			ASSERT(id < vstate->dtvs_nlocals);
6301
6302			ASSERT(vstate->dtvs_locals != NULL);
6303			svar = vstate->dtvs_locals[id];
6304			ASSERT(svar != NULL);
6305			v = &svar->dtsv_var;
6306
6307			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6308				uintptr_t a = (uintptr_t)svar->dtsv_data;
6309				size_t sz = v->dtdv_type.dtdt_size;
6310
6311				sz += sizeof (uint64_t);
6312				ASSERT(svar->dtsv_size == NCPU * sz);
6313				a += curcpu * sz;
6314
6315				if (regs[rd] == 0) {
6316					*(uint8_t *)a = UINT8_MAX;
6317					break;
6318				} else {
6319					*(uint8_t *)a = 0;
6320					a += sizeof (uint64_t);
6321				}
6322
6323				if (!dtrace_vcanload(
6324				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6325				    mstate, vstate))
6326					break;
6327
6328				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6329				    (void *)a, &v->dtdv_type);
6330				break;
6331			}
6332
6333			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6334			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6335			tmp[curcpu] = regs[rd];
6336			break;
6337
6338		case DIF_OP_LDTS: {
6339			dtrace_dynvar_t *dvar;
6340			dtrace_key_t *key;
6341
6342			id = DIF_INSTR_VAR(instr);
6343			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6344			id -= DIF_VAR_OTHER_UBASE;
6345			v = &vstate->dtvs_tlocals[id];
6346
6347			key = &tupregs[DIF_DTR_NREGS];
6348			key[0].dttk_value = (uint64_t)id;
6349			key[0].dttk_size = 0;
6350			DTRACE_TLS_THRKEY(key[1].dttk_value);
6351			key[1].dttk_size = 0;
6352
6353			dvar = dtrace_dynvar(dstate, 2, key,
6354			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6355			    mstate, vstate);
6356
6357			if (dvar == NULL) {
6358				regs[rd] = 0;
6359				break;
6360			}
6361
6362			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6363				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6364			} else {
6365				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6366			}
6367
6368			break;
6369		}
6370
6371		case DIF_OP_STTS: {
6372			dtrace_dynvar_t *dvar;
6373			dtrace_key_t *key;
6374
6375			id = DIF_INSTR_VAR(instr);
6376			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6377			id -= DIF_VAR_OTHER_UBASE;
6378
6379			key = &tupregs[DIF_DTR_NREGS];
6380			key[0].dttk_value = (uint64_t)id;
6381			key[0].dttk_size = 0;
6382			DTRACE_TLS_THRKEY(key[1].dttk_value);
6383			key[1].dttk_size = 0;
6384			v = &vstate->dtvs_tlocals[id];
6385
6386			dvar = dtrace_dynvar(dstate, 2, key,
6387			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6388			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6389			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6390			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6391
6392			/*
6393			 * Given that we're storing to thread-local data,
6394			 * we need to flush our predicate cache.
6395			 */
6396			curthread->t_predcache = 0;
6397
6398			if (dvar == NULL)
6399				break;
6400
6401			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6402				if (!dtrace_vcanload(
6403				    (void *)(uintptr_t)regs[rd],
6404				    &v->dtdv_type, mstate, vstate))
6405					break;
6406
6407				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6408				    dvar->dtdv_data, &v->dtdv_type);
6409			} else {
6410				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6411			}
6412
6413			break;
6414		}
6415
6416		case DIF_OP_SRA:
6417			regs[rd] = (int64_t)regs[r1] >> regs[r2];
6418			break;
6419
6420		case DIF_OP_CALL:
6421			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6422			    regs, tupregs, ttop, mstate, state);
6423			break;
6424
6425		case DIF_OP_PUSHTR:
6426			if (ttop == DIF_DTR_NREGS) {
6427				*flags |= CPU_DTRACE_TUPOFLOW;
6428				break;
6429			}
6430
6431			if (r1 == DIF_TYPE_STRING) {
6432				/*
6433				 * If this is a string type and the size is 0,
6434				 * we'll use the system-wide default string
6435				 * size.  Note that we are _not_ looking at
6436				 * the value of the DTRACEOPT_STRSIZE option;
6437				 * had this been set, we would expect to have
6438				 * a non-zero size value in the "pushtr".
6439				 */
6440				tupregs[ttop].dttk_size =
6441				    dtrace_strlen((char *)(uintptr_t)regs[rd],
6442				    regs[r2] ? regs[r2] :
6443				    dtrace_strsize_default) + 1;
6444			} else {
6445				tupregs[ttop].dttk_size = regs[r2];
6446			}
6447
6448			tupregs[ttop++].dttk_value = regs[rd];
6449			break;
6450
6451		case DIF_OP_PUSHTV:
6452			if (ttop == DIF_DTR_NREGS) {
6453				*flags |= CPU_DTRACE_TUPOFLOW;
6454				break;
6455			}
6456
6457			tupregs[ttop].dttk_value = regs[rd];
6458			tupregs[ttop++].dttk_size = 0;
6459			break;
6460
6461		case DIF_OP_POPTS:
6462			if (ttop != 0)
6463				ttop--;
6464			break;
6465
6466		case DIF_OP_FLUSHTS:
6467			ttop = 0;
6468			break;
6469
6470		case DIF_OP_LDGAA:
6471		case DIF_OP_LDTAA: {
6472			dtrace_dynvar_t *dvar;
6473			dtrace_key_t *key = tupregs;
6474			uint_t nkeys = ttop;
6475
6476			id = DIF_INSTR_VAR(instr);
6477			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6478			id -= DIF_VAR_OTHER_UBASE;
6479
6480			key[nkeys].dttk_value = (uint64_t)id;
6481			key[nkeys++].dttk_size = 0;
6482
6483			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6484				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6485				key[nkeys++].dttk_size = 0;
6486				v = &vstate->dtvs_tlocals[id];
6487			} else {
6488				v = &vstate->dtvs_globals[id]->dtsv_var;
6489			}
6490
6491			dvar = dtrace_dynvar(dstate, nkeys, key,
6492			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6493			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6494			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6495
6496			if (dvar == NULL) {
6497				regs[rd] = 0;
6498				break;
6499			}
6500
6501			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6502				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6503			} else {
6504				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6505			}
6506
6507			break;
6508		}
6509
6510		case DIF_OP_STGAA:
6511		case DIF_OP_STTAA: {
6512			dtrace_dynvar_t *dvar;
6513			dtrace_key_t *key = tupregs;
6514			uint_t nkeys = ttop;
6515
6516			id = DIF_INSTR_VAR(instr);
6517			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6518			id -= DIF_VAR_OTHER_UBASE;
6519
6520			key[nkeys].dttk_value = (uint64_t)id;
6521			key[nkeys++].dttk_size = 0;
6522
6523			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6524				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6525				key[nkeys++].dttk_size = 0;
6526				v = &vstate->dtvs_tlocals[id];
6527			} else {
6528				v = &vstate->dtvs_globals[id]->dtsv_var;
6529			}
6530
6531			dvar = dtrace_dynvar(dstate, nkeys, key,
6532			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6533			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6534			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6535			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6536
6537			if (dvar == NULL)
6538				break;
6539
6540			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6541				if (!dtrace_vcanload(
6542				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6543				    mstate, vstate))
6544					break;
6545
6546				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6547				    dvar->dtdv_data, &v->dtdv_type);
6548			} else {
6549				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6550			}
6551
6552			break;
6553		}
6554
6555		case DIF_OP_ALLOCS: {
6556			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6557			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6558
6559			/*
6560			 * Rounding up the user allocation size could have
6561			 * overflowed large, bogus allocations (like -1ULL) to
6562			 * 0.
6563			 */
6564			if (size < regs[r1] ||
6565			    !DTRACE_INSCRATCH(mstate, size)) {
6566				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6567				regs[rd] = 0;
6568				break;
6569			}
6570
6571			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6572			mstate->dtms_scratch_ptr += size;
6573			regs[rd] = ptr;
6574			break;
6575		}
6576
6577		case DIF_OP_COPYS:
6578			if (!dtrace_canstore(regs[rd], regs[r2],
6579			    mstate, vstate)) {
6580				*flags |= CPU_DTRACE_BADADDR;
6581				*illval = regs[rd];
6582				break;
6583			}
6584
6585			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6586				break;
6587
6588			dtrace_bcopy((void *)(uintptr_t)regs[r1],
6589			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6590			break;
6591
6592		case DIF_OP_STB:
6593			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6594				*flags |= CPU_DTRACE_BADADDR;
6595				*illval = regs[rd];
6596				break;
6597			}
6598			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6599			break;
6600
6601		case DIF_OP_STH:
6602			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6603				*flags |= CPU_DTRACE_BADADDR;
6604				*illval = regs[rd];
6605				break;
6606			}
6607			if (regs[rd] & 1) {
6608				*flags |= CPU_DTRACE_BADALIGN;
6609				*illval = regs[rd];
6610				break;
6611			}
6612			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6613			break;
6614
6615		case DIF_OP_STW:
6616			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6617				*flags |= CPU_DTRACE_BADADDR;
6618				*illval = regs[rd];
6619				break;
6620			}
6621			if (regs[rd] & 3) {
6622				*flags |= CPU_DTRACE_BADALIGN;
6623				*illval = regs[rd];
6624				break;
6625			}
6626			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6627			break;
6628
6629		case DIF_OP_STX:
6630			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6631				*flags |= CPU_DTRACE_BADADDR;
6632				*illval = regs[rd];
6633				break;
6634			}
6635			if (regs[rd] & 7) {
6636				*flags |= CPU_DTRACE_BADALIGN;
6637				*illval = regs[rd];
6638				break;
6639			}
6640			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6641			break;
6642		}
6643	}
6644
6645	if (!(*flags & CPU_DTRACE_FAULT))
6646		return (rval);
6647
6648	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6649	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6650
6651	return (0);
6652}
6653
6654static void
6655dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6656{
6657	dtrace_probe_t *probe = ecb->dte_probe;
6658	dtrace_provider_t *prov = probe->dtpr_provider;
6659	char c[DTRACE_FULLNAMELEN + 80], *str;
6660	char *msg = "dtrace: breakpoint action at probe ";
6661	char *ecbmsg = " (ecb ";
6662	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6663	uintptr_t val = (uintptr_t)ecb;
6664	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6665
6666	if (dtrace_destructive_disallow)
6667		return;
6668
6669	/*
6670	 * It's impossible to be taking action on the NULL probe.
6671	 */
6672	ASSERT(probe != NULL);
6673
6674	/*
6675	 * This is a poor man's (destitute man's?) sprintf():  we want to
6676	 * print the provider name, module name, function name and name of
6677	 * the probe, along with the hex address of the ECB with the breakpoint
6678	 * action -- all of which we must place in the character buffer by
6679	 * hand.
6680	 */
6681	while (*msg != '\0')
6682		c[i++] = *msg++;
6683
6684	for (str = prov->dtpv_name; *str != '\0'; str++)
6685		c[i++] = *str;
6686	c[i++] = ':';
6687
6688	for (str = probe->dtpr_mod; *str != '\0'; str++)
6689		c[i++] = *str;
6690	c[i++] = ':';
6691
6692	for (str = probe->dtpr_func; *str != '\0'; str++)
6693		c[i++] = *str;
6694	c[i++] = ':';
6695
6696	for (str = probe->dtpr_name; *str != '\0'; str++)
6697		c[i++] = *str;
6698
6699	while (*ecbmsg != '\0')
6700		c[i++] = *ecbmsg++;
6701
6702	while (shift >= 0) {
6703		mask = (uintptr_t)0xf << shift;
6704
6705		if (val >= ((uintptr_t)1 << shift))
6706			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6707		shift -= 4;
6708	}
6709
6710	c[i++] = ')';
6711	c[i] = '\0';
6712
6713#if defined(sun)
6714	debug_enter(c);
6715#else
6716	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
6717#endif
6718}
6719
6720static void
6721dtrace_action_panic(dtrace_ecb_t *ecb)
6722{
6723	dtrace_probe_t *probe = ecb->dte_probe;
6724
6725	/*
6726	 * It's impossible to be taking action on the NULL probe.
6727	 */
6728	ASSERT(probe != NULL);
6729
6730	if (dtrace_destructive_disallow)
6731		return;
6732
6733	if (dtrace_panicked != NULL)
6734		return;
6735
6736	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6737		return;
6738
6739	/*
6740	 * We won the right to panic.  (We want to be sure that only one
6741	 * thread calls panic() from dtrace_probe(), and that panic() is
6742	 * called exactly once.)
6743	 */
6744	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6745	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6746	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6747}
6748
6749static void
6750dtrace_action_raise(uint64_t sig)
6751{
6752	if (dtrace_destructive_disallow)
6753		return;
6754
6755	if (sig >= NSIG) {
6756		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6757		return;
6758	}
6759
6760#if defined(sun)
6761	/*
6762	 * raise() has a queue depth of 1 -- we ignore all subsequent
6763	 * invocations of the raise() action.
6764	 */
6765	if (curthread->t_dtrace_sig == 0)
6766		curthread->t_dtrace_sig = (uint8_t)sig;
6767
6768	curthread->t_sig_check = 1;
6769	aston(curthread);
6770#else
6771	struct proc *p = curproc;
6772	PROC_LOCK(p);
6773	kern_psignal(p, sig);
6774	PROC_UNLOCK(p);
6775#endif
6776}
6777
6778static void
6779dtrace_action_stop(void)
6780{
6781	if (dtrace_destructive_disallow)
6782		return;
6783
6784#if defined(sun)
6785	if (!curthread->t_dtrace_stop) {
6786		curthread->t_dtrace_stop = 1;
6787		curthread->t_sig_check = 1;
6788		aston(curthread);
6789	}
6790#else
6791	struct proc *p = curproc;
6792	PROC_LOCK(p);
6793	kern_psignal(p, SIGSTOP);
6794	PROC_UNLOCK(p);
6795#endif
6796}
6797
6798static void
6799dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
6800{
6801	hrtime_t now;
6802	volatile uint16_t *flags;
6803#if defined(sun)
6804	cpu_t *cpu = CPU;
6805#else
6806	cpu_t *cpu = &solaris_cpu[curcpu];
6807#endif
6808
6809	if (dtrace_destructive_disallow)
6810		return;
6811
6812	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
6813
6814	now = dtrace_gethrtime();
6815
6816	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
6817		/*
6818		 * We need to advance the mark to the current time.
6819		 */
6820		cpu->cpu_dtrace_chillmark = now;
6821		cpu->cpu_dtrace_chilled = 0;
6822	}
6823
6824	/*
6825	 * Now check to see if the requested chill time would take us over
6826	 * the maximum amount of time allowed in the chill interval.  (Or
6827	 * worse, if the calculation itself induces overflow.)
6828	 */
6829	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
6830	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
6831		*flags |= CPU_DTRACE_ILLOP;
6832		return;
6833	}
6834
6835	while (dtrace_gethrtime() - now < val)
6836		continue;
6837
6838	/*
6839	 * Normally, we assure that the value of the variable "timestamp" does
6840	 * not change within an ECB.  The presence of chill() represents an
6841	 * exception to this rule, however.
6842	 */
6843	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
6844	cpu->cpu_dtrace_chilled += val;
6845}
6846
6847static void
6848dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
6849    uint64_t *buf, uint64_t arg)
6850{
6851	int nframes = DTRACE_USTACK_NFRAMES(arg);
6852	int strsize = DTRACE_USTACK_STRSIZE(arg);
6853	uint64_t *pcs = &buf[1], *fps;
6854	char *str = (char *)&pcs[nframes];
6855	int size, offs = 0, i, j;
6856	uintptr_t old = mstate->dtms_scratch_ptr, saved;
6857	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
6858	char *sym;
6859
6860	/*
6861	 * Should be taking a faster path if string space has not been
6862	 * allocated.
6863	 */
6864	ASSERT(strsize != 0);
6865
6866	/*
6867	 * We will first allocate some temporary space for the frame pointers.
6868	 */
6869	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6870	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
6871	    (nframes * sizeof (uint64_t));
6872
6873	if (!DTRACE_INSCRATCH(mstate, size)) {
6874		/*
6875		 * Not enough room for our frame pointers -- need to indicate
6876		 * that we ran out of scratch space.
6877		 */
6878		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6879		return;
6880	}
6881
6882	mstate->dtms_scratch_ptr += size;
6883	saved = mstate->dtms_scratch_ptr;
6884
6885	/*
6886	 * Now get a stack with both program counters and frame pointers.
6887	 */
6888	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6889	dtrace_getufpstack(buf, fps, nframes + 1);
6890	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6891
6892	/*
6893	 * If that faulted, we're cooked.
6894	 */
6895	if (*flags & CPU_DTRACE_FAULT)
6896		goto out;
6897
6898	/*
6899	 * Now we want to walk up the stack, calling the USTACK helper.  For
6900	 * each iteration, we restore the scratch pointer.
6901	 */
6902	for (i = 0; i < nframes; i++) {
6903		mstate->dtms_scratch_ptr = saved;
6904
6905		if (offs >= strsize)
6906			break;
6907
6908		sym = (char *)(uintptr_t)dtrace_helper(
6909		    DTRACE_HELPER_ACTION_USTACK,
6910		    mstate, state, pcs[i], fps[i]);
6911
6912		/*
6913		 * If we faulted while running the helper, we're going to
6914		 * clear the fault and null out the corresponding string.
6915		 */
6916		if (*flags & CPU_DTRACE_FAULT) {
6917			*flags &= ~CPU_DTRACE_FAULT;
6918			str[offs++] = '\0';
6919			continue;
6920		}
6921
6922		if (sym == NULL) {
6923			str[offs++] = '\0';
6924			continue;
6925		}
6926
6927		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6928
6929		/*
6930		 * Now copy in the string that the helper returned to us.
6931		 */
6932		for (j = 0; offs + j < strsize; j++) {
6933			if ((str[offs + j] = sym[j]) == '\0')
6934				break;
6935		}
6936
6937		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6938
6939		offs += j + 1;
6940	}
6941
6942	if (offs >= strsize) {
6943		/*
6944		 * If we didn't have room for all of the strings, we don't
6945		 * abort processing -- this needn't be a fatal error -- but we
6946		 * still want to increment a counter (dts_stkstroverflows) to
6947		 * allow this condition to be warned about.  (If this is from
6948		 * a jstack() action, it is easily tuned via jstackstrsize.)
6949		 */
6950		dtrace_error(&state->dts_stkstroverflows);
6951	}
6952
6953	while (offs < strsize)
6954		str[offs++] = '\0';
6955
6956out:
6957	mstate->dtms_scratch_ptr = old;
6958}
6959
6960static void
6961dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
6962    size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
6963{
6964	volatile uint16_t *flags;
6965	uint64_t val = *valp;
6966	size_t valoffs = *valoffsp;
6967
6968	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
6969	ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
6970
6971	/*
6972	 * If this is a string, we're going to only load until we find the zero
6973	 * byte -- after which we'll store zero bytes.
6974	 */
6975	if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
6976		char c = '\0' + 1;
6977		size_t s;
6978
6979		for (s = 0; s < size; s++) {
6980			if (c != '\0' && dtkind == DIF_TF_BYREF) {
6981				c = dtrace_load8(val++);
6982			} else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
6983				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6984				c = dtrace_fuword8((void *)(uintptr_t)val++);
6985				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6986				if (*flags & CPU_DTRACE_FAULT)
6987					break;
6988			}
6989
6990			DTRACE_STORE(uint8_t, tomax, valoffs++, c);
6991
6992			if (c == '\0' && intuple)
6993				break;
6994		}
6995	} else {
6996		uint8_t c;
6997		while (valoffs < end) {
6998			if (dtkind == DIF_TF_BYREF) {
6999				c = dtrace_load8(val++);
7000			} else if (dtkind == DIF_TF_BYUREF) {
7001				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7002				c = dtrace_fuword8((void *)(uintptr_t)val++);
7003				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7004				if (*flags & CPU_DTRACE_FAULT)
7005					break;
7006			}
7007
7008			DTRACE_STORE(uint8_t, tomax,
7009			    valoffs++, c);
7010		}
7011	}
7012
7013	*valp = val;
7014	*valoffsp = valoffs;
7015}
7016
7017/*
7018 * If you're looking for the epicenter of DTrace, you just found it.  This
7019 * is the function called by the provider to fire a probe -- from which all
7020 * subsequent probe-context DTrace activity emanates.
7021 */
7022void
7023dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
7024    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
7025{
7026	processorid_t cpuid;
7027	dtrace_icookie_t cookie;
7028	dtrace_probe_t *probe;
7029	dtrace_mstate_t mstate;
7030	dtrace_ecb_t *ecb;
7031	dtrace_action_t *act;
7032	intptr_t offs;
7033	size_t size;
7034	int vtime, onintr;
7035	volatile uint16_t *flags;
7036	hrtime_t now;
7037
7038	if (panicstr != NULL)
7039		return;
7040
7041#if defined(sun)
7042	/*
7043	 * Kick out immediately if this CPU is still being born (in which case
7044	 * curthread will be set to -1) or the current thread can't allow
7045	 * probes in its current context.
7046	 */
7047	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
7048		return;
7049#endif
7050
7051	cookie = dtrace_interrupt_disable();
7052	probe = dtrace_probes[id - 1];
7053	cpuid = curcpu;
7054	onintr = CPU_ON_INTR(CPU);
7055
7056	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
7057	    probe->dtpr_predcache == curthread->t_predcache) {
7058		/*
7059		 * We have hit in the predicate cache; we know that
7060		 * this predicate would evaluate to be false.
7061		 */
7062		dtrace_interrupt_enable(cookie);
7063		return;
7064	}
7065
7066#if defined(sun)
7067	if (panic_quiesce) {
7068#else
7069	if (panicstr != NULL) {
7070#endif
7071		/*
7072		 * We don't trace anything if we're panicking.
7073		 */
7074		dtrace_interrupt_enable(cookie);
7075		return;
7076	}
7077
7078	now = dtrace_gethrtime();
7079	vtime = dtrace_vtime_references != 0;
7080
7081	if (vtime && curthread->t_dtrace_start)
7082		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
7083
7084	mstate.dtms_difo = NULL;
7085	mstate.dtms_probe = probe;
7086	mstate.dtms_strtok = 0;
7087	mstate.dtms_arg[0] = arg0;
7088	mstate.dtms_arg[1] = arg1;
7089	mstate.dtms_arg[2] = arg2;
7090	mstate.dtms_arg[3] = arg3;
7091	mstate.dtms_arg[4] = arg4;
7092
7093	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
7094
7095	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
7096		dtrace_predicate_t *pred = ecb->dte_predicate;
7097		dtrace_state_t *state = ecb->dte_state;
7098		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
7099		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
7100		dtrace_vstate_t *vstate = &state->dts_vstate;
7101		dtrace_provider_t *prov = probe->dtpr_provider;
7102		uint64_t tracememsize = 0;
7103		int committed = 0;
7104		caddr_t tomax;
7105
7106		/*
7107		 * A little subtlety with the following (seemingly innocuous)
7108		 * declaration of the automatic 'val':  by looking at the
7109		 * code, you might think that it could be declared in the
7110		 * action processing loop, below.  (That is, it's only used in
7111		 * the action processing loop.)  However, it must be declared
7112		 * out of that scope because in the case of DIF expression
7113		 * arguments to aggregating actions, one iteration of the
7114		 * action loop will use the last iteration's value.
7115		 */
7116		uint64_t val = 0;
7117
7118		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
7119		mstate.dtms_getf = NULL;
7120
7121		*flags &= ~CPU_DTRACE_ERROR;
7122
7123		if (prov == dtrace_provider) {
7124			/*
7125			 * If dtrace itself is the provider of this probe,
7126			 * we're only going to continue processing the ECB if
7127			 * arg0 (the dtrace_state_t) is equal to the ECB's
7128			 * creating state.  (This prevents disjoint consumers
7129			 * from seeing one another's metaprobes.)
7130			 */
7131			if (arg0 != (uint64_t)(uintptr_t)state)
7132				continue;
7133		}
7134
7135		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
7136			/*
7137			 * We're not currently active.  If our provider isn't
7138			 * the dtrace pseudo provider, we're not interested.
7139			 */
7140			if (prov != dtrace_provider)
7141				continue;
7142
7143			/*
7144			 * Now we must further check if we are in the BEGIN
7145			 * probe.  If we are, we will only continue processing
7146			 * if we're still in WARMUP -- if one BEGIN enabling
7147			 * has invoked the exit() action, we don't want to
7148			 * evaluate subsequent BEGIN enablings.
7149			 */
7150			if (probe->dtpr_id == dtrace_probeid_begin &&
7151			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
7152				ASSERT(state->dts_activity ==
7153				    DTRACE_ACTIVITY_DRAINING);
7154				continue;
7155			}
7156		}
7157
7158		if (ecb->dte_cond) {
7159			/*
7160			 * If the dte_cond bits indicate that this
7161			 * consumer is only allowed to see user-mode firings
7162			 * of this probe, call the provider's dtps_usermode()
7163			 * entry point to check that the probe was fired
7164			 * while in a user context. Skip this ECB if that's
7165			 * not the case.
7166			 */
7167			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
7168			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
7169			    probe->dtpr_id, probe->dtpr_arg) == 0)
7170				continue;
7171
7172#if defined(sun)
7173			/*
7174			 * This is more subtle than it looks. We have to be
7175			 * absolutely certain that CRED() isn't going to
7176			 * change out from under us so it's only legit to
7177			 * examine that structure if we're in constrained
7178			 * situations. Currently, the only times we'll this
7179			 * check is if a non-super-user has enabled the
7180			 * profile or syscall providers -- providers that
7181			 * allow visibility of all processes. For the
7182			 * profile case, the check above will ensure that
7183			 * we're examining a user context.
7184			 */
7185			if (ecb->dte_cond & DTRACE_COND_OWNER) {
7186				cred_t *cr;
7187				cred_t *s_cr =
7188				    ecb->dte_state->dts_cred.dcr_cred;
7189				proc_t *proc;
7190
7191				ASSERT(s_cr != NULL);
7192
7193				if ((cr = CRED()) == NULL ||
7194				    s_cr->cr_uid != cr->cr_uid ||
7195				    s_cr->cr_uid != cr->cr_ruid ||
7196				    s_cr->cr_uid != cr->cr_suid ||
7197				    s_cr->cr_gid != cr->cr_gid ||
7198				    s_cr->cr_gid != cr->cr_rgid ||
7199				    s_cr->cr_gid != cr->cr_sgid ||
7200				    (proc = ttoproc(curthread)) == NULL ||
7201				    (proc->p_flag & SNOCD))
7202					continue;
7203			}
7204
7205			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
7206				cred_t *cr;
7207				cred_t *s_cr =
7208				    ecb->dte_state->dts_cred.dcr_cred;
7209
7210				ASSERT(s_cr != NULL);
7211
7212				if ((cr = CRED()) == NULL ||
7213				    s_cr->cr_zone->zone_id !=
7214				    cr->cr_zone->zone_id)
7215					continue;
7216			}
7217#endif
7218		}
7219
7220		if (now - state->dts_alive > dtrace_deadman_timeout) {
7221			/*
7222			 * We seem to be dead.  Unless we (a) have kernel
7223			 * destructive permissions (b) have explicitly enabled
7224			 * destructive actions and (c) destructive actions have
7225			 * not been disabled, we're going to transition into
7226			 * the KILLED state, from which no further processing
7227			 * on this state will be performed.
7228			 */
7229			if (!dtrace_priv_kernel_destructive(state) ||
7230			    !state->dts_cred.dcr_destructive ||
7231			    dtrace_destructive_disallow) {
7232				void *activity = &state->dts_activity;
7233				dtrace_activity_t current;
7234
7235				do {
7236					current = state->dts_activity;
7237				} while (dtrace_cas32(activity, current,
7238				    DTRACE_ACTIVITY_KILLED) != current);
7239
7240				continue;
7241			}
7242		}
7243
7244		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
7245		    ecb->dte_alignment, state, &mstate)) < 0)
7246			continue;
7247
7248		tomax = buf->dtb_tomax;
7249		ASSERT(tomax != NULL);
7250
7251		if (ecb->dte_size != 0) {
7252			dtrace_rechdr_t dtrh;
7253			if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
7254				mstate.dtms_timestamp = dtrace_gethrtime();
7255				mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7256			}
7257			ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
7258			dtrh.dtrh_epid = ecb->dte_epid;
7259			DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
7260			    mstate.dtms_timestamp);
7261			*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
7262		}
7263
7264		mstate.dtms_epid = ecb->dte_epid;
7265		mstate.dtms_present |= DTRACE_MSTATE_EPID;
7266
7267		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
7268			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
7269		else
7270			mstate.dtms_access = 0;
7271
7272		if (pred != NULL) {
7273			dtrace_difo_t *dp = pred->dtp_difo;
7274			int rval;
7275
7276			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
7277
7278			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
7279				dtrace_cacheid_t cid = probe->dtpr_predcache;
7280
7281				if (cid != DTRACE_CACHEIDNONE && !onintr) {
7282					/*
7283					 * Update the predicate cache...
7284					 */
7285					ASSERT(cid == pred->dtp_cacheid);
7286					curthread->t_predcache = cid;
7287				}
7288
7289				continue;
7290			}
7291		}
7292
7293		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
7294		    act != NULL; act = act->dta_next) {
7295			size_t valoffs;
7296			dtrace_difo_t *dp;
7297			dtrace_recdesc_t *rec = &act->dta_rec;
7298
7299			size = rec->dtrd_size;
7300			valoffs = offs + rec->dtrd_offset;
7301
7302			if (DTRACEACT_ISAGG(act->dta_kind)) {
7303				uint64_t v = 0xbad;
7304				dtrace_aggregation_t *agg;
7305
7306				agg = (dtrace_aggregation_t *)act;
7307
7308				if ((dp = act->dta_difo) != NULL)
7309					v = dtrace_dif_emulate(dp,
7310					    &mstate, vstate, state);
7311
7312				if (*flags & CPU_DTRACE_ERROR)
7313					continue;
7314
7315				/*
7316				 * Note that we always pass the expression
7317				 * value from the previous iteration of the
7318				 * action loop.  This value will only be used
7319				 * if there is an expression argument to the
7320				 * aggregating action, denoted by the
7321				 * dtag_hasarg field.
7322				 */
7323				dtrace_aggregate(agg, buf,
7324				    offs, aggbuf, v, val);
7325				continue;
7326			}
7327
7328			switch (act->dta_kind) {
7329			case DTRACEACT_STOP:
7330				if (dtrace_priv_proc_destructive(state))
7331					dtrace_action_stop();
7332				continue;
7333
7334			case DTRACEACT_BREAKPOINT:
7335				if (dtrace_priv_kernel_destructive(state))
7336					dtrace_action_breakpoint(ecb);
7337				continue;
7338
7339			case DTRACEACT_PANIC:
7340				if (dtrace_priv_kernel_destructive(state))
7341					dtrace_action_panic(ecb);
7342				continue;
7343
7344			case DTRACEACT_STACK:
7345				if (!dtrace_priv_kernel(state))
7346					continue;
7347
7348				dtrace_getpcstack((pc_t *)(tomax + valoffs),
7349				    size / sizeof (pc_t), probe->dtpr_aframes,
7350				    DTRACE_ANCHORED(probe) ? NULL :
7351				    (uint32_t *)arg0);
7352				continue;
7353
7354			case DTRACEACT_JSTACK:
7355			case DTRACEACT_USTACK:
7356				if (!dtrace_priv_proc(state))
7357					continue;
7358
7359				/*
7360				 * See comment in DIF_VAR_PID.
7361				 */
7362				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
7363				    CPU_ON_INTR(CPU)) {
7364					int depth = DTRACE_USTACK_NFRAMES(
7365					    rec->dtrd_arg) + 1;
7366
7367					dtrace_bzero((void *)(tomax + valoffs),
7368					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
7369					    + depth * sizeof (uint64_t));
7370
7371					continue;
7372				}
7373
7374				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
7375				    curproc->p_dtrace_helpers != NULL) {
7376					/*
7377					 * This is the slow path -- we have
7378					 * allocated string space, and we're
7379					 * getting the stack of a process that
7380					 * has helpers.  Call into a separate
7381					 * routine to perform this processing.
7382					 */
7383					dtrace_action_ustack(&mstate, state,
7384					    (uint64_t *)(tomax + valoffs),
7385					    rec->dtrd_arg);
7386					continue;
7387				}
7388
7389				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7390				dtrace_getupcstack((uint64_t *)
7391				    (tomax + valoffs),
7392				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
7393				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7394				continue;
7395
7396			default:
7397				break;
7398			}
7399
7400			dp = act->dta_difo;
7401			ASSERT(dp != NULL);
7402
7403			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
7404
7405			if (*flags & CPU_DTRACE_ERROR)
7406				continue;
7407
7408			switch (act->dta_kind) {
7409			case DTRACEACT_SPECULATE: {
7410				dtrace_rechdr_t *dtrh;
7411
7412				ASSERT(buf == &state->dts_buffer[cpuid]);
7413				buf = dtrace_speculation_buffer(state,
7414				    cpuid, val);
7415
7416				if (buf == NULL) {
7417					*flags |= CPU_DTRACE_DROP;
7418					continue;
7419				}
7420
7421				offs = dtrace_buffer_reserve(buf,
7422				    ecb->dte_needed, ecb->dte_alignment,
7423				    state, NULL);
7424
7425				if (offs < 0) {
7426					*flags |= CPU_DTRACE_DROP;
7427					continue;
7428				}
7429
7430				tomax = buf->dtb_tomax;
7431				ASSERT(tomax != NULL);
7432
7433				if (ecb->dte_size == 0)
7434					continue;
7435
7436				ASSERT3U(ecb->dte_size, >=,
7437				    sizeof (dtrace_rechdr_t));
7438				dtrh = ((void *)(tomax + offs));
7439				dtrh->dtrh_epid = ecb->dte_epid;
7440				/*
7441				 * When the speculation is committed, all of
7442				 * the records in the speculative buffer will
7443				 * have their timestamps set to the commit
7444				 * time.  Until then, it is set to a sentinel
7445				 * value, for debugability.
7446				 */
7447				DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7448				continue;
7449			}
7450
7451			case DTRACEACT_PRINTM: {
7452				/* The DIF returns a 'memref'. */
7453				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
7454
7455				/* Get the size from the memref. */
7456				size = memref[1];
7457
7458				/*
7459				 * Check if the size exceeds the allocated
7460				 * buffer size.
7461				 */
7462				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
7463					/* Flag a drop! */
7464					*flags |= CPU_DTRACE_DROP;
7465					continue;
7466				}
7467
7468				/* Store the size in the buffer first. */
7469				DTRACE_STORE(uintptr_t, tomax,
7470				    valoffs, size);
7471
7472				/*
7473				 * Offset the buffer address to the start
7474				 * of the data.
7475				 */
7476				valoffs += sizeof(uintptr_t);
7477
7478				/*
7479				 * Reset to the memory address rather than
7480				 * the memref array, then let the BYREF
7481				 * code below do the work to store the
7482				 * memory data in the buffer.
7483				 */
7484				val = memref[0];
7485				break;
7486			}
7487
7488			case DTRACEACT_PRINTT: {
7489				/* The DIF returns a 'typeref'. */
7490				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
7491				char c = '\0' + 1;
7492				size_t s;
7493
7494				/*
7495				 * Get the type string length and round it
7496				 * up so that the data that follows is
7497				 * aligned for easy access.
7498				 */
7499				size_t typs = strlen((char *) typeref[2]) + 1;
7500				typs = roundup(typs,  sizeof(uintptr_t));
7501
7502				/*
7503				 *Get the size from the typeref using the
7504				 * number of elements and the type size.
7505				 */
7506				size = typeref[1] * typeref[3];
7507
7508				/*
7509				 * Check if the size exceeds the allocated
7510				 * buffer size.
7511				 */
7512				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
7513					/* Flag a drop! */
7514					*flags |= CPU_DTRACE_DROP;
7515
7516				}
7517
7518				/* Store the size in the buffer first. */
7519				DTRACE_STORE(uintptr_t, tomax,
7520				    valoffs, size);
7521				valoffs += sizeof(uintptr_t);
7522
7523				/* Store the type size in the buffer. */
7524				DTRACE_STORE(uintptr_t, tomax,
7525				    valoffs, typeref[3]);
7526				valoffs += sizeof(uintptr_t);
7527
7528				val = typeref[2];
7529
7530				for (s = 0; s < typs; s++) {
7531					if (c != '\0')
7532						c = dtrace_load8(val++);
7533
7534					DTRACE_STORE(uint8_t, tomax,
7535					    valoffs++, c);
7536				}
7537
7538				/*
7539				 * Reset to the memory address rather than
7540				 * the typeref array, then let the BYREF
7541				 * code below do the work to store the
7542				 * memory data in the buffer.
7543				 */
7544				val = typeref[0];
7545				break;
7546			}
7547
7548			case DTRACEACT_CHILL:
7549				if (dtrace_priv_kernel_destructive(state))
7550					dtrace_action_chill(&mstate, val);
7551				continue;
7552
7553			case DTRACEACT_RAISE:
7554				if (dtrace_priv_proc_destructive(state))
7555					dtrace_action_raise(val);
7556				continue;
7557
7558			case DTRACEACT_COMMIT:
7559				ASSERT(!committed);
7560
7561				/*
7562				 * We need to commit our buffer state.
7563				 */
7564				if (ecb->dte_size)
7565					buf->dtb_offset = offs + ecb->dte_size;
7566				buf = &state->dts_buffer[cpuid];
7567				dtrace_speculation_commit(state, cpuid, val);
7568				committed = 1;
7569				continue;
7570
7571			case DTRACEACT_DISCARD:
7572				dtrace_speculation_discard(state, cpuid, val);
7573				continue;
7574
7575			case DTRACEACT_DIFEXPR:
7576			case DTRACEACT_LIBACT:
7577			case DTRACEACT_PRINTF:
7578			case DTRACEACT_PRINTA:
7579			case DTRACEACT_SYSTEM:
7580			case DTRACEACT_FREOPEN:
7581			case DTRACEACT_TRACEMEM:
7582				break;
7583
7584			case DTRACEACT_TRACEMEM_DYNSIZE:
7585				tracememsize = val;
7586				break;
7587
7588			case DTRACEACT_SYM:
7589			case DTRACEACT_MOD:
7590				if (!dtrace_priv_kernel(state))
7591					continue;
7592				break;
7593
7594			case DTRACEACT_USYM:
7595			case DTRACEACT_UMOD:
7596			case DTRACEACT_UADDR: {
7597#if defined(sun)
7598				struct pid *pid = curthread->t_procp->p_pidp;
7599#endif
7600
7601				if (!dtrace_priv_proc(state))
7602					continue;
7603
7604				DTRACE_STORE(uint64_t, tomax,
7605#if defined(sun)
7606				    valoffs, (uint64_t)pid->pid_id);
7607#else
7608				    valoffs, (uint64_t) curproc->p_pid);
7609#endif
7610				DTRACE_STORE(uint64_t, tomax,
7611				    valoffs + sizeof (uint64_t), val);
7612
7613				continue;
7614			}
7615
7616			case DTRACEACT_EXIT: {
7617				/*
7618				 * For the exit action, we are going to attempt
7619				 * to atomically set our activity to be
7620				 * draining.  If this fails (either because
7621				 * another CPU has beat us to the exit action,
7622				 * or because our current activity is something
7623				 * other than ACTIVE or WARMUP), we will
7624				 * continue.  This assures that the exit action
7625				 * can be successfully recorded at most once
7626				 * when we're in the ACTIVE state.  If we're
7627				 * encountering the exit() action while in
7628				 * COOLDOWN, however, we want to honor the new
7629				 * status code.  (We know that we're the only
7630				 * thread in COOLDOWN, so there is no race.)
7631				 */
7632				void *activity = &state->dts_activity;
7633				dtrace_activity_t current = state->dts_activity;
7634
7635				if (current == DTRACE_ACTIVITY_COOLDOWN)
7636					break;
7637
7638				if (current != DTRACE_ACTIVITY_WARMUP)
7639					current = DTRACE_ACTIVITY_ACTIVE;
7640
7641				if (dtrace_cas32(activity, current,
7642				    DTRACE_ACTIVITY_DRAINING) != current) {
7643					*flags |= CPU_DTRACE_DROP;
7644					continue;
7645				}
7646
7647				break;
7648			}
7649
7650			default:
7651				ASSERT(0);
7652			}
7653
7654			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7655			    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7656				uintptr_t end = valoffs + size;
7657
7658				if (tracememsize != 0 &&
7659				    valoffs + tracememsize < end) {
7660					end = valoffs + tracememsize;
7661					tracememsize = 0;
7662				}
7663
7664				if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7665				    !dtrace_vcanload((void *)(uintptr_t)val,
7666				    &dp->dtdo_rtype, &mstate, vstate))
7667					continue;
7668
7669				dtrace_store_by_ref(dp, tomax, size, &valoffs,
7670				    &val, end, act->dta_intuple,
7671				    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7672				    DIF_TF_BYREF: DIF_TF_BYUREF);
7673				continue;
7674			}
7675
7676			switch (size) {
7677			case 0:
7678				break;
7679
7680			case sizeof (uint8_t):
7681				DTRACE_STORE(uint8_t, tomax, valoffs, val);
7682				break;
7683			case sizeof (uint16_t):
7684				DTRACE_STORE(uint16_t, tomax, valoffs, val);
7685				break;
7686			case sizeof (uint32_t):
7687				DTRACE_STORE(uint32_t, tomax, valoffs, val);
7688				break;
7689			case sizeof (uint64_t):
7690				DTRACE_STORE(uint64_t, tomax, valoffs, val);
7691				break;
7692			default:
7693				/*
7694				 * Any other size should have been returned by
7695				 * reference, not by value.
7696				 */
7697				ASSERT(0);
7698				break;
7699			}
7700		}
7701
7702		if (*flags & CPU_DTRACE_DROP)
7703			continue;
7704
7705		if (*flags & CPU_DTRACE_FAULT) {
7706			int ndx;
7707			dtrace_action_t *err;
7708
7709			buf->dtb_errors++;
7710
7711			if (probe->dtpr_id == dtrace_probeid_error) {
7712				/*
7713				 * There's nothing we can do -- we had an
7714				 * error on the error probe.  We bump an
7715				 * error counter to at least indicate that
7716				 * this condition happened.
7717				 */
7718				dtrace_error(&state->dts_dblerrors);
7719				continue;
7720			}
7721
7722			if (vtime) {
7723				/*
7724				 * Before recursing on dtrace_probe(), we
7725				 * need to explicitly clear out our start
7726				 * time to prevent it from being accumulated
7727				 * into t_dtrace_vtime.
7728				 */
7729				curthread->t_dtrace_start = 0;
7730			}
7731
7732			/*
7733			 * Iterate over the actions to figure out which action
7734			 * we were processing when we experienced the error.
7735			 * Note that act points _past_ the faulting action; if
7736			 * act is ecb->dte_action, the fault was in the
7737			 * predicate, if it's ecb->dte_action->dta_next it's
7738			 * in action #1, and so on.
7739			 */
7740			for (err = ecb->dte_action, ndx = 0;
7741			    err != act; err = err->dta_next, ndx++)
7742				continue;
7743
7744			dtrace_probe_error(state, ecb->dte_epid, ndx,
7745			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7746			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7747			    cpu_core[cpuid].cpuc_dtrace_illval);
7748
7749			continue;
7750		}
7751
7752		if (!committed)
7753			buf->dtb_offset = offs + ecb->dte_size;
7754	}
7755
7756	if (vtime)
7757		curthread->t_dtrace_start = dtrace_gethrtime();
7758
7759	dtrace_interrupt_enable(cookie);
7760}
7761
7762/*
7763 * DTrace Probe Hashing Functions
7764 *
7765 * The functions in this section (and indeed, the functions in remaining
7766 * sections) are not _called_ from probe context.  (Any exceptions to this are
7767 * marked with a "Note:".)  Rather, they are called from elsewhere in the
7768 * DTrace framework to look-up probes in, add probes to and remove probes from
7769 * the DTrace probe hashes.  (Each probe is hashed by each element of the
7770 * probe tuple -- allowing for fast lookups, regardless of what was
7771 * specified.)
7772 */
7773static uint_t
7774dtrace_hash_str(const char *p)
7775{
7776	unsigned int g;
7777	uint_t hval = 0;
7778
7779	while (*p) {
7780		hval = (hval << 4) + *p++;
7781		if ((g = (hval & 0xf0000000)) != 0)
7782			hval ^= g >> 24;
7783		hval &= ~g;
7784	}
7785	return (hval);
7786}
7787
7788static dtrace_hash_t *
7789dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
7790{
7791	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
7792
7793	hash->dth_stroffs = stroffs;
7794	hash->dth_nextoffs = nextoffs;
7795	hash->dth_prevoffs = prevoffs;
7796
7797	hash->dth_size = 1;
7798	hash->dth_mask = hash->dth_size - 1;
7799
7800	hash->dth_tab = kmem_zalloc(hash->dth_size *
7801	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
7802
7803	return (hash);
7804}
7805
7806static void
7807dtrace_hash_destroy(dtrace_hash_t *hash)
7808{
7809#ifdef DEBUG
7810	int i;
7811
7812	for (i = 0; i < hash->dth_size; i++)
7813		ASSERT(hash->dth_tab[i] == NULL);
7814#endif
7815
7816	kmem_free(hash->dth_tab,
7817	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
7818	kmem_free(hash, sizeof (dtrace_hash_t));
7819}
7820
7821static void
7822dtrace_hash_resize(dtrace_hash_t *hash)
7823{
7824	int size = hash->dth_size, i, ndx;
7825	int new_size = hash->dth_size << 1;
7826	int new_mask = new_size - 1;
7827	dtrace_hashbucket_t **new_tab, *bucket, *next;
7828
7829	ASSERT((new_size & new_mask) == 0);
7830
7831	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
7832
7833	for (i = 0; i < size; i++) {
7834		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
7835			dtrace_probe_t *probe = bucket->dthb_chain;
7836
7837			ASSERT(probe != NULL);
7838			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
7839
7840			next = bucket->dthb_next;
7841			bucket->dthb_next = new_tab[ndx];
7842			new_tab[ndx] = bucket;
7843		}
7844	}
7845
7846	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
7847	hash->dth_tab = new_tab;
7848	hash->dth_size = new_size;
7849	hash->dth_mask = new_mask;
7850}
7851
7852static void
7853dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
7854{
7855	int hashval = DTRACE_HASHSTR(hash, new);
7856	int ndx = hashval & hash->dth_mask;
7857	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7858	dtrace_probe_t **nextp, **prevp;
7859
7860	for (; bucket != NULL; bucket = bucket->dthb_next) {
7861		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
7862			goto add;
7863	}
7864
7865	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
7866		dtrace_hash_resize(hash);
7867		dtrace_hash_add(hash, new);
7868		return;
7869	}
7870
7871	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
7872	bucket->dthb_next = hash->dth_tab[ndx];
7873	hash->dth_tab[ndx] = bucket;
7874	hash->dth_nbuckets++;
7875
7876add:
7877	nextp = DTRACE_HASHNEXT(hash, new);
7878	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
7879	*nextp = bucket->dthb_chain;
7880
7881	if (bucket->dthb_chain != NULL) {
7882		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
7883		ASSERT(*prevp == NULL);
7884		*prevp = new;
7885	}
7886
7887	bucket->dthb_chain = new;
7888	bucket->dthb_len++;
7889}
7890
7891static dtrace_probe_t *
7892dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
7893{
7894	int hashval = DTRACE_HASHSTR(hash, template);
7895	int ndx = hashval & hash->dth_mask;
7896	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7897
7898	for (; bucket != NULL; bucket = bucket->dthb_next) {
7899		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7900			return (bucket->dthb_chain);
7901	}
7902
7903	return (NULL);
7904}
7905
7906static int
7907dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
7908{
7909	int hashval = DTRACE_HASHSTR(hash, template);
7910	int ndx = hashval & hash->dth_mask;
7911	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7912
7913	for (; bucket != NULL; bucket = bucket->dthb_next) {
7914		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7915			return (bucket->dthb_len);
7916	}
7917
7918	return (0);
7919}
7920
7921static void
7922dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
7923{
7924	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
7925	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7926
7927	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
7928	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
7929
7930	/*
7931	 * Find the bucket that we're removing this probe from.
7932	 */
7933	for (; bucket != NULL; bucket = bucket->dthb_next) {
7934		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
7935			break;
7936	}
7937
7938	ASSERT(bucket != NULL);
7939
7940	if (*prevp == NULL) {
7941		if (*nextp == NULL) {
7942			/*
7943			 * The removed probe was the only probe on this
7944			 * bucket; we need to remove the bucket.
7945			 */
7946			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
7947
7948			ASSERT(bucket->dthb_chain == probe);
7949			ASSERT(b != NULL);
7950
7951			if (b == bucket) {
7952				hash->dth_tab[ndx] = bucket->dthb_next;
7953			} else {
7954				while (b->dthb_next != bucket)
7955					b = b->dthb_next;
7956				b->dthb_next = bucket->dthb_next;
7957			}
7958
7959			ASSERT(hash->dth_nbuckets > 0);
7960			hash->dth_nbuckets--;
7961			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
7962			return;
7963		}
7964
7965		bucket->dthb_chain = *nextp;
7966	} else {
7967		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
7968	}
7969
7970	if (*nextp != NULL)
7971		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
7972}
7973
7974/*
7975 * DTrace Utility Functions
7976 *
7977 * These are random utility functions that are _not_ called from probe context.
7978 */
7979static int
7980dtrace_badattr(const dtrace_attribute_t *a)
7981{
7982	return (a->dtat_name > DTRACE_STABILITY_MAX ||
7983	    a->dtat_data > DTRACE_STABILITY_MAX ||
7984	    a->dtat_class > DTRACE_CLASS_MAX);
7985}
7986
7987/*
7988 * Return a duplicate copy of a string.  If the specified string is NULL,
7989 * this function returns a zero-length string.
7990 */
7991static char *
7992dtrace_strdup(const char *str)
7993{
7994	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
7995
7996	if (str != NULL)
7997		(void) strcpy(new, str);
7998
7999	return (new);
8000}
8001
8002#define	DTRACE_ISALPHA(c)	\
8003	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
8004
8005static int
8006dtrace_badname(const char *s)
8007{
8008	char c;
8009
8010	if (s == NULL || (c = *s++) == '\0')
8011		return (0);
8012
8013	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
8014		return (1);
8015
8016	while ((c = *s++) != '\0') {
8017		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
8018		    c != '-' && c != '_' && c != '.' && c != '`')
8019			return (1);
8020	}
8021
8022	return (0);
8023}
8024
8025static void
8026dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
8027{
8028	uint32_t priv;
8029
8030#if defined(sun)
8031	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
8032		/*
8033		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
8034		 */
8035		priv = DTRACE_PRIV_ALL;
8036	} else {
8037		*uidp = crgetuid(cr);
8038		*zoneidp = crgetzoneid(cr);
8039
8040		priv = 0;
8041		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
8042			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
8043		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
8044			priv |= DTRACE_PRIV_USER;
8045		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
8046			priv |= DTRACE_PRIV_PROC;
8047		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
8048			priv |= DTRACE_PRIV_OWNER;
8049		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
8050			priv |= DTRACE_PRIV_ZONEOWNER;
8051	}
8052#else
8053	priv = DTRACE_PRIV_ALL;
8054#endif
8055
8056	*privp = priv;
8057}
8058
8059#ifdef DTRACE_ERRDEBUG
8060static void
8061dtrace_errdebug(const char *str)
8062{
8063	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
8064	int occupied = 0;
8065
8066	mutex_enter(&dtrace_errlock);
8067	dtrace_errlast = str;
8068	dtrace_errthread = curthread;
8069
8070	while (occupied++ < DTRACE_ERRHASHSZ) {
8071		if (dtrace_errhash[hval].dter_msg == str) {
8072			dtrace_errhash[hval].dter_count++;
8073			goto out;
8074		}
8075
8076		if (dtrace_errhash[hval].dter_msg != NULL) {
8077			hval = (hval + 1) % DTRACE_ERRHASHSZ;
8078			continue;
8079		}
8080
8081		dtrace_errhash[hval].dter_msg = str;
8082		dtrace_errhash[hval].dter_count = 1;
8083		goto out;
8084	}
8085
8086	panic("dtrace: undersized error hash");
8087out:
8088	mutex_exit(&dtrace_errlock);
8089}
8090#endif
8091
8092/*
8093 * DTrace Matching Functions
8094 *
8095 * These functions are used to match groups of probes, given some elements of
8096 * a probe tuple, or some globbed expressions for elements of a probe tuple.
8097 */
8098static int
8099dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
8100    zoneid_t zoneid)
8101{
8102	if (priv != DTRACE_PRIV_ALL) {
8103		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
8104		uint32_t match = priv & ppriv;
8105
8106		/*
8107		 * No PRIV_DTRACE_* privileges...
8108		 */
8109		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
8110		    DTRACE_PRIV_KERNEL)) == 0)
8111			return (0);
8112
8113		/*
8114		 * No matching bits, but there were bits to match...
8115		 */
8116		if (match == 0 && ppriv != 0)
8117			return (0);
8118
8119		/*
8120		 * Need to have permissions to the process, but don't...
8121		 */
8122		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
8123		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
8124			return (0);
8125		}
8126
8127		/*
8128		 * Need to be in the same zone unless we possess the
8129		 * privilege to examine all zones.
8130		 */
8131		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
8132		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
8133			return (0);
8134		}
8135	}
8136
8137	return (1);
8138}
8139
8140/*
8141 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
8142 * consists of input pattern strings and an ops-vector to evaluate them.
8143 * This function returns >0 for match, 0 for no match, and <0 for error.
8144 */
8145static int
8146dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
8147    uint32_t priv, uid_t uid, zoneid_t zoneid)
8148{
8149	dtrace_provider_t *pvp = prp->dtpr_provider;
8150	int rv;
8151
8152	if (pvp->dtpv_defunct)
8153		return (0);
8154
8155	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
8156		return (rv);
8157
8158	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
8159		return (rv);
8160
8161	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
8162		return (rv);
8163
8164	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
8165		return (rv);
8166
8167	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
8168		return (0);
8169
8170	return (rv);
8171}
8172
8173/*
8174 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
8175 * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
8176 * libc's version, the kernel version only applies to 8-bit ASCII strings.
8177 * In addition, all of the recursion cases except for '*' matching have been
8178 * unwound.  For '*', we still implement recursive evaluation, but a depth
8179 * counter is maintained and matching is aborted if we recurse too deep.
8180 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
8181 */
8182static int
8183dtrace_match_glob(const char *s, const char *p, int depth)
8184{
8185	const char *olds;
8186	char s1, c;
8187	int gs;
8188
8189	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
8190		return (-1);
8191
8192	if (s == NULL)
8193		s = ""; /* treat NULL as empty string */
8194
8195top:
8196	olds = s;
8197	s1 = *s++;
8198
8199	if (p == NULL)
8200		return (0);
8201
8202	if ((c = *p++) == '\0')
8203		return (s1 == '\0');
8204
8205	switch (c) {
8206	case '[': {
8207		int ok = 0, notflag = 0;
8208		char lc = '\0';
8209
8210		if (s1 == '\0')
8211			return (0);
8212
8213		if (*p == '!') {
8214			notflag = 1;
8215			p++;
8216		}
8217
8218		if ((c = *p++) == '\0')
8219			return (0);
8220
8221		do {
8222			if (c == '-' && lc != '\0' && *p != ']') {
8223				if ((c = *p++) == '\0')
8224					return (0);
8225				if (c == '\\' && (c = *p++) == '\0')
8226					return (0);
8227
8228				if (notflag) {
8229					if (s1 < lc || s1 > c)
8230						ok++;
8231					else
8232						return (0);
8233				} else if (lc <= s1 && s1 <= c)
8234					ok++;
8235
8236			} else if (c == '\\' && (c = *p++) == '\0')
8237				return (0);
8238
8239			lc = c; /* save left-hand 'c' for next iteration */
8240
8241			if (notflag) {
8242				if (s1 != c)
8243					ok++;
8244				else
8245					return (0);
8246			} else if (s1 == c)
8247				ok++;
8248
8249			if ((c = *p++) == '\0')
8250				return (0);
8251
8252		} while (c != ']');
8253
8254		if (ok)
8255			goto top;
8256
8257		return (0);
8258	}
8259
8260	case '\\':
8261		if ((c = *p++) == '\0')
8262			return (0);
8263		/*FALLTHRU*/
8264
8265	default:
8266		if (c != s1)
8267			return (0);
8268		/*FALLTHRU*/
8269
8270	case '?':
8271		if (s1 != '\0')
8272			goto top;
8273		return (0);
8274
8275	case '*':
8276		while (*p == '*')
8277			p++; /* consecutive *'s are identical to a single one */
8278
8279		if (*p == '\0')
8280			return (1);
8281
8282		for (s = olds; *s != '\0'; s++) {
8283			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
8284				return (gs);
8285		}
8286
8287		return (0);
8288	}
8289}
8290
8291/*ARGSUSED*/
8292static int
8293dtrace_match_string(const char *s, const char *p, int depth)
8294{
8295	return (s != NULL && strcmp(s, p) == 0);
8296}
8297
8298/*ARGSUSED*/
8299static int
8300dtrace_match_nul(const char *s, const char *p, int depth)
8301{
8302	return (1); /* always match the empty pattern */
8303}
8304
8305/*ARGSUSED*/
8306static int
8307dtrace_match_nonzero(const char *s, const char *p, int depth)
8308{
8309	return (s != NULL && s[0] != '\0');
8310}
8311
8312static int
8313dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
8314    zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
8315{
8316	dtrace_probe_t template, *probe;
8317	dtrace_hash_t *hash = NULL;
8318	int len, best = INT_MAX, nmatched = 0;
8319	dtrace_id_t i;
8320
8321	ASSERT(MUTEX_HELD(&dtrace_lock));
8322
8323	/*
8324	 * If the probe ID is specified in the key, just lookup by ID and
8325	 * invoke the match callback once if a matching probe is found.
8326	 */
8327	if (pkp->dtpk_id != DTRACE_IDNONE) {
8328		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
8329		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
8330			(void) (*matched)(probe, arg);
8331			nmatched++;
8332		}
8333		return (nmatched);
8334	}
8335
8336	template.dtpr_mod = (char *)pkp->dtpk_mod;
8337	template.dtpr_func = (char *)pkp->dtpk_func;
8338	template.dtpr_name = (char *)pkp->dtpk_name;
8339
8340	/*
8341	 * We want to find the most distinct of the module name, function
8342	 * name, and name.  So for each one that is not a glob pattern or
8343	 * empty string, we perform a lookup in the corresponding hash and
8344	 * use the hash table with the fewest collisions to do our search.
8345	 */
8346	if (pkp->dtpk_mmatch == &dtrace_match_string &&
8347	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
8348		best = len;
8349		hash = dtrace_bymod;
8350	}
8351
8352	if (pkp->dtpk_fmatch == &dtrace_match_string &&
8353	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
8354		best = len;
8355		hash = dtrace_byfunc;
8356	}
8357
8358	if (pkp->dtpk_nmatch == &dtrace_match_string &&
8359	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
8360		best = len;
8361		hash = dtrace_byname;
8362	}
8363
8364	/*
8365	 * If we did not select a hash table, iterate over every probe and
8366	 * invoke our callback for each one that matches our input probe key.
8367	 */
8368	if (hash == NULL) {
8369		for (i = 0; i < dtrace_nprobes; i++) {
8370			if ((probe = dtrace_probes[i]) == NULL ||
8371			    dtrace_match_probe(probe, pkp, priv, uid,
8372			    zoneid) <= 0)
8373				continue;
8374
8375			nmatched++;
8376
8377			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8378				break;
8379		}
8380
8381		return (nmatched);
8382	}
8383
8384	/*
8385	 * If we selected a hash table, iterate over each probe of the same key
8386	 * name and invoke the callback for every probe that matches the other
8387	 * attributes of our input probe key.
8388	 */
8389	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
8390	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
8391
8392		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
8393			continue;
8394
8395		nmatched++;
8396
8397		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8398			break;
8399	}
8400
8401	return (nmatched);
8402}
8403
8404/*
8405 * Return the function pointer dtrace_probecmp() should use to compare the
8406 * specified pattern with a string.  For NULL or empty patterns, we select
8407 * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
8408 * For non-empty non-glob strings, we use dtrace_match_string().
8409 */
8410static dtrace_probekey_f *
8411dtrace_probekey_func(const char *p)
8412{
8413	char c;
8414
8415	if (p == NULL || *p == '\0')
8416		return (&dtrace_match_nul);
8417
8418	while ((c = *p++) != '\0') {
8419		if (c == '[' || c == '?' || c == '*' || c == '\\')
8420			return (&dtrace_match_glob);
8421	}
8422
8423	return (&dtrace_match_string);
8424}
8425
8426/*
8427 * Build a probe comparison key for use with dtrace_match_probe() from the
8428 * given probe description.  By convention, a null key only matches anchored
8429 * probes: if each field is the empty string, reset dtpk_fmatch to
8430 * dtrace_match_nonzero().
8431 */
8432static void
8433dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
8434{
8435	pkp->dtpk_prov = pdp->dtpd_provider;
8436	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
8437
8438	pkp->dtpk_mod = pdp->dtpd_mod;
8439	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
8440
8441	pkp->dtpk_func = pdp->dtpd_func;
8442	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
8443
8444	pkp->dtpk_name = pdp->dtpd_name;
8445	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
8446
8447	pkp->dtpk_id = pdp->dtpd_id;
8448
8449	if (pkp->dtpk_id == DTRACE_IDNONE &&
8450	    pkp->dtpk_pmatch == &dtrace_match_nul &&
8451	    pkp->dtpk_mmatch == &dtrace_match_nul &&
8452	    pkp->dtpk_fmatch == &dtrace_match_nul &&
8453	    pkp->dtpk_nmatch == &dtrace_match_nul)
8454		pkp->dtpk_fmatch = &dtrace_match_nonzero;
8455}
8456
8457/*
8458 * DTrace Provider-to-Framework API Functions
8459 *
8460 * These functions implement much of the Provider-to-Framework API, as
8461 * described in <sys/dtrace.h>.  The parts of the API not in this section are
8462 * the functions in the API for probe management (found below), and
8463 * dtrace_probe() itself (found above).
8464 */
8465
8466/*
8467 * Register the calling provider with the DTrace framework.  This should
8468 * generally be called by DTrace providers in their attach(9E) entry point.
8469 */
8470int
8471dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
8472    cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
8473{
8474	dtrace_provider_t *provider;
8475
8476	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
8477		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8478		    "arguments", name ? name : "<NULL>");
8479		return (EINVAL);
8480	}
8481
8482	if (name[0] == '\0' || dtrace_badname(name)) {
8483		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8484		    "provider name", name);
8485		return (EINVAL);
8486	}
8487
8488	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
8489	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
8490	    pops->dtps_destroy == NULL ||
8491	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
8492		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8493		    "provider ops", name);
8494		return (EINVAL);
8495	}
8496
8497	if (dtrace_badattr(&pap->dtpa_provider) ||
8498	    dtrace_badattr(&pap->dtpa_mod) ||
8499	    dtrace_badattr(&pap->dtpa_func) ||
8500	    dtrace_badattr(&pap->dtpa_name) ||
8501	    dtrace_badattr(&pap->dtpa_args)) {
8502		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8503		    "provider attributes", name);
8504		return (EINVAL);
8505	}
8506
8507	if (priv & ~DTRACE_PRIV_ALL) {
8508		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8509		    "privilege attributes", name);
8510		return (EINVAL);
8511	}
8512
8513	if ((priv & DTRACE_PRIV_KERNEL) &&
8514	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
8515	    pops->dtps_usermode == NULL) {
8516		cmn_err(CE_WARN, "failed to register provider '%s': need "
8517		    "dtps_usermode() op for given privilege attributes", name);
8518		return (EINVAL);
8519	}
8520
8521	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
8522	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8523	(void) strcpy(provider->dtpv_name, name);
8524
8525	provider->dtpv_attr = *pap;
8526	provider->dtpv_priv.dtpp_flags = priv;
8527	if (cr != NULL) {
8528		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8529		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8530	}
8531	provider->dtpv_pops = *pops;
8532
8533	if (pops->dtps_provide == NULL) {
8534		ASSERT(pops->dtps_provide_module != NULL);
8535		provider->dtpv_pops.dtps_provide =
8536		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
8537	}
8538
8539	if (pops->dtps_provide_module == NULL) {
8540		ASSERT(pops->dtps_provide != NULL);
8541		provider->dtpv_pops.dtps_provide_module =
8542		    (void (*)(void *, modctl_t *))dtrace_nullop;
8543	}
8544
8545	if (pops->dtps_suspend == NULL) {
8546		ASSERT(pops->dtps_resume == NULL);
8547		provider->dtpv_pops.dtps_suspend =
8548		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8549		provider->dtpv_pops.dtps_resume =
8550		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8551	}
8552
8553	provider->dtpv_arg = arg;
8554	*idp = (dtrace_provider_id_t)provider;
8555
8556	if (pops == &dtrace_provider_ops) {
8557		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8558		ASSERT(MUTEX_HELD(&dtrace_lock));
8559		ASSERT(dtrace_anon.dta_enabling == NULL);
8560
8561		/*
8562		 * We make sure that the DTrace provider is at the head of
8563		 * the provider chain.
8564		 */
8565		provider->dtpv_next = dtrace_provider;
8566		dtrace_provider = provider;
8567		return (0);
8568	}
8569
8570	mutex_enter(&dtrace_provider_lock);
8571	mutex_enter(&dtrace_lock);
8572
8573	/*
8574	 * If there is at least one provider registered, we'll add this
8575	 * provider after the first provider.
8576	 */
8577	if (dtrace_provider != NULL) {
8578		provider->dtpv_next = dtrace_provider->dtpv_next;
8579		dtrace_provider->dtpv_next = provider;
8580	} else {
8581		dtrace_provider = provider;
8582	}
8583
8584	if (dtrace_retained != NULL) {
8585		dtrace_enabling_provide(provider);
8586
8587		/*
8588		 * Now we need to call dtrace_enabling_matchall() -- which
8589		 * will acquire cpu_lock and dtrace_lock.  We therefore need
8590		 * to drop all of our locks before calling into it...
8591		 */
8592		mutex_exit(&dtrace_lock);
8593		mutex_exit(&dtrace_provider_lock);
8594		dtrace_enabling_matchall();
8595
8596		return (0);
8597	}
8598
8599	mutex_exit(&dtrace_lock);
8600	mutex_exit(&dtrace_provider_lock);
8601
8602	return (0);
8603}
8604
8605/*
8606 * Unregister the specified provider from the DTrace framework.  This should
8607 * generally be called by DTrace providers in their detach(9E) entry point.
8608 */
8609int
8610dtrace_unregister(dtrace_provider_id_t id)
8611{
8612	dtrace_provider_t *old = (dtrace_provider_t *)id;
8613	dtrace_provider_t *prev = NULL;
8614	int i, self = 0, noreap = 0;
8615	dtrace_probe_t *probe, *first = NULL;
8616
8617	if (old->dtpv_pops.dtps_enable ==
8618	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
8619		/*
8620		 * If DTrace itself is the provider, we're called with locks
8621		 * already held.
8622		 */
8623		ASSERT(old == dtrace_provider);
8624#if defined(sun)
8625		ASSERT(dtrace_devi != NULL);
8626#endif
8627		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8628		ASSERT(MUTEX_HELD(&dtrace_lock));
8629		self = 1;
8630
8631		if (dtrace_provider->dtpv_next != NULL) {
8632			/*
8633			 * There's another provider here; return failure.
8634			 */
8635			return (EBUSY);
8636		}
8637	} else {
8638		mutex_enter(&dtrace_provider_lock);
8639#if defined(sun)
8640		mutex_enter(&mod_lock);
8641#endif
8642		mutex_enter(&dtrace_lock);
8643	}
8644
8645	/*
8646	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8647	 * probes, we refuse to let providers slither away, unless this
8648	 * provider has already been explicitly invalidated.
8649	 */
8650	if (!old->dtpv_defunct &&
8651	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8652	    dtrace_anon.dta_state->dts_necbs > 0))) {
8653		if (!self) {
8654			mutex_exit(&dtrace_lock);
8655#if defined(sun)
8656			mutex_exit(&mod_lock);
8657#endif
8658			mutex_exit(&dtrace_provider_lock);
8659		}
8660		return (EBUSY);
8661	}
8662
8663	/*
8664	 * Attempt to destroy the probes associated with this provider.
8665	 */
8666	for (i = 0; i < dtrace_nprobes; i++) {
8667		if ((probe = dtrace_probes[i]) == NULL)
8668			continue;
8669
8670		if (probe->dtpr_provider != old)
8671			continue;
8672
8673		if (probe->dtpr_ecb == NULL)
8674			continue;
8675
8676		/*
8677		 * If we are trying to unregister a defunct provider, and the
8678		 * provider was made defunct within the interval dictated by
8679		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8680		 * attempt to reap our enablings.  To denote that the provider
8681		 * should reattempt to unregister itself at some point in the
8682		 * future, we will return a differentiable error code (EAGAIN
8683		 * instead of EBUSY) in this case.
8684		 */
8685		if (dtrace_gethrtime() - old->dtpv_defunct >
8686		    dtrace_unregister_defunct_reap)
8687			noreap = 1;
8688
8689		if (!self) {
8690			mutex_exit(&dtrace_lock);
8691#if defined(sun)
8692			mutex_exit(&mod_lock);
8693#endif
8694			mutex_exit(&dtrace_provider_lock);
8695		}
8696
8697		if (noreap)
8698			return (EBUSY);
8699
8700		(void) taskq_dispatch(dtrace_taskq,
8701		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8702
8703		return (EAGAIN);
8704	}
8705
8706	/*
8707	 * All of the probes for this provider are disabled; we can safely
8708	 * remove all of them from their hash chains and from the probe array.
8709	 */
8710	for (i = 0; i < dtrace_nprobes; i++) {
8711		if ((probe = dtrace_probes[i]) == NULL)
8712			continue;
8713
8714		if (probe->dtpr_provider != old)
8715			continue;
8716
8717		dtrace_probes[i] = NULL;
8718
8719		dtrace_hash_remove(dtrace_bymod, probe);
8720		dtrace_hash_remove(dtrace_byfunc, probe);
8721		dtrace_hash_remove(dtrace_byname, probe);
8722
8723		if (first == NULL) {
8724			first = probe;
8725			probe->dtpr_nextmod = NULL;
8726		} else {
8727			probe->dtpr_nextmod = first;
8728			first = probe;
8729		}
8730	}
8731
8732	/*
8733	 * The provider's probes have been removed from the hash chains and
8734	 * from the probe array.  Now issue a dtrace_sync() to be sure that
8735	 * everyone has cleared out from any probe array processing.
8736	 */
8737	dtrace_sync();
8738
8739	for (probe = first; probe != NULL; probe = first) {
8740		first = probe->dtpr_nextmod;
8741
8742		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8743		    probe->dtpr_arg);
8744		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8745		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8746		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8747#if defined(sun)
8748		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
8749#else
8750		free_unr(dtrace_arena, probe->dtpr_id);
8751#endif
8752		kmem_free(probe, sizeof (dtrace_probe_t));
8753	}
8754
8755	if ((prev = dtrace_provider) == old) {
8756#if defined(sun)
8757		ASSERT(self || dtrace_devi == NULL);
8758		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
8759#endif
8760		dtrace_provider = old->dtpv_next;
8761	} else {
8762		while (prev != NULL && prev->dtpv_next != old)
8763			prev = prev->dtpv_next;
8764
8765		if (prev == NULL) {
8766			panic("attempt to unregister non-existent "
8767			    "dtrace provider %p\n", (void *)id);
8768		}
8769
8770		prev->dtpv_next = old->dtpv_next;
8771	}
8772
8773	if (!self) {
8774		mutex_exit(&dtrace_lock);
8775#if defined(sun)
8776		mutex_exit(&mod_lock);
8777#endif
8778		mutex_exit(&dtrace_provider_lock);
8779	}
8780
8781	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
8782	kmem_free(old, sizeof (dtrace_provider_t));
8783
8784	return (0);
8785}
8786
8787/*
8788 * Invalidate the specified provider.  All subsequent probe lookups for the
8789 * specified provider will fail, but its probes will not be removed.
8790 */
8791void
8792dtrace_invalidate(dtrace_provider_id_t id)
8793{
8794	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
8795
8796	ASSERT(pvp->dtpv_pops.dtps_enable !=
8797	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
8798
8799	mutex_enter(&dtrace_provider_lock);
8800	mutex_enter(&dtrace_lock);
8801
8802	pvp->dtpv_defunct = dtrace_gethrtime();
8803
8804	mutex_exit(&dtrace_lock);
8805	mutex_exit(&dtrace_provider_lock);
8806}
8807
8808/*
8809 * Indicate whether or not DTrace has attached.
8810 */
8811int
8812dtrace_attached(void)
8813{
8814	/*
8815	 * dtrace_provider will be non-NULL iff the DTrace driver has
8816	 * attached.  (It's non-NULL because DTrace is always itself a
8817	 * provider.)
8818	 */
8819	return (dtrace_provider != NULL);
8820}
8821
8822/*
8823 * Remove all the unenabled probes for the given provider.  This function is
8824 * not unlike dtrace_unregister(), except that it doesn't remove the provider
8825 * -- just as many of its associated probes as it can.
8826 */
8827int
8828dtrace_condense(dtrace_provider_id_t id)
8829{
8830	dtrace_provider_t *prov = (dtrace_provider_t *)id;
8831	int i;
8832	dtrace_probe_t *probe;
8833
8834	/*
8835	 * Make sure this isn't the dtrace provider itself.
8836	 */
8837	ASSERT(prov->dtpv_pops.dtps_enable !=
8838	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
8839
8840	mutex_enter(&dtrace_provider_lock);
8841	mutex_enter(&dtrace_lock);
8842
8843	/*
8844	 * Attempt to destroy the probes associated with this provider.
8845	 */
8846	for (i = 0; i < dtrace_nprobes; i++) {
8847		if ((probe = dtrace_probes[i]) == NULL)
8848			continue;
8849
8850		if (probe->dtpr_provider != prov)
8851			continue;
8852
8853		if (probe->dtpr_ecb != NULL)
8854			continue;
8855
8856		dtrace_probes[i] = NULL;
8857
8858		dtrace_hash_remove(dtrace_bymod, probe);
8859		dtrace_hash_remove(dtrace_byfunc, probe);
8860		dtrace_hash_remove(dtrace_byname, probe);
8861
8862		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
8863		    probe->dtpr_arg);
8864		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8865		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8866		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8867		kmem_free(probe, sizeof (dtrace_probe_t));
8868#if defined(sun)
8869		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
8870#else
8871		free_unr(dtrace_arena, i + 1);
8872#endif
8873	}
8874
8875	mutex_exit(&dtrace_lock);
8876	mutex_exit(&dtrace_provider_lock);
8877
8878	return (0);
8879}
8880
8881/*
8882 * DTrace Probe Management Functions
8883 *
8884 * The functions in this section perform the DTrace probe management,
8885 * including functions to create probes, look-up probes, and call into the
8886 * providers to request that probes be provided.  Some of these functions are
8887 * in the Provider-to-Framework API; these functions can be identified by the
8888 * fact that they are not declared "static".
8889 */
8890
8891/*
8892 * Create a probe with the specified module name, function name, and name.
8893 */
8894dtrace_id_t
8895dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
8896    const char *func, const char *name, int aframes, void *arg)
8897{
8898	dtrace_probe_t *probe, **probes;
8899	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
8900	dtrace_id_t id;
8901
8902	if (provider == dtrace_provider) {
8903		ASSERT(MUTEX_HELD(&dtrace_lock));
8904	} else {
8905		mutex_enter(&dtrace_lock);
8906	}
8907
8908#if defined(sun)
8909	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
8910	    VM_BESTFIT | VM_SLEEP);
8911#else
8912	id = alloc_unr(dtrace_arena);
8913#endif
8914	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
8915
8916	probe->dtpr_id = id;
8917	probe->dtpr_gen = dtrace_probegen++;
8918	probe->dtpr_mod = dtrace_strdup(mod);
8919	probe->dtpr_func = dtrace_strdup(func);
8920	probe->dtpr_name = dtrace_strdup(name);
8921	probe->dtpr_arg = arg;
8922	probe->dtpr_aframes = aframes;
8923	probe->dtpr_provider = provider;
8924
8925	dtrace_hash_add(dtrace_bymod, probe);
8926	dtrace_hash_add(dtrace_byfunc, probe);
8927	dtrace_hash_add(dtrace_byname, probe);
8928
8929	if (id - 1 >= dtrace_nprobes) {
8930		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
8931		size_t nsize = osize << 1;
8932
8933		if (nsize == 0) {
8934			ASSERT(osize == 0);
8935			ASSERT(dtrace_probes == NULL);
8936			nsize = sizeof (dtrace_probe_t *);
8937		}
8938
8939		probes = kmem_zalloc(nsize, KM_SLEEP);
8940
8941		if (dtrace_probes == NULL) {
8942			ASSERT(osize == 0);
8943			dtrace_probes = probes;
8944			dtrace_nprobes = 1;
8945		} else {
8946			dtrace_probe_t **oprobes = dtrace_probes;
8947
8948			bcopy(oprobes, probes, osize);
8949			dtrace_membar_producer();
8950			dtrace_probes = probes;
8951
8952			dtrace_sync();
8953
8954			/*
8955			 * All CPUs are now seeing the new probes array; we can
8956			 * safely free the old array.
8957			 */
8958			kmem_free(oprobes, osize);
8959			dtrace_nprobes <<= 1;
8960		}
8961
8962		ASSERT(id - 1 < dtrace_nprobes);
8963	}
8964
8965	ASSERT(dtrace_probes[id - 1] == NULL);
8966	dtrace_probes[id - 1] = probe;
8967
8968	if (provider != dtrace_provider)
8969		mutex_exit(&dtrace_lock);
8970
8971	return (id);
8972}
8973
8974static dtrace_probe_t *
8975dtrace_probe_lookup_id(dtrace_id_t id)
8976{
8977	ASSERT(MUTEX_HELD(&dtrace_lock));
8978
8979	if (id == 0 || id > dtrace_nprobes)
8980		return (NULL);
8981
8982	return (dtrace_probes[id - 1]);
8983}
8984
8985static int
8986dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
8987{
8988	*((dtrace_id_t *)arg) = probe->dtpr_id;
8989
8990	return (DTRACE_MATCH_DONE);
8991}
8992
8993/*
8994 * Look up a probe based on provider and one or more of module name, function
8995 * name and probe name.
8996 */
8997dtrace_id_t
8998dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
8999    char *func, char *name)
9000{
9001	dtrace_probekey_t pkey;
9002	dtrace_id_t id;
9003	int match;
9004
9005	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
9006	pkey.dtpk_pmatch = &dtrace_match_string;
9007	pkey.dtpk_mod = mod;
9008	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
9009	pkey.dtpk_func = func;
9010	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
9011	pkey.dtpk_name = name;
9012	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
9013	pkey.dtpk_id = DTRACE_IDNONE;
9014
9015	mutex_enter(&dtrace_lock);
9016	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
9017	    dtrace_probe_lookup_match, &id);
9018	mutex_exit(&dtrace_lock);
9019
9020	ASSERT(match == 1 || match == 0);
9021	return (match ? id : 0);
9022}
9023
9024/*
9025 * Returns the probe argument associated with the specified probe.
9026 */
9027void *
9028dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
9029{
9030	dtrace_probe_t *probe;
9031	void *rval = NULL;
9032
9033	mutex_enter(&dtrace_lock);
9034
9035	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
9036	    probe->dtpr_provider == (dtrace_provider_t *)id)
9037		rval = probe->dtpr_arg;
9038
9039	mutex_exit(&dtrace_lock);
9040
9041	return (rval);
9042}
9043
9044/*
9045 * Copy a probe into a probe description.
9046 */
9047static void
9048dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
9049{
9050	bzero(pdp, sizeof (dtrace_probedesc_t));
9051	pdp->dtpd_id = prp->dtpr_id;
9052
9053	(void) strncpy(pdp->dtpd_provider,
9054	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
9055
9056	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
9057	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
9058	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
9059}
9060
9061/*
9062 * Called to indicate that a probe -- or probes -- should be provided by a
9063 * specfied provider.  If the specified description is NULL, the provider will
9064 * be told to provide all of its probes.  (This is done whenever a new
9065 * consumer comes along, or whenever a retained enabling is to be matched.) If
9066 * the specified description is non-NULL, the provider is given the
9067 * opportunity to dynamically provide the specified probe, allowing providers
9068 * to support the creation of probes on-the-fly.  (So-called _autocreated_
9069 * probes.)  If the provider is NULL, the operations will be applied to all
9070 * providers; if the provider is non-NULL the operations will only be applied
9071 * to the specified provider.  The dtrace_provider_lock must be held, and the
9072 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
9073 * will need to grab the dtrace_lock when it reenters the framework through
9074 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
9075 */
9076static void
9077dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
9078{
9079#if defined(sun)
9080	modctl_t *ctl;
9081#endif
9082	int all = 0;
9083
9084	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
9085
9086	if (prv == NULL) {
9087		all = 1;
9088		prv = dtrace_provider;
9089	}
9090
9091	do {
9092		/*
9093		 * First, call the blanket provide operation.
9094		 */
9095		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
9096
9097#if defined(sun)
9098		/*
9099		 * Now call the per-module provide operation.  We will grab
9100		 * mod_lock to prevent the list from being modified.  Note
9101		 * that this also prevents the mod_busy bits from changing.
9102		 * (mod_busy can only be changed with mod_lock held.)
9103		 */
9104		mutex_enter(&mod_lock);
9105
9106		ctl = &modules;
9107		do {
9108			if (ctl->mod_busy || ctl->mod_mp == NULL)
9109				continue;
9110
9111			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
9112
9113		} while ((ctl = ctl->mod_next) != &modules);
9114
9115		mutex_exit(&mod_lock);
9116#endif
9117	} while (all && (prv = prv->dtpv_next) != NULL);
9118}
9119
9120#if defined(sun)
9121/*
9122 * Iterate over each probe, and call the Framework-to-Provider API function
9123 * denoted by offs.
9124 */
9125static void
9126dtrace_probe_foreach(uintptr_t offs)
9127{
9128	dtrace_provider_t *prov;
9129	void (*func)(void *, dtrace_id_t, void *);
9130	dtrace_probe_t *probe;
9131	dtrace_icookie_t cookie;
9132	int i;
9133
9134	/*
9135	 * We disable interrupts to walk through the probe array.  This is
9136	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
9137	 * won't see stale data.
9138	 */
9139	cookie = dtrace_interrupt_disable();
9140
9141	for (i = 0; i < dtrace_nprobes; i++) {
9142		if ((probe = dtrace_probes[i]) == NULL)
9143			continue;
9144
9145		if (probe->dtpr_ecb == NULL) {
9146			/*
9147			 * This probe isn't enabled -- don't call the function.
9148			 */
9149			continue;
9150		}
9151
9152		prov = probe->dtpr_provider;
9153		func = *((void(**)(void *, dtrace_id_t, void *))
9154		    ((uintptr_t)&prov->dtpv_pops + offs));
9155
9156		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
9157	}
9158
9159	dtrace_interrupt_enable(cookie);
9160}
9161#endif
9162
9163static int
9164dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
9165{
9166	dtrace_probekey_t pkey;
9167	uint32_t priv;
9168	uid_t uid;
9169	zoneid_t zoneid;
9170
9171	ASSERT(MUTEX_HELD(&dtrace_lock));
9172	dtrace_ecb_create_cache = NULL;
9173
9174	if (desc == NULL) {
9175		/*
9176		 * If we're passed a NULL description, we're being asked to
9177		 * create an ECB with a NULL probe.
9178		 */
9179		(void) dtrace_ecb_create_enable(NULL, enab);
9180		return (0);
9181	}
9182
9183	dtrace_probekey(desc, &pkey);
9184	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
9185	    &priv, &uid, &zoneid);
9186
9187	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
9188	    enab));
9189}
9190
9191/*
9192 * DTrace Helper Provider Functions
9193 */
9194static void
9195dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
9196{
9197	attr->dtat_name = DOF_ATTR_NAME(dofattr);
9198	attr->dtat_data = DOF_ATTR_DATA(dofattr);
9199	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
9200}
9201
9202static void
9203dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
9204    const dof_provider_t *dofprov, char *strtab)
9205{
9206	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
9207	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
9208	    dofprov->dofpv_provattr);
9209	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
9210	    dofprov->dofpv_modattr);
9211	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
9212	    dofprov->dofpv_funcattr);
9213	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
9214	    dofprov->dofpv_nameattr);
9215	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
9216	    dofprov->dofpv_argsattr);
9217}
9218
9219static void
9220dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9221{
9222	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9223	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9224	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
9225	dof_provider_t *provider;
9226	dof_probe_t *probe;
9227	uint32_t *off, *enoff;
9228	uint8_t *arg;
9229	char *strtab;
9230	uint_t i, nprobes;
9231	dtrace_helper_provdesc_t dhpv;
9232	dtrace_helper_probedesc_t dhpb;
9233	dtrace_meta_t *meta = dtrace_meta_pid;
9234	dtrace_mops_t *mops = &meta->dtm_mops;
9235	void *parg;
9236
9237	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9238	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9239	    provider->dofpv_strtab * dof->dofh_secsize);
9240	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9241	    provider->dofpv_probes * dof->dofh_secsize);
9242	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9243	    provider->dofpv_prargs * dof->dofh_secsize);
9244	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9245	    provider->dofpv_proffs * dof->dofh_secsize);
9246
9247	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9248	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
9249	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
9250	enoff = NULL;
9251
9252	/*
9253	 * See dtrace_helper_provider_validate().
9254	 */
9255	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
9256	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
9257		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9258		    provider->dofpv_prenoffs * dof->dofh_secsize);
9259		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
9260	}
9261
9262	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
9263
9264	/*
9265	 * Create the provider.
9266	 */
9267	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9268
9269	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
9270		return;
9271
9272	meta->dtm_count++;
9273
9274	/*
9275	 * Create the probes.
9276	 */
9277	for (i = 0; i < nprobes; i++) {
9278		probe = (dof_probe_t *)(uintptr_t)(daddr +
9279		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
9280
9281		dhpb.dthpb_mod = dhp->dofhp_mod;
9282		dhpb.dthpb_func = strtab + probe->dofpr_func;
9283		dhpb.dthpb_name = strtab + probe->dofpr_name;
9284		dhpb.dthpb_base = probe->dofpr_addr;
9285		dhpb.dthpb_offs = off + probe->dofpr_offidx;
9286		dhpb.dthpb_noffs = probe->dofpr_noffs;
9287		if (enoff != NULL) {
9288			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
9289			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
9290		} else {
9291			dhpb.dthpb_enoffs = NULL;
9292			dhpb.dthpb_nenoffs = 0;
9293		}
9294		dhpb.dthpb_args = arg + probe->dofpr_argidx;
9295		dhpb.dthpb_nargc = probe->dofpr_nargc;
9296		dhpb.dthpb_xargc = probe->dofpr_xargc;
9297		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
9298		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
9299
9300		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
9301	}
9302}
9303
9304static void
9305dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
9306{
9307	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9308	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9309	int i;
9310
9311	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9312
9313	for (i = 0; i < dof->dofh_secnum; i++) {
9314		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9315		    dof->dofh_secoff + i * dof->dofh_secsize);
9316
9317		if (sec->dofs_type != DOF_SECT_PROVIDER)
9318			continue;
9319
9320		dtrace_helper_provide_one(dhp, sec, pid);
9321	}
9322
9323	/*
9324	 * We may have just created probes, so we must now rematch against
9325	 * any retained enablings.  Note that this call will acquire both
9326	 * cpu_lock and dtrace_lock; the fact that we are holding
9327	 * dtrace_meta_lock now is what defines the ordering with respect to
9328	 * these three locks.
9329	 */
9330	dtrace_enabling_matchall();
9331}
9332
9333static void
9334dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9335{
9336	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9337	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9338	dof_sec_t *str_sec;
9339	dof_provider_t *provider;
9340	char *strtab;
9341	dtrace_helper_provdesc_t dhpv;
9342	dtrace_meta_t *meta = dtrace_meta_pid;
9343	dtrace_mops_t *mops = &meta->dtm_mops;
9344
9345	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9346	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9347	    provider->dofpv_strtab * dof->dofh_secsize);
9348
9349	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9350
9351	/*
9352	 * Create the provider.
9353	 */
9354	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9355
9356	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
9357
9358	meta->dtm_count--;
9359}
9360
9361static void
9362dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
9363{
9364	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9365	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9366	int i;
9367
9368	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9369
9370	for (i = 0; i < dof->dofh_secnum; i++) {
9371		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9372		    dof->dofh_secoff + i * dof->dofh_secsize);
9373
9374		if (sec->dofs_type != DOF_SECT_PROVIDER)
9375			continue;
9376
9377		dtrace_helper_provider_remove_one(dhp, sec, pid);
9378	}
9379}
9380
9381/*
9382 * DTrace Meta Provider-to-Framework API Functions
9383 *
9384 * These functions implement the Meta Provider-to-Framework API, as described
9385 * in <sys/dtrace.h>.
9386 */
9387int
9388dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
9389    dtrace_meta_provider_id_t *idp)
9390{
9391	dtrace_meta_t *meta;
9392	dtrace_helpers_t *help, *next;
9393	int i;
9394
9395	*idp = DTRACE_METAPROVNONE;
9396
9397	/*
9398	 * We strictly don't need the name, but we hold onto it for
9399	 * debuggability. All hail error queues!
9400	 */
9401	if (name == NULL) {
9402		cmn_err(CE_WARN, "failed to register meta-provider: "
9403		    "invalid name");
9404		return (EINVAL);
9405	}
9406
9407	if (mops == NULL ||
9408	    mops->dtms_create_probe == NULL ||
9409	    mops->dtms_provide_pid == NULL ||
9410	    mops->dtms_remove_pid == NULL) {
9411		cmn_err(CE_WARN, "failed to register meta-register %s: "
9412		    "invalid ops", name);
9413		return (EINVAL);
9414	}
9415
9416	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
9417	meta->dtm_mops = *mops;
9418	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
9419	(void) strcpy(meta->dtm_name, name);
9420	meta->dtm_arg = arg;
9421
9422	mutex_enter(&dtrace_meta_lock);
9423	mutex_enter(&dtrace_lock);
9424
9425	if (dtrace_meta_pid != NULL) {
9426		mutex_exit(&dtrace_lock);
9427		mutex_exit(&dtrace_meta_lock);
9428		cmn_err(CE_WARN, "failed to register meta-register %s: "
9429		    "user-land meta-provider exists", name);
9430		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
9431		kmem_free(meta, sizeof (dtrace_meta_t));
9432		return (EINVAL);
9433	}
9434
9435	dtrace_meta_pid = meta;
9436	*idp = (dtrace_meta_provider_id_t)meta;
9437
9438	/*
9439	 * If there are providers and probes ready to go, pass them
9440	 * off to the new meta provider now.
9441	 */
9442
9443	help = dtrace_deferred_pid;
9444	dtrace_deferred_pid = NULL;
9445
9446	mutex_exit(&dtrace_lock);
9447
9448	while (help != NULL) {
9449		for (i = 0; i < help->dthps_nprovs; i++) {
9450			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
9451			    help->dthps_pid);
9452		}
9453
9454		next = help->dthps_next;
9455		help->dthps_next = NULL;
9456		help->dthps_prev = NULL;
9457		help->dthps_deferred = 0;
9458		help = next;
9459	}
9460
9461	mutex_exit(&dtrace_meta_lock);
9462
9463	return (0);
9464}
9465
9466int
9467dtrace_meta_unregister(dtrace_meta_provider_id_t id)
9468{
9469	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
9470
9471	mutex_enter(&dtrace_meta_lock);
9472	mutex_enter(&dtrace_lock);
9473
9474	if (old == dtrace_meta_pid) {
9475		pp = &dtrace_meta_pid;
9476	} else {
9477		panic("attempt to unregister non-existent "
9478		    "dtrace meta-provider %p\n", (void *)old);
9479	}
9480
9481	if (old->dtm_count != 0) {
9482		mutex_exit(&dtrace_lock);
9483		mutex_exit(&dtrace_meta_lock);
9484		return (EBUSY);
9485	}
9486
9487	*pp = NULL;
9488
9489	mutex_exit(&dtrace_lock);
9490	mutex_exit(&dtrace_meta_lock);
9491
9492	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
9493	kmem_free(old, sizeof (dtrace_meta_t));
9494
9495	return (0);
9496}
9497
9498
9499/*
9500 * DTrace DIF Object Functions
9501 */
9502static int
9503dtrace_difo_err(uint_t pc, const char *format, ...)
9504{
9505	if (dtrace_err_verbose) {
9506		va_list alist;
9507
9508		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
9509		va_start(alist, format);
9510		(void) vuprintf(format, alist);
9511		va_end(alist);
9512	}
9513
9514#ifdef DTRACE_ERRDEBUG
9515	dtrace_errdebug(format);
9516#endif
9517	return (1);
9518}
9519
9520/*
9521 * Validate a DTrace DIF object by checking the IR instructions.  The following
9522 * rules are currently enforced by dtrace_difo_validate():
9523 *
9524 * 1. Each instruction must have a valid opcode
9525 * 2. Each register, string, variable, or subroutine reference must be valid
9526 * 3. No instruction can modify register %r0 (must be zero)
9527 * 4. All instruction reserved bits must be set to zero
9528 * 5. The last instruction must be a "ret" instruction
9529 * 6. All branch targets must reference a valid instruction _after_ the branch
9530 */
9531static int
9532dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
9533    cred_t *cr)
9534{
9535	int err = 0, i;
9536	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9537	int kcheckload;
9538	uint_t pc;
9539
9540	kcheckload = cr == NULL ||
9541	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
9542
9543	dp->dtdo_destructive = 0;
9544
9545	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9546		dif_instr_t instr = dp->dtdo_buf[pc];
9547
9548		uint_t r1 = DIF_INSTR_R1(instr);
9549		uint_t r2 = DIF_INSTR_R2(instr);
9550		uint_t rd = DIF_INSTR_RD(instr);
9551		uint_t rs = DIF_INSTR_RS(instr);
9552		uint_t label = DIF_INSTR_LABEL(instr);
9553		uint_t v = DIF_INSTR_VAR(instr);
9554		uint_t subr = DIF_INSTR_SUBR(instr);
9555		uint_t type = DIF_INSTR_TYPE(instr);
9556		uint_t op = DIF_INSTR_OP(instr);
9557
9558		switch (op) {
9559		case DIF_OP_OR:
9560		case DIF_OP_XOR:
9561		case DIF_OP_AND:
9562		case DIF_OP_SLL:
9563		case DIF_OP_SRL:
9564		case DIF_OP_SRA:
9565		case DIF_OP_SUB:
9566		case DIF_OP_ADD:
9567		case DIF_OP_MUL:
9568		case DIF_OP_SDIV:
9569		case DIF_OP_UDIV:
9570		case DIF_OP_SREM:
9571		case DIF_OP_UREM:
9572		case DIF_OP_COPYS:
9573			if (r1 >= nregs)
9574				err += efunc(pc, "invalid register %u\n", r1);
9575			if (r2 >= nregs)
9576				err += efunc(pc, "invalid register %u\n", r2);
9577			if (rd >= nregs)
9578				err += efunc(pc, "invalid register %u\n", rd);
9579			if (rd == 0)
9580				err += efunc(pc, "cannot write to %r0\n");
9581			break;
9582		case DIF_OP_NOT:
9583		case DIF_OP_MOV:
9584		case DIF_OP_ALLOCS:
9585			if (r1 >= nregs)
9586				err += efunc(pc, "invalid register %u\n", r1);
9587			if (r2 != 0)
9588				err += efunc(pc, "non-zero reserved bits\n");
9589			if (rd >= nregs)
9590				err += efunc(pc, "invalid register %u\n", rd);
9591			if (rd == 0)
9592				err += efunc(pc, "cannot write to %r0\n");
9593			break;
9594		case DIF_OP_LDSB:
9595		case DIF_OP_LDSH:
9596		case DIF_OP_LDSW:
9597		case DIF_OP_LDUB:
9598		case DIF_OP_LDUH:
9599		case DIF_OP_LDUW:
9600		case DIF_OP_LDX:
9601			if (r1 >= nregs)
9602				err += efunc(pc, "invalid register %u\n", r1);
9603			if (r2 != 0)
9604				err += efunc(pc, "non-zero reserved bits\n");
9605			if (rd >= nregs)
9606				err += efunc(pc, "invalid register %u\n", rd);
9607			if (rd == 0)
9608				err += efunc(pc, "cannot write to %r0\n");
9609			if (kcheckload)
9610				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9611				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9612			break;
9613		case DIF_OP_RLDSB:
9614		case DIF_OP_RLDSH:
9615		case DIF_OP_RLDSW:
9616		case DIF_OP_RLDUB:
9617		case DIF_OP_RLDUH:
9618		case DIF_OP_RLDUW:
9619		case DIF_OP_RLDX:
9620			if (r1 >= nregs)
9621				err += efunc(pc, "invalid register %u\n", r1);
9622			if (r2 != 0)
9623				err += efunc(pc, "non-zero reserved bits\n");
9624			if (rd >= nregs)
9625				err += efunc(pc, "invalid register %u\n", rd);
9626			if (rd == 0)
9627				err += efunc(pc, "cannot write to %r0\n");
9628			break;
9629		case DIF_OP_ULDSB:
9630		case DIF_OP_ULDSH:
9631		case DIF_OP_ULDSW:
9632		case DIF_OP_ULDUB:
9633		case DIF_OP_ULDUH:
9634		case DIF_OP_ULDUW:
9635		case DIF_OP_ULDX:
9636			if (r1 >= nregs)
9637				err += efunc(pc, "invalid register %u\n", r1);
9638			if (r2 != 0)
9639				err += efunc(pc, "non-zero reserved bits\n");
9640			if (rd >= nregs)
9641				err += efunc(pc, "invalid register %u\n", rd);
9642			if (rd == 0)
9643				err += efunc(pc, "cannot write to %r0\n");
9644			break;
9645		case DIF_OP_STB:
9646		case DIF_OP_STH:
9647		case DIF_OP_STW:
9648		case DIF_OP_STX:
9649			if (r1 >= nregs)
9650				err += efunc(pc, "invalid register %u\n", r1);
9651			if (r2 != 0)
9652				err += efunc(pc, "non-zero reserved bits\n");
9653			if (rd >= nregs)
9654				err += efunc(pc, "invalid register %u\n", rd);
9655			if (rd == 0)
9656				err += efunc(pc, "cannot write to 0 address\n");
9657			break;
9658		case DIF_OP_CMP:
9659		case DIF_OP_SCMP:
9660			if (r1 >= nregs)
9661				err += efunc(pc, "invalid register %u\n", r1);
9662			if (r2 >= nregs)
9663				err += efunc(pc, "invalid register %u\n", r2);
9664			if (rd != 0)
9665				err += efunc(pc, "non-zero reserved bits\n");
9666			break;
9667		case DIF_OP_TST:
9668			if (r1 >= nregs)
9669				err += efunc(pc, "invalid register %u\n", r1);
9670			if (r2 != 0 || rd != 0)
9671				err += efunc(pc, "non-zero reserved bits\n");
9672			break;
9673		case DIF_OP_BA:
9674		case DIF_OP_BE:
9675		case DIF_OP_BNE:
9676		case DIF_OP_BG:
9677		case DIF_OP_BGU:
9678		case DIF_OP_BGE:
9679		case DIF_OP_BGEU:
9680		case DIF_OP_BL:
9681		case DIF_OP_BLU:
9682		case DIF_OP_BLE:
9683		case DIF_OP_BLEU:
9684			if (label >= dp->dtdo_len) {
9685				err += efunc(pc, "invalid branch target %u\n",
9686				    label);
9687			}
9688			if (label <= pc) {
9689				err += efunc(pc, "backward branch to %u\n",
9690				    label);
9691			}
9692			break;
9693		case DIF_OP_RET:
9694			if (r1 != 0 || r2 != 0)
9695				err += efunc(pc, "non-zero reserved bits\n");
9696			if (rd >= nregs)
9697				err += efunc(pc, "invalid register %u\n", rd);
9698			break;
9699		case DIF_OP_NOP:
9700		case DIF_OP_POPTS:
9701		case DIF_OP_FLUSHTS:
9702			if (r1 != 0 || r2 != 0 || rd != 0)
9703				err += efunc(pc, "non-zero reserved bits\n");
9704			break;
9705		case DIF_OP_SETX:
9706			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9707				err += efunc(pc, "invalid integer ref %u\n",
9708				    DIF_INSTR_INTEGER(instr));
9709			}
9710			if (rd >= nregs)
9711				err += efunc(pc, "invalid register %u\n", rd);
9712			if (rd == 0)
9713				err += efunc(pc, "cannot write to %r0\n");
9714			break;
9715		case DIF_OP_SETS:
9716			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9717				err += efunc(pc, "invalid string ref %u\n",
9718				    DIF_INSTR_STRING(instr));
9719			}
9720			if (rd >= nregs)
9721				err += efunc(pc, "invalid register %u\n", rd);
9722			if (rd == 0)
9723				err += efunc(pc, "cannot write to %r0\n");
9724			break;
9725		case DIF_OP_LDGA:
9726		case DIF_OP_LDTA:
9727			if (r1 > DIF_VAR_ARRAY_MAX)
9728				err += efunc(pc, "invalid array %u\n", r1);
9729			if (r2 >= nregs)
9730				err += efunc(pc, "invalid register %u\n", r2);
9731			if (rd >= nregs)
9732				err += efunc(pc, "invalid register %u\n", rd);
9733			if (rd == 0)
9734				err += efunc(pc, "cannot write to %r0\n");
9735			break;
9736		case DIF_OP_LDGS:
9737		case DIF_OP_LDTS:
9738		case DIF_OP_LDLS:
9739		case DIF_OP_LDGAA:
9740		case DIF_OP_LDTAA:
9741			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9742				err += efunc(pc, "invalid variable %u\n", v);
9743			if (rd >= nregs)
9744				err += efunc(pc, "invalid register %u\n", rd);
9745			if (rd == 0)
9746				err += efunc(pc, "cannot write to %r0\n");
9747			break;
9748		case DIF_OP_STGS:
9749		case DIF_OP_STTS:
9750		case DIF_OP_STLS:
9751		case DIF_OP_STGAA:
9752		case DIF_OP_STTAA:
9753			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
9754				err += efunc(pc, "invalid variable %u\n", v);
9755			if (rs >= nregs)
9756				err += efunc(pc, "invalid register %u\n", rd);
9757			break;
9758		case DIF_OP_CALL:
9759			if (subr > DIF_SUBR_MAX)
9760				err += efunc(pc, "invalid subr %u\n", subr);
9761			if (rd >= nregs)
9762				err += efunc(pc, "invalid register %u\n", rd);
9763			if (rd == 0)
9764				err += efunc(pc, "cannot write to %r0\n");
9765
9766			if (subr == DIF_SUBR_COPYOUT ||
9767			    subr == DIF_SUBR_COPYOUTSTR) {
9768				dp->dtdo_destructive = 1;
9769			}
9770
9771			if (subr == DIF_SUBR_GETF) {
9772				/*
9773				 * If we have a getf() we need to record that
9774				 * in our state.  Note that our state can be
9775				 * NULL if this is a helper -- but in that
9776				 * case, the call to getf() is itself illegal,
9777				 * and will be caught (slightly later) when
9778				 * the helper is validated.
9779				 */
9780				if (vstate->dtvs_state != NULL)
9781					vstate->dtvs_state->dts_getf++;
9782			}
9783
9784			break;
9785		case DIF_OP_PUSHTR:
9786			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
9787				err += efunc(pc, "invalid ref type %u\n", type);
9788			if (r2 >= nregs)
9789				err += efunc(pc, "invalid register %u\n", r2);
9790			if (rs >= nregs)
9791				err += efunc(pc, "invalid register %u\n", rs);
9792			break;
9793		case DIF_OP_PUSHTV:
9794			if (type != DIF_TYPE_CTF)
9795				err += efunc(pc, "invalid val type %u\n", type);
9796			if (r2 >= nregs)
9797				err += efunc(pc, "invalid register %u\n", r2);
9798			if (rs >= nregs)
9799				err += efunc(pc, "invalid register %u\n", rs);
9800			break;
9801		default:
9802			err += efunc(pc, "invalid opcode %u\n",
9803			    DIF_INSTR_OP(instr));
9804		}
9805	}
9806
9807	if (dp->dtdo_len != 0 &&
9808	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
9809		err += efunc(dp->dtdo_len - 1,
9810		    "expected 'ret' as last DIF instruction\n");
9811	}
9812
9813	if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
9814		/*
9815		 * If we're not returning by reference, the size must be either
9816		 * 0 or the size of one of the base types.
9817		 */
9818		switch (dp->dtdo_rtype.dtdt_size) {
9819		case 0:
9820		case sizeof (uint8_t):
9821		case sizeof (uint16_t):
9822		case sizeof (uint32_t):
9823		case sizeof (uint64_t):
9824			break;
9825
9826		default:
9827			err += efunc(dp->dtdo_len - 1, "bad return size\n");
9828		}
9829	}
9830
9831	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
9832		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
9833		dtrace_diftype_t *vt, *et;
9834		uint_t id, ndx;
9835
9836		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
9837		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
9838		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
9839			err += efunc(i, "unrecognized variable scope %d\n",
9840			    v->dtdv_scope);
9841			break;
9842		}
9843
9844		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
9845		    v->dtdv_kind != DIFV_KIND_SCALAR) {
9846			err += efunc(i, "unrecognized variable type %d\n",
9847			    v->dtdv_kind);
9848			break;
9849		}
9850
9851		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
9852			err += efunc(i, "%d exceeds variable id limit\n", id);
9853			break;
9854		}
9855
9856		if (id < DIF_VAR_OTHER_UBASE)
9857			continue;
9858
9859		/*
9860		 * For user-defined variables, we need to check that this
9861		 * definition is identical to any previous definition that we
9862		 * encountered.
9863		 */
9864		ndx = id - DIF_VAR_OTHER_UBASE;
9865
9866		switch (v->dtdv_scope) {
9867		case DIFV_SCOPE_GLOBAL:
9868			if (ndx < vstate->dtvs_nglobals) {
9869				dtrace_statvar_t *svar;
9870
9871				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
9872					existing = &svar->dtsv_var;
9873			}
9874
9875			break;
9876
9877		case DIFV_SCOPE_THREAD:
9878			if (ndx < vstate->dtvs_ntlocals)
9879				existing = &vstate->dtvs_tlocals[ndx];
9880			break;
9881
9882		case DIFV_SCOPE_LOCAL:
9883			if (ndx < vstate->dtvs_nlocals) {
9884				dtrace_statvar_t *svar;
9885
9886				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
9887					existing = &svar->dtsv_var;
9888			}
9889
9890			break;
9891		}
9892
9893		vt = &v->dtdv_type;
9894
9895		if (vt->dtdt_flags & DIF_TF_BYREF) {
9896			if (vt->dtdt_size == 0) {
9897				err += efunc(i, "zero-sized variable\n");
9898				break;
9899			}
9900
9901			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
9902			    vt->dtdt_size > dtrace_global_maxsize) {
9903				err += efunc(i, "oversized by-ref global\n");
9904				break;
9905			}
9906		}
9907
9908		if (existing == NULL || existing->dtdv_id == 0)
9909			continue;
9910
9911		ASSERT(existing->dtdv_id == v->dtdv_id);
9912		ASSERT(existing->dtdv_scope == v->dtdv_scope);
9913
9914		if (existing->dtdv_kind != v->dtdv_kind)
9915			err += efunc(i, "%d changed variable kind\n", id);
9916
9917		et = &existing->dtdv_type;
9918
9919		if (vt->dtdt_flags != et->dtdt_flags) {
9920			err += efunc(i, "%d changed variable type flags\n", id);
9921			break;
9922		}
9923
9924		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
9925			err += efunc(i, "%d changed variable type size\n", id);
9926			break;
9927		}
9928	}
9929
9930	return (err);
9931}
9932
9933/*
9934 * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
9935 * are much more constrained than normal DIFOs.  Specifically, they may
9936 * not:
9937 *
9938 * 1. Make calls to subroutines other than copyin(), copyinstr() or
9939 *    miscellaneous string routines
9940 * 2. Access DTrace variables other than the args[] array, and the
9941 *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
9942 * 3. Have thread-local variables.
9943 * 4. Have dynamic variables.
9944 */
9945static int
9946dtrace_difo_validate_helper(dtrace_difo_t *dp)
9947{
9948	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9949	int err = 0;
9950	uint_t pc;
9951
9952	for (pc = 0; pc < dp->dtdo_len; pc++) {
9953		dif_instr_t instr = dp->dtdo_buf[pc];
9954
9955		uint_t v = DIF_INSTR_VAR(instr);
9956		uint_t subr = DIF_INSTR_SUBR(instr);
9957		uint_t op = DIF_INSTR_OP(instr);
9958
9959		switch (op) {
9960		case DIF_OP_OR:
9961		case DIF_OP_XOR:
9962		case DIF_OP_AND:
9963		case DIF_OP_SLL:
9964		case DIF_OP_SRL:
9965		case DIF_OP_SRA:
9966		case DIF_OP_SUB:
9967		case DIF_OP_ADD:
9968		case DIF_OP_MUL:
9969		case DIF_OP_SDIV:
9970		case DIF_OP_UDIV:
9971		case DIF_OP_SREM:
9972		case DIF_OP_UREM:
9973		case DIF_OP_COPYS:
9974		case DIF_OP_NOT:
9975		case DIF_OP_MOV:
9976		case DIF_OP_RLDSB:
9977		case DIF_OP_RLDSH:
9978		case DIF_OP_RLDSW:
9979		case DIF_OP_RLDUB:
9980		case DIF_OP_RLDUH:
9981		case DIF_OP_RLDUW:
9982		case DIF_OP_RLDX:
9983		case DIF_OP_ULDSB:
9984		case DIF_OP_ULDSH:
9985		case DIF_OP_ULDSW:
9986		case DIF_OP_ULDUB:
9987		case DIF_OP_ULDUH:
9988		case DIF_OP_ULDUW:
9989		case DIF_OP_ULDX:
9990		case DIF_OP_STB:
9991		case DIF_OP_STH:
9992		case DIF_OP_STW:
9993		case DIF_OP_STX:
9994		case DIF_OP_ALLOCS:
9995		case DIF_OP_CMP:
9996		case DIF_OP_SCMP:
9997		case DIF_OP_TST:
9998		case DIF_OP_BA:
9999		case DIF_OP_BE:
10000		case DIF_OP_BNE:
10001		case DIF_OP_BG:
10002		case DIF_OP_BGU:
10003		case DIF_OP_BGE:
10004		case DIF_OP_BGEU:
10005		case DIF_OP_BL:
10006		case DIF_OP_BLU:
10007		case DIF_OP_BLE:
10008		case DIF_OP_BLEU:
10009		case DIF_OP_RET:
10010		case DIF_OP_NOP:
10011		case DIF_OP_POPTS:
10012		case DIF_OP_FLUSHTS:
10013		case DIF_OP_SETX:
10014		case DIF_OP_SETS:
10015		case DIF_OP_LDGA:
10016		case DIF_OP_LDLS:
10017		case DIF_OP_STGS:
10018		case DIF_OP_STLS:
10019		case DIF_OP_PUSHTR:
10020		case DIF_OP_PUSHTV:
10021			break;
10022
10023		case DIF_OP_LDGS:
10024			if (v >= DIF_VAR_OTHER_UBASE)
10025				break;
10026
10027			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
10028				break;
10029
10030			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
10031			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
10032			    v == DIF_VAR_EXECARGS ||
10033			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
10034			    v == DIF_VAR_UID || v == DIF_VAR_GID)
10035				break;
10036
10037			err += efunc(pc, "illegal variable %u\n", v);
10038			break;
10039
10040		case DIF_OP_LDTA:
10041		case DIF_OP_LDTS:
10042		case DIF_OP_LDGAA:
10043		case DIF_OP_LDTAA:
10044			err += efunc(pc, "illegal dynamic variable load\n");
10045			break;
10046
10047		case DIF_OP_STTS:
10048		case DIF_OP_STGAA:
10049		case DIF_OP_STTAA:
10050			err += efunc(pc, "illegal dynamic variable store\n");
10051			break;
10052
10053		case DIF_OP_CALL:
10054			if (subr == DIF_SUBR_ALLOCA ||
10055			    subr == DIF_SUBR_BCOPY ||
10056			    subr == DIF_SUBR_COPYIN ||
10057			    subr == DIF_SUBR_COPYINTO ||
10058			    subr == DIF_SUBR_COPYINSTR ||
10059			    subr == DIF_SUBR_INDEX ||
10060			    subr == DIF_SUBR_INET_NTOA ||
10061			    subr == DIF_SUBR_INET_NTOA6 ||
10062			    subr == DIF_SUBR_INET_NTOP ||
10063			    subr == DIF_SUBR_JSON ||
10064			    subr == DIF_SUBR_LLTOSTR ||
10065			    subr == DIF_SUBR_STRTOLL ||
10066			    subr == DIF_SUBR_RINDEX ||
10067			    subr == DIF_SUBR_STRCHR ||
10068			    subr == DIF_SUBR_STRJOIN ||
10069			    subr == DIF_SUBR_STRRCHR ||
10070			    subr == DIF_SUBR_STRSTR ||
10071			    subr == DIF_SUBR_HTONS ||
10072			    subr == DIF_SUBR_HTONL ||
10073			    subr == DIF_SUBR_HTONLL ||
10074			    subr == DIF_SUBR_NTOHS ||
10075			    subr == DIF_SUBR_NTOHL ||
10076			    subr == DIF_SUBR_NTOHLL ||
10077			    subr == DIF_SUBR_MEMREF ||
10078#if !defined(sun)
10079			    subr == DIF_SUBR_MEMSTR ||
10080#endif
10081			    subr == DIF_SUBR_TYPEREF)
10082				break;
10083
10084			err += efunc(pc, "invalid subr %u\n", subr);
10085			break;
10086
10087		default:
10088			err += efunc(pc, "invalid opcode %u\n",
10089			    DIF_INSTR_OP(instr));
10090		}
10091	}
10092
10093	return (err);
10094}
10095
10096/*
10097 * Returns 1 if the expression in the DIF object can be cached on a per-thread
10098 * basis; 0 if not.
10099 */
10100static int
10101dtrace_difo_cacheable(dtrace_difo_t *dp)
10102{
10103	int i;
10104
10105	if (dp == NULL)
10106		return (0);
10107
10108	for (i = 0; i < dp->dtdo_varlen; i++) {
10109		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10110
10111		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
10112			continue;
10113
10114		switch (v->dtdv_id) {
10115		case DIF_VAR_CURTHREAD:
10116		case DIF_VAR_PID:
10117		case DIF_VAR_TID:
10118		case DIF_VAR_EXECARGS:
10119		case DIF_VAR_EXECNAME:
10120		case DIF_VAR_ZONENAME:
10121			break;
10122
10123		default:
10124			return (0);
10125		}
10126	}
10127
10128	/*
10129	 * This DIF object may be cacheable.  Now we need to look for any
10130	 * array loading instructions, any memory loading instructions, or
10131	 * any stores to thread-local variables.
10132	 */
10133	for (i = 0; i < dp->dtdo_len; i++) {
10134		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
10135
10136		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
10137		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
10138		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
10139		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
10140			return (0);
10141	}
10142
10143	return (1);
10144}
10145
10146static void
10147dtrace_difo_hold(dtrace_difo_t *dp)
10148{
10149	int i;
10150
10151	ASSERT(MUTEX_HELD(&dtrace_lock));
10152
10153	dp->dtdo_refcnt++;
10154	ASSERT(dp->dtdo_refcnt != 0);
10155
10156	/*
10157	 * We need to check this DIF object for references to the variable
10158	 * DIF_VAR_VTIMESTAMP.
10159	 */
10160	for (i = 0; i < dp->dtdo_varlen; i++) {
10161		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10162
10163		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10164			continue;
10165
10166		if (dtrace_vtime_references++ == 0)
10167			dtrace_vtime_enable();
10168	}
10169}
10170
10171/*
10172 * This routine calculates the dynamic variable chunksize for a given DIF
10173 * object.  The calculation is not fool-proof, and can probably be tricked by
10174 * malicious DIF -- but it works for all compiler-generated DIF.  Because this
10175 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
10176 * if a dynamic variable size exceeds the chunksize.
10177 */
10178static void
10179dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10180{
10181	uint64_t sval = 0;
10182	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
10183	const dif_instr_t *text = dp->dtdo_buf;
10184	uint_t pc, srd = 0;
10185	uint_t ttop = 0;
10186	size_t size, ksize;
10187	uint_t id, i;
10188
10189	for (pc = 0; pc < dp->dtdo_len; pc++) {
10190		dif_instr_t instr = text[pc];
10191		uint_t op = DIF_INSTR_OP(instr);
10192		uint_t rd = DIF_INSTR_RD(instr);
10193		uint_t r1 = DIF_INSTR_R1(instr);
10194		uint_t nkeys = 0;
10195		uchar_t scope = 0;
10196
10197		dtrace_key_t *key = tupregs;
10198
10199		switch (op) {
10200		case DIF_OP_SETX:
10201			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
10202			srd = rd;
10203			continue;
10204
10205		case DIF_OP_STTS:
10206			key = &tupregs[DIF_DTR_NREGS];
10207			key[0].dttk_size = 0;
10208			key[1].dttk_size = 0;
10209			nkeys = 2;
10210			scope = DIFV_SCOPE_THREAD;
10211			break;
10212
10213		case DIF_OP_STGAA:
10214		case DIF_OP_STTAA:
10215			nkeys = ttop;
10216
10217			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
10218				key[nkeys++].dttk_size = 0;
10219
10220			key[nkeys++].dttk_size = 0;
10221
10222			if (op == DIF_OP_STTAA) {
10223				scope = DIFV_SCOPE_THREAD;
10224			} else {
10225				scope = DIFV_SCOPE_GLOBAL;
10226			}
10227
10228			break;
10229
10230		case DIF_OP_PUSHTR:
10231			if (ttop == DIF_DTR_NREGS)
10232				return;
10233
10234			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
10235				/*
10236				 * If the register for the size of the "pushtr"
10237				 * is %r0 (or the value is 0) and the type is
10238				 * a string, we'll use the system-wide default
10239				 * string size.
10240				 */
10241				tupregs[ttop++].dttk_size =
10242				    dtrace_strsize_default;
10243			} else {
10244				if (srd == 0)
10245					return;
10246
10247				tupregs[ttop++].dttk_size = sval;
10248			}
10249
10250			break;
10251
10252		case DIF_OP_PUSHTV:
10253			if (ttop == DIF_DTR_NREGS)
10254				return;
10255
10256			tupregs[ttop++].dttk_size = 0;
10257			break;
10258
10259		case DIF_OP_FLUSHTS:
10260			ttop = 0;
10261			break;
10262
10263		case DIF_OP_POPTS:
10264			if (ttop != 0)
10265				ttop--;
10266			break;
10267		}
10268
10269		sval = 0;
10270		srd = 0;
10271
10272		if (nkeys == 0)
10273			continue;
10274
10275		/*
10276		 * We have a dynamic variable allocation; calculate its size.
10277		 */
10278		for (ksize = 0, i = 0; i < nkeys; i++)
10279			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
10280
10281		size = sizeof (dtrace_dynvar_t);
10282		size += sizeof (dtrace_key_t) * (nkeys - 1);
10283		size += ksize;
10284
10285		/*
10286		 * Now we need to determine the size of the stored data.
10287		 */
10288		id = DIF_INSTR_VAR(instr);
10289
10290		for (i = 0; i < dp->dtdo_varlen; i++) {
10291			dtrace_difv_t *v = &dp->dtdo_vartab[i];
10292
10293			if (v->dtdv_id == id && v->dtdv_scope == scope) {
10294				size += v->dtdv_type.dtdt_size;
10295				break;
10296			}
10297		}
10298
10299		if (i == dp->dtdo_varlen)
10300			return;
10301
10302		/*
10303		 * We have the size.  If this is larger than the chunk size
10304		 * for our dynamic variable state, reset the chunk size.
10305		 */
10306		size = P2ROUNDUP(size, sizeof (uint64_t));
10307
10308		if (size > vstate->dtvs_dynvars.dtds_chunksize)
10309			vstate->dtvs_dynvars.dtds_chunksize = size;
10310	}
10311}
10312
10313static void
10314dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10315{
10316	int i, oldsvars, osz, nsz, otlocals, ntlocals;
10317	uint_t id;
10318
10319	ASSERT(MUTEX_HELD(&dtrace_lock));
10320	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
10321
10322	for (i = 0; i < dp->dtdo_varlen; i++) {
10323		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10324		dtrace_statvar_t *svar, ***svarp = NULL;
10325		size_t dsize = 0;
10326		uint8_t scope = v->dtdv_scope;
10327		int *np = NULL;
10328
10329		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10330			continue;
10331
10332		id -= DIF_VAR_OTHER_UBASE;
10333
10334		switch (scope) {
10335		case DIFV_SCOPE_THREAD:
10336			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
10337				dtrace_difv_t *tlocals;
10338
10339				if ((ntlocals = (otlocals << 1)) == 0)
10340					ntlocals = 1;
10341
10342				osz = otlocals * sizeof (dtrace_difv_t);
10343				nsz = ntlocals * sizeof (dtrace_difv_t);
10344
10345				tlocals = kmem_zalloc(nsz, KM_SLEEP);
10346
10347				if (osz != 0) {
10348					bcopy(vstate->dtvs_tlocals,
10349					    tlocals, osz);
10350					kmem_free(vstate->dtvs_tlocals, osz);
10351				}
10352
10353				vstate->dtvs_tlocals = tlocals;
10354				vstate->dtvs_ntlocals = ntlocals;
10355			}
10356
10357			vstate->dtvs_tlocals[id] = *v;
10358			continue;
10359
10360		case DIFV_SCOPE_LOCAL:
10361			np = &vstate->dtvs_nlocals;
10362			svarp = &vstate->dtvs_locals;
10363
10364			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10365				dsize = NCPU * (v->dtdv_type.dtdt_size +
10366				    sizeof (uint64_t));
10367			else
10368				dsize = NCPU * sizeof (uint64_t);
10369
10370			break;
10371
10372		case DIFV_SCOPE_GLOBAL:
10373			np = &vstate->dtvs_nglobals;
10374			svarp = &vstate->dtvs_globals;
10375
10376			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10377				dsize = v->dtdv_type.dtdt_size +
10378				    sizeof (uint64_t);
10379
10380			break;
10381
10382		default:
10383			ASSERT(0);
10384		}
10385
10386		while (id >= (oldsvars = *np)) {
10387			dtrace_statvar_t **statics;
10388			int newsvars, oldsize, newsize;
10389
10390			if ((newsvars = (oldsvars << 1)) == 0)
10391				newsvars = 1;
10392
10393			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
10394			newsize = newsvars * sizeof (dtrace_statvar_t *);
10395
10396			statics = kmem_zalloc(newsize, KM_SLEEP);
10397
10398			if (oldsize != 0) {
10399				bcopy(*svarp, statics, oldsize);
10400				kmem_free(*svarp, oldsize);
10401			}
10402
10403			*svarp = statics;
10404			*np = newsvars;
10405		}
10406
10407		if ((svar = (*svarp)[id]) == NULL) {
10408			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
10409			svar->dtsv_var = *v;
10410
10411			if ((svar->dtsv_size = dsize) != 0) {
10412				svar->dtsv_data = (uint64_t)(uintptr_t)
10413				    kmem_zalloc(dsize, KM_SLEEP);
10414			}
10415
10416			(*svarp)[id] = svar;
10417		}
10418
10419		svar->dtsv_refcnt++;
10420	}
10421
10422	dtrace_difo_chunksize(dp, vstate);
10423	dtrace_difo_hold(dp);
10424}
10425
10426static dtrace_difo_t *
10427dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10428{
10429	dtrace_difo_t *new;
10430	size_t sz;
10431
10432	ASSERT(dp->dtdo_buf != NULL);
10433	ASSERT(dp->dtdo_refcnt != 0);
10434
10435	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10436
10437	ASSERT(dp->dtdo_buf != NULL);
10438	sz = dp->dtdo_len * sizeof (dif_instr_t);
10439	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
10440	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
10441	new->dtdo_len = dp->dtdo_len;
10442
10443	if (dp->dtdo_strtab != NULL) {
10444		ASSERT(dp->dtdo_strlen != 0);
10445		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
10446		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
10447		new->dtdo_strlen = dp->dtdo_strlen;
10448	}
10449
10450	if (dp->dtdo_inttab != NULL) {
10451		ASSERT(dp->dtdo_intlen != 0);
10452		sz = dp->dtdo_intlen * sizeof (uint64_t);
10453		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
10454		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
10455		new->dtdo_intlen = dp->dtdo_intlen;
10456	}
10457
10458	if (dp->dtdo_vartab != NULL) {
10459		ASSERT(dp->dtdo_varlen != 0);
10460		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
10461		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
10462		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
10463		new->dtdo_varlen = dp->dtdo_varlen;
10464	}
10465
10466	dtrace_difo_init(new, vstate);
10467	return (new);
10468}
10469
10470static void
10471dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10472{
10473	int i;
10474
10475	ASSERT(dp->dtdo_refcnt == 0);
10476
10477	for (i = 0; i < dp->dtdo_varlen; i++) {
10478		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10479		dtrace_statvar_t *svar, **svarp = NULL;
10480		uint_t id;
10481		uint8_t scope = v->dtdv_scope;
10482		int *np = NULL;
10483
10484		switch (scope) {
10485		case DIFV_SCOPE_THREAD:
10486			continue;
10487
10488		case DIFV_SCOPE_LOCAL:
10489			np = &vstate->dtvs_nlocals;
10490			svarp = vstate->dtvs_locals;
10491			break;
10492
10493		case DIFV_SCOPE_GLOBAL:
10494			np = &vstate->dtvs_nglobals;
10495			svarp = vstate->dtvs_globals;
10496			break;
10497
10498		default:
10499			ASSERT(0);
10500		}
10501
10502		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10503			continue;
10504
10505		id -= DIF_VAR_OTHER_UBASE;
10506		ASSERT(id < *np);
10507
10508		svar = svarp[id];
10509		ASSERT(svar != NULL);
10510		ASSERT(svar->dtsv_refcnt > 0);
10511
10512		if (--svar->dtsv_refcnt > 0)
10513			continue;
10514
10515		if (svar->dtsv_size != 0) {
10516			ASSERT(svar->dtsv_data != 0);
10517			kmem_free((void *)(uintptr_t)svar->dtsv_data,
10518			    svar->dtsv_size);
10519		}
10520
10521		kmem_free(svar, sizeof (dtrace_statvar_t));
10522		svarp[id] = NULL;
10523	}
10524
10525	if (dp->dtdo_buf != NULL)
10526		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10527	if (dp->dtdo_inttab != NULL)
10528		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10529	if (dp->dtdo_strtab != NULL)
10530		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10531	if (dp->dtdo_vartab != NULL)
10532		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10533
10534	kmem_free(dp, sizeof (dtrace_difo_t));
10535}
10536
10537static void
10538dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10539{
10540	int i;
10541
10542	ASSERT(MUTEX_HELD(&dtrace_lock));
10543	ASSERT(dp->dtdo_refcnt != 0);
10544
10545	for (i = 0; i < dp->dtdo_varlen; i++) {
10546		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10547
10548		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10549			continue;
10550
10551		ASSERT(dtrace_vtime_references > 0);
10552		if (--dtrace_vtime_references == 0)
10553			dtrace_vtime_disable();
10554	}
10555
10556	if (--dp->dtdo_refcnt == 0)
10557		dtrace_difo_destroy(dp, vstate);
10558}
10559
10560/*
10561 * DTrace Format Functions
10562 */
10563static uint16_t
10564dtrace_format_add(dtrace_state_t *state, char *str)
10565{
10566	char *fmt, **new;
10567	uint16_t ndx, len = strlen(str) + 1;
10568
10569	fmt = kmem_zalloc(len, KM_SLEEP);
10570	bcopy(str, fmt, len);
10571
10572	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10573		if (state->dts_formats[ndx] == NULL) {
10574			state->dts_formats[ndx] = fmt;
10575			return (ndx + 1);
10576		}
10577	}
10578
10579	if (state->dts_nformats == USHRT_MAX) {
10580		/*
10581		 * This is only likely if a denial-of-service attack is being
10582		 * attempted.  As such, it's okay to fail silently here.
10583		 */
10584		kmem_free(fmt, len);
10585		return (0);
10586	}
10587
10588	/*
10589	 * For simplicity, we always resize the formats array to be exactly the
10590	 * number of formats.
10591	 */
10592	ndx = state->dts_nformats++;
10593	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10594
10595	if (state->dts_formats != NULL) {
10596		ASSERT(ndx != 0);
10597		bcopy(state->dts_formats, new, ndx * sizeof (char *));
10598		kmem_free(state->dts_formats, ndx * sizeof (char *));
10599	}
10600
10601	state->dts_formats = new;
10602	state->dts_formats[ndx] = fmt;
10603
10604	return (ndx + 1);
10605}
10606
10607static void
10608dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10609{
10610	char *fmt;
10611
10612	ASSERT(state->dts_formats != NULL);
10613	ASSERT(format <= state->dts_nformats);
10614	ASSERT(state->dts_formats[format - 1] != NULL);
10615
10616	fmt = state->dts_formats[format - 1];
10617	kmem_free(fmt, strlen(fmt) + 1);
10618	state->dts_formats[format - 1] = NULL;
10619}
10620
10621static void
10622dtrace_format_destroy(dtrace_state_t *state)
10623{
10624	int i;
10625
10626	if (state->dts_nformats == 0) {
10627		ASSERT(state->dts_formats == NULL);
10628		return;
10629	}
10630
10631	ASSERT(state->dts_formats != NULL);
10632
10633	for (i = 0; i < state->dts_nformats; i++) {
10634		char *fmt = state->dts_formats[i];
10635
10636		if (fmt == NULL)
10637			continue;
10638
10639		kmem_free(fmt, strlen(fmt) + 1);
10640	}
10641
10642	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10643	state->dts_nformats = 0;
10644	state->dts_formats = NULL;
10645}
10646
10647/*
10648 * DTrace Predicate Functions
10649 */
10650static dtrace_predicate_t *
10651dtrace_predicate_create(dtrace_difo_t *dp)
10652{
10653	dtrace_predicate_t *pred;
10654
10655	ASSERT(MUTEX_HELD(&dtrace_lock));
10656	ASSERT(dp->dtdo_refcnt != 0);
10657
10658	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10659	pred->dtp_difo = dp;
10660	pred->dtp_refcnt = 1;
10661
10662	if (!dtrace_difo_cacheable(dp))
10663		return (pred);
10664
10665	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10666		/*
10667		 * This is only theoretically possible -- we have had 2^32
10668		 * cacheable predicates on this machine.  We cannot allow any
10669		 * more predicates to become cacheable:  as unlikely as it is,
10670		 * there may be a thread caching a (now stale) predicate cache
10671		 * ID. (N.B.: the temptation is being successfully resisted to
10672		 * have this cmn_err() "Holy shit -- we executed this code!")
10673		 */
10674		return (pred);
10675	}
10676
10677	pred->dtp_cacheid = dtrace_predcache_id++;
10678
10679	return (pred);
10680}
10681
10682static void
10683dtrace_predicate_hold(dtrace_predicate_t *pred)
10684{
10685	ASSERT(MUTEX_HELD(&dtrace_lock));
10686	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
10687	ASSERT(pred->dtp_refcnt > 0);
10688
10689	pred->dtp_refcnt++;
10690}
10691
10692static void
10693dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
10694{
10695	dtrace_difo_t *dp = pred->dtp_difo;
10696
10697	ASSERT(MUTEX_HELD(&dtrace_lock));
10698	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
10699	ASSERT(pred->dtp_refcnt > 0);
10700
10701	if (--pred->dtp_refcnt == 0) {
10702		dtrace_difo_release(pred->dtp_difo, vstate);
10703		kmem_free(pred, sizeof (dtrace_predicate_t));
10704	}
10705}
10706
10707/*
10708 * DTrace Action Description Functions
10709 */
10710static dtrace_actdesc_t *
10711dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
10712    uint64_t uarg, uint64_t arg)
10713{
10714	dtrace_actdesc_t *act;
10715
10716#if defined(sun)
10717	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
10718	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
10719#endif
10720
10721	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
10722	act->dtad_kind = kind;
10723	act->dtad_ntuple = ntuple;
10724	act->dtad_uarg = uarg;
10725	act->dtad_arg = arg;
10726	act->dtad_refcnt = 1;
10727
10728	return (act);
10729}
10730
10731static void
10732dtrace_actdesc_hold(dtrace_actdesc_t *act)
10733{
10734	ASSERT(act->dtad_refcnt >= 1);
10735	act->dtad_refcnt++;
10736}
10737
10738static void
10739dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
10740{
10741	dtrace_actkind_t kind = act->dtad_kind;
10742	dtrace_difo_t *dp;
10743
10744	ASSERT(act->dtad_refcnt >= 1);
10745
10746	if (--act->dtad_refcnt != 0)
10747		return;
10748
10749	if ((dp = act->dtad_difo) != NULL)
10750		dtrace_difo_release(dp, vstate);
10751
10752	if (DTRACEACT_ISPRINTFLIKE(kind)) {
10753		char *str = (char *)(uintptr_t)act->dtad_arg;
10754
10755#if defined(sun)
10756		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
10757		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
10758#endif
10759
10760		if (str != NULL)
10761			kmem_free(str, strlen(str) + 1);
10762	}
10763
10764	kmem_free(act, sizeof (dtrace_actdesc_t));
10765}
10766
10767/*
10768 * DTrace ECB Functions
10769 */
10770static dtrace_ecb_t *
10771dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
10772{
10773	dtrace_ecb_t *ecb;
10774	dtrace_epid_t epid;
10775
10776	ASSERT(MUTEX_HELD(&dtrace_lock));
10777
10778	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
10779	ecb->dte_predicate = NULL;
10780	ecb->dte_probe = probe;
10781
10782	/*
10783	 * The default size is the size of the default action: recording
10784	 * the header.
10785	 */
10786	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
10787	ecb->dte_alignment = sizeof (dtrace_epid_t);
10788
10789	epid = state->dts_epid++;
10790
10791	if (epid - 1 >= state->dts_necbs) {
10792		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
10793		int necbs = state->dts_necbs << 1;
10794
10795		ASSERT(epid == state->dts_necbs + 1);
10796
10797		if (necbs == 0) {
10798			ASSERT(oecbs == NULL);
10799			necbs = 1;
10800		}
10801
10802		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
10803
10804		if (oecbs != NULL)
10805			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
10806
10807		dtrace_membar_producer();
10808		state->dts_ecbs = ecbs;
10809
10810		if (oecbs != NULL) {
10811			/*
10812			 * If this state is active, we must dtrace_sync()
10813			 * before we can free the old dts_ecbs array:  we're
10814			 * coming in hot, and there may be active ring
10815			 * buffer processing (which indexes into the dts_ecbs
10816			 * array) on another CPU.
10817			 */
10818			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
10819				dtrace_sync();
10820
10821			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
10822		}
10823
10824		dtrace_membar_producer();
10825		state->dts_necbs = necbs;
10826	}
10827
10828	ecb->dte_state = state;
10829
10830	ASSERT(state->dts_ecbs[epid - 1] == NULL);
10831	dtrace_membar_producer();
10832	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
10833
10834	return (ecb);
10835}
10836
10837static void
10838dtrace_ecb_enable(dtrace_ecb_t *ecb)
10839{
10840	dtrace_probe_t *probe = ecb->dte_probe;
10841
10842	ASSERT(MUTEX_HELD(&cpu_lock));
10843	ASSERT(MUTEX_HELD(&dtrace_lock));
10844	ASSERT(ecb->dte_next == NULL);
10845
10846	if (probe == NULL) {
10847		/*
10848		 * This is the NULL probe -- there's nothing to do.
10849		 */
10850		return;
10851	}
10852
10853	if (probe->dtpr_ecb == NULL) {
10854		dtrace_provider_t *prov = probe->dtpr_provider;
10855
10856		/*
10857		 * We're the first ECB on this probe.
10858		 */
10859		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
10860
10861		if (ecb->dte_predicate != NULL)
10862			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
10863
10864		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
10865		    probe->dtpr_id, probe->dtpr_arg);
10866	} else {
10867		/*
10868		 * This probe is already active.  Swing the last pointer to
10869		 * point to the new ECB, and issue a dtrace_sync() to assure
10870		 * that all CPUs have seen the change.
10871		 */
10872		ASSERT(probe->dtpr_ecb_last != NULL);
10873		probe->dtpr_ecb_last->dte_next = ecb;
10874		probe->dtpr_ecb_last = ecb;
10875		probe->dtpr_predcache = 0;
10876
10877		dtrace_sync();
10878	}
10879}
10880
10881static void
10882dtrace_ecb_resize(dtrace_ecb_t *ecb)
10883{
10884	dtrace_action_t *act;
10885	uint32_t curneeded = UINT32_MAX;
10886	uint32_t aggbase = UINT32_MAX;
10887
10888	/*
10889	 * If we record anything, we always record the dtrace_rechdr_t.  (And
10890	 * we always record it first.)
10891	 */
10892	ecb->dte_size = sizeof (dtrace_rechdr_t);
10893	ecb->dte_alignment = sizeof (dtrace_epid_t);
10894
10895	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10896		dtrace_recdesc_t *rec = &act->dta_rec;
10897		ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
10898
10899		ecb->dte_alignment = MAX(ecb->dte_alignment,
10900		    rec->dtrd_alignment);
10901
10902		if (DTRACEACT_ISAGG(act->dta_kind)) {
10903			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10904
10905			ASSERT(rec->dtrd_size != 0);
10906			ASSERT(agg->dtag_first != NULL);
10907			ASSERT(act->dta_prev->dta_intuple);
10908			ASSERT(aggbase != UINT32_MAX);
10909			ASSERT(curneeded != UINT32_MAX);
10910
10911			agg->dtag_base = aggbase;
10912
10913			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10914			rec->dtrd_offset = curneeded;
10915			curneeded += rec->dtrd_size;
10916			ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
10917
10918			aggbase = UINT32_MAX;
10919			curneeded = UINT32_MAX;
10920		} else if (act->dta_intuple) {
10921			if (curneeded == UINT32_MAX) {
10922				/*
10923				 * This is the first record in a tuple.  Align
10924				 * curneeded to be at offset 4 in an 8-byte
10925				 * aligned block.
10926				 */
10927				ASSERT(act->dta_prev == NULL ||
10928				    !act->dta_prev->dta_intuple);
10929				ASSERT3U(aggbase, ==, UINT32_MAX);
10930				curneeded = P2PHASEUP(ecb->dte_size,
10931				    sizeof (uint64_t), sizeof (dtrace_aggid_t));
10932
10933				aggbase = curneeded - sizeof (dtrace_aggid_t);
10934				ASSERT(IS_P2ALIGNED(aggbase,
10935				    sizeof (uint64_t)));
10936			}
10937			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10938			rec->dtrd_offset = curneeded;
10939			curneeded += rec->dtrd_size;
10940		} else {
10941			/* tuples must be followed by an aggregation */
10942			ASSERT(act->dta_prev == NULL ||
10943			    !act->dta_prev->dta_intuple);
10944
10945			ecb->dte_size = P2ROUNDUP(ecb->dte_size,
10946			    rec->dtrd_alignment);
10947			rec->dtrd_offset = ecb->dte_size;
10948			ecb->dte_size += rec->dtrd_size;
10949			ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
10950		}
10951	}
10952
10953	if ((act = ecb->dte_action) != NULL &&
10954	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
10955	    ecb->dte_size == sizeof (dtrace_rechdr_t)) {
10956		/*
10957		 * If the size is still sizeof (dtrace_rechdr_t), then all
10958		 * actions store no data; set the size to 0.
10959		 */
10960		ecb->dte_size = 0;
10961	}
10962
10963	ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
10964	ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
10965	ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
10966	    ecb->dte_needed);
10967}
10968
10969static dtrace_action_t *
10970dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10971{
10972	dtrace_aggregation_t *agg;
10973	size_t size = sizeof (uint64_t);
10974	int ntuple = desc->dtad_ntuple;
10975	dtrace_action_t *act;
10976	dtrace_recdesc_t *frec;
10977	dtrace_aggid_t aggid;
10978	dtrace_state_t *state = ecb->dte_state;
10979
10980	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
10981	agg->dtag_ecb = ecb;
10982
10983	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
10984
10985	switch (desc->dtad_kind) {
10986	case DTRACEAGG_MIN:
10987		agg->dtag_initial = INT64_MAX;
10988		agg->dtag_aggregate = dtrace_aggregate_min;
10989		break;
10990
10991	case DTRACEAGG_MAX:
10992		agg->dtag_initial = INT64_MIN;
10993		agg->dtag_aggregate = dtrace_aggregate_max;
10994		break;
10995
10996	case DTRACEAGG_COUNT:
10997		agg->dtag_aggregate = dtrace_aggregate_count;
10998		break;
10999
11000	case DTRACEAGG_QUANTIZE:
11001		agg->dtag_aggregate = dtrace_aggregate_quantize;
11002		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
11003		    sizeof (uint64_t);
11004		break;
11005
11006	case DTRACEAGG_LQUANTIZE: {
11007		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
11008		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
11009
11010		agg->dtag_initial = desc->dtad_arg;
11011		agg->dtag_aggregate = dtrace_aggregate_lquantize;
11012
11013		if (step == 0 || levels == 0)
11014			goto err;
11015
11016		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
11017		break;
11018	}
11019
11020	case DTRACEAGG_LLQUANTIZE: {
11021		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
11022		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
11023		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
11024		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
11025		int64_t v;
11026
11027		agg->dtag_initial = desc->dtad_arg;
11028		agg->dtag_aggregate = dtrace_aggregate_llquantize;
11029
11030		if (factor < 2 || low >= high || nsteps < factor)
11031			goto err;
11032
11033		/*
11034		 * Now check that the number of steps evenly divides a power
11035		 * of the factor.  (This assures both integer bucket size and
11036		 * linearity within each magnitude.)
11037		 */
11038		for (v = factor; v < nsteps; v *= factor)
11039			continue;
11040
11041		if ((v % nsteps) || (nsteps % factor))
11042			goto err;
11043
11044		size = (dtrace_aggregate_llquantize_bucket(factor,
11045		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
11046		break;
11047	}
11048
11049	case DTRACEAGG_AVG:
11050		agg->dtag_aggregate = dtrace_aggregate_avg;
11051		size = sizeof (uint64_t) * 2;
11052		break;
11053
11054	case DTRACEAGG_STDDEV:
11055		agg->dtag_aggregate = dtrace_aggregate_stddev;
11056		size = sizeof (uint64_t) * 4;
11057		break;
11058
11059	case DTRACEAGG_SUM:
11060		agg->dtag_aggregate = dtrace_aggregate_sum;
11061		break;
11062
11063	default:
11064		goto err;
11065	}
11066
11067	agg->dtag_action.dta_rec.dtrd_size = size;
11068
11069	if (ntuple == 0)
11070		goto err;
11071
11072	/*
11073	 * We must make sure that we have enough actions for the n-tuple.
11074	 */
11075	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
11076		if (DTRACEACT_ISAGG(act->dta_kind))
11077			break;
11078
11079		if (--ntuple == 0) {
11080			/*
11081			 * This is the action with which our n-tuple begins.
11082			 */
11083			agg->dtag_first = act;
11084			goto success;
11085		}
11086	}
11087
11088	/*
11089	 * This n-tuple is short by ntuple elements.  Return failure.
11090	 */
11091	ASSERT(ntuple != 0);
11092err:
11093	kmem_free(agg, sizeof (dtrace_aggregation_t));
11094	return (NULL);
11095
11096success:
11097	/*
11098	 * If the last action in the tuple has a size of zero, it's actually
11099	 * an expression argument for the aggregating action.
11100	 */
11101	ASSERT(ecb->dte_action_last != NULL);
11102	act = ecb->dte_action_last;
11103
11104	if (act->dta_kind == DTRACEACT_DIFEXPR) {
11105		ASSERT(act->dta_difo != NULL);
11106
11107		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
11108			agg->dtag_hasarg = 1;
11109	}
11110
11111	/*
11112	 * We need to allocate an id for this aggregation.
11113	 */
11114#if defined(sun)
11115	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
11116	    VM_BESTFIT | VM_SLEEP);
11117#else
11118	aggid = alloc_unr(state->dts_aggid_arena);
11119#endif
11120
11121	if (aggid - 1 >= state->dts_naggregations) {
11122		dtrace_aggregation_t **oaggs = state->dts_aggregations;
11123		dtrace_aggregation_t **aggs;
11124		int naggs = state->dts_naggregations << 1;
11125		int onaggs = state->dts_naggregations;
11126
11127		ASSERT(aggid == state->dts_naggregations + 1);
11128
11129		if (naggs == 0) {
11130			ASSERT(oaggs == NULL);
11131			naggs = 1;
11132		}
11133
11134		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
11135
11136		if (oaggs != NULL) {
11137			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
11138			kmem_free(oaggs, onaggs * sizeof (*aggs));
11139		}
11140
11141		state->dts_aggregations = aggs;
11142		state->dts_naggregations = naggs;
11143	}
11144
11145	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
11146	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
11147
11148	frec = &agg->dtag_first->dta_rec;
11149	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
11150		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
11151
11152	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
11153		ASSERT(!act->dta_intuple);
11154		act->dta_intuple = 1;
11155	}
11156
11157	return (&agg->dtag_action);
11158}
11159
11160static void
11161dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
11162{
11163	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11164	dtrace_state_t *state = ecb->dte_state;
11165	dtrace_aggid_t aggid = agg->dtag_id;
11166
11167	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
11168#if defined(sun)
11169	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
11170#else
11171	free_unr(state->dts_aggid_arena, aggid);
11172#endif
11173
11174	ASSERT(state->dts_aggregations[aggid - 1] == agg);
11175	state->dts_aggregations[aggid - 1] = NULL;
11176
11177	kmem_free(agg, sizeof (dtrace_aggregation_t));
11178}
11179
11180static int
11181dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11182{
11183	dtrace_action_t *action, *last;
11184	dtrace_difo_t *dp = desc->dtad_difo;
11185	uint32_t size = 0, align = sizeof (uint8_t), mask;
11186	uint16_t format = 0;
11187	dtrace_recdesc_t *rec;
11188	dtrace_state_t *state = ecb->dte_state;
11189	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
11190	uint64_t arg = desc->dtad_arg;
11191
11192	ASSERT(MUTEX_HELD(&dtrace_lock));
11193	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
11194
11195	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
11196		/*
11197		 * If this is an aggregating action, there must be neither
11198		 * a speculate nor a commit on the action chain.
11199		 */
11200		dtrace_action_t *act;
11201
11202		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11203			if (act->dta_kind == DTRACEACT_COMMIT)
11204				return (EINVAL);
11205
11206			if (act->dta_kind == DTRACEACT_SPECULATE)
11207				return (EINVAL);
11208		}
11209
11210		action = dtrace_ecb_aggregation_create(ecb, desc);
11211
11212		if (action == NULL)
11213			return (EINVAL);
11214	} else {
11215		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
11216		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
11217		    dp != NULL && dp->dtdo_destructive)) {
11218			state->dts_destructive = 1;
11219		}
11220
11221		switch (desc->dtad_kind) {
11222		case DTRACEACT_PRINTF:
11223		case DTRACEACT_PRINTA:
11224		case DTRACEACT_SYSTEM:
11225		case DTRACEACT_FREOPEN:
11226		case DTRACEACT_DIFEXPR:
11227			/*
11228			 * We know that our arg is a string -- turn it into a
11229			 * format.
11230			 */
11231			if (arg == 0) {
11232				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
11233				    desc->dtad_kind == DTRACEACT_DIFEXPR);
11234				format = 0;
11235			} else {
11236				ASSERT(arg != 0);
11237#if defined(sun)
11238				ASSERT(arg > KERNELBASE);
11239#endif
11240				format = dtrace_format_add(state,
11241				    (char *)(uintptr_t)arg);
11242			}
11243
11244			/*FALLTHROUGH*/
11245		case DTRACEACT_LIBACT:
11246		case DTRACEACT_TRACEMEM:
11247		case DTRACEACT_TRACEMEM_DYNSIZE:
11248			if (dp == NULL)
11249				return (EINVAL);
11250
11251			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
11252				break;
11253
11254			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
11255				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11256					return (EINVAL);
11257
11258				size = opt[DTRACEOPT_STRSIZE];
11259			}
11260
11261			break;
11262
11263		case DTRACEACT_STACK:
11264			if ((nframes = arg) == 0) {
11265				nframes = opt[DTRACEOPT_STACKFRAMES];
11266				ASSERT(nframes > 0);
11267				arg = nframes;
11268			}
11269
11270			size = nframes * sizeof (pc_t);
11271			break;
11272
11273		case DTRACEACT_JSTACK:
11274			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
11275				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
11276
11277			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
11278				nframes = opt[DTRACEOPT_JSTACKFRAMES];
11279
11280			arg = DTRACE_USTACK_ARG(nframes, strsize);
11281
11282			/*FALLTHROUGH*/
11283		case DTRACEACT_USTACK:
11284			if (desc->dtad_kind != DTRACEACT_JSTACK &&
11285			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
11286				strsize = DTRACE_USTACK_STRSIZE(arg);
11287				nframes = opt[DTRACEOPT_USTACKFRAMES];
11288				ASSERT(nframes > 0);
11289				arg = DTRACE_USTACK_ARG(nframes, strsize);
11290			}
11291
11292			/*
11293			 * Save a slot for the pid.
11294			 */
11295			size = (nframes + 1) * sizeof (uint64_t);
11296			size += DTRACE_USTACK_STRSIZE(arg);
11297			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
11298
11299			break;
11300
11301		case DTRACEACT_SYM:
11302		case DTRACEACT_MOD:
11303			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
11304			    sizeof (uint64_t)) ||
11305			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11306				return (EINVAL);
11307			break;
11308
11309		case DTRACEACT_USYM:
11310		case DTRACEACT_UMOD:
11311		case DTRACEACT_UADDR:
11312			if (dp == NULL ||
11313			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
11314			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11315				return (EINVAL);
11316
11317			/*
11318			 * We have a slot for the pid, plus a slot for the
11319			 * argument.  To keep things simple (aligned with
11320			 * bitness-neutral sizing), we store each as a 64-bit
11321			 * quantity.
11322			 */
11323			size = 2 * sizeof (uint64_t);
11324			break;
11325
11326		case DTRACEACT_STOP:
11327		case DTRACEACT_BREAKPOINT:
11328		case DTRACEACT_PANIC:
11329			break;
11330
11331		case DTRACEACT_CHILL:
11332		case DTRACEACT_DISCARD:
11333		case DTRACEACT_RAISE:
11334			if (dp == NULL)
11335				return (EINVAL);
11336			break;
11337
11338		case DTRACEACT_EXIT:
11339			if (dp == NULL ||
11340			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
11341			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11342				return (EINVAL);
11343			break;
11344
11345		case DTRACEACT_SPECULATE:
11346			if (ecb->dte_size > sizeof (dtrace_rechdr_t))
11347				return (EINVAL);
11348
11349			if (dp == NULL)
11350				return (EINVAL);
11351
11352			state->dts_speculates = 1;
11353			break;
11354
11355		case DTRACEACT_PRINTM:
11356		    	size = dp->dtdo_rtype.dtdt_size;
11357			break;
11358
11359		case DTRACEACT_PRINTT:
11360		    	size = dp->dtdo_rtype.dtdt_size;
11361			break;
11362
11363		case DTRACEACT_COMMIT: {
11364			dtrace_action_t *act = ecb->dte_action;
11365
11366			for (; act != NULL; act = act->dta_next) {
11367				if (act->dta_kind == DTRACEACT_COMMIT)
11368					return (EINVAL);
11369			}
11370
11371			if (dp == NULL)
11372				return (EINVAL);
11373			break;
11374		}
11375
11376		default:
11377			return (EINVAL);
11378		}
11379
11380		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
11381			/*
11382			 * If this is a data-storing action or a speculate,
11383			 * we must be sure that there isn't a commit on the
11384			 * action chain.
11385			 */
11386			dtrace_action_t *act = ecb->dte_action;
11387
11388			for (; act != NULL; act = act->dta_next) {
11389				if (act->dta_kind == DTRACEACT_COMMIT)
11390					return (EINVAL);
11391			}
11392		}
11393
11394		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
11395		action->dta_rec.dtrd_size = size;
11396	}
11397
11398	action->dta_refcnt = 1;
11399	rec = &action->dta_rec;
11400	size = rec->dtrd_size;
11401
11402	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
11403		if (!(size & mask)) {
11404			align = mask + 1;
11405			break;
11406		}
11407	}
11408
11409	action->dta_kind = desc->dtad_kind;
11410
11411	if ((action->dta_difo = dp) != NULL)
11412		dtrace_difo_hold(dp);
11413
11414	rec->dtrd_action = action->dta_kind;
11415	rec->dtrd_arg = arg;
11416	rec->dtrd_uarg = desc->dtad_uarg;
11417	rec->dtrd_alignment = (uint16_t)align;
11418	rec->dtrd_format = format;
11419
11420	if ((last = ecb->dte_action_last) != NULL) {
11421		ASSERT(ecb->dte_action != NULL);
11422		action->dta_prev = last;
11423		last->dta_next = action;
11424	} else {
11425		ASSERT(ecb->dte_action == NULL);
11426		ecb->dte_action = action;
11427	}
11428
11429	ecb->dte_action_last = action;
11430
11431	return (0);
11432}
11433
11434static void
11435dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
11436{
11437	dtrace_action_t *act = ecb->dte_action, *next;
11438	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
11439	dtrace_difo_t *dp;
11440	uint16_t format;
11441
11442	if (act != NULL && act->dta_refcnt > 1) {
11443		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
11444		act->dta_refcnt--;
11445	} else {
11446		for (; act != NULL; act = next) {
11447			next = act->dta_next;
11448			ASSERT(next != NULL || act == ecb->dte_action_last);
11449			ASSERT(act->dta_refcnt == 1);
11450
11451			if ((format = act->dta_rec.dtrd_format) != 0)
11452				dtrace_format_remove(ecb->dte_state, format);
11453
11454			if ((dp = act->dta_difo) != NULL)
11455				dtrace_difo_release(dp, vstate);
11456
11457			if (DTRACEACT_ISAGG(act->dta_kind)) {
11458				dtrace_ecb_aggregation_destroy(ecb, act);
11459			} else {
11460				kmem_free(act, sizeof (dtrace_action_t));
11461			}
11462		}
11463	}
11464
11465	ecb->dte_action = NULL;
11466	ecb->dte_action_last = NULL;
11467	ecb->dte_size = 0;
11468}
11469
11470static void
11471dtrace_ecb_disable(dtrace_ecb_t *ecb)
11472{
11473	/*
11474	 * We disable the ECB by removing it from its probe.
11475	 */
11476	dtrace_ecb_t *pecb, *prev = NULL;
11477	dtrace_probe_t *probe = ecb->dte_probe;
11478
11479	ASSERT(MUTEX_HELD(&dtrace_lock));
11480
11481	if (probe == NULL) {
11482		/*
11483		 * This is the NULL probe; there is nothing to disable.
11484		 */
11485		return;
11486	}
11487
11488	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
11489		if (pecb == ecb)
11490			break;
11491		prev = pecb;
11492	}
11493
11494	ASSERT(pecb != NULL);
11495
11496	if (prev == NULL) {
11497		probe->dtpr_ecb = ecb->dte_next;
11498	} else {
11499		prev->dte_next = ecb->dte_next;
11500	}
11501
11502	if (ecb == probe->dtpr_ecb_last) {
11503		ASSERT(ecb->dte_next == NULL);
11504		probe->dtpr_ecb_last = prev;
11505	}
11506
11507	/*
11508	 * The ECB has been disconnected from the probe; now sync to assure
11509	 * that all CPUs have seen the change before returning.
11510	 */
11511	dtrace_sync();
11512
11513	if (probe->dtpr_ecb == NULL) {
11514		/*
11515		 * That was the last ECB on the probe; clear the predicate
11516		 * cache ID for the probe, disable it and sync one more time
11517		 * to assure that we'll never hit it again.
11518		 */
11519		dtrace_provider_t *prov = probe->dtpr_provider;
11520
11521		ASSERT(ecb->dte_next == NULL);
11522		ASSERT(probe->dtpr_ecb_last == NULL);
11523		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
11524		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
11525		    probe->dtpr_id, probe->dtpr_arg);
11526		dtrace_sync();
11527	} else {
11528		/*
11529		 * There is at least one ECB remaining on the probe.  If there
11530		 * is _exactly_ one, set the probe's predicate cache ID to be
11531		 * the predicate cache ID of the remaining ECB.
11532		 */
11533		ASSERT(probe->dtpr_ecb_last != NULL);
11534		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
11535
11536		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
11537			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
11538
11539			ASSERT(probe->dtpr_ecb->dte_next == NULL);
11540
11541			if (p != NULL)
11542				probe->dtpr_predcache = p->dtp_cacheid;
11543		}
11544
11545		ecb->dte_next = NULL;
11546	}
11547}
11548
11549static void
11550dtrace_ecb_destroy(dtrace_ecb_t *ecb)
11551{
11552	dtrace_state_t *state = ecb->dte_state;
11553	dtrace_vstate_t *vstate = &state->dts_vstate;
11554	dtrace_predicate_t *pred;
11555	dtrace_epid_t epid = ecb->dte_epid;
11556
11557	ASSERT(MUTEX_HELD(&dtrace_lock));
11558	ASSERT(ecb->dte_next == NULL);
11559	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
11560
11561	if ((pred = ecb->dte_predicate) != NULL)
11562		dtrace_predicate_release(pred, vstate);
11563
11564	dtrace_ecb_action_remove(ecb);
11565
11566	ASSERT(state->dts_ecbs[epid - 1] == ecb);
11567	state->dts_ecbs[epid - 1] = NULL;
11568
11569	kmem_free(ecb, sizeof (dtrace_ecb_t));
11570}
11571
11572static dtrace_ecb_t *
11573dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
11574    dtrace_enabling_t *enab)
11575{
11576	dtrace_ecb_t *ecb;
11577	dtrace_predicate_t *pred;
11578	dtrace_actdesc_t *act;
11579	dtrace_provider_t *prov;
11580	dtrace_ecbdesc_t *desc = enab->dten_current;
11581
11582	ASSERT(MUTEX_HELD(&dtrace_lock));
11583	ASSERT(state != NULL);
11584
11585	ecb = dtrace_ecb_add(state, probe);
11586	ecb->dte_uarg = desc->dted_uarg;
11587
11588	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11589		dtrace_predicate_hold(pred);
11590		ecb->dte_predicate = pred;
11591	}
11592
11593	if (probe != NULL) {
11594		/*
11595		 * If the provider shows more leg than the consumer is old
11596		 * enough to see, we need to enable the appropriate implicit
11597		 * predicate bits to prevent the ecb from activating at
11598		 * revealing times.
11599		 *
11600		 * Providers specifying DTRACE_PRIV_USER at register time
11601		 * are stating that they need the /proc-style privilege
11602		 * model to be enforced, and this is what DTRACE_COND_OWNER
11603		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11604		 */
11605		prov = probe->dtpr_provider;
11606		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11607		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11608			ecb->dte_cond |= DTRACE_COND_OWNER;
11609
11610		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11611		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11612			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11613
11614		/*
11615		 * If the provider shows us kernel innards and the user
11616		 * is lacking sufficient privilege, enable the
11617		 * DTRACE_COND_USERMODE implicit predicate.
11618		 */
11619		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11620		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11621			ecb->dte_cond |= DTRACE_COND_USERMODE;
11622	}
11623
11624	if (dtrace_ecb_create_cache != NULL) {
11625		/*
11626		 * If we have a cached ecb, we'll use its action list instead
11627		 * of creating our own (saving both time and space).
11628		 */
11629		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11630		dtrace_action_t *act = cached->dte_action;
11631
11632		if (act != NULL) {
11633			ASSERT(act->dta_refcnt > 0);
11634			act->dta_refcnt++;
11635			ecb->dte_action = act;
11636			ecb->dte_action_last = cached->dte_action_last;
11637			ecb->dte_needed = cached->dte_needed;
11638			ecb->dte_size = cached->dte_size;
11639			ecb->dte_alignment = cached->dte_alignment;
11640		}
11641
11642		return (ecb);
11643	}
11644
11645	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11646		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11647			dtrace_ecb_destroy(ecb);
11648			return (NULL);
11649		}
11650	}
11651
11652	dtrace_ecb_resize(ecb);
11653
11654	return (dtrace_ecb_create_cache = ecb);
11655}
11656
11657static int
11658dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11659{
11660	dtrace_ecb_t *ecb;
11661	dtrace_enabling_t *enab = arg;
11662	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11663
11664	ASSERT(state != NULL);
11665
11666	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11667		/*
11668		 * This probe was created in a generation for which this
11669		 * enabling has previously created ECBs; we don't want to
11670		 * enable it again, so just kick out.
11671		 */
11672		return (DTRACE_MATCH_NEXT);
11673	}
11674
11675	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
11676		return (DTRACE_MATCH_DONE);
11677
11678	dtrace_ecb_enable(ecb);
11679	return (DTRACE_MATCH_NEXT);
11680}
11681
11682static dtrace_ecb_t *
11683dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
11684{
11685	dtrace_ecb_t *ecb;
11686
11687	ASSERT(MUTEX_HELD(&dtrace_lock));
11688
11689	if (id == 0 || id > state->dts_necbs)
11690		return (NULL);
11691
11692	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
11693	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
11694
11695	return (state->dts_ecbs[id - 1]);
11696}
11697
11698static dtrace_aggregation_t *
11699dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
11700{
11701	dtrace_aggregation_t *agg;
11702
11703	ASSERT(MUTEX_HELD(&dtrace_lock));
11704
11705	if (id == 0 || id > state->dts_naggregations)
11706		return (NULL);
11707
11708	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
11709	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
11710	    agg->dtag_id == id);
11711
11712	return (state->dts_aggregations[id - 1]);
11713}
11714
11715/*
11716 * DTrace Buffer Functions
11717 *
11718 * The following functions manipulate DTrace buffers.  Most of these functions
11719 * are called in the context of establishing or processing consumer state;
11720 * exceptions are explicitly noted.
11721 */
11722
11723/*
11724 * Note:  called from cross call context.  This function switches the two
11725 * buffers on a given CPU.  The atomicity of this operation is assured by
11726 * disabling interrupts while the actual switch takes place; the disabling of
11727 * interrupts serializes the execution with any execution of dtrace_probe() on
11728 * the same CPU.
11729 */
11730static void
11731dtrace_buffer_switch(dtrace_buffer_t *buf)
11732{
11733	caddr_t tomax = buf->dtb_tomax;
11734	caddr_t xamot = buf->dtb_xamot;
11735	dtrace_icookie_t cookie;
11736	hrtime_t now;
11737
11738	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11739	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
11740
11741	cookie = dtrace_interrupt_disable();
11742	now = dtrace_gethrtime();
11743	buf->dtb_tomax = xamot;
11744	buf->dtb_xamot = tomax;
11745	buf->dtb_xamot_drops = buf->dtb_drops;
11746	buf->dtb_xamot_offset = buf->dtb_offset;
11747	buf->dtb_xamot_errors = buf->dtb_errors;
11748	buf->dtb_xamot_flags = buf->dtb_flags;
11749	buf->dtb_offset = 0;
11750	buf->dtb_drops = 0;
11751	buf->dtb_errors = 0;
11752	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
11753	buf->dtb_interval = now - buf->dtb_switched;
11754	buf->dtb_switched = now;
11755	dtrace_interrupt_enable(cookie);
11756}
11757
11758/*
11759 * Note:  called from cross call context.  This function activates a buffer
11760 * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
11761 * is guaranteed by the disabling of interrupts.
11762 */
11763static void
11764dtrace_buffer_activate(dtrace_state_t *state)
11765{
11766	dtrace_buffer_t *buf;
11767	dtrace_icookie_t cookie = dtrace_interrupt_disable();
11768
11769	buf = &state->dts_buffer[curcpu];
11770
11771	if (buf->dtb_tomax != NULL) {
11772		/*
11773		 * We might like to assert that the buffer is marked inactive,
11774		 * but this isn't necessarily true:  the buffer for the CPU
11775		 * that processes the BEGIN probe has its buffer activated
11776		 * manually.  In this case, we take the (harmless) action
11777		 * re-clearing the bit INACTIVE bit.
11778		 */
11779		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
11780	}
11781
11782	dtrace_interrupt_enable(cookie);
11783}
11784
11785static int
11786dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
11787    processorid_t cpu, int *factor)
11788{
11789#if defined(sun)
11790	cpu_t *cp;
11791#endif
11792	dtrace_buffer_t *buf;
11793	int allocated = 0, desired = 0;
11794
11795#if defined(sun)
11796	ASSERT(MUTEX_HELD(&cpu_lock));
11797	ASSERT(MUTEX_HELD(&dtrace_lock));
11798
11799	*factor = 1;
11800
11801	if (size > dtrace_nonroot_maxsize &&
11802	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
11803		return (EFBIG);
11804
11805	cp = cpu_list;
11806
11807	do {
11808		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11809			continue;
11810
11811		buf = &bufs[cp->cpu_id];
11812
11813		/*
11814		 * If there is already a buffer allocated for this CPU, it
11815		 * is only possible that this is a DR event.  In this case,
11816		 */
11817		if (buf->dtb_tomax != NULL) {
11818			ASSERT(buf->dtb_size == size);
11819			continue;
11820		}
11821
11822		ASSERT(buf->dtb_xamot == NULL);
11823
11824		if ((buf->dtb_tomax = kmem_zalloc(size,
11825		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11826			goto err;
11827
11828		buf->dtb_size = size;
11829		buf->dtb_flags = flags;
11830		buf->dtb_offset = 0;
11831		buf->dtb_drops = 0;
11832
11833		if (flags & DTRACEBUF_NOSWITCH)
11834			continue;
11835
11836		if ((buf->dtb_xamot = kmem_zalloc(size,
11837		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11838			goto err;
11839	} while ((cp = cp->cpu_next) != cpu_list);
11840
11841	return (0);
11842
11843err:
11844	cp = cpu_list;
11845
11846	do {
11847		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11848			continue;
11849
11850		buf = &bufs[cp->cpu_id];
11851		desired += 2;
11852
11853		if (buf->dtb_xamot != NULL) {
11854			ASSERT(buf->dtb_tomax != NULL);
11855			ASSERT(buf->dtb_size == size);
11856			kmem_free(buf->dtb_xamot, size);
11857			allocated++;
11858		}
11859
11860		if (buf->dtb_tomax != NULL) {
11861			ASSERT(buf->dtb_size == size);
11862			kmem_free(buf->dtb_tomax, size);
11863			allocated++;
11864		}
11865
11866		buf->dtb_tomax = NULL;
11867		buf->dtb_xamot = NULL;
11868		buf->dtb_size = 0;
11869	} while ((cp = cp->cpu_next) != cpu_list);
11870#else
11871	int i;
11872
11873	*factor = 1;
11874#if defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
11875	/*
11876	 * FreeBSD isn't good at limiting the amount of memory we
11877	 * ask to malloc, so let's place a limit here before trying
11878	 * to do something that might well end in tears at bedtime.
11879	 */
11880	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
11881		return (ENOMEM);
11882#endif
11883
11884	ASSERT(MUTEX_HELD(&dtrace_lock));
11885	CPU_FOREACH(i) {
11886		if (cpu != DTRACE_CPUALL && cpu != i)
11887			continue;
11888
11889		buf = &bufs[i];
11890
11891		/*
11892		 * If there is already a buffer allocated for this CPU, it
11893		 * is only possible that this is a DR event.  In this case,
11894		 * the buffer size must match our specified size.
11895		 */
11896		if (buf->dtb_tomax != NULL) {
11897			ASSERT(buf->dtb_size == size);
11898			continue;
11899		}
11900
11901		ASSERT(buf->dtb_xamot == NULL);
11902
11903		if ((buf->dtb_tomax = kmem_zalloc(size,
11904		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11905			goto err;
11906
11907		buf->dtb_size = size;
11908		buf->dtb_flags = flags;
11909		buf->dtb_offset = 0;
11910		buf->dtb_drops = 0;
11911
11912		if (flags & DTRACEBUF_NOSWITCH)
11913			continue;
11914
11915		if ((buf->dtb_xamot = kmem_zalloc(size,
11916		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11917			goto err;
11918	}
11919
11920	return (0);
11921
11922err:
11923	/*
11924	 * Error allocating memory, so free the buffers that were
11925	 * allocated before the failed allocation.
11926	 */
11927	CPU_FOREACH(i) {
11928		if (cpu != DTRACE_CPUALL && cpu != i)
11929			continue;
11930
11931		buf = &bufs[i];
11932		desired += 2;
11933
11934		if (buf->dtb_xamot != NULL) {
11935			ASSERT(buf->dtb_tomax != NULL);
11936			ASSERT(buf->dtb_size == size);
11937			kmem_free(buf->dtb_xamot, size);
11938			allocated++;
11939		}
11940
11941		if (buf->dtb_tomax != NULL) {
11942			ASSERT(buf->dtb_size == size);
11943			kmem_free(buf->dtb_tomax, size);
11944			allocated++;
11945		}
11946
11947		buf->dtb_tomax = NULL;
11948		buf->dtb_xamot = NULL;
11949		buf->dtb_size = 0;
11950
11951	}
11952#endif
11953	*factor = desired / (allocated > 0 ? allocated : 1);
11954
11955	return (ENOMEM);
11956}
11957
11958/*
11959 * Note:  called from probe context.  This function just increments the drop
11960 * count on a buffer.  It has been made a function to allow for the
11961 * possibility of understanding the source of mysterious drop counts.  (A
11962 * problem for which one may be particularly disappointed that DTrace cannot
11963 * be used to understand DTrace.)
11964 */
11965static void
11966dtrace_buffer_drop(dtrace_buffer_t *buf)
11967{
11968	buf->dtb_drops++;
11969}
11970
11971/*
11972 * Note:  called from probe context.  This function is called to reserve space
11973 * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
11974 * mstate.  Returns the new offset in the buffer, or a negative value if an
11975 * error has occurred.
11976 */
11977static intptr_t
11978dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
11979    dtrace_state_t *state, dtrace_mstate_t *mstate)
11980{
11981	intptr_t offs = buf->dtb_offset, soffs;
11982	intptr_t woffs;
11983	caddr_t tomax;
11984	size_t total;
11985
11986	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
11987		return (-1);
11988
11989	if ((tomax = buf->dtb_tomax) == NULL) {
11990		dtrace_buffer_drop(buf);
11991		return (-1);
11992	}
11993
11994	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
11995		while (offs & (align - 1)) {
11996			/*
11997			 * Assert that our alignment is off by a number which
11998			 * is itself sizeof (uint32_t) aligned.
11999			 */
12000			ASSERT(!((align - (offs & (align - 1))) &
12001			    (sizeof (uint32_t) - 1)));
12002			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12003			offs += sizeof (uint32_t);
12004		}
12005
12006		if ((soffs = offs + needed) > buf->dtb_size) {
12007			dtrace_buffer_drop(buf);
12008			return (-1);
12009		}
12010
12011		if (mstate == NULL)
12012			return (offs);
12013
12014		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
12015		mstate->dtms_scratch_size = buf->dtb_size - soffs;
12016		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12017
12018		return (offs);
12019	}
12020
12021	if (buf->dtb_flags & DTRACEBUF_FILL) {
12022		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
12023		    (buf->dtb_flags & DTRACEBUF_FULL))
12024			return (-1);
12025		goto out;
12026	}
12027
12028	total = needed + (offs & (align - 1));
12029
12030	/*
12031	 * For a ring buffer, life is quite a bit more complicated.  Before
12032	 * we can store any padding, we need to adjust our wrapping offset.
12033	 * (If we've never before wrapped or we're not about to, no adjustment
12034	 * is required.)
12035	 */
12036	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
12037	    offs + total > buf->dtb_size) {
12038		woffs = buf->dtb_xamot_offset;
12039
12040		if (offs + total > buf->dtb_size) {
12041			/*
12042			 * We can't fit in the end of the buffer.  First, a
12043			 * sanity check that we can fit in the buffer at all.
12044			 */
12045			if (total > buf->dtb_size) {
12046				dtrace_buffer_drop(buf);
12047				return (-1);
12048			}
12049
12050			/*
12051			 * We're going to be storing at the top of the buffer,
12052			 * so now we need to deal with the wrapped offset.  We
12053			 * only reset our wrapped offset to 0 if it is
12054			 * currently greater than the current offset.  If it
12055			 * is less than the current offset, it is because a
12056			 * previous allocation induced a wrap -- but the
12057			 * allocation didn't subsequently take the space due
12058			 * to an error or false predicate evaluation.  In this
12059			 * case, we'll just leave the wrapped offset alone: if
12060			 * the wrapped offset hasn't been advanced far enough
12061			 * for this allocation, it will be adjusted in the
12062			 * lower loop.
12063			 */
12064			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
12065				if (woffs >= offs)
12066					woffs = 0;
12067			} else {
12068				woffs = 0;
12069			}
12070
12071			/*
12072			 * Now we know that we're going to be storing to the
12073			 * top of the buffer and that there is room for us
12074			 * there.  We need to clear the buffer from the current
12075			 * offset to the end (there may be old gunk there).
12076			 */
12077			while (offs < buf->dtb_size)
12078				tomax[offs++] = 0;
12079
12080			/*
12081			 * We need to set our offset to zero.  And because we
12082			 * are wrapping, we need to set the bit indicating as
12083			 * much.  We can also adjust our needed space back
12084			 * down to the space required by the ECB -- we know
12085			 * that the top of the buffer is aligned.
12086			 */
12087			offs = 0;
12088			total = needed;
12089			buf->dtb_flags |= DTRACEBUF_WRAPPED;
12090		} else {
12091			/*
12092			 * There is room for us in the buffer, so we simply
12093			 * need to check the wrapped offset.
12094			 */
12095			if (woffs < offs) {
12096				/*
12097				 * The wrapped offset is less than the offset.
12098				 * This can happen if we allocated buffer space
12099				 * that induced a wrap, but then we didn't
12100				 * subsequently take the space due to an error
12101				 * or false predicate evaluation.  This is
12102				 * okay; we know that _this_ allocation isn't
12103				 * going to induce a wrap.  We still can't
12104				 * reset the wrapped offset to be zero,
12105				 * however: the space may have been trashed in
12106				 * the previous failed probe attempt.  But at
12107				 * least the wrapped offset doesn't need to
12108				 * be adjusted at all...
12109				 */
12110				goto out;
12111			}
12112		}
12113
12114		while (offs + total > woffs) {
12115			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
12116			size_t size;
12117
12118			if (epid == DTRACE_EPIDNONE) {
12119				size = sizeof (uint32_t);
12120			} else {
12121				ASSERT3U(epid, <=, state->dts_necbs);
12122				ASSERT(state->dts_ecbs[epid - 1] != NULL);
12123
12124				size = state->dts_ecbs[epid - 1]->dte_size;
12125			}
12126
12127			ASSERT(woffs + size <= buf->dtb_size);
12128			ASSERT(size != 0);
12129
12130			if (woffs + size == buf->dtb_size) {
12131				/*
12132				 * We've reached the end of the buffer; we want
12133				 * to set the wrapped offset to 0 and break
12134				 * out.  However, if the offs is 0, then we're
12135				 * in a strange edge-condition:  the amount of
12136				 * space that we want to reserve plus the size
12137				 * of the record that we're overwriting is
12138				 * greater than the size of the buffer.  This
12139				 * is problematic because if we reserve the
12140				 * space but subsequently don't consume it (due
12141				 * to a failed predicate or error) the wrapped
12142				 * offset will be 0 -- yet the EPID at offset 0
12143				 * will not be committed.  This situation is
12144				 * relatively easy to deal with:  if we're in
12145				 * this case, the buffer is indistinguishable
12146				 * from one that hasn't wrapped; we need only
12147				 * finish the job by clearing the wrapped bit,
12148				 * explicitly setting the offset to be 0, and
12149				 * zero'ing out the old data in the buffer.
12150				 */
12151				if (offs == 0) {
12152					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
12153					buf->dtb_offset = 0;
12154					woffs = total;
12155
12156					while (woffs < buf->dtb_size)
12157						tomax[woffs++] = 0;
12158				}
12159
12160				woffs = 0;
12161				break;
12162			}
12163
12164			woffs += size;
12165		}
12166
12167		/*
12168		 * We have a wrapped offset.  It may be that the wrapped offset
12169		 * has become zero -- that's okay.
12170		 */
12171		buf->dtb_xamot_offset = woffs;
12172	}
12173
12174out:
12175	/*
12176	 * Now we can plow the buffer with any necessary padding.
12177	 */
12178	while (offs & (align - 1)) {
12179		/*
12180		 * Assert that our alignment is off by a number which
12181		 * is itself sizeof (uint32_t) aligned.
12182		 */
12183		ASSERT(!((align - (offs & (align - 1))) &
12184		    (sizeof (uint32_t) - 1)));
12185		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12186		offs += sizeof (uint32_t);
12187	}
12188
12189	if (buf->dtb_flags & DTRACEBUF_FILL) {
12190		if (offs + needed > buf->dtb_size - state->dts_reserve) {
12191			buf->dtb_flags |= DTRACEBUF_FULL;
12192			return (-1);
12193		}
12194	}
12195
12196	if (mstate == NULL)
12197		return (offs);
12198
12199	/*
12200	 * For ring buffers and fill buffers, the scratch space is always
12201	 * the inactive buffer.
12202	 */
12203	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
12204	mstate->dtms_scratch_size = buf->dtb_size;
12205	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12206
12207	return (offs);
12208}
12209
12210static void
12211dtrace_buffer_polish(dtrace_buffer_t *buf)
12212{
12213	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
12214	ASSERT(MUTEX_HELD(&dtrace_lock));
12215
12216	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
12217		return;
12218
12219	/*
12220	 * We need to polish the ring buffer.  There are three cases:
12221	 *
12222	 * - The first (and presumably most common) is that there is no gap
12223	 *   between the buffer offset and the wrapped offset.  In this case,
12224	 *   there is nothing in the buffer that isn't valid data; we can
12225	 *   mark the buffer as polished and return.
12226	 *
12227	 * - The second (less common than the first but still more common
12228	 *   than the third) is that there is a gap between the buffer offset
12229	 *   and the wrapped offset, and the wrapped offset is larger than the
12230	 *   buffer offset.  This can happen because of an alignment issue, or
12231	 *   can happen because of a call to dtrace_buffer_reserve() that
12232	 *   didn't subsequently consume the buffer space.  In this case,
12233	 *   we need to zero the data from the buffer offset to the wrapped
12234	 *   offset.
12235	 *
12236	 * - The third (and least common) is that there is a gap between the
12237	 *   buffer offset and the wrapped offset, but the wrapped offset is
12238	 *   _less_ than the buffer offset.  This can only happen because a
12239	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
12240	 *   was not subsequently consumed.  In this case, we need to zero the
12241	 *   space from the offset to the end of the buffer _and_ from the
12242	 *   top of the buffer to the wrapped offset.
12243	 */
12244	if (buf->dtb_offset < buf->dtb_xamot_offset) {
12245		bzero(buf->dtb_tomax + buf->dtb_offset,
12246		    buf->dtb_xamot_offset - buf->dtb_offset);
12247	}
12248
12249	if (buf->dtb_offset > buf->dtb_xamot_offset) {
12250		bzero(buf->dtb_tomax + buf->dtb_offset,
12251		    buf->dtb_size - buf->dtb_offset);
12252		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
12253	}
12254}
12255
12256/*
12257 * This routine determines if data generated at the specified time has likely
12258 * been entirely consumed at user-level.  This routine is called to determine
12259 * if an ECB on a defunct probe (but for an active enabling) can be safely
12260 * disabled and destroyed.
12261 */
12262static int
12263dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
12264{
12265	int i;
12266
12267	for (i = 0; i < NCPU; i++) {
12268		dtrace_buffer_t *buf = &bufs[i];
12269
12270		if (buf->dtb_size == 0)
12271			continue;
12272
12273		if (buf->dtb_flags & DTRACEBUF_RING)
12274			return (0);
12275
12276		if (!buf->dtb_switched && buf->dtb_offset != 0)
12277			return (0);
12278
12279		if (buf->dtb_switched - buf->dtb_interval < when)
12280			return (0);
12281	}
12282
12283	return (1);
12284}
12285
12286static void
12287dtrace_buffer_free(dtrace_buffer_t *bufs)
12288{
12289	int i;
12290
12291	for (i = 0; i < NCPU; i++) {
12292		dtrace_buffer_t *buf = &bufs[i];
12293
12294		if (buf->dtb_tomax == NULL) {
12295			ASSERT(buf->dtb_xamot == NULL);
12296			ASSERT(buf->dtb_size == 0);
12297			continue;
12298		}
12299
12300		if (buf->dtb_xamot != NULL) {
12301			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12302			kmem_free(buf->dtb_xamot, buf->dtb_size);
12303		}
12304
12305		kmem_free(buf->dtb_tomax, buf->dtb_size);
12306		buf->dtb_size = 0;
12307		buf->dtb_tomax = NULL;
12308		buf->dtb_xamot = NULL;
12309	}
12310}
12311
12312/*
12313 * DTrace Enabling Functions
12314 */
12315static dtrace_enabling_t *
12316dtrace_enabling_create(dtrace_vstate_t *vstate)
12317{
12318	dtrace_enabling_t *enab;
12319
12320	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
12321	enab->dten_vstate = vstate;
12322
12323	return (enab);
12324}
12325
12326static void
12327dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
12328{
12329	dtrace_ecbdesc_t **ndesc;
12330	size_t osize, nsize;
12331
12332	/*
12333	 * We can't add to enablings after we've enabled them, or after we've
12334	 * retained them.
12335	 */
12336	ASSERT(enab->dten_probegen == 0);
12337	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12338
12339	if (enab->dten_ndesc < enab->dten_maxdesc) {
12340		enab->dten_desc[enab->dten_ndesc++] = ecb;
12341		return;
12342	}
12343
12344	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12345
12346	if (enab->dten_maxdesc == 0) {
12347		enab->dten_maxdesc = 1;
12348	} else {
12349		enab->dten_maxdesc <<= 1;
12350	}
12351
12352	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
12353
12354	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12355	ndesc = kmem_zalloc(nsize, KM_SLEEP);
12356	bcopy(enab->dten_desc, ndesc, osize);
12357	if (enab->dten_desc != NULL)
12358		kmem_free(enab->dten_desc, osize);
12359
12360	enab->dten_desc = ndesc;
12361	enab->dten_desc[enab->dten_ndesc++] = ecb;
12362}
12363
12364static void
12365dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
12366    dtrace_probedesc_t *pd)
12367{
12368	dtrace_ecbdesc_t *new;
12369	dtrace_predicate_t *pred;
12370	dtrace_actdesc_t *act;
12371
12372	/*
12373	 * We're going to create a new ECB description that matches the
12374	 * specified ECB in every way, but has the specified probe description.
12375	 */
12376	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12377
12378	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
12379		dtrace_predicate_hold(pred);
12380
12381	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
12382		dtrace_actdesc_hold(act);
12383
12384	new->dted_action = ecb->dted_action;
12385	new->dted_pred = ecb->dted_pred;
12386	new->dted_probe = *pd;
12387	new->dted_uarg = ecb->dted_uarg;
12388
12389	dtrace_enabling_add(enab, new);
12390}
12391
12392static void
12393dtrace_enabling_dump(dtrace_enabling_t *enab)
12394{
12395	int i;
12396
12397	for (i = 0; i < enab->dten_ndesc; i++) {
12398		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
12399
12400		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
12401		    desc->dtpd_provider, desc->dtpd_mod,
12402		    desc->dtpd_func, desc->dtpd_name);
12403	}
12404}
12405
12406static void
12407dtrace_enabling_destroy(dtrace_enabling_t *enab)
12408{
12409	int i;
12410	dtrace_ecbdesc_t *ep;
12411	dtrace_vstate_t *vstate = enab->dten_vstate;
12412
12413	ASSERT(MUTEX_HELD(&dtrace_lock));
12414
12415	for (i = 0; i < enab->dten_ndesc; i++) {
12416		dtrace_actdesc_t *act, *next;
12417		dtrace_predicate_t *pred;
12418
12419		ep = enab->dten_desc[i];
12420
12421		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
12422			dtrace_predicate_release(pred, vstate);
12423
12424		for (act = ep->dted_action; act != NULL; act = next) {
12425			next = act->dtad_next;
12426			dtrace_actdesc_release(act, vstate);
12427		}
12428
12429		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12430	}
12431
12432	if (enab->dten_desc != NULL)
12433		kmem_free(enab->dten_desc,
12434		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
12435
12436	/*
12437	 * If this was a retained enabling, decrement the dts_nretained count
12438	 * and take it off of the dtrace_retained list.
12439	 */
12440	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
12441	    dtrace_retained == enab) {
12442		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12443		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
12444		enab->dten_vstate->dtvs_state->dts_nretained--;
12445		dtrace_retained_gen++;
12446	}
12447
12448	if (enab->dten_prev == NULL) {
12449		if (dtrace_retained == enab) {
12450			dtrace_retained = enab->dten_next;
12451
12452			if (dtrace_retained != NULL)
12453				dtrace_retained->dten_prev = NULL;
12454		}
12455	} else {
12456		ASSERT(enab != dtrace_retained);
12457		ASSERT(dtrace_retained != NULL);
12458		enab->dten_prev->dten_next = enab->dten_next;
12459	}
12460
12461	if (enab->dten_next != NULL) {
12462		ASSERT(dtrace_retained != NULL);
12463		enab->dten_next->dten_prev = enab->dten_prev;
12464	}
12465
12466	kmem_free(enab, sizeof (dtrace_enabling_t));
12467}
12468
12469static int
12470dtrace_enabling_retain(dtrace_enabling_t *enab)
12471{
12472	dtrace_state_t *state;
12473
12474	ASSERT(MUTEX_HELD(&dtrace_lock));
12475	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12476	ASSERT(enab->dten_vstate != NULL);
12477
12478	state = enab->dten_vstate->dtvs_state;
12479	ASSERT(state != NULL);
12480
12481	/*
12482	 * We only allow each state to retain dtrace_retain_max enablings.
12483	 */
12484	if (state->dts_nretained >= dtrace_retain_max)
12485		return (ENOSPC);
12486
12487	state->dts_nretained++;
12488	dtrace_retained_gen++;
12489
12490	if (dtrace_retained == NULL) {
12491		dtrace_retained = enab;
12492		return (0);
12493	}
12494
12495	enab->dten_next = dtrace_retained;
12496	dtrace_retained->dten_prev = enab;
12497	dtrace_retained = enab;
12498
12499	return (0);
12500}
12501
12502static int
12503dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
12504    dtrace_probedesc_t *create)
12505{
12506	dtrace_enabling_t *new, *enab;
12507	int found = 0, err = ENOENT;
12508
12509	ASSERT(MUTEX_HELD(&dtrace_lock));
12510	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
12511	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
12512	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
12513	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
12514
12515	new = dtrace_enabling_create(&state->dts_vstate);
12516
12517	/*
12518	 * Iterate over all retained enablings, looking for enablings that
12519	 * match the specified state.
12520	 */
12521	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12522		int i;
12523
12524		/*
12525		 * dtvs_state can only be NULL for helper enablings -- and
12526		 * helper enablings can't be retained.
12527		 */
12528		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12529
12530		if (enab->dten_vstate->dtvs_state != state)
12531			continue;
12532
12533		/*
12534		 * Now iterate over each probe description; we're looking for
12535		 * an exact match to the specified probe description.
12536		 */
12537		for (i = 0; i < enab->dten_ndesc; i++) {
12538			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12539			dtrace_probedesc_t *pd = &ep->dted_probe;
12540
12541			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
12542				continue;
12543
12544			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
12545				continue;
12546
12547			if (strcmp(pd->dtpd_func, match->dtpd_func))
12548				continue;
12549
12550			if (strcmp(pd->dtpd_name, match->dtpd_name))
12551				continue;
12552
12553			/*
12554			 * We have a winning probe!  Add it to our growing
12555			 * enabling.
12556			 */
12557			found = 1;
12558			dtrace_enabling_addlike(new, ep, create);
12559		}
12560	}
12561
12562	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
12563		dtrace_enabling_destroy(new);
12564		return (err);
12565	}
12566
12567	return (0);
12568}
12569
12570static void
12571dtrace_enabling_retract(dtrace_state_t *state)
12572{
12573	dtrace_enabling_t *enab, *next;
12574
12575	ASSERT(MUTEX_HELD(&dtrace_lock));
12576
12577	/*
12578	 * Iterate over all retained enablings, destroy the enablings retained
12579	 * for the specified state.
12580	 */
12581	for (enab = dtrace_retained; enab != NULL; enab = next) {
12582		next = enab->dten_next;
12583
12584		/*
12585		 * dtvs_state can only be NULL for helper enablings -- and
12586		 * helper enablings can't be retained.
12587		 */
12588		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12589
12590		if (enab->dten_vstate->dtvs_state == state) {
12591			ASSERT(state->dts_nretained > 0);
12592			dtrace_enabling_destroy(enab);
12593		}
12594	}
12595
12596	ASSERT(state->dts_nretained == 0);
12597}
12598
12599static int
12600dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
12601{
12602	int i = 0;
12603	int matched = 0;
12604
12605	ASSERT(MUTEX_HELD(&cpu_lock));
12606	ASSERT(MUTEX_HELD(&dtrace_lock));
12607
12608	for (i = 0; i < enab->dten_ndesc; i++) {
12609		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12610
12611		enab->dten_current = ep;
12612		enab->dten_error = 0;
12613
12614		matched += dtrace_probe_enable(&ep->dted_probe, enab);
12615
12616		if (enab->dten_error != 0) {
12617			/*
12618			 * If we get an error half-way through enabling the
12619			 * probes, we kick out -- perhaps with some number of
12620			 * them enabled.  Leaving enabled probes enabled may
12621			 * be slightly confusing for user-level, but we expect
12622			 * that no one will attempt to actually drive on in
12623			 * the face of such errors.  If this is an anonymous
12624			 * enabling (indicated with a NULL nmatched pointer),
12625			 * we cmn_err() a message.  We aren't expecting to
12626			 * get such an error -- such as it can exist at all,
12627			 * it would be a result of corrupted DOF in the driver
12628			 * properties.
12629			 */
12630			if (nmatched == NULL) {
12631				cmn_err(CE_WARN, "dtrace_enabling_match() "
12632				    "error on %p: %d", (void *)ep,
12633				    enab->dten_error);
12634			}
12635
12636			return (enab->dten_error);
12637		}
12638	}
12639
12640	enab->dten_probegen = dtrace_probegen;
12641	if (nmatched != NULL)
12642		*nmatched = matched;
12643
12644	return (0);
12645}
12646
12647static void
12648dtrace_enabling_matchall(void)
12649{
12650	dtrace_enabling_t *enab;
12651
12652	mutex_enter(&cpu_lock);
12653	mutex_enter(&dtrace_lock);
12654
12655	/*
12656	 * Iterate over all retained enablings to see if any probes match
12657	 * against them.  We only perform this operation on enablings for which
12658	 * we have sufficient permissions by virtue of being in the global zone
12659	 * or in the same zone as the DTrace client.  Because we can be called
12660	 * after dtrace_detach() has been called, we cannot assert that there
12661	 * are retained enablings.  We can safely load from dtrace_retained,
12662	 * however:  the taskq_destroy() at the end of dtrace_detach() will
12663	 * block pending our completion.
12664	 */
12665	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12666#if defined(sun)
12667		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
12668
12669		if (INGLOBALZONE(curproc) ||
12670		    cr != NULL && getzoneid() == crgetzoneid(cr))
12671#endif
12672			(void) dtrace_enabling_match(enab, NULL);
12673	}
12674
12675	mutex_exit(&dtrace_lock);
12676	mutex_exit(&cpu_lock);
12677}
12678
12679/*
12680 * If an enabling is to be enabled without having matched probes (that is, if
12681 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
12682 * enabling must be _primed_ by creating an ECB for every ECB description.
12683 * This must be done to assure that we know the number of speculations, the
12684 * number of aggregations, the minimum buffer size needed, etc. before we
12685 * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
12686 * enabling any probes, we create ECBs for every ECB decription, but with a
12687 * NULL probe -- which is exactly what this function does.
12688 */
12689static void
12690dtrace_enabling_prime(dtrace_state_t *state)
12691{
12692	dtrace_enabling_t *enab;
12693	int i;
12694
12695	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12696		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12697
12698		if (enab->dten_vstate->dtvs_state != state)
12699			continue;
12700
12701		/*
12702		 * We don't want to prime an enabling more than once, lest
12703		 * we allow a malicious user to induce resource exhaustion.
12704		 * (The ECBs that result from priming an enabling aren't
12705		 * leaked -- but they also aren't deallocated until the
12706		 * consumer state is destroyed.)
12707		 */
12708		if (enab->dten_primed)
12709			continue;
12710
12711		for (i = 0; i < enab->dten_ndesc; i++) {
12712			enab->dten_current = enab->dten_desc[i];
12713			(void) dtrace_probe_enable(NULL, enab);
12714		}
12715
12716		enab->dten_primed = 1;
12717	}
12718}
12719
12720/*
12721 * Called to indicate that probes should be provided due to retained
12722 * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
12723 * must take an initial lap through the enabling calling the dtps_provide()
12724 * entry point explicitly to allow for autocreated probes.
12725 */
12726static void
12727dtrace_enabling_provide(dtrace_provider_t *prv)
12728{
12729	int i, all = 0;
12730	dtrace_probedesc_t desc;
12731	dtrace_genid_t gen;
12732
12733	ASSERT(MUTEX_HELD(&dtrace_lock));
12734	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
12735
12736	if (prv == NULL) {
12737		all = 1;
12738		prv = dtrace_provider;
12739	}
12740
12741	do {
12742		dtrace_enabling_t *enab;
12743		void *parg = prv->dtpv_arg;
12744
12745retry:
12746		gen = dtrace_retained_gen;
12747		for (enab = dtrace_retained; enab != NULL;
12748		    enab = enab->dten_next) {
12749			for (i = 0; i < enab->dten_ndesc; i++) {
12750				desc = enab->dten_desc[i]->dted_probe;
12751				mutex_exit(&dtrace_lock);
12752				prv->dtpv_pops.dtps_provide(parg, &desc);
12753				mutex_enter(&dtrace_lock);
12754				/*
12755				 * Process the retained enablings again if
12756				 * they have changed while we weren't holding
12757				 * dtrace_lock.
12758				 */
12759				if (gen != dtrace_retained_gen)
12760					goto retry;
12761			}
12762		}
12763	} while (all && (prv = prv->dtpv_next) != NULL);
12764
12765	mutex_exit(&dtrace_lock);
12766	dtrace_probe_provide(NULL, all ? NULL : prv);
12767	mutex_enter(&dtrace_lock);
12768}
12769
12770/*
12771 * Called to reap ECBs that are attached to probes from defunct providers.
12772 */
12773static void
12774dtrace_enabling_reap(void)
12775{
12776	dtrace_provider_t *prov;
12777	dtrace_probe_t *probe;
12778	dtrace_ecb_t *ecb;
12779	hrtime_t when;
12780	int i;
12781
12782	mutex_enter(&cpu_lock);
12783	mutex_enter(&dtrace_lock);
12784
12785	for (i = 0; i < dtrace_nprobes; i++) {
12786		if ((probe = dtrace_probes[i]) == NULL)
12787			continue;
12788
12789		if (probe->dtpr_ecb == NULL)
12790			continue;
12791
12792		prov = probe->dtpr_provider;
12793
12794		if ((when = prov->dtpv_defunct) == 0)
12795			continue;
12796
12797		/*
12798		 * We have ECBs on a defunct provider:  we want to reap these
12799		 * ECBs to allow the provider to unregister.  The destruction
12800		 * of these ECBs must be done carefully:  if we destroy the ECB
12801		 * and the consumer later wishes to consume an EPID that
12802		 * corresponds to the destroyed ECB (and if the EPID metadata
12803		 * has not been previously consumed), the consumer will abort
12804		 * processing on the unknown EPID.  To reduce (but not, sadly,
12805		 * eliminate) the possibility of this, we will only destroy an
12806		 * ECB for a defunct provider if, for the state that
12807		 * corresponds to the ECB:
12808		 *
12809		 *  (a)	There is no speculative tracing (which can effectively
12810		 *	cache an EPID for an arbitrary amount of time).
12811		 *
12812		 *  (b)	The principal buffers have been switched twice since the
12813		 *	provider became defunct.
12814		 *
12815		 *  (c)	The aggregation buffers are of zero size or have been
12816		 *	switched twice since the provider became defunct.
12817		 *
12818		 * We use dts_speculates to determine (a) and call a function
12819		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
12820		 * that as soon as we've been unable to destroy one of the ECBs
12821		 * associated with the probe, we quit trying -- reaping is only
12822		 * fruitful in as much as we can destroy all ECBs associated
12823		 * with the defunct provider's probes.
12824		 */
12825		while ((ecb = probe->dtpr_ecb) != NULL) {
12826			dtrace_state_t *state = ecb->dte_state;
12827			dtrace_buffer_t *buf = state->dts_buffer;
12828			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
12829
12830			if (state->dts_speculates)
12831				break;
12832
12833			if (!dtrace_buffer_consumed(buf, when))
12834				break;
12835
12836			if (!dtrace_buffer_consumed(aggbuf, when))
12837				break;
12838
12839			dtrace_ecb_disable(ecb);
12840			ASSERT(probe->dtpr_ecb != ecb);
12841			dtrace_ecb_destroy(ecb);
12842		}
12843	}
12844
12845	mutex_exit(&dtrace_lock);
12846	mutex_exit(&cpu_lock);
12847}
12848
12849/*
12850 * DTrace DOF Functions
12851 */
12852/*ARGSUSED*/
12853static void
12854dtrace_dof_error(dof_hdr_t *dof, const char *str)
12855{
12856	if (dtrace_err_verbose)
12857		cmn_err(CE_WARN, "failed to process DOF: %s", str);
12858
12859#ifdef DTRACE_ERRDEBUG
12860	dtrace_errdebug(str);
12861#endif
12862}
12863
12864/*
12865 * Create DOF out of a currently enabled state.  Right now, we only create
12866 * DOF containing the run-time options -- but this could be expanded to create
12867 * complete DOF representing the enabled state.
12868 */
12869static dof_hdr_t *
12870dtrace_dof_create(dtrace_state_t *state)
12871{
12872	dof_hdr_t *dof;
12873	dof_sec_t *sec;
12874	dof_optdesc_t *opt;
12875	int i, len = sizeof (dof_hdr_t) +
12876	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
12877	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12878
12879	ASSERT(MUTEX_HELD(&dtrace_lock));
12880
12881	dof = kmem_zalloc(len, KM_SLEEP);
12882	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
12883	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
12884	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
12885	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
12886
12887	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
12888	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
12889	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
12890	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
12891	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
12892	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
12893
12894	dof->dofh_flags = 0;
12895	dof->dofh_hdrsize = sizeof (dof_hdr_t);
12896	dof->dofh_secsize = sizeof (dof_sec_t);
12897	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
12898	dof->dofh_secoff = sizeof (dof_hdr_t);
12899	dof->dofh_loadsz = len;
12900	dof->dofh_filesz = len;
12901	dof->dofh_pad = 0;
12902
12903	/*
12904	 * Fill in the option section header...
12905	 */
12906	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
12907	sec->dofs_type = DOF_SECT_OPTDESC;
12908	sec->dofs_align = sizeof (uint64_t);
12909	sec->dofs_flags = DOF_SECF_LOAD;
12910	sec->dofs_entsize = sizeof (dof_optdesc_t);
12911
12912	opt = (dof_optdesc_t *)((uintptr_t)sec +
12913	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
12914
12915	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
12916	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12917
12918	for (i = 0; i < DTRACEOPT_MAX; i++) {
12919		opt[i].dofo_option = i;
12920		opt[i].dofo_strtab = DOF_SECIDX_NONE;
12921		opt[i].dofo_value = state->dts_options[i];
12922	}
12923
12924	return (dof);
12925}
12926
12927static dof_hdr_t *
12928dtrace_dof_copyin(uintptr_t uarg, int *errp)
12929{
12930	dof_hdr_t hdr, *dof;
12931
12932	ASSERT(!MUTEX_HELD(&dtrace_lock));
12933
12934	/*
12935	 * First, we're going to copyin() the sizeof (dof_hdr_t).
12936	 */
12937	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
12938		dtrace_dof_error(NULL, "failed to copyin DOF header");
12939		*errp = EFAULT;
12940		return (NULL);
12941	}
12942
12943	/*
12944	 * Now we'll allocate the entire DOF and copy it in -- provided
12945	 * that the length isn't outrageous.
12946	 */
12947	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
12948		dtrace_dof_error(&hdr, "load size exceeds maximum");
12949		*errp = E2BIG;
12950		return (NULL);
12951	}
12952
12953	if (hdr.dofh_loadsz < sizeof (hdr)) {
12954		dtrace_dof_error(&hdr, "invalid load size");
12955		*errp = EINVAL;
12956		return (NULL);
12957	}
12958
12959	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
12960
12961	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
12962	    dof->dofh_loadsz != hdr.dofh_loadsz) {
12963		kmem_free(dof, hdr.dofh_loadsz);
12964		*errp = EFAULT;
12965		return (NULL);
12966	}
12967
12968	return (dof);
12969}
12970
12971#if !defined(sun)
12972static __inline uchar_t
12973dtrace_dof_char(char c) {
12974	switch (c) {
12975	case '0':
12976	case '1':
12977	case '2':
12978	case '3':
12979	case '4':
12980	case '5':
12981	case '6':
12982	case '7':
12983	case '8':
12984	case '9':
12985		return (c - '0');
12986	case 'A':
12987	case 'B':
12988	case 'C':
12989	case 'D':
12990	case 'E':
12991	case 'F':
12992		return (c - 'A' + 10);
12993	case 'a':
12994	case 'b':
12995	case 'c':
12996	case 'd':
12997	case 'e':
12998	case 'f':
12999		return (c - 'a' + 10);
13000	}
13001	/* Should not reach here. */
13002	return (0);
13003}
13004#endif
13005
13006static dof_hdr_t *
13007dtrace_dof_property(const char *name)
13008{
13009	uchar_t *buf;
13010	uint64_t loadsz;
13011	unsigned int len, i;
13012	dof_hdr_t *dof;
13013
13014#if defined(sun)
13015	/*
13016	 * Unfortunately, array of values in .conf files are always (and
13017	 * only) interpreted to be integer arrays.  We must read our DOF
13018	 * as an integer array, and then squeeze it into a byte array.
13019	 */
13020	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
13021	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
13022		return (NULL);
13023
13024	for (i = 0; i < len; i++)
13025		buf[i] = (uchar_t)(((int *)buf)[i]);
13026
13027	if (len < sizeof (dof_hdr_t)) {
13028		ddi_prop_free(buf);
13029		dtrace_dof_error(NULL, "truncated header");
13030		return (NULL);
13031	}
13032
13033	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
13034		ddi_prop_free(buf);
13035		dtrace_dof_error(NULL, "truncated DOF");
13036		return (NULL);
13037	}
13038
13039	if (loadsz >= dtrace_dof_maxsize) {
13040		ddi_prop_free(buf);
13041		dtrace_dof_error(NULL, "oversized DOF");
13042		return (NULL);
13043	}
13044
13045	dof = kmem_alloc(loadsz, KM_SLEEP);
13046	bcopy(buf, dof, loadsz);
13047	ddi_prop_free(buf);
13048#else
13049	char *p;
13050	char *p_env;
13051
13052	if ((p_env = getenv(name)) == NULL)
13053		return (NULL);
13054
13055	len = strlen(p_env) / 2;
13056
13057	buf = kmem_alloc(len, KM_SLEEP);
13058
13059	dof = (dof_hdr_t *) buf;
13060
13061	p = p_env;
13062
13063	for (i = 0; i < len; i++) {
13064		buf[i] = (dtrace_dof_char(p[0]) << 4) |
13065		     dtrace_dof_char(p[1]);
13066		p += 2;
13067	}
13068
13069	freeenv(p_env);
13070
13071	if (len < sizeof (dof_hdr_t)) {
13072		kmem_free(buf, 0);
13073		dtrace_dof_error(NULL, "truncated header");
13074		return (NULL);
13075	}
13076
13077	if (len < (loadsz = dof->dofh_loadsz)) {
13078		kmem_free(buf, 0);
13079		dtrace_dof_error(NULL, "truncated DOF");
13080		return (NULL);
13081	}
13082
13083	if (loadsz >= dtrace_dof_maxsize) {
13084		kmem_free(buf, 0);
13085		dtrace_dof_error(NULL, "oversized DOF");
13086		return (NULL);
13087	}
13088#endif
13089
13090	return (dof);
13091}
13092
13093static void
13094dtrace_dof_destroy(dof_hdr_t *dof)
13095{
13096	kmem_free(dof, dof->dofh_loadsz);
13097}
13098
13099/*
13100 * Return the dof_sec_t pointer corresponding to a given section index.  If the
13101 * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
13102 * a type other than DOF_SECT_NONE is specified, the header is checked against
13103 * this type and NULL is returned if the types do not match.
13104 */
13105static dof_sec_t *
13106dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
13107{
13108	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
13109	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
13110
13111	if (i >= dof->dofh_secnum) {
13112		dtrace_dof_error(dof, "referenced section index is invalid");
13113		return (NULL);
13114	}
13115
13116	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
13117		dtrace_dof_error(dof, "referenced section is not loadable");
13118		return (NULL);
13119	}
13120
13121	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
13122		dtrace_dof_error(dof, "referenced section is the wrong type");
13123		return (NULL);
13124	}
13125
13126	return (sec);
13127}
13128
13129static dtrace_probedesc_t *
13130dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
13131{
13132	dof_probedesc_t *probe;
13133	dof_sec_t *strtab;
13134	uintptr_t daddr = (uintptr_t)dof;
13135	uintptr_t str;
13136	size_t size;
13137
13138	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
13139		dtrace_dof_error(dof, "invalid probe section");
13140		return (NULL);
13141	}
13142
13143	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13144		dtrace_dof_error(dof, "bad alignment in probe description");
13145		return (NULL);
13146	}
13147
13148	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
13149		dtrace_dof_error(dof, "truncated probe description");
13150		return (NULL);
13151	}
13152
13153	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
13154	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
13155
13156	if (strtab == NULL)
13157		return (NULL);
13158
13159	str = daddr + strtab->dofs_offset;
13160	size = strtab->dofs_size;
13161
13162	if (probe->dofp_provider >= strtab->dofs_size) {
13163		dtrace_dof_error(dof, "corrupt probe provider");
13164		return (NULL);
13165	}
13166
13167	(void) strncpy(desc->dtpd_provider,
13168	    (char *)(str + probe->dofp_provider),
13169	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
13170
13171	if (probe->dofp_mod >= strtab->dofs_size) {
13172		dtrace_dof_error(dof, "corrupt probe module");
13173		return (NULL);
13174	}
13175
13176	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
13177	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
13178
13179	if (probe->dofp_func >= strtab->dofs_size) {
13180		dtrace_dof_error(dof, "corrupt probe function");
13181		return (NULL);
13182	}
13183
13184	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
13185	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
13186
13187	if (probe->dofp_name >= strtab->dofs_size) {
13188		dtrace_dof_error(dof, "corrupt probe name");
13189		return (NULL);
13190	}
13191
13192	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
13193	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
13194
13195	return (desc);
13196}
13197
13198static dtrace_difo_t *
13199dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13200    cred_t *cr)
13201{
13202	dtrace_difo_t *dp;
13203	size_t ttl = 0;
13204	dof_difohdr_t *dofd;
13205	uintptr_t daddr = (uintptr_t)dof;
13206	size_t max = dtrace_difo_maxsize;
13207	int i, l, n;
13208
13209	static const struct {
13210		int section;
13211		int bufoffs;
13212		int lenoffs;
13213		int entsize;
13214		int align;
13215		const char *msg;
13216	} difo[] = {
13217		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
13218		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
13219		sizeof (dif_instr_t), "multiple DIF sections" },
13220
13221		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
13222		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
13223		sizeof (uint64_t), "multiple integer tables" },
13224
13225		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
13226		offsetof(dtrace_difo_t, dtdo_strlen), 0,
13227		sizeof (char), "multiple string tables" },
13228
13229		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
13230		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
13231		sizeof (uint_t), "multiple variable tables" },
13232
13233		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
13234	};
13235
13236	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
13237		dtrace_dof_error(dof, "invalid DIFO header section");
13238		return (NULL);
13239	}
13240
13241	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13242		dtrace_dof_error(dof, "bad alignment in DIFO header");
13243		return (NULL);
13244	}
13245
13246	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
13247	    sec->dofs_size % sizeof (dof_secidx_t)) {
13248		dtrace_dof_error(dof, "bad size in DIFO header");
13249		return (NULL);
13250	}
13251
13252	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13253	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
13254
13255	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
13256	dp->dtdo_rtype = dofd->dofd_rtype;
13257
13258	for (l = 0; l < n; l++) {
13259		dof_sec_t *subsec;
13260		void **bufp;
13261		uint32_t *lenp;
13262
13263		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
13264		    dofd->dofd_links[l])) == NULL)
13265			goto err; /* invalid section link */
13266
13267		if (ttl + subsec->dofs_size > max) {
13268			dtrace_dof_error(dof, "exceeds maximum size");
13269			goto err;
13270		}
13271
13272		ttl += subsec->dofs_size;
13273
13274		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
13275			if (subsec->dofs_type != difo[i].section)
13276				continue;
13277
13278			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
13279				dtrace_dof_error(dof, "section not loaded");
13280				goto err;
13281			}
13282
13283			if (subsec->dofs_align != difo[i].align) {
13284				dtrace_dof_error(dof, "bad alignment");
13285				goto err;
13286			}
13287
13288			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
13289			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
13290
13291			if (*bufp != NULL) {
13292				dtrace_dof_error(dof, difo[i].msg);
13293				goto err;
13294			}
13295
13296			if (difo[i].entsize != subsec->dofs_entsize) {
13297				dtrace_dof_error(dof, "entry size mismatch");
13298				goto err;
13299			}
13300
13301			if (subsec->dofs_entsize != 0 &&
13302			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
13303				dtrace_dof_error(dof, "corrupt entry size");
13304				goto err;
13305			}
13306
13307			*lenp = subsec->dofs_size;
13308			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
13309			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
13310			    *bufp, subsec->dofs_size);
13311
13312			if (subsec->dofs_entsize != 0)
13313				*lenp /= subsec->dofs_entsize;
13314
13315			break;
13316		}
13317
13318		/*
13319		 * If we encounter a loadable DIFO sub-section that is not
13320		 * known to us, assume this is a broken program and fail.
13321		 */
13322		if (difo[i].section == DOF_SECT_NONE &&
13323		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
13324			dtrace_dof_error(dof, "unrecognized DIFO subsection");
13325			goto err;
13326		}
13327	}
13328
13329	if (dp->dtdo_buf == NULL) {
13330		/*
13331		 * We can't have a DIF object without DIF text.
13332		 */
13333		dtrace_dof_error(dof, "missing DIF text");
13334		goto err;
13335	}
13336
13337	/*
13338	 * Before we validate the DIF object, run through the variable table
13339	 * looking for the strings -- if any of their size are under, we'll set
13340	 * their size to be the system-wide default string size.  Note that
13341	 * this should _not_ happen if the "strsize" option has been set --
13342	 * in this case, the compiler should have set the size to reflect the
13343	 * setting of the option.
13344	 */
13345	for (i = 0; i < dp->dtdo_varlen; i++) {
13346		dtrace_difv_t *v = &dp->dtdo_vartab[i];
13347		dtrace_diftype_t *t = &v->dtdv_type;
13348
13349		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
13350			continue;
13351
13352		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
13353			t->dtdt_size = dtrace_strsize_default;
13354	}
13355
13356	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
13357		goto err;
13358
13359	dtrace_difo_init(dp, vstate);
13360	return (dp);
13361
13362err:
13363	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
13364	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
13365	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
13366	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
13367
13368	kmem_free(dp, sizeof (dtrace_difo_t));
13369	return (NULL);
13370}
13371
13372static dtrace_predicate_t *
13373dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13374    cred_t *cr)
13375{
13376	dtrace_difo_t *dp;
13377
13378	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
13379		return (NULL);
13380
13381	return (dtrace_predicate_create(dp));
13382}
13383
13384static dtrace_actdesc_t *
13385dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13386    cred_t *cr)
13387{
13388	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
13389	dof_actdesc_t *desc;
13390	dof_sec_t *difosec;
13391	size_t offs;
13392	uintptr_t daddr = (uintptr_t)dof;
13393	uint64_t arg;
13394	dtrace_actkind_t kind;
13395
13396	if (sec->dofs_type != DOF_SECT_ACTDESC) {
13397		dtrace_dof_error(dof, "invalid action section");
13398		return (NULL);
13399	}
13400
13401	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
13402		dtrace_dof_error(dof, "truncated action description");
13403		return (NULL);
13404	}
13405
13406	if (sec->dofs_align != sizeof (uint64_t)) {
13407		dtrace_dof_error(dof, "bad alignment in action description");
13408		return (NULL);
13409	}
13410
13411	if (sec->dofs_size < sec->dofs_entsize) {
13412		dtrace_dof_error(dof, "section entry size exceeds total size");
13413		return (NULL);
13414	}
13415
13416	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
13417		dtrace_dof_error(dof, "bad entry size in action description");
13418		return (NULL);
13419	}
13420
13421	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
13422		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
13423		return (NULL);
13424	}
13425
13426	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
13427		desc = (dof_actdesc_t *)(daddr +
13428		    (uintptr_t)sec->dofs_offset + offs);
13429		kind = (dtrace_actkind_t)desc->dofa_kind;
13430
13431		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
13432		    (kind != DTRACEACT_PRINTA ||
13433		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
13434		    (kind == DTRACEACT_DIFEXPR &&
13435		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
13436			dof_sec_t *strtab;
13437			char *str, *fmt;
13438			uint64_t i;
13439
13440			/*
13441			 * The argument to these actions is an index into the
13442			 * DOF string table.  For printf()-like actions, this
13443			 * is the format string.  For print(), this is the
13444			 * CTF type of the expression result.
13445			 */
13446			if ((strtab = dtrace_dof_sect(dof,
13447			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
13448				goto err;
13449
13450			str = (char *)((uintptr_t)dof +
13451			    (uintptr_t)strtab->dofs_offset);
13452
13453			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
13454				if (str[i] == '\0')
13455					break;
13456			}
13457
13458			if (i >= strtab->dofs_size) {
13459				dtrace_dof_error(dof, "bogus format string");
13460				goto err;
13461			}
13462
13463			if (i == desc->dofa_arg) {
13464				dtrace_dof_error(dof, "empty format string");
13465				goto err;
13466			}
13467
13468			i -= desc->dofa_arg;
13469			fmt = kmem_alloc(i + 1, KM_SLEEP);
13470			bcopy(&str[desc->dofa_arg], fmt, i + 1);
13471			arg = (uint64_t)(uintptr_t)fmt;
13472		} else {
13473			if (kind == DTRACEACT_PRINTA) {
13474				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
13475				arg = 0;
13476			} else {
13477				arg = desc->dofa_arg;
13478			}
13479		}
13480
13481		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
13482		    desc->dofa_uarg, arg);
13483
13484		if (last != NULL) {
13485			last->dtad_next = act;
13486		} else {
13487			first = act;
13488		}
13489
13490		last = act;
13491
13492		if (desc->dofa_difo == DOF_SECIDX_NONE)
13493			continue;
13494
13495		if ((difosec = dtrace_dof_sect(dof,
13496		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
13497			goto err;
13498
13499		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
13500
13501		if (act->dtad_difo == NULL)
13502			goto err;
13503	}
13504
13505	ASSERT(first != NULL);
13506	return (first);
13507
13508err:
13509	for (act = first; act != NULL; act = next) {
13510		next = act->dtad_next;
13511		dtrace_actdesc_release(act, vstate);
13512	}
13513
13514	return (NULL);
13515}
13516
13517static dtrace_ecbdesc_t *
13518dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13519    cred_t *cr)
13520{
13521	dtrace_ecbdesc_t *ep;
13522	dof_ecbdesc_t *ecb;
13523	dtrace_probedesc_t *desc;
13524	dtrace_predicate_t *pred = NULL;
13525
13526	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
13527		dtrace_dof_error(dof, "truncated ECB description");
13528		return (NULL);
13529	}
13530
13531	if (sec->dofs_align != sizeof (uint64_t)) {
13532		dtrace_dof_error(dof, "bad alignment in ECB description");
13533		return (NULL);
13534	}
13535
13536	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
13537	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
13538
13539	if (sec == NULL)
13540		return (NULL);
13541
13542	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
13543	ep->dted_uarg = ecb->dofe_uarg;
13544	desc = &ep->dted_probe;
13545
13546	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
13547		goto err;
13548
13549	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
13550		if ((sec = dtrace_dof_sect(dof,
13551		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
13552			goto err;
13553
13554		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
13555			goto err;
13556
13557		ep->dted_pred.dtpdd_predicate = pred;
13558	}
13559
13560	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
13561		if ((sec = dtrace_dof_sect(dof,
13562		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
13563			goto err;
13564
13565		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
13566
13567		if (ep->dted_action == NULL)
13568			goto err;
13569	}
13570
13571	return (ep);
13572
13573err:
13574	if (pred != NULL)
13575		dtrace_predicate_release(pred, vstate);
13576	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
13577	return (NULL);
13578}
13579
13580/*
13581 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
13582 * specified DOF.  At present, this amounts to simply adding 'ubase' to the
13583 * site of any user SETX relocations to account for load object base address.
13584 * In the future, if we need other relocations, this function can be extended.
13585 */
13586static int
13587dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
13588{
13589	uintptr_t daddr = (uintptr_t)dof;
13590	dof_relohdr_t *dofr =
13591	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13592	dof_sec_t *ss, *rs, *ts;
13593	dof_relodesc_t *r;
13594	uint_t i, n;
13595
13596	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
13597	    sec->dofs_align != sizeof (dof_secidx_t)) {
13598		dtrace_dof_error(dof, "invalid relocation header");
13599		return (-1);
13600	}
13601
13602	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
13603	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
13604	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
13605
13606	if (ss == NULL || rs == NULL || ts == NULL)
13607		return (-1); /* dtrace_dof_error() has been called already */
13608
13609	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
13610	    rs->dofs_align != sizeof (uint64_t)) {
13611		dtrace_dof_error(dof, "invalid relocation section");
13612		return (-1);
13613	}
13614
13615	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
13616	n = rs->dofs_size / rs->dofs_entsize;
13617
13618	for (i = 0; i < n; i++) {
13619		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
13620
13621		switch (r->dofr_type) {
13622		case DOF_RELO_NONE:
13623			break;
13624		case DOF_RELO_SETX:
13625			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
13626			    sizeof (uint64_t) > ts->dofs_size) {
13627				dtrace_dof_error(dof, "bad relocation offset");
13628				return (-1);
13629			}
13630
13631			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
13632				dtrace_dof_error(dof, "misaligned setx relo");
13633				return (-1);
13634			}
13635
13636			*(uint64_t *)taddr += ubase;
13637			break;
13638		default:
13639			dtrace_dof_error(dof, "invalid relocation type");
13640			return (-1);
13641		}
13642
13643		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
13644	}
13645
13646	return (0);
13647}
13648
13649/*
13650 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
13651 * header:  it should be at the front of a memory region that is at least
13652 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
13653 * size.  It need not be validated in any other way.
13654 */
13655static int
13656dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
13657    dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
13658{
13659	uint64_t len = dof->dofh_loadsz, seclen;
13660	uintptr_t daddr = (uintptr_t)dof;
13661	dtrace_ecbdesc_t *ep;
13662	dtrace_enabling_t *enab;
13663	uint_t i;
13664
13665	ASSERT(MUTEX_HELD(&dtrace_lock));
13666	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
13667
13668	/*
13669	 * Check the DOF header identification bytes.  In addition to checking
13670	 * valid settings, we also verify that unused bits/bytes are zeroed so
13671	 * we can use them later without fear of regressing existing binaries.
13672	 */
13673	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
13674	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
13675		dtrace_dof_error(dof, "DOF magic string mismatch");
13676		return (-1);
13677	}
13678
13679	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
13680	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
13681		dtrace_dof_error(dof, "DOF has invalid data model");
13682		return (-1);
13683	}
13684
13685	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
13686		dtrace_dof_error(dof, "DOF encoding mismatch");
13687		return (-1);
13688	}
13689
13690	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
13691	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
13692		dtrace_dof_error(dof, "DOF version mismatch");
13693		return (-1);
13694	}
13695
13696	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
13697		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
13698		return (-1);
13699	}
13700
13701	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
13702		dtrace_dof_error(dof, "DOF uses too many integer registers");
13703		return (-1);
13704	}
13705
13706	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
13707		dtrace_dof_error(dof, "DOF uses too many tuple registers");
13708		return (-1);
13709	}
13710
13711	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
13712		if (dof->dofh_ident[i] != 0) {
13713			dtrace_dof_error(dof, "DOF has invalid ident byte set");
13714			return (-1);
13715		}
13716	}
13717
13718	if (dof->dofh_flags & ~DOF_FL_VALID) {
13719		dtrace_dof_error(dof, "DOF has invalid flag bits set");
13720		return (-1);
13721	}
13722
13723	if (dof->dofh_secsize == 0) {
13724		dtrace_dof_error(dof, "zero section header size");
13725		return (-1);
13726	}
13727
13728	/*
13729	 * Check that the section headers don't exceed the amount of DOF
13730	 * data.  Note that we cast the section size and number of sections
13731	 * to uint64_t's to prevent possible overflow in the multiplication.
13732	 */
13733	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
13734
13735	if (dof->dofh_secoff > len || seclen > len ||
13736	    dof->dofh_secoff + seclen > len) {
13737		dtrace_dof_error(dof, "truncated section headers");
13738		return (-1);
13739	}
13740
13741	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
13742		dtrace_dof_error(dof, "misaligned section headers");
13743		return (-1);
13744	}
13745
13746	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
13747		dtrace_dof_error(dof, "misaligned section size");
13748		return (-1);
13749	}
13750
13751	/*
13752	 * Take an initial pass through the section headers to be sure that
13753	 * the headers don't have stray offsets.  If the 'noprobes' flag is
13754	 * set, do not permit sections relating to providers, probes, or args.
13755	 */
13756	for (i = 0; i < dof->dofh_secnum; i++) {
13757		dof_sec_t *sec = (dof_sec_t *)(daddr +
13758		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13759
13760		if (noprobes) {
13761			switch (sec->dofs_type) {
13762			case DOF_SECT_PROVIDER:
13763			case DOF_SECT_PROBES:
13764			case DOF_SECT_PRARGS:
13765			case DOF_SECT_PROFFS:
13766				dtrace_dof_error(dof, "illegal sections "
13767				    "for enabling");
13768				return (-1);
13769			}
13770		}
13771
13772		if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
13773		    !(sec->dofs_flags & DOF_SECF_LOAD)) {
13774			dtrace_dof_error(dof, "loadable section with load "
13775			    "flag unset");
13776			return (-1);
13777		}
13778
13779		if (!(sec->dofs_flags & DOF_SECF_LOAD))
13780			continue; /* just ignore non-loadable sections */
13781
13782		if (sec->dofs_align & (sec->dofs_align - 1)) {
13783			dtrace_dof_error(dof, "bad section alignment");
13784			return (-1);
13785		}
13786
13787		if (sec->dofs_offset & (sec->dofs_align - 1)) {
13788			dtrace_dof_error(dof, "misaligned section");
13789			return (-1);
13790		}
13791
13792		if (sec->dofs_offset > len || sec->dofs_size > len ||
13793		    sec->dofs_offset + sec->dofs_size > len) {
13794			dtrace_dof_error(dof, "corrupt section header");
13795			return (-1);
13796		}
13797
13798		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
13799		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
13800			dtrace_dof_error(dof, "non-terminating string table");
13801			return (-1);
13802		}
13803	}
13804
13805	/*
13806	 * Take a second pass through the sections and locate and perform any
13807	 * relocations that are present.  We do this after the first pass to
13808	 * be sure that all sections have had their headers validated.
13809	 */
13810	for (i = 0; i < dof->dofh_secnum; i++) {
13811		dof_sec_t *sec = (dof_sec_t *)(daddr +
13812		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13813
13814		if (!(sec->dofs_flags & DOF_SECF_LOAD))
13815			continue; /* skip sections that are not loadable */
13816
13817		switch (sec->dofs_type) {
13818		case DOF_SECT_URELHDR:
13819			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
13820				return (-1);
13821			break;
13822		}
13823	}
13824
13825	if ((enab = *enabp) == NULL)
13826		enab = *enabp = dtrace_enabling_create(vstate);
13827
13828	for (i = 0; i < dof->dofh_secnum; i++) {
13829		dof_sec_t *sec = (dof_sec_t *)(daddr +
13830		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13831
13832		if (sec->dofs_type != DOF_SECT_ECBDESC)
13833			continue;
13834
13835		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
13836			dtrace_enabling_destroy(enab);
13837			*enabp = NULL;
13838			return (-1);
13839		}
13840
13841		dtrace_enabling_add(enab, ep);
13842	}
13843
13844	return (0);
13845}
13846
13847/*
13848 * Process DOF for any options.  This routine assumes that the DOF has been
13849 * at least processed by dtrace_dof_slurp().
13850 */
13851static int
13852dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
13853{
13854	int i, rval;
13855	uint32_t entsize;
13856	size_t offs;
13857	dof_optdesc_t *desc;
13858
13859	for (i = 0; i < dof->dofh_secnum; i++) {
13860		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
13861		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13862
13863		if (sec->dofs_type != DOF_SECT_OPTDESC)
13864			continue;
13865
13866		if (sec->dofs_align != sizeof (uint64_t)) {
13867			dtrace_dof_error(dof, "bad alignment in "
13868			    "option description");
13869			return (EINVAL);
13870		}
13871
13872		if ((entsize = sec->dofs_entsize) == 0) {
13873			dtrace_dof_error(dof, "zeroed option entry size");
13874			return (EINVAL);
13875		}
13876
13877		if (entsize < sizeof (dof_optdesc_t)) {
13878			dtrace_dof_error(dof, "bad option entry size");
13879			return (EINVAL);
13880		}
13881
13882		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
13883			desc = (dof_optdesc_t *)((uintptr_t)dof +
13884			    (uintptr_t)sec->dofs_offset + offs);
13885
13886			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
13887				dtrace_dof_error(dof, "non-zero option string");
13888				return (EINVAL);
13889			}
13890
13891			if (desc->dofo_value == DTRACEOPT_UNSET) {
13892				dtrace_dof_error(dof, "unset option");
13893				return (EINVAL);
13894			}
13895
13896			if ((rval = dtrace_state_option(state,
13897			    desc->dofo_option, desc->dofo_value)) != 0) {
13898				dtrace_dof_error(dof, "rejected option");
13899				return (rval);
13900			}
13901		}
13902	}
13903
13904	return (0);
13905}
13906
13907/*
13908 * DTrace Consumer State Functions
13909 */
13910static int
13911dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
13912{
13913	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
13914	void *base;
13915	uintptr_t limit;
13916	dtrace_dynvar_t *dvar, *next, *start;
13917	int i;
13918
13919	ASSERT(MUTEX_HELD(&dtrace_lock));
13920	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
13921
13922	bzero(dstate, sizeof (dtrace_dstate_t));
13923
13924	if ((dstate->dtds_chunksize = chunksize) == 0)
13925		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
13926
13927	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
13928		size = min;
13929
13930	if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
13931		return (ENOMEM);
13932
13933	dstate->dtds_size = size;
13934	dstate->dtds_base = base;
13935	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
13936	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
13937
13938	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
13939
13940	if (hashsize != 1 && (hashsize & 1))
13941		hashsize--;
13942
13943	dstate->dtds_hashsize = hashsize;
13944	dstate->dtds_hash = dstate->dtds_base;
13945
13946	/*
13947	 * Set all of our hash buckets to point to the single sink, and (if
13948	 * it hasn't already been set), set the sink's hash value to be the
13949	 * sink sentinel value.  The sink is needed for dynamic variable
13950	 * lookups to know that they have iterated over an entire, valid hash
13951	 * chain.
13952	 */
13953	for (i = 0; i < hashsize; i++)
13954		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
13955
13956	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
13957		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
13958
13959	/*
13960	 * Determine number of active CPUs.  Divide free list evenly among
13961	 * active CPUs.
13962	 */
13963	start = (dtrace_dynvar_t *)
13964	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
13965	limit = (uintptr_t)base + size;
13966
13967	maxper = (limit - (uintptr_t)start) / NCPU;
13968	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
13969
13970#if !defined(sun)
13971	CPU_FOREACH(i) {
13972#else
13973	for (i = 0; i < NCPU; i++) {
13974#endif
13975		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
13976
13977		/*
13978		 * If we don't even have enough chunks to make it once through
13979		 * NCPUs, we're just going to allocate everything to the first
13980		 * CPU.  And if we're on the last CPU, we're going to allocate
13981		 * whatever is left over.  In either case, we set the limit to
13982		 * be the limit of the dynamic variable space.
13983		 */
13984		if (maxper == 0 || i == NCPU - 1) {
13985			limit = (uintptr_t)base + size;
13986			start = NULL;
13987		} else {
13988			limit = (uintptr_t)start + maxper;
13989			start = (dtrace_dynvar_t *)limit;
13990		}
13991
13992		ASSERT(limit <= (uintptr_t)base + size);
13993
13994		for (;;) {
13995			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
13996			    dstate->dtds_chunksize);
13997
13998			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
13999				break;
14000
14001			dvar->dtdv_next = next;
14002			dvar = next;
14003		}
14004
14005		if (maxper == 0)
14006			break;
14007	}
14008
14009	return (0);
14010}
14011
14012static void
14013dtrace_dstate_fini(dtrace_dstate_t *dstate)
14014{
14015	ASSERT(MUTEX_HELD(&cpu_lock));
14016
14017	if (dstate->dtds_base == NULL)
14018		return;
14019
14020	kmem_free(dstate->dtds_base, dstate->dtds_size);
14021	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
14022}
14023
14024static void
14025dtrace_vstate_fini(dtrace_vstate_t *vstate)
14026{
14027	/*
14028	 * Logical XOR, where are you?
14029	 */
14030	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
14031
14032	if (vstate->dtvs_nglobals > 0) {
14033		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
14034		    sizeof (dtrace_statvar_t *));
14035	}
14036
14037	if (vstate->dtvs_ntlocals > 0) {
14038		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
14039		    sizeof (dtrace_difv_t));
14040	}
14041
14042	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
14043
14044	if (vstate->dtvs_nlocals > 0) {
14045		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
14046		    sizeof (dtrace_statvar_t *));
14047	}
14048}
14049
14050#if defined(sun)
14051static void
14052dtrace_state_clean(dtrace_state_t *state)
14053{
14054	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14055		return;
14056
14057	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14058	dtrace_speculation_clean(state);
14059}
14060
14061static void
14062dtrace_state_deadman(dtrace_state_t *state)
14063{
14064	hrtime_t now;
14065
14066	dtrace_sync();
14067
14068	now = dtrace_gethrtime();
14069
14070	if (state != dtrace_anon.dta_state &&
14071	    now - state->dts_laststatus >= dtrace_deadman_user)
14072		return;
14073
14074	/*
14075	 * We must be sure that dts_alive never appears to be less than the
14076	 * value upon entry to dtrace_state_deadman(), and because we lack a
14077	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14078	 * store INT64_MAX to it, followed by a memory barrier, followed by
14079	 * the new value.  This assures that dts_alive never appears to be
14080	 * less than its true value, regardless of the order in which the
14081	 * stores to the underlying storage are issued.
14082	 */
14083	state->dts_alive = INT64_MAX;
14084	dtrace_membar_producer();
14085	state->dts_alive = now;
14086}
14087#else
14088static void
14089dtrace_state_clean(void *arg)
14090{
14091	dtrace_state_t *state = arg;
14092	dtrace_optval_t *opt = state->dts_options;
14093
14094	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14095		return;
14096
14097	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14098	dtrace_speculation_clean(state);
14099
14100	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
14101	    dtrace_state_clean, state);
14102}
14103
14104static void
14105dtrace_state_deadman(void *arg)
14106{
14107	dtrace_state_t *state = arg;
14108	hrtime_t now;
14109
14110	dtrace_sync();
14111
14112	dtrace_debug_output();
14113
14114	now = dtrace_gethrtime();
14115
14116	if (state != dtrace_anon.dta_state &&
14117	    now - state->dts_laststatus >= dtrace_deadman_user)
14118		return;
14119
14120	/*
14121	 * We must be sure that dts_alive never appears to be less than the
14122	 * value upon entry to dtrace_state_deadman(), and because we lack a
14123	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14124	 * store INT64_MAX to it, followed by a memory barrier, followed by
14125	 * the new value.  This assures that dts_alive never appears to be
14126	 * less than its true value, regardless of the order in which the
14127	 * stores to the underlying storage are issued.
14128	 */
14129	state->dts_alive = INT64_MAX;
14130	dtrace_membar_producer();
14131	state->dts_alive = now;
14132
14133	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
14134	    dtrace_state_deadman, state);
14135}
14136#endif
14137
14138static dtrace_state_t *
14139#if defined(sun)
14140dtrace_state_create(dev_t *devp, cred_t *cr)
14141#else
14142dtrace_state_create(struct cdev *dev)
14143#endif
14144{
14145#if defined(sun)
14146	minor_t minor;
14147	major_t major;
14148#else
14149	cred_t *cr = NULL;
14150	int m = 0;
14151#endif
14152	char c[30];
14153	dtrace_state_t *state;
14154	dtrace_optval_t *opt;
14155	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
14156
14157	ASSERT(MUTEX_HELD(&dtrace_lock));
14158	ASSERT(MUTEX_HELD(&cpu_lock));
14159
14160#if defined(sun)
14161	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
14162	    VM_BESTFIT | VM_SLEEP);
14163
14164	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
14165		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14166		return (NULL);
14167	}
14168
14169	state = ddi_get_soft_state(dtrace_softstate, minor);
14170#else
14171	if (dev != NULL) {
14172		cr = dev->si_cred;
14173		m = dev2unit(dev);
14174		}
14175
14176	/* Allocate memory for the state. */
14177	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
14178#endif
14179
14180	state->dts_epid = DTRACE_EPIDNONE + 1;
14181
14182	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
14183#if defined(sun)
14184	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
14185	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
14186
14187	if (devp != NULL) {
14188		major = getemajor(*devp);
14189	} else {
14190		major = ddi_driver_major(dtrace_devi);
14191	}
14192
14193	state->dts_dev = makedevice(major, minor);
14194
14195	if (devp != NULL)
14196		*devp = state->dts_dev;
14197#else
14198	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
14199	state->dts_dev = dev;
14200#endif
14201
14202	/*
14203	 * We allocate NCPU buffers.  On the one hand, this can be quite
14204	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
14205	 * other hand, it saves an additional memory reference in the probe
14206	 * path.
14207	 */
14208	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
14209	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
14210
14211#if defined(sun)
14212	state->dts_cleaner = CYCLIC_NONE;
14213	state->dts_deadman = CYCLIC_NONE;
14214#else
14215	callout_init(&state->dts_cleaner, CALLOUT_MPSAFE);
14216	callout_init(&state->dts_deadman, CALLOUT_MPSAFE);
14217#endif
14218	state->dts_vstate.dtvs_state = state;
14219
14220	for (i = 0; i < DTRACEOPT_MAX; i++)
14221		state->dts_options[i] = DTRACEOPT_UNSET;
14222
14223	/*
14224	 * Set the default options.
14225	 */
14226	opt = state->dts_options;
14227	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
14228	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
14229	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
14230	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
14231	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
14232	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
14233	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
14234	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
14235	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
14236	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
14237	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
14238	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
14239	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
14240	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
14241
14242	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
14243
14244	/*
14245	 * Depending on the user credentials, we set flag bits which alter probe
14246	 * visibility or the amount of destructiveness allowed.  In the case of
14247	 * actual anonymous tracing, or the possession of all privileges, all of
14248	 * the normal checks are bypassed.
14249	 */
14250	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
14251		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
14252		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
14253	} else {
14254		/*
14255		 * Set up the credentials for this instantiation.  We take a
14256		 * hold on the credential to prevent it from disappearing on
14257		 * us; this in turn prevents the zone_t referenced by this
14258		 * credential from disappearing.  This means that we can
14259		 * examine the credential and the zone from probe context.
14260		 */
14261		crhold(cr);
14262		state->dts_cred.dcr_cred = cr;
14263
14264		/*
14265		 * CRA_PROC means "we have *some* privilege for dtrace" and
14266		 * unlocks the use of variables like pid, zonename, etc.
14267		 */
14268		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
14269		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14270			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
14271		}
14272
14273		/*
14274		 * dtrace_user allows use of syscall and profile providers.
14275		 * If the user also has proc_owner and/or proc_zone, we
14276		 * extend the scope to include additional visibility and
14277		 * destructive power.
14278		 */
14279		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
14280			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
14281				state->dts_cred.dcr_visible |=
14282				    DTRACE_CRV_ALLPROC;
14283
14284				state->dts_cred.dcr_action |=
14285				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14286			}
14287
14288			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
14289				state->dts_cred.dcr_visible |=
14290				    DTRACE_CRV_ALLZONE;
14291
14292				state->dts_cred.dcr_action |=
14293				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14294			}
14295
14296			/*
14297			 * If we have all privs in whatever zone this is,
14298			 * we can do destructive things to processes which
14299			 * have altered credentials.
14300			 */
14301#if defined(sun)
14302			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14303			    cr->cr_zone->zone_privset)) {
14304				state->dts_cred.dcr_action |=
14305				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14306			}
14307#endif
14308		}
14309
14310		/*
14311		 * Holding the dtrace_kernel privilege also implies that
14312		 * the user has the dtrace_user privilege from a visibility
14313		 * perspective.  But without further privileges, some
14314		 * destructive actions are not available.
14315		 */
14316		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
14317			/*
14318			 * Make all probes in all zones visible.  However,
14319			 * this doesn't mean that all actions become available
14320			 * to all zones.
14321			 */
14322			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
14323			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
14324
14325			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
14326			    DTRACE_CRA_PROC;
14327			/*
14328			 * Holding proc_owner means that destructive actions
14329			 * for *this* zone are allowed.
14330			 */
14331			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14332				state->dts_cred.dcr_action |=
14333				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14334
14335			/*
14336			 * Holding proc_zone means that destructive actions
14337			 * for this user/group ID in all zones is allowed.
14338			 */
14339			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14340				state->dts_cred.dcr_action |=
14341				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14342
14343#if defined(sun)
14344			/*
14345			 * If we have all privs in whatever zone this is,
14346			 * we can do destructive things to processes which
14347			 * have altered credentials.
14348			 */
14349			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14350			    cr->cr_zone->zone_privset)) {
14351				state->dts_cred.dcr_action |=
14352				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14353			}
14354#endif
14355		}
14356
14357		/*
14358		 * Holding the dtrace_proc privilege gives control over fasttrap
14359		 * and pid providers.  We need to grant wider destructive
14360		 * privileges in the event that the user has proc_owner and/or
14361		 * proc_zone.
14362		 */
14363		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14364			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14365				state->dts_cred.dcr_action |=
14366				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14367
14368			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14369				state->dts_cred.dcr_action |=
14370				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14371		}
14372	}
14373
14374	return (state);
14375}
14376
14377static int
14378dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
14379{
14380	dtrace_optval_t *opt = state->dts_options, size;
14381	processorid_t cpu = 0;;
14382	int flags = 0, rval, factor, divisor = 1;
14383
14384	ASSERT(MUTEX_HELD(&dtrace_lock));
14385	ASSERT(MUTEX_HELD(&cpu_lock));
14386	ASSERT(which < DTRACEOPT_MAX);
14387	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
14388	    (state == dtrace_anon.dta_state &&
14389	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
14390
14391	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
14392		return (0);
14393
14394	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
14395		cpu = opt[DTRACEOPT_CPU];
14396
14397	if (which == DTRACEOPT_SPECSIZE)
14398		flags |= DTRACEBUF_NOSWITCH;
14399
14400	if (which == DTRACEOPT_BUFSIZE) {
14401		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
14402			flags |= DTRACEBUF_RING;
14403
14404		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
14405			flags |= DTRACEBUF_FILL;
14406
14407		if (state != dtrace_anon.dta_state ||
14408		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14409			flags |= DTRACEBUF_INACTIVE;
14410	}
14411
14412	for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
14413		/*
14414		 * The size must be 8-byte aligned.  If the size is not 8-byte
14415		 * aligned, drop it down by the difference.
14416		 */
14417		if (size & (sizeof (uint64_t) - 1))
14418			size -= size & (sizeof (uint64_t) - 1);
14419
14420		if (size < state->dts_reserve) {
14421			/*
14422			 * Buffers always must be large enough to accommodate
14423			 * their prereserved space.  We return E2BIG instead
14424			 * of ENOMEM in this case to allow for user-level
14425			 * software to differentiate the cases.
14426			 */
14427			return (E2BIG);
14428		}
14429
14430		rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
14431
14432		if (rval != ENOMEM) {
14433			opt[which] = size;
14434			return (rval);
14435		}
14436
14437		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14438			return (rval);
14439
14440		for (divisor = 2; divisor < factor; divisor <<= 1)
14441			continue;
14442	}
14443
14444	return (ENOMEM);
14445}
14446
14447static int
14448dtrace_state_buffers(dtrace_state_t *state)
14449{
14450	dtrace_speculation_t *spec = state->dts_speculations;
14451	int rval, i;
14452
14453	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
14454	    DTRACEOPT_BUFSIZE)) != 0)
14455		return (rval);
14456
14457	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
14458	    DTRACEOPT_AGGSIZE)) != 0)
14459		return (rval);
14460
14461	for (i = 0; i < state->dts_nspeculations; i++) {
14462		if ((rval = dtrace_state_buffer(state,
14463		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
14464			return (rval);
14465	}
14466
14467	return (0);
14468}
14469
14470static void
14471dtrace_state_prereserve(dtrace_state_t *state)
14472{
14473	dtrace_ecb_t *ecb;
14474	dtrace_probe_t *probe;
14475
14476	state->dts_reserve = 0;
14477
14478	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
14479		return;
14480
14481	/*
14482	 * If our buffer policy is a "fill" buffer policy, we need to set the
14483	 * prereserved space to be the space required by the END probes.
14484	 */
14485	probe = dtrace_probes[dtrace_probeid_end - 1];
14486	ASSERT(probe != NULL);
14487
14488	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
14489		if (ecb->dte_state != state)
14490			continue;
14491
14492		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
14493	}
14494}
14495
14496static int
14497dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
14498{
14499	dtrace_optval_t *opt = state->dts_options, sz, nspec;
14500	dtrace_speculation_t *spec;
14501	dtrace_buffer_t *buf;
14502#if defined(sun)
14503	cyc_handler_t hdlr;
14504	cyc_time_t when;
14505#endif
14506	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14507	dtrace_icookie_t cookie;
14508
14509	mutex_enter(&cpu_lock);
14510	mutex_enter(&dtrace_lock);
14511
14512	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14513		rval = EBUSY;
14514		goto out;
14515	}
14516
14517	/*
14518	 * Before we can perform any checks, we must prime all of the
14519	 * retained enablings that correspond to this state.
14520	 */
14521	dtrace_enabling_prime(state);
14522
14523	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
14524		rval = EACCES;
14525		goto out;
14526	}
14527
14528	dtrace_state_prereserve(state);
14529
14530	/*
14531	 * Now we want to do is try to allocate our speculations.
14532	 * We do not automatically resize the number of speculations; if
14533	 * this fails, we will fail the operation.
14534	 */
14535	nspec = opt[DTRACEOPT_NSPEC];
14536	ASSERT(nspec != DTRACEOPT_UNSET);
14537
14538	if (nspec > INT_MAX) {
14539		rval = ENOMEM;
14540		goto out;
14541	}
14542
14543	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
14544	    KM_NOSLEEP | KM_NORMALPRI);
14545
14546	if (spec == NULL) {
14547		rval = ENOMEM;
14548		goto out;
14549	}
14550
14551	state->dts_speculations = spec;
14552	state->dts_nspeculations = (int)nspec;
14553
14554	for (i = 0; i < nspec; i++) {
14555		if ((buf = kmem_zalloc(bufsize,
14556		    KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
14557			rval = ENOMEM;
14558			goto err;
14559		}
14560
14561		spec[i].dtsp_buffer = buf;
14562	}
14563
14564	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
14565		if (dtrace_anon.dta_state == NULL) {
14566			rval = ENOENT;
14567			goto out;
14568		}
14569
14570		if (state->dts_necbs != 0) {
14571			rval = EALREADY;
14572			goto out;
14573		}
14574
14575		state->dts_anon = dtrace_anon_grab();
14576		ASSERT(state->dts_anon != NULL);
14577		state = state->dts_anon;
14578
14579		/*
14580		 * We want "grabanon" to be set in the grabbed state, so we'll
14581		 * copy that option value from the grabbing state into the
14582		 * grabbed state.
14583		 */
14584		state->dts_options[DTRACEOPT_GRABANON] =
14585		    opt[DTRACEOPT_GRABANON];
14586
14587		*cpu = dtrace_anon.dta_beganon;
14588
14589		/*
14590		 * If the anonymous state is active (as it almost certainly
14591		 * is if the anonymous enabling ultimately matched anything),
14592		 * we don't allow any further option processing -- but we
14593		 * don't return failure.
14594		 */
14595		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14596			goto out;
14597	}
14598
14599	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
14600	    opt[DTRACEOPT_AGGSIZE] != 0) {
14601		if (state->dts_aggregations == NULL) {
14602			/*
14603			 * We're not going to create an aggregation buffer
14604			 * because we don't have any ECBs that contain
14605			 * aggregations -- set this option to 0.
14606			 */
14607			opt[DTRACEOPT_AGGSIZE] = 0;
14608		} else {
14609			/*
14610			 * If we have an aggregation buffer, we must also have
14611			 * a buffer to use as scratch.
14612			 */
14613			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
14614			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
14615				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
14616			}
14617		}
14618	}
14619
14620	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
14621	    opt[DTRACEOPT_SPECSIZE] != 0) {
14622		if (!state->dts_speculates) {
14623			/*
14624			 * We're not going to create speculation buffers
14625			 * because we don't have any ECBs that actually
14626			 * speculate -- set the speculation size to 0.
14627			 */
14628			opt[DTRACEOPT_SPECSIZE] = 0;
14629		}
14630	}
14631
14632	/*
14633	 * The bare minimum size for any buffer that we're actually going to
14634	 * do anything to is sizeof (uint64_t).
14635	 */
14636	sz = sizeof (uint64_t);
14637
14638	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
14639	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
14640	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
14641		/*
14642		 * A buffer size has been explicitly set to 0 (or to a size
14643		 * that will be adjusted to 0) and we need the space -- we
14644		 * need to return failure.  We return ENOSPC to differentiate
14645		 * it from failing to allocate a buffer due to failure to meet
14646		 * the reserve (for which we return E2BIG).
14647		 */
14648		rval = ENOSPC;
14649		goto out;
14650	}
14651
14652	if ((rval = dtrace_state_buffers(state)) != 0)
14653		goto err;
14654
14655	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
14656		sz = dtrace_dstate_defsize;
14657
14658	do {
14659		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
14660
14661		if (rval == 0)
14662			break;
14663
14664		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14665			goto err;
14666	} while (sz >>= 1);
14667
14668	opt[DTRACEOPT_DYNVARSIZE] = sz;
14669
14670	if (rval != 0)
14671		goto err;
14672
14673	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
14674		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
14675
14676	if (opt[DTRACEOPT_CLEANRATE] == 0)
14677		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
14678
14679	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
14680		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
14681
14682	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
14683		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
14684
14685	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
14686#if defined(sun)
14687	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
14688	hdlr.cyh_arg = state;
14689	hdlr.cyh_level = CY_LOW_LEVEL;
14690
14691	when.cyt_when = 0;
14692	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
14693
14694	state->dts_cleaner = cyclic_add(&hdlr, &when);
14695
14696	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
14697	hdlr.cyh_arg = state;
14698	hdlr.cyh_level = CY_LOW_LEVEL;
14699
14700	when.cyt_when = 0;
14701	when.cyt_interval = dtrace_deadman_interval;
14702
14703	state->dts_deadman = cyclic_add(&hdlr, &when);
14704#else
14705	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
14706	    dtrace_state_clean, state);
14707	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
14708	    dtrace_state_deadman, state);
14709#endif
14710
14711	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
14712
14713#if defined(sun)
14714	if (state->dts_getf != 0 &&
14715	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14716		/*
14717		 * We don't have kernel privs but we have at least one call
14718		 * to getf(); we need to bump our zone's count, and (if
14719		 * this is the first enabling to have an unprivileged call
14720		 * to getf()) we need to hook into closef().
14721		 */
14722		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
14723
14724		if (dtrace_getf++ == 0) {
14725			ASSERT(dtrace_closef == NULL);
14726			dtrace_closef = dtrace_getf_barrier;
14727		}
14728	}
14729#endif
14730
14731	/*
14732	 * Now it's time to actually fire the BEGIN probe.  We need to disable
14733	 * interrupts here both to record the CPU on which we fired the BEGIN
14734	 * probe (the data from this CPU will be processed first at user
14735	 * level) and to manually activate the buffer for this CPU.
14736	 */
14737	cookie = dtrace_interrupt_disable();
14738	*cpu = curcpu;
14739	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
14740	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
14741
14742	dtrace_probe(dtrace_probeid_begin,
14743	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14744	dtrace_interrupt_enable(cookie);
14745	/*
14746	 * We may have had an exit action from a BEGIN probe; only change our
14747	 * state to ACTIVE if we're still in WARMUP.
14748	 */
14749	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
14750	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
14751
14752	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
14753		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
14754
14755	/*
14756	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
14757	 * want each CPU to transition its principal buffer out of the
14758	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
14759	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
14760	 * atomically transition from processing none of a state's ECBs to
14761	 * processing all of them.
14762	 */
14763	dtrace_xcall(DTRACE_CPUALL,
14764	    (dtrace_xcall_t)dtrace_buffer_activate, state);
14765	goto out;
14766
14767err:
14768	dtrace_buffer_free(state->dts_buffer);
14769	dtrace_buffer_free(state->dts_aggbuffer);
14770
14771	if ((nspec = state->dts_nspeculations) == 0) {
14772		ASSERT(state->dts_speculations == NULL);
14773		goto out;
14774	}
14775
14776	spec = state->dts_speculations;
14777	ASSERT(spec != NULL);
14778
14779	for (i = 0; i < state->dts_nspeculations; i++) {
14780		if ((buf = spec[i].dtsp_buffer) == NULL)
14781			break;
14782
14783		dtrace_buffer_free(buf);
14784		kmem_free(buf, bufsize);
14785	}
14786
14787	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14788	state->dts_nspeculations = 0;
14789	state->dts_speculations = NULL;
14790
14791out:
14792	mutex_exit(&dtrace_lock);
14793	mutex_exit(&cpu_lock);
14794
14795	return (rval);
14796}
14797
14798static int
14799dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
14800{
14801	dtrace_icookie_t cookie;
14802
14803	ASSERT(MUTEX_HELD(&dtrace_lock));
14804
14805	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
14806	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
14807		return (EINVAL);
14808
14809	/*
14810	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
14811	 * to be sure that every CPU has seen it.  See below for the details
14812	 * on why this is done.
14813	 */
14814	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
14815	dtrace_sync();
14816
14817	/*
14818	 * By this point, it is impossible for any CPU to be still processing
14819	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
14820	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
14821	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
14822	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
14823	 * iff we're in the END probe.
14824	 */
14825	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
14826	dtrace_sync();
14827	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
14828
14829	/*
14830	 * Finally, we can release the reserve and call the END probe.  We
14831	 * disable interrupts across calling the END probe to allow us to
14832	 * return the CPU on which we actually called the END probe.  This
14833	 * allows user-land to be sure that this CPU's principal buffer is
14834	 * processed last.
14835	 */
14836	state->dts_reserve = 0;
14837
14838	cookie = dtrace_interrupt_disable();
14839	*cpu = curcpu;
14840	dtrace_probe(dtrace_probeid_end,
14841	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14842	dtrace_interrupt_enable(cookie);
14843
14844	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
14845	dtrace_sync();
14846
14847#if defined(sun)
14848	if (state->dts_getf != 0 &&
14849	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14850		/*
14851		 * We don't have kernel privs but we have at least one call
14852		 * to getf(); we need to lower our zone's count, and (if
14853		 * this is the last enabling to have an unprivileged call
14854		 * to getf()) we need to clear the closef() hook.
14855		 */
14856		ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
14857		ASSERT(dtrace_closef == dtrace_getf_barrier);
14858		ASSERT(dtrace_getf > 0);
14859
14860		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
14861
14862		if (--dtrace_getf == 0)
14863			dtrace_closef = NULL;
14864	}
14865#endif
14866
14867	return (0);
14868}
14869
14870static int
14871dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
14872    dtrace_optval_t val)
14873{
14874	ASSERT(MUTEX_HELD(&dtrace_lock));
14875
14876	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14877		return (EBUSY);
14878
14879	if (option >= DTRACEOPT_MAX)
14880		return (EINVAL);
14881
14882	if (option != DTRACEOPT_CPU && val < 0)
14883		return (EINVAL);
14884
14885	switch (option) {
14886	case DTRACEOPT_DESTRUCTIVE:
14887		if (dtrace_destructive_disallow)
14888			return (EACCES);
14889
14890		state->dts_cred.dcr_destructive = 1;
14891		break;
14892
14893	case DTRACEOPT_BUFSIZE:
14894	case DTRACEOPT_DYNVARSIZE:
14895	case DTRACEOPT_AGGSIZE:
14896	case DTRACEOPT_SPECSIZE:
14897	case DTRACEOPT_STRSIZE:
14898		if (val < 0)
14899			return (EINVAL);
14900
14901		if (val >= LONG_MAX) {
14902			/*
14903			 * If this is an otherwise negative value, set it to
14904			 * the highest multiple of 128m less than LONG_MAX.
14905			 * Technically, we're adjusting the size without
14906			 * regard to the buffer resizing policy, but in fact,
14907			 * this has no effect -- if we set the buffer size to
14908			 * ~LONG_MAX and the buffer policy is ultimately set to
14909			 * be "manual", the buffer allocation is guaranteed to
14910			 * fail, if only because the allocation requires two
14911			 * buffers.  (We set the the size to the highest
14912			 * multiple of 128m because it ensures that the size
14913			 * will remain a multiple of a megabyte when
14914			 * repeatedly halved -- all the way down to 15m.)
14915			 */
14916			val = LONG_MAX - (1 << 27) + 1;
14917		}
14918	}
14919
14920	state->dts_options[option] = val;
14921
14922	return (0);
14923}
14924
14925static void
14926dtrace_state_destroy(dtrace_state_t *state)
14927{
14928	dtrace_ecb_t *ecb;
14929	dtrace_vstate_t *vstate = &state->dts_vstate;
14930#if defined(sun)
14931	minor_t minor = getminor(state->dts_dev);
14932#endif
14933	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14934	dtrace_speculation_t *spec = state->dts_speculations;
14935	int nspec = state->dts_nspeculations;
14936	uint32_t match;
14937
14938	ASSERT(MUTEX_HELD(&dtrace_lock));
14939	ASSERT(MUTEX_HELD(&cpu_lock));
14940
14941	/*
14942	 * First, retract any retained enablings for this state.
14943	 */
14944	dtrace_enabling_retract(state);
14945	ASSERT(state->dts_nretained == 0);
14946
14947	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
14948	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
14949		/*
14950		 * We have managed to come into dtrace_state_destroy() on a
14951		 * hot enabling -- almost certainly because of a disorderly
14952		 * shutdown of a consumer.  (That is, a consumer that is
14953		 * exiting without having called dtrace_stop().) In this case,
14954		 * we're going to set our activity to be KILLED, and then
14955		 * issue a sync to be sure that everyone is out of probe
14956		 * context before we start blowing away ECBs.
14957		 */
14958		state->dts_activity = DTRACE_ACTIVITY_KILLED;
14959		dtrace_sync();
14960	}
14961
14962	/*
14963	 * Release the credential hold we took in dtrace_state_create().
14964	 */
14965	if (state->dts_cred.dcr_cred != NULL)
14966		crfree(state->dts_cred.dcr_cred);
14967
14968	/*
14969	 * Now we can safely disable and destroy any enabled probes.  Because
14970	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
14971	 * (especially if they're all enabled), we take two passes through the
14972	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
14973	 * in the second we disable whatever is left over.
14974	 */
14975	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
14976		for (i = 0; i < state->dts_necbs; i++) {
14977			if ((ecb = state->dts_ecbs[i]) == NULL)
14978				continue;
14979
14980			if (match && ecb->dte_probe != NULL) {
14981				dtrace_probe_t *probe = ecb->dte_probe;
14982				dtrace_provider_t *prov = probe->dtpr_provider;
14983
14984				if (!(prov->dtpv_priv.dtpp_flags & match))
14985					continue;
14986			}
14987
14988			dtrace_ecb_disable(ecb);
14989			dtrace_ecb_destroy(ecb);
14990		}
14991
14992		if (!match)
14993			break;
14994	}
14995
14996	/*
14997	 * Before we free the buffers, perform one more sync to assure that
14998	 * every CPU is out of probe context.
14999	 */
15000	dtrace_sync();
15001
15002	dtrace_buffer_free(state->dts_buffer);
15003	dtrace_buffer_free(state->dts_aggbuffer);
15004
15005	for (i = 0; i < nspec; i++)
15006		dtrace_buffer_free(spec[i].dtsp_buffer);
15007
15008#if defined(sun)
15009	if (state->dts_cleaner != CYCLIC_NONE)
15010		cyclic_remove(state->dts_cleaner);
15011
15012	if (state->dts_deadman != CYCLIC_NONE)
15013		cyclic_remove(state->dts_deadman);
15014#else
15015	callout_stop(&state->dts_cleaner);
15016	callout_drain(&state->dts_cleaner);
15017	callout_stop(&state->dts_deadman);
15018	callout_drain(&state->dts_deadman);
15019#endif
15020
15021	dtrace_dstate_fini(&vstate->dtvs_dynvars);
15022	dtrace_vstate_fini(vstate);
15023	if (state->dts_ecbs != NULL)
15024		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
15025
15026	if (state->dts_aggregations != NULL) {
15027#ifdef DEBUG
15028		for (i = 0; i < state->dts_naggregations; i++)
15029			ASSERT(state->dts_aggregations[i] == NULL);
15030#endif
15031		ASSERT(state->dts_naggregations > 0);
15032		kmem_free(state->dts_aggregations,
15033		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
15034	}
15035
15036	kmem_free(state->dts_buffer, bufsize);
15037	kmem_free(state->dts_aggbuffer, bufsize);
15038
15039	for (i = 0; i < nspec; i++)
15040		kmem_free(spec[i].dtsp_buffer, bufsize);
15041
15042	if (spec != NULL)
15043		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15044
15045	dtrace_format_destroy(state);
15046
15047	if (state->dts_aggid_arena != NULL) {
15048#if defined(sun)
15049		vmem_destroy(state->dts_aggid_arena);
15050#else
15051		delete_unrhdr(state->dts_aggid_arena);
15052#endif
15053		state->dts_aggid_arena = NULL;
15054	}
15055#if defined(sun)
15056	ddi_soft_state_free(dtrace_softstate, minor);
15057	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
15058#endif
15059}
15060
15061/*
15062 * DTrace Anonymous Enabling Functions
15063 */
15064static dtrace_state_t *
15065dtrace_anon_grab(void)
15066{
15067	dtrace_state_t *state;
15068
15069	ASSERT(MUTEX_HELD(&dtrace_lock));
15070
15071	if ((state = dtrace_anon.dta_state) == NULL) {
15072		ASSERT(dtrace_anon.dta_enabling == NULL);
15073		return (NULL);
15074	}
15075
15076	ASSERT(dtrace_anon.dta_enabling != NULL);
15077	ASSERT(dtrace_retained != NULL);
15078
15079	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
15080	dtrace_anon.dta_enabling = NULL;
15081	dtrace_anon.dta_state = NULL;
15082
15083	return (state);
15084}
15085
15086static void
15087dtrace_anon_property(void)
15088{
15089	int i, rv;
15090	dtrace_state_t *state;
15091	dof_hdr_t *dof;
15092	char c[32];		/* enough for "dof-data-" + digits */
15093
15094	ASSERT(MUTEX_HELD(&dtrace_lock));
15095	ASSERT(MUTEX_HELD(&cpu_lock));
15096
15097	for (i = 0; ; i++) {
15098		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
15099
15100		dtrace_err_verbose = 1;
15101
15102		if ((dof = dtrace_dof_property(c)) == NULL) {
15103			dtrace_err_verbose = 0;
15104			break;
15105		}
15106
15107#if defined(sun)
15108		/*
15109		 * We want to create anonymous state, so we need to transition
15110		 * the kernel debugger to indicate that DTrace is active.  If
15111		 * this fails (e.g. because the debugger has modified text in
15112		 * some way), we won't continue with the processing.
15113		 */
15114		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15115			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
15116			    "enabling ignored.");
15117			dtrace_dof_destroy(dof);
15118			break;
15119		}
15120#endif
15121
15122		/*
15123		 * If we haven't allocated an anonymous state, we'll do so now.
15124		 */
15125		if ((state = dtrace_anon.dta_state) == NULL) {
15126#if defined(sun)
15127			state = dtrace_state_create(NULL, NULL);
15128#else
15129			state = dtrace_state_create(NULL);
15130#endif
15131			dtrace_anon.dta_state = state;
15132
15133			if (state == NULL) {
15134				/*
15135				 * This basically shouldn't happen:  the only
15136				 * failure mode from dtrace_state_create() is a
15137				 * failure of ddi_soft_state_zalloc() that
15138				 * itself should never happen.  Still, the
15139				 * interface allows for a failure mode, and
15140				 * we want to fail as gracefully as possible:
15141				 * we'll emit an error message and cease
15142				 * processing anonymous state in this case.
15143				 */
15144				cmn_err(CE_WARN, "failed to create "
15145				    "anonymous state");
15146				dtrace_dof_destroy(dof);
15147				break;
15148			}
15149		}
15150
15151		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
15152		    &dtrace_anon.dta_enabling, 0, B_TRUE);
15153
15154		if (rv == 0)
15155			rv = dtrace_dof_options(dof, state);
15156
15157		dtrace_err_verbose = 0;
15158		dtrace_dof_destroy(dof);
15159
15160		if (rv != 0) {
15161			/*
15162			 * This is malformed DOF; chuck any anonymous state
15163			 * that we created.
15164			 */
15165			ASSERT(dtrace_anon.dta_enabling == NULL);
15166			dtrace_state_destroy(state);
15167			dtrace_anon.dta_state = NULL;
15168			break;
15169		}
15170
15171		ASSERT(dtrace_anon.dta_enabling != NULL);
15172	}
15173
15174	if (dtrace_anon.dta_enabling != NULL) {
15175		int rval;
15176
15177		/*
15178		 * dtrace_enabling_retain() can only fail because we are
15179		 * trying to retain more enablings than are allowed -- but
15180		 * we only have one anonymous enabling, and we are guaranteed
15181		 * to be allowed at least one retained enabling; we assert
15182		 * that dtrace_enabling_retain() returns success.
15183		 */
15184		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
15185		ASSERT(rval == 0);
15186
15187		dtrace_enabling_dump(dtrace_anon.dta_enabling);
15188	}
15189}
15190
15191/*
15192 * DTrace Helper Functions
15193 */
15194static void
15195dtrace_helper_trace(dtrace_helper_action_t *helper,
15196    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
15197{
15198	uint32_t size, next, nnext, i;
15199	dtrace_helptrace_t *ent;
15200	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
15201
15202	if (!dtrace_helptrace_enabled)
15203		return;
15204
15205	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
15206
15207	/*
15208	 * What would a tracing framework be without its own tracing
15209	 * framework?  (Well, a hell of a lot simpler, for starters...)
15210	 */
15211	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
15212	    sizeof (uint64_t) - sizeof (uint64_t);
15213
15214	/*
15215	 * Iterate until we can allocate a slot in the trace buffer.
15216	 */
15217	do {
15218		next = dtrace_helptrace_next;
15219
15220		if (next + size < dtrace_helptrace_bufsize) {
15221			nnext = next + size;
15222		} else {
15223			nnext = size;
15224		}
15225	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
15226
15227	/*
15228	 * We have our slot; fill it in.
15229	 */
15230	if (nnext == size)
15231		next = 0;
15232
15233	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
15234	ent->dtht_helper = helper;
15235	ent->dtht_where = where;
15236	ent->dtht_nlocals = vstate->dtvs_nlocals;
15237
15238	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
15239	    mstate->dtms_fltoffs : -1;
15240	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
15241	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
15242
15243	for (i = 0; i < vstate->dtvs_nlocals; i++) {
15244		dtrace_statvar_t *svar;
15245
15246		if ((svar = vstate->dtvs_locals[i]) == NULL)
15247			continue;
15248
15249		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
15250		ent->dtht_locals[i] =
15251		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
15252	}
15253}
15254
15255static uint64_t
15256dtrace_helper(int which, dtrace_mstate_t *mstate,
15257    dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
15258{
15259	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
15260	uint64_t sarg0 = mstate->dtms_arg[0];
15261	uint64_t sarg1 = mstate->dtms_arg[1];
15262	uint64_t rval = 0;
15263	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
15264	dtrace_helper_action_t *helper;
15265	dtrace_vstate_t *vstate;
15266	dtrace_difo_t *pred;
15267	int i, trace = dtrace_helptrace_enabled;
15268
15269	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
15270
15271	if (helpers == NULL)
15272		return (0);
15273
15274	if ((helper = helpers->dthps_actions[which]) == NULL)
15275		return (0);
15276
15277	vstate = &helpers->dthps_vstate;
15278	mstate->dtms_arg[0] = arg0;
15279	mstate->dtms_arg[1] = arg1;
15280
15281	/*
15282	 * Now iterate over each helper.  If its predicate evaluates to 'true',
15283	 * we'll call the corresponding actions.  Note that the below calls
15284	 * to dtrace_dif_emulate() may set faults in machine state.  This is
15285	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
15286	 * the stored DIF offset with its own (which is the desired behavior).
15287	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
15288	 * from machine state; this is okay, too.
15289	 */
15290	for (; helper != NULL; helper = helper->dtha_next) {
15291		if ((pred = helper->dtha_predicate) != NULL) {
15292			if (trace)
15293				dtrace_helper_trace(helper, mstate, vstate, 0);
15294
15295			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
15296				goto next;
15297
15298			if (*flags & CPU_DTRACE_FAULT)
15299				goto err;
15300		}
15301
15302		for (i = 0; i < helper->dtha_nactions; i++) {
15303			if (trace)
15304				dtrace_helper_trace(helper,
15305				    mstate, vstate, i + 1);
15306
15307			rval = dtrace_dif_emulate(helper->dtha_actions[i],
15308			    mstate, vstate, state);
15309
15310			if (*flags & CPU_DTRACE_FAULT)
15311				goto err;
15312		}
15313
15314next:
15315		if (trace)
15316			dtrace_helper_trace(helper, mstate, vstate,
15317			    DTRACE_HELPTRACE_NEXT);
15318	}
15319
15320	if (trace)
15321		dtrace_helper_trace(helper, mstate, vstate,
15322		    DTRACE_HELPTRACE_DONE);
15323
15324	/*
15325	 * Restore the arg0 that we saved upon entry.
15326	 */
15327	mstate->dtms_arg[0] = sarg0;
15328	mstate->dtms_arg[1] = sarg1;
15329
15330	return (rval);
15331
15332err:
15333	if (trace)
15334		dtrace_helper_trace(helper, mstate, vstate,
15335		    DTRACE_HELPTRACE_ERR);
15336
15337	/*
15338	 * Restore the arg0 that we saved upon entry.
15339	 */
15340	mstate->dtms_arg[0] = sarg0;
15341	mstate->dtms_arg[1] = sarg1;
15342
15343	return (0);
15344}
15345
15346static void
15347dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
15348    dtrace_vstate_t *vstate)
15349{
15350	int i;
15351
15352	if (helper->dtha_predicate != NULL)
15353		dtrace_difo_release(helper->dtha_predicate, vstate);
15354
15355	for (i = 0; i < helper->dtha_nactions; i++) {
15356		ASSERT(helper->dtha_actions[i] != NULL);
15357		dtrace_difo_release(helper->dtha_actions[i], vstate);
15358	}
15359
15360	kmem_free(helper->dtha_actions,
15361	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
15362	kmem_free(helper, sizeof (dtrace_helper_action_t));
15363}
15364
15365static int
15366dtrace_helper_destroygen(int gen)
15367{
15368	proc_t *p = curproc;
15369	dtrace_helpers_t *help = p->p_dtrace_helpers;
15370	dtrace_vstate_t *vstate;
15371	int i;
15372
15373	ASSERT(MUTEX_HELD(&dtrace_lock));
15374
15375	if (help == NULL || gen > help->dthps_generation)
15376		return (EINVAL);
15377
15378	vstate = &help->dthps_vstate;
15379
15380	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15381		dtrace_helper_action_t *last = NULL, *h, *next;
15382
15383		for (h = help->dthps_actions[i]; h != NULL; h = next) {
15384			next = h->dtha_next;
15385
15386			if (h->dtha_generation == gen) {
15387				if (last != NULL) {
15388					last->dtha_next = next;
15389				} else {
15390					help->dthps_actions[i] = next;
15391				}
15392
15393				dtrace_helper_action_destroy(h, vstate);
15394			} else {
15395				last = h;
15396			}
15397		}
15398	}
15399
15400	/*
15401	 * Interate until we've cleared out all helper providers with the
15402	 * given generation number.
15403	 */
15404	for (;;) {
15405		dtrace_helper_provider_t *prov;
15406
15407		/*
15408		 * Look for a helper provider with the right generation. We
15409		 * have to start back at the beginning of the list each time
15410		 * because we drop dtrace_lock. It's unlikely that we'll make
15411		 * more than two passes.
15412		 */
15413		for (i = 0; i < help->dthps_nprovs; i++) {
15414			prov = help->dthps_provs[i];
15415
15416			if (prov->dthp_generation == gen)
15417				break;
15418		}
15419
15420		/*
15421		 * If there were no matches, we're done.
15422		 */
15423		if (i == help->dthps_nprovs)
15424			break;
15425
15426		/*
15427		 * Move the last helper provider into this slot.
15428		 */
15429		help->dthps_nprovs--;
15430		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
15431		help->dthps_provs[help->dthps_nprovs] = NULL;
15432
15433		mutex_exit(&dtrace_lock);
15434
15435		/*
15436		 * If we have a meta provider, remove this helper provider.
15437		 */
15438		mutex_enter(&dtrace_meta_lock);
15439		if (dtrace_meta_pid != NULL) {
15440			ASSERT(dtrace_deferred_pid == NULL);
15441			dtrace_helper_provider_remove(&prov->dthp_prov,
15442			    p->p_pid);
15443		}
15444		mutex_exit(&dtrace_meta_lock);
15445
15446		dtrace_helper_provider_destroy(prov);
15447
15448		mutex_enter(&dtrace_lock);
15449	}
15450
15451	return (0);
15452}
15453
15454static int
15455dtrace_helper_validate(dtrace_helper_action_t *helper)
15456{
15457	int err = 0, i;
15458	dtrace_difo_t *dp;
15459
15460	if ((dp = helper->dtha_predicate) != NULL)
15461		err += dtrace_difo_validate_helper(dp);
15462
15463	for (i = 0; i < helper->dtha_nactions; i++)
15464		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
15465
15466	return (err == 0);
15467}
15468
15469static int
15470dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
15471{
15472	dtrace_helpers_t *help;
15473	dtrace_helper_action_t *helper, *last;
15474	dtrace_actdesc_t *act;
15475	dtrace_vstate_t *vstate;
15476	dtrace_predicate_t *pred;
15477	int count = 0, nactions = 0, i;
15478
15479	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
15480		return (EINVAL);
15481
15482	help = curproc->p_dtrace_helpers;
15483	last = help->dthps_actions[which];
15484	vstate = &help->dthps_vstate;
15485
15486	for (count = 0; last != NULL; last = last->dtha_next) {
15487		count++;
15488		if (last->dtha_next == NULL)
15489			break;
15490	}
15491
15492	/*
15493	 * If we already have dtrace_helper_actions_max helper actions for this
15494	 * helper action type, we'll refuse to add a new one.
15495	 */
15496	if (count >= dtrace_helper_actions_max)
15497		return (ENOSPC);
15498
15499	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
15500	helper->dtha_generation = help->dthps_generation;
15501
15502	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
15503		ASSERT(pred->dtp_difo != NULL);
15504		dtrace_difo_hold(pred->dtp_difo);
15505		helper->dtha_predicate = pred->dtp_difo;
15506	}
15507
15508	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
15509		if (act->dtad_kind != DTRACEACT_DIFEXPR)
15510			goto err;
15511
15512		if (act->dtad_difo == NULL)
15513			goto err;
15514
15515		nactions++;
15516	}
15517
15518	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
15519	    (helper->dtha_nactions = nactions), KM_SLEEP);
15520
15521	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
15522		dtrace_difo_hold(act->dtad_difo);
15523		helper->dtha_actions[i++] = act->dtad_difo;
15524	}
15525
15526	if (!dtrace_helper_validate(helper))
15527		goto err;
15528
15529	if (last == NULL) {
15530		help->dthps_actions[which] = helper;
15531	} else {
15532		last->dtha_next = helper;
15533	}
15534
15535	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
15536		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
15537		dtrace_helptrace_next = 0;
15538	}
15539
15540	return (0);
15541err:
15542	dtrace_helper_action_destroy(helper, vstate);
15543	return (EINVAL);
15544}
15545
15546static void
15547dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
15548    dof_helper_t *dofhp)
15549{
15550	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
15551
15552	mutex_enter(&dtrace_meta_lock);
15553	mutex_enter(&dtrace_lock);
15554
15555	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
15556		/*
15557		 * If the dtrace module is loaded but not attached, or if
15558		 * there aren't isn't a meta provider registered to deal with
15559		 * these provider descriptions, we need to postpone creating
15560		 * the actual providers until later.
15561		 */
15562
15563		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
15564		    dtrace_deferred_pid != help) {
15565			help->dthps_deferred = 1;
15566			help->dthps_pid = p->p_pid;
15567			help->dthps_next = dtrace_deferred_pid;
15568			help->dthps_prev = NULL;
15569			if (dtrace_deferred_pid != NULL)
15570				dtrace_deferred_pid->dthps_prev = help;
15571			dtrace_deferred_pid = help;
15572		}
15573
15574		mutex_exit(&dtrace_lock);
15575
15576	} else if (dofhp != NULL) {
15577		/*
15578		 * If the dtrace module is loaded and we have a particular
15579		 * helper provider description, pass that off to the
15580		 * meta provider.
15581		 */
15582
15583		mutex_exit(&dtrace_lock);
15584
15585		dtrace_helper_provide(dofhp, p->p_pid);
15586
15587	} else {
15588		/*
15589		 * Otherwise, just pass all the helper provider descriptions
15590		 * off to the meta provider.
15591		 */
15592
15593		int i;
15594		mutex_exit(&dtrace_lock);
15595
15596		for (i = 0; i < help->dthps_nprovs; i++) {
15597			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
15598			    p->p_pid);
15599		}
15600	}
15601
15602	mutex_exit(&dtrace_meta_lock);
15603}
15604
15605static int
15606dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
15607{
15608	dtrace_helpers_t *help;
15609	dtrace_helper_provider_t *hprov, **tmp_provs;
15610	uint_t tmp_maxprovs, i;
15611
15612	ASSERT(MUTEX_HELD(&dtrace_lock));
15613
15614	help = curproc->p_dtrace_helpers;
15615	ASSERT(help != NULL);
15616
15617	/*
15618	 * If we already have dtrace_helper_providers_max helper providers,
15619	 * we're refuse to add a new one.
15620	 */
15621	if (help->dthps_nprovs >= dtrace_helper_providers_max)
15622		return (ENOSPC);
15623
15624	/*
15625	 * Check to make sure this isn't a duplicate.
15626	 */
15627	for (i = 0; i < help->dthps_nprovs; i++) {
15628		if (dofhp->dofhp_dof ==
15629		    help->dthps_provs[i]->dthp_prov.dofhp_dof)
15630			return (EALREADY);
15631	}
15632
15633	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
15634	hprov->dthp_prov = *dofhp;
15635	hprov->dthp_ref = 1;
15636	hprov->dthp_generation = gen;
15637
15638	/*
15639	 * Allocate a bigger table for helper providers if it's already full.
15640	 */
15641	if (help->dthps_maxprovs == help->dthps_nprovs) {
15642		tmp_maxprovs = help->dthps_maxprovs;
15643		tmp_provs = help->dthps_provs;
15644
15645		if (help->dthps_maxprovs == 0)
15646			help->dthps_maxprovs = 2;
15647		else
15648			help->dthps_maxprovs *= 2;
15649		if (help->dthps_maxprovs > dtrace_helper_providers_max)
15650			help->dthps_maxprovs = dtrace_helper_providers_max;
15651
15652		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
15653
15654		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
15655		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15656
15657		if (tmp_provs != NULL) {
15658			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
15659			    sizeof (dtrace_helper_provider_t *));
15660			kmem_free(tmp_provs, tmp_maxprovs *
15661			    sizeof (dtrace_helper_provider_t *));
15662		}
15663	}
15664
15665	help->dthps_provs[help->dthps_nprovs] = hprov;
15666	help->dthps_nprovs++;
15667
15668	return (0);
15669}
15670
15671static void
15672dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
15673{
15674	mutex_enter(&dtrace_lock);
15675
15676	if (--hprov->dthp_ref == 0) {
15677		dof_hdr_t *dof;
15678		mutex_exit(&dtrace_lock);
15679		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
15680		dtrace_dof_destroy(dof);
15681		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
15682	} else {
15683		mutex_exit(&dtrace_lock);
15684	}
15685}
15686
15687static int
15688dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
15689{
15690	uintptr_t daddr = (uintptr_t)dof;
15691	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
15692	dof_provider_t *provider;
15693	dof_probe_t *probe;
15694	uint8_t *arg;
15695	char *strtab, *typestr;
15696	dof_stridx_t typeidx;
15697	size_t typesz;
15698	uint_t nprobes, j, k;
15699
15700	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
15701
15702	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
15703		dtrace_dof_error(dof, "misaligned section offset");
15704		return (-1);
15705	}
15706
15707	/*
15708	 * The section needs to be large enough to contain the DOF provider
15709	 * structure appropriate for the given version.
15710	 */
15711	if (sec->dofs_size <
15712	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
15713	    offsetof(dof_provider_t, dofpv_prenoffs) :
15714	    sizeof (dof_provider_t))) {
15715		dtrace_dof_error(dof, "provider section too small");
15716		return (-1);
15717	}
15718
15719	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
15720	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
15721	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
15722	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
15723	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
15724
15725	if (str_sec == NULL || prb_sec == NULL ||
15726	    arg_sec == NULL || off_sec == NULL)
15727		return (-1);
15728
15729	enoff_sec = NULL;
15730
15731	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
15732	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
15733	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
15734	    provider->dofpv_prenoffs)) == NULL)
15735		return (-1);
15736
15737	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
15738
15739	if (provider->dofpv_name >= str_sec->dofs_size ||
15740	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
15741		dtrace_dof_error(dof, "invalid provider name");
15742		return (-1);
15743	}
15744
15745	if (prb_sec->dofs_entsize == 0 ||
15746	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
15747		dtrace_dof_error(dof, "invalid entry size");
15748		return (-1);
15749	}
15750
15751	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
15752		dtrace_dof_error(dof, "misaligned entry size");
15753		return (-1);
15754	}
15755
15756	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
15757		dtrace_dof_error(dof, "invalid entry size");
15758		return (-1);
15759	}
15760
15761	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
15762		dtrace_dof_error(dof, "misaligned section offset");
15763		return (-1);
15764	}
15765
15766	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
15767		dtrace_dof_error(dof, "invalid entry size");
15768		return (-1);
15769	}
15770
15771	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
15772
15773	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
15774
15775	/*
15776	 * Take a pass through the probes to check for errors.
15777	 */
15778	for (j = 0; j < nprobes; j++) {
15779		probe = (dof_probe_t *)(uintptr_t)(daddr +
15780		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
15781
15782		if (probe->dofpr_func >= str_sec->dofs_size) {
15783			dtrace_dof_error(dof, "invalid function name");
15784			return (-1);
15785		}
15786
15787		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
15788			dtrace_dof_error(dof, "function name too long");
15789			return (-1);
15790		}
15791
15792		if (probe->dofpr_name >= str_sec->dofs_size ||
15793		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
15794			dtrace_dof_error(dof, "invalid probe name");
15795			return (-1);
15796		}
15797
15798		/*
15799		 * The offset count must not wrap the index, and the offsets
15800		 * must also not overflow the section's data.
15801		 */
15802		if (probe->dofpr_offidx + probe->dofpr_noffs <
15803		    probe->dofpr_offidx ||
15804		    (probe->dofpr_offidx + probe->dofpr_noffs) *
15805		    off_sec->dofs_entsize > off_sec->dofs_size) {
15806			dtrace_dof_error(dof, "invalid probe offset");
15807			return (-1);
15808		}
15809
15810		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
15811			/*
15812			 * If there's no is-enabled offset section, make sure
15813			 * there aren't any is-enabled offsets. Otherwise
15814			 * perform the same checks as for probe offsets
15815			 * (immediately above).
15816			 */
15817			if (enoff_sec == NULL) {
15818				if (probe->dofpr_enoffidx != 0 ||
15819				    probe->dofpr_nenoffs != 0) {
15820					dtrace_dof_error(dof, "is-enabled "
15821					    "offsets with null section");
15822					return (-1);
15823				}
15824			} else if (probe->dofpr_enoffidx +
15825			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
15826			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
15827			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
15828				dtrace_dof_error(dof, "invalid is-enabled "
15829				    "offset");
15830				return (-1);
15831			}
15832
15833			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
15834				dtrace_dof_error(dof, "zero probe and "
15835				    "is-enabled offsets");
15836				return (-1);
15837			}
15838		} else if (probe->dofpr_noffs == 0) {
15839			dtrace_dof_error(dof, "zero probe offsets");
15840			return (-1);
15841		}
15842
15843		if (probe->dofpr_argidx + probe->dofpr_xargc <
15844		    probe->dofpr_argidx ||
15845		    (probe->dofpr_argidx + probe->dofpr_xargc) *
15846		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
15847			dtrace_dof_error(dof, "invalid args");
15848			return (-1);
15849		}
15850
15851		typeidx = probe->dofpr_nargv;
15852		typestr = strtab + probe->dofpr_nargv;
15853		for (k = 0; k < probe->dofpr_nargc; k++) {
15854			if (typeidx >= str_sec->dofs_size) {
15855				dtrace_dof_error(dof, "bad "
15856				    "native argument type");
15857				return (-1);
15858			}
15859
15860			typesz = strlen(typestr) + 1;
15861			if (typesz > DTRACE_ARGTYPELEN) {
15862				dtrace_dof_error(dof, "native "
15863				    "argument type too long");
15864				return (-1);
15865			}
15866			typeidx += typesz;
15867			typestr += typesz;
15868		}
15869
15870		typeidx = probe->dofpr_xargv;
15871		typestr = strtab + probe->dofpr_xargv;
15872		for (k = 0; k < probe->dofpr_xargc; k++) {
15873			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
15874				dtrace_dof_error(dof, "bad "
15875				    "native argument index");
15876				return (-1);
15877			}
15878
15879			if (typeidx >= str_sec->dofs_size) {
15880				dtrace_dof_error(dof, "bad "
15881				    "translated argument type");
15882				return (-1);
15883			}
15884
15885			typesz = strlen(typestr) + 1;
15886			if (typesz > DTRACE_ARGTYPELEN) {
15887				dtrace_dof_error(dof, "translated argument "
15888				    "type too long");
15889				return (-1);
15890			}
15891
15892			typeidx += typesz;
15893			typestr += typesz;
15894		}
15895	}
15896
15897	return (0);
15898}
15899
15900static int
15901dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
15902{
15903	dtrace_helpers_t *help;
15904	dtrace_vstate_t *vstate;
15905	dtrace_enabling_t *enab = NULL;
15906	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
15907	uintptr_t daddr = (uintptr_t)dof;
15908
15909	ASSERT(MUTEX_HELD(&dtrace_lock));
15910
15911	if ((help = curproc->p_dtrace_helpers) == NULL)
15912		help = dtrace_helpers_create(curproc);
15913
15914	vstate = &help->dthps_vstate;
15915
15916	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
15917	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
15918		dtrace_dof_destroy(dof);
15919		return (rv);
15920	}
15921
15922	/*
15923	 * Look for helper providers and validate their descriptions.
15924	 */
15925	if (dhp != NULL) {
15926		for (i = 0; i < dof->dofh_secnum; i++) {
15927			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
15928			    dof->dofh_secoff + i * dof->dofh_secsize);
15929
15930			if (sec->dofs_type != DOF_SECT_PROVIDER)
15931				continue;
15932
15933			if (dtrace_helper_provider_validate(dof, sec) != 0) {
15934				dtrace_enabling_destroy(enab);
15935				dtrace_dof_destroy(dof);
15936				return (-1);
15937			}
15938
15939			nprovs++;
15940		}
15941	}
15942
15943	/*
15944	 * Now we need to walk through the ECB descriptions in the enabling.
15945	 */
15946	for (i = 0; i < enab->dten_ndesc; i++) {
15947		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
15948		dtrace_probedesc_t *desc = &ep->dted_probe;
15949
15950		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
15951			continue;
15952
15953		if (strcmp(desc->dtpd_mod, "helper") != 0)
15954			continue;
15955
15956		if (strcmp(desc->dtpd_func, "ustack") != 0)
15957			continue;
15958
15959		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
15960		    ep)) != 0) {
15961			/*
15962			 * Adding this helper action failed -- we are now going
15963			 * to rip out the entire generation and return failure.
15964			 */
15965			(void) dtrace_helper_destroygen(help->dthps_generation);
15966			dtrace_enabling_destroy(enab);
15967			dtrace_dof_destroy(dof);
15968			return (-1);
15969		}
15970
15971		nhelpers++;
15972	}
15973
15974	if (nhelpers < enab->dten_ndesc)
15975		dtrace_dof_error(dof, "unmatched helpers");
15976
15977	gen = help->dthps_generation++;
15978	dtrace_enabling_destroy(enab);
15979
15980	if (dhp != NULL && nprovs > 0) {
15981		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
15982		if (dtrace_helper_provider_add(dhp, gen) == 0) {
15983			mutex_exit(&dtrace_lock);
15984			dtrace_helper_provider_register(curproc, help, dhp);
15985			mutex_enter(&dtrace_lock);
15986
15987			destroy = 0;
15988		}
15989	}
15990
15991	if (destroy)
15992		dtrace_dof_destroy(dof);
15993
15994	return (gen);
15995}
15996
15997static dtrace_helpers_t *
15998dtrace_helpers_create(proc_t *p)
15999{
16000	dtrace_helpers_t *help;
16001
16002	ASSERT(MUTEX_HELD(&dtrace_lock));
16003	ASSERT(p->p_dtrace_helpers == NULL);
16004
16005	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
16006	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
16007	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
16008
16009	p->p_dtrace_helpers = help;
16010	dtrace_helpers++;
16011
16012	return (help);
16013}
16014
16015#if defined(sun)
16016static
16017#endif
16018void
16019dtrace_helpers_destroy(proc_t *p)
16020{
16021	dtrace_helpers_t *help;
16022	dtrace_vstate_t *vstate;
16023#if defined(sun)
16024	proc_t *p = curproc;
16025#endif
16026	int i;
16027
16028	mutex_enter(&dtrace_lock);
16029
16030	ASSERT(p->p_dtrace_helpers != NULL);
16031	ASSERT(dtrace_helpers > 0);
16032
16033	help = p->p_dtrace_helpers;
16034	vstate = &help->dthps_vstate;
16035
16036	/*
16037	 * We're now going to lose the help from this process.
16038	 */
16039	p->p_dtrace_helpers = NULL;
16040	dtrace_sync();
16041
16042	/*
16043	 * Destory the helper actions.
16044	 */
16045	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16046		dtrace_helper_action_t *h, *next;
16047
16048		for (h = help->dthps_actions[i]; h != NULL; h = next) {
16049			next = h->dtha_next;
16050			dtrace_helper_action_destroy(h, vstate);
16051			h = next;
16052		}
16053	}
16054
16055	mutex_exit(&dtrace_lock);
16056
16057	/*
16058	 * Destroy the helper providers.
16059	 */
16060	if (help->dthps_maxprovs > 0) {
16061		mutex_enter(&dtrace_meta_lock);
16062		if (dtrace_meta_pid != NULL) {
16063			ASSERT(dtrace_deferred_pid == NULL);
16064
16065			for (i = 0; i < help->dthps_nprovs; i++) {
16066				dtrace_helper_provider_remove(
16067				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
16068			}
16069		} else {
16070			mutex_enter(&dtrace_lock);
16071			ASSERT(help->dthps_deferred == 0 ||
16072			    help->dthps_next != NULL ||
16073			    help->dthps_prev != NULL ||
16074			    help == dtrace_deferred_pid);
16075
16076			/*
16077			 * Remove the helper from the deferred list.
16078			 */
16079			if (help->dthps_next != NULL)
16080				help->dthps_next->dthps_prev = help->dthps_prev;
16081			if (help->dthps_prev != NULL)
16082				help->dthps_prev->dthps_next = help->dthps_next;
16083			if (dtrace_deferred_pid == help) {
16084				dtrace_deferred_pid = help->dthps_next;
16085				ASSERT(help->dthps_prev == NULL);
16086			}
16087
16088			mutex_exit(&dtrace_lock);
16089		}
16090
16091		mutex_exit(&dtrace_meta_lock);
16092
16093		for (i = 0; i < help->dthps_nprovs; i++) {
16094			dtrace_helper_provider_destroy(help->dthps_provs[i]);
16095		}
16096
16097		kmem_free(help->dthps_provs, help->dthps_maxprovs *
16098		    sizeof (dtrace_helper_provider_t *));
16099	}
16100
16101	mutex_enter(&dtrace_lock);
16102
16103	dtrace_vstate_fini(&help->dthps_vstate);
16104	kmem_free(help->dthps_actions,
16105	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
16106	kmem_free(help, sizeof (dtrace_helpers_t));
16107
16108	--dtrace_helpers;
16109	mutex_exit(&dtrace_lock);
16110}
16111
16112#if defined(sun)
16113static
16114#endif
16115void
16116dtrace_helpers_duplicate(proc_t *from, proc_t *to)
16117{
16118	dtrace_helpers_t *help, *newhelp;
16119	dtrace_helper_action_t *helper, *new, *last;
16120	dtrace_difo_t *dp;
16121	dtrace_vstate_t *vstate;
16122	int i, j, sz, hasprovs = 0;
16123
16124	mutex_enter(&dtrace_lock);
16125	ASSERT(from->p_dtrace_helpers != NULL);
16126	ASSERT(dtrace_helpers > 0);
16127
16128	help = from->p_dtrace_helpers;
16129	newhelp = dtrace_helpers_create(to);
16130	ASSERT(to->p_dtrace_helpers != NULL);
16131
16132	newhelp->dthps_generation = help->dthps_generation;
16133	vstate = &newhelp->dthps_vstate;
16134
16135	/*
16136	 * Duplicate the helper actions.
16137	 */
16138	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16139		if ((helper = help->dthps_actions[i]) == NULL)
16140			continue;
16141
16142		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
16143			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
16144			    KM_SLEEP);
16145			new->dtha_generation = helper->dtha_generation;
16146
16147			if ((dp = helper->dtha_predicate) != NULL) {
16148				dp = dtrace_difo_duplicate(dp, vstate);
16149				new->dtha_predicate = dp;
16150			}
16151
16152			new->dtha_nactions = helper->dtha_nactions;
16153			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
16154			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
16155
16156			for (j = 0; j < new->dtha_nactions; j++) {
16157				dtrace_difo_t *dp = helper->dtha_actions[j];
16158
16159				ASSERT(dp != NULL);
16160				dp = dtrace_difo_duplicate(dp, vstate);
16161				new->dtha_actions[j] = dp;
16162			}
16163
16164			if (last != NULL) {
16165				last->dtha_next = new;
16166			} else {
16167				newhelp->dthps_actions[i] = new;
16168			}
16169
16170			last = new;
16171		}
16172	}
16173
16174	/*
16175	 * Duplicate the helper providers and register them with the
16176	 * DTrace framework.
16177	 */
16178	if (help->dthps_nprovs > 0) {
16179		newhelp->dthps_nprovs = help->dthps_nprovs;
16180		newhelp->dthps_maxprovs = help->dthps_nprovs;
16181		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
16182		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16183		for (i = 0; i < newhelp->dthps_nprovs; i++) {
16184			newhelp->dthps_provs[i] = help->dthps_provs[i];
16185			newhelp->dthps_provs[i]->dthp_ref++;
16186		}
16187
16188		hasprovs = 1;
16189	}
16190
16191	mutex_exit(&dtrace_lock);
16192
16193	if (hasprovs)
16194		dtrace_helper_provider_register(to, newhelp, NULL);
16195}
16196
16197/*
16198 * DTrace Hook Functions
16199 */
16200static void
16201dtrace_module_loaded(modctl_t *ctl)
16202{
16203	dtrace_provider_t *prv;
16204
16205	mutex_enter(&dtrace_provider_lock);
16206#if defined(sun)
16207	mutex_enter(&mod_lock);
16208#endif
16209
16210#if defined(sun)
16211	ASSERT(ctl->mod_busy);
16212#endif
16213
16214	/*
16215	 * We're going to call each providers per-module provide operation
16216	 * specifying only this module.
16217	 */
16218	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
16219		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
16220
16221#if defined(sun)
16222	mutex_exit(&mod_lock);
16223#endif
16224	mutex_exit(&dtrace_provider_lock);
16225
16226	/*
16227	 * If we have any retained enablings, we need to match against them.
16228	 * Enabling probes requires that cpu_lock be held, and we cannot hold
16229	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
16230	 * module.  (In particular, this happens when loading scheduling
16231	 * classes.)  So if we have any retained enablings, we need to dispatch
16232	 * our task queue to do the match for us.
16233	 */
16234	mutex_enter(&dtrace_lock);
16235
16236	if (dtrace_retained == NULL) {
16237		mutex_exit(&dtrace_lock);
16238		return;
16239	}
16240
16241	(void) taskq_dispatch(dtrace_taskq,
16242	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
16243
16244	mutex_exit(&dtrace_lock);
16245
16246	/*
16247	 * And now, for a little heuristic sleaze:  in general, we want to
16248	 * match modules as soon as they load.  However, we cannot guarantee
16249	 * this, because it would lead us to the lock ordering violation
16250	 * outlined above.  The common case, of course, is that cpu_lock is
16251	 * _not_ held -- so we delay here for a clock tick, hoping that that's
16252	 * long enough for the task queue to do its work.  If it's not, it's
16253	 * not a serious problem -- it just means that the module that we
16254	 * just loaded may not be immediately instrumentable.
16255	 */
16256	delay(1);
16257}
16258
16259static void
16260#if defined(sun)
16261dtrace_module_unloaded(modctl_t *ctl)
16262#else
16263dtrace_module_unloaded(modctl_t *ctl, int *error)
16264#endif
16265{
16266	dtrace_probe_t template, *probe, *first, *next;
16267	dtrace_provider_t *prov;
16268#if !defined(sun)
16269	char modname[DTRACE_MODNAMELEN];
16270	size_t len;
16271#endif
16272
16273#if defined(sun)
16274	template.dtpr_mod = ctl->mod_modname;
16275#else
16276	/* Handle the fact that ctl->filename may end in ".ko". */
16277	strlcpy(modname, ctl->filename, sizeof(modname));
16278	len = strlen(ctl->filename);
16279	if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
16280		modname[len - 3] = '\0';
16281	template.dtpr_mod = modname;
16282#endif
16283
16284	mutex_enter(&dtrace_provider_lock);
16285#if defined(sun)
16286	mutex_enter(&mod_lock);
16287#endif
16288	mutex_enter(&dtrace_lock);
16289
16290#if !defined(sun)
16291	if (ctl->nenabled > 0) {
16292		/* Don't allow unloads if a probe is enabled. */
16293		mutex_exit(&dtrace_provider_lock);
16294		mutex_exit(&dtrace_lock);
16295		*error = -1;
16296		printf(
16297	"kldunload: attempt to unload module that has DTrace probes enabled\n");
16298		return;
16299	}
16300#endif
16301
16302	if (dtrace_bymod == NULL) {
16303		/*
16304		 * The DTrace module is loaded (obviously) but not attached;
16305		 * we don't have any work to do.
16306		 */
16307		mutex_exit(&dtrace_provider_lock);
16308#if defined(sun)
16309		mutex_exit(&mod_lock);
16310#endif
16311		mutex_exit(&dtrace_lock);
16312		return;
16313	}
16314
16315	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
16316	    probe != NULL; probe = probe->dtpr_nextmod) {
16317		if (probe->dtpr_ecb != NULL) {
16318			mutex_exit(&dtrace_provider_lock);
16319#if defined(sun)
16320			mutex_exit(&mod_lock);
16321#endif
16322			mutex_exit(&dtrace_lock);
16323
16324			/*
16325			 * This shouldn't _actually_ be possible -- we're
16326			 * unloading a module that has an enabled probe in it.
16327			 * (It's normally up to the provider to make sure that
16328			 * this can't happen.)  However, because dtps_enable()
16329			 * doesn't have a failure mode, there can be an
16330			 * enable/unload race.  Upshot:  we don't want to
16331			 * assert, but we're not going to disable the
16332			 * probe, either.
16333			 */
16334			if (dtrace_err_verbose) {
16335#if defined(sun)
16336				cmn_err(CE_WARN, "unloaded module '%s' had "
16337				    "enabled probes", ctl->mod_modname);
16338#else
16339				cmn_err(CE_WARN, "unloaded module '%s' had "
16340				    "enabled probes", modname);
16341#endif
16342			}
16343
16344			return;
16345		}
16346	}
16347
16348	probe = first;
16349
16350	for (first = NULL; probe != NULL; probe = next) {
16351		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
16352
16353		dtrace_probes[probe->dtpr_id - 1] = NULL;
16354
16355		next = probe->dtpr_nextmod;
16356		dtrace_hash_remove(dtrace_bymod, probe);
16357		dtrace_hash_remove(dtrace_byfunc, probe);
16358		dtrace_hash_remove(dtrace_byname, probe);
16359
16360		if (first == NULL) {
16361			first = probe;
16362			probe->dtpr_nextmod = NULL;
16363		} else {
16364			probe->dtpr_nextmod = first;
16365			first = probe;
16366		}
16367	}
16368
16369	/*
16370	 * We've removed all of the module's probes from the hash chains and
16371	 * from the probe array.  Now issue a dtrace_sync() to be sure that
16372	 * everyone has cleared out from any probe array processing.
16373	 */
16374	dtrace_sync();
16375
16376	for (probe = first; probe != NULL; probe = first) {
16377		first = probe->dtpr_nextmod;
16378		prov = probe->dtpr_provider;
16379		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
16380		    probe->dtpr_arg);
16381		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
16382		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
16383		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
16384#if defined(sun)
16385		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
16386#else
16387		free_unr(dtrace_arena, probe->dtpr_id);
16388#endif
16389		kmem_free(probe, sizeof (dtrace_probe_t));
16390	}
16391
16392	mutex_exit(&dtrace_lock);
16393#if defined(sun)
16394	mutex_exit(&mod_lock);
16395#endif
16396	mutex_exit(&dtrace_provider_lock);
16397}
16398
16399#if !defined(sun)
16400static void
16401dtrace_kld_load(void *arg __unused, linker_file_t lf)
16402{
16403
16404	dtrace_module_loaded(lf);
16405}
16406
16407static void
16408dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error)
16409{
16410
16411	if (*error != 0)
16412		/* We already have an error, so don't do anything. */
16413		return;
16414	dtrace_module_unloaded(lf, error);
16415}
16416#endif
16417
16418#if defined(sun)
16419static void
16420dtrace_suspend(void)
16421{
16422	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
16423}
16424
16425static void
16426dtrace_resume(void)
16427{
16428	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
16429}
16430#endif
16431
16432static int
16433dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
16434{
16435	ASSERT(MUTEX_HELD(&cpu_lock));
16436	mutex_enter(&dtrace_lock);
16437
16438	switch (what) {
16439	case CPU_CONFIG: {
16440		dtrace_state_t *state;
16441		dtrace_optval_t *opt, rs, c;
16442
16443		/*
16444		 * For now, we only allocate a new buffer for anonymous state.
16445		 */
16446		if ((state = dtrace_anon.dta_state) == NULL)
16447			break;
16448
16449		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
16450			break;
16451
16452		opt = state->dts_options;
16453		c = opt[DTRACEOPT_CPU];
16454
16455		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
16456			break;
16457
16458		/*
16459		 * Regardless of what the actual policy is, we're going to
16460		 * temporarily set our resize policy to be manual.  We're
16461		 * also going to temporarily set our CPU option to denote
16462		 * the newly configured CPU.
16463		 */
16464		rs = opt[DTRACEOPT_BUFRESIZE];
16465		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
16466		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
16467
16468		(void) dtrace_state_buffers(state);
16469
16470		opt[DTRACEOPT_BUFRESIZE] = rs;
16471		opt[DTRACEOPT_CPU] = c;
16472
16473		break;
16474	}
16475
16476	case CPU_UNCONFIG:
16477		/*
16478		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
16479		 * buffer will be freed when the consumer exits.)
16480		 */
16481		break;
16482
16483	default:
16484		break;
16485	}
16486
16487	mutex_exit(&dtrace_lock);
16488	return (0);
16489}
16490
16491#if defined(sun)
16492static void
16493dtrace_cpu_setup_initial(processorid_t cpu)
16494{
16495	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
16496}
16497#endif
16498
16499static void
16500dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
16501{
16502	if (dtrace_toxranges >= dtrace_toxranges_max) {
16503		int osize, nsize;
16504		dtrace_toxrange_t *range;
16505
16506		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16507
16508		if (osize == 0) {
16509			ASSERT(dtrace_toxrange == NULL);
16510			ASSERT(dtrace_toxranges_max == 0);
16511			dtrace_toxranges_max = 1;
16512		} else {
16513			dtrace_toxranges_max <<= 1;
16514		}
16515
16516		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16517		range = kmem_zalloc(nsize, KM_SLEEP);
16518
16519		if (dtrace_toxrange != NULL) {
16520			ASSERT(osize != 0);
16521			bcopy(dtrace_toxrange, range, osize);
16522			kmem_free(dtrace_toxrange, osize);
16523		}
16524
16525		dtrace_toxrange = range;
16526	}
16527
16528	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
16529	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
16530
16531	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
16532	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
16533	dtrace_toxranges++;
16534}
16535
16536static void
16537dtrace_getf_barrier()
16538{
16539#if defined(sun)
16540	/*
16541	 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
16542	 * that contain calls to getf(), this routine will be called on every
16543	 * closef() before either the underlying vnode is released or the
16544	 * file_t itself is freed.  By the time we are here, it is essential
16545	 * that the file_t can no longer be accessed from a call to getf()
16546	 * in probe context -- that assures that a dtrace_sync() can be used
16547	 * to clear out any enablings referring to the old structures.
16548	 */
16549	if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
16550	    kcred->cr_zone->zone_dtrace_getf != 0)
16551		dtrace_sync();
16552#endif
16553}
16554
16555/*
16556 * DTrace Driver Cookbook Functions
16557 */
16558#if defined(sun)
16559/*ARGSUSED*/
16560static int
16561dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
16562{
16563	dtrace_provider_id_t id;
16564	dtrace_state_t *state = NULL;
16565	dtrace_enabling_t *enab;
16566
16567	mutex_enter(&cpu_lock);
16568	mutex_enter(&dtrace_provider_lock);
16569	mutex_enter(&dtrace_lock);
16570
16571	if (ddi_soft_state_init(&dtrace_softstate,
16572	    sizeof (dtrace_state_t), 0) != 0) {
16573		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
16574		mutex_exit(&cpu_lock);
16575		mutex_exit(&dtrace_provider_lock);
16576		mutex_exit(&dtrace_lock);
16577		return (DDI_FAILURE);
16578	}
16579
16580	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
16581	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
16582	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
16583	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
16584		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
16585		ddi_remove_minor_node(devi, NULL);
16586		ddi_soft_state_fini(&dtrace_softstate);
16587		mutex_exit(&cpu_lock);
16588		mutex_exit(&dtrace_provider_lock);
16589		mutex_exit(&dtrace_lock);
16590		return (DDI_FAILURE);
16591	}
16592
16593	ddi_report_dev(devi);
16594	dtrace_devi = devi;
16595
16596	dtrace_modload = dtrace_module_loaded;
16597	dtrace_modunload = dtrace_module_unloaded;
16598	dtrace_cpu_init = dtrace_cpu_setup_initial;
16599	dtrace_helpers_cleanup = dtrace_helpers_destroy;
16600	dtrace_helpers_fork = dtrace_helpers_duplicate;
16601	dtrace_cpustart_init = dtrace_suspend;
16602	dtrace_cpustart_fini = dtrace_resume;
16603	dtrace_debugger_init = dtrace_suspend;
16604	dtrace_debugger_fini = dtrace_resume;
16605
16606	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16607
16608	ASSERT(MUTEX_HELD(&cpu_lock));
16609
16610	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
16611	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
16612	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
16613	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
16614	    VM_SLEEP | VMC_IDENTIFIER);
16615	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
16616	    1, INT_MAX, 0);
16617
16618	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
16619	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
16620	    NULL, NULL, NULL, NULL, NULL, 0);
16621
16622	ASSERT(MUTEX_HELD(&cpu_lock));
16623	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
16624	    offsetof(dtrace_probe_t, dtpr_nextmod),
16625	    offsetof(dtrace_probe_t, dtpr_prevmod));
16626
16627	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
16628	    offsetof(dtrace_probe_t, dtpr_nextfunc),
16629	    offsetof(dtrace_probe_t, dtpr_prevfunc));
16630
16631	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
16632	    offsetof(dtrace_probe_t, dtpr_nextname),
16633	    offsetof(dtrace_probe_t, dtpr_prevname));
16634
16635	if (dtrace_retain_max < 1) {
16636		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
16637		    "setting to 1", dtrace_retain_max);
16638		dtrace_retain_max = 1;
16639	}
16640
16641	/*
16642	 * Now discover our toxic ranges.
16643	 */
16644	dtrace_toxic_ranges(dtrace_toxrange_add);
16645
16646	/*
16647	 * Before we register ourselves as a provider to our own framework,
16648	 * we would like to assert that dtrace_provider is NULL -- but that's
16649	 * not true if we were loaded as a dependency of a DTrace provider.
16650	 * Once we've registered, we can assert that dtrace_provider is our
16651	 * pseudo provider.
16652	 */
16653	(void) dtrace_register("dtrace", &dtrace_provider_attr,
16654	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
16655
16656	ASSERT(dtrace_provider != NULL);
16657	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
16658
16659	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
16660	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
16661	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
16662	    dtrace_provider, NULL, NULL, "END", 0, NULL);
16663	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
16664	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
16665
16666	dtrace_anon_property();
16667	mutex_exit(&cpu_lock);
16668
16669	/*
16670	 * If DTrace helper tracing is enabled, we need to allocate the
16671	 * trace buffer and initialize the values.
16672	 */
16673	if (dtrace_helptrace_enabled) {
16674		ASSERT(dtrace_helptrace_buffer == NULL);
16675		dtrace_helptrace_buffer =
16676		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
16677		dtrace_helptrace_next = 0;
16678	}
16679
16680	/*
16681	 * If there are already providers, we must ask them to provide their
16682	 * probes, and then match any anonymous enabling against them.  Note
16683	 * that there should be no other retained enablings at this time:
16684	 * the only retained enablings at this time should be the anonymous
16685	 * enabling.
16686	 */
16687	if (dtrace_anon.dta_enabling != NULL) {
16688		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
16689
16690		dtrace_enabling_provide(NULL);
16691		state = dtrace_anon.dta_state;
16692
16693		/*
16694		 * We couldn't hold cpu_lock across the above call to
16695		 * dtrace_enabling_provide(), but we must hold it to actually
16696		 * enable the probes.  We have to drop all of our locks, pick
16697		 * up cpu_lock, and regain our locks before matching the
16698		 * retained anonymous enabling.
16699		 */
16700		mutex_exit(&dtrace_lock);
16701		mutex_exit(&dtrace_provider_lock);
16702
16703		mutex_enter(&cpu_lock);
16704		mutex_enter(&dtrace_provider_lock);
16705		mutex_enter(&dtrace_lock);
16706
16707		if ((enab = dtrace_anon.dta_enabling) != NULL)
16708			(void) dtrace_enabling_match(enab, NULL);
16709
16710		mutex_exit(&cpu_lock);
16711	}
16712
16713	mutex_exit(&dtrace_lock);
16714	mutex_exit(&dtrace_provider_lock);
16715
16716	if (state != NULL) {
16717		/*
16718		 * If we created any anonymous state, set it going now.
16719		 */
16720		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
16721	}
16722
16723	return (DDI_SUCCESS);
16724}
16725#endif
16726
16727#if !defined(sun)
16728#if __FreeBSD_version >= 800039
16729static void dtrace_dtr(void *);
16730#endif
16731#endif
16732
16733/*ARGSUSED*/
16734static int
16735#if defined(sun)
16736dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
16737#else
16738dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
16739#endif
16740{
16741	dtrace_state_t *state;
16742	uint32_t priv;
16743	uid_t uid;
16744	zoneid_t zoneid;
16745
16746#if defined(sun)
16747	if (getminor(*devp) == DTRACEMNRN_HELPER)
16748		return (0);
16749
16750	/*
16751	 * If this wasn't an open with the "helper" minor, then it must be
16752	 * the "dtrace" minor.
16753	 */
16754	if (getminor(*devp) == DTRACEMNRN_DTRACE)
16755		return (ENXIO);
16756#else
16757	cred_t *cred_p = NULL;
16758
16759#if __FreeBSD_version < 800039
16760	/*
16761	 * The first minor device is the one that is cloned so there is
16762	 * nothing more to do here.
16763	 */
16764	if (dev2unit(dev) == 0)
16765		return 0;
16766
16767	/*
16768	 * Devices are cloned, so if the DTrace state has already
16769	 * been allocated, that means this device belongs to a
16770	 * different client. Each client should open '/dev/dtrace'
16771	 * to get a cloned device.
16772	 */
16773	if (dev->si_drv1 != NULL)
16774		return (EBUSY);
16775#endif
16776
16777	cred_p = dev->si_cred;
16778#endif
16779
16780	/*
16781	 * If no DTRACE_PRIV_* bits are set in the credential, then the
16782	 * caller lacks sufficient permission to do anything with DTrace.
16783	 */
16784	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
16785	if (priv == DTRACE_PRIV_NONE) {
16786#if !defined(sun)
16787#if __FreeBSD_version < 800039
16788		/* Destroy the cloned device. */
16789                destroy_dev(dev);
16790#endif
16791#endif
16792
16793		return (EACCES);
16794	}
16795
16796	/*
16797	 * Ask all providers to provide all their probes.
16798	 */
16799	mutex_enter(&dtrace_provider_lock);
16800	dtrace_probe_provide(NULL, NULL);
16801	mutex_exit(&dtrace_provider_lock);
16802
16803	mutex_enter(&cpu_lock);
16804	mutex_enter(&dtrace_lock);
16805	dtrace_opens++;
16806	dtrace_membar_producer();
16807
16808#if defined(sun)
16809	/*
16810	 * If the kernel debugger is active (that is, if the kernel debugger
16811	 * modified text in some way), we won't allow the open.
16812	 */
16813	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
16814		dtrace_opens--;
16815		mutex_exit(&cpu_lock);
16816		mutex_exit(&dtrace_lock);
16817		return (EBUSY);
16818	}
16819
16820	state = dtrace_state_create(devp, cred_p);
16821#else
16822	state = dtrace_state_create(dev);
16823#if __FreeBSD_version < 800039
16824	dev->si_drv1 = state;
16825#else
16826	devfs_set_cdevpriv(state, dtrace_dtr);
16827#endif
16828#endif
16829
16830	mutex_exit(&cpu_lock);
16831
16832	if (state == NULL) {
16833#if defined(sun)
16834		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
16835			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16836#else
16837		--dtrace_opens;
16838#endif
16839		mutex_exit(&dtrace_lock);
16840#if !defined(sun)
16841#if __FreeBSD_version < 800039
16842		/* Destroy the cloned device. */
16843                destroy_dev(dev);
16844#endif
16845#endif
16846		return (EAGAIN);
16847	}
16848
16849	mutex_exit(&dtrace_lock);
16850
16851	return (0);
16852}
16853
16854/*ARGSUSED*/
16855#if defined(sun)
16856static int
16857dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
16858#elif __FreeBSD_version < 800039
16859static int
16860dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td)
16861#else
16862static void
16863dtrace_dtr(void *data)
16864#endif
16865{
16866#if defined(sun)
16867	minor_t minor = getminor(dev);
16868	dtrace_state_t *state;
16869
16870	if (minor == DTRACEMNRN_HELPER)
16871		return (0);
16872
16873	state = ddi_get_soft_state(dtrace_softstate, minor);
16874#else
16875#if __FreeBSD_version < 800039
16876	dtrace_state_t *state = dev->si_drv1;
16877
16878	/* Check if this is not a cloned device. */
16879	if (dev2unit(dev) == 0)
16880		return (0);
16881#else
16882	dtrace_state_t *state = data;
16883#endif
16884
16885#endif
16886
16887	mutex_enter(&cpu_lock);
16888	mutex_enter(&dtrace_lock);
16889
16890	if (state != NULL) {
16891		if (state->dts_anon) {
16892			/*
16893			 * There is anonymous state. Destroy that first.
16894			 */
16895			ASSERT(dtrace_anon.dta_state == NULL);
16896			dtrace_state_destroy(state->dts_anon);
16897		}
16898
16899		dtrace_state_destroy(state);
16900
16901#if !defined(sun)
16902		kmem_free(state, 0);
16903#if __FreeBSD_version < 800039
16904		dev->si_drv1 = NULL;
16905#endif
16906#endif
16907	}
16908
16909	ASSERT(dtrace_opens > 0);
16910#if defined(sun)
16911	/*
16912	 * Only relinquish control of the kernel debugger interface when there
16913	 * are no consumers and no anonymous enablings.
16914	 */
16915	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
16916		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16917#else
16918	--dtrace_opens;
16919#endif
16920
16921	mutex_exit(&dtrace_lock);
16922	mutex_exit(&cpu_lock);
16923
16924#if __FreeBSD_version < 800039
16925	/* Schedule this cloned device to be destroyed. */
16926	destroy_dev_sched(dev);
16927#endif
16928
16929#if defined(sun) || __FreeBSD_version < 800039
16930	return (0);
16931#endif
16932}
16933
16934#if defined(sun)
16935/*ARGSUSED*/
16936static int
16937dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
16938{
16939	int rval;
16940	dof_helper_t help, *dhp = NULL;
16941
16942	switch (cmd) {
16943	case DTRACEHIOC_ADDDOF:
16944		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
16945			dtrace_dof_error(NULL, "failed to copyin DOF helper");
16946			return (EFAULT);
16947		}
16948
16949		dhp = &help;
16950		arg = (intptr_t)help.dofhp_dof;
16951		/*FALLTHROUGH*/
16952
16953	case DTRACEHIOC_ADD: {
16954		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
16955
16956		if (dof == NULL)
16957			return (rval);
16958
16959		mutex_enter(&dtrace_lock);
16960
16961		/*
16962		 * dtrace_helper_slurp() takes responsibility for the dof --
16963		 * it may free it now or it may save it and free it later.
16964		 */
16965		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
16966			*rv = rval;
16967			rval = 0;
16968		} else {
16969			rval = EINVAL;
16970		}
16971
16972		mutex_exit(&dtrace_lock);
16973		return (rval);
16974	}
16975
16976	case DTRACEHIOC_REMOVE: {
16977		mutex_enter(&dtrace_lock);
16978		rval = dtrace_helper_destroygen(arg);
16979		mutex_exit(&dtrace_lock);
16980
16981		return (rval);
16982	}
16983
16984	default:
16985		break;
16986	}
16987
16988	return (ENOTTY);
16989}
16990
16991/*ARGSUSED*/
16992static int
16993dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
16994{
16995	minor_t minor = getminor(dev);
16996	dtrace_state_t *state;
16997	int rval;
16998
16999	if (minor == DTRACEMNRN_HELPER)
17000		return (dtrace_ioctl_helper(cmd, arg, rv));
17001
17002	state = ddi_get_soft_state(dtrace_softstate, minor);
17003
17004	if (state->dts_anon) {
17005		ASSERT(dtrace_anon.dta_state == NULL);
17006		state = state->dts_anon;
17007	}
17008
17009	switch (cmd) {
17010	case DTRACEIOC_PROVIDER: {
17011		dtrace_providerdesc_t pvd;
17012		dtrace_provider_t *pvp;
17013
17014		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
17015			return (EFAULT);
17016
17017		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
17018		mutex_enter(&dtrace_provider_lock);
17019
17020		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
17021			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
17022				break;
17023		}
17024
17025		mutex_exit(&dtrace_provider_lock);
17026
17027		if (pvp == NULL)
17028			return (ESRCH);
17029
17030		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
17031		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
17032
17033		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
17034			return (EFAULT);
17035
17036		return (0);
17037	}
17038
17039	case DTRACEIOC_EPROBE: {
17040		dtrace_eprobedesc_t epdesc;
17041		dtrace_ecb_t *ecb;
17042		dtrace_action_t *act;
17043		void *buf;
17044		size_t size;
17045		uintptr_t dest;
17046		int nrecs;
17047
17048		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
17049			return (EFAULT);
17050
17051		mutex_enter(&dtrace_lock);
17052
17053		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
17054			mutex_exit(&dtrace_lock);
17055			return (EINVAL);
17056		}
17057
17058		if (ecb->dte_probe == NULL) {
17059			mutex_exit(&dtrace_lock);
17060			return (EINVAL);
17061		}
17062
17063		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
17064		epdesc.dtepd_uarg = ecb->dte_uarg;
17065		epdesc.dtepd_size = ecb->dte_size;
17066
17067		nrecs = epdesc.dtepd_nrecs;
17068		epdesc.dtepd_nrecs = 0;
17069		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17070			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17071				continue;
17072
17073			epdesc.dtepd_nrecs++;
17074		}
17075
17076		/*
17077		 * Now that we have the size, we need to allocate a temporary
17078		 * buffer in which to store the complete description.  We need
17079		 * the temporary buffer to be able to drop dtrace_lock()
17080		 * across the copyout(), below.
17081		 */
17082		size = sizeof (dtrace_eprobedesc_t) +
17083		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
17084
17085		buf = kmem_alloc(size, KM_SLEEP);
17086		dest = (uintptr_t)buf;
17087
17088		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
17089		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
17090
17091		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17092			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17093				continue;
17094
17095			if (nrecs-- == 0)
17096				break;
17097
17098			bcopy(&act->dta_rec, (void *)dest,
17099			    sizeof (dtrace_recdesc_t));
17100			dest += sizeof (dtrace_recdesc_t);
17101		}
17102
17103		mutex_exit(&dtrace_lock);
17104
17105		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17106			kmem_free(buf, size);
17107			return (EFAULT);
17108		}
17109
17110		kmem_free(buf, size);
17111		return (0);
17112	}
17113
17114	case DTRACEIOC_AGGDESC: {
17115		dtrace_aggdesc_t aggdesc;
17116		dtrace_action_t *act;
17117		dtrace_aggregation_t *agg;
17118		int nrecs;
17119		uint32_t offs;
17120		dtrace_recdesc_t *lrec;
17121		void *buf;
17122		size_t size;
17123		uintptr_t dest;
17124
17125		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
17126			return (EFAULT);
17127
17128		mutex_enter(&dtrace_lock);
17129
17130		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
17131			mutex_exit(&dtrace_lock);
17132			return (EINVAL);
17133		}
17134
17135		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
17136
17137		nrecs = aggdesc.dtagd_nrecs;
17138		aggdesc.dtagd_nrecs = 0;
17139
17140		offs = agg->dtag_base;
17141		lrec = &agg->dtag_action.dta_rec;
17142		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
17143
17144		for (act = agg->dtag_first; ; act = act->dta_next) {
17145			ASSERT(act->dta_intuple ||
17146			    DTRACEACT_ISAGG(act->dta_kind));
17147
17148			/*
17149			 * If this action has a record size of zero, it
17150			 * denotes an argument to the aggregating action.
17151			 * Because the presence of this record doesn't (or
17152			 * shouldn't) affect the way the data is interpreted,
17153			 * we don't copy it out to save user-level the
17154			 * confusion of dealing with a zero-length record.
17155			 */
17156			if (act->dta_rec.dtrd_size == 0) {
17157				ASSERT(agg->dtag_hasarg);
17158				continue;
17159			}
17160
17161			aggdesc.dtagd_nrecs++;
17162
17163			if (act == &agg->dtag_action)
17164				break;
17165		}
17166
17167		/*
17168		 * Now that we have the size, we need to allocate a temporary
17169		 * buffer in which to store the complete description.  We need
17170		 * the temporary buffer to be able to drop dtrace_lock()
17171		 * across the copyout(), below.
17172		 */
17173		size = sizeof (dtrace_aggdesc_t) +
17174		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
17175
17176		buf = kmem_alloc(size, KM_SLEEP);
17177		dest = (uintptr_t)buf;
17178
17179		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
17180		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
17181
17182		for (act = agg->dtag_first; ; act = act->dta_next) {
17183			dtrace_recdesc_t rec = act->dta_rec;
17184
17185			/*
17186			 * See the comment in the above loop for why we pass
17187			 * over zero-length records.
17188			 */
17189			if (rec.dtrd_size == 0) {
17190				ASSERT(agg->dtag_hasarg);
17191				continue;
17192			}
17193
17194			if (nrecs-- == 0)
17195				break;
17196
17197			rec.dtrd_offset -= offs;
17198			bcopy(&rec, (void *)dest, sizeof (rec));
17199			dest += sizeof (dtrace_recdesc_t);
17200
17201			if (act == &agg->dtag_action)
17202				break;
17203		}
17204
17205		mutex_exit(&dtrace_lock);
17206
17207		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17208			kmem_free(buf, size);
17209			return (EFAULT);
17210		}
17211
17212		kmem_free(buf, size);
17213		return (0);
17214	}
17215
17216	case DTRACEIOC_ENABLE: {
17217		dof_hdr_t *dof;
17218		dtrace_enabling_t *enab = NULL;
17219		dtrace_vstate_t *vstate;
17220		int err = 0;
17221
17222		*rv = 0;
17223
17224		/*
17225		 * If a NULL argument has been passed, we take this as our
17226		 * cue to reevaluate our enablings.
17227		 */
17228		if (arg == NULL) {
17229			dtrace_enabling_matchall();
17230
17231			return (0);
17232		}
17233
17234		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
17235			return (rval);
17236
17237		mutex_enter(&cpu_lock);
17238		mutex_enter(&dtrace_lock);
17239		vstate = &state->dts_vstate;
17240
17241		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
17242			mutex_exit(&dtrace_lock);
17243			mutex_exit(&cpu_lock);
17244			dtrace_dof_destroy(dof);
17245			return (EBUSY);
17246		}
17247
17248		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
17249			mutex_exit(&dtrace_lock);
17250			mutex_exit(&cpu_lock);
17251			dtrace_dof_destroy(dof);
17252			return (EINVAL);
17253		}
17254
17255		if ((rval = dtrace_dof_options(dof, state)) != 0) {
17256			dtrace_enabling_destroy(enab);
17257			mutex_exit(&dtrace_lock);
17258			mutex_exit(&cpu_lock);
17259			dtrace_dof_destroy(dof);
17260			return (rval);
17261		}
17262
17263		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
17264			err = dtrace_enabling_retain(enab);
17265		} else {
17266			dtrace_enabling_destroy(enab);
17267		}
17268
17269		mutex_exit(&cpu_lock);
17270		mutex_exit(&dtrace_lock);
17271		dtrace_dof_destroy(dof);
17272
17273		return (err);
17274	}
17275
17276	case DTRACEIOC_REPLICATE: {
17277		dtrace_repldesc_t desc;
17278		dtrace_probedesc_t *match = &desc.dtrpd_match;
17279		dtrace_probedesc_t *create = &desc.dtrpd_create;
17280		int err;
17281
17282		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17283			return (EFAULT);
17284
17285		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17286		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17287		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17288		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17289
17290		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17291		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17292		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17293		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17294
17295		mutex_enter(&dtrace_lock);
17296		err = dtrace_enabling_replicate(state, match, create);
17297		mutex_exit(&dtrace_lock);
17298
17299		return (err);
17300	}
17301
17302	case DTRACEIOC_PROBEMATCH:
17303	case DTRACEIOC_PROBES: {
17304		dtrace_probe_t *probe = NULL;
17305		dtrace_probedesc_t desc;
17306		dtrace_probekey_t pkey;
17307		dtrace_id_t i;
17308		int m = 0;
17309		uint32_t priv;
17310		uid_t uid;
17311		zoneid_t zoneid;
17312
17313		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17314			return (EFAULT);
17315
17316		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17317		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17318		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17319		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17320
17321		/*
17322		 * Before we attempt to match this probe, we want to give
17323		 * all providers the opportunity to provide it.
17324		 */
17325		if (desc.dtpd_id == DTRACE_IDNONE) {
17326			mutex_enter(&dtrace_provider_lock);
17327			dtrace_probe_provide(&desc, NULL);
17328			mutex_exit(&dtrace_provider_lock);
17329			desc.dtpd_id++;
17330		}
17331
17332		if (cmd == DTRACEIOC_PROBEMATCH)  {
17333			dtrace_probekey(&desc, &pkey);
17334			pkey.dtpk_id = DTRACE_IDNONE;
17335		}
17336
17337		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
17338
17339		mutex_enter(&dtrace_lock);
17340
17341		if (cmd == DTRACEIOC_PROBEMATCH) {
17342			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17343				if ((probe = dtrace_probes[i - 1]) != NULL &&
17344				    (m = dtrace_match_probe(probe, &pkey,
17345				    priv, uid, zoneid)) != 0)
17346					break;
17347			}
17348
17349			if (m < 0) {
17350				mutex_exit(&dtrace_lock);
17351				return (EINVAL);
17352			}
17353
17354		} else {
17355			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17356				if ((probe = dtrace_probes[i - 1]) != NULL &&
17357				    dtrace_match_priv(probe, priv, uid, zoneid))
17358					break;
17359			}
17360		}
17361
17362		if (probe == NULL) {
17363			mutex_exit(&dtrace_lock);
17364			return (ESRCH);
17365		}
17366
17367		dtrace_probe_description(probe, &desc);
17368		mutex_exit(&dtrace_lock);
17369
17370		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17371			return (EFAULT);
17372
17373		return (0);
17374	}
17375
17376	case DTRACEIOC_PROBEARG: {
17377		dtrace_argdesc_t desc;
17378		dtrace_probe_t *probe;
17379		dtrace_provider_t *prov;
17380
17381		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17382			return (EFAULT);
17383
17384		if (desc.dtargd_id == DTRACE_IDNONE)
17385			return (EINVAL);
17386
17387		if (desc.dtargd_ndx == DTRACE_ARGNONE)
17388			return (EINVAL);
17389
17390		mutex_enter(&dtrace_provider_lock);
17391		mutex_enter(&mod_lock);
17392		mutex_enter(&dtrace_lock);
17393
17394		if (desc.dtargd_id > dtrace_nprobes) {
17395			mutex_exit(&dtrace_lock);
17396			mutex_exit(&mod_lock);
17397			mutex_exit(&dtrace_provider_lock);
17398			return (EINVAL);
17399		}
17400
17401		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
17402			mutex_exit(&dtrace_lock);
17403			mutex_exit(&mod_lock);
17404			mutex_exit(&dtrace_provider_lock);
17405			return (EINVAL);
17406		}
17407
17408		mutex_exit(&dtrace_lock);
17409
17410		prov = probe->dtpr_provider;
17411
17412		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
17413			/*
17414			 * There isn't any typed information for this probe.
17415			 * Set the argument number to DTRACE_ARGNONE.
17416			 */
17417			desc.dtargd_ndx = DTRACE_ARGNONE;
17418		} else {
17419			desc.dtargd_native[0] = '\0';
17420			desc.dtargd_xlate[0] = '\0';
17421			desc.dtargd_mapping = desc.dtargd_ndx;
17422
17423			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
17424			    probe->dtpr_id, probe->dtpr_arg, &desc);
17425		}
17426
17427		mutex_exit(&mod_lock);
17428		mutex_exit(&dtrace_provider_lock);
17429
17430		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17431			return (EFAULT);
17432
17433		return (0);
17434	}
17435
17436	case DTRACEIOC_GO: {
17437		processorid_t cpuid;
17438		rval = dtrace_state_go(state, &cpuid);
17439
17440		if (rval != 0)
17441			return (rval);
17442
17443		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17444			return (EFAULT);
17445
17446		return (0);
17447	}
17448
17449	case DTRACEIOC_STOP: {
17450		processorid_t cpuid;
17451
17452		mutex_enter(&dtrace_lock);
17453		rval = dtrace_state_stop(state, &cpuid);
17454		mutex_exit(&dtrace_lock);
17455
17456		if (rval != 0)
17457			return (rval);
17458
17459		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17460			return (EFAULT);
17461
17462		return (0);
17463	}
17464
17465	case DTRACEIOC_DOFGET: {
17466		dof_hdr_t hdr, *dof;
17467		uint64_t len;
17468
17469		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
17470			return (EFAULT);
17471
17472		mutex_enter(&dtrace_lock);
17473		dof = dtrace_dof_create(state);
17474		mutex_exit(&dtrace_lock);
17475
17476		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
17477		rval = copyout(dof, (void *)arg, len);
17478		dtrace_dof_destroy(dof);
17479
17480		return (rval == 0 ? 0 : EFAULT);
17481	}
17482
17483	case DTRACEIOC_AGGSNAP:
17484	case DTRACEIOC_BUFSNAP: {
17485		dtrace_bufdesc_t desc;
17486		caddr_t cached;
17487		dtrace_buffer_t *buf;
17488
17489		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17490			return (EFAULT);
17491
17492		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
17493			return (EINVAL);
17494
17495		mutex_enter(&dtrace_lock);
17496
17497		if (cmd == DTRACEIOC_BUFSNAP) {
17498			buf = &state->dts_buffer[desc.dtbd_cpu];
17499		} else {
17500			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
17501		}
17502
17503		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
17504			size_t sz = buf->dtb_offset;
17505
17506			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
17507				mutex_exit(&dtrace_lock);
17508				return (EBUSY);
17509			}
17510
17511			/*
17512			 * If this buffer has already been consumed, we're
17513			 * going to indicate that there's nothing left here
17514			 * to consume.
17515			 */
17516			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
17517				mutex_exit(&dtrace_lock);
17518
17519				desc.dtbd_size = 0;
17520				desc.dtbd_drops = 0;
17521				desc.dtbd_errors = 0;
17522				desc.dtbd_oldest = 0;
17523				sz = sizeof (desc);
17524
17525				if (copyout(&desc, (void *)arg, sz) != 0)
17526					return (EFAULT);
17527
17528				return (0);
17529			}
17530
17531			/*
17532			 * If this is a ring buffer that has wrapped, we want
17533			 * to copy the whole thing out.
17534			 */
17535			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
17536				dtrace_buffer_polish(buf);
17537				sz = buf->dtb_size;
17538			}
17539
17540			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
17541				mutex_exit(&dtrace_lock);
17542				return (EFAULT);
17543			}
17544
17545			desc.dtbd_size = sz;
17546			desc.dtbd_drops = buf->dtb_drops;
17547			desc.dtbd_errors = buf->dtb_errors;
17548			desc.dtbd_oldest = buf->dtb_xamot_offset;
17549			desc.dtbd_timestamp = dtrace_gethrtime();
17550
17551			mutex_exit(&dtrace_lock);
17552
17553			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17554				return (EFAULT);
17555
17556			buf->dtb_flags |= DTRACEBUF_CONSUMED;
17557
17558			return (0);
17559		}
17560
17561		if (buf->dtb_tomax == NULL) {
17562			ASSERT(buf->dtb_xamot == NULL);
17563			mutex_exit(&dtrace_lock);
17564			return (ENOENT);
17565		}
17566
17567		cached = buf->dtb_tomax;
17568		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
17569
17570		dtrace_xcall(desc.dtbd_cpu,
17571		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
17572
17573		state->dts_errors += buf->dtb_xamot_errors;
17574
17575		/*
17576		 * If the buffers did not actually switch, then the cross call
17577		 * did not take place -- presumably because the given CPU is
17578		 * not in the ready set.  If this is the case, we'll return
17579		 * ENOENT.
17580		 */
17581		if (buf->dtb_tomax == cached) {
17582			ASSERT(buf->dtb_xamot != cached);
17583			mutex_exit(&dtrace_lock);
17584			return (ENOENT);
17585		}
17586
17587		ASSERT(cached == buf->dtb_xamot);
17588
17589		/*
17590		 * We have our snapshot; now copy it out.
17591		 */
17592		if (copyout(buf->dtb_xamot, desc.dtbd_data,
17593		    buf->dtb_xamot_offset) != 0) {
17594			mutex_exit(&dtrace_lock);
17595			return (EFAULT);
17596		}
17597
17598		desc.dtbd_size = buf->dtb_xamot_offset;
17599		desc.dtbd_drops = buf->dtb_xamot_drops;
17600		desc.dtbd_errors = buf->dtb_xamot_errors;
17601		desc.dtbd_oldest = 0;
17602		desc.dtbd_timestamp = buf->dtb_switched;
17603
17604		mutex_exit(&dtrace_lock);
17605
17606		/*
17607		 * Finally, copy out the buffer description.
17608		 */
17609		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17610			return (EFAULT);
17611
17612		return (0);
17613	}
17614
17615	case DTRACEIOC_CONF: {
17616		dtrace_conf_t conf;
17617
17618		bzero(&conf, sizeof (conf));
17619		conf.dtc_difversion = DIF_VERSION;
17620		conf.dtc_difintregs = DIF_DIR_NREGS;
17621		conf.dtc_diftupregs = DIF_DTR_NREGS;
17622		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
17623
17624		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
17625			return (EFAULT);
17626
17627		return (0);
17628	}
17629
17630	case DTRACEIOC_STATUS: {
17631		dtrace_status_t stat;
17632		dtrace_dstate_t *dstate;
17633		int i, j;
17634		uint64_t nerrs;
17635
17636		/*
17637		 * See the comment in dtrace_state_deadman() for the reason
17638		 * for setting dts_laststatus to INT64_MAX before setting
17639		 * it to the correct value.
17640		 */
17641		state->dts_laststatus = INT64_MAX;
17642		dtrace_membar_producer();
17643		state->dts_laststatus = dtrace_gethrtime();
17644
17645		bzero(&stat, sizeof (stat));
17646
17647		mutex_enter(&dtrace_lock);
17648
17649		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
17650			mutex_exit(&dtrace_lock);
17651			return (ENOENT);
17652		}
17653
17654		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
17655			stat.dtst_exiting = 1;
17656
17657		nerrs = state->dts_errors;
17658		dstate = &state->dts_vstate.dtvs_dynvars;
17659
17660		for (i = 0; i < NCPU; i++) {
17661			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
17662
17663			stat.dtst_dyndrops += dcpu->dtdsc_drops;
17664			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
17665			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
17666
17667			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
17668				stat.dtst_filled++;
17669
17670			nerrs += state->dts_buffer[i].dtb_errors;
17671
17672			for (j = 0; j < state->dts_nspeculations; j++) {
17673				dtrace_speculation_t *spec;
17674				dtrace_buffer_t *buf;
17675
17676				spec = &state->dts_speculations[j];
17677				buf = &spec->dtsp_buffer[i];
17678				stat.dtst_specdrops += buf->dtb_xamot_drops;
17679			}
17680		}
17681
17682		stat.dtst_specdrops_busy = state->dts_speculations_busy;
17683		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
17684		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
17685		stat.dtst_dblerrors = state->dts_dblerrors;
17686		stat.dtst_killed =
17687		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
17688		stat.dtst_errors = nerrs;
17689
17690		mutex_exit(&dtrace_lock);
17691
17692		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
17693			return (EFAULT);
17694
17695		return (0);
17696	}
17697
17698	case DTRACEIOC_FORMAT: {
17699		dtrace_fmtdesc_t fmt;
17700		char *str;
17701		int len;
17702
17703		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
17704			return (EFAULT);
17705
17706		mutex_enter(&dtrace_lock);
17707
17708		if (fmt.dtfd_format == 0 ||
17709		    fmt.dtfd_format > state->dts_nformats) {
17710			mutex_exit(&dtrace_lock);
17711			return (EINVAL);
17712		}
17713
17714		/*
17715		 * Format strings are allocated contiguously and they are
17716		 * never freed; if a format index is less than the number
17717		 * of formats, we can assert that the format map is non-NULL
17718		 * and that the format for the specified index is non-NULL.
17719		 */
17720		ASSERT(state->dts_formats != NULL);
17721		str = state->dts_formats[fmt.dtfd_format - 1];
17722		ASSERT(str != NULL);
17723
17724		len = strlen(str) + 1;
17725
17726		if (len > fmt.dtfd_length) {
17727			fmt.dtfd_length = len;
17728
17729			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
17730				mutex_exit(&dtrace_lock);
17731				return (EINVAL);
17732			}
17733		} else {
17734			if (copyout(str, fmt.dtfd_string, len) != 0) {
17735				mutex_exit(&dtrace_lock);
17736				return (EINVAL);
17737			}
17738		}
17739
17740		mutex_exit(&dtrace_lock);
17741		return (0);
17742	}
17743
17744	default:
17745		break;
17746	}
17747
17748	return (ENOTTY);
17749}
17750
17751/*ARGSUSED*/
17752static int
17753dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
17754{
17755	dtrace_state_t *state;
17756
17757	switch (cmd) {
17758	case DDI_DETACH:
17759		break;
17760
17761	case DDI_SUSPEND:
17762		return (DDI_SUCCESS);
17763
17764	default:
17765		return (DDI_FAILURE);
17766	}
17767
17768	mutex_enter(&cpu_lock);
17769	mutex_enter(&dtrace_provider_lock);
17770	mutex_enter(&dtrace_lock);
17771
17772	ASSERT(dtrace_opens == 0);
17773
17774	if (dtrace_helpers > 0) {
17775		mutex_exit(&dtrace_provider_lock);
17776		mutex_exit(&dtrace_lock);
17777		mutex_exit(&cpu_lock);
17778		return (DDI_FAILURE);
17779	}
17780
17781	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
17782		mutex_exit(&dtrace_provider_lock);
17783		mutex_exit(&dtrace_lock);
17784		mutex_exit(&cpu_lock);
17785		return (DDI_FAILURE);
17786	}
17787
17788	dtrace_provider = NULL;
17789
17790	if ((state = dtrace_anon_grab()) != NULL) {
17791		/*
17792		 * If there were ECBs on this state, the provider should
17793		 * have not been allowed to detach; assert that there is
17794		 * none.
17795		 */
17796		ASSERT(state->dts_necbs == 0);
17797		dtrace_state_destroy(state);
17798
17799		/*
17800		 * If we're being detached with anonymous state, we need to
17801		 * indicate to the kernel debugger that DTrace is now inactive.
17802		 */
17803		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17804	}
17805
17806	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
17807	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
17808	dtrace_cpu_init = NULL;
17809	dtrace_helpers_cleanup = NULL;
17810	dtrace_helpers_fork = NULL;
17811	dtrace_cpustart_init = NULL;
17812	dtrace_cpustart_fini = NULL;
17813	dtrace_debugger_init = NULL;
17814	dtrace_debugger_fini = NULL;
17815	dtrace_modload = NULL;
17816	dtrace_modunload = NULL;
17817
17818	ASSERT(dtrace_getf == 0);
17819	ASSERT(dtrace_closef == NULL);
17820
17821	mutex_exit(&cpu_lock);
17822
17823	if (dtrace_helptrace_enabled) {
17824		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
17825		dtrace_helptrace_buffer = NULL;
17826	}
17827
17828	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
17829	dtrace_probes = NULL;
17830	dtrace_nprobes = 0;
17831
17832	dtrace_hash_destroy(dtrace_bymod);
17833	dtrace_hash_destroy(dtrace_byfunc);
17834	dtrace_hash_destroy(dtrace_byname);
17835	dtrace_bymod = NULL;
17836	dtrace_byfunc = NULL;
17837	dtrace_byname = NULL;
17838
17839	kmem_cache_destroy(dtrace_state_cache);
17840	vmem_destroy(dtrace_minor);
17841	vmem_destroy(dtrace_arena);
17842
17843	if (dtrace_toxrange != NULL) {
17844		kmem_free(dtrace_toxrange,
17845		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
17846		dtrace_toxrange = NULL;
17847		dtrace_toxranges = 0;
17848		dtrace_toxranges_max = 0;
17849	}
17850
17851	ddi_remove_minor_node(dtrace_devi, NULL);
17852	dtrace_devi = NULL;
17853
17854	ddi_soft_state_fini(&dtrace_softstate);
17855
17856	ASSERT(dtrace_vtime_references == 0);
17857	ASSERT(dtrace_opens == 0);
17858	ASSERT(dtrace_retained == NULL);
17859
17860	mutex_exit(&dtrace_lock);
17861	mutex_exit(&dtrace_provider_lock);
17862
17863	/*
17864	 * We don't destroy the task queue until after we have dropped our
17865	 * locks (taskq_destroy() may block on running tasks).  To prevent
17866	 * attempting to do work after we have effectively detached but before
17867	 * the task queue has been destroyed, all tasks dispatched via the
17868	 * task queue must check that DTrace is still attached before
17869	 * performing any operation.
17870	 */
17871	taskq_destroy(dtrace_taskq);
17872	dtrace_taskq = NULL;
17873
17874	return (DDI_SUCCESS);
17875}
17876#endif
17877
17878#if defined(sun)
17879/*ARGSUSED*/
17880static int
17881dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
17882{
17883	int error;
17884
17885	switch (infocmd) {
17886	case DDI_INFO_DEVT2DEVINFO:
17887		*result = (void *)dtrace_devi;
17888		error = DDI_SUCCESS;
17889		break;
17890	case DDI_INFO_DEVT2INSTANCE:
17891		*result = (void *)0;
17892		error = DDI_SUCCESS;
17893		break;
17894	default:
17895		error = DDI_FAILURE;
17896	}
17897	return (error);
17898}
17899#endif
17900
17901#if defined(sun)
17902static struct cb_ops dtrace_cb_ops = {
17903	dtrace_open,		/* open */
17904	dtrace_close,		/* close */
17905	nulldev,		/* strategy */
17906	nulldev,		/* print */
17907	nodev,			/* dump */
17908	nodev,			/* read */
17909	nodev,			/* write */
17910	dtrace_ioctl,		/* ioctl */
17911	nodev,			/* devmap */
17912	nodev,			/* mmap */
17913	nodev,			/* segmap */
17914	nochpoll,		/* poll */
17915	ddi_prop_op,		/* cb_prop_op */
17916	0,			/* streamtab  */
17917	D_NEW | D_MP		/* Driver compatibility flag */
17918};
17919
17920static struct dev_ops dtrace_ops = {
17921	DEVO_REV,		/* devo_rev */
17922	0,			/* refcnt */
17923	dtrace_info,		/* get_dev_info */
17924	nulldev,		/* identify */
17925	nulldev,		/* probe */
17926	dtrace_attach,		/* attach */
17927	dtrace_detach,		/* detach */
17928	nodev,			/* reset */
17929	&dtrace_cb_ops,		/* driver operations */
17930	NULL,			/* bus operations */
17931	nodev			/* dev power */
17932};
17933
17934static struct modldrv modldrv = {
17935	&mod_driverops,		/* module type (this is a pseudo driver) */
17936	"Dynamic Tracing",	/* name of module */
17937	&dtrace_ops,		/* driver ops */
17938};
17939
17940static struct modlinkage modlinkage = {
17941	MODREV_1,
17942	(void *)&modldrv,
17943	NULL
17944};
17945
17946int
17947_init(void)
17948{
17949	return (mod_install(&modlinkage));
17950}
17951
17952int
17953_info(struct modinfo *modinfop)
17954{
17955	return (mod_info(&modlinkage, modinfop));
17956}
17957
17958int
17959_fini(void)
17960{
17961	return (mod_remove(&modlinkage));
17962}
17963#else
17964
17965static d_ioctl_t	dtrace_ioctl;
17966static d_ioctl_t	dtrace_ioctl_helper;
17967static void		dtrace_load(void *);
17968static int		dtrace_unload(void);
17969#if __FreeBSD_version < 800039
17970static void		dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
17971static struct clonedevs	*dtrace_clones;		/* Ptr to the array of cloned devices. */
17972static eventhandler_tag	eh_tag;			/* Event handler tag. */
17973#else
17974static struct cdev	*dtrace_dev;
17975static struct cdev	*helper_dev;
17976#endif
17977
17978void dtrace_invop_init(void);
17979void dtrace_invop_uninit(void);
17980
17981static struct cdevsw dtrace_cdevsw = {
17982	.d_version	= D_VERSION,
17983#if __FreeBSD_version < 800039
17984	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
17985	.d_close	= dtrace_close,
17986#endif
17987	.d_ioctl	= dtrace_ioctl,
17988	.d_open		= dtrace_open,
17989	.d_name		= "dtrace",
17990};
17991
17992static struct cdevsw helper_cdevsw = {
17993	.d_version	= D_VERSION,
17994	.d_ioctl	= dtrace_ioctl_helper,
17995	.d_name		= "helper",
17996};
17997
17998#include <dtrace_anon.c>
17999#if __FreeBSD_version < 800039
18000#include <dtrace_clone.c>
18001#endif
18002#include <dtrace_ioctl.c>
18003#include <dtrace_load.c>
18004#include <dtrace_modevent.c>
18005#include <dtrace_sysctl.c>
18006#include <dtrace_unload.c>
18007#include <dtrace_vtime.c>
18008#include <dtrace_hacks.c>
18009#include <dtrace_isa.c>
18010
18011SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
18012SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
18013SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
18014
18015DEV_MODULE(dtrace, dtrace_modevent, NULL);
18016MODULE_VERSION(dtrace, 1);
18017MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
18018MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
18019#endif
18020