dtrace.c revision 268595
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 * $FreeBSD: stable/10/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c 268595 2014-07-13 17:50:50Z pfg $
22 */
23
24/*
25 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 * Copyright (c) 2012 by Delphix. All rights reserved.
28 */
29
30/*
31 * DTrace - Dynamic Tracing for Solaris
32 *
33 * This is the implementation of the Solaris Dynamic Tracing framework
34 * (DTrace).  The user-visible interface to DTrace is described at length in
35 * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
36 * library, the in-kernel DTrace framework, and the DTrace providers are
37 * described in the block comments in the <sys/dtrace.h> header file.  The
38 * internal architecture of DTrace is described in the block comments in the
39 * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
40 * implementation very much assume mastery of all of these sources; if one has
41 * an unanswered question about the implementation, one should consult them
42 * first.
43 *
44 * The functions here are ordered roughly as follows:
45 *
46 *   - Probe context functions
47 *   - Probe hashing functions
48 *   - Non-probe context utility functions
49 *   - Matching functions
50 *   - Provider-to-Framework API functions
51 *   - Probe management functions
52 *   - DIF object functions
53 *   - Format functions
54 *   - Predicate functions
55 *   - ECB functions
56 *   - Buffer functions
57 *   - Enabling functions
58 *   - DOF functions
59 *   - Anonymous enabling functions
60 *   - Consumer state functions
61 *   - Helper functions
62 *   - Hook functions
63 *   - Driver cookbook functions
64 *
65 * Each group of functions begins with a block comment labelled the "DTrace
66 * [Group] Functions", allowing one to find each block by searching forward
67 * on capital-f functions.
68 */
69#include <sys/errno.h>
70#if !defined(sun)
71#include <sys/time.h>
72#endif
73#include <sys/stat.h>
74#include <sys/modctl.h>
75#include <sys/conf.h>
76#include <sys/systm.h>
77#if defined(sun)
78#include <sys/ddi.h>
79#include <sys/sunddi.h>
80#endif
81#include <sys/cpuvar.h>
82#include <sys/kmem.h>
83#if defined(sun)
84#include <sys/strsubr.h>
85#endif
86#include <sys/sysmacros.h>
87#include <sys/dtrace_impl.h>
88#include <sys/atomic.h>
89#include <sys/cmn_err.h>
90#if defined(sun)
91#include <sys/mutex_impl.h>
92#include <sys/rwlock_impl.h>
93#endif
94#include <sys/ctf_api.h>
95#if defined(sun)
96#include <sys/panic.h>
97#include <sys/priv_impl.h>
98#endif
99#include <sys/policy.h>
100#if defined(sun)
101#include <sys/cred_impl.h>
102#include <sys/procfs_isa.h>
103#endif
104#include <sys/taskq.h>
105#if defined(sun)
106#include <sys/mkdev.h>
107#include <sys/kdi.h>
108#endif
109#include <sys/zone.h>
110#include <sys/socket.h>
111#include <netinet/in.h>
112#include "strtolctype.h"
113
114/* FreeBSD includes: */
115#if !defined(sun)
116#include <sys/callout.h>
117#include <sys/ctype.h>
118#include <sys/eventhandler.h>
119#include <sys/limits.h>
120#include <sys/kdb.h>
121#include <sys/kernel.h>
122#include <sys/malloc.h>
123#include <sys/sysctl.h>
124#include <sys/lock.h>
125#include <sys/mutex.h>
126#include <sys/rwlock.h>
127#include <sys/sx.h>
128#include <sys/dtrace_bsd.h>
129#include <netinet/in.h>
130#include "dtrace_cddl.h"
131#include "dtrace_debug.c"
132#endif
133
134/*
135 * DTrace Tunable Variables
136 *
137 * The following variables may be tuned by adding a line to /etc/system that
138 * includes both the name of the DTrace module ("dtrace") and the name of the
139 * variable.  For example:
140 *
141 *   set dtrace:dtrace_destructive_disallow = 1
142 *
143 * In general, the only variables that one should be tuning this way are those
144 * that affect system-wide DTrace behavior, and for which the default behavior
145 * is undesirable.  Most of these variables are tunable on a per-consumer
146 * basis using DTrace options, and need not be tuned on a system-wide basis.
147 * When tuning these variables, avoid pathological values; while some attempt
148 * is made to verify the integrity of these variables, they are not considered
149 * part of the supported interface to DTrace, and they are therefore not
150 * checked comprehensively.  Further, these variables should not be tuned
151 * dynamically via "mdb -kw" or other means; they should only be tuned via
152 * /etc/system.
153 */
154int		dtrace_destructive_disallow = 0;
155dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
156size_t		dtrace_difo_maxsize = (256 * 1024);
157dtrace_optval_t	dtrace_dof_maxsize = (8 * 1024 * 1024);
158size_t		dtrace_global_maxsize = (16 * 1024);
159size_t		dtrace_actions_max = (16 * 1024);
160size_t		dtrace_retain_max = 1024;
161dtrace_optval_t	dtrace_helper_actions_max = 128;
162dtrace_optval_t	dtrace_helper_providers_max = 32;
163dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
164size_t		dtrace_strsize_default = 256;
165dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
166dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
167dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
168dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
169dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
170dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
171dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
172dtrace_optval_t	dtrace_nspec_default = 1;
173dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
174dtrace_optval_t dtrace_stackframes_default = 20;
175dtrace_optval_t dtrace_ustackframes_default = 20;
176dtrace_optval_t dtrace_jstackframes_default = 50;
177dtrace_optval_t dtrace_jstackstrsize_default = 512;
178int		dtrace_msgdsize_max = 128;
179hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
180hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
181int		dtrace_devdepth_max = 32;
182int		dtrace_err_verbose;
183hrtime_t	dtrace_deadman_interval = NANOSEC;
184hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
185hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
186hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
187
188/*
189 * DTrace External Variables
190 *
191 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
192 * available to DTrace consumers via the backtick (`) syntax.  One of these,
193 * dtrace_zero, is made deliberately so:  it is provided as a source of
194 * well-known, zero-filled memory.  While this variable is not documented,
195 * it is used by some translators as an implementation detail.
196 */
197const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
198
199/*
200 * DTrace Internal Variables
201 */
202#if defined(sun)
203static dev_info_t	*dtrace_devi;		/* device info */
204#endif
205#if defined(sun)
206static vmem_t		*dtrace_arena;		/* probe ID arena */
207static vmem_t		*dtrace_minor;		/* minor number arena */
208#else
209static taskq_t		*dtrace_taskq;		/* task queue */
210static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
211#endif
212static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
213static int		dtrace_nprobes;		/* number of probes */
214static dtrace_provider_t *dtrace_provider;	/* provider list */
215static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
216static int		dtrace_opens;		/* number of opens */
217static int		dtrace_helpers;		/* number of helpers */
218static int		dtrace_getf;		/* number of unpriv getf()s */
219#if defined(sun)
220static void		*dtrace_softstate;	/* softstate pointer */
221#endif
222static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
223static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
224static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
225static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
226static int		dtrace_toxranges;	/* number of toxic ranges */
227static int		dtrace_toxranges_max;	/* size of toxic range array */
228static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
229static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
230static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
231static kthread_t	*dtrace_panicked;	/* panicking thread */
232static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
233static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
234static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
235static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
236static dtrace_genid_t	dtrace_retained_gen;	/* current retained enab gen */
237static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
238static int		dtrace_dynvar_failclean; /* dynvars failed to clean */
239#if !defined(sun)
240static struct mtx	dtrace_unr_mtx;
241MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
242int		dtrace_in_probe;	/* non-zero if executing a probe */
243#if defined(__i386__) || defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
244uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
245#endif
246static eventhandler_tag	dtrace_kld_load_tag;
247static eventhandler_tag	dtrace_kld_unload_try_tag;
248#endif
249
250/*
251 * DTrace Locking
252 * DTrace is protected by three (relatively coarse-grained) locks:
253 *
254 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
255 *     including enabling state, probes, ECBs, consumer state, helper state,
256 *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
257 *     probe context is lock-free -- synchronization is handled via the
258 *     dtrace_sync() cross call mechanism.
259 *
260 * (2) dtrace_provider_lock is required when manipulating provider state, or
261 *     when provider state must be held constant.
262 *
263 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
264 *     when meta provider state must be held constant.
265 *
266 * The lock ordering between these three locks is dtrace_meta_lock before
267 * dtrace_provider_lock before dtrace_lock.  (In particular, there are
268 * several places where dtrace_provider_lock is held by the framework as it
269 * calls into the providers -- which then call back into the framework,
270 * grabbing dtrace_lock.)
271 *
272 * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
273 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
274 * role as a coarse-grained lock; it is acquired before both of these locks.
275 * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
276 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
277 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
278 * acquired _between_ dtrace_provider_lock and dtrace_lock.
279 */
280static kmutex_t		dtrace_lock;		/* probe state lock */
281static kmutex_t		dtrace_provider_lock;	/* provider state lock */
282static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
283
284#if !defined(sun)
285/* XXX FreeBSD hacks. */
286#define cr_suid		cr_svuid
287#define cr_sgid		cr_svgid
288#define	ipaddr_t	in_addr_t
289#define mod_modname	pathname
290#define vuprintf	vprintf
291#define ttoproc(_a)	((_a)->td_proc)
292#define crgetzoneid(_a)	0
293#define	NCPU		MAXCPU
294#define SNOCD		0
295#define CPU_ON_INTR(_a)	0
296
297#define PRIV_EFFECTIVE		(1 << 0)
298#define PRIV_DTRACE_KERNEL	(1 << 1)
299#define PRIV_DTRACE_PROC	(1 << 2)
300#define PRIV_DTRACE_USER	(1 << 3)
301#define PRIV_PROC_OWNER		(1 << 4)
302#define PRIV_PROC_ZONE		(1 << 5)
303#define PRIV_ALL		~0
304
305SYSCTL_DECL(_debug_dtrace);
306SYSCTL_DECL(_kern_dtrace);
307#endif
308
309#if defined(sun)
310#define curcpu	CPU->cpu_id
311#endif
312
313
314/*
315 * DTrace Provider Variables
316 *
317 * These are the variables relating to DTrace as a provider (that is, the
318 * provider of the BEGIN, END, and ERROR probes).
319 */
320static dtrace_pattr_t	dtrace_provider_attr = {
321{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
322{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
323{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
324{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
325{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
326};
327
328static void
329dtrace_nullop(void)
330{}
331
332static dtrace_pops_t	dtrace_provider_ops = {
333	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
334	(void (*)(void *, modctl_t *))dtrace_nullop,
335	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
336	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
337	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
338	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
339	NULL,
340	NULL,
341	NULL,
342	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
343};
344
345static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
346static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
347dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
348
349/*
350 * DTrace Helper Tracing Variables
351 */
352uint32_t dtrace_helptrace_next = 0;
353uint32_t dtrace_helptrace_nlocals;
354char	*dtrace_helptrace_buffer;
355int	dtrace_helptrace_bufsize = 512 * 1024;
356
357#ifdef DEBUG
358int	dtrace_helptrace_enabled = 1;
359#else
360int	dtrace_helptrace_enabled = 0;
361#endif
362
363/*
364 * DTrace Error Hashing
365 *
366 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
367 * table.  This is very useful for checking coverage of tests that are
368 * expected to induce DIF or DOF processing errors, and may be useful for
369 * debugging problems in the DIF code generator or in DOF generation .  The
370 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
371 */
372#ifdef DEBUG
373static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
374static const char *dtrace_errlast;
375static kthread_t *dtrace_errthread;
376static kmutex_t dtrace_errlock;
377#endif
378
379/*
380 * DTrace Macros and Constants
381 *
382 * These are various macros that are useful in various spots in the
383 * implementation, along with a few random constants that have no meaning
384 * outside of the implementation.  There is no real structure to this cpp
385 * mishmash -- but is there ever?
386 */
387#define	DTRACE_HASHSTR(hash, probe)	\
388	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
389
390#define	DTRACE_HASHNEXT(hash, probe)	\
391	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
392
393#define	DTRACE_HASHPREV(hash, probe)	\
394	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
395
396#define	DTRACE_HASHEQ(hash, lhs, rhs)	\
397	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
398	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
399
400#define	DTRACE_AGGHASHSIZE_SLEW		17
401
402#define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
403
404/*
405 * The key for a thread-local variable consists of the lower 61 bits of the
406 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
407 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
408 * equal to a variable identifier.  This is necessary (but not sufficient) to
409 * assure that global associative arrays never collide with thread-local
410 * variables.  To guarantee that they cannot collide, we must also define the
411 * order for keying dynamic variables.  That order is:
412 *
413 *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
414 *
415 * Because the variable-key and the tls-key are in orthogonal spaces, there is
416 * no way for a global variable key signature to match a thread-local key
417 * signature.
418 */
419#if defined(sun)
420#define	DTRACE_TLS_THRKEY(where) { \
421	uint_t intr = 0; \
422	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
423	for (; actv; actv >>= 1) \
424		intr++; \
425	ASSERT(intr < (1 << 3)); \
426	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
427	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
428}
429#else
430#define	DTRACE_TLS_THRKEY(where) { \
431	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
432	uint_t intr = 0; \
433	uint_t actv = _c->cpu_intr_actv; \
434	for (; actv; actv >>= 1) \
435		intr++; \
436	ASSERT(intr < (1 << 3)); \
437	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
438	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
439}
440#endif
441
442#define	DT_BSWAP_8(x)	((x) & 0xff)
443#define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
444#define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
445#define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
446
447#define	DT_MASK_LO 0x00000000FFFFFFFFULL
448
449#define	DTRACE_STORE(type, tomax, offset, what) \
450	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
451
452#ifndef __x86
453#define	DTRACE_ALIGNCHECK(addr, size, flags)				\
454	if (addr & (size - 1)) {					\
455		*flags |= CPU_DTRACE_BADALIGN;				\
456		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
457		return (0);						\
458	}
459#else
460#define	DTRACE_ALIGNCHECK(addr, size, flags)
461#endif
462
463/*
464 * Test whether a range of memory starting at testaddr of size testsz falls
465 * within the range of memory described by addr, sz.  We take care to avoid
466 * problems with overflow and underflow of the unsigned quantities, and
467 * disallow all negative sizes.  Ranges of size 0 are allowed.
468 */
469#define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
470	((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
471	(testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
472	(testaddr) + (testsz) >= (testaddr))
473
474/*
475 * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
476 * alloc_sz on the righthand side of the comparison in order to avoid overflow
477 * or underflow in the comparison with it.  This is simpler than the INRANGE
478 * check above, because we know that the dtms_scratch_ptr is valid in the
479 * range.  Allocations of size zero are allowed.
480 */
481#define	DTRACE_INSCRATCH(mstate, alloc_sz) \
482	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
483	(mstate)->dtms_scratch_ptr >= (alloc_sz))
484
485#define	DTRACE_LOADFUNC(bits)						\
486/*CSTYLED*/								\
487uint##bits##_t								\
488dtrace_load##bits(uintptr_t addr)					\
489{									\
490	size_t size = bits / NBBY;					\
491	/*CSTYLED*/							\
492	uint##bits##_t rval;						\
493	int i;								\
494	volatile uint16_t *flags = (volatile uint16_t *)		\
495	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
496									\
497	DTRACE_ALIGNCHECK(addr, size, flags);				\
498									\
499	for (i = 0; i < dtrace_toxranges; i++) {			\
500		if (addr >= dtrace_toxrange[i].dtt_limit)		\
501			continue;					\
502									\
503		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
504			continue;					\
505									\
506		/*							\
507		 * This address falls within a toxic region; return 0.	\
508		 */							\
509		*flags |= CPU_DTRACE_BADADDR;				\
510		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
511		return (0);						\
512	}								\
513									\
514	*flags |= CPU_DTRACE_NOFAULT;					\
515	/*CSTYLED*/							\
516	rval = *((volatile uint##bits##_t *)addr);			\
517	*flags &= ~CPU_DTRACE_NOFAULT;					\
518									\
519	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
520}
521
522#ifdef _LP64
523#define	dtrace_loadptr	dtrace_load64
524#else
525#define	dtrace_loadptr	dtrace_load32
526#endif
527
528#define	DTRACE_DYNHASH_FREE	0
529#define	DTRACE_DYNHASH_SINK	1
530#define	DTRACE_DYNHASH_VALID	2
531
532#define	DTRACE_MATCH_NEXT	0
533#define	DTRACE_MATCH_DONE	1
534#define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
535#define	DTRACE_STATE_ALIGN	64
536
537#define	DTRACE_FLAGS2FLT(flags)						\
538	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
539	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
540	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
541	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
542	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
543	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
544	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
545	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
546	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
547	DTRACEFLT_UNKNOWN)
548
549#define	DTRACEACT_ISSTRING(act)						\
550	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
551	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
552
553/* Function prototype definitions: */
554static size_t dtrace_strlen(const char *, size_t);
555static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
556static void dtrace_enabling_provide(dtrace_provider_t *);
557static int dtrace_enabling_match(dtrace_enabling_t *, int *);
558static void dtrace_enabling_matchall(void);
559static void dtrace_enabling_reap(void);
560static dtrace_state_t *dtrace_anon_grab(void);
561static uint64_t dtrace_helper(int, dtrace_mstate_t *,
562    dtrace_state_t *, uint64_t, uint64_t);
563static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
564static void dtrace_buffer_drop(dtrace_buffer_t *);
565static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
566static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
567    dtrace_state_t *, dtrace_mstate_t *);
568static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
569    dtrace_optval_t);
570static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
571static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
572uint16_t dtrace_load16(uintptr_t);
573uint32_t dtrace_load32(uintptr_t);
574uint64_t dtrace_load64(uintptr_t);
575uint8_t dtrace_load8(uintptr_t);
576void dtrace_dynvar_clean(dtrace_dstate_t *);
577dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
578    size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
579uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
580static int dtrace_priv_proc(dtrace_state_t *);
581static void dtrace_getf_barrier(void);
582
583/*
584 * DTrace Probe Context Functions
585 *
586 * These functions are called from probe context.  Because probe context is
587 * any context in which C may be called, arbitrarily locks may be held,
588 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
589 * As a result, functions called from probe context may only call other DTrace
590 * support functions -- they may not interact at all with the system at large.
591 * (Note that the ASSERT macro is made probe-context safe by redefining it in
592 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
593 * loads are to be performed from probe context, they _must_ be in terms of
594 * the safe dtrace_load*() variants.
595 *
596 * Some functions in this block are not actually called from probe context;
597 * for these functions, there will be a comment above the function reading
598 * "Note:  not called from probe context."
599 */
600void
601dtrace_panic(const char *format, ...)
602{
603	va_list alist;
604
605	va_start(alist, format);
606	dtrace_vpanic(format, alist);
607	va_end(alist);
608}
609
610int
611dtrace_assfail(const char *a, const char *f, int l)
612{
613	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
614
615	/*
616	 * We just need something here that even the most clever compiler
617	 * cannot optimize away.
618	 */
619	return (a[(uintptr_t)f]);
620}
621
622/*
623 * Atomically increment a specified error counter from probe context.
624 */
625static void
626dtrace_error(uint32_t *counter)
627{
628	/*
629	 * Most counters stored to in probe context are per-CPU counters.
630	 * However, there are some error conditions that are sufficiently
631	 * arcane that they don't merit per-CPU storage.  If these counters
632	 * are incremented concurrently on different CPUs, scalability will be
633	 * adversely affected -- but we don't expect them to be white-hot in a
634	 * correctly constructed enabling...
635	 */
636	uint32_t oval, nval;
637
638	do {
639		oval = *counter;
640
641		if ((nval = oval + 1) == 0) {
642			/*
643			 * If the counter would wrap, set it to 1 -- assuring
644			 * that the counter is never zero when we have seen
645			 * errors.  (The counter must be 32-bits because we
646			 * aren't guaranteed a 64-bit compare&swap operation.)
647			 * To save this code both the infamy of being fingered
648			 * by a priggish news story and the indignity of being
649			 * the target of a neo-puritan witch trial, we're
650			 * carefully avoiding any colorful description of the
651			 * likelihood of this condition -- but suffice it to
652			 * say that it is only slightly more likely than the
653			 * overflow of predicate cache IDs, as discussed in
654			 * dtrace_predicate_create().
655			 */
656			nval = 1;
657		}
658	} while (dtrace_cas32(counter, oval, nval) != oval);
659}
660
661/*
662 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
663 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
664 */
665DTRACE_LOADFUNC(8)
666DTRACE_LOADFUNC(16)
667DTRACE_LOADFUNC(32)
668DTRACE_LOADFUNC(64)
669
670static int
671dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
672{
673	if (dest < mstate->dtms_scratch_base)
674		return (0);
675
676	if (dest + size < dest)
677		return (0);
678
679	if (dest + size > mstate->dtms_scratch_ptr)
680		return (0);
681
682	return (1);
683}
684
685static int
686dtrace_canstore_statvar(uint64_t addr, size_t sz,
687    dtrace_statvar_t **svars, int nsvars)
688{
689	int i;
690
691	for (i = 0; i < nsvars; i++) {
692		dtrace_statvar_t *svar = svars[i];
693
694		if (svar == NULL || svar->dtsv_size == 0)
695			continue;
696
697		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
698			return (1);
699	}
700
701	return (0);
702}
703
704/*
705 * Check to see if the address is within a memory region to which a store may
706 * be issued.  This includes the DTrace scratch areas, and any DTrace variable
707 * region.  The caller of dtrace_canstore() is responsible for performing any
708 * alignment checks that are needed before stores are actually executed.
709 */
710static int
711dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
712    dtrace_vstate_t *vstate)
713{
714	/*
715	 * First, check to see if the address is in scratch space...
716	 */
717	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
718	    mstate->dtms_scratch_size))
719		return (1);
720
721	/*
722	 * Now check to see if it's a dynamic variable.  This check will pick
723	 * up both thread-local variables and any global dynamically-allocated
724	 * variables.
725	 */
726	if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
727	    vstate->dtvs_dynvars.dtds_size)) {
728		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
729		uintptr_t base = (uintptr_t)dstate->dtds_base +
730		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
731		uintptr_t chunkoffs;
732
733		/*
734		 * Before we assume that we can store here, we need to make
735		 * sure that it isn't in our metadata -- storing to our
736		 * dynamic variable metadata would corrupt our state.  For
737		 * the range to not include any dynamic variable metadata,
738		 * it must:
739		 *
740		 *	(1) Start above the hash table that is at the base of
741		 *	the dynamic variable space
742		 *
743		 *	(2) Have a starting chunk offset that is beyond the
744		 *	dtrace_dynvar_t that is at the base of every chunk
745		 *
746		 *	(3) Not span a chunk boundary
747		 *
748		 */
749		if (addr < base)
750			return (0);
751
752		chunkoffs = (addr - base) % dstate->dtds_chunksize;
753
754		if (chunkoffs < sizeof (dtrace_dynvar_t))
755			return (0);
756
757		if (chunkoffs + sz > dstate->dtds_chunksize)
758			return (0);
759
760		return (1);
761	}
762
763	/*
764	 * Finally, check the static local and global variables.  These checks
765	 * take the longest, so we perform them last.
766	 */
767	if (dtrace_canstore_statvar(addr, sz,
768	    vstate->dtvs_locals, vstate->dtvs_nlocals))
769		return (1);
770
771	if (dtrace_canstore_statvar(addr, sz,
772	    vstate->dtvs_globals, vstate->dtvs_nglobals))
773		return (1);
774
775	return (0);
776}
777
778
779/*
780 * Convenience routine to check to see if the address is within a memory
781 * region in which a load may be issued given the user's privilege level;
782 * if not, it sets the appropriate error flags and loads 'addr' into the
783 * illegal value slot.
784 *
785 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
786 * appropriate memory access protection.
787 */
788static int
789dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
790    dtrace_vstate_t *vstate)
791{
792	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
793	file_t *fp;
794
795	/*
796	 * If we hold the privilege to read from kernel memory, then
797	 * everything is readable.
798	 */
799	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
800		return (1);
801
802	/*
803	 * You can obviously read that which you can store.
804	 */
805	if (dtrace_canstore(addr, sz, mstate, vstate))
806		return (1);
807
808	/*
809	 * We're allowed to read from our own string table.
810	 */
811	if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
812	    mstate->dtms_difo->dtdo_strlen))
813		return (1);
814
815	if (vstate->dtvs_state != NULL &&
816	    dtrace_priv_proc(vstate->dtvs_state)) {
817		proc_t *p;
818
819		/*
820		 * When we have privileges to the current process, there are
821		 * several context-related kernel structures that are safe to
822		 * read, even absent the privilege to read from kernel memory.
823		 * These reads are safe because these structures contain only
824		 * state that (1) we're permitted to read, (2) is harmless or
825		 * (3) contains pointers to additional kernel state that we're
826		 * not permitted to read (and as such, do not present an
827		 * opportunity for privilege escalation).  Finally (and
828		 * critically), because of the nature of their relation with
829		 * the current thread context, the memory associated with these
830		 * structures cannot change over the duration of probe context,
831		 * and it is therefore impossible for this memory to be
832		 * deallocated and reallocated as something else while it's
833		 * being operated upon.
834		 */
835		if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t)))
836			return (1);
837
838		if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
839		    sz, curthread->t_procp, sizeof (proc_t))) {
840			return (1);
841		}
842
843		if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
844		    curthread->t_cred, sizeof (cred_t))) {
845			return (1);
846		}
847
848#if defined(sun)
849		if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
850		    &(p->p_pidp->pid_id), sizeof (pid_t))) {
851			return (1);
852		}
853
854		if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
855		    curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
856			return (1);
857		}
858#endif
859	}
860
861	if ((fp = mstate->dtms_getf) != NULL) {
862		uintptr_t psz = sizeof (void *);
863		vnode_t *vp;
864		vnodeops_t *op;
865
866		/*
867		 * When getf() returns a file_t, the enabling is implicitly
868		 * granted the (transient) right to read the returned file_t
869		 * as well as the v_path and v_op->vnop_name of the underlying
870		 * vnode.  These accesses are allowed after a successful
871		 * getf() because the members that they refer to cannot change
872		 * once set -- and the barrier logic in the kernel's closef()
873		 * path assures that the file_t and its referenced vode_t
874		 * cannot themselves be stale (that is, it impossible for
875		 * either dtms_getf itself or its f_vnode member to reference
876		 * freed memory).
877		 */
878		if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t)))
879			return (1);
880
881		if ((vp = fp->f_vnode) != NULL) {
882#if defined(sun)
883			if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz))
884				return (1);
885			if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz,
886			    vp->v_path, strlen(vp->v_path) + 1)) {
887				return (1);
888			}
889#endif
890
891			if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz))
892				return (1);
893
894#if defined(sun)
895			if ((op = vp->v_op) != NULL &&
896			    DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
897				return (1);
898			}
899
900			if (op != NULL && op->vnop_name != NULL &&
901			    DTRACE_INRANGE(addr, sz, op->vnop_name,
902			    strlen(op->vnop_name) + 1)) {
903				return (1);
904			}
905#endif
906		}
907	}
908
909	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
910	*illval = addr;
911	return (0);
912}
913
914/*
915 * Convenience routine to check to see if a given string is within a memory
916 * region in which a load may be issued given the user's privilege level;
917 * this exists so that we don't need to issue unnecessary dtrace_strlen()
918 * calls in the event that the user has all privileges.
919 */
920static int
921dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
922    dtrace_vstate_t *vstate)
923{
924	size_t strsz;
925
926	/*
927	 * If we hold the privilege to read from kernel memory, then
928	 * everything is readable.
929	 */
930	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
931		return (1);
932
933	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
934	if (dtrace_canload(addr, strsz, mstate, vstate))
935		return (1);
936
937	return (0);
938}
939
940/*
941 * Convenience routine to check to see if a given variable is within a memory
942 * region in which a load may be issued given the user's privilege level.
943 */
944static int
945dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
946    dtrace_vstate_t *vstate)
947{
948	size_t sz;
949	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
950
951	/*
952	 * If we hold the privilege to read from kernel memory, then
953	 * everything is readable.
954	 */
955	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
956		return (1);
957
958	if (type->dtdt_kind == DIF_TYPE_STRING)
959		sz = dtrace_strlen(src,
960		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
961	else
962		sz = type->dtdt_size;
963
964	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
965}
966
967/*
968 * Convert a string to a signed integer using safe loads.
969 *
970 * NOTE: This function uses various macros from strtolctype.h to manipulate
971 * digit values, etc -- these have all been checked to ensure they make
972 * no additional function calls.
973 */
974static int64_t
975dtrace_strtoll(char *input, int base, size_t limit)
976{
977	uintptr_t pos = (uintptr_t)input;
978	int64_t val = 0;
979	int x;
980	boolean_t neg = B_FALSE;
981	char c, cc, ccc;
982	uintptr_t end = pos + limit;
983
984	/*
985	 * Consume any whitespace preceding digits.
986	 */
987	while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
988		pos++;
989
990	/*
991	 * Handle an explicit sign if one is present.
992	 */
993	if (c == '-' || c == '+') {
994		if (c == '-')
995			neg = B_TRUE;
996		c = dtrace_load8(++pos);
997	}
998
999	/*
1000	 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1001	 * if present.
1002	 */
1003	if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
1004	    cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
1005		pos += 2;
1006		c = ccc;
1007	}
1008
1009	/*
1010	 * Read in contiguous digits until the first non-digit character.
1011	 */
1012	for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
1013	    c = dtrace_load8(++pos))
1014		val = val * base + x;
1015
1016	return (neg ? -val : val);
1017}
1018
1019/*
1020 * Compare two strings using safe loads.
1021 */
1022static int
1023dtrace_strncmp(char *s1, char *s2, size_t limit)
1024{
1025	uint8_t c1, c2;
1026	volatile uint16_t *flags;
1027
1028	if (s1 == s2 || limit == 0)
1029		return (0);
1030
1031	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1032
1033	do {
1034		if (s1 == NULL) {
1035			c1 = '\0';
1036		} else {
1037			c1 = dtrace_load8((uintptr_t)s1++);
1038		}
1039
1040		if (s2 == NULL) {
1041			c2 = '\0';
1042		} else {
1043			c2 = dtrace_load8((uintptr_t)s2++);
1044		}
1045
1046		if (c1 != c2)
1047			return (c1 - c2);
1048	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1049
1050	return (0);
1051}
1052
1053/*
1054 * Compute strlen(s) for a string using safe memory accesses.  The additional
1055 * len parameter is used to specify a maximum length to ensure completion.
1056 */
1057static size_t
1058dtrace_strlen(const char *s, size_t lim)
1059{
1060	uint_t len;
1061
1062	for (len = 0; len != lim; len++) {
1063		if (dtrace_load8((uintptr_t)s++) == '\0')
1064			break;
1065	}
1066
1067	return (len);
1068}
1069
1070/*
1071 * Check if an address falls within a toxic region.
1072 */
1073static int
1074dtrace_istoxic(uintptr_t kaddr, size_t size)
1075{
1076	uintptr_t taddr, tsize;
1077	int i;
1078
1079	for (i = 0; i < dtrace_toxranges; i++) {
1080		taddr = dtrace_toxrange[i].dtt_base;
1081		tsize = dtrace_toxrange[i].dtt_limit - taddr;
1082
1083		if (kaddr - taddr < tsize) {
1084			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1085			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
1086			return (1);
1087		}
1088
1089		if (taddr - kaddr < size) {
1090			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1091			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
1092			return (1);
1093		}
1094	}
1095
1096	return (0);
1097}
1098
1099/*
1100 * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
1101 * memory specified by the DIF program.  The dst is assumed to be safe memory
1102 * that we can store to directly because it is managed by DTrace.  As with
1103 * standard bcopy, overlapping copies are handled properly.
1104 */
1105static void
1106dtrace_bcopy(const void *src, void *dst, size_t len)
1107{
1108	if (len != 0) {
1109		uint8_t *s1 = dst;
1110		const uint8_t *s2 = src;
1111
1112		if (s1 <= s2) {
1113			do {
1114				*s1++ = dtrace_load8((uintptr_t)s2++);
1115			} while (--len != 0);
1116		} else {
1117			s2 += len;
1118			s1 += len;
1119
1120			do {
1121				*--s1 = dtrace_load8((uintptr_t)--s2);
1122			} while (--len != 0);
1123		}
1124	}
1125}
1126
1127/*
1128 * Copy src to dst using safe memory accesses, up to either the specified
1129 * length, or the point that a nul byte is encountered.  The src is assumed to
1130 * be unsafe memory specified by the DIF program.  The dst is assumed to be
1131 * safe memory that we can store to directly because it is managed by DTrace.
1132 * Unlike dtrace_bcopy(), overlapping regions are not handled.
1133 */
1134static void
1135dtrace_strcpy(const void *src, void *dst, size_t len)
1136{
1137	if (len != 0) {
1138		uint8_t *s1 = dst, c;
1139		const uint8_t *s2 = src;
1140
1141		do {
1142			*s1++ = c = dtrace_load8((uintptr_t)s2++);
1143		} while (--len != 0 && c != '\0');
1144	}
1145}
1146
1147/*
1148 * Copy src to dst, deriving the size and type from the specified (BYREF)
1149 * variable type.  The src is assumed to be unsafe memory specified by the DIF
1150 * program.  The dst is assumed to be DTrace variable memory that is of the
1151 * specified type; we assume that we can store to directly.
1152 */
1153static void
1154dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1155{
1156	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1157
1158	if (type->dtdt_kind == DIF_TYPE_STRING) {
1159		dtrace_strcpy(src, dst, type->dtdt_size);
1160	} else {
1161		dtrace_bcopy(src, dst, type->dtdt_size);
1162	}
1163}
1164
1165/*
1166 * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1167 * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1168 * safe memory that we can access directly because it is managed by DTrace.
1169 */
1170static int
1171dtrace_bcmp(const void *s1, const void *s2, size_t len)
1172{
1173	volatile uint16_t *flags;
1174
1175	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1176
1177	if (s1 == s2)
1178		return (0);
1179
1180	if (s1 == NULL || s2 == NULL)
1181		return (1);
1182
1183	if (s1 != s2 && len != 0) {
1184		const uint8_t *ps1 = s1;
1185		const uint8_t *ps2 = s2;
1186
1187		do {
1188			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1189				return (1);
1190		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1191	}
1192	return (0);
1193}
1194
1195/*
1196 * Zero the specified region using a simple byte-by-byte loop.  Note that this
1197 * is for safe DTrace-managed memory only.
1198 */
1199static void
1200dtrace_bzero(void *dst, size_t len)
1201{
1202	uchar_t *cp;
1203
1204	for (cp = dst; len != 0; len--)
1205		*cp++ = 0;
1206}
1207
1208static void
1209dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1210{
1211	uint64_t result[2];
1212
1213	result[0] = addend1[0] + addend2[0];
1214	result[1] = addend1[1] + addend2[1] +
1215	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1216
1217	sum[0] = result[0];
1218	sum[1] = result[1];
1219}
1220
1221/*
1222 * Shift the 128-bit value in a by b. If b is positive, shift left.
1223 * If b is negative, shift right.
1224 */
1225static void
1226dtrace_shift_128(uint64_t *a, int b)
1227{
1228	uint64_t mask;
1229
1230	if (b == 0)
1231		return;
1232
1233	if (b < 0) {
1234		b = -b;
1235		if (b >= 64) {
1236			a[0] = a[1] >> (b - 64);
1237			a[1] = 0;
1238		} else {
1239			a[0] >>= b;
1240			mask = 1LL << (64 - b);
1241			mask -= 1;
1242			a[0] |= ((a[1] & mask) << (64 - b));
1243			a[1] >>= b;
1244		}
1245	} else {
1246		if (b >= 64) {
1247			a[1] = a[0] << (b - 64);
1248			a[0] = 0;
1249		} else {
1250			a[1] <<= b;
1251			mask = a[0] >> (64 - b);
1252			a[1] |= mask;
1253			a[0] <<= b;
1254		}
1255	}
1256}
1257
1258/*
1259 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1260 * use native multiplication on those, and then re-combine into the
1261 * resulting 128-bit value.
1262 *
1263 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1264 *     hi1 * hi2 << 64 +
1265 *     hi1 * lo2 << 32 +
1266 *     hi2 * lo1 << 32 +
1267 *     lo1 * lo2
1268 */
1269static void
1270dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1271{
1272	uint64_t hi1, hi2, lo1, lo2;
1273	uint64_t tmp[2];
1274
1275	hi1 = factor1 >> 32;
1276	hi2 = factor2 >> 32;
1277
1278	lo1 = factor1 & DT_MASK_LO;
1279	lo2 = factor2 & DT_MASK_LO;
1280
1281	product[0] = lo1 * lo2;
1282	product[1] = hi1 * hi2;
1283
1284	tmp[0] = hi1 * lo2;
1285	tmp[1] = 0;
1286	dtrace_shift_128(tmp, 32);
1287	dtrace_add_128(product, tmp, product);
1288
1289	tmp[0] = hi2 * lo1;
1290	tmp[1] = 0;
1291	dtrace_shift_128(tmp, 32);
1292	dtrace_add_128(product, tmp, product);
1293}
1294
1295/*
1296 * This privilege check should be used by actions and subroutines to
1297 * verify that the user credentials of the process that enabled the
1298 * invoking ECB match the target credentials
1299 */
1300static int
1301dtrace_priv_proc_common_user(dtrace_state_t *state)
1302{
1303	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1304
1305	/*
1306	 * We should always have a non-NULL state cred here, since if cred
1307	 * is null (anonymous tracing), we fast-path bypass this routine.
1308	 */
1309	ASSERT(s_cr != NULL);
1310
1311	if ((cr = CRED()) != NULL &&
1312	    s_cr->cr_uid == cr->cr_uid &&
1313	    s_cr->cr_uid == cr->cr_ruid &&
1314	    s_cr->cr_uid == cr->cr_suid &&
1315	    s_cr->cr_gid == cr->cr_gid &&
1316	    s_cr->cr_gid == cr->cr_rgid &&
1317	    s_cr->cr_gid == cr->cr_sgid)
1318		return (1);
1319
1320	return (0);
1321}
1322
1323/*
1324 * This privilege check should be used by actions and subroutines to
1325 * verify that the zone of the process that enabled the invoking ECB
1326 * matches the target credentials
1327 */
1328static int
1329dtrace_priv_proc_common_zone(dtrace_state_t *state)
1330{
1331#if defined(sun)
1332	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1333
1334	/*
1335	 * We should always have a non-NULL state cred here, since if cred
1336	 * is null (anonymous tracing), we fast-path bypass this routine.
1337	 */
1338	ASSERT(s_cr != NULL);
1339
1340	if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1341		return (1);
1342
1343	return (0);
1344#else
1345	return (1);
1346#endif
1347}
1348
1349/*
1350 * This privilege check should be used by actions and subroutines to
1351 * verify that the process has not setuid or changed credentials.
1352 */
1353static int
1354dtrace_priv_proc_common_nocd(void)
1355{
1356	proc_t *proc;
1357
1358	if ((proc = ttoproc(curthread)) != NULL &&
1359	    !(proc->p_flag & SNOCD))
1360		return (1);
1361
1362	return (0);
1363}
1364
1365static int
1366dtrace_priv_proc_destructive(dtrace_state_t *state)
1367{
1368	int action = state->dts_cred.dcr_action;
1369
1370	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1371	    dtrace_priv_proc_common_zone(state) == 0)
1372		goto bad;
1373
1374	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1375	    dtrace_priv_proc_common_user(state) == 0)
1376		goto bad;
1377
1378	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1379	    dtrace_priv_proc_common_nocd() == 0)
1380		goto bad;
1381
1382	return (1);
1383
1384bad:
1385	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1386
1387	return (0);
1388}
1389
1390static int
1391dtrace_priv_proc_control(dtrace_state_t *state)
1392{
1393	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1394		return (1);
1395
1396	if (dtrace_priv_proc_common_zone(state) &&
1397	    dtrace_priv_proc_common_user(state) &&
1398	    dtrace_priv_proc_common_nocd())
1399		return (1);
1400
1401	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1402
1403	return (0);
1404}
1405
1406static int
1407dtrace_priv_proc(dtrace_state_t *state)
1408{
1409	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1410		return (1);
1411
1412	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1413
1414	return (0);
1415}
1416
1417static int
1418dtrace_priv_kernel(dtrace_state_t *state)
1419{
1420	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1421		return (1);
1422
1423	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1424
1425	return (0);
1426}
1427
1428static int
1429dtrace_priv_kernel_destructive(dtrace_state_t *state)
1430{
1431	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1432		return (1);
1433
1434	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1435
1436	return (0);
1437}
1438
1439/*
1440 * Determine if the dte_cond of the specified ECB allows for processing of
1441 * the current probe to continue.  Note that this routine may allow continued
1442 * processing, but with access(es) stripped from the mstate's dtms_access
1443 * field.
1444 */
1445static int
1446dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1447    dtrace_ecb_t *ecb)
1448{
1449	dtrace_probe_t *probe = ecb->dte_probe;
1450	dtrace_provider_t *prov = probe->dtpr_provider;
1451	dtrace_pops_t *pops = &prov->dtpv_pops;
1452	int mode = DTRACE_MODE_NOPRIV_DROP;
1453
1454	ASSERT(ecb->dte_cond);
1455
1456#if defined(sun)
1457	if (pops->dtps_mode != NULL) {
1458		mode = pops->dtps_mode(prov->dtpv_arg,
1459		    probe->dtpr_id, probe->dtpr_arg);
1460
1461		ASSERT((mode & DTRACE_MODE_USER) ||
1462		    (mode & DTRACE_MODE_KERNEL));
1463		ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) ||
1464		    (mode & DTRACE_MODE_NOPRIV_DROP));
1465	}
1466
1467	/*
1468	 * If the dte_cond bits indicate that this consumer is only allowed to
1469	 * see user-mode firings of this probe, call the provider's dtps_mode()
1470	 * entry point to check that the probe was fired while in a user
1471	 * context.  If that's not the case, use the policy specified by the
1472	 * provider to determine if we drop the probe or merely restrict
1473	 * operation.
1474	 */
1475	if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1476		ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1477
1478		if (!(mode & DTRACE_MODE_USER)) {
1479			if (mode & DTRACE_MODE_NOPRIV_DROP)
1480				return (0);
1481
1482			mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1483		}
1484	}
1485#endif
1486
1487	/*
1488	 * This is more subtle than it looks. We have to be absolutely certain
1489	 * that CRED() isn't going to change out from under us so it's only
1490	 * legit to examine that structure if we're in constrained situations.
1491	 * Currently, the only times we'll this check is if a non-super-user
1492	 * has enabled the profile or syscall providers -- providers that
1493	 * allow visibility of all processes. For the profile case, the check
1494	 * above will ensure that we're examining a user context.
1495	 */
1496	if (ecb->dte_cond & DTRACE_COND_OWNER) {
1497		cred_t *cr;
1498		cred_t *s_cr = state->dts_cred.dcr_cred;
1499		proc_t *proc;
1500
1501		ASSERT(s_cr != NULL);
1502
1503		if ((cr = CRED()) == NULL ||
1504		    s_cr->cr_uid != cr->cr_uid ||
1505		    s_cr->cr_uid != cr->cr_ruid ||
1506		    s_cr->cr_uid != cr->cr_suid ||
1507		    s_cr->cr_gid != cr->cr_gid ||
1508		    s_cr->cr_gid != cr->cr_rgid ||
1509		    s_cr->cr_gid != cr->cr_sgid ||
1510		    (proc = ttoproc(curthread)) == NULL ||
1511		    (proc->p_flag & SNOCD)) {
1512			if (mode & DTRACE_MODE_NOPRIV_DROP)
1513				return (0);
1514
1515#if defined(sun)
1516			mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1517#endif
1518		}
1519	}
1520
1521#if defined(sun)
1522	/*
1523	 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1524	 * in our zone, check to see if our mode policy is to restrict rather
1525	 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1526	 * and DTRACE_ACCESS_ARGS
1527	 */
1528	if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1529		cred_t *cr;
1530		cred_t *s_cr = state->dts_cred.dcr_cred;
1531
1532		ASSERT(s_cr != NULL);
1533
1534		if ((cr = CRED()) == NULL ||
1535		    s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1536			if (mode & DTRACE_MODE_NOPRIV_DROP)
1537				return (0);
1538
1539			mstate->dtms_access &=
1540			    ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1541		}
1542	}
1543#endif
1544
1545	return (1);
1546}
1547
1548/*
1549 * Note:  not called from probe context.  This function is called
1550 * asynchronously (and at a regular interval) from outside of probe context to
1551 * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1552 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1553 */
1554void
1555dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1556{
1557	dtrace_dynvar_t *dirty;
1558	dtrace_dstate_percpu_t *dcpu;
1559	dtrace_dynvar_t **rinsep;
1560	int i, j, work = 0;
1561
1562	for (i = 0; i < NCPU; i++) {
1563		dcpu = &dstate->dtds_percpu[i];
1564		rinsep = &dcpu->dtdsc_rinsing;
1565
1566		/*
1567		 * If the dirty list is NULL, there is no dirty work to do.
1568		 */
1569		if (dcpu->dtdsc_dirty == NULL)
1570			continue;
1571
1572		if (dcpu->dtdsc_rinsing != NULL) {
1573			/*
1574			 * If the rinsing list is non-NULL, then it is because
1575			 * this CPU was selected to accept another CPU's
1576			 * dirty list -- and since that time, dirty buffers
1577			 * have accumulated.  This is a highly unlikely
1578			 * condition, but we choose to ignore the dirty
1579			 * buffers -- they'll be picked up a future cleanse.
1580			 */
1581			continue;
1582		}
1583
1584		if (dcpu->dtdsc_clean != NULL) {
1585			/*
1586			 * If the clean list is non-NULL, then we're in a
1587			 * situation where a CPU has done deallocations (we
1588			 * have a non-NULL dirty list) but no allocations (we
1589			 * also have a non-NULL clean list).  We can't simply
1590			 * move the dirty list into the clean list on this
1591			 * CPU, yet we also don't want to allow this condition
1592			 * to persist, lest a short clean list prevent a
1593			 * massive dirty list from being cleaned (which in
1594			 * turn could lead to otherwise avoidable dynamic
1595			 * drops).  To deal with this, we look for some CPU
1596			 * with a NULL clean list, NULL dirty list, and NULL
1597			 * rinsing list -- and then we borrow this CPU to
1598			 * rinse our dirty list.
1599			 */
1600			for (j = 0; j < NCPU; j++) {
1601				dtrace_dstate_percpu_t *rinser;
1602
1603				rinser = &dstate->dtds_percpu[j];
1604
1605				if (rinser->dtdsc_rinsing != NULL)
1606					continue;
1607
1608				if (rinser->dtdsc_dirty != NULL)
1609					continue;
1610
1611				if (rinser->dtdsc_clean != NULL)
1612					continue;
1613
1614				rinsep = &rinser->dtdsc_rinsing;
1615				break;
1616			}
1617
1618			if (j == NCPU) {
1619				/*
1620				 * We were unable to find another CPU that
1621				 * could accept this dirty list -- we are
1622				 * therefore unable to clean it now.
1623				 */
1624				dtrace_dynvar_failclean++;
1625				continue;
1626			}
1627		}
1628
1629		work = 1;
1630
1631		/*
1632		 * Atomically move the dirty list aside.
1633		 */
1634		do {
1635			dirty = dcpu->dtdsc_dirty;
1636
1637			/*
1638			 * Before we zap the dirty list, set the rinsing list.
1639			 * (This allows for a potential assertion in
1640			 * dtrace_dynvar():  if a free dynamic variable appears
1641			 * on a hash chain, either the dirty list or the
1642			 * rinsing list for some CPU must be non-NULL.)
1643			 */
1644			*rinsep = dirty;
1645			dtrace_membar_producer();
1646		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1647		    dirty, NULL) != dirty);
1648	}
1649
1650	if (!work) {
1651		/*
1652		 * We have no work to do; we can simply return.
1653		 */
1654		return;
1655	}
1656
1657	dtrace_sync();
1658
1659	for (i = 0; i < NCPU; i++) {
1660		dcpu = &dstate->dtds_percpu[i];
1661
1662		if (dcpu->dtdsc_rinsing == NULL)
1663			continue;
1664
1665		/*
1666		 * We are now guaranteed that no hash chain contains a pointer
1667		 * into this dirty list; we can make it clean.
1668		 */
1669		ASSERT(dcpu->dtdsc_clean == NULL);
1670		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1671		dcpu->dtdsc_rinsing = NULL;
1672	}
1673
1674	/*
1675	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1676	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1677	 * This prevents a race whereby a CPU incorrectly decides that
1678	 * the state should be something other than DTRACE_DSTATE_CLEAN
1679	 * after dtrace_dynvar_clean() has completed.
1680	 */
1681	dtrace_sync();
1682
1683	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1684}
1685
1686/*
1687 * Depending on the value of the op parameter, this function looks-up,
1688 * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1689 * allocation is requested, this function will return a pointer to a
1690 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1691 * variable can be allocated.  If NULL is returned, the appropriate counter
1692 * will be incremented.
1693 */
1694dtrace_dynvar_t *
1695dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1696    dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1697    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1698{
1699	uint64_t hashval = DTRACE_DYNHASH_VALID;
1700	dtrace_dynhash_t *hash = dstate->dtds_hash;
1701	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1702	processorid_t me = curcpu, cpu = me;
1703	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1704	size_t bucket, ksize;
1705	size_t chunksize = dstate->dtds_chunksize;
1706	uintptr_t kdata, lock, nstate;
1707	uint_t i;
1708
1709	ASSERT(nkeys != 0);
1710
1711	/*
1712	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1713	 * algorithm.  For the by-value portions, we perform the algorithm in
1714	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1715	 * bit, and seems to have only a minute effect on distribution.  For
1716	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1717	 * over each referenced byte.  It's painful to do this, but it's much
1718	 * better than pathological hash distribution.  The efficacy of the
1719	 * hashing algorithm (and a comparison with other algorithms) may be
1720	 * found by running the ::dtrace_dynstat MDB dcmd.
1721	 */
1722	for (i = 0; i < nkeys; i++) {
1723		if (key[i].dttk_size == 0) {
1724			uint64_t val = key[i].dttk_value;
1725
1726			hashval += (val >> 48) & 0xffff;
1727			hashval += (hashval << 10);
1728			hashval ^= (hashval >> 6);
1729
1730			hashval += (val >> 32) & 0xffff;
1731			hashval += (hashval << 10);
1732			hashval ^= (hashval >> 6);
1733
1734			hashval += (val >> 16) & 0xffff;
1735			hashval += (hashval << 10);
1736			hashval ^= (hashval >> 6);
1737
1738			hashval += val & 0xffff;
1739			hashval += (hashval << 10);
1740			hashval ^= (hashval >> 6);
1741		} else {
1742			/*
1743			 * This is incredibly painful, but it beats the hell
1744			 * out of the alternative.
1745			 */
1746			uint64_t j, size = key[i].dttk_size;
1747			uintptr_t base = (uintptr_t)key[i].dttk_value;
1748
1749			if (!dtrace_canload(base, size, mstate, vstate))
1750				break;
1751
1752			for (j = 0; j < size; j++) {
1753				hashval += dtrace_load8(base + j);
1754				hashval += (hashval << 10);
1755				hashval ^= (hashval >> 6);
1756			}
1757		}
1758	}
1759
1760	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1761		return (NULL);
1762
1763	hashval += (hashval << 3);
1764	hashval ^= (hashval >> 11);
1765	hashval += (hashval << 15);
1766
1767	/*
1768	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1769	 * comes out to be one of our two sentinel hash values.  If this
1770	 * actually happens, we set the hashval to be a value known to be a
1771	 * non-sentinel value.
1772	 */
1773	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1774		hashval = DTRACE_DYNHASH_VALID;
1775
1776	/*
1777	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1778	 * important here, tricks can be pulled to reduce it.  (However, it's
1779	 * critical that hash collisions be kept to an absolute minimum;
1780	 * they're much more painful than a divide.)  It's better to have a
1781	 * solution that generates few collisions and still keeps things
1782	 * relatively simple.
1783	 */
1784	bucket = hashval % dstate->dtds_hashsize;
1785
1786	if (op == DTRACE_DYNVAR_DEALLOC) {
1787		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1788
1789		for (;;) {
1790			while ((lock = *lockp) & 1)
1791				continue;
1792
1793			if (dtrace_casptr((volatile void *)lockp,
1794			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1795				break;
1796		}
1797
1798		dtrace_membar_producer();
1799	}
1800
1801top:
1802	prev = NULL;
1803	lock = hash[bucket].dtdh_lock;
1804
1805	dtrace_membar_consumer();
1806
1807	start = hash[bucket].dtdh_chain;
1808	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1809	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1810	    op != DTRACE_DYNVAR_DEALLOC));
1811
1812	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1813		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1814		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1815
1816		if (dvar->dtdv_hashval != hashval) {
1817			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1818				/*
1819				 * We've reached the sink, and therefore the
1820				 * end of the hash chain; we can kick out of
1821				 * the loop knowing that we have seen a valid
1822				 * snapshot of state.
1823				 */
1824				ASSERT(dvar->dtdv_next == NULL);
1825				ASSERT(dvar == &dtrace_dynhash_sink);
1826				break;
1827			}
1828
1829			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1830				/*
1831				 * We've gone off the rails:  somewhere along
1832				 * the line, one of the members of this hash
1833				 * chain was deleted.  Note that we could also
1834				 * detect this by simply letting this loop run
1835				 * to completion, as we would eventually hit
1836				 * the end of the dirty list.  However, we
1837				 * want to avoid running the length of the
1838				 * dirty list unnecessarily (it might be quite
1839				 * long), so we catch this as early as
1840				 * possible by detecting the hash marker.  In
1841				 * this case, we simply set dvar to NULL and
1842				 * break; the conditional after the loop will
1843				 * send us back to top.
1844				 */
1845				dvar = NULL;
1846				break;
1847			}
1848
1849			goto next;
1850		}
1851
1852		if (dtuple->dtt_nkeys != nkeys)
1853			goto next;
1854
1855		for (i = 0; i < nkeys; i++, dkey++) {
1856			if (dkey->dttk_size != key[i].dttk_size)
1857				goto next; /* size or type mismatch */
1858
1859			if (dkey->dttk_size != 0) {
1860				if (dtrace_bcmp(
1861				    (void *)(uintptr_t)key[i].dttk_value,
1862				    (void *)(uintptr_t)dkey->dttk_value,
1863				    dkey->dttk_size))
1864					goto next;
1865			} else {
1866				if (dkey->dttk_value != key[i].dttk_value)
1867					goto next;
1868			}
1869		}
1870
1871		if (op != DTRACE_DYNVAR_DEALLOC)
1872			return (dvar);
1873
1874		ASSERT(dvar->dtdv_next == NULL ||
1875		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1876
1877		if (prev != NULL) {
1878			ASSERT(hash[bucket].dtdh_chain != dvar);
1879			ASSERT(start != dvar);
1880			ASSERT(prev->dtdv_next == dvar);
1881			prev->dtdv_next = dvar->dtdv_next;
1882		} else {
1883			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1884			    start, dvar->dtdv_next) != start) {
1885				/*
1886				 * We have failed to atomically swing the
1887				 * hash table head pointer, presumably because
1888				 * of a conflicting allocation on another CPU.
1889				 * We need to reread the hash chain and try
1890				 * again.
1891				 */
1892				goto top;
1893			}
1894		}
1895
1896		dtrace_membar_producer();
1897
1898		/*
1899		 * Now set the hash value to indicate that it's free.
1900		 */
1901		ASSERT(hash[bucket].dtdh_chain != dvar);
1902		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1903
1904		dtrace_membar_producer();
1905
1906		/*
1907		 * Set the next pointer to point at the dirty list, and
1908		 * atomically swing the dirty pointer to the newly freed dvar.
1909		 */
1910		do {
1911			next = dcpu->dtdsc_dirty;
1912			dvar->dtdv_next = next;
1913		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1914
1915		/*
1916		 * Finally, unlock this hash bucket.
1917		 */
1918		ASSERT(hash[bucket].dtdh_lock == lock);
1919		ASSERT(lock & 1);
1920		hash[bucket].dtdh_lock++;
1921
1922		return (NULL);
1923next:
1924		prev = dvar;
1925		continue;
1926	}
1927
1928	if (dvar == NULL) {
1929		/*
1930		 * If dvar is NULL, it is because we went off the rails:
1931		 * one of the elements that we traversed in the hash chain
1932		 * was deleted while we were traversing it.  In this case,
1933		 * we assert that we aren't doing a dealloc (deallocs lock
1934		 * the hash bucket to prevent themselves from racing with
1935		 * one another), and retry the hash chain traversal.
1936		 */
1937		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1938		goto top;
1939	}
1940
1941	if (op != DTRACE_DYNVAR_ALLOC) {
1942		/*
1943		 * If we are not to allocate a new variable, we want to
1944		 * return NULL now.  Before we return, check that the value
1945		 * of the lock word hasn't changed.  If it has, we may have
1946		 * seen an inconsistent snapshot.
1947		 */
1948		if (op == DTRACE_DYNVAR_NOALLOC) {
1949			if (hash[bucket].dtdh_lock != lock)
1950				goto top;
1951		} else {
1952			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1953			ASSERT(hash[bucket].dtdh_lock == lock);
1954			ASSERT(lock & 1);
1955			hash[bucket].dtdh_lock++;
1956		}
1957
1958		return (NULL);
1959	}
1960
1961	/*
1962	 * We need to allocate a new dynamic variable.  The size we need is the
1963	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1964	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1965	 * the size of any referred-to data (dsize).  We then round the final
1966	 * size up to the chunksize for allocation.
1967	 */
1968	for (ksize = 0, i = 0; i < nkeys; i++)
1969		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1970
1971	/*
1972	 * This should be pretty much impossible, but could happen if, say,
1973	 * strange DIF specified the tuple.  Ideally, this should be an
1974	 * assertion and not an error condition -- but that requires that the
1975	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1976	 * bullet-proof.  (That is, it must not be able to be fooled by
1977	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1978	 * solving this would presumably not amount to solving the Halting
1979	 * Problem -- but it still seems awfully hard.
1980	 */
1981	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1982	    ksize + dsize > chunksize) {
1983		dcpu->dtdsc_drops++;
1984		return (NULL);
1985	}
1986
1987	nstate = DTRACE_DSTATE_EMPTY;
1988
1989	do {
1990retry:
1991		free = dcpu->dtdsc_free;
1992
1993		if (free == NULL) {
1994			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1995			void *rval;
1996
1997			if (clean == NULL) {
1998				/*
1999				 * We're out of dynamic variable space on
2000				 * this CPU.  Unless we have tried all CPUs,
2001				 * we'll try to allocate from a different
2002				 * CPU.
2003				 */
2004				switch (dstate->dtds_state) {
2005				case DTRACE_DSTATE_CLEAN: {
2006					void *sp = &dstate->dtds_state;
2007
2008					if (++cpu >= NCPU)
2009						cpu = 0;
2010
2011					if (dcpu->dtdsc_dirty != NULL &&
2012					    nstate == DTRACE_DSTATE_EMPTY)
2013						nstate = DTRACE_DSTATE_DIRTY;
2014
2015					if (dcpu->dtdsc_rinsing != NULL)
2016						nstate = DTRACE_DSTATE_RINSING;
2017
2018					dcpu = &dstate->dtds_percpu[cpu];
2019
2020					if (cpu != me)
2021						goto retry;
2022
2023					(void) dtrace_cas32(sp,
2024					    DTRACE_DSTATE_CLEAN, nstate);
2025
2026					/*
2027					 * To increment the correct bean
2028					 * counter, take another lap.
2029					 */
2030					goto retry;
2031				}
2032
2033				case DTRACE_DSTATE_DIRTY:
2034					dcpu->dtdsc_dirty_drops++;
2035					break;
2036
2037				case DTRACE_DSTATE_RINSING:
2038					dcpu->dtdsc_rinsing_drops++;
2039					break;
2040
2041				case DTRACE_DSTATE_EMPTY:
2042					dcpu->dtdsc_drops++;
2043					break;
2044				}
2045
2046				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
2047				return (NULL);
2048			}
2049
2050			/*
2051			 * The clean list appears to be non-empty.  We want to
2052			 * move the clean list to the free list; we start by
2053			 * moving the clean pointer aside.
2054			 */
2055			if (dtrace_casptr(&dcpu->dtdsc_clean,
2056			    clean, NULL) != clean) {
2057				/*
2058				 * We are in one of two situations:
2059				 *
2060				 *  (a)	The clean list was switched to the
2061				 *	free list by another CPU.
2062				 *
2063				 *  (b)	The clean list was added to by the
2064				 *	cleansing cyclic.
2065				 *
2066				 * In either of these situations, we can
2067				 * just reattempt the free list allocation.
2068				 */
2069				goto retry;
2070			}
2071
2072			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
2073
2074			/*
2075			 * Now we'll move the clean list to our free list.
2076			 * It's impossible for this to fail:  the only way
2077			 * the free list can be updated is through this
2078			 * code path, and only one CPU can own the clean list.
2079			 * Thus, it would only be possible for this to fail if
2080			 * this code were racing with dtrace_dynvar_clean().
2081			 * (That is, if dtrace_dynvar_clean() updated the clean
2082			 * list, and we ended up racing to update the free
2083			 * list.)  This race is prevented by the dtrace_sync()
2084			 * in dtrace_dynvar_clean() -- which flushes the
2085			 * owners of the clean lists out before resetting
2086			 * the clean lists.
2087			 */
2088			dcpu = &dstate->dtds_percpu[me];
2089			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2090			ASSERT(rval == NULL);
2091			goto retry;
2092		}
2093
2094		dvar = free;
2095		new_free = dvar->dtdv_next;
2096	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2097
2098	/*
2099	 * We have now allocated a new chunk.  We copy the tuple keys into the
2100	 * tuple array and copy any referenced key data into the data space
2101	 * following the tuple array.  As we do this, we relocate dttk_value
2102	 * in the final tuple to point to the key data address in the chunk.
2103	 */
2104	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2105	dvar->dtdv_data = (void *)(kdata + ksize);
2106	dvar->dtdv_tuple.dtt_nkeys = nkeys;
2107
2108	for (i = 0; i < nkeys; i++) {
2109		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2110		size_t kesize = key[i].dttk_size;
2111
2112		if (kesize != 0) {
2113			dtrace_bcopy(
2114			    (const void *)(uintptr_t)key[i].dttk_value,
2115			    (void *)kdata, kesize);
2116			dkey->dttk_value = kdata;
2117			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2118		} else {
2119			dkey->dttk_value = key[i].dttk_value;
2120		}
2121
2122		dkey->dttk_size = kesize;
2123	}
2124
2125	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2126	dvar->dtdv_hashval = hashval;
2127	dvar->dtdv_next = start;
2128
2129	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2130		return (dvar);
2131
2132	/*
2133	 * The cas has failed.  Either another CPU is adding an element to
2134	 * this hash chain, or another CPU is deleting an element from this
2135	 * hash chain.  The simplest way to deal with both of these cases
2136	 * (though not necessarily the most efficient) is to free our
2137	 * allocated block and tail-call ourselves.  Note that the free is
2138	 * to the dirty list and _not_ to the free list.  This is to prevent
2139	 * races with allocators, above.
2140	 */
2141	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2142
2143	dtrace_membar_producer();
2144
2145	do {
2146		free = dcpu->dtdsc_dirty;
2147		dvar->dtdv_next = free;
2148	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2149
2150	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
2151}
2152
2153/*ARGSUSED*/
2154static void
2155dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2156{
2157	if ((int64_t)nval < (int64_t)*oval)
2158		*oval = nval;
2159}
2160
2161/*ARGSUSED*/
2162static void
2163dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2164{
2165	if ((int64_t)nval > (int64_t)*oval)
2166		*oval = nval;
2167}
2168
2169static void
2170dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2171{
2172	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2173	int64_t val = (int64_t)nval;
2174
2175	if (val < 0) {
2176		for (i = 0; i < zero; i++) {
2177			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2178				quanta[i] += incr;
2179				return;
2180			}
2181		}
2182	} else {
2183		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2184			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2185				quanta[i - 1] += incr;
2186				return;
2187			}
2188		}
2189
2190		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2191		return;
2192	}
2193
2194	ASSERT(0);
2195}
2196
2197static void
2198dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2199{
2200	uint64_t arg = *lquanta++;
2201	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2202	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2203	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2204	int32_t val = (int32_t)nval, level;
2205
2206	ASSERT(step != 0);
2207	ASSERT(levels != 0);
2208
2209	if (val < base) {
2210		/*
2211		 * This is an underflow.
2212		 */
2213		lquanta[0] += incr;
2214		return;
2215	}
2216
2217	level = (val - base) / step;
2218
2219	if (level < levels) {
2220		lquanta[level + 1] += incr;
2221		return;
2222	}
2223
2224	/*
2225	 * This is an overflow.
2226	 */
2227	lquanta[levels + 1] += incr;
2228}
2229
2230static int
2231dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2232    uint16_t high, uint16_t nsteps, int64_t value)
2233{
2234	int64_t this = 1, last, next;
2235	int base = 1, order;
2236
2237	ASSERT(factor <= nsteps);
2238	ASSERT(nsteps % factor == 0);
2239
2240	for (order = 0; order < low; order++)
2241		this *= factor;
2242
2243	/*
2244	 * If our value is less than our factor taken to the power of the
2245	 * low order of magnitude, it goes into the zeroth bucket.
2246	 */
2247	if (value < (last = this))
2248		return (0);
2249
2250	for (this *= factor; order <= high; order++) {
2251		int nbuckets = this > nsteps ? nsteps : this;
2252
2253		if ((next = this * factor) < this) {
2254			/*
2255			 * We should not generally get log/linear quantizations
2256			 * with a high magnitude that allows 64-bits to
2257			 * overflow, but we nonetheless protect against this
2258			 * by explicitly checking for overflow, and clamping
2259			 * our value accordingly.
2260			 */
2261			value = this - 1;
2262		}
2263
2264		if (value < this) {
2265			/*
2266			 * If our value lies within this order of magnitude,
2267			 * determine its position by taking the offset within
2268			 * the order of magnitude, dividing by the bucket
2269			 * width, and adding to our (accumulated) base.
2270			 */
2271			return (base + (value - last) / (this / nbuckets));
2272		}
2273
2274		base += nbuckets - (nbuckets / factor);
2275		last = this;
2276		this = next;
2277	}
2278
2279	/*
2280	 * Our value is greater than or equal to our factor taken to the
2281	 * power of one plus the high magnitude -- return the top bucket.
2282	 */
2283	return (base);
2284}
2285
2286static void
2287dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2288{
2289	uint64_t arg = *llquanta++;
2290	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2291	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2292	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2293	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2294
2295	llquanta[dtrace_aggregate_llquantize_bucket(factor,
2296	    low, high, nsteps, nval)] += incr;
2297}
2298
2299/*ARGSUSED*/
2300static void
2301dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2302{
2303	data[0]++;
2304	data[1] += nval;
2305}
2306
2307/*ARGSUSED*/
2308static void
2309dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2310{
2311	int64_t snval = (int64_t)nval;
2312	uint64_t tmp[2];
2313
2314	data[0]++;
2315	data[1] += nval;
2316
2317	/*
2318	 * What we want to say here is:
2319	 *
2320	 * data[2] += nval * nval;
2321	 *
2322	 * But given that nval is 64-bit, we could easily overflow, so
2323	 * we do this as 128-bit arithmetic.
2324	 */
2325	if (snval < 0)
2326		snval = -snval;
2327
2328	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2329	dtrace_add_128(data + 2, tmp, data + 2);
2330}
2331
2332/*ARGSUSED*/
2333static void
2334dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2335{
2336	*oval = *oval + 1;
2337}
2338
2339/*ARGSUSED*/
2340static void
2341dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2342{
2343	*oval += nval;
2344}
2345
2346/*
2347 * Aggregate given the tuple in the principal data buffer, and the aggregating
2348 * action denoted by the specified dtrace_aggregation_t.  The aggregation
2349 * buffer is specified as the buf parameter.  This routine does not return
2350 * failure; if there is no space in the aggregation buffer, the data will be
2351 * dropped, and a corresponding counter incremented.
2352 */
2353static void
2354dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2355    intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2356{
2357	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2358	uint32_t i, ndx, size, fsize;
2359	uint32_t align = sizeof (uint64_t) - 1;
2360	dtrace_aggbuffer_t *agb;
2361	dtrace_aggkey_t *key;
2362	uint32_t hashval = 0, limit, isstr;
2363	caddr_t tomax, data, kdata;
2364	dtrace_actkind_t action;
2365	dtrace_action_t *act;
2366	uintptr_t offs;
2367
2368	if (buf == NULL)
2369		return;
2370
2371	if (!agg->dtag_hasarg) {
2372		/*
2373		 * Currently, only quantize() and lquantize() take additional
2374		 * arguments, and they have the same semantics:  an increment
2375		 * value that defaults to 1 when not present.  If additional
2376		 * aggregating actions take arguments, the setting of the
2377		 * default argument value will presumably have to become more
2378		 * sophisticated...
2379		 */
2380		arg = 1;
2381	}
2382
2383	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2384	size = rec->dtrd_offset - agg->dtag_base;
2385	fsize = size + rec->dtrd_size;
2386
2387	ASSERT(dbuf->dtb_tomax != NULL);
2388	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2389
2390	if ((tomax = buf->dtb_tomax) == NULL) {
2391		dtrace_buffer_drop(buf);
2392		return;
2393	}
2394
2395	/*
2396	 * The metastructure is always at the bottom of the buffer.
2397	 */
2398	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2399	    sizeof (dtrace_aggbuffer_t));
2400
2401	if (buf->dtb_offset == 0) {
2402		/*
2403		 * We just kludge up approximately 1/8th of the size to be
2404		 * buckets.  If this guess ends up being routinely
2405		 * off-the-mark, we may need to dynamically readjust this
2406		 * based on past performance.
2407		 */
2408		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2409
2410		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2411		    (uintptr_t)tomax || hashsize == 0) {
2412			/*
2413			 * We've been given a ludicrously small buffer;
2414			 * increment our drop count and leave.
2415			 */
2416			dtrace_buffer_drop(buf);
2417			return;
2418		}
2419
2420		/*
2421		 * And now, a pathetic attempt to try to get a an odd (or
2422		 * perchance, a prime) hash size for better hash distribution.
2423		 */
2424		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2425			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2426
2427		agb->dtagb_hashsize = hashsize;
2428		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2429		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2430		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2431
2432		for (i = 0; i < agb->dtagb_hashsize; i++)
2433			agb->dtagb_hash[i] = NULL;
2434	}
2435
2436	ASSERT(agg->dtag_first != NULL);
2437	ASSERT(agg->dtag_first->dta_intuple);
2438
2439	/*
2440	 * Calculate the hash value based on the key.  Note that we _don't_
2441	 * include the aggid in the hashing (but we will store it as part of
2442	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2443	 * algorithm: a simple, quick algorithm that has no known funnels, and
2444	 * gets good distribution in practice.  The efficacy of the hashing
2445	 * algorithm (and a comparison with other algorithms) may be found by
2446	 * running the ::dtrace_aggstat MDB dcmd.
2447	 */
2448	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2449		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2450		limit = i + act->dta_rec.dtrd_size;
2451		ASSERT(limit <= size);
2452		isstr = DTRACEACT_ISSTRING(act);
2453
2454		for (; i < limit; i++) {
2455			hashval += data[i];
2456			hashval += (hashval << 10);
2457			hashval ^= (hashval >> 6);
2458
2459			if (isstr && data[i] == '\0')
2460				break;
2461		}
2462	}
2463
2464	hashval += (hashval << 3);
2465	hashval ^= (hashval >> 11);
2466	hashval += (hashval << 15);
2467
2468	/*
2469	 * Yes, the divide here is expensive -- but it's generally the least
2470	 * of the performance issues given the amount of data that we iterate
2471	 * over to compute hash values, compare data, etc.
2472	 */
2473	ndx = hashval % agb->dtagb_hashsize;
2474
2475	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2476		ASSERT((caddr_t)key >= tomax);
2477		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2478
2479		if (hashval != key->dtak_hashval || key->dtak_size != size)
2480			continue;
2481
2482		kdata = key->dtak_data;
2483		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2484
2485		for (act = agg->dtag_first; act->dta_intuple;
2486		    act = act->dta_next) {
2487			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2488			limit = i + act->dta_rec.dtrd_size;
2489			ASSERT(limit <= size);
2490			isstr = DTRACEACT_ISSTRING(act);
2491
2492			for (; i < limit; i++) {
2493				if (kdata[i] != data[i])
2494					goto next;
2495
2496				if (isstr && data[i] == '\0')
2497					break;
2498			}
2499		}
2500
2501		if (action != key->dtak_action) {
2502			/*
2503			 * We are aggregating on the same value in the same
2504			 * aggregation with two different aggregating actions.
2505			 * (This should have been picked up in the compiler,
2506			 * so we may be dealing with errant or devious DIF.)
2507			 * This is an error condition; we indicate as much,
2508			 * and return.
2509			 */
2510			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2511			return;
2512		}
2513
2514		/*
2515		 * This is a hit:  we need to apply the aggregator to
2516		 * the value at this key.
2517		 */
2518		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2519		return;
2520next:
2521		continue;
2522	}
2523
2524	/*
2525	 * We didn't find it.  We need to allocate some zero-filled space,
2526	 * link it into the hash table appropriately, and apply the aggregator
2527	 * to the (zero-filled) value.
2528	 */
2529	offs = buf->dtb_offset;
2530	while (offs & (align - 1))
2531		offs += sizeof (uint32_t);
2532
2533	/*
2534	 * If we don't have enough room to both allocate a new key _and_
2535	 * its associated data, increment the drop count and return.
2536	 */
2537	if ((uintptr_t)tomax + offs + fsize >
2538	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2539		dtrace_buffer_drop(buf);
2540		return;
2541	}
2542
2543	/*CONSTCOND*/
2544	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2545	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2546	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2547
2548	key->dtak_data = kdata = tomax + offs;
2549	buf->dtb_offset = offs + fsize;
2550
2551	/*
2552	 * Now copy the data across.
2553	 */
2554	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2555
2556	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2557		kdata[i] = data[i];
2558
2559	/*
2560	 * Because strings are not zeroed out by default, we need to iterate
2561	 * looking for actions that store strings, and we need to explicitly
2562	 * pad these strings out with zeroes.
2563	 */
2564	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2565		int nul;
2566
2567		if (!DTRACEACT_ISSTRING(act))
2568			continue;
2569
2570		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2571		limit = i + act->dta_rec.dtrd_size;
2572		ASSERT(limit <= size);
2573
2574		for (nul = 0; i < limit; i++) {
2575			if (nul) {
2576				kdata[i] = '\0';
2577				continue;
2578			}
2579
2580			if (data[i] != '\0')
2581				continue;
2582
2583			nul = 1;
2584		}
2585	}
2586
2587	for (i = size; i < fsize; i++)
2588		kdata[i] = 0;
2589
2590	key->dtak_hashval = hashval;
2591	key->dtak_size = size;
2592	key->dtak_action = action;
2593	key->dtak_next = agb->dtagb_hash[ndx];
2594	agb->dtagb_hash[ndx] = key;
2595
2596	/*
2597	 * Finally, apply the aggregator.
2598	 */
2599	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2600	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2601}
2602
2603/*
2604 * Given consumer state, this routine finds a speculation in the INACTIVE
2605 * state and transitions it into the ACTIVE state.  If there is no speculation
2606 * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2607 * incremented -- it is up to the caller to take appropriate action.
2608 */
2609static int
2610dtrace_speculation(dtrace_state_t *state)
2611{
2612	int i = 0;
2613	dtrace_speculation_state_t current;
2614	uint32_t *stat = &state->dts_speculations_unavail, count;
2615
2616	while (i < state->dts_nspeculations) {
2617		dtrace_speculation_t *spec = &state->dts_speculations[i];
2618
2619		current = spec->dtsp_state;
2620
2621		if (current != DTRACESPEC_INACTIVE) {
2622			if (current == DTRACESPEC_COMMITTINGMANY ||
2623			    current == DTRACESPEC_COMMITTING ||
2624			    current == DTRACESPEC_DISCARDING)
2625				stat = &state->dts_speculations_busy;
2626			i++;
2627			continue;
2628		}
2629
2630		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2631		    current, DTRACESPEC_ACTIVE) == current)
2632			return (i + 1);
2633	}
2634
2635	/*
2636	 * We couldn't find a speculation.  If we found as much as a single
2637	 * busy speculation buffer, we'll attribute this failure as "busy"
2638	 * instead of "unavail".
2639	 */
2640	do {
2641		count = *stat;
2642	} while (dtrace_cas32(stat, count, count + 1) != count);
2643
2644	return (0);
2645}
2646
2647/*
2648 * This routine commits an active speculation.  If the specified speculation
2649 * is not in a valid state to perform a commit(), this routine will silently do
2650 * nothing.  The state of the specified speculation is transitioned according
2651 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2652 */
2653static void
2654dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2655    dtrace_specid_t which)
2656{
2657	dtrace_speculation_t *spec;
2658	dtrace_buffer_t *src, *dest;
2659	uintptr_t daddr, saddr, dlimit, slimit;
2660	dtrace_speculation_state_t current, new = 0;
2661	intptr_t offs;
2662	uint64_t timestamp;
2663
2664	if (which == 0)
2665		return;
2666
2667	if (which > state->dts_nspeculations) {
2668		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2669		return;
2670	}
2671
2672	spec = &state->dts_speculations[which - 1];
2673	src = &spec->dtsp_buffer[cpu];
2674	dest = &state->dts_buffer[cpu];
2675
2676	do {
2677		current = spec->dtsp_state;
2678
2679		if (current == DTRACESPEC_COMMITTINGMANY)
2680			break;
2681
2682		switch (current) {
2683		case DTRACESPEC_INACTIVE:
2684		case DTRACESPEC_DISCARDING:
2685			return;
2686
2687		case DTRACESPEC_COMMITTING:
2688			/*
2689			 * This is only possible if we are (a) commit()'ing
2690			 * without having done a prior speculate() on this CPU
2691			 * and (b) racing with another commit() on a different
2692			 * CPU.  There's nothing to do -- we just assert that
2693			 * our offset is 0.
2694			 */
2695			ASSERT(src->dtb_offset == 0);
2696			return;
2697
2698		case DTRACESPEC_ACTIVE:
2699			new = DTRACESPEC_COMMITTING;
2700			break;
2701
2702		case DTRACESPEC_ACTIVEONE:
2703			/*
2704			 * This speculation is active on one CPU.  If our
2705			 * buffer offset is non-zero, we know that the one CPU
2706			 * must be us.  Otherwise, we are committing on a
2707			 * different CPU from the speculate(), and we must
2708			 * rely on being asynchronously cleaned.
2709			 */
2710			if (src->dtb_offset != 0) {
2711				new = DTRACESPEC_COMMITTING;
2712				break;
2713			}
2714			/*FALLTHROUGH*/
2715
2716		case DTRACESPEC_ACTIVEMANY:
2717			new = DTRACESPEC_COMMITTINGMANY;
2718			break;
2719
2720		default:
2721			ASSERT(0);
2722		}
2723	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2724	    current, new) != current);
2725
2726	/*
2727	 * We have set the state to indicate that we are committing this
2728	 * speculation.  Now reserve the necessary space in the destination
2729	 * buffer.
2730	 */
2731	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2732	    sizeof (uint64_t), state, NULL)) < 0) {
2733		dtrace_buffer_drop(dest);
2734		goto out;
2735	}
2736
2737	/*
2738	 * We have sufficient space to copy the speculative buffer into the
2739	 * primary buffer.  First, modify the speculative buffer, filling
2740	 * in the timestamp of all entries with the current time.  The data
2741	 * must have the commit() time rather than the time it was traced,
2742	 * so that all entries in the primary buffer are in timestamp order.
2743	 */
2744	timestamp = dtrace_gethrtime();
2745	saddr = (uintptr_t)src->dtb_tomax;
2746	slimit = saddr + src->dtb_offset;
2747	while (saddr < slimit) {
2748		size_t size;
2749		dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2750
2751		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2752			saddr += sizeof (dtrace_epid_t);
2753			continue;
2754		}
2755		ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2756		size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2757
2758		ASSERT3U(saddr + size, <=, slimit);
2759		ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2760		ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2761
2762		DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2763
2764		saddr += size;
2765	}
2766
2767	/*
2768	 * Copy the buffer across.  (Note that this is a
2769	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2770	 * a serious performance issue, a high-performance DTrace-specific
2771	 * bcopy() should obviously be invented.)
2772	 */
2773	daddr = (uintptr_t)dest->dtb_tomax + offs;
2774	dlimit = daddr + src->dtb_offset;
2775	saddr = (uintptr_t)src->dtb_tomax;
2776
2777	/*
2778	 * First, the aligned portion.
2779	 */
2780	while (dlimit - daddr >= sizeof (uint64_t)) {
2781		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2782
2783		daddr += sizeof (uint64_t);
2784		saddr += sizeof (uint64_t);
2785	}
2786
2787	/*
2788	 * Now any left-over bit...
2789	 */
2790	while (dlimit - daddr)
2791		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2792
2793	/*
2794	 * Finally, commit the reserved space in the destination buffer.
2795	 */
2796	dest->dtb_offset = offs + src->dtb_offset;
2797
2798out:
2799	/*
2800	 * If we're lucky enough to be the only active CPU on this speculation
2801	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2802	 */
2803	if (current == DTRACESPEC_ACTIVE ||
2804	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2805		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2806		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2807
2808		ASSERT(rval == DTRACESPEC_COMMITTING);
2809	}
2810
2811	src->dtb_offset = 0;
2812	src->dtb_xamot_drops += src->dtb_drops;
2813	src->dtb_drops = 0;
2814}
2815
2816/*
2817 * This routine discards an active speculation.  If the specified speculation
2818 * is not in a valid state to perform a discard(), this routine will silently
2819 * do nothing.  The state of the specified speculation is transitioned
2820 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2821 */
2822static void
2823dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2824    dtrace_specid_t which)
2825{
2826	dtrace_speculation_t *spec;
2827	dtrace_speculation_state_t current, new = 0;
2828	dtrace_buffer_t *buf;
2829
2830	if (which == 0)
2831		return;
2832
2833	if (which > state->dts_nspeculations) {
2834		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2835		return;
2836	}
2837
2838	spec = &state->dts_speculations[which - 1];
2839	buf = &spec->dtsp_buffer[cpu];
2840
2841	do {
2842		current = spec->dtsp_state;
2843
2844		switch (current) {
2845		case DTRACESPEC_INACTIVE:
2846		case DTRACESPEC_COMMITTINGMANY:
2847		case DTRACESPEC_COMMITTING:
2848		case DTRACESPEC_DISCARDING:
2849			return;
2850
2851		case DTRACESPEC_ACTIVE:
2852		case DTRACESPEC_ACTIVEMANY:
2853			new = DTRACESPEC_DISCARDING;
2854			break;
2855
2856		case DTRACESPEC_ACTIVEONE:
2857			if (buf->dtb_offset != 0) {
2858				new = DTRACESPEC_INACTIVE;
2859			} else {
2860				new = DTRACESPEC_DISCARDING;
2861			}
2862			break;
2863
2864		default:
2865			ASSERT(0);
2866		}
2867	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2868	    current, new) != current);
2869
2870	buf->dtb_offset = 0;
2871	buf->dtb_drops = 0;
2872}
2873
2874/*
2875 * Note:  not called from probe context.  This function is called
2876 * asynchronously from cross call context to clean any speculations that are
2877 * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2878 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2879 * speculation.
2880 */
2881static void
2882dtrace_speculation_clean_here(dtrace_state_t *state)
2883{
2884	dtrace_icookie_t cookie;
2885	processorid_t cpu = curcpu;
2886	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2887	dtrace_specid_t i;
2888
2889	cookie = dtrace_interrupt_disable();
2890
2891	if (dest->dtb_tomax == NULL) {
2892		dtrace_interrupt_enable(cookie);
2893		return;
2894	}
2895
2896	for (i = 0; i < state->dts_nspeculations; i++) {
2897		dtrace_speculation_t *spec = &state->dts_speculations[i];
2898		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2899
2900		if (src->dtb_tomax == NULL)
2901			continue;
2902
2903		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2904			src->dtb_offset = 0;
2905			continue;
2906		}
2907
2908		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2909			continue;
2910
2911		if (src->dtb_offset == 0)
2912			continue;
2913
2914		dtrace_speculation_commit(state, cpu, i + 1);
2915	}
2916
2917	dtrace_interrupt_enable(cookie);
2918}
2919
2920/*
2921 * Note:  not called from probe context.  This function is called
2922 * asynchronously (and at a regular interval) to clean any speculations that
2923 * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2924 * is work to be done, it cross calls all CPUs to perform that work;
2925 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2926 * INACTIVE state until they have been cleaned by all CPUs.
2927 */
2928static void
2929dtrace_speculation_clean(dtrace_state_t *state)
2930{
2931	int work = 0, rv;
2932	dtrace_specid_t i;
2933
2934	for (i = 0; i < state->dts_nspeculations; i++) {
2935		dtrace_speculation_t *spec = &state->dts_speculations[i];
2936
2937		ASSERT(!spec->dtsp_cleaning);
2938
2939		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2940		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2941			continue;
2942
2943		work++;
2944		spec->dtsp_cleaning = 1;
2945	}
2946
2947	if (!work)
2948		return;
2949
2950	dtrace_xcall(DTRACE_CPUALL,
2951	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2952
2953	/*
2954	 * We now know that all CPUs have committed or discarded their
2955	 * speculation buffers, as appropriate.  We can now set the state
2956	 * to inactive.
2957	 */
2958	for (i = 0; i < state->dts_nspeculations; i++) {
2959		dtrace_speculation_t *spec = &state->dts_speculations[i];
2960		dtrace_speculation_state_t current, new;
2961
2962		if (!spec->dtsp_cleaning)
2963			continue;
2964
2965		current = spec->dtsp_state;
2966		ASSERT(current == DTRACESPEC_DISCARDING ||
2967		    current == DTRACESPEC_COMMITTINGMANY);
2968
2969		new = DTRACESPEC_INACTIVE;
2970
2971		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2972		ASSERT(rv == current);
2973		spec->dtsp_cleaning = 0;
2974	}
2975}
2976
2977/*
2978 * Called as part of a speculate() to get the speculative buffer associated
2979 * with a given speculation.  Returns NULL if the specified speculation is not
2980 * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2981 * the active CPU is not the specified CPU -- the speculation will be
2982 * atomically transitioned into the ACTIVEMANY state.
2983 */
2984static dtrace_buffer_t *
2985dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2986    dtrace_specid_t which)
2987{
2988	dtrace_speculation_t *spec;
2989	dtrace_speculation_state_t current, new = 0;
2990	dtrace_buffer_t *buf;
2991
2992	if (which == 0)
2993		return (NULL);
2994
2995	if (which > state->dts_nspeculations) {
2996		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2997		return (NULL);
2998	}
2999
3000	spec = &state->dts_speculations[which - 1];
3001	buf = &spec->dtsp_buffer[cpuid];
3002
3003	do {
3004		current = spec->dtsp_state;
3005
3006		switch (current) {
3007		case DTRACESPEC_INACTIVE:
3008		case DTRACESPEC_COMMITTINGMANY:
3009		case DTRACESPEC_DISCARDING:
3010			return (NULL);
3011
3012		case DTRACESPEC_COMMITTING:
3013			ASSERT(buf->dtb_offset == 0);
3014			return (NULL);
3015
3016		case DTRACESPEC_ACTIVEONE:
3017			/*
3018			 * This speculation is currently active on one CPU.
3019			 * Check the offset in the buffer; if it's non-zero,
3020			 * that CPU must be us (and we leave the state alone).
3021			 * If it's zero, assume that we're starting on a new
3022			 * CPU -- and change the state to indicate that the
3023			 * speculation is active on more than one CPU.
3024			 */
3025			if (buf->dtb_offset != 0)
3026				return (buf);
3027
3028			new = DTRACESPEC_ACTIVEMANY;
3029			break;
3030
3031		case DTRACESPEC_ACTIVEMANY:
3032			return (buf);
3033
3034		case DTRACESPEC_ACTIVE:
3035			new = DTRACESPEC_ACTIVEONE;
3036			break;
3037
3038		default:
3039			ASSERT(0);
3040		}
3041	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3042	    current, new) != current);
3043
3044	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
3045	return (buf);
3046}
3047
3048/*
3049 * Return a string.  In the event that the user lacks the privilege to access
3050 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3051 * don't fail access checking.
3052 *
3053 * dtrace_dif_variable() uses this routine as a helper for various
3054 * builtin values such as 'execname' and 'probefunc.'
3055 */
3056uintptr_t
3057dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
3058    dtrace_mstate_t *mstate)
3059{
3060	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3061	uintptr_t ret;
3062	size_t strsz;
3063
3064	/*
3065	 * The easy case: this probe is allowed to read all of memory, so
3066	 * we can just return this as a vanilla pointer.
3067	 */
3068	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3069		return (addr);
3070
3071	/*
3072	 * This is the tougher case: we copy the string in question from
3073	 * kernel memory into scratch memory and return it that way: this
3074	 * ensures that we won't trip up when access checking tests the
3075	 * BYREF return value.
3076	 */
3077	strsz = dtrace_strlen((char *)addr, size) + 1;
3078
3079	if (mstate->dtms_scratch_ptr + strsz >
3080	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3081		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3082		return (0);
3083	}
3084
3085	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3086	    strsz);
3087	ret = mstate->dtms_scratch_ptr;
3088	mstate->dtms_scratch_ptr += strsz;
3089	return (ret);
3090}
3091
3092/*
3093 * Return a string from a memoy address which is known to have one or
3094 * more concatenated, individually zero terminated, sub-strings.
3095 * In the event that the user lacks the privilege to access
3096 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3097 * don't fail access checking.
3098 *
3099 * dtrace_dif_variable() uses this routine as a helper for various
3100 * builtin values such as 'execargs'.
3101 */
3102static uintptr_t
3103dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
3104    dtrace_mstate_t *mstate)
3105{
3106	char *p;
3107	size_t i;
3108	uintptr_t ret;
3109
3110	if (mstate->dtms_scratch_ptr + strsz >
3111	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3112		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3113		return (0);
3114	}
3115
3116	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3117	    strsz);
3118
3119	/* Replace sub-string termination characters with a space. */
3120	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
3121	    p++, i++)
3122		if (*p == '\0')
3123			*p = ' ';
3124
3125	ret = mstate->dtms_scratch_ptr;
3126	mstate->dtms_scratch_ptr += strsz;
3127	return (ret);
3128}
3129
3130/*
3131 * This function implements the DIF emulator's variable lookups.  The emulator
3132 * passes a reserved variable identifier and optional built-in array index.
3133 */
3134static uint64_t
3135dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3136    uint64_t ndx)
3137{
3138	/*
3139	 * If we're accessing one of the uncached arguments, we'll turn this
3140	 * into a reference in the args array.
3141	 */
3142	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3143		ndx = v - DIF_VAR_ARG0;
3144		v = DIF_VAR_ARGS;
3145	}
3146
3147	switch (v) {
3148	case DIF_VAR_ARGS:
3149		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3150		if (ndx >= sizeof (mstate->dtms_arg) /
3151		    sizeof (mstate->dtms_arg[0])) {
3152			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3153			dtrace_provider_t *pv;
3154			uint64_t val;
3155
3156			pv = mstate->dtms_probe->dtpr_provider;
3157			if (pv->dtpv_pops.dtps_getargval != NULL)
3158				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3159				    mstate->dtms_probe->dtpr_id,
3160				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
3161			else
3162				val = dtrace_getarg(ndx, aframes);
3163
3164			/*
3165			 * This is regrettably required to keep the compiler
3166			 * from tail-optimizing the call to dtrace_getarg().
3167			 * The condition always evaluates to true, but the
3168			 * compiler has no way of figuring that out a priori.
3169			 * (None of this would be necessary if the compiler
3170			 * could be relied upon to _always_ tail-optimize
3171			 * the call to dtrace_getarg() -- but it can't.)
3172			 */
3173			if (mstate->dtms_probe != NULL)
3174				return (val);
3175
3176			ASSERT(0);
3177		}
3178
3179		return (mstate->dtms_arg[ndx]);
3180
3181#if defined(sun)
3182	case DIF_VAR_UREGS: {
3183		klwp_t *lwp;
3184
3185		if (!dtrace_priv_proc(state))
3186			return (0);
3187
3188		if ((lwp = curthread->t_lwp) == NULL) {
3189			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3190			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
3191			return (0);
3192		}
3193
3194		return (dtrace_getreg(lwp->lwp_regs, ndx));
3195		return (0);
3196	}
3197#else
3198	case DIF_VAR_UREGS: {
3199		struct trapframe *tframe;
3200
3201		if (!dtrace_priv_proc(state))
3202			return (0);
3203
3204		if ((tframe = curthread->td_frame) == NULL) {
3205			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3206			cpu_core[curcpu].cpuc_dtrace_illval = 0;
3207			return (0);
3208		}
3209
3210		return (dtrace_getreg(tframe, ndx));
3211	}
3212#endif
3213
3214	case DIF_VAR_CURTHREAD:
3215		if (!dtrace_priv_proc(state))
3216			return (0);
3217		return ((uint64_t)(uintptr_t)curthread);
3218
3219	case DIF_VAR_TIMESTAMP:
3220		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3221			mstate->dtms_timestamp = dtrace_gethrtime();
3222			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3223		}
3224		return (mstate->dtms_timestamp);
3225
3226	case DIF_VAR_VTIMESTAMP:
3227		ASSERT(dtrace_vtime_references != 0);
3228		return (curthread->t_dtrace_vtime);
3229
3230	case DIF_VAR_WALLTIMESTAMP:
3231		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3232			mstate->dtms_walltimestamp = dtrace_gethrestime();
3233			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3234		}
3235		return (mstate->dtms_walltimestamp);
3236
3237#if defined(sun)
3238	case DIF_VAR_IPL:
3239		if (!dtrace_priv_kernel(state))
3240			return (0);
3241		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3242			mstate->dtms_ipl = dtrace_getipl();
3243			mstate->dtms_present |= DTRACE_MSTATE_IPL;
3244		}
3245		return (mstate->dtms_ipl);
3246#endif
3247
3248	case DIF_VAR_EPID:
3249		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3250		return (mstate->dtms_epid);
3251
3252	case DIF_VAR_ID:
3253		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3254		return (mstate->dtms_probe->dtpr_id);
3255
3256	case DIF_VAR_STACKDEPTH:
3257		if (!dtrace_priv_kernel(state))
3258			return (0);
3259		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3260			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3261
3262			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3263			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3264		}
3265		return (mstate->dtms_stackdepth);
3266
3267	case DIF_VAR_USTACKDEPTH:
3268		if (!dtrace_priv_proc(state))
3269			return (0);
3270		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3271			/*
3272			 * See comment in DIF_VAR_PID.
3273			 */
3274			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3275			    CPU_ON_INTR(CPU)) {
3276				mstate->dtms_ustackdepth = 0;
3277			} else {
3278				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3279				mstate->dtms_ustackdepth =
3280				    dtrace_getustackdepth();
3281				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3282			}
3283			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3284		}
3285		return (mstate->dtms_ustackdepth);
3286
3287	case DIF_VAR_CALLER:
3288		if (!dtrace_priv_kernel(state))
3289			return (0);
3290		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3291			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3292
3293			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3294				/*
3295				 * If this is an unanchored probe, we are
3296				 * required to go through the slow path:
3297				 * dtrace_caller() only guarantees correct
3298				 * results for anchored probes.
3299				 */
3300				pc_t caller[2] = {0, 0};
3301
3302				dtrace_getpcstack(caller, 2, aframes,
3303				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3304				mstate->dtms_caller = caller[1];
3305			} else if ((mstate->dtms_caller =
3306			    dtrace_caller(aframes)) == -1) {
3307				/*
3308				 * We have failed to do this the quick way;
3309				 * we must resort to the slower approach of
3310				 * calling dtrace_getpcstack().
3311				 */
3312				pc_t caller = 0;
3313
3314				dtrace_getpcstack(&caller, 1, aframes, NULL);
3315				mstate->dtms_caller = caller;
3316			}
3317
3318			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3319		}
3320		return (mstate->dtms_caller);
3321
3322	case DIF_VAR_UCALLER:
3323		if (!dtrace_priv_proc(state))
3324			return (0);
3325
3326		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3327			uint64_t ustack[3];
3328
3329			/*
3330			 * dtrace_getupcstack() fills in the first uint64_t
3331			 * with the current PID.  The second uint64_t will
3332			 * be the program counter at user-level.  The third
3333			 * uint64_t will contain the caller, which is what
3334			 * we're after.
3335			 */
3336			ustack[2] = 0;
3337			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3338			dtrace_getupcstack(ustack, 3);
3339			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3340			mstate->dtms_ucaller = ustack[2];
3341			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3342		}
3343
3344		return (mstate->dtms_ucaller);
3345
3346	case DIF_VAR_PROBEPROV:
3347		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3348		return (dtrace_dif_varstr(
3349		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3350		    state, mstate));
3351
3352	case DIF_VAR_PROBEMOD:
3353		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3354		return (dtrace_dif_varstr(
3355		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3356		    state, mstate));
3357
3358	case DIF_VAR_PROBEFUNC:
3359		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3360		return (dtrace_dif_varstr(
3361		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3362		    state, mstate));
3363
3364	case DIF_VAR_PROBENAME:
3365		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3366		return (dtrace_dif_varstr(
3367		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3368		    state, mstate));
3369
3370	case DIF_VAR_PID:
3371		if (!dtrace_priv_proc(state))
3372			return (0);
3373
3374#if defined(sun)
3375		/*
3376		 * Note that we are assuming that an unanchored probe is
3377		 * always due to a high-level interrupt.  (And we're assuming
3378		 * that there is only a single high level interrupt.)
3379		 */
3380		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3381			return (pid0.pid_id);
3382
3383		/*
3384		 * It is always safe to dereference one's own t_procp pointer:
3385		 * it always points to a valid, allocated proc structure.
3386		 * Further, it is always safe to dereference the p_pidp member
3387		 * of one's own proc structure.  (These are truisms becuase
3388		 * threads and processes don't clean up their own state --
3389		 * they leave that task to whomever reaps them.)
3390		 */
3391		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3392#else
3393		return ((uint64_t)curproc->p_pid);
3394#endif
3395
3396	case DIF_VAR_PPID:
3397		if (!dtrace_priv_proc(state))
3398			return (0);
3399
3400#if defined(sun)
3401		/*
3402		 * See comment in DIF_VAR_PID.
3403		 */
3404		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3405			return (pid0.pid_id);
3406
3407		/*
3408		 * It is always safe to dereference one's own t_procp pointer:
3409		 * it always points to a valid, allocated proc structure.
3410		 * (This is true because threads don't clean up their own
3411		 * state -- they leave that task to whomever reaps them.)
3412		 */
3413		return ((uint64_t)curthread->t_procp->p_ppid);
3414#else
3415		return ((uint64_t)curproc->p_pptr->p_pid);
3416#endif
3417
3418	case DIF_VAR_TID:
3419#if defined(sun)
3420		/*
3421		 * See comment in DIF_VAR_PID.
3422		 */
3423		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3424			return (0);
3425#endif
3426
3427		return ((uint64_t)curthread->t_tid);
3428
3429	case DIF_VAR_EXECARGS: {
3430		struct pargs *p_args = curthread->td_proc->p_args;
3431
3432		if (p_args == NULL)
3433			return(0);
3434
3435		return (dtrace_dif_varstrz(
3436		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3437	}
3438
3439	case DIF_VAR_EXECNAME:
3440#if defined(sun)
3441		if (!dtrace_priv_proc(state))
3442			return (0);
3443
3444		/*
3445		 * See comment in DIF_VAR_PID.
3446		 */
3447		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3448			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3449
3450		/*
3451		 * It is always safe to dereference one's own t_procp pointer:
3452		 * it always points to a valid, allocated proc structure.
3453		 * (This is true because threads don't clean up their own
3454		 * state -- they leave that task to whomever reaps them.)
3455		 */
3456		return (dtrace_dif_varstr(
3457		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3458		    state, mstate));
3459#else
3460		return (dtrace_dif_varstr(
3461		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3462#endif
3463
3464	case DIF_VAR_ZONENAME:
3465#if defined(sun)
3466		if (!dtrace_priv_proc(state))
3467			return (0);
3468
3469		/*
3470		 * See comment in DIF_VAR_PID.
3471		 */
3472		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3473			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3474
3475		/*
3476		 * It is always safe to dereference one's own t_procp pointer:
3477		 * it always points to a valid, allocated proc structure.
3478		 * (This is true because threads don't clean up their own
3479		 * state -- they leave that task to whomever reaps them.)
3480		 */
3481		return (dtrace_dif_varstr(
3482		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3483		    state, mstate));
3484#else
3485		return (0);
3486#endif
3487
3488	case DIF_VAR_UID:
3489		if (!dtrace_priv_proc(state))
3490			return (0);
3491
3492#if defined(sun)
3493		/*
3494		 * See comment in DIF_VAR_PID.
3495		 */
3496		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3497			return ((uint64_t)p0.p_cred->cr_uid);
3498#endif
3499
3500		/*
3501		 * It is always safe to dereference one's own t_procp pointer:
3502		 * it always points to a valid, allocated proc structure.
3503		 * (This is true because threads don't clean up their own
3504		 * state -- they leave that task to whomever reaps them.)
3505		 *
3506		 * Additionally, it is safe to dereference one's own process
3507		 * credential, since this is never NULL after process birth.
3508		 */
3509		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3510
3511	case DIF_VAR_GID:
3512		if (!dtrace_priv_proc(state))
3513			return (0);
3514
3515#if defined(sun)
3516		/*
3517		 * See comment in DIF_VAR_PID.
3518		 */
3519		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3520			return ((uint64_t)p0.p_cred->cr_gid);
3521#endif
3522
3523		/*
3524		 * It is always safe to dereference one's own t_procp pointer:
3525		 * it always points to a valid, allocated proc structure.
3526		 * (This is true because threads don't clean up their own
3527		 * state -- they leave that task to whomever reaps them.)
3528		 *
3529		 * Additionally, it is safe to dereference one's own process
3530		 * credential, since this is never NULL after process birth.
3531		 */
3532		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3533
3534	case DIF_VAR_ERRNO: {
3535#if defined(sun)
3536		klwp_t *lwp;
3537		if (!dtrace_priv_proc(state))
3538			return (0);
3539
3540		/*
3541		 * See comment in DIF_VAR_PID.
3542		 */
3543		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3544			return (0);
3545
3546		/*
3547		 * It is always safe to dereference one's own t_lwp pointer in
3548		 * the event that this pointer is non-NULL.  (This is true
3549		 * because threads and lwps don't clean up their own state --
3550		 * they leave that task to whomever reaps them.)
3551		 */
3552		if ((lwp = curthread->t_lwp) == NULL)
3553			return (0);
3554
3555		return ((uint64_t)lwp->lwp_errno);
3556#else
3557		return (curthread->td_errno);
3558#endif
3559	}
3560#if !defined(sun)
3561	case DIF_VAR_CPU: {
3562		return curcpu;
3563	}
3564#endif
3565	default:
3566		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3567		return (0);
3568	}
3569}
3570
3571
3572typedef enum dtrace_json_state {
3573	DTRACE_JSON_REST = 1,
3574	DTRACE_JSON_OBJECT,
3575	DTRACE_JSON_STRING,
3576	DTRACE_JSON_STRING_ESCAPE,
3577	DTRACE_JSON_STRING_ESCAPE_UNICODE,
3578	DTRACE_JSON_COLON,
3579	DTRACE_JSON_COMMA,
3580	DTRACE_JSON_VALUE,
3581	DTRACE_JSON_IDENTIFIER,
3582	DTRACE_JSON_NUMBER,
3583	DTRACE_JSON_NUMBER_FRAC,
3584	DTRACE_JSON_NUMBER_EXP,
3585	DTRACE_JSON_COLLECT_OBJECT
3586} dtrace_json_state_t;
3587
3588/*
3589 * This function possesses just enough knowledge about JSON to extract a single
3590 * value from a JSON string and store it in the scratch buffer.  It is able
3591 * to extract nested object values, and members of arrays by index.
3592 *
3593 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3594 * be looked up as we descend into the object tree.  e.g.
3595 *
3596 *    foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3597 *       with nelems = 5.
3598 *
3599 * The run time of this function must be bounded above by strsize to limit the
3600 * amount of work done in probe context.  As such, it is implemented as a
3601 * simple state machine, reading one character at a time using safe loads
3602 * until we find the requested element, hit a parsing error or run off the
3603 * end of the object or string.
3604 *
3605 * As there is no way for a subroutine to return an error without interrupting
3606 * clause execution, we simply return NULL in the event of a missing key or any
3607 * other error condition.  Each NULL return in this function is commented with
3608 * the error condition it represents -- parsing or otherwise.
3609 *
3610 * The set of states for the state machine closely matches the JSON
3611 * specification (http://json.org/).  Briefly:
3612 *
3613 *   DTRACE_JSON_REST:
3614 *     Skip whitespace until we find either a top-level Object, moving
3615 *     to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3616 *
3617 *   DTRACE_JSON_OBJECT:
3618 *     Locate the next key String in an Object.  Sets a flag to denote
3619 *     the next String as a key string and moves to DTRACE_JSON_STRING.
3620 *
3621 *   DTRACE_JSON_COLON:
3622 *     Skip whitespace until we find the colon that separates key Strings
3623 *     from their values.  Once found, move to DTRACE_JSON_VALUE.
3624 *
3625 *   DTRACE_JSON_VALUE:
3626 *     Detects the type of the next value (String, Number, Identifier, Object
3627 *     or Array) and routes to the states that process that type.  Here we also
3628 *     deal with the element selector list if we are requested to traverse down
3629 *     into the object tree.
3630 *
3631 *   DTRACE_JSON_COMMA:
3632 *     Skip whitespace until we find the comma that separates key-value pairs
3633 *     in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3634 *     (similarly DTRACE_JSON_VALUE).  All following literal value processing
3635 *     states return to this state at the end of their value, unless otherwise
3636 *     noted.
3637 *
3638 *   DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3639 *     Processes a Number literal from the JSON, including any exponent
3640 *     component that may be present.  Numbers are returned as strings, which
3641 *     may be passed to strtoll() if an integer is required.
3642 *
3643 *   DTRACE_JSON_IDENTIFIER:
3644 *     Processes a "true", "false" or "null" literal in the JSON.
3645 *
3646 *   DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3647 *   DTRACE_JSON_STRING_ESCAPE_UNICODE:
3648 *     Processes a String literal from the JSON, whether the String denotes
3649 *     a key, a value or part of a larger Object.  Handles all escape sequences
3650 *     present in the specification, including four-digit unicode characters,
3651 *     but merely includes the escape sequence without converting it to the
3652 *     actual escaped character.  If the String is flagged as a key, we
3653 *     move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3654 *
3655 *   DTRACE_JSON_COLLECT_OBJECT:
3656 *     This state collects an entire Object (or Array), correctly handling
3657 *     embedded strings.  If the full element selector list matches this nested
3658 *     object, we return the Object in full as a string.  If not, we use this
3659 *     state to skip to the next value at this level and continue processing.
3660 *
3661 * NOTE: This function uses various macros from strtolctype.h to manipulate
3662 * digit values, etc -- these have all been checked to ensure they make
3663 * no additional function calls.
3664 */
3665static char *
3666dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3667    char *dest)
3668{
3669	dtrace_json_state_t state = DTRACE_JSON_REST;
3670	int64_t array_elem = INT64_MIN;
3671	int64_t array_pos = 0;
3672	uint8_t escape_unicount = 0;
3673	boolean_t string_is_key = B_FALSE;
3674	boolean_t collect_object = B_FALSE;
3675	boolean_t found_key = B_FALSE;
3676	boolean_t in_array = B_FALSE;
3677	uint32_t braces = 0, brackets = 0;
3678	char *elem = elemlist;
3679	char *dd = dest;
3680	uintptr_t cur;
3681
3682	for (cur = json; cur < json + size; cur++) {
3683		char cc = dtrace_load8(cur);
3684		if (cc == '\0')
3685			return (NULL);
3686
3687		switch (state) {
3688		case DTRACE_JSON_REST:
3689			if (isspace(cc))
3690				break;
3691
3692			if (cc == '{') {
3693				state = DTRACE_JSON_OBJECT;
3694				break;
3695			}
3696
3697			if (cc == '[') {
3698				in_array = B_TRUE;
3699				array_pos = 0;
3700				array_elem = dtrace_strtoll(elem, 10, size);
3701				found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3702				state = DTRACE_JSON_VALUE;
3703				break;
3704			}
3705
3706			/*
3707			 * ERROR: expected to find a top-level object or array.
3708			 */
3709			return (NULL);
3710		case DTRACE_JSON_OBJECT:
3711			if (isspace(cc))
3712				break;
3713
3714			if (cc == '"') {
3715				state = DTRACE_JSON_STRING;
3716				string_is_key = B_TRUE;
3717				break;
3718			}
3719
3720			/*
3721			 * ERROR: either the object did not start with a key
3722			 * string, or we've run off the end of the object
3723			 * without finding the requested key.
3724			 */
3725			return (NULL);
3726		case DTRACE_JSON_STRING:
3727			if (cc == '\\') {
3728				*dd++ = '\\';
3729				state = DTRACE_JSON_STRING_ESCAPE;
3730				break;
3731			}
3732
3733			if (cc == '"') {
3734				if (collect_object) {
3735					/*
3736					 * We don't reset the dest here, as
3737					 * the string is part of a larger
3738					 * object being collected.
3739					 */
3740					*dd++ = cc;
3741					collect_object = B_FALSE;
3742					state = DTRACE_JSON_COLLECT_OBJECT;
3743					break;
3744				}
3745				*dd = '\0';
3746				dd = dest; /* reset string buffer */
3747				if (string_is_key) {
3748					if (dtrace_strncmp(dest, elem,
3749					    size) == 0)
3750						found_key = B_TRUE;
3751				} else if (found_key) {
3752					if (nelems > 1) {
3753						/*
3754						 * We expected an object, not
3755						 * this string.
3756						 */
3757						return (NULL);
3758					}
3759					return (dest);
3760				}
3761				state = string_is_key ? DTRACE_JSON_COLON :
3762				    DTRACE_JSON_COMMA;
3763				string_is_key = B_FALSE;
3764				break;
3765			}
3766
3767			*dd++ = cc;
3768			break;
3769		case DTRACE_JSON_STRING_ESCAPE:
3770			*dd++ = cc;
3771			if (cc == 'u') {
3772				escape_unicount = 0;
3773				state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3774			} else {
3775				state = DTRACE_JSON_STRING;
3776			}
3777			break;
3778		case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3779			if (!isxdigit(cc)) {
3780				/*
3781				 * ERROR: invalid unicode escape, expected
3782				 * four valid hexidecimal digits.
3783				 */
3784				return (NULL);
3785			}
3786
3787			*dd++ = cc;
3788			if (++escape_unicount == 4)
3789				state = DTRACE_JSON_STRING;
3790			break;
3791		case DTRACE_JSON_COLON:
3792			if (isspace(cc))
3793				break;
3794
3795			if (cc == ':') {
3796				state = DTRACE_JSON_VALUE;
3797				break;
3798			}
3799
3800			/*
3801			 * ERROR: expected a colon.
3802			 */
3803			return (NULL);
3804		case DTRACE_JSON_COMMA:
3805			if (isspace(cc))
3806				break;
3807
3808			if (cc == ',') {
3809				if (in_array) {
3810					state = DTRACE_JSON_VALUE;
3811					if (++array_pos == array_elem)
3812						found_key = B_TRUE;
3813				} else {
3814					state = DTRACE_JSON_OBJECT;
3815				}
3816				break;
3817			}
3818
3819			/*
3820			 * ERROR: either we hit an unexpected character, or
3821			 * we reached the end of the object or array without
3822			 * finding the requested key.
3823			 */
3824			return (NULL);
3825		case DTRACE_JSON_IDENTIFIER:
3826			if (islower(cc)) {
3827				*dd++ = cc;
3828				break;
3829			}
3830
3831			*dd = '\0';
3832			dd = dest; /* reset string buffer */
3833
3834			if (dtrace_strncmp(dest, "true", 5) == 0 ||
3835			    dtrace_strncmp(dest, "false", 6) == 0 ||
3836			    dtrace_strncmp(dest, "null", 5) == 0) {
3837				if (found_key) {
3838					if (nelems > 1) {
3839						/*
3840						 * ERROR: We expected an object,
3841						 * not this identifier.
3842						 */
3843						return (NULL);
3844					}
3845					return (dest);
3846				} else {
3847					cur--;
3848					state = DTRACE_JSON_COMMA;
3849					break;
3850				}
3851			}
3852
3853			/*
3854			 * ERROR: we did not recognise the identifier as one
3855			 * of those in the JSON specification.
3856			 */
3857			return (NULL);
3858		case DTRACE_JSON_NUMBER:
3859			if (cc == '.') {
3860				*dd++ = cc;
3861				state = DTRACE_JSON_NUMBER_FRAC;
3862				break;
3863			}
3864
3865			if (cc == 'x' || cc == 'X') {
3866				/*
3867				 * ERROR: specification explicitly excludes
3868				 * hexidecimal or octal numbers.
3869				 */
3870				return (NULL);
3871			}
3872
3873			/* FALLTHRU */
3874		case DTRACE_JSON_NUMBER_FRAC:
3875			if (cc == 'e' || cc == 'E') {
3876				*dd++ = cc;
3877				state = DTRACE_JSON_NUMBER_EXP;
3878				break;
3879			}
3880
3881			if (cc == '+' || cc == '-') {
3882				/*
3883				 * ERROR: expect sign as part of exponent only.
3884				 */
3885				return (NULL);
3886			}
3887			/* FALLTHRU */
3888		case DTRACE_JSON_NUMBER_EXP:
3889			if (isdigit(cc) || cc == '+' || cc == '-') {
3890				*dd++ = cc;
3891				break;
3892			}
3893
3894			*dd = '\0';
3895			dd = dest; /* reset string buffer */
3896			if (found_key) {
3897				if (nelems > 1) {
3898					/*
3899					 * ERROR: We expected an object, not
3900					 * this number.
3901					 */
3902					return (NULL);
3903				}
3904				return (dest);
3905			}
3906
3907			cur--;
3908			state = DTRACE_JSON_COMMA;
3909			break;
3910		case DTRACE_JSON_VALUE:
3911			if (isspace(cc))
3912				break;
3913
3914			if (cc == '{' || cc == '[') {
3915				if (nelems > 1 && found_key) {
3916					in_array = cc == '[' ? B_TRUE : B_FALSE;
3917					/*
3918					 * If our element selector directs us
3919					 * to descend into this nested object,
3920					 * then move to the next selector
3921					 * element in the list and restart the
3922					 * state machine.
3923					 */
3924					while (*elem != '\0')
3925						elem++;
3926					elem++; /* skip the inter-element NUL */
3927					nelems--;
3928					dd = dest;
3929					if (in_array) {
3930						state = DTRACE_JSON_VALUE;
3931						array_pos = 0;
3932						array_elem = dtrace_strtoll(
3933						    elem, 10, size);
3934						found_key = array_elem == 0 ?
3935						    B_TRUE : B_FALSE;
3936					} else {
3937						found_key = B_FALSE;
3938						state = DTRACE_JSON_OBJECT;
3939					}
3940					break;
3941				}
3942
3943				/*
3944				 * Otherwise, we wish to either skip this
3945				 * nested object or return it in full.
3946				 */
3947				if (cc == '[')
3948					brackets = 1;
3949				else
3950					braces = 1;
3951				*dd++ = cc;
3952				state = DTRACE_JSON_COLLECT_OBJECT;
3953				break;
3954			}
3955
3956			if (cc == '"') {
3957				state = DTRACE_JSON_STRING;
3958				break;
3959			}
3960
3961			if (islower(cc)) {
3962				/*
3963				 * Here we deal with true, false and null.
3964				 */
3965				*dd++ = cc;
3966				state = DTRACE_JSON_IDENTIFIER;
3967				break;
3968			}
3969
3970			if (cc == '-' || isdigit(cc)) {
3971				*dd++ = cc;
3972				state = DTRACE_JSON_NUMBER;
3973				break;
3974			}
3975
3976			/*
3977			 * ERROR: unexpected character at start of value.
3978			 */
3979			return (NULL);
3980		case DTRACE_JSON_COLLECT_OBJECT:
3981			if (cc == '\0')
3982				/*
3983				 * ERROR: unexpected end of input.
3984				 */
3985				return (NULL);
3986
3987			*dd++ = cc;
3988			if (cc == '"') {
3989				collect_object = B_TRUE;
3990				state = DTRACE_JSON_STRING;
3991				break;
3992			}
3993
3994			if (cc == ']') {
3995				if (brackets-- == 0) {
3996					/*
3997					 * ERROR: unbalanced brackets.
3998					 */
3999					return (NULL);
4000				}
4001			} else if (cc == '}') {
4002				if (braces-- == 0) {
4003					/*
4004					 * ERROR: unbalanced braces.
4005					 */
4006					return (NULL);
4007				}
4008			} else if (cc == '{') {
4009				braces++;
4010			} else if (cc == '[') {
4011				brackets++;
4012			}
4013
4014			if (brackets == 0 && braces == 0) {
4015				if (found_key) {
4016					*dd = '\0';
4017					return (dest);
4018				}
4019				dd = dest; /* reset string buffer */
4020				state = DTRACE_JSON_COMMA;
4021			}
4022			break;
4023		}
4024	}
4025	return (NULL);
4026}
4027
4028/*
4029 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4030 * Notice that we don't bother validating the proper number of arguments or
4031 * their types in the tuple stack.  This isn't needed because all argument
4032 * interpretation is safe because of our load safety -- the worst that can
4033 * happen is that a bogus program can obtain bogus results.
4034 */
4035static void
4036dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
4037    dtrace_key_t *tupregs, int nargs,
4038    dtrace_mstate_t *mstate, dtrace_state_t *state)
4039{
4040	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4041	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4042	dtrace_vstate_t *vstate = &state->dts_vstate;
4043
4044#if defined(sun)
4045	union {
4046		mutex_impl_t mi;
4047		uint64_t mx;
4048	} m;
4049
4050	union {
4051		krwlock_t ri;
4052		uintptr_t rw;
4053	} r;
4054#else
4055	struct thread *lowner;
4056	union {
4057		struct lock_object *li;
4058		uintptr_t lx;
4059	} l;
4060#endif
4061
4062	switch (subr) {
4063	case DIF_SUBR_RAND:
4064		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
4065		break;
4066
4067#if defined(sun)
4068	case DIF_SUBR_MUTEX_OWNED:
4069		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4070		    mstate, vstate)) {
4071			regs[rd] = 0;
4072			break;
4073		}
4074
4075		m.mx = dtrace_load64(tupregs[0].dttk_value);
4076		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
4077			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
4078		else
4079			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
4080		break;
4081
4082	case DIF_SUBR_MUTEX_OWNER:
4083		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4084		    mstate, vstate)) {
4085			regs[rd] = 0;
4086			break;
4087		}
4088
4089		m.mx = dtrace_load64(tupregs[0].dttk_value);
4090		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
4091		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
4092			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
4093		else
4094			regs[rd] = 0;
4095		break;
4096
4097	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4098		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4099		    mstate, vstate)) {
4100			regs[rd] = 0;
4101			break;
4102		}
4103
4104		m.mx = dtrace_load64(tupregs[0].dttk_value);
4105		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
4106		break;
4107
4108	case DIF_SUBR_MUTEX_TYPE_SPIN:
4109		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4110		    mstate, vstate)) {
4111			regs[rd] = 0;
4112			break;
4113		}
4114
4115		m.mx = dtrace_load64(tupregs[0].dttk_value);
4116		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
4117		break;
4118
4119	case DIF_SUBR_RW_READ_HELD: {
4120		uintptr_t tmp;
4121
4122		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4123		    mstate, vstate)) {
4124			regs[rd] = 0;
4125			break;
4126		}
4127
4128		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4129		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
4130		break;
4131	}
4132
4133	case DIF_SUBR_RW_WRITE_HELD:
4134		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4135		    mstate, vstate)) {
4136			regs[rd] = 0;
4137			break;
4138		}
4139
4140		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4141		regs[rd] = _RW_WRITE_HELD(&r.ri);
4142		break;
4143
4144	case DIF_SUBR_RW_ISWRITER:
4145		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4146		    mstate, vstate)) {
4147			regs[rd] = 0;
4148			break;
4149		}
4150
4151		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4152		regs[rd] = _RW_ISWRITER(&r.ri);
4153		break;
4154
4155#else
4156	case DIF_SUBR_MUTEX_OWNED:
4157		if (!dtrace_canload(tupregs[0].dttk_value,
4158			sizeof (struct lock_object), mstate, vstate)) {
4159			regs[rd] = 0;
4160			break;
4161		}
4162		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4163		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4164		break;
4165
4166	case DIF_SUBR_MUTEX_OWNER:
4167		if (!dtrace_canload(tupregs[0].dttk_value,
4168			sizeof (struct lock_object), mstate, vstate)) {
4169			regs[rd] = 0;
4170			break;
4171		}
4172		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4173		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4174		regs[rd] = (uintptr_t)lowner;
4175		break;
4176
4177	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4178		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4179		    mstate, vstate)) {
4180			regs[rd] = 0;
4181			break;
4182		}
4183		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4184		/* XXX - should be only LC_SLEEPABLE? */
4185		regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
4186		    (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
4187		break;
4188
4189	case DIF_SUBR_MUTEX_TYPE_SPIN:
4190		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4191		    mstate, vstate)) {
4192			regs[rd] = 0;
4193			break;
4194		}
4195		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4196		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
4197		break;
4198
4199	case DIF_SUBR_RW_READ_HELD:
4200	case DIF_SUBR_SX_SHARED_HELD:
4201		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4202		    mstate, vstate)) {
4203			regs[rd] = 0;
4204			break;
4205		}
4206		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4207		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4208		    lowner == NULL;
4209		break;
4210
4211	case DIF_SUBR_RW_WRITE_HELD:
4212	case DIF_SUBR_SX_EXCLUSIVE_HELD:
4213		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4214		    mstate, vstate)) {
4215			regs[rd] = 0;
4216			break;
4217		}
4218		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4219		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4220		regs[rd] = (lowner == curthread);
4221		break;
4222
4223	case DIF_SUBR_RW_ISWRITER:
4224	case DIF_SUBR_SX_ISEXCLUSIVE:
4225		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4226		    mstate, vstate)) {
4227			regs[rd] = 0;
4228			break;
4229		}
4230		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4231		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4232		    lowner != NULL;
4233		break;
4234#endif /* ! defined(sun) */
4235
4236	case DIF_SUBR_BCOPY: {
4237		/*
4238		 * We need to be sure that the destination is in the scratch
4239		 * region -- no other region is allowed.
4240		 */
4241		uintptr_t src = tupregs[0].dttk_value;
4242		uintptr_t dest = tupregs[1].dttk_value;
4243		size_t size = tupregs[2].dttk_value;
4244
4245		if (!dtrace_inscratch(dest, size, mstate)) {
4246			*flags |= CPU_DTRACE_BADADDR;
4247			*illval = regs[rd];
4248			break;
4249		}
4250
4251		if (!dtrace_canload(src, size, mstate, vstate)) {
4252			regs[rd] = 0;
4253			break;
4254		}
4255
4256		dtrace_bcopy((void *)src, (void *)dest, size);
4257		break;
4258	}
4259
4260	case DIF_SUBR_ALLOCA:
4261	case DIF_SUBR_COPYIN: {
4262		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4263		uint64_t size =
4264		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4265		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4266
4267		/*
4268		 * This action doesn't require any credential checks since
4269		 * probes will not activate in user contexts to which the
4270		 * enabling user does not have permissions.
4271		 */
4272
4273		/*
4274		 * Rounding up the user allocation size could have overflowed
4275		 * a large, bogus allocation (like -1ULL) to 0.
4276		 */
4277		if (scratch_size < size ||
4278		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
4279			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4280			regs[rd] = 0;
4281			break;
4282		}
4283
4284		if (subr == DIF_SUBR_COPYIN) {
4285			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4286			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4287			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4288		}
4289
4290		mstate->dtms_scratch_ptr += scratch_size;
4291		regs[rd] = dest;
4292		break;
4293	}
4294
4295	case DIF_SUBR_COPYINTO: {
4296		uint64_t size = tupregs[1].dttk_value;
4297		uintptr_t dest = tupregs[2].dttk_value;
4298
4299		/*
4300		 * This action doesn't require any credential checks since
4301		 * probes will not activate in user contexts to which the
4302		 * enabling user does not have permissions.
4303		 */
4304		if (!dtrace_inscratch(dest, size, mstate)) {
4305			*flags |= CPU_DTRACE_BADADDR;
4306			*illval = regs[rd];
4307			break;
4308		}
4309
4310		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4311		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4312		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4313		break;
4314	}
4315
4316	case DIF_SUBR_COPYINSTR: {
4317		uintptr_t dest = mstate->dtms_scratch_ptr;
4318		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4319
4320		if (nargs > 1 && tupregs[1].dttk_value < size)
4321			size = tupregs[1].dttk_value + 1;
4322
4323		/*
4324		 * This action doesn't require any credential checks since
4325		 * probes will not activate in user contexts to which the
4326		 * enabling user does not have permissions.
4327		 */
4328		if (!DTRACE_INSCRATCH(mstate, size)) {
4329			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4330			regs[rd] = 0;
4331			break;
4332		}
4333
4334		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4335		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4336		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4337
4338		((char *)dest)[size - 1] = '\0';
4339		mstate->dtms_scratch_ptr += size;
4340		regs[rd] = dest;
4341		break;
4342	}
4343
4344#if defined(sun)
4345	case DIF_SUBR_MSGSIZE:
4346	case DIF_SUBR_MSGDSIZE: {
4347		uintptr_t baddr = tupregs[0].dttk_value, daddr;
4348		uintptr_t wptr, rptr;
4349		size_t count = 0;
4350		int cont = 0;
4351
4352		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
4353
4354			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4355			    vstate)) {
4356				regs[rd] = 0;
4357				break;
4358			}
4359
4360			wptr = dtrace_loadptr(baddr +
4361			    offsetof(mblk_t, b_wptr));
4362
4363			rptr = dtrace_loadptr(baddr +
4364			    offsetof(mblk_t, b_rptr));
4365
4366			if (wptr < rptr) {
4367				*flags |= CPU_DTRACE_BADADDR;
4368				*illval = tupregs[0].dttk_value;
4369				break;
4370			}
4371
4372			daddr = dtrace_loadptr(baddr +
4373			    offsetof(mblk_t, b_datap));
4374
4375			baddr = dtrace_loadptr(baddr +
4376			    offsetof(mblk_t, b_cont));
4377
4378			/*
4379			 * We want to prevent against denial-of-service here,
4380			 * so we're only going to search the list for
4381			 * dtrace_msgdsize_max mblks.
4382			 */
4383			if (cont++ > dtrace_msgdsize_max) {
4384				*flags |= CPU_DTRACE_ILLOP;
4385				break;
4386			}
4387
4388			if (subr == DIF_SUBR_MSGDSIZE) {
4389				if (dtrace_load8(daddr +
4390				    offsetof(dblk_t, db_type)) != M_DATA)
4391					continue;
4392			}
4393
4394			count += wptr - rptr;
4395		}
4396
4397		if (!(*flags & CPU_DTRACE_FAULT))
4398			regs[rd] = count;
4399
4400		break;
4401	}
4402#endif
4403
4404	case DIF_SUBR_PROGENYOF: {
4405		pid_t pid = tupregs[0].dttk_value;
4406		proc_t *p;
4407		int rval = 0;
4408
4409		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4410
4411		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4412#if defined(sun)
4413			if (p->p_pidp->pid_id == pid) {
4414#else
4415			if (p->p_pid == pid) {
4416#endif
4417				rval = 1;
4418				break;
4419			}
4420		}
4421
4422		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4423
4424		regs[rd] = rval;
4425		break;
4426	}
4427
4428	case DIF_SUBR_SPECULATION:
4429		regs[rd] = dtrace_speculation(state);
4430		break;
4431
4432	case DIF_SUBR_COPYOUT: {
4433		uintptr_t kaddr = tupregs[0].dttk_value;
4434		uintptr_t uaddr = tupregs[1].dttk_value;
4435		uint64_t size = tupregs[2].dttk_value;
4436
4437		if (!dtrace_destructive_disallow &&
4438		    dtrace_priv_proc_control(state) &&
4439		    !dtrace_istoxic(kaddr, size)) {
4440			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4441			dtrace_copyout(kaddr, uaddr, size, flags);
4442			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4443		}
4444		break;
4445	}
4446
4447	case DIF_SUBR_COPYOUTSTR: {
4448		uintptr_t kaddr = tupregs[0].dttk_value;
4449		uintptr_t uaddr = tupregs[1].dttk_value;
4450		uint64_t size = tupregs[2].dttk_value;
4451
4452		if (!dtrace_destructive_disallow &&
4453		    dtrace_priv_proc_control(state) &&
4454		    !dtrace_istoxic(kaddr, size)) {
4455			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4456			dtrace_copyoutstr(kaddr, uaddr, size, flags);
4457			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4458		}
4459		break;
4460	}
4461
4462	case DIF_SUBR_STRLEN: {
4463		size_t sz;
4464		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4465		sz = dtrace_strlen((char *)addr,
4466		    state->dts_options[DTRACEOPT_STRSIZE]);
4467
4468		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
4469			regs[rd] = 0;
4470			break;
4471		}
4472
4473		regs[rd] = sz;
4474
4475		break;
4476	}
4477
4478	case DIF_SUBR_STRCHR:
4479	case DIF_SUBR_STRRCHR: {
4480		/*
4481		 * We're going to iterate over the string looking for the
4482		 * specified character.  We will iterate until we have reached
4483		 * the string length or we have found the character.  If this
4484		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4485		 * of the specified character instead of the first.
4486		 */
4487		uintptr_t saddr = tupregs[0].dttk_value;
4488		uintptr_t addr = tupregs[0].dttk_value;
4489		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
4490		char c, target = (char)tupregs[1].dttk_value;
4491
4492		for (regs[rd] = 0; addr < limit; addr++) {
4493			if ((c = dtrace_load8(addr)) == target) {
4494				regs[rd] = addr;
4495
4496				if (subr == DIF_SUBR_STRCHR)
4497					break;
4498			}
4499
4500			if (c == '\0')
4501				break;
4502		}
4503
4504		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
4505			regs[rd] = 0;
4506			break;
4507		}
4508
4509		break;
4510	}
4511
4512	case DIF_SUBR_STRSTR:
4513	case DIF_SUBR_INDEX:
4514	case DIF_SUBR_RINDEX: {
4515		/*
4516		 * We're going to iterate over the string looking for the
4517		 * specified string.  We will iterate until we have reached
4518		 * the string length or we have found the string.  (Yes, this
4519		 * is done in the most naive way possible -- but considering
4520		 * that the string we're searching for is likely to be
4521		 * relatively short, the complexity of Rabin-Karp or similar
4522		 * hardly seems merited.)
4523		 */
4524		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4525		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4526		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4527		size_t len = dtrace_strlen(addr, size);
4528		size_t sublen = dtrace_strlen(substr, size);
4529		char *limit = addr + len, *orig = addr;
4530		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4531		int inc = 1;
4532
4533		regs[rd] = notfound;
4534
4535		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4536			regs[rd] = 0;
4537			break;
4538		}
4539
4540		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4541		    vstate)) {
4542			regs[rd] = 0;
4543			break;
4544		}
4545
4546		/*
4547		 * strstr() and index()/rindex() have similar semantics if
4548		 * both strings are the empty string: strstr() returns a
4549		 * pointer to the (empty) string, and index() and rindex()
4550		 * both return index 0 (regardless of any position argument).
4551		 */
4552		if (sublen == 0 && len == 0) {
4553			if (subr == DIF_SUBR_STRSTR)
4554				regs[rd] = (uintptr_t)addr;
4555			else
4556				regs[rd] = 0;
4557			break;
4558		}
4559
4560		if (subr != DIF_SUBR_STRSTR) {
4561			if (subr == DIF_SUBR_RINDEX) {
4562				limit = orig - 1;
4563				addr += len;
4564				inc = -1;
4565			}
4566
4567			/*
4568			 * Both index() and rindex() take an optional position
4569			 * argument that denotes the starting position.
4570			 */
4571			if (nargs == 3) {
4572				int64_t pos = (int64_t)tupregs[2].dttk_value;
4573
4574				/*
4575				 * If the position argument to index() is
4576				 * negative, Perl implicitly clamps it at
4577				 * zero.  This semantic is a little surprising
4578				 * given the special meaning of negative
4579				 * positions to similar Perl functions like
4580				 * substr(), but it appears to reflect a
4581				 * notion that index() can start from a
4582				 * negative index and increment its way up to
4583				 * the string.  Given this notion, Perl's
4584				 * rindex() is at least self-consistent in
4585				 * that it implicitly clamps positions greater
4586				 * than the string length to be the string
4587				 * length.  Where Perl completely loses
4588				 * coherence, however, is when the specified
4589				 * substring is the empty string ("").  In
4590				 * this case, even if the position is
4591				 * negative, rindex() returns 0 -- and even if
4592				 * the position is greater than the length,
4593				 * index() returns the string length.  These
4594				 * semantics violate the notion that index()
4595				 * should never return a value less than the
4596				 * specified position and that rindex() should
4597				 * never return a value greater than the
4598				 * specified position.  (One assumes that
4599				 * these semantics are artifacts of Perl's
4600				 * implementation and not the results of
4601				 * deliberate design -- it beggars belief that
4602				 * even Larry Wall could desire such oddness.)
4603				 * While in the abstract one would wish for
4604				 * consistent position semantics across
4605				 * substr(), index() and rindex() -- or at the
4606				 * very least self-consistent position
4607				 * semantics for index() and rindex() -- we
4608				 * instead opt to keep with the extant Perl
4609				 * semantics, in all their broken glory.  (Do
4610				 * we have more desire to maintain Perl's
4611				 * semantics than Perl does?  Probably.)
4612				 */
4613				if (subr == DIF_SUBR_RINDEX) {
4614					if (pos < 0) {
4615						if (sublen == 0)
4616							regs[rd] = 0;
4617						break;
4618					}
4619
4620					if (pos > len)
4621						pos = len;
4622				} else {
4623					if (pos < 0)
4624						pos = 0;
4625
4626					if (pos >= len) {
4627						if (sublen == 0)
4628							regs[rd] = len;
4629						break;
4630					}
4631				}
4632
4633				addr = orig + pos;
4634			}
4635		}
4636
4637		for (regs[rd] = notfound; addr != limit; addr += inc) {
4638			if (dtrace_strncmp(addr, substr, sublen) == 0) {
4639				if (subr != DIF_SUBR_STRSTR) {
4640					/*
4641					 * As D index() and rindex() are
4642					 * modeled on Perl (and not on awk),
4643					 * we return a zero-based (and not a
4644					 * one-based) index.  (For you Perl
4645					 * weenies: no, we're not going to add
4646					 * $[ -- and shouldn't you be at a con
4647					 * or something?)
4648					 */
4649					regs[rd] = (uintptr_t)(addr - orig);
4650					break;
4651				}
4652
4653				ASSERT(subr == DIF_SUBR_STRSTR);
4654				regs[rd] = (uintptr_t)addr;
4655				break;
4656			}
4657		}
4658
4659		break;
4660	}
4661
4662	case DIF_SUBR_STRTOK: {
4663		uintptr_t addr = tupregs[0].dttk_value;
4664		uintptr_t tokaddr = tupregs[1].dttk_value;
4665		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4666		uintptr_t limit, toklimit = tokaddr + size;
4667		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
4668		char *dest = (char *)mstate->dtms_scratch_ptr;
4669		int i;
4670
4671		/*
4672		 * Check both the token buffer and (later) the input buffer,
4673		 * since both could be non-scratch addresses.
4674		 */
4675		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
4676			regs[rd] = 0;
4677			break;
4678		}
4679
4680		if (!DTRACE_INSCRATCH(mstate, size)) {
4681			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4682			regs[rd] = 0;
4683			break;
4684		}
4685
4686		if (addr == 0) {
4687			/*
4688			 * If the address specified is NULL, we use our saved
4689			 * strtok pointer from the mstate.  Note that this
4690			 * means that the saved strtok pointer is _only_
4691			 * valid within multiple enablings of the same probe --
4692			 * it behaves like an implicit clause-local variable.
4693			 */
4694			addr = mstate->dtms_strtok;
4695		} else {
4696			/*
4697			 * If the user-specified address is non-NULL we must
4698			 * access check it.  This is the only time we have
4699			 * a chance to do so, since this address may reside
4700			 * in the string table of this clause-- future calls
4701			 * (when we fetch addr from mstate->dtms_strtok)
4702			 * would fail this access check.
4703			 */
4704			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
4705				regs[rd] = 0;
4706				break;
4707			}
4708		}
4709
4710		/*
4711		 * First, zero the token map, and then process the token
4712		 * string -- setting a bit in the map for every character
4713		 * found in the token string.
4714		 */
4715		for (i = 0; i < sizeof (tokmap); i++)
4716			tokmap[i] = 0;
4717
4718		for (; tokaddr < toklimit; tokaddr++) {
4719			if ((c = dtrace_load8(tokaddr)) == '\0')
4720				break;
4721
4722			ASSERT((c >> 3) < sizeof (tokmap));
4723			tokmap[c >> 3] |= (1 << (c & 0x7));
4724		}
4725
4726		for (limit = addr + size; addr < limit; addr++) {
4727			/*
4728			 * We're looking for a character that is _not_ contained
4729			 * in the token string.
4730			 */
4731			if ((c = dtrace_load8(addr)) == '\0')
4732				break;
4733
4734			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4735				break;
4736		}
4737
4738		if (c == '\0') {
4739			/*
4740			 * We reached the end of the string without finding
4741			 * any character that was not in the token string.
4742			 * We return NULL in this case, and we set the saved
4743			 * address to NULL as well.
4744			 */
4745			regs[rd] = 0;
4746			mstate->dtms_strtok = 0;
4747			break;
4748		}
4749
4750		/*
4751		 * From here on, we're copying into the destination string.
4752		 */
4753		for (i = 0; addr < limit && i < size - 1; addr++) {
4754			if ((c = dtrace_load8(addr)) == '\0')
4755				break;
4756
4757			if (tokmap[c >> 3] & (1 << (c & 0x7)))
4758				break;
4759
4760			ASSERT(i < size);
4761			dest[i++] = c;
4762		}
4763
4764		ASSERT(i < size);
4765		dest[i] = '\0';
4766		regs[rd] = (uintptr_t)dest;
4767		mstate->dtms_scratch_ptr += size;
4768		mstate->dtms_strtok = addr;
4769		break;
4770	}
4771
4772	case DIF_SUBR_SUBSTR: {
4773		uintptr_t s = tupregs[0].dttk_value;
4774		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4775		char *d = (char *)mstate->dtms_scratch_ptr;
4776		int64_t index = (int64_t)tupregs[1].dttk_value;
4777		int64_t remaining = (int64_t)tupregs[2].dttk_value;
4778		size_t len = dtrace_strlen((char *)s, size);
4779		int64_t i;
4780
4781		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4782			regs[rd] = 0;
4783			break;
4784		}
4785
4786		if (!DTRACE_INSCRATCH(mstate, size)) {
4787			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4788			regs[rd] = 0;
4789			break;
4790		}
4791
4792		if (nargs <= 2)
4793			remaining = (int64_t)size;
4794
4795		if (index < 0) {
4796			index += len;
4797
4798			if (index < 0 && index + remaining > 0) {
4799				remaining += index;
4800				index = 0;
4801			}
4802		}
4803
4804		if (index >= len || index < 0) {
4805			remaining = 0;
4806		} else if (remaining < 0) {
4807			remaining += len - index;
4808		} else if (index + remaining > size) {
4809			remaining = size - index;
4810		}
4811
4812		for (i = 0; i < remaining; i++) {
4813			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4814				break;
4815		}
4816
4817		d[i] = '\0';
4818
4819		mstate->dtms_scratch_ptr += size;
4820		regs[rd] = (uintptr_t)d;
4821		break;
4822	}
4823
4824	case DIF_SUBR_JSON: {
4825		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4826		uintptr_t json = tupregs[0].dttk_value;
4827		size_t jsonlen = dtrace_strlen((char *)json, size);
4828		uintptr_t elem = tupregs[1].dttk_value;
4829		size_t elemlen = dtrace_strlen((char *)elem, size);
4830
4831		char *dest = (char *)mstate->dtms_scratch_ptr;
4832		char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
4833		char *ee = elemlist;
4834		int nelems = 1;
4835		uintptr_t cur;
4836
4837		if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
4838		    !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
4839			regs[rd] = 0;
4840			break;
4841		}
4842
4843		if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
4844			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4845			regs[rd] = 0;
4846			break;
4847		}
4848
4849		/*
4850		 * Read the element selector and split it up into a packed list
4851		 * of strings.
4852		 */
4853		for (cur = elem; cur < elem + elemlen; cur++) {
4854			char cc = dtrace_load8(cur);
4855
4856			if (cur == elem && cc == '[') {
4857				/*
4858				 * If the first element selector key is
4859				 * actually an array index then ignore the
4860				 * bracket.
4861				 */
4862				continue;
4863			}
4864
4865			if (cc == ']')
4866				continue;
4867
4868			if (cc == '.' || cc == '[') {
4869				nelems++;
4870				cc = '\0';
4871			}
4872
4873			*ee++ = cc;
4874		}
4875		*ee++ = '\0';
4876
4877		if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
4878		    nelems, dest)) != 0)
4879			mstate->dtms_scratch_ptr += jsonlen + 1;
4880		break;
4881	}
4882
4883	case DIF_SUBR_TOUPPER:
4884	case DIF_SUBR_TOLOWER: {
4885		uintptr_t s = tupregs[0].dttk_value;
4886		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4887		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4888		size_t len = dtrace_strlen((char *)s, size);
4889		char lower, upper, convert;
4890		int64_t i;
4891
4892		if (subr == DIF_SUBR_TOUPPER) {
4893			lower = 'a';
4894			upper = 'z';
4895			convert = 'A';
4896		} else {
4897			lower = 'A';
4898			upper = 'Z';
4899			convert = 'a';
4900		}
4901
4902		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4903			regs[rd] = 0;
4904			break;
4905		}
4906
4907		if (!DTRACE_INSCRATCH(mstate, size)) {
4908			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4909			regs[rd] = 0;
4910			break;
4911		}
4912
4913		for (i = 0; i < size - 1; i++) {
4914			if ((c = dtrace_load8(s + i)) == '\0')
4915				break;
4916
4917			if (c >= lower && c <= upper)
4918				c = convert + (c - lower);
4919
4920			dest[i] = c;
4921		}
4922
4923		ASSERT(i < size);
4924		dest[i] = '\0';
4925		regs[rd] = (uintptr_t)dest;
4926		mstate->dtms_scratch_ptr += size;
4927		break;
4928	}
4929
4930#if defined(sun)
4931	case DIF_SUBR_GETMAJOR:
4932#ifdef _LP64
4933		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4934#else
4935		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4936#endif
4937		break;
4938
4939	case DIF_SUBR_GETMINOR:
4940#ifdef _LP64
4941		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4942#else
4943		regs[rd] = tupregs[0].dttk_value & MAXMIN;
4944#endif
4945		break;
4946
4947	case DIF_SUBR_DDI_PATHNAME: {
4948		/*
4949		 * This one is a galactic mess.  We are going to roughly
4950		 * emulate ddi_pathname(), but it's made more complicated
4951		 * by the fact that we (a) want to include the minor name and
4952		 * (b) must proceed iteratively instead of recursively.
4953		 */
4954		uintptr_t dest = mstate->dtms_scratch_ptr;
4955		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4956		char *start = (char *)dest, *end = start + size - 1;
4957		uintptr_t daddr = tupregs[0].dttk_value;
4958		int64_t minor = (int64_t)tupregs[1].dttk_value;
4959		char *s;
4960		int i, len, depth = 0;
4961
4962		/*
4963		 * Due to all the pointer jumping we do and context we must
4964		 * rely upon, we just mandate that the user must have kernel
4965		 * read privileges to use this routine.
4966		 */
4967		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4968			*flags |= CPU_DTRACE_KPRIV;
4969			*illval = daddr;
4970			regs[rd] = 0;
4971		}
4972
4973		if (!DTRACE_INSCRATCH(mstate, size)) {
4974			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4975			regs[rd] = 0;
4976			break;
4977		}
4978
4979		*end = '\0';
4980
4981		/*
4982		 * We want to have a name for the minor.  In order to do this,
4983		 * we need to walk the minor list from the devinfo.  We want
4984		 * to be sure that we don't infinitely walk a circular list,
4985		 * so we check for circularity by sending a scout pointer
4986		 * ahead two elements for every element that we iterate over;
4987		 * if the list is circular, these will ultimately point to the
4988		 * same element.  You may recognize this little trick as the
4989		 * answer to a stupid interview question -- one that always
4990		 * seems to be asked by those who had to have it laboriously
4991		 * explained to them, and who can't even concisely describe
4992		 * the conditions under which one would be forced to resort to
4993		 * this technique.  Needless to say, those conditions are
4994		 * found here -- and probably only here.  Is this the only use
4995		 * of this infamous trick in shipping, production code?  If it
4996		 * isn't, it probably should be...
4997		 */
4998		if (minor != -1) {
4999			uintptr_t maddr = dtrace_loadptr(daddr +
5000			    offsetof(struct dev_info, devi_minor));
5001
5002			uintptr_t next = offsetof(struct ddi_minor_data, next);
5003			uintptr_t name = offsetof(struct ddi_minor_data,
5004			    d_minor) + offsetof(struct ddi_minor, name);
5005			uintptr_t dev = offsetof(struct ddi_minor_data,
5006			    d_minor) + offsetof(struct ddi_minor, dev);
5007			uintptr_t scout;
5008
5009			if (maddr != NULL)
5010				scout = dtrace_loadptr(maddr + next);
5011
5012			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5013				uint64_t m;
5014#ifdef _LP64
5015				m = dtrace_load64(maddr + dev) & MAXMIN64;
5016#else
5017				m = dtrace_load32(maddr + dev) & MAXMIN;
5018#endif
5019				if (m != minor) {
5020					maddr = dtrace_loadptr(maddr + next);
5021
5022					if (scout == NULL)
5023						continue;
5024
5025					scout = dtrace_loadptr(scout + next);
5026
5027					if (scout == NULL)
5028						continue;
5029
5030					scout = dtrace_loadptr(scout + next);
5031
5032					if (scout == NULL)
5033						continue;
5034
5035					if (scout == maddr) {
5036						*flags |= CPU_DTRACE_ILLOP;
5037						break;
5038					}
5039
5040					continue;
5041				}
5042
5043				/*
5044				 * We have the minor data.  Now we need to
5045				 * copy the minor's name into the end of the
5046				 * pathname.
5047				 */
5048				s = (char *)dtrace_loadptr(maddr + name);
5049				len = dtrace_strlen(s, size);
5050
5051				if (*flags & CPU_DTRACE_FAULT)
5052					break;
5053
5054				if (len != 0) {
5055					if ((end -= (len + 1)) < start)
5056						break;
5057
5058					*end = ':';
5059				}
5060
5061				for (i = 1; i <= len; i++)
5062					end[i] = dtrace_load8((uintptr_t)s++);
5063				break;
5064			}
5065		}
5066
5067		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5068			ddi_node_state_t devi_state;
5069
5070			devi_state = dtrace_load32(daddr +
5071			    offsetof(struct dev_info, devi_node_state));
5072
5073			if (*flags & CPU_DTRACE_FAULT)
5074				break;
5075
5076			if (devi_state >= DS_INITIALIZED) {
5077				s = (char *)dtrace_loadptr(daddr +
5078				    offsetof(struct dev_info, devi_addr));
5079				len = dtrace_strlen(s, size);
5080
5081				if (*flags & CPU_DTRACE_FAULT)
5082					break;
5083
5084				if (len != 0) {
5085					if ((end -= (len + 1)) < start)
5086						break;
5087
5088					*end = '@';
5089				}
5090
5091				for (i = 1; i <= len; i++)
5092					end[i] = dtrace_load8((uintptr_t)s++);
5093			}
5094
5095			/*
5096			 * Now for the node name...
5097			 */
5098			s = (char *)dtrace_loadptr(daddr +
5099			    offsetof(struct dev_info, devi_node_name));
5100
5101			daddr = dtrace_loadptr(daddr +
5102			    offsetof(struct dev_info, devi_parent));
5103
5104			/*
5105			 * If our parent is NULL (that is, if we're the root
5106			 * node), we're going to use the special path
5107			 * "devices".
5108			 */
5109			if (daddr == 0)
5110				s = "devices";
5111
5112			len = dtrace_strlen(s, size);
5113			if (*flags & CPU_DTRACE_FAULT)
5114				break;
5115
5116			if ((end -= (len + 1)) < start)
5117				break;
5118
5119			for (i = 1; i <= len; i++)
5120				end[i] = dtrace_load8((uintptr_t)s++);
5121			*end = '/';
5122
5123			if (depth++ > dtrace_devdepth_max) {
5124				*flags |= CPU_DTRACE_ILLOP;
5125				break;
5126			}
5127		}
5128
5129		if (end < start)
5130			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5131
5132		if (daddr == 0) {
5133			regs[rd] = (uintptr_t)end;
5134			mstate->dtms_scratch_ptr += size;
5135		}
5136
5137		break;
5138	}
5139#endif
5140
5141	case DIF_SUBR_STRJOIN: {
5142		char *d = (char *)mstate->dtms_scratch_ptr;
5143		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5144		uintptr_t s1 = tupregs[0].dttk_value;
5145		uintptr_t s2 = tupregs[1].dttk_value;
5146		int i = 0;
5147
5148		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
5149		    !dtrace_strcanload(s2, size, mstate, vstate)) {
5150			regs[rd] = 0;
5151			break;
5152		}
5153
5154		if (!DTRACE_INSCRATCH(mstate, size)) {
5155			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5156			regs[rd] = 0;
5157			break;
5158		}
5159
5160		for (;;) {
5161			if (i >= size) {
5162				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5163				regs[rd] = 0;
5164				break;
5165			}
5166
5167			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
5168				i--;
5169				break;
5170			}
5171		}
5172
5173		for (;;) {
5174			if (i >= size) {
5175				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5176				regs[rd] = 0;
5177				break;
5178			}
5179
5180			if ((d[i++] = dtrace_load8(s2++)) == '\0')
5181				break;
5182		}
5183
5184		if (i < size) {
5185			mstate->dtms_scratch_ptr += i;
5186			regs[rd] = (uintptr_t)d;
5187		}
5188
5189		break;
5190	}
5191
5192	case DIF_SUBR_STRTOLL: {
5193		uintptr_t s = tupregs[0].dttk_value;
5194		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5195		int base = 10;
5196
5197		if (nargs > 1) {
5198			if ((base = tupregs[1].dttk_value) <= 1 ||
5199			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5200				*flags |= CPU_DTRACE_ILLOP;
5201				break;
5202			}
5203		}
5204
5205		if (!dtrace_strcanload(s, size, mstate, vstate)) {
5206			regs[rd] = INT64_MIN;
5207			break;
5208		}
5209
5210		regs[rd] = dtrace_strtoll((char *)s, base, size);
5211		break;
5212	}
5213
5214	case DIF_SUBR_LLTOSTR: {
5215		int64_t i = (int64_t)tupregs[0].dttk_value;
5216		uint64_t val, digit;
5217		uint64_t size = 65;	/* enough room for 2^64 in binary */
5218		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
5219		int base = 10;
5220
5221		if (nargs > 1) {
5222			if ((base = tupregs[1].dttk_value) <= 1 ||
5223			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5224				*flags |= CPU_DTRACE_ILLOP;
5225				break;
5226			}
5227		}
5228
5229		val = (base == 10 && i < 0) ? i * -1 : i;
5230
5231		if (!DTRACE_INSCRATCH(mstate, size)) {
5232			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5233			regs[rd] = 0;
5234			break;
5235		}
5236
5237		for (*end-- = '\0'; val; val /= base) {
5238			if ((digit = val % base) <= '9' - '0') {
5239				*end-- = '0' + digit;
5240			} else {
5241				*end-- = 'a' + (digit - ('9' - '0') - 1);
5242			}
5243		}
5244
5245		if (i == 0 && base == 16)
5246			*end-- = '0';
5247
5248		if (base == 16)
5249			*end-- = 'x';
5250
5251		if (i == 0 || base == 8 || base == 16)
5252			*end-- = '0';
5253
5254		if (i < 0 && base == 10)
5255			*end-- = '-';
5256
5257		regs[rd] = (uintptr_t)end + 1;
5258		mstate->dtms_scratch_ptr += size;
5259		break;
5260	}
5261
5262	case DIF_SUBR_HTONS:
5263	case DIF_SUBR_NTOHS:
5264#if BYTE_ORDER == BIG_ENDIAN
5265		regs[rd] = (uint16_t)tupregs[0].dttk_value;
5266#else
5267		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
5268#endif
5269		break;
5270
5271
5272	case DIF_SUBR_HTONL:
5273	case DIF_SUBR_NTOHL:
5274#if BYTE_ORDER == BIG_ENDIAN
5275		regs[rd] = (uint32_t)tupregs[0].dttk_value;
5276#else
5277		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5278#endif
5279		break;
5280
5281
5282	case DIF_SUBR_HTONLL:
5283	case DIF_SUBR_NTOHLL:
5284#if BYTE_ORDER == BIG_ENDIAN
5285		regs[rd] = (uint64_t)tupregs[0].dttk_value;
5286#else
5287		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5288#endif
5289		break;
5290
5291
5292	case DIF_SUBR_DIRNAME:
5293	case DIF_SUBR_BASENAME: {
5294		char *dest = (char *)mstate->dtms_scratch_ptr;
5295		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5296		uintptr_t src = tupregs[0].dttk_value;
5297		int i, j, len = dtrace_strlen((char *)src, size);
5298		int lastbase = -1, firstbase = -1, lastdir = -1;
5299		int start, end;
5300
5301		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5302			regs[rd] = 0;
5303			break;
5304		}
5305
5306		if (!DTRACE_INSCRATCH(mstate, size)) {
5307			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5308			regs[rd] = 0;
5309			break;
5310		}
5311
5312		/*
5313		 * The basename and dirname for a zero-length string is
5314		 * defined to be "."
5315		 */
5316		if (len == 0) {
5317			len = 1;
5318			src = (uintptr_t)".";
5319		}
5320
5321		/*
5322		 * Start from the back of the string, moving back toward the
5323		 * front until we see a character that isn't a slash.  That
5324		 * character is the last character in the basename.
5325		 */
5326		for (i = len - 1; i >= 0; i--) {
5327			if (dtrace_load8(src + i) != '/')
5328				break;
5329		}
5330
5331		if (i >= 0)
5332			lastbase = i;
5333
5334		/*
5335		 * Starting from the last character in the basename, move
5336		 * towards the front until we find a slash.  The character
5337		 * that we processed immediately before that is the first
5338		 * character in the basename.
5339		 */
5340		for (; i >= 0; i--) {
5341			if (dtrace_load8(src + i) == '/')
5342				break;
5343		}
5344
5345		if (i >= 0)
5346			firstbase = i + 1;
5347
5348		/*
5349		 * Now keep going until we find a non-slash character.  That
5350		 * character is the last character in the dirname.
5351		 */
5352		for (; i >= 0; i--) {
5353			if (dtrace_load8(src + i) != '/')
5354				break;
5355		}
5356
5357		if (i >= 0)
5358			lastdir = i;
5359
5360		ASSERT(!(lastbase == -1 && firstbase != -1));
5361		ASSERT(!(firstbase == -1 && lastdir != -1));
5362
5363		if (lastbase == -1) {
5364			/*
5365			 * We didn't find a non-slash character.  We know that
5366			 * the length is non-zero, so the whole string must be
5367			 * slashes.  In either the dirname or the basename
5368			 * case, we return '/'.
5369			 */
5370			ASSERT(firstbase == -1);
5371			firstbase = lastbase = lastdir = 0;
5372		}
5373
5374		if (firstbase == -1) {
5375			/*
5376			 * The entire string consists only of a basename
5377			 * component.  If we're looking for dirname, we need
5378			 * to change our string to be just "."; if we're
5379			 * looking for a basename, we'll just set the first
5380			 * character of the basename to be 0.
5381			 */
5382			if (subr == DIF_SUBR_DIRNAME) {
5383				ASSERT(lastdir == -1);
5384				src = (uintptr_t)".";
5385				lastdir = 0;
5386			} else {
5387				firstbase = 0;
5388			}
5389		}
5390
5391		if (subr == DIF_SUBR_DIRNAME) {
5392			if (lastdir == -1) {
5393				/*
5394				 * We know that we have a slash in the name --
5395				 * or lastdir would be set to 0, above.  And
5396				 * because lastdir is -1, we know that this
5397				 * slash must be the first character.  (That
5398				 * is, the full string must be of the form
5399				 * "/basename".)  In this case, the last
5400				 * character of the directory name is 0.
5401				 */
5402				lastdir = 0;
5403			}
5404
5405			start = 0;
5406			end = lastdir;
5407		} else {
5408			ASSERT(subr == DIF_SUBR_BASENAME);
5409			ASSERT(firstbase != -1 && lastbase != -1);
5410			start = firstbase;
5411			end = lastbase;
5412		}
5413
5414		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5415			dest[j] = dtrace_load8(src + i);
5416
5417		dest[j] = '\0';
5418		regs[rd] = (uintptr_t)dest;
5419		mstate->dtms_scratch_ptr += size;
5420		break;
5421	}
5422
5423	case DIF_SUBR_GETF: {
5424		uintptr_t fd = tupregs[0].dttk_value;
5425		struct filedesc *fdp;
5426		file_t *fp;
5427
5428		if (!dtrace_priv_proc(state)) {
5429			regs[rd] = 0;
5430			break;
5431		}
5432		fdp = curproc->p_fd;
5433		FILEDESC_SLOCK(fdp);
5434		fp = fget_locked(fdp, fd);
5435		mstate->dtms_getf = fp;
5436		regs[rd] = (uintptr_t)fp;
5437		FILEDESC_SUNLOCK(fdp);
5438		break;
5439	}
5440
5441	case DIF_SUBR_CLEANPATH: {
5442		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5443		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5444		uintptr_t src = tupregs[0].dttk_value;
5445		int i = 0, j = 0;
5446#if defined(sun)
5447		zone_t *z;
5448#endif
5449
5450		if (!dtrace_strcanload(src, size, mstate, vstate)) {
5451			regs[rd] = 0;
5452			break;
5453		}
5454
5455		if (!DTRACE_INSCRATCH(mstate, size)) {
5456			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5457			regs[rd] = 0;
5458			break;
5459		}
5460
5461		/*
5462		 * Move forward, loading each character.
5463		 */
5464		do {
5465			c = dtrace_load8(src + i++);
5466next:
5467			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
5468				break;
5469
5470			if (c != '/') {
5471				dest[j++] = c;
5472				continue;
5473			}
5474
5475			c = dtrace_load8(src + i++);
5476
5477			if (c == '/') {
5478				/*
5479				 * We have two slashes -- we can just advance
5480				 * to the next character.
5481				 */
5482				goto next;
5483			}
5484
5485			if (c != '.') {
5486				/*
5487				 * This is not "." and it's not ".." -- we can
5488				 * just store the "/" and this character and
5489				 * drive on.
5490				 */
5491				dest[j++] = '/';
5492				dest[j++] = c;
5493				continue;
5494			}
5495
5496			c = dtrace_load8(src + i++);
5497
5498			if (c == '/') {
5499				/*
5500				 * This is a "/./" component.  We're not going
5501				 * to store anything in the destination buffer;
5502				 * we're just going to go to the next component.
5503				 */
5504				goto next;
5505			}
5506
5507			if (c != '.') {
5508				/*
5509				 * This is not ".." -- we can just store the
5510				 * "/." and this character and continue
5511				 * processing.
5512				 */
5513				dest[j++] = '/';
5514				dest[j++] = '.';
5515				dest[j++] = c;
5516				continue;
5517			}
5518
5519			c = dtrace_load8(src + i++);
5520
5521			if (c != '/' && c != '\0') {
5522				/*
5523				 * This is not ".." -- it's "..[mumble]".
5524				 * We'll store the "/.." and this character
5525				 * and continue processing.
5526				 */
5527				dest[j++] = '/';
5528				dest[j++] = '.';
5529				dest[j++] = '.';
5530				dest[j++] = c;
5531				continue;
5532			}
5533
5534			/*
5535			 * This is "/../" or "/..\0".  We need to back up
5536			 * our destination pointer until we find a "/".
5537			 */
5538			i--;
5539			while (j != 0 && dest[--j] != '/')
5540				continue;
5541
5542			if (c == '\0')
5543				dest[++j] = '/';
5544		} while (c != '\0');
5545
5546		dest[j] = '\0';
5547
5548#if defined(sun)
5549		if (mstate->dtms_getf != NULL &&
5550		    !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5551		    (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5552			/*
5553			 * If we've done a getf() as a part of this ECB and we
5554			 * don't have kernel access (and we're not in the global
5555			 * zone), check if the path we cleaned up begins with
5556			 * the zone's root path, and trim it off if so.  Note
5557			 * that this is an output cleanliness issue, not a
5558			 * security issue: knowing one's zone root path does
5559			 * not enable privilege escalation.
5560			 */
5561			if (strstr(dest, z->zone_rootpath) == dest)
5562				dest += strlen(z->zone_rootpath) - 1;
5563		}
5564#endif
5565
5566		regs[rd] = (uintptr_t)dest;
5567		mstate->dtms_scratch_ptr += size;
5568		break;
5569	}
5570
5571	case DIF_SUBR_INET_NTOA:
5572	case DIF_SUBR_INET_NTOA6:
5573	case DIF_SUBR_INET_NTOP: {
5574		size_t size;
5575		int af, argi, i;
5576		char *base, *end;
5577
5578		if (subr == DIF_SUBR_INET_NTOP) {
5579			af = (int)tupregs[0].dttk_value;
5580			argi = 1;
5581		} else {
5582			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5583			argi = 0;
5584		}
5585
5586		if (af == AF_INET) {
5587			ipaddr_t ip4;
5588			uint8_t *ptr8, val;
5589
5590			/*
5591			 * Safely load the IPv4 address.
5592			 */
5593			ip4 = dtrace_load32(tupregs[argi].dttk_value);
5594
5595			/*
5596			 * Check an IPv4 string will fit in scratch.
5597			 */
5598			size = INET_ADDRSTRLEN;
5599			if (!DTRACE_INSCRATCH(mstate, size)) {
5600				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5601				regs[rd] = 0;
5602				break;
5603			}
5604			base = (char *)mstate->dtms_scratch_ptr;
5605			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5606
5607			/*
5608			 * Stringify as a dotted decimal quad.
5609			 */
5610			*end-- = '\0';
5611			ptr8 = (uint8_t *)&ip4;
5612			for (i = 3; i >= 0; i--) {
5613				val = ptr8[i];
5614
5615				if (val == 0) {
5616					*end-- = '0';
5617				} else {
5618					for (; val; val /= 10) {
5619						*end-- = '0' + (val % 10);
5620					}
5621				}
5622
5623				if (i > 0)
5624					*end-- = '.';
5625			}
5626			ASSERT(end + 1 >= base);
5627
5628		} else if (af == AF_INET6) {
5629			struct in6_addr ip6;
5630			int firstzero, tryzero, numzero, v6end;
5631			uint16_t val;
5632			const char digits[] = "0123456789abcdef";
5633
5634			/*
5635			 * Stringify using RFC 1884 convention 2 - 16 bit
5636			 * hexadecimal values with a zero-run compression.
5637			 * Lower case hexadecimal digits are used.
5638			 * 	eg, fe80::214:4fff:fe0b:76c8.
5639			 * The IPv4 embedded form is returned for inet_ntop,
5640			 * just the IPv4 string is returned for inet_ntoa6.
5641			 */
5642
5643			/*
5644			 * Safely load the IPv6 address.
5645			 */
5646			dtrace_bcopy(
5647			    (void *)(uintptr_t)tupregs[argi].dttk_value,
5648			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5649
5650			/*
5651			 * Check an IPv6 string will fit in scratch.
5652			 */
5653			size = INET6_ADDRSTRLEN;
5654			if (!DTRACE_INSCRATCH(mstate, size)) {
5655				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5656				regs[rd] = 0;
5657				break;
5658			}
5659			base = (char *)mstate->dtms_scratch_ptr;
5660			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5661			*end-- = '\0';
5662
5663			/*
5664			 * Find the longest run of 16 bit zero values
5665			 * for the single allowed zero compression - "::".
5666			 */
5667			firstzero = -1;
5668			tryzero = -1;
5669			numzero = 1;
5670			for (i = 0; i < sizeof (struct in6_addr); i++) {
5671#if defined(sun)
5672				if (ip6._S6_un._S6_u8[i] == 0 &&
5673#else
5674				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5675#endif
5676				    tryzero == -1 && i % 2 == 0) {
5677					tryzero = i;
5678					continue;
5679				}
5680
5681				if (tryzero != -1 &&
5682#if defined(sun)
5683				    (ip6._S6_un._S6_u8[i] != 0 ||
5684#else
5685				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
5686#endif
5687				    i == sizeof (struct in6_addr) - 1)) {
5688
5689					if (i - tryzero <= numzero) {
5690						tryzero = -1;
5691						continue;
5692					}
5693
5694					firstzero = tryzero;
5695					numzero = i - i % 2 - tryzero;
5696					tryzero = -1;
5697
5698#if defined(sun)
5699					if (ip6._S6_un._S6_u8[i] == 0 &&
5700#else
5701					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5702#endif
5703					    i == sizeof (struct in6_addr) - 1)
5704						numzero += 2;
5705				}
5706			}
5707			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5708
5709			/*
5710			 * Check for an IPv4 embedded address.
5711			 */
5712			v6end = sizeof (struct in6_addr) - 2;
5713			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5714			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
5715				for (i = sizeof (struct in6_addr) - 1;
5716				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
5717					ASSERT(end >= base);
5718
5719#if defined(sun)
5720					val = ip6._S6_un._S6_u8[i];
5721#else
5722					val = ip6.__u6_addr.__u6_addr8[i];
5723#endif
5724
5725					if (val == 0) {
5726						*end-- = '0';
5727					} else {
5728						for (; val; val /= 10) {
5729							*end-- = '0' + val % 10;
5730						}
5731					}
5732
5733					if (i > DTRACE_V4MAPPED_OFFSET)
5734						*end-- = '.';
5735				}
5736
5737				if (subr == DIF_SUBR_INET_NTOA6)
5738					goto inetout;
5739
5740				/*
5741				 * Set v6end to skip the IPv4 address that
5742				 * we have already stringified.
5743				 */
5744				v6end = 10;
5745			}
5746
5747			/*
5748			 * Build the IPv6 string by working through the
5749			 * address in reverse.
5750			 */
5751			for (i = v6end; i >= 0; i -= 2) {
5752				ASSERT(end >= base);
5753
5754				if (i == firstzero + numzero - 2) {
5755					*end-- = ':';
5756					*end-- = ':';
5757					i -= numzero - 2;
5758					continue;
5759				}
5760
5761				if (i < 14 && i != firstzero - 2)
5762					*end-- = ':';
5763
5764#if defined(sun)
5765				val = (ip6._S6_un._S6_u8[i] << 8) +
5766				    ip6._S6_un._S6_u8[i + 1];
5767#else
5768				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
5769				    ip6.__u6_addr.__u6_addr8[i + 1];
5770#endif
5771
5772				if (val == 0) {
5773					*end-- = '0';
5774				} else {
5775					for (; val; val /= 16) {
5776						*end-- = digits[val % 16];
5777					}
5778				}
5779			}
5780			ASSERT(end + 1 >= base);
5781
5782		} else {
5783			/*
5784			 * The user didn't use AH_INET or AH_INET6.
5785			 */
5786			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5787			regs[rd] = 0;
5788			break;
5789		}
5790
5791inetout:	regs[rd] = (uintptr_t)end + 1;
5792		mstate->dtms_scratch_ptr += size;
5793		break;
5794	}
5795
5796	case DIF_SUBR_MEMREF: {
5797		uintptr_t size = 2 * sizeof(uintptr_t);
5798		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
5799		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
5800
5801		/* address and length */
5802		memref[0] = tupregs[0].dttk_value;
5803		memref[1] = tupregs[1].dttk_value;
5804
5805		regs[rd] = (uintptr_t) memref;
5806		mstate->dtms_scratch_ptr += scratch_size;
5807		break;
5808	}
5809
5810	case DIF_SUBR_TYPEREF: {
5811		uintptr_t size = 4 * sizeof(uintptr_t);
5812		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
5813		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
5814
5815		/* address, num_elements, type_str, type_len */
5816		typeref[0] = tupregs[0].dttk_value;
5817		typeref[1] = tupregs[1].dttk_value;
5818		typeref[2] = tupregs[2].dttk_value;
5819		typeref[3] = tupregs[3].dttk_value;
5820
5821		regs[rd] = (uintptr_t) typeref;
5822		mstate->dtms_scratch_ptr += scratch_size;
5823		break;
5824	}
5825	}
5826}
5827
5828/*
5829 * Emulate the execution of DTrace IR instructions specified by the given
5830 * DIF object.  This function is deliberately void of assertions as all of
5831 * the necessary checks are handled by a call to dtrace_difo_validate().
5832 */
5833static uint64_t
5834dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
5835    dtrace_vstate_t *vstate, dtrace_state_t *state)
5836{
5837	const dif_instr_t *text = difo->dtdo_buf;
5838	const uint_t textlen = difo->dtdo_len;
5839	const char *strtab = difo->dtdo_strtab;
5840	const uint64_t *inttab = difo->dtdo_inttab;
5841
5842	uint64_t rval = 0;
5843	dtrace_statvar_t *svar;
5844	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
5845	dtrace_difv_t *v;
5846	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5847	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
5848
5849	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
5850	uint64_t regs[DIF_DIR_NREGS];
5851	uint64_t *tmp;
5852
5853	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
5854	int64_t cc_r;
5855	uint_t pc = 0, id, opc = 0;
5856	uint8_t ttop = 0;
5857	dif_instr_t instr;
5858	uint_t r1, r2, rd;
5859
5860	/*
5861	 * We stash the current DIF object into the machine state: we need it
5862	 * for subsequent access checking.
5863	 */
5864	mstate->dtms_difo = difo;
5865
5866	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
5867
5868	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
5869		opc = pc;
5870
5871		instr = text[pc++];
5872		r1 = DIF_INSTR_R1(instr);
5873		r2 = DIF_INSTR_R2(instr);
5874		rd = DIF_INSTR_RD(instr);
5875
5876		switch (DIF_INSTR_OP(instr)) {
5877		case DIF_OP_OR:
5878			regs[rd] = regs[r1] | regs[r2];
5879			break;
5880		case DIF_OP_XOR:
5881			regs[rd] = regs[r1] ^ regs[r2];
5882			break;
5883		case DIF_OP_AND:
5884			regs[rd] = regs[r1] & regs[r2];
5885			break;
5886		case DIF_OP_SLL:
5887			regs[rd] = regs[r1] << regs[r2];
5888			break;
5889		case DIF_OP_SRL:
5890			regs[rd] = regs[r1] >> regs[r2];
5891			break;
5892		case DIF_OP_SUB:
5893			regs[rd] = regs[r1] - regs[r2];
5894			break;
5895		case DIF_OP_ADD:
5896			regs[rd] = regs[r1] + regs[r2];
5897			break;
5898		case DIF_OP_MUL:
5899			regs[rd] = regs[r1] * regs[r2];
5900			break;
5901		case DIF_OP_SDIV:
5902			if (regs[r2] == 0) {
5903				regs[rd] = 0;
5904				*flags |= CPU_DTRACE_DIVZERO;
5905			} else {
5906				regs[rd] = (int64_t)regs[r1] /
5907				    (int64_t)regs[r2];
5908			}
5909			break;
5910
5911		case DIF_OP_UDIV:
5912			if (regs[r2] == 0) {
5913				regs[rd] = 0;
5914				*flags |= CPU_DTRACE_DIVZERO;
5915			} else {
5916				regs[rd] = regs[r1] / regs[r2];
5917			}
5918			break;
5919
5920		case DIF_OP_SREM:
5921			if (regs[r2] == 0) {
5922				regs[rd] = 0;
5923				*flags |= CPU_DTRACE_DIVZERO;
5924			} else {
5925				regs[rd] = (int64_t)regs[r1] %
5926				    (int64_t)regs[r2];
5927			}
5928			break;
5929
5930		case DIF_OP_UREM:
5931			if (regs[r2] == 0) {
5932				regs[rd] = 0;
5933				*flags |= CPU_DTRACE_DIVZERO;
5934			} else {
5935				regs[rd] = regs[r1] % regs[r2];
5936			}
5937			break;
5938
5939		case DIF_OP_NOT:
5940			regs[rd] = ~regs[r1];
5941			break;
5942		case DIF_OP_MOV:
5943			regs[rd] = regs[r1];
5944			break;
5945		case DIF_OP_CMP:
5946			cc_r = regs[r1] - regs[r2];
5947			cc_n = cc_r < 0;
5948			cc_z = cc_r == 0;
5949			cc_v = 0;
5950			cc_c = regs[r1] < regs[r2];
5951			break;
5952		case DIF_OP_TST:
5953			cc_n = cc_v = cc_c = 0;
5954			cc_z = regs[r1] == 0;
5955			break;
5956		case DIF_OP_BA:
5957			pc = DIF_INSTR_LABEL(instr);
5958			break;
5959		case DIF_OP_BE:
5960			if (cc_z)
5961				pc = DIF_INSTR_LABEL(instr);
5962			break;
5963		case DIF_OP_BNE:
5964			if (cc_z == 0)
5965				pc = DIF_INSTR_LABEL(instr);
5966			break;
5967		case DIF_OP_BG:
5968			if ((cc_z | (cc_n ^ cc_v)) == 0)
5969				pc = DIF_INSTR_LABEL(instr);
5970			break;
5971		case DIF_OP_BGU:
5972			if ((cc_c | cc_z) == 0)
5973				pc = DIF_INSTR_LABEL(instr);
5974			break;
5975		case DIF_OP_BGE:
5976			if ((cc_n ^ cc_v) == 0)
5977				pc = DIF_INSTR_LABEL(instr);
5978			break;
5979		case DIF_OP_BGEU:
5980			if (cc_c == 0)
5981				pc = DIF_INSTR_LABEL(instr);
5982			break;
5983		case DIF_OP_BL:
5984			if (cc_n ^ cc_v)
5985				pc = DIF_INSTR_LABEL(instr);
5986			break;
5987		case DIF_OP_BLU:
5988			if (cc_c)
5989				pc = DIF_INSTR_LABEL(instr);
5990			break;
5991		case DIF_OP_BLE:
5992			if (cc_z | (cc_n ^ cc_v))
5993				pc = DIF_INSTR_LABEL(instr);
5994			break;
5995		case DIF_OP_BLEU:
5996			if (cc_c | cc_z)
5997				pc = DIF_INSTR_LABEL(instr);
5998			break;
5999		case DIF_OP_RLDSB:
6000			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6001				break;
6002			/*FALLTHROUGH*/
6003		case DIF_OP_LDSB:
6004			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
6005			break;
6006		case DIF_OP_RLDSH:
6007			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6008				break;
6009			/*FALLTHROUGH*/
6010		case DIF_OP_LDSH:
6011			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
6012			break;
6013		case DIF_OP_RLDSW:
6014			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6015				break;
6016			/*FALLTHROUGH*/
6017		case DIF_OP_LDSW:
6018			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
6019			break;
6020		case DIF_OP_RLDUB:
6021			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6022				break;
6023			/*FALLTHROUGH*/
6024		case DIF_OP_LDUB:
6025			regs[rd] = dtrace_load8(regs[r1]);
6026			break;
6027		case DIF_OP_RLDUH:
6028			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6029				break;
6030			/*FALLTHROUGH*/
6031		case DIF_OP_LDUH:
6032			regs[rd] = dtrace_load16(regs[r1]);
6033			break;
6034		case DIF_OP_RLDUW:
6035			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6036				break;
6037			/*FALLTHROUGH*/
6038		case DIF_OP_LDUW:
6039			regs[rd] = dtrace_load32(regs[r1]);
6040			break;
6041		case DIF_OP_RLDX:
6042			if (!dtrace_canload(regs[r1], 8, mstate, vstate))
6043				break;
6044			/*FALLTHROUGH*/
6045		case DIF_OP_LDX:
6046			regs[rd] = dtrace_load64(regs[r1]);
6047			break;
6048		case DIF_OP_ULDSB:
6049			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6050			regs[rd] = (int8_t)
6051			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6052			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6053			break;
6054		case DIF_OP_ULDSH:
6055			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6056			regs[rd] = (int16_t)
6057			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6058			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6059			break;
6060		case DIF_OP_ULDSW:
6061			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6062			regs[rd] = (int32_t)
6063			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6064			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6065			break;
6066		case DIF_OP_ULDUB:
6067			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6068			regs[rd] =
6069			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6070			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6071			break;
6072		case DIF_OP_ULDUH:
6073			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6074			regs[rd] =
6075			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6076			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6077			break;
6078		case DIF_OP_ULDUW:
6079			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6080			regs[rd] =
6081			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6082			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6083			break;
6084		case DIF_OP_ULDX:
6085			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6086			regs[rd] =
6087			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
6088			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6089			break;
6090		case DIF_OP_RET:
6091			rval = regs[rd];
6092			pc = textlen;
6093			break;
6094		case DIF_OP_NOP:
6095			break;
6096		case DIF_OP_SETX:
6097			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
6098			break;
6099		case DIF_OP_SETS:
6100			regs[rd] = (uint64_t)(uintptr_t)
6101			    (strtab + DIF_INSTR_STRING(instr));
6102			break;
6103		case DIF_OP_SCMP: {
6104			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
6105			uintptr_t s1 = regs[r1];
6106			uintptr_t s2 = regs[r2];
6107
6108			if (s1 != 0 &&
6109			    !dtrace_strcanload(s1, sz, mstate, vstate))
6110				break;
6111			if (s2 != 0 &&
6112			    !dtrace_strcanload(s2, sz, mstate, vstate))
6113				break;
6114
6115			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
6116
6117			cc_n = cc_r < 0;
6118			cc_z = cc_r == 0;
6119			cc_v = cc_c = 0;
6120			break;
6121		}
6122		case DIF_OP_LDGA:
6123			regs[rd] = dtrace_dif_variable(mstate, state,
6124			    r1, regs[r2]);
6125			break;
6126		case DIF_OP_LDGS:
6127			id = DIF_INSTR_VAR(instr);
6128
6129			if (id >= DIF_VAR_OTHER_UBASE) {
6130				uintptr_t a;
6131
6132				id -= DIF_VAR_OTHER_UBASE;
6133				svar = vstate->dtvs_globals[id];
6134				ASSERT(svar != NULL);
6135				v = &svar->dtsv_var;
6136
6137				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
6138					regs[rd] = svar->dtsv_data;
6139					break;
6140				}
6141
6142				a = (uintptr_t)svar->dtsv_data;
6143
6144				if (*(uint8_t *)a == UINT8_MAX) {
6145					/*
6146					 * If the 0th byte is set to UINT8_MAX
6147					 * then this is to be treated as a
6148					 * reference to a NULL variable.
6149					 */
6150					regs[rd] = 0;
6151				} else {
6152					regs[rd] = a + sizeof (uint64_t);
6153				}
6154
6155				break;
6156			}
6157
6158			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
6159			break;
6160
6161		case DIF_OP_STGS:
6162			id = DIF_INSTR_VAR(instr);
6163
6164			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6165			id -= DIF_VAR_OTHER_UBASE;
6166
6167			svar = vstate->dtvs_globals[id];
6168			ASSERT(svar != NULL);
6169			v = &svar->dtsv_var;
6170
6171			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6172				uintptr_t a = (uintptr_t)svar->dtsv_data;
6173
6174				ASSERT(a != 0);
6175				ASSERT(svar->dtsv_size != 0);
6176
6177				if (regs[rd] == 0) {
6178					*(uint8_t *)a = UINT8_MAX;
6179					break;
6180				} else {
6181					*(uint8_t *)a = 0;
6182					a += sizeof (uint64_t);
6183				}
6184				if (!dtrace_vcanload(
6185				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6186				    mstate, vstate))
6187					break;
6188
6189				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6190				    (void *)a, &v->dtdv_type);
6191				break;
6192			}
6193
6194			svar->dtsv_data = regs[rd];
6195			break;
6196
6197		case DIF_OP_LDTA:
6198			/*
6199			 * There are no DTrace built-in thread-local arrays at
6200			 * present.  This opcode is saved for future work.
6201			 */
6202			*flags |= CPU_DTRACE_ILLOP;
6203			regs[rd] = 0;
6204			break;
6205
6206		case DIF_OP_LDLS:
6207			id = DIF_INSTR_VAR(instr);
6208
6209			if (id < DIF_VAR_OTHER_UBASE) {
6210				/*
6211				 * For now, this has no meaning.
6212				 */
6213				regs[rd] = 0;
6214				break;
6215			}
6216
6217			id -= DIF_VAR_OTHER_UBASE;
6218
6219			ASSERT(id < vstate->dtvs_nlocals);
6220			ASSERT(vstate->dtvs_locals != NULL);
6221
6222			svar = vstate->dtvs_locals[id];
6223			ASSERT(svar != NULL);
6224			v = &svar->dtsv_var;
6225
6226			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6227				uintptr_t a = (uintptr_t)svar->dtsv_data;
6228				size_t sz = v->dtdv_type.dtdt_size;
6229
6230				sz += sizeof (uint64_t);
6231				ASSERT(svar->dtsv_size == NCPU * sz);
6232				a += curcpu * sz;
6233
6234				if (*(uint8_t *)a == UINT8_MAX) {
6235					/*
6236					 * If the 0th byte is set to UINT8_MAX
6237					 * then this is to be treated as a
6238					 * reference to a NULL variable.
6239					 */
6240					regs[rd] = 0;
6241				} else {
6242					regs[rd] = a + sizeof (uint64_t);
6243				}
6244
6245				break;
6246			}
6247
6248			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6249			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6250			regs[rd] = tmp[curcpu];
6251			break;
6252
6253		case DIF_OP_STLS:
6254			id = DIF_INSTR_VAR(instr);
6255
6256			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6257			id -= DIF_VAR_OTHER_UBASE;
6258			ASSERT(id < vstate->dtvs_nlocals);
6259
6260			ASSERT(vstate->dtvs_locals != NULL);
6261			svar = vstate->dtvs_locals[id];
6262			ASSERT(svar != NULL);
6263			v = &svar->dtsv_var;
6264
6265			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6266				uintptr_t a = (uintptr_t)svar->dtsv_data;
6267				size_t sz = v->dtdv_type.dtdt_size;
6268
6269				sz += sizeof (uint64_t);
6270				ASSERT(svar->dtsv_size == NCPU * sz);
6271				a += curcpu * sz;
6272
6273				if (regs[rd] == 0) {
6274					*(uint8_t *)a = UINT8_MAX;
6275					break;
6276				} else {
6277					*(uint8_t *)a = 0;
6278					a += sizeof (uint64_t);
6279				}
6280
6281				if (!dtrace_vcanload(
6282				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6283				    mstate, vstate))
6284					break;
6285
6286				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6287				    (void *)a, &v->dtdv_type);
6288				break;
6289			}
6290
6291			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6292			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6293			tmp[curcpu] = regs[rd];
6294			break;
6295
6296		case DIF_OP_LDTS: {
6297			dtrace_dynvar_t *dvar;
6298			dtrace_key_t *key;
6299
6300			id = DIF_INSTR_VAR(instr);
6301			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6302			id -= DIF_VAR_OTHER_UBASE;
6303			v = &vstate->dtvs_tlocals[id];
6304
6305			key = &tupregs[DIF_DTR_NREGS];
6306			key[0].dttk_value = (uint64_t)id;
6307			key[0].dttk_size = 0;
6308			DTRACE_TLS_THRKEY(key[1].dttk_value);
6309			key[1].dttk_size = 0;
6310
6311			dvar = dtrace_dynvar(dstate, 2, key,
6312			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6313			    mstate, vstate);
6314
6315			if (dvar == NULL) {
6316				regs[rd] = 0;
6317				break;
6318			}
6319
6320			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6321				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6322			} else {
6323				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6324			}
6325
6326			break;
6327		}
6328
6329		case DIF_OP_STTS: {
6330			dtrace_dynvar_t *dvar;
6331			dtrace_key_t *key;
6332
6333			id = DIF_INSTR_VAR(instr);
6334			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6335			id -= DIF_VAR_OTHER_UBASE;
6336
6337			key = &tupregs[DIF_DTR_NREGS];
6338			key[0].dttk_value = (uint64_t)id;
6339			key[0].dttk_size = 0;
6340			DTRACE_TLS_THRKEY(key[1].dttk_value);
6341			key[1].dttk_size = 0;
6342			v = &vstate->dtvs_tlocals[id];
6343
6344			dvar = dtrace_dynvar(dstate, 2, key,
6345			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6346			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6347			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6348			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6349
6350			/*
6351			 * Given that we're storing to thread-local data,
6352			 * we need to flush our predicate cache.
6353			 */
6354			curthread->t_predcache = 0;
6355
6356			if (dvar == NULL)
6357				break;
6358
6359			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6360				if (!dtrace_vcanload(
6361				    (void *)(uintptr_t)regs[rd],
6362				    &v->dtdv_type, mstate, vstate))
6363					break;
6364
6365				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6366				    dvar->dtdv_data, &v->dtdv_type);
6367			} else {
6368				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6369			}
6370
6371			break;
6372		}
6373
6374		case DIF_OP_SRA:
6375			regs[rd] = (int64_t)regs[r1] >> regs[r2];
6376			break;
6377
6378		case DIF_OP_CALL:
6379			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6380			    regs, tupregs, ttop, mstate, state);
6381			break;
6382
6383		case DIF_OP_PUSHTR:
6384			if (ttop == DIF_DTR_NREGS) {
6385				*flags |= CPU_DTRACE_TUPOFLOW;
6386				break;
6387			}
6388
6389			if (r1 == DIF_TYPE_STRING) {
6390				/*
6391				 * If this is a string type and the size is 0,
6392				 * we'll use the system-wide default string
6393				 * size.  Note that we are _not_ looking at
6394				 * the value of the DTRACEOPT_STRSIZE option;
6395				 * had this been set, we would expect to have
6396				 * a non-zero size value in the "pushtr".
6397				 */
6398				tupregs[ttop].dttk_size =
6399				    dtrace_strlen((char *)(uintptr_t)regs[rd],
6400				    regs[r2] ? regs[r2] :
6401				    dtrace_strsize_default) + 1;
6402			} else {
6403				tupregs[ttop].dttk_size = regs[r2];
6404			}
6405
6406			tupregs[ttop++].dttk_value = regs[rd];
6407			break;
6408
6409		case DIF_OP_PUSHTV:
6410			if (ttop == DIF_DTR_NREGS) {
6411				*flags |= CPU_DTRACE_TUPOFLOW;
6412				break;
6413			}
6414
6415			tupregs[ttop].dttk_value = regs[rd];
6416			tupregs[ttop++].dttk_size = 0;
6417			break;
6418
6419		case DIF_OP_POPTS:
6420			if (ttop != 0)
6421				ttop--;
6422			break;
6423
6424		case DIF_OP_FLUSHTS:
6425			ttop = 0;
6426			break;
6427
6428		case DIF_OP_LDGAA:
6429		case DIF_OP_LDTAA: {
6430			dtrace_dynvar_t *dvar;
6431			dtrace_key_t *key = tupregs;
6432			uint_t nkeys = ttop;
6433
6434			id = DIF_INSTR_VAR(instr);
6435			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6436			id -= DIF_VAR_OTHER_UBASE;
6437
6438			key[nkeys].dttk_value = (uint64_t)id;
6439			key[nkeys++].dttk_size = 0;
6440
6441			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6442				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6443				key[nkeys++].dttk_size = 0;
6444				v = &vstate->dtvs_tlocals[id];
6445			} else {
6446				v = &vstate->dtvs_globals[id]->dtsv_var;
6447			}
6448
6449			dvar = dtrace_dynvar(dstate, nkeys, key,
6450			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6451			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6452			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6453
6454			if (dvar == NULL) {
6455				regs[rd] = 0;
6456				break;
6457			}
6458
6459			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6460				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6461			} else {
6462				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6463			}
6464
6465			break;
6466		}
6467
6468		case DIF_OP_STGAA:
6469		case DIF_OP_STTAA: {
6470			dtrace_dynvar_t *dvar;
6471			dtrace_key_t *key = tupregs;
6472			uint_t nkeys = ttop;
6473
6474			id = DIF_INSTR_VAR(instr);
6475			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6476			id -= DIF_VAR_OTHER_UBASE;
6477
6478			key[nkeys].dttk_value = (uint64_t)id;
6479			key[nkeys++].dttk_size = 0;
6480
6481			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6482				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6483				key[nkeys++].dttk_size = 0;
6484				v = &vstate->dtvs_tlocals[id];
6485			} else {
6486				v = &vstate->dtvs_globals[id]->dtsv_var;
6487			}
6488
6489			dvar = dtrace_dynvar(dstate, nkeys, key,
6490			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6491			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6492			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6493			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6494
6495			if (dvar == NULL)
6496				break;
6497
6498			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6499				if (!dtrace_vcanload(
6500				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6501				    mstate, vstate))
6502					break;
6503
6504				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6505				    dvar->dtdv_data, &v->dtdv_type);
6506			} else {
6507				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6508			}
6509
6510			break;
6511		}
6512
6513		case DIF_OP_ALLOCS: {
6514			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6515			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6516
6517			/*
6518			 * Rounding up the user allocation size could have
6519			 * overflowed large, bogus allocations (like -1ULL) to
6520			 * 0.
6521			 */
6522			if (size < regs[r1] ||
6523			    !DTRACE_INSCRATCH(mstate, size)) {
6524				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6525				regs[rd] = 0;
6526				break;
6527			}
6528
6529			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6530			mstate->dtms_scratch_ptr += size;
6531			regs[rd] = ptr;
6532			break;
6533		}
6534
6535		case DIF_OP_COPYS:
6536			if (!dtrace_canstore(regs[rd], regs[r2],
6537			    mstate, vstate)) {
6538				*flags |= CPU_DTRACE_BADADDR;
6539				*illval = regs[rd];
6540				break;
6541			}
6542
6543			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6544				break;
6545
6546			dtrace_bcopy((void *)(uintptr_t)regs[r1],
6547			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6548			break;
6549
6550		case DIF_OP_STB:
6551			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6552				*flags |= CPU_DTRACE_BADADDR;
6553				*illval = regs[rd];
6554				break;
6555			}
6556			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6557			break;
6558
6559		case DIF_OP_STH:
6560			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6561				*flags |= CPU_DTRACE_BADADDR;
6562				*illval = regs[rd];
6563				break;
6564			}
6565			if (regs[rd] & 1) {
6566				*flags |= CPU_DTRACE_BADALIGN;
6567				*illval = regs[rd];
6568				break;
6569			}
6570			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6571			break;
6572
6573		case DIF_OP_STW:
6574			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6575				*flags |= CPU_DTRACE_BADADDR;
6576				*illval = regs[rd];
6577				break;
6578			}
6579			if (regs[rd] & 3) {
6580				*flags |= CPU_DTRACE_BADALIGN;
6581				*illval = regs[rd];
6582				break;
6583			}
6584			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6585			break;
6586
6587		case DIF_OP_STX:
6588			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6589				*flags |= CPU_DTRACE_BADADDR;
6590				*illval = regs[rd];
6591				break;
6592			}
6593			if (regs[rd] & 7) {
6594				*flags |= CPU_DTRACE_BADALIGN;
6595				*illval = regs[rd];
6596				break;
6597			}
6598			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6599			break;
6600		}
6601	}
6602
6603	if (!(*flags & CPU_DTRACE_FAULT))
6604		return (rval);
6605
6606	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6607	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6608
6609	return (0);
6610}
6611
6612static void
6613dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6614{
6615	dtrace_probe_t *probe = ecb->dte_probe;
6616	dtrace_provider_t *prov = probe->dtpr_provider;
6617	char c[DTRACE_FULLNAMELEN + 80], *str;
6618	char *msg = "dtrace: breakpoint action at probe ";
6619	char *ecbmsg = " (ecb ";
6620	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6621	uintptr_t val = (uintptr_t)ecb;
6622	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6623
6624	if (dtrace_destructive_disallow)
6625		return;
6626
6627	/*
6628	 * It's impossible to be taking action on the NULL probe.
6629	 */
6630	ASSERT(probe != NULL);
6631
6632	/*
6633	 * This is a poor man's (destitute man's?) sprintf():  we want to
6634	 * print the provider name, module name, function name and name of
6635	 * the probe, along with the hex address of the ECB with the breakpoint
6636	 * action -- all of which we must place in the character buffer by
6637	 * hand.
6638	 */
6639	while (*msg != '\0')
6640		c[i++] = *msg++;
6641
6642	for (str = prov->dtpv_name; *str != '\0'; str++)
6643		c[i++] = *str;
6644	c[i++] = ':';
6645
6646	for (str = probe->dtpr_mod; *str != '\0'; str++)
6647		c[i++] = *str;
6648	c[i++] = ':';
6649
6650	for (str = probe->dtpr_func; *str != '\0'; str++)
6651		c[i++] = *str;
6652	c[i++] = ':';
6653
6654	for (str = probe->dtpr_name; *str != '\0'; str++)
6655		c[i++] = *str;
6656
6657	while (*ecbmsg != '\0')
6658		c[i++] = *ecbmsg++;
6659
6660	while (shift >= 0) {
6661		mask = (uintptr_t)0xf << shift;
6662
6663		if (val >= ((uintptr_t)1 << shift))
6664			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6665		shift -= 4;
6666	}
6667
6668	c[i++] = ')';
6669	c[i] = '\0';
6670
6671#if defined(sun)
6672	debug_enter(c);
6673#else
6674	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
6675#endif
6676}
6677
6678static void
6679dtrace_action_panic(dtrace_ecb_t *ecb)
6680{
6681	dtrace_probe_t *probe = ecb->dte_probe;
6682
6683	/*
6684	 * It's impossible to be taking action on the NULL probe.
6685	 */
6686	ASSERT(probe != NULL);
6687
6688	if (dtrace_destructive_disallow)
6689		return;
6690
6691	if (dtrace_panicked != NULL)
6692		return;
6693
6694	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6695		return;
6696
6697	/*
6698	 * We won the right to panic.  (We want to be sure that only one
6699	 * thread calls panic() from dtrace_probe(), and that panic() is
6700	 * called exactly once.)
6701	 */
6702	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6703	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6704	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6705}
6706
6707static void
6708dtrace_action_raise(uint64_t sig)
6709{
6710	if (dtrace_destructive_disallow)
6711		return;
6712
6713	if (sig >= NSIG) {
6714		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6715		return;
6716	}
6717
6718#if defined(sun)
6719	/*
6720	 * raise() has a queue depth of 1 -- we ignore all subsequent
6721	 * invocations of the raise() action.
6722	 */
6723	if (curthread->t_dtrace_sig == 0)
6724		curthread->t_dtrace_sig = (uint8_t)sig;
6725
6726	curthread->t_sig_check = 1;
6727	aston(curthread);
6728#else
6729	struct proc *p = curproc;
6730	PROC_LOCK(p);
6731	kern_psignal(p, sig);
6732	PROC_UNLOCK(p);
6733#endif
6734}
6735
6736static void
6737dtrace_action_stop(void)
6738{
6739	if (dtrace_destructive_disallow)
6740		return;
6741
6742#if defined(sun)
6743	if (!curthread->t_dtrace_stop) {
6744		curthread->t_dtrace_stop = 1;
6745		curthread->t_sig_check = 1;
6746		aston(curthread);
6747	}
6748#else
6749	struct proc *p = curproc;
6750	PROC_LOCK(p);
6751	kern_psignal(p, SIGSTOP);
6752	PROC_UNLOCK(p);
6753#endif
6754}
6755
6756static void
6757dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
6758{
6759	hrtime_t now;
6760	volatile uint16_t *flags;
6761#if defined(sun)
6762	cpu_t *cpu = CPU;
6763#else
6764	cpu_t *cpu = &solaris_cpu[curcpu];
6765#endif
6766
6767	if (dtrace_destructive_disallow)
6768		return;
6769
6770	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
6771
6772	now = dtrace_gethrtime();
6773
6774	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
6775		/*
6776		 * We need to advance the mark to the current time.
6777		 */
6778		cpu->cpu_dtrace_chillmark = now;
6779		cpu->cpu_dtrace_chilled = 0;
6780	}
6781
6782	/*
6783	 * Now check to see if the requested chill time would take us over
6784	 * the maximum amount of time allowed in the chill interval.  (Or
6785	 * worse, if the calculation itself induces overflow.)
6786	 */
6787	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
6788	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
6789		*flags |= CPU_DTRACE_ILLOP;
6790		return;
6791	}
6792
6793	while (dtrace_gethrtime() - now < val)
6794		continue;
6795
6796	/*
6797	 * Normally, we assure that the value of the variable "timestamp" does
6798	 * not change within an ECB.  The presence of chill() represents an
6799	 * exception to this rule, however.
6800	 */
6801	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
6802	cpu->cpu_dtrace_chilled += val;
6803}
6804
6805static void
6806dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
6807    uint64_t *buf, uint64_t arg)
6808{
6809	int nframes = DTRACE_USTACK_NFRAMES(arg);
6810	int strsize = DTRACE_USTACK_STRSIZE(arg);
6811	uint64_t *pcs = &buf[1], *fps;
6812	char *str = (char *)&pcs[nframes];
6813	int size, offs = 0, i, j;
6814	uintptr_t old = mstate->dtms_scratch_ptr, saved;
6815	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
6816	char *sym;
6817
6818	/*
6819	 * Should be taking a faster path if string space has not been
6820	 * allocated.
6821	 */
6822	ASSERT(strsize != 0);
6823
6824	/*
6825	 * We will first allocate some temporary space for the frame pointers.
6826	 */
6827	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6828	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
6829	    (nframes * sizeof (uint64_t));
6830
6831	if (!DTRACE_INSCRATCH(mstate, size)) {
6832		/*
6833		 * Not enough room for our frame pointers -- need to indicate
6834		 * that we ran out of scratch space.
6835		 */
6836		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6837		return;
6838	}
6839
6840	mstate->dtms_scratch_ptr += size;
6841	saved = mstate->dtms_scratch_ptr;
6842
6843	/*
6844	 * Now get a stack with both program counters and frame pointers.
6845	 */
6846	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6847	dtrace_getufpstack(buf, fps, nframes + 1);
6848	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6849
6850	/*
6851	 * If that faulted, we're cooked.
6852	 */
6853	if (*flags & CPU_DTRACE_FAULT)
6854		goto out;
6855
6856	/*
6857	 * Now we want to walk up the stack, calling the USTACK helper.  For
6858	 * each iteration, we restore the scratch pointer.
6859	 */
6860	for (i = 0; i < nframes; i++) {
6861		mstate->dtms_scratch_ptr = saved;
6862
6863		if (offs >= strsize)
6864			break;
6865
6866		sym = (char *)(uintptr_t)dtrace_helper(
6867		    DTRACE_HELPER_ACTION_USTACK,
6868		    mstate, state, pcs[i], fps[i]);
6869
6870		/*
6871		 * If we faulted while running the helper, we're going to
6872		 * clear the fault and null out the corresponding string.
6873		 */
6874		if (*flags & CPU_DTRACE_FAULT) {
6875			*flags &= ~CPU_DTRACE_FAULT;
6876			str[offs++] = '\0';
6877			continue;
6878		}
6879
6880		if (sym == NULL) {
6881			str[offs++] = '\0';
6882			continue;
6883		}
6884
6885		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6886
6887		/*
6888		 * Now copy in the string that the helper returned to us.
6889		 */
6890		for (j = 0; offs + j < strsize; j++) {
6891			if ((str[offs + j] = sym[j]) == '\0')
6892				break;
6893		}
6894
6895		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6896
6897		offs += j + 1;
6898	}
6899
6900	if (offs >= strsize) {
6901		/*
6902		 * If we didn't have room for all of the strings, we don't
6903		 * abort processing -- this needn't be a fatal error -- but we
6904		 * still want to increment a counter (dts_stkstroverflows) to
6905		 * allow this condition to be warned about.  (If this is from
6906		 * a jstack() action, it is easily tuned via jstackstrsize.)
6907		 */
6908		dtrace_error(&state->dts_stkstroverflows);
6909	}
6910
6911	while (offs < strsize)
6912		str[offs++] = '\0';
6913
6914out:
6915	mstate->dtms_scratch_ptr = old;
6916}
6917
6918static void
6919dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
6920    size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
6921{
6922	volatile uint16_t *flags;
6923	uint64_t val = *valp;
6924	size_t valoffs = *valoffsp;
6925
6926	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
6927	ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
6928
6929	/*
6930	 * If this is a string, we're going to only load until we find the zero
6931	 * byte -- after which we'll store zero bytes.
6932	 */
6933	if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
6934		char c = '\0' + 1;
6935		size_t s;
6936
6937		for (s = 0; s < size; s++) {
6938			if (c != '\0' && dtkind == DIF_TF_BYREF) {
6939				c = dtrace_load8(val++);
6940			} else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
6941				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6942				c = dtrace_fuword8((void *)(uintptr_t)val++);
6943				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6944				if (*flags & CPU_DTRACE_FAULT)
6945					break;
6946			}
6947
6948			DTRACE_STORE(uint8_t, tomax, valoffs++, c);
6949
6950			if (c == '\0' && intuple)
6951				break;
6952		}
6953	} else {
6954		uint8_t c;
6955		while (valoffs < end) {
6956			if (dtkind == DIF_TF_BYREF) {
6957				c = dtrace_load8(val++);
6958			} else if (dtkind == DIF_TF_BYUREF) {
6959				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6960				c = dtrace_fuword8((void *)(uintptr_t)val++);
6961				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6962				if (*flags & CPU_DTRACE_FAULT)
6963					break;
6964			}
6965
6966			DTRACE_STORE(uint8_t, tomax,
6967			    valoffs++, c);
6968		}
6969	}
6970
6971	*valp = val;
6972	*valoffsp = valoffs;
6973}
6974
6975/*
6976 * If you're looking for the epicenter of DTrace, you just found it.  This
6977 * is the function called by the provider to fire a probe -- from which all
6978 * subsequent probe-context DTrace activity emanates.
6979 */
6980void
6981dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6982    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6983{
6984	processorid_t cpuid;
6985	dtrace_icookie_t cookie;
6986	dtrace_probe_t *probe;
6987	dtrace_mstate_t mstate;
6988	dtrace_ecb_t *ecb;
6989	dtrace_action_t *act;
6990	intptr_t offs;
6991	size_t size;
6992	int vtime, onintr;
6993	volatile uint16_t *flags;
6994	hrtime_t now;
6995
6996	if (panicstr != NULL)
6997		return;
6998
6999#if defined(sun)
7000	/*
7001	 * Kick out immediately if this CPU is still being born (in which case
7002	 * curthread will be set to -1) or the current thread can't allow
7003	 * probes in its current context.
7004	 */
7005	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
7006		return;
7007#endif
7008
7009	cookie = dtrace_interrupt_disable();
7010	probe = dtrace_probes[id - 1];
7011	cpuid = curcpu;
7012	onintr = CPU_ON_INTR(CPU);
7013
7014	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
7015	    probe->dtpr_predcache == curthread->t_predcache) {
7016		/*
7017		 * We have hit in the predicate cache; we know that
7018		 * this predicate would evaluate to be false.
7019		 */
7020		dtrace_interrupt_enable(cookie);
7021		return;
7022	}
7023
7024#if defined(sun)
7025	if (panic_quiesce) {
7026#else
7027	if (panicstr != NULL) {
7028#endif
7029		/*
7030		 * We don't trace anything if we're panicking.
7031		 */
7032		dtrace_interrupt_enable(cookie);
7033		return;
7034	}
7035
7036	now = dtrace_gethrtime();
7037	vtime = dtrace_vtime_references != 0;
7038
7039	if (vtime && curthread->t_dtrace_start)
7040		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
7041
7042	mstate.dtms_difo = NULL;
7043	mstate.dtms_probe = probe;
7044	mstate.dtms_strtok = 0;
7045	mstate.dtms_arg[0] = arg0;
7046	mstate.dtms_arg[1] = arg1;
7047	mstate.dtms_arg[2] = arg2;
7048	mstate.dtms_arg[3] = arg3;
7049	mstate.dtms_arg[4] = arg4;
7050
7051	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
7052
7053	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
7054		dtrace_predicate_t *pred = ecb->dte_predicate;
7055		dtrace_state_t *state = ecb->dte_state;
7056		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
7057		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
7058		dtrace_vstate_t *vstate = &state->dts_vstate;
7059		dtrace_provider_t *prov = probe->dtpr_provider;
7060		uint64_t tracememsize = 0;
7061		int committed = 0;
7062		caddr_t tomax;
7063
7064		/*
7065		 * A little subtlety with the following (seemingly innocuous)
7066		 * declaration of the automatic 'val':  by looking at the
7067		 * code, you might think that it could be declared in the
7068		 * action processing loop, below.  (That is, it's only used in
7069		 * the action processing loop.)  However, it must be declared
7070		 * out of that scope because in the case of DIF expression
7071		 * arguments to aggregating actions, one iteration of the
7072		 * action loop will use the last iteration's value.
7073		 */
7074		uint64_t val = 0;
7075
7076		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
7077		mstate.dtms_getf = NULL;
7078
7079		*flags &= ~CPU_DTRACE_ERROR;
7080
7081		if (prov == dtrace_provider) {
7082			/*
7083			 * If dtrace itself is the provider of this probe,
7084			 * we're only going to continue processing the ECB if
7085			 * arg0 (the dtrace_state_t) is equal to the ECB's
7086			 * creating state.  (This prevents disjoint consumers
7087			 * from seeing one another's metaprobes.)
7088			 */
7089			if (arg0 != (uint64_t)(uintptr_t)state)
7090				continue;
7091		}
7092
7093		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
7094			/*
7095			 * We're not currently active.  If our provider isn't
7096			 * the dtrace pseudo provider, we're not interested.
7097			 */
7098			if (prov != dtrace_provider)
7099				continue;
7100
7101			/*
7102			 * Now we must further check if we are in the BEGIN
7103			 * probe.  If we are, we will only continue processing
7104			 * if we're still in WARMUP -- if one BEGIN enabling
7105			 * has invoked the exit() action, we don't want to
7106			 * evaluate subsequent BEGIN enablings.
7107			 */
7108			if (probe->dtpr_id == dtrace_probeid_begin &&
7109			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
7110				ASSERT(state->dts_activity ==
7111				    DTRACE_ACTIVITY_DRAINING);
7112				continue;
7113			}
7114		}
7115
7116		if (ecb->dte_cond) {
7117			/*
7118			 * If the dte_cond bits indicate that this
7119			 * consumer is only allowed to see user-mode firings
7120			 * of this probe, call the provider's dtps_usermode()
7121			 * entry point to check that the probe was fired
7122			 * while in a user context. Skip this ECB if that's
7123			 * not the case.
7124			 */
7125			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
7126			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
7127			    probe->dtpr_id, probe->dtpr_arg) == 0)
7128				continue;
7129
7130#if defined(sun)
7131			/*
7132			 * This is more subtle than it looks. We have to be
7133			 * absolutely certain that CRED() isn't going to
7134			 * change out from under us so it's only legit to
7135			 * examine that structure if we're in constrained
7136			 * situations. Currently, the only times we'll this
7137			 * check is if a non-super-user has enabled the
7138			 * profile or syscall providers -- providers that
7139			 * allow visibility of all processes. For the
7140			 * profile case, the check above will ensure that
7141			 * we're examining a user context.
7142			 */
7143			if (ecb->dte_cond & DTRACE_COND_OWNER) {
7144				cred_t *cr;
7145				cred_t *s_cr =
7146				    ecb->dte_state->dts_cred.dcr_cred;
7147				proc_t *proc;
7148
7149				ASSERT(s_cr != NULL);
7150
7151				if ((cr = CRED()) == NULL ||
7152				    s_cr->cr_uid != cr->cr_uid ||
7153				    s_cr->cr_uid != cr->cr_ruid ||
7154				    s_cr->cr_uid != cr->cr_suid ||
7155				    s_cr->cr_gid != cr->cr_gid ||
7156				    s_cr->cr_gid != cr->cr_rgid ||
7157				    s_cr->cr_gid != cr->cr_sgid ||
7158				    (proc = ttoproc(curthread)) == NULL ||
7159				    (proc->p_flag & SNOCD))
7160					continue;
7161			}
7162
7163			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
7164				cred_t *cr;
7165				cred_t *s_cr =
7166				    ecb->dte_state->dts_cred.dcr_cred;
7167
7168				ASSERT(s_cr != NULL);
7169
7170				if ((cr = CRED()) == NULL ||
7171				    s_cr->cr_zone->zone_id !=
7172				    cr->cr_zone->zone_id)
7173					continue;
7174			}
7175#endif
7176		}
7177
7178		if (now - state->dts_alive > dtrace_deadman_timeout) {
7179			/*
7180			 * We seem to be dead.  Unless we (a) have kernel
7181			 * destructive permissions (b) have explicitly enabled
7182			 * destructive actions and (c) destructive actions have
7183			 * not been disabled, we're going to transition into
7184			 * the KILLED state, from which no further processing
7185			 * on this state will be performed.
7186			 */
7187			if (!dtrace_priv_kernel_destructive(state) ||
7188			    !state->dts_cred.dcr_destructive ||
7189			    dtrace_destructive_disallow) {
7190				void *activity = &state->dts_activity;
7191				dtrace_activity_t current;
7192
7193				do {
7194					current = state->dts_activity;
7195				} while (dtrace_cas32(activity, current,
7196				    DTRACE_ACTIVITY_KILLED) != current);
7197
7198				continue;
7199			}
7200		}
7201
7202		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
7203		    ecb->dte_alignment, state, &mstate)) < 0)
7204			continue;
7205
7206		tomax = buf->dtb_tomax;
7207		ASSERT(tomax != NULL);
7208
7209		if (ecb->dte_size != 0) {
7210			dtrace_rechdr_t dtrh;
7211			if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
7212				mstate.dtms_timestamp = dtrace_gethrtime();
7213				mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7214			}
7215			ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
7216			dtrh.dtrh_epid = ecb->dte_epid;
7217			DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
7218			    mstate.dtms_timestamp);
7219			*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
7220		}
7221
7222		mstate.dtms_epid = ecb->dte_epid;
7223		mstate.dtms_present |= DTRACE_MSTATE_EPID;
7224
7225		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
7226			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
7227		else
7228			mstate.dtms_access = 0;
7229
7230		if (pred != NULL) {
7231			dtrace_difo_t *dp = pred->dtp_difo;
7232			int rval;
7233
7234			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
7235
7236			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
7237				dtrace_cacheid_t cid = probe->dtpr_predcache;
7238
7239				if (cid != DTRACE_CACHEIDNONE && !onintr) {
7240					/*
7241					 * Update the predicate cache...
7242					 */
7243					ASSERT(cid == pred->dtp_cacheid);
7244					curthread->t_predcache = cid;
7245				}
7246
7247				continue;
7248			}
7249		}
7250
7251		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
7252		    act != NULL; act = act->dta_next) {
7253			size_t valoffs;
7254			dtrace_difo_t *dp;
7255			dtrace_recdesc_t *rec = &act->dta_rec;
7256
7257			size = rec->dtrd_size;
7258			valoffs = offs + rec->dtrd_offset;
7259
7260			if (DTRACEACT_ISAGG(act->dta_kind)) {
7261				uint64_t v = 0xbad;
7262				dtrace_aggregation_t *agg;
7263
7264				agg = (dtrace_aggregation_t *)act;
7265
7266				if ((dp = act->dta_difo) != NULL)
7267					v = dtrace_dif_emulate(dp,
7268					    &mstate, vstate, state);
7269
7270				if (*flags & CPU_DTRACE_ERROR)
7271					continue;
7272
7273				/*
7274				 * Note that we always pass the expression
7275				 * value from the previous iteration of the
7276				 * action loop.  This value will only be used
7277				 * if there is an expression argument to the
7278				 * aggregating action, denoted by the
7279				 * dtag_hasarg field.
7280				 */
7281				dtrace_aggregate(agg, buf,
7282				    offs, aggbuf, v, val);
7283				continue;
7284			}
7285
7286			switch (act->dta_kind) {
7287			case DTRACEACT_STOP:
7288				if (dtrace_priv_proc_destructive(state))
7289					dtrace_action_stop();
7290				continue;
7291
7292			case DTRACEACT_BREAKPOINT:
7293				if (dtrace_priv_kernel_destructive(state))
7294					dtrace_action_breakpoint(ecb);
7295				continue;
7296
7297			case DTRACEACT_PANIC:
7298				if (dtrace_priv_kernel_destructive(state))
7299					dtrace_action_panic(ecb);
7300				continue;
7301
7302			case DTRACEACT_STACK:
7303				if (!dtrace_priv_kernel(state))
7304					continue;
7305
7306				dtrace_getpcstack((pc_t *)(tomax + valoffs),
7307				    size / sizeof (pc_t), probe->dtpr_aframes,
7308				    DTRACE_ANCHORED(probe) ? NULL :
7309				    (uint32_t *)arg0);
7310				continue;
7311
7312			case DTRACEACT_JSTACK:
7313			case DTRACEACT_USTACK:
7314				if (!dtrace_priv_proc(state))
7315					continue;
7316
7317				/*
7318				 * See comment in DIF_VAR_PID.
7319				 */
7320				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
7321				    CPU_ON_INTR(CPU)) {
7322					int depth = DTRACE_USTACK_NFRAMES(
7323					    rec->dtrd_arg) + 1;
7324
7325					dtrace_bzero((void *)(tomax + valoffs),
7326					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
7327					    + depth * sizeof (uint64_t));
7328
7329					continue;
7330				}
7331
7332				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
7333				    curproc->p_dtrace_helpers != NULL) {
7334					/*
7335					 * This is the slow path -- we have
7336					 * allocated string space, and we're
7337					 * getting the stack of a process that
7338					 * has helpers.  Call into a separate
7339					 * routine to perform this processing.
7340					 */
7341					dtrace_action_ustack(&mstate, state,
7342					    (uint64_t *)(tomax + valoffs),
7343					    rec->dtrd_arg);
7344					continue;
7345				}
7346
7347				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7348				dtrace_getupcstack((uint64_t *)
7349				    (tomax + valoffs),
7350				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
7351				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7352				continue;
7353
7354			default:
7355				break;
7356			}
7357
7358			dp = act->dta_difo;
7359			ASSERT(dp != NULL);
7360
7361			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
7362
7363			if (*flags & CPU_DTRACE_ERROR)
7364				continue;
7365
7366			switch (act->dta_kind) {
7367			case DTRACEACT_SPECULATE: {
7368				dtrace_rechdr_t *dtrh;
7369
7370				ASSERT(buf == &state->dts_buffer[cpuid]);
7371				buf = dtrace_speculation_buffer(state,
7372				    cpuid, val);
7373
7374				if (buf == NULL) {
7375					*flags |= CPU_DTRACE_DROP;
7376					continue;
7377				}
7378
7379				offs = dtrace_buffer_reserve(buf,
7380				    ecb->dte_needed, ecb->dte_alignment,
7381				    state, NULL);
7382
7383				if (offs < 0) {
7384					*flags |= CPU_DTRACE_DROP;
7385					continue;
7386				}
7387
7388				tomax = buf->dtb_tomax;
7389				ASSERT(tomax != NULL);
7390
7391				if (ecb->dte_size == 0)
7392					continue;
7393
7394				ASSERT3U(ecb->dte_size, >=,
7395				    sizeof (dtrace_rechdr_t));
7396				dtrh = ((void *)(tomax + offs));
7397				dtrh->dtrh_epid = ecb->dte_epid;
7398				/*
7399				 * When the speculation is committed, all of
7400				 * the records in the speculative buffer will
7401				 * have their timestamps set to the commit
7402				 * time.  Until then, it is set to a sentinel
7403				 * value, for debugability.
7404				 */
7405				DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7406				continue;
7407			}
7408
7409			case DTRACEACT_PRINTM: {
7410				/* The DIF returns a 'memref'. */
7411				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
7412
7413				/* Get the size from the memref. */
7414				size = memref[1];
7415
7416				/*
7417				 * Check if the size exceeds the allocated
7418				 * buffer size.
7419				 */
7420				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
7421					/* Flag a drop! */
7422					*flags |= CPU_DTRACE_DROP;
7423					continue;
7424				}
7425
7426				/* Store the size in the buffer first. */
7427				DTRACE_STORE(uintptr_t, tomax,
7428				    valoffs, size);
7429
7430				/*
7431				 * Offset the buffer address to the start
7432				 * of the data.
7433				 */
7434				valoffs += sizeof(uintptr_t);
7435
7436				/*
7437				 * Reset to the memory address rather than
7438				 * the memref array, then let the BYREF
7439				 * code below do the work to store the
7440				 * memory data in the buffer.
7441				 */
7442				val = memref[0];
7443				break;
7444			}
7445
7446			case DTRACEACT_PRINTT: {
7447				/* The DIF returns a 'typeref'. */
7448				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
7449				char c = '\0' + 1;
7450				size_t s;
7451
7452				/*
7453				 * Get the type string length and round it
7454				 * up so that the data that follows is
7455				 * aligned for easy access.
7456				 */
7457				size_t typs = strlen((char *) typeref[2]) + 1;
7458				typs = roundup(typs,  sizeof(uintptr_t));
7459
7460				/*
7461				 *Get the size from the typeref using the
7462				 * number of elements and the type size.
7463				 */
7464				size = typeref[1] * typeref[3];
7465
7466				/*
7467				 * Check if the size exceeds the allocated
7468				 * buffer size.
7469				 */
7470				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
7471					/* Flag a drop! */
7472					*flags |= CPU_DTRACE_DROP;
7473
7474				}
7475
7476				/* Store the size in the buffer first. */
7477				DTRACE_STORE(uintptr_t, tomax,
7478				    valoffs, size);
7479				valoffs += sizeof(uintptr_t);
7480
7481				/* Store the type size in the buffer. */
7482				DTRACE_STORE(uintptr_t, tomax,
7483				    valoffs, typeref[3]);
7484				valoffs += sizeof(uintptr_t);
7485
7486				val = typeref[2];
7487
7488				for (s = 0; s < typs; s++) {
7489					if (c != '\0')
7490						c = dtrace_load8(val++);
7491
7492					DTRACE_STORE(uint8_t, tomax,
7493					    valoffs++, c);
7494				}
7495
7496				/*
7497				 * Reset to the memory address rather than
7498				 * the typeref array, then let the BYREF
7499				 * code below do the work to store the
7500				 * memory data in the buffer.
7501				 */
7502				val = typeref[0];
7503				break;
7504			}
7505
7506			case DTRACEACT_CHILL:
7507				if (dtrace_priv_kernel_destructive(state))
7508					dtrace_action_chill(&mstate, val);
7509				continue;
7510
7511			case DTRACEACT_RAISE:
7512				if (dtrace_priv_proc_destructive(state))
7513					dtrace_action_raise(val);
7514				continue;
7515
7516			case DTRACEACT_COMMIT:
7517				ASSERT(!committed);
7518
7519				/*
7520				 * We need to commit our buffer state.
7521				 */
7522				if (ecb->dte_size)
7523					buf->dtb_offset = offs + ecb->dte_size;
7524				buf = &state->dts_buffer[cpuid];
7525				dtrace_speculation_commit(state, cpuid, val);
7526				committed = 1;
7527				continue;
7528
7529			case DTRACEACT_DISCARD:
7530				dtrace_speculation_discard(state, cpuid, val);
7531				continue;
7532
7533			case DTRACEACT_DIFEXPR:
7534			case DTRACEACT_LIBACT:
7535			case DTRACEACT_PRINTF:
7536			case DTRACEACT_PRINTA:
7537			case DTRACEACT_SYSTEM:
7538			case DTRACEACT_FREOPEN:
7539			case DTRACEACT_TRACEMEM:
7540				break;
7541
7542			case DTRACEACT_TRACEMEM_DYNSIZE:
7543				tracememsize = val;
7544				break;
7545
7546			case DTRACEACT_SYM:
7547			case DTRACEACT_MOD:
7548				if (!dtrace_priv_kernel(state))
7549					continue;
7550				break;
7551
7552			case DTRACEACT_USYM:
7553			case DTRACEACT_UMOD:
7554			case DTRACEACT_UADDR: {
7555#if defined(sun)
7556				struct pid *pid = curthread->t_procp->p_pidp;
7557#endif
7558
7559				if (!dtrace_priv_proc(state))
7560					continue;
7561
7562				DTRACE_STORE(uint64_t, tomax,
7563#if defined(sun)
7564				    valoffs, (uint64_t)pid->pid_id);
7565#else
7566				    valoffs, (uint64_t) curproc->p_pid);
7567#endif
7568				DTRACE_STORE(uint64_t, tomax,
7569				    valoffs + sizeof (uint64_t), val);
7570
7571				continue;
7572			}
7573
7574			case DTRACEACT_EXIT: {
7575				/*
7576				 * For the exit action, we are going to attempt
7577				 * to atomically set our activity to be
7578				 * draining.  If this fails (either because
7579				 * another CPU has beat us to the exit action,
7580				 * or because our current activity is something
7581				 * other than ACTIVE or WARMUP), we will
7582				 * continue.  This assures that the exit action
7583				 * can be successfully recorded at most once
7584				 * when we're in the ACTIVE state.  If we're
7585				 * encountering the exit() action while in
7586				 * COOLDOWN, however, we want to honor the new
7587				 * status code.  (We know that we're the only
7588				 * thread in COOLDOWN, so there is no race.)
7589				 */
7590				void *activity = &state->dts_activity;
7591				dtrace_activity_t current = state->dts_activity;
7592
7593				if (current == DTRACE_ACTIVITY_COOLDOWN)
7594					break;
7595
7596				if (current != DTRACE_ACTIVITY_WARMUP)
7597					current = DTRACE_ACTIVITY_ACTIVE;
7598
7599				if (dtrace_cas32(activity, current,
7600				    DTRACE_ACTIVITY_DRAINING) != current) {
7601					*flags |= CPU_DTRACE_DROP;
7602					continue;
7603				}
7604
7605				break;
7606			}
7607
7608			default:
7609				ASSERT(0);
7610			}
7611
7612			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7613			    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7614				uintptr_t end = valoffs + size;
7615
7616				if (tracememsize != 0 &&
7617				    valoffs + tracememsize < end) {
7618					end = valoffs + tracememsize;
7619					tracememsize = 0;
7620				}
7621
7622				if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7623				    !dtrace_vcanload((void *)(uintptr_t)val,
7624				    &dp->dtdo_rtype, &mstate, vstate))
7625					continue;
7626
7627				dtrace_store_by_ref(dp, tomax, size, &valoffs,
7628				    &val, end, act->dta_intuple,
7629				    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7630				    DIF_TF_BYREF: DIF_TF_BYUREF);
7631				continue;
7632			}
7633
7634			switch (size) {
7635			case 0:
7636				break;
7637
7638			case sizeof (uint8_t):
7639				DTRACE_STORE(uint8_t, tomax, valoffs, val);
7640				break;
7641			case sizeof (uint16_t):
7642				DTRACE_STORE(uint16_t, tomax, valoffs, val);
7643				break;
7644			case sizeof (uint32_t):
7645				DTRACE_STORE(uint32_t, tomax, valoffs, val);
7646				break;
7647			case sizeof (uint64_t):
7648				DTRACE_STORE(uint64_t, tomax, valoffs, val);
7649				break;
7650			default:
7651				/*
7652				 * Any other size should have been returned by
7653				 * reference, not by value.
7654				 */
7655				ASSERT(0);
7656				break;
7657			}
7658		}
7659
7660		if (*flags & CPU_DTRACE_DROP)
7661			continue;
7662
7663		if (*flags & CPU_DTRACE_FAULT) {
7664			int ndx;
7665			dtrace_action_t *err;
7666
7667			buf->dtb_errors++;
7668
7669			if (probe->dtpr_id == dtrace_probeid_error) {
7670				/*
7671				 * There's nothing we can do -- we had an
7672				 * error on the error probe.  We bump an
7673				 * error counter to at least indicate that
7674				 * this condition happened.
7675				 */
7676				dtrace_error(&state->dts_dblerrors);
7677				continue;
7678			}
7679
7680			if (vtime) {
7681				/*
7682				 * Before recursing on dtrace_probe(), we
7683				 * need to explicitly clear out our start
7684				 * time to prevent it from being accumulated
7685				 * into t_dtrace_vtime.
7686				 */
7687				curthread->t_dtrace_start = 0;
7688			}
7689
7690			/*
7691			 * Iterate over the actions to figure out which action
7692			 * we were processing when we experienced the error.
7693			 * Note that act points _past_ the faulting action; if
7694			 * act is ecb->dte_action, the fault was in the
7695			 * predicate, if it's ecb->dte_action->dta_next it's
7696			 * in action #1, and so on.
7697			 */
7698			for (err = ecb->dte_action, ndx = 0;
7699			    err != act; err = err->dta_next, ndx++)
7700				continue;
7701
7702			dtrace_probe_error(state, ecb->dte_epid, ndx,
7703			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7704			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7705			    cpu_core[cpuid].cpuc_dtrace_illval);
7706
7707			continue;
7708		}
7709
7710		if (!committed)
7711			buf->dtb_offset = offs + ecb->dte_size;
7712	}
7713
7714	if (vtime)
7715		curthread->t_dtrace_start = dtrace_gethrtime();
7716
7717	dtrace_interrupt_enable(cookie);
7718}
7719
7720/*
7721 * DTrace Probe Hashing Functions
7722 *
7723 * The functions in this section (and indeed, the functions in remaining
7724 * sections) are not _called_ from probe context.  (Any exceptions to this are
7725 * marked with a "Note:".)  Rather, they are called from elsewhere in the
7726 * DTrace framework to look-up probes in, add probes to and remove probes from
7727 * the DTrace probe hashes.  (Each probe is hashed by each element of the
7728 * probe tuple -- allowing for fast lookups, regardless of what was
7729 * specified.)
7730 */
7731static uint_t
7732dtrace_hash_str(const char *p)
7733{
7734	unsigned int g;
7735	uint_t hval = 0;
7736
7737	while (*p) {
7738		hval = (hval << 4) + *p++;
7739		if ((g = (hval & 0xf0000000)) != 0)
7740			hval ^= g >> 24;
7741		hval &= ~g;
7742	}
7743	return (hval);
7744}
7745
7746static dtrace_hash_t *
7747dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
7748{
7749	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
7750
7751	hash->dth_stroffs = stroffs;
7752	hash->dth_nextoffs = nextoffs;
7753	hash->dth_prevoffs = prevoffs;
7754
7755	hash->dth_size = 1;
7756	hash->dth_mask = hash->dth_size - 1;
7757
7758	hash->dth_tab = kmem_zalloc(hash->dth_size *
7759	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
7760
7761	return (hash);
7762}
7763
7764static void
7765dtrace_hash_destroy(dtrace_hash_t *hash)
7766{
7767#ifdef DEBUG
7768	int i;
7769
7770	for (i = 0; i < hash->dth_size; i++)
7771		ASSERT(hash->dth_tab[i] == NULL);
7772#endif
7773
7774	kmem_free(hash->dth_tab,
7775	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
7776	kmem_free(hash, sizeof (dtrace_hash_t));
7777}
7778
7779static void
7780dtrace_hash_resize(dtrace_hash_t *hash)
7781{
7782	int size = hash->dth_size, i, ndx;
7783	int new_size = hash->dth_size << 1;
7784	int new_mask = new_size - 1;
7785	dtrace_hashbucket_t **new_tab, *bucket, *next;
7786
7787	ASSERT((new_size & new_mask) == 0);
7788
7789	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
7790
7791	for (i = 0; i < size; i++) {
7792		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
7793			dtrace_probe_t *probe = bucket->dthb_chain;
7794
7795			ASSERT(probe != NULL);
7796			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
7797
7798			next = bucket->dthb_next;
7799			bucket->dthb_next = new_tab[ndx];
7800			new_tab[ndx] = bucket;
7801		}
7802	}
7803
7804	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
7805	hash->dth_tab = new_tab;
7806	hash->dth_size = new_size;
7807	hash->dth_mask = new_mask;
7808}
7809
7810static void
7811dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
7812{
7813	int hashval = DTRACE_HASHSTR(hash, new);
7814	int ndx = hashval & hash->dth_mask;
7815	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7816	dtrace_probe_t **nextp, **prevp;
7817
7818	for (; bucket != NULL; bucket = bucket->dthb_next) {
7819		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
7820			goto add;
7821	}
7822
7823	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
7824		dtrace_hash_resize(hash);
7825		dtrace_hash_add(hash, new);
7826		return;
7827	}
7828
7829	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
7830	bucket->dthb_next = hash->dth_tab[ndx];
7831	hash->dth_tab[ndx] = bucket;
7832	hash->dth_nbuckets++;
7833
7834add:
7835	nextp = DTRACE_HASHNEXT(hash, new);
7836	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
7837	*nextp = bucket->dthb_chain;
7838
7839	if (bucket->dthb_chain != NULL) {
7840		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
7841		ASSERT(*prevp == NULL);
7842		*prevp = new;
7843	}
7844
7845	bucket->dthb_chain = new;
7846	bucket->dthb_len++;
7847}
7848
7849static dtrace_probe_t *
7850dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
7851{
7852	int hashval = DTRACE_HASHSTR(hash, template);
7853	int ndx = hashval & hash->dth_mask;
7854	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7855
7856	for (; bucket != NULL; bucket = bucket->dthb_next) {
7857		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7858			return (bucket->dthb_chain);
7859	}
7860
7861	return (NULL);
7862}
7863
7864static int
7865dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
7866{
7867	int hashval = DTRACE_HASHSTR(hash, template);
7868	int ndx = hashval & hash->dth_mask;
7869	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7870
7871	for (; bucket != NULL; bucket = bucket->dthb_next) {
7872		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7873			return (bucket->dthb_len);
7874	}
7875
7876	return (0);
7877}
7878
7879static void
7880dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
7881{
7882	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
7883	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7884
7885	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
7886	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
7887
7888	/*
7889	 * Find the bucket that we're removing this probe from.
7890	 */
7891	for (; bucket != NULL; bucket = bucket->dthb_next) {
7892		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
7893			break;
7894	}
7895
7896	ASSERT(bucket != NULL);
7897
7898	if (*prevp == NULL) {
7899		if (*nextp == NULL) {
7900			/*
7901			 * The removed probe was the only probe on this
7902			 * bucket; we need to remove the bucket.
7903			 */
7904			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
7905
7906			ASSERT(bucket->dthb_chain == probe);
7907			ASSERT(b != NULL);
7908
7909			if (b == bucket) {
7910				hash->dth_tab[ndx] = bucket->dthb_next;
7911			} else {
7912				while (b->dthb_next != bucket)
7913					b = b->dthb_next;
7914				b->dthb_next = bucket->dthb_next;
7915			}
7916
7917			ASSERT(hash->dth_nbuckets > 0);
7918			hash->dth_nbuckets--;
7919			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
7920			return;
7921		}
7922
7923		bucket->dthb_chain = *nextp;
7924	} else {
7925		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
7926	}
7927
7928	if (*nextp != NULL)
7929		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
7930}
7931
7932/*
7933 * DTrace Utility Functions
7934 *
7935 * These are random utility functions that are _not_ called from probe context.
7936 */
7937static int
7938dtrace_badattr(const dtrace_attribute_t *a)
7939{
7940	return (a->dtat_name > DTRACE_STABILITY_MAX ||
7941	    a->dtat_data > DTRACE_STABILITY_MAX ||
7942	    a->dtat_class > DTRACE_CLASS_MAX);
7943}
7944
7945/*
7946 * Return a duplicate copy of a string.  If the specified string is NULL,
7947 * this function returns a zero-length string.
7948 */
7949static char *
7950dtrace_strdup(const char *str)
7951{
7952	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
7953
7954	if (str != NULL)
7955		(void) strcpy(new, str);
7956
7957	return (new);
7958}
7959
7960#define	DTRACE_ISALPHA(c)	\
7961	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
7962
7963static int
7964dtrace_badname(const char *s)
7965{
7966	char c;
7967
7968	if (s == NULL || (c = *s++) == '\0')
7969		return (0);
7970
7971	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
7972		return (1);
7973
7974	while ((c = *s++) != '\0') {
7975		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
7976		    c != '-' && c != '_' && c != '.' && c != '`')
7977			return (1);
7978	}
7979
7980	return (0);
7981}
7982
7983static void
7984dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
7985{
7986	uint32_t priv;
7987
7988#if defined(sun)
7989	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
7990		/*
7991		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7992		 */
7993		priv = DTRACE_PRIV_ALL;
7994	} else {
7995		*uidp = crgetuid(cr);
7996		*zoneidp = crgetzoneid(cr);
7997
7998		priv = 0;
7999		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
8000			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
8001		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
8002			priv |= DTRACE_PRIV_USER;
8003		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
8004			priv |= DTRACE_PRIV_PROC;
8005		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
8006			priv |= DTRACE_PRIV_OWNER;
8007		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
8008			priv |= DTRACE_PRIV_ZONEOWNER;
8009	}
8010#else
8011	priv = DTRACE_PRIV_ALL;
8012#endif
8013
8014	*privp = priv;
8015}
8016
8017#ifdef DTRACE_ERRDEBUG
8018static void
8019dtrace_errdebug(const char *str)
8020{
8021	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
8022	int occupied = 0;
8023
8024	mutex_enter(&dtrace_errlock);
8025	dtrace_errlast = str;
8026	dtrace_errthread = curthread;
8027
8028	while (occupied++ < DTRACE_ERRHASHSZ) {
8029		if (dtrace_errhash[hval].dter_msg == str) {
8030			dtrace_errhash[hval].dter_count++;
8031			goto out;
8032		}
8033
8034		if (dtrace_errhash[hval].dter_msg != NULL) {
8035			hval = (hval + 1) % DTRACE_ERRHASHSZ;
8036			continue;
8037		}
8038
8039		dtrace_errhash[hval].dter_msg = str;
8040		dtrace_errhash[hval].dter_count = 1;
8041		goto out;
8042	}
8043
8044	panic("dtrace: undersized error hash");
8045out:
8046	mutex_exit(&dtrace_errlock);
8047}
8048#endif
8049
8050/*
8051 * DTrace Matching Functions
8052 *
8053 * These functions are used to match groups of probes, given some elements of
8054 * a probe tuple, or some globbed expressions for elements of a probe tuple.
8055 */
8056static int
8057dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
8058    zoneid_t zoneid)
8059{
8060	if (priv != DTRACE_PRIV_ALL) {
8061		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
8062		uint32_t match = priv & ppriv;
8063
8064		/*
8065		 * No PRIV_DTRACE_* privileges...
8066		 */
8067		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
8068		    DTRACE_PRIV_KERNEL)) == 0)
8069			return (0);
8070
8071		/*
8072		 * No matching bits, but there were bits to match...
8073		 */
8074		if (match == 0 && ppriv != 0)
8075			return (0);
8076
8077		/*
8078		 * Need to have permissions to the process, but don't...
8079		 */
8080		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
8081		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
8082			return (0);
8083		}
8084
8085		/*
8086		 * Need to be in the same zone unless we possess the
8087		 * privilege to examine all zones.
8088		 */
8089		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
8090		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
8091			return (0);
8092		}
8093	}
8094
8095	return (1);
8096}
8097
8098/*
8099 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
8100 * consists of input pattern strings and an ops-vector to evaluate them.
8101 * This function returns >0 for match, 0 for no match, and <0 for error.
8102 */
8103static int
8104dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
8105    uint32_t priv, uid_t uid, zoneid_t zoneid)
8106{
8107	dtrace_provider_t *pvp = prp->dtpr_provider;
8108	int rv;
8109
8110	if (pvp->dtpv_defunct)
8111		return (0);
8112
8113	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
8114		return (rv);
8115
8116	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
8117		return (rv);
8118
8119	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
8120		return (rv);
8121
8122	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
8123		return (rv);
8124
8125	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
8126		return (0);
8127
8128	return (rv);
8129}
8130
8131/*
8132 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
8133 * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
8134 * libc's version, the kernel version only applies to 8-bit ASCII strings.
8135 * In addition, all of the recursion cases except for '*' matching have been
8136 * unwound.  For '*', we still implement recursive evaluation, but a depth
8137 * counter is maintained and matching is aborted if we recurse too deep.
8138 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
8139 */
8140static int
8141dtrace_match_glob(const char *s, const char *p, int depth)
8142{
8143	const char *olds;
8144	char s1, c;
8145	int gs;
8146
8147	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
8148		return (-1);
8149
8150	if (s == NULL)
8151		s = ""; /* treat NULL as empty string */
8152
8153top:
8154	olds = s;
8155	s1 = *s++;
8156
8157	if (p == NULL)
8158		return (0);
8159
8160	if ((c = *p++) == '\0')
8161		return (s1 == '\0');
8162
8163	switch (c) {
8164	case '[': {
8165		int ok = 0, notflag = 0;
8166		char lc = '\0';
8167
8168		if (s1 == '\0')
8169			return (0);
8170
8171		if (*p == '!') {
8172			notflag = 1;
8173			p++;
8174		}
8175
8176		if ((c = *p++) == '\0')
8177			return (0);
8178
8179		do {
8180			if (c == '-' && lc != '\0' && *p != ']') {
8181				if ((c = *p++) == '\0')
8182					return (0);
8183				if (c == '\\' && (c = *p++) == '\0')
8184					return (0);
8185
8186				if (notflag) {
8187					if (s1 < lc || s1 > c)
8188						ok++;
8189					else
8190						return (0);
8191				} else if (lc <= s1 && s1 <= c)
8192					ok++;
8193
8194			} else if (c == '\\' && (c = *p++) == '\0')
8195				return (0);
8196
8197			lc = c; /* save left-hand 'c' for next iteration */
8198
8199			if (notflag) {
8200				if (s1 != c)
8201					ok++;
8202				else
8203					return (0);
8204			} else if (s1 == c)
8205				ok++;
8206
8207			if ((c = *p++) == '\0')
8208				return (0);
8209
8210		} while (c != ']');
8211
8212		if (ok)
8213			goto top;
8214
8215		return (0);
8216	}
8217
8218	case '\\':
8219		if ((c = *p++) == '\0')
8220			return (0);
8221		/*FALLTHRU*/
8222
8223	default:
8224		if (c != s1)
8225			return (0);
8226		/*FALLTHRU*/
8227
8228	case '?':
8229		if (s1 != '\0')
8230			goto top;
8231		return (0);
8232
8233	case '*':
8234		while (*p == '*')
8235			p++; /* consecutive *'s are identical to a single one */
8236
8237		if (*p == '\0')
8238			return (1);
8239
8240		for (s = olds; *s != '\0'; s++) {
8241			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
8242				return (gs);
8243		}
8244
8245		return (0);
8246	}
8247}
8248
8249/*ARGSUSED*/
8250static int
8251dtrace_match_string(const char *s, const char *p, int depth)
8252{
8253	return (s != NULL && strcmp(s, p) == 0);
8254}
8255
8256/*ARGSUSED*/
8257static int
8258dtrace_match_nul(const char *s, const char *p, int depth)
8259{
8260	return (1); /* always match the empty pattern */
8261}
8262
8263/*ARGSUSED*/
8264static int
8265dtrace_match_nonzero(const char *s, const char *p, int depth)
8266{
8267	return (s != NULL && s[0] != '\0');
8268}
8269
8270static int
8271dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
8272    zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
8273{
8274	dtrace_probe_t template, *probe;
8275	dtrace_hash_t *hash = NULL;
8276	int len, best = INT_MAX, nmatched = 0;
8277	dtrace_id_t i;
8278
8279	ASSERT(MUTEX_HELD(&dtrace_lock));
8280
8281	/*
8282	 * If the probe ID is specified in the key, just lookup by ID and
8283	 * invoke the match callback once if a matching probe is found.
8284	 */
8285	if (pkp->dtpk_id != DTRACE_IDNONE) {
8286		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
8287		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
8288			(void) (*matched)(probe, arg);
8289			nmatched++;
8290		}
8291		return (nmatched);
8292	}
8293
8294	template.dtpr_mod = (char *)pkp->dtpk_mod;
8295	template.dtpr_func = (char *)pkp->dtpk_func;
8296	template.dtpr_name = (char *)pkp->dtpk_name;
8297
8298	/*
8299	 * We want to find the most distinct of the module name, function
8300	 * name, and name.  So for each one that is not a glob pattern or
8301	 * empty string, we perform a lookup in the corresponding hash and
8302	 * use the hash table with the fewest collisions to do our search.
8303	 */
8304	if (pkp->dtpk_mmatch == &dtrace_match_string &&
8305	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
8306		best = len;
8307		hash = dtrace_bymod;
8308	}
8309
8310	if (pkp->dtpk_fmatch == &dtrace_match_string &&
8311	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
8312		best = len;
8313		hash = dtrace_byfunc;
8314	}
8315
8316	if (pkp->dtpk_nmatch == &dtrace_match_string &&
8317	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
8318		best = len;
8319		hash = dtrace_byname;
8320	}
8321
8322	/*
8323	 * If we did not select a hash table, iterate over every probe and
8324	 * invoke our callback for each one that matches our input probe key.
8325	 */
8326	if (hash == NULL) {
8327		for (i = 0; i < dtrace_nprobes; i++) {
8328			if ((probe = dtrace_probes[i]) == NULL ||
8329			    dtrace_match_probe(probe, pkp, priv, uid,
8330			    zoneid) <= 0)
8331				continue;
8332
8333			nmatched++;
8334
8335			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8336				break;
8337		}
8338
8339		return (nmatched);
8340	}
8341
8342	/*
8343	 * If we selected a hash table, iterate over each probe of the same key
8344	 * name and invoke the callback for every probe that matches the other
8345	 * attributes of our input probe key.
8346	 */
8347	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
8348	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
8349
8350		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
8351			continue;
8352
8353		nmatched++;
8354
8355		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8356			break;
8357	}
8358
8359	return (nmatched);
8360}
8361
8362/*
8363 * Return the function pointer dtrace_probecmp() should use to compare the
8364 * specified pattern with a string.  For NULL or empty patterns, we select
8365 * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
8366 * For non-empty non-glob strings, we use dtrace_match_string().
8367 */
8368static dtrace_probekey_f *
8369dtrace_probekey_func(const char *p)
8370{
8371	char c;
8372
8373	if (p == NULL || *p == '\0')
8374		return (&dtrace_match_nul);
8375
8376	while ((c = *p++) != '\0') {
8377		if (c == '[' || c == '?' || c == '*' || c == '\\')
8378			return (&dtrace_match_glob);
8379	}
8380
8381	return (&dtrace_match_string);
8382}
8383
8384/*
8385 * Build a probe comparison key for use with dtrace_match_probe() from the
8386 * given probe description.  By convention, a null key only matches anchored
8387 * probes: if each field is the empty string, reset dtpk_fmatch to
8388 * dtrace_match_nonzero().
8389 */
8390static void
8391dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
8392{
8393	pkp->dtpk_prov = pdp->dtpd_provider;
8394	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
8395
8396	pkp->dtpk_mod = pdp->dtpd_mod;
8397	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
8398
8399	pkp->dtpk_func = pdp->dtpd_func;
8400	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
8401
8402	pkp->dtpk_name = pdp->dtpd_name;
8403	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
8404
8405	pkp->dtpk_id = pdp->dtpd_id;
8406
8407	if (pkp->dtpk_id == DTRACE_IDNONE &&
8408	    pkp->dtpk_pmatch == &dtrace_match_nul &&
8409	    pkp->dtpk_mmatch == &dtrace_match_nul &&
8410	    pkp->dtpk_fmatch == &dtrace_match_nul &&
8411	    pkp->dtpk_nmatch == &dtrace_match_nul)
8412		pkp->dtpk_fmatch = &dtrace_match_nonzero;
8413}
8414
8415/*
8416 * DTrace Provider-to-Framework API Functions
8417 *
8418 * These functions implement much of the Provider-to-Framework API, as
8419 * described in <sys/dtrace.h>.  The parts of the API not in this section are
8420 * the functions in the API for probe management (found below), and
8421 * dtrace_probe() itself (found above).
8422 */
8423
8424/*
8425 * Register the calling provider with the DTrace framework.  This should
8426 * generally be called by DTrace providers in their attach(9E) entry point.
8427 */
8428int
8429dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
8430    cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
8431{
8432	dtrace_provider_t *provider;
8433
8434	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
8435		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8436		    "arguments", name ? name : "<NULL>");
8437		return (EINVAL);
8438	}
8439
8440	if (name[0] == '\0' || dtrace_badname(name)) {
8441		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8442		    "provider name", name);
8443		return (EINVAL);
8444	}
8445
8446	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
8447	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
8448	    pops->dtps_destroy == NULL ||
8449	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
8450		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8451		    "provider ops", name);
8452		return (EINVAL);
8453	}
8454
8455	if (dtrace_badattr(&pap->dtpa_provider) ||
8456	    dtrace_badattr(&pap->dtpa_mod) ||
8457	    dtrace_badattr(&pap->dtpa_func) ||
8458	    dtrace_badattr(&pap->dtpa_name) ||
8459	    dtrace_badattr(&pap->dtpa_args)) {
8460		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8461		    "provider attributes", name);
8462		return (EINVAL);
8463	}
8464
8465	if (priv & ~DTRACE_PRIV_ALL) {
8466		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8467		    "privilege attributes", name);
8468		return (EINVAL);
8469	}
8470
8471	if ((priv & DTRACE_PRIV_KERNEL) &&
8472	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
8473	    pops->dtps_usermode == NULL) {
8474		cmn_err(CE_WARN, "failed to register provider '%s': need "
8475		    "dtps_usermode() op for given privilege attributes", name);
8476		return (EINVAL);
8477	}
8478
8479	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
8480	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8481	(void) strcpy(provider->dtpv_name, name);
8482
8483	provider->dtpv_attr = *pap;
8484	provider->dtpv_priv.dtpp_flags = priv;
8485	if (cr != NULL) {
8486		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8487		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8488	}
8489	provider->dtpv_pops = *pops;
8490
8491	if (pops->dtps_provide == NULL) {
8492		ASSERT(pops->dtps_provide_module != NULL);
8493		provider->dtpv_pops.dtps_provide =
8494		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
8495	}
8496
8497	if (pops->dtps_provide_module == NULL) {
8498		ASSERT(pops->dtps_provide != NULL);
8499		provider->dtpv_pops.dtps_provide_module =
8500		    (void (*)(void *, modctl_t *))dtrace_nullop;
8501	}
8502
8503	if (pops->dtps_suspend == NULL) {
8504		ASSERT(pops->dtps_resume == NULL);
8505		provider->dtpv_pops.dtps_suspend =
8506		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8507		provider->dtpv_pops.dtps_resume =
8508		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8509	}
8510
8511	provider->dtpv_arg = arg;
8512	*idp = (dtrace_provider_id_t)provider;
8513
8514	if (pops == &dtrace_provider_ops) {
8515		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8516		ASSERT(MUTEX_HELD(&dtrace_lock));
8517		ASSERT(dtrace_anon.dta_enabling == NULL);
8518
8519		/*
8520		 * We make sure that the DTrace provider is at the head of
8521		 * the provider chain.
8522		 */
8523		provider->dtpv_next = dtrace_provider;
8524		dtrace_provider = provider;
8525		return (0);
8526	}
8527
8528	mutex_enter(&dtrace_provider_lock);
8529	mutex_enter(&dtrace_lock);
8530
8531	/*
8532	 * If there is at least one provider registered, we'll add this
8533	 * provider after the first provider.
8534	 */
8535	if (dtrace_provider != NULL) {
8536		provider->dtpv_next = dtrace_provider->dtpv_next;
8537		dtrace_provider->dtpv_next = provider;
8538	} else {
8539		dtrace_provider = provider;
8540	}
8541
8542	if (dtrace_retained != NULL) {
8543		dtrace_enabling_provide(provider);
8544
8545		/*
8546		 * Now we need to call dtrace_enabling_matchall() -- which
8547		 * will acquire cpu_lock and dtrace_lock.  We therefore need
8548		 * to drop all of our locks before calling into it...
8549		 */
8550		mutex_exit(&dtrace_lock);
8551		mutex_exit(&dtrace_provider_lock);
8552		dtrace_enabling_matchall();
8553
8554		return (0);
8555	}
8556
8557	mutex_exit(&dtrace_lock);
8558	mutex_exit(&dtrace_provider_lock);
8559
8560	return (0);
8561}
8562
8563/*
8564 * Unregister the specified provider from the DTrace framework.  This should
8565 * generally be called by DTrace providers in their detach(9E) entry point.
8566 */
8567int
8568dtrace_unregister(dtrace_provider_id_t id)
8569{
8570	dtrace_provider_t *old = (dtrace_provider_t *)id;
8571	dtrace_provider_t *prev = NULL;
8572	int i, self = 0, noreap = 0;
8573	dtrace_probe_t *probe, *first = NULL;
8574
8575	if (old->dtpv_pops.dtps_enable ==
8576	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
8577		/*
8578		 * If DTrace itself is the provider, we're called with locks
8579		 * already held.
8580		 */
8581		ASSERT(old == dtrace_provider);
8582#if defined(sun)
8583		ASSERT(dtrace_devi != NULL);
8584#endif
8585		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8586		ASSERT(MUTEX_HELD(&dtrace_lock));
8587		self = 1;
8588
8589		if (dtrace_provider->dtpv_next != NULL) {
8590			/*
8591			 * There's another provider here; return failure.
8592			 */
8593			return (EBUSY);
8594		}
8595	} else {
8596		mutex_enter(&dtrace_provider_lock);
8597#if defined(sun)
8598		mutex_enter(&mod_lock);
8599#endif
8600		mutex_enter(&dtrace_lock);
8601	}
8602
8603	/*
8604	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8605	 * probes, we refuse to let providers slither away, unless this
8606	 * provider has already been explicitly invalidated.
8607	 */
8608	if (!old->dtpv_defunct &&
8609	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8610	    dtrace_anon.dta_state->dts_necbs > 0))) {
8611		if (!self) {
8612			mutex_exit(&dtrace_lock);
8613#if defined(sun)
8614			mutex_exit(&mod_lock);
8615#endif
8616			mutex_exit(&dtrace_provider_lock);
8617		}
8618		return (EBUSY);
8619	}
8620
8621	/*
8622	 * Attempt to destroy the probes associated with this provider.
8623	 */
8624	for (i = 0; i < dtrace_nprobes; i++) {
8625		if ((probe = dtrace_probes[i]) == NULL)
8626			continue;
8627
8628		if (probe->dtpr_provider != old)
8629			continue;
8630
8631		if (probe->dtpr_ecb == NULL)
8632			continue;
8633
8634		/*
8635		 * If we are trying to unregister a defunct provider, and the
8636		 * provider was made defunct within the interval dictated by
8637		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8638		 * attempt to reap our enablings.  To denote that the provider
8639		 * should reattempt to unregister itself at some point in the
8640		 * future, we will return a differentiable error code (EAGAIN
8641		 * instead of EBUSY) in this case.
8642		 */
8643		if (dtrace_gethrtime() - old->dtpv_defunct >
8644		    dtrace_unregister_defunct_reap)
8645			noreap = 1;
8646
8647		if (!self) {
8648			mutex_exit(&dtrace_lock);
8649#if defined(sun)
8650			mutex_exit(&mod_lock);
8651#endif
8652			mutex_exit(&dtrace_provider_lock);
8653		}
8654
8655		if (noreap)
8656			return (EBUSY);
8657
8658		(void) taskq_dispatch(dtrace_taskq,
8659		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8660
8661		return (EAGAIN);
8662	}
8663
8664	/*
8665	 * All of the probes for this provider are disabled; we can safely
8666	 * remove all of them from their hash chains and from the probe array.
8667	 */
8668	for (i = 0; i < dtrace_nprobes; i++) {
8669		if ((probe = dtrace_probes[i]) == NULL)
8670			continue;
8671
8672		if (probe->dtpr_provider != old)
8673			continue;
8674
8675		dtrace_probes[i] = NULL;
8676
8677		dtrace_hash_remove(dtrace_bymod, probe);
8678		dtrace_hash_remove(dtrace_byfunc, probe);
8679		dtrace_hash_remove(dtrace_byname, probe);
8680
8681		if (first == NULL) {
8682			first = probe;
8683			probe->dtpr_nextmod = NULL;
8684		} else {
8685			probe->dtpr_nextmod = first;
8686			first = probe;
8687		}
8688	}
8689
8690	/*
8691	 * The provider's probes have been removed from the hash chains and
8692	 * from the probe array.  Now issue a dtrace_sync() to be sure that
8693	 * everyone has cleared out from any probe array processing.
8694	 */
8695	dtrace_sync();
8696
8697	for (probe = first; probe != NULL; probe = first) {
8698		first = probe->dtpr_nextmod;
8699
8700		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8701		    probe->dtpr_arg);
8702		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8703		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8704		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8705#if defined(sun)
8706		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
8707#else
8708		free_unr(dtrace_arena, probe->dtpr_id);
8709#endif
8710		kmem_free(probe, sizeof (dtrace_probe_t));
8711	}
8712
8713	if ((prev = dtrace_provider) == old) {
8714#if defined(sun)
8715		ASSERT(self || dtrace_devi == NULL);
8716		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
8717#endif
8718		dtrace_provider = old->dtpv_next;
8719	} else {
8720		while (prev != NULL && prev->dtpv_next != old)
8721			prev = prev->dtpv_next;
8722
8723		if (prev == NULL) {
8724			panic("attempt to unregister non-existent "
8725			    "dtrace provider %p\n", (void *)id);
8726		}
8727
8728		prev->dtpv_next = old->dtpv_next;
8729	}
8730
8731	if (!self) {
8732		mutex_exit(&dtrace_lock);
8733#if defined(sun)
8734		mutex_exit(&mod_lock);
8735#endif
8736		mutex_exit(&dtrace_provider_lock);
8737	}
8738
8739	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
8740	kmem_free(old, sizeof (dtrace_provider_t));
8741
8742	return (0);
8743}
8744
8745/*
8746 * Invalidate the specified provider.  All subsequent probe lookups for the
8747 * specified provider will fail, but its probes will not be removed.
8748 */
8749void
8750dtrace_invalidate(dtrace_provider_id_t id)
8751{
8752	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
8753
8754	ASSERT(pvp->dtpv_pops.dtps_enable !=
8755	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
8756
8757	mutex_enter(&dtrace_provider_lock);
8758	mutex_enter(&dtrace_lock);
8759
8760	pvp->dtpv_defunct = dtrace_gethrtime();
8761
8762	mutex_exit(&dtrace_lock);
8763	mutex_exit(&dtrace_provider_lock);
8764}
8765
8766/*
8767 * Indicate whether or not DTrace has attached.
8768 */
8769int
8770dtrace_attached(void)
8771{
8772	/*
8773	 * dtrace_provider will be non-NULL iff the DTrace driver has
8774	 * attached.  (It's non-NULL because DTrace is always itself a
8775	 * provider.)
8776	 */
8777	return (dtrace_provider != NULL);
8778}
8779
8780/*
8781 * Remove all the unenabled probes for the given provider.  This function is
8782 * not unlike dtrace_unregister(), except that it doesn't remove the provider
8783 * -- just as many of its associated probes as it can.
8784 */
8785int
8786dtrace_condense(dtrace_provider_id_t id)
8787{
8788	dtrace_provider_t *prov = (dtrace_provider_t *)id;
8789	int i;
8790	dtrace_probe_t *probe;
8791
8792	/*
8793	 * Make sure this isn't the dtrace provider itself.
8794	 */
8795	ASSERT(prov->dtpv_pops.dtps_enable !=
8796	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
8797
8798	mutex_enter(&dtrace_provider_lock);
8799	mutex_enter(&dtrace_lock);
8800
8801	/*
8802	 * Attempt to destroy the probes associated with this provider.
8803	 */
8804	for (i = 0; i < dtrace_nprobes; i++) {
8805		if ((probe = dtrace_probes[i]) == NULL)
8806			continue;
8807
8808		if (probe->dtpr_provider != prov)
8809			continue;
8810
8811		if (probe->dtpr_ecb != NULL)
8812			continue;
8813
8814		dtrace_probes[i] = NULL;
8815
8816		dtrace_hash_remove(dtrace_bymod, probe);
8817		dtrace_hash_remove(dtrace_byfunc, probe);
8818		dtrace_hash_remove(dtrace_byname, probe);
8819
8820		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
8821		    probe->dtpr_arg);
8822		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8823		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8824		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8825		kmem_free(probe, sizeof (dtrace_probe_t));
8826#if defined(sun)
8827		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
8828#else
8829		free_unr(dtrace_arena, i + 1);
8830#endif
8831	}
8832
8833	mutex_exit(&dtrace_lock);
8834	mutex_exit(&dtrace_provider_lock);
8835
8836	return (0);
8837}
8838
8839/*
8840 * DTrace Probe Management Functions
8841 *
8842 * The functions in this section perform the DTrace probe management,
8843 * including functions to create probes, look-up probes, and call into the
8844 * providers to request that probes be provided.  Some of these functions are
8845 * in the Provider-to-Framework API; these functions can be identified by the
8846 * fact that they are not declared "static".
8847 */
8848
8849/*
8850 * Create a probe with the specified module name, function name, and name.
8851 */
8852dtrace_id_t
8853dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
8854    const char *func, const char *name, int aframes, void *arg)
8855{
8856	dtrace_probe_t *probe, **probes;
8857	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
8858	dtrace_id_t id;
8859
8860	if (provider == dtrace_provider) {
8861		ASSERT(MUTEX_HELD(&dtrace_lock));
8862	} else {
8863		mutex_enter(&dtrace_lock);
8864	}
8865
8866#if defined(sun)
8867	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
8868	    VM_BESTFIT | VM_SLEEP);
8869#else
8870	id = alloc_unr(dtrace_arena);
8871#endif
8872	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
8873
8874	probe->dtpr_id = id;
8875	probe->dtpr_gen = dtrace_probegen++;
8876	probe->dtpr_mod = dtrace_strdup(mod);
8877	probe->dtpr_func = dtrace_strdup(func);
8878	probe->dtpr_name = dtrace_strdup(name);
8879	probe->dtpr_arg = arg;
8880	probe->dtpr_aframes = aframes;
8881	probe->dtpr_provider = provider;
8882
8883	dtrace_hash_add(dtrace_bymod, probe);
8884	dtrace_hash_add(dtrace_byfunc, probe);
8885	dtrace_hash_add(dtrace_byname, probe);
8886
8887	if (id - 1 >= dtrace_nprobes) {
8888		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
8889		size_t nsize = osize << 1;
8890
8891		if (nsize == 0) {
8892			ASSERT(osize == 0);
8893			ASSERT(dtrace_probes == NULL);
8894			nsize = sizeof (dtrace_probe_t *);
8895		}
8896
8897		probes = kmem_zalloc(nsize, KM_SLEEP);
8898
8899		if (dtrace_probes == NULL) {
8900			ASSERT(osize == 0);
8901			dtrace_probes = probes;
8902			dtrace_nprobes = 1;
8903		} else {
8904			dtrace_probe_t **oprobes = dtrace_probes;
8905
8906			bcopy(oprobes, probes, osize);
8907			dtrace_membar_producer();
8908			dtrace_probes = probes;
8909
8910			dtrace_sync();
8911
8912			/*
8913			 * All CPUs are now seeing the new probes array; we can
8914			 * safely free the old array.
8915			 */
8916			kmem_free(oprobes, osize);
8917			dtrace_nprobes <<= 1;
8918		}
8919
8920		ASSERT(id - 1 < dtrace_nprobes);
8921	}
8922
8923	ASSERT(dtrace_probes[id - 1] == NULL);
8924	dtrace_probes[id - 1] = probe;
8925
8926	if (provider != dtrace_provider)
8927		mutex_exit(&dtrace_lock);
8928
8929	return (id);
8930}
8931
8932static dtrace_probe_t *
8933dtrace_probe_lookup_id(dtrace_id_t id)
8934{
8935	ASSERT(MUTEX_HELD(&dtrace_lock));
8936
8937	if (id == 0 || id > dtrace_nprobes)
8938		return (NULL);
8939
8940	return (dtrace_probes[id - 1]);
8941}
8942
8943static int
8944dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
8945{
8946	*((dtrace_id_t *)arg) = probe->dtpr_id;
8947
8948	return (DTRACE_MATCH_DONE);
8949}
8950
8951/*
8952 * Look up a probe based on provider and one or more of module name, function
8953 * name and probe name.
8954 */
8955dtrace_id_t
8956dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
8957    char *func, char *name)
8958{
8959	dtrace_probekey_t pkey;
8960	dtrace_id_t id;
8961	int match;
8962
8963	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
8964	pkey.dtpk_pmatch = &dtrace_match_string;
8965	pkey.dtpk_mod = mod;
8966	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
8967	pkey.dtpk_func = func;
8968	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
8969	pkey.dtpk_name = name;
8970	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
8971	pkey.dtpk_id = DTRACE_IDNONE;
8972
8973	mutex_enter(&dtrace_lock);
8974	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
8975	    dtrace_probe_lookup_match, &id);
8976	mutex_exit(&dtrace_lock);
8977
8978	ASSERT(match == 1 || match == 0);
8979	return (match ? id : 0);
8980}
8981
8982/*
8983 * Returns the probe argument associated with the specified probe.
8984 */
8985void *
8986dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
8987{
8988	dtrace_probe_t *probe;
8989	void *rval = NULL;
8990
8991	mutex_enter(&dtrace_lock);
8992
8993	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
8994	    probe->dtpr_provider == (dtrace_provider_t *)id)
8995		rval = probe->dtpr_arg;
8996
8997	mutex_exit(&dtrace_lock);
8998
8999	return (rval);
9000}
9001
9002/*
9003 * Copy a probe into a probe description.
9004 */
9005static void
9006dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
9007{
9008	bzero(pdp, sizeof (dtrace_probedesc_t));
9009	pdp->dtpd_id = prp->dtpr_id;
9010
9011	(void) strncpy(pdp->dtpd_provider,
9012	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
9013
9014	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
9015	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
9016	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
9017}
9018
9019/*
9020 * Called to indicate that a probe -- or probes -- should be provided by a
9021 * specfied provider.  If the specified description is NULL, the provider will
9022 * be told to provide all of its probes.  (This is done whenever a new
9023 * consumer comes along, or whenever a retained enabling is to be matched.) If
9024 * the specified description is non-NULL, the provider is given the
9025 * opportunity to dynamically provide the specified probe, allowing providers
9026 * to support the creation of probes on-the-fly.  (So-called _autocreated_
9027 * probes.)  If the provider is NULL, the operations will be applied to all
9028 * providers; if the provider is non-NULL the operations will only be applied
9029 * to the specified provider.  The dtrace_provider_lock must be held, and the
9030 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
9031 * will need to grab the dtrace_lock when it reenters the framework through
9032 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
9033 */
9034static void
9035dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
9036{
9037#if defined(sun)
9038	modctl_t *ctl;
9039#endif
9040	int all = 0;
9041
9042	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
9043
9044	if (prv == NULL) {
9045		all = 1;
9046		prv = dtrace_provider;
9047	}
9048
9049	do {
9050		/*
9051		 * First, call the blanket provide operation.
9052		 */
9053		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
9054
9055#if defined(sun)
9056		/*
9057		 * Now call the per-module provide operation.  We will grab
9058		 * mod_lock to prevent the list from being modified.  Note
9059		 * that this also prevents the mod_busy bits from changing.
9060		 * (mod_busy can only be changed with mod_lock held.)
9061		 */
9062		mutex_enter(&mod_lock);
9063
9064		ctl = &modules;
9065		do {
9066			if (ctl->mod_busy || ctl->mod_mp == NULL)
9067				continue;
9068
9069			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
9070
9071		} while ((ctl = ctl->mod_next) != &modules);
9072
9073		mutex_exit(&mod_lock);
9074#endif
9075	} while (all && (prv = prv->dtpv_next) != NULL);
9076}
9077
9078#if defined(sun)
9079/*
9080 * Iterate over each probe, and call the Framework-to-Provider API function
9081 * denoted by offs.
9082 */
9083static void
9084dtrace_probe_foreach(uintptr_t offs)
9085{
9086	dtrace_provider_t *prov;
9087	void (*func)(void *, dtrace_id_t, void *);
9088	dtrace_probe_t *probe;
9089	dtrace_icookie_t cookie;
9090	int i;
9091
9092	/*
9093	 * We disable interrupts to walk through the probe array.  This is
9094	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
9095	 * won't see stale data.
9096	 */
9097	cookie = dtrace_interrupt_disable();
9098
9099	for (i = 0; i < dtrace_nprobes; i++) {
9100		if ((probe = dtrace_probes[i]) == NULL)
9101			continue;
9102
9103		if (probe->dtpr_ecb == NULL) {
9104			/*
9105			 * This probe isn't enabled -- don't call the function.
9106			 */
9107			continue;
9108		}
9109
9110		prov = probe->dtpr_provider;
9111		func = *((void(**)(void *, dtrace_id_t, void *))
9112		    ((uintptr_t)&prov->dtpv_pops + offs));
9113
9114		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
9115	}
9116
9117	dtrace_interrupt_enable(cookie);
9118}
9119#endif
9120
9121static int
9122dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
9123{
9124	dtrace_probekey_t pkey;
9125	uint32_t priv;
9126	uid_t uid;
9127	zoneid_t zoneid;
9128
9129	ASSERT(MUTEX_HELD(&dtrace_lock));
9130	dtrace_ecb_create_cache = NULL;
9131
9132	if (desc == NULL) {
9133		/*
9134		 * If we're passed a NULL description, we're being asked to
9135		 * create an ECB with a NULL probe.
9136		 */
9137		(void) dtrace_ecb_create_enable(NULL, enab);
9138		return (0);
9139	}
9140
9141	dtrace_probekey(desc, &pkey);
9142	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
9143	    &priv, &uid, &zoneid);
9144
9145	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
9146	    enab));
9147}
9148
9149/*
9150 * DTrace Helper Provider Functions
9151 */
9152static void
9153dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
9154{
9155	attr->dtat_name = DOF_ATTR_NAME(dofattr);
9156	attr->dtat_data = DOF_ATTR_DATA(dofattr);
9157	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
9158}
9159
9160static void
9161dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
9162    const dof_provider_t *dofprov, char *strtab)
9163{
9164	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
9165	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
9166	    dofprov->dofpv_provattr);
9167	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
9168	    dofprov->dofpv_modattr);
9169	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
9170	    dofprov->dofpv_funcattr);
9171	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
9172	    dofprov->dofpv_nameattr);
9173	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
9174	    dofprov->dofpv_argsattr);
9175}
9176
9177static void
9178dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9179{
9180	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9181	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9182	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
9183	dof_provider_t *provider;
9184	dof_probe_t *probe;
9185	uint32_t *off, *enoff;
9186	uint8_t *arg;
9187	char *strtab;
9188	uint_t i, nprobes;
9189	dtrace_helper_provdesc_t dhpv;
9190	dtrace_helper_probedesc_t dhpb;
9191	dtrace_meta_t *meta = dtrace_meta_pid;
9192	dtrace_mops_t *mops = &meta->dtm_mops;
9193	void *parg;
9194
9195	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9196	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9197	    provider->dofpv_strtab * dof->dofh_secsize);
9198	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9199	    provider->dofpv_probes * dof->dofh_secsize);
9200	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9201	    provider->dofpv_prargs * dof->dofh_secsize);
9202	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9203	    provider->dofpv_proffs * dof->dofh_secsize);
9204
9205	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9206	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
9207	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
9208	enoff = NULL;
9209
9210	/*
9211	 * See dtrace_helper_provider_validate().
9212	 */
9213	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
9214	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
9215		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9216		    provider->dofpv_prenoffs * dof->dofh_secsize);
9217		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
9218	}
9219
9220	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
9221
9222	/*
9223	 * Create the provider.
9224	 */
9225	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9226
9227	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
9228		return;
9229
9230	meta->dtm_count++;
9231
9232	/*
9233	 * Create the probes.
9234	 */
9235	for (i = 0; i < nprobes; i++) {
9236		probe = (dof_probe_t *)(uintptr_t)(daddr +
9237		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
9238
9239		dhpb.dthpb_mod = dhp->dofhp_mod;
9240		dhpb.dthpb_func = strtab + probe->dofpr_func;
9241		dhpb.dthpb_name = strtab + probe->dofpr_name;
9242		dhpb.dthpb_base = probe->dofpr_addr;
9243		dhpb.dthpb_offs = off + probe->dofpr_offidx;
9244		dhpb.dthpb_noffs = probe->dofpr_noffs;
9245		if (enoff != NULL) {
9246			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
9247			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
9248		} else {
9249			dhpb.dthpb_enoffs = NULL;
9250			dhpb.dthpb_nenoffs = 0;
9251		}
9252		dhpb.dthpb_args = arg + probe->dofpr_argidx;
9253		dhpb.dthpb_nargc = probe->dofpr_nargc;
9254		dhpb.dthpb_xargc = probe->dofpr_xargc;
9255		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
9256		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
9257
9258		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
9259	}
9260}
9261
9262static void
9263dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
9264{
9265	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9266	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9267	int i;
9268
9269	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9270
9271	for (i = 0; i < dof->dofh_secnum; i++) {
9272		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9273		    dof->dofh_secoff + i * dof->dofh_secsize);
9274
9275		if (sec->dofs_type != DOF_SECT_PROVIDER)
9276			continue;
9277
9278		dtrace_helper_provide_one(dhp, sec, pid);
9279	}
9280
9281	/*
9282	 * We may have just created probes, so we must now rematch against
9283	 * any retained enablings.  Note that this call will acquire both
9284	 * cpu_lock and dtrace_lock; the fact that we are holding
9285	 * dtrace_meta_lock now is what defines the ordering with respect to
9286	 * these three locks.
9287	 */
9288	dtrace_enabling_matchall();
9289}
9290
9291static void
9292dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9293{
9294	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9295	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9296	dof_sec_t *str_sec;
9297	dof_provider_t *provider;
9298	char *strtab;
9299	dtrace_helper_provdesc_t dhpv;
9300	dtrace_meta_t *meta = dtrace_meta_pid;
9301	dtrace_mops_t *mops = &meta->dtm_mops;
9302
9303	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9304	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9305	    provider->dofpv_strtab * dof->dofh_secsize);
9306
9307	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9308
9309	/*
9310	 * Create the provider.
9311	 */
9312	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9313
9314	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
9315
9316	meta->dtm_count--;
9317}
9318
9319static void
9320dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
9321{
9322	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9323	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9324	int i;
9325
9326	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9327
9328	for (i = 0; i < dof->dofh_secnum; i++) {
9329		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9330		    dof->dofh_secoff + i * dof->dofh_secsize);
9331
9332		if (sec->dofs_type != DOF_SECT_PROVIDER)
9333			continue;
9334
9335		dtrace_helper_provider_remove_one(dhp, sec, pid);
9336	}
9337}
9338
9339/*
9340 * DTrace Meta Provider-to-Framework API Functions
9341 *
9342 * These functions implement the Meta Provider-to-Framework API, as described
9343 * in <sys/dtrace.h>.
9344 */
9345int
9346dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
9347    dtrace_meta_provider_id_t *idp)
9348{
9349	dtrace_meta_t *meta;
9350	dtrace_helpers_t *help, *next;
9351	int i;
9352
9353	*idp = DTRACE_METAPROVNONE;
9354
9355	/*
9356	 * We strictly don't need the name, but we hold onto it for
9357	 * debuggability. All hail error queues!
9358	 */
9359	if (name == NULL) {
9360		cmn_err(CE_WARN, "failed to register meta-provider: "
9361		    "invalid name");
9362		return (EINVAL);
9363	}
9364
9365	if (mops == NULL ||
9366	    mops->dtms_create_probe == NULL ||
9367	    mops->dtms_provide_pid == NULL ||
9368	    mops->dtms_remove_pid == NULL) {
9369		cmn_err(CE_WARN, "failed to register meta-register %s: "
9370		    "invalid ops", name);
9371		return (EINVAL);
9372	}
9373
9374	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
9375	meta->dtm_mops = *mops;
9376	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
9377	(void) strcpy(meta->dtm_name, name);
9378	meta->dtm_arg = arg;
9379
9380	mutex_enter(&dtrace_meta_lock);
9381	mutex_enter(&dtrace_lock);
9382
9383	if (dtrace_meta_pid != NULL) {
9384		mutex_exit(&dtrace_lock);
9385		mutex_exit(&dtrace_meta_lock);
9386		cmn_err(CE_WARN, "failed to register meta-register %s: "
9387		    "user-land meta-provider exists", name);
9388		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
9389		kmem_free(meta, sizeof (dtrace_meta_t));
9390		return (EINVAL);
9391	}
9392
9393	dtrace_meta_pid = meta;
9394	*idp = (dtrace_meta_provider_id_t)meta;
9395
9396	/*
9397	 * If there are providers and probes ready to go, pass them
9398	 * off to the new meta provider now.
9399	 */
9400
9401	help = dtrace_deferred_pid;
9402	dtrace_deferred_pid = NULL;
9403
9404	mutex_exit(&dtrace_lock);
9405
9406	while (help != NULL) {
9407		for (i = 0; i < help->dthps_nprovs; i++) {
9408			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
9409			    help->dthps_pid);
9410		}
9411
9412		next = help->dthps_next;
9413		help->dthps_next = NULL;
9414		help->dthps_prev = NULL;
9415		help->dthps_deferred = 0;
9416		help = next;
9417	}
9418
9419	mutex_exit(&dtrace_meta_lock);
9420
9421	return (0);
9422}
9423
9424int
9425dtrace_meta_unregister(dtrace_meta_provider_id_t id)
9426{
9427	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
9428
9429	mutex_enter(&dtrace_meta_lock);
9430	mutex_enter(&dtrace_lock);
9431
9432	if (old == dtrace_meta_pid) {
9433		pp = &dtrace_meta_pid;
9434	} else {
9435		panic("attempt to unregister non-existent "
9436		    "dtrace meta-provider %p\n", (void *)old);
9437	}
9438
9439	if (old->dtm_count != 0) {
9440		mutex_exit(&dtrace_lock);
9441		mutex_exit(&dtrace_meta_lock);
9442		return (EBUSY);
9443	}
9444
9445	*pp = NULL;
9446
9447	mutex_exit(&dtrace_lock);
9448	mutex_exit(&dtrace_meta_lock);
9449
9450	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
9451	kmem_free(old, sizeof (dtrace_meta_t));
9452
9453	return (0);
9454}
9455
9456
9457/*
9458 * DTrace DIF Object Functions
9459 */
9460static int
9461dtrace_difo_err(uint_t pc, const char *format, ...)
9462{
9463	if (dtrace_err_verbose) {
9464		va_list alist;
9465
9466		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
9467		va_start(alist, format);
9468		(void) vuprintf(format, alist);
9469		va_end(alist);
9470	}
9471
9472#ifdef DTRACE_ERRDEBUG
9473	dtrace_errdebug(format);
9474#endif
9475	return (1);
9476}
9477
9478/*
9479 * Validate a DTrace DIF object by checking the IR instructions.  The following
9480 * rules are currently enforced by dtrace_difo_validate():
9481 *
9482 * 1. Each instruction must have a valid opcode
9483 * 2. Each register, string, variable, or subroutine reference must be valid
9484 * 3. No instruction can modify register %r0 (must be zero)
9485 * 4. All instruction reserved bits must be set to zero
9486 * 5. The last instruction must be a "ret" instruction
9487 * 6. All branch targets must reference a valid instruction _after_ the branch
9488 */
9489static int
9490dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
9491    cred_t *cr)
9492{
9493	int err = 0, i;
9494	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9495	int kcheckload;
9496	uint_t pc;
9497
9498	kcheckload = cr == NULL ||
9499	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
9500
9501	dp->dtdo_destructive = 0;
9502
9503	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9504		dif_instr_t instr = dp->dtdo_buf[pc];
9505
9506		uint_t r1 = DIF_INSTR_R1(instr);
9507		uint_t r2 = DIF_INSTR_R2(instr);
9508		uint_t rd = DIF_INSTR_RD(instr);
9509		uint_t rs = DIF_INSTR_RS(instr);
9510		uint_t label = DIF_INSTR_LABEL(instr);
9511		uint_t v = DIF_INSTR_VAR(instr);
9512		uint_t subr = DIF_INSTR_SUBR(instr);
9513		uint_t type = DIF_INSTR_TYPE(instr);
9514		uint_t op = DIF_INSTR_OP(instr);
9515
9516		switch (op) {
9517		case DIF_OP_OR:
9518		case DIF_OP_XOR:
9519		case DIF_OP_AND:
9520		case DIF_OP_SLL:
9521		case DIF_OP_SRL:
9522		case DIF_OP_SRA:
9523		case DIF_OP_SUB:
9524		case DIF_OP_ADD:
9525		case DIF_OP_MUL:
9526		case DIF_OP_SDIV:
9527		case DIF_OP_UDIV:
9528		case DIF_OP_SREM:
9529		case DIF_OP_UREM:
9530		case DIF_OP_COPYS:
9531			if (r1 >= nregs)
9532				err += efunc(pc, "invalid register %u\n", r1);
9533			if (r2 >= nregs)
9534				err += efunc(pc, "invalid register %u\n", r2);
9535			if (rd >= nregs)
9536				err += efunc(pc, "invalid register %u\n", rd);
9537			if (rd == 0)
9538				err += efunc(pc, "cannot write to %r0\n");
9539			break;
9540		case DIF_OP_NOT:
9541		case DIF_OP_MOV:
9542		case DIF_OP_ALLOCS:
9543			if (r1 >= nregs)
9544				err += efunc(pc, "invalid register %u\n", r1);
9545			if (r2 != 0)
9546				err += efunc(pc, "non-zero reserved bits\n");
9547			if (rd >= nregs)
9548				err += efunc(pc, "invalid register %u\n", rd);
9549			if (rd == 0)
9550				err += efunc(pc, "cannot write to %r0\n");
9551			break;
9552		case DIF_OP_LDSB:
9553		case DIF_OP_LDSH:
9554		case DIF_OP_LDSW:
9555		case DIF_OP_LDUB:
9556		case DIF_OP_LDUH:
9557		case DIF_OP_LDUW:
9558		case DIF_OP_LDX:
9559			if (r1 >= nregs)
9560				err += efunc(pc, "invalid register %u\n", r1);
9561			if (r2 != 0)
9562				err += efunc(pc, "non-zero reserved bits\n");
9563			if (rd >= nregs)
9564				err += efunc(pc, "invalid register %u\n", rd);
9565			if (rd == 0)
9566				err += efunc(pc, "cannot write to %r0\n");
9567			if (kcheckload)
9568				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9569				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9570			break;
9571		case DIF_OP_RLDSB:
9572		case DIF_OP_RLDSH:
9573		case DIF_OP_RLDSW:
9574		case DIF_OP_RLDUB:
9575		case DIF_OP_RLDUH:
9576		case DIF_OP_RLDUW:
9577		case DIF_OP_RLDX:
9578			if (r1 >= nregs)
9579				err += efunc(pc, "invalid register %u\n", r1);
9580			if (r2 != 0)
9581				err += efunc(pc, "non-zero reserved bits\n");
9582			if (rd >= nregs)
9583				err += efunc(pc, "invalid register %u\n", rd);
9584			if (rd == 0)
9585				err += efunc(pc, "cannot write to %r0\n");
9586			break;
9587		case DIF_OP_ULDSB:
9588		case DIF_OP_ULDSH:
9589		case DIF_OP_ULDSW:
9590		case DIF_OP_ULDUB:
9591		case DIF_OP_ULDUH:
9592		case DIF_OP_ULDUW:
9593		case DIF_OP_ULDX:
9594			if (r1 >= nregs)
9595				err += efunc(pc, "invalid register %u\n", r1);
9596			if (r2 != 0)
9597				err += efunc(pc, "non-zero reserved bits\n");
9598			if (rd >= nregs)
9599				err += efunc(pc, "invalid register %u\n", rd);
9600			if (rd == 0)
9601				err += efunc(pc, "cannot write to %r0\n");
9602			break;
9603		case DIF_OP_STB:
9604		case DIF_OP_STH:
9605		case DIF_OP_STW:
9606		case DIF_OP_STX:
9607			if (r1 >= nregs)
9608				err += efunc(pc, "invalid register %u\n", r1);
9609			if (r2 != 0)
9610				err += efunc(pc, "non-zero reserved bits\n");
9611			if (rd >= nregs)
9612				err += efunc(pc, "invalid register %u\n", rd);
9613			if (rd == 0)
9614				err += efunc(pc, "cannot write to 0 address\n");
9615			break;
9616		case DIF_OP_CMP:
9617		case DIF_OP_SCMP:
9618			if (r1 >= nregs)
9619				err += efunc(pc, "invalid register %u\n", r1);
9620			if (r2 >= nregs)
9621				err += efunc(pc, "invalid register %u\n", r2);
9622			if (rd != 0)
9623				err += efunc(pc, "non-zero reserved bits\n");
9624			break;
9625		case DIF_OP_TST:
9626			if (r1 >= nregs)
9627				err += efunc(pc, "invalid register %u\n", r1);
9628			if (r2 != 0 || rd != 0)
9629				err += efunc(pc, "non-zero reserved bits\n");
9630			break;
9631		case DIF_OP_BA:
9632		case DIF_OP_BE:
9633		case DIF_OP_BNE:
9634		case DIF_OP_BG:
9635		case DIF_OP_BGU:
9636		case DIF_OP_BGE:
9637		case DIF_OP_BGEU:
9638		case DIF_OP_BL:
9639		case DIF_OP_BLU:
9640		case DIF_OP_BLE:
9641		case DIF_OP_BLEU:
9642			if (label >= dp->dtdo_len) {
9643				err += efunc(pc, "invalid branch target %u\n",
9644				    label);
9645			}
9646			if (label <= pc) {
9647				err += efunc(pc, "backward branch to %u\n",
9648				    label);
9649			}
9650			break;
9651		case DIF_OP_RET:
9652			if (r1 != 0 || r2 != 0)
9653				err += efunc(pc, "non-zero reserved bits\n");
9654			if (rd >= nregs)
9655				err += efunc(pc, "invalid register %u\n", rd);
9656			break;
9657		case DIF_OP_NOP:
9658		case DIF_OP_POPTS:
9659		case DIF_OP_FLUSHTS:
9660			if (r1 != 0 || r2 != 0 || rd != 0)
9661				err += efunc(pc, "non-zero reserved bits\n");
9662			break;
9663		case DIF_OP_SETX:
9664			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9665				err += efunc(pc, "invalid integer ref %u\n",
9666				    DIF_INSTR_INTEGER(instr));
9667			}
9668			if (rd >= nregs)
9669				err += efunc(pc, "invalid register %u\n", rd);
9670			if (rd == 0)
9671				err += efunc(pc, "cannot write to %r0\n");
9672			break;
9673		case DIF_OP_SETS:
9674			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9675				err += efunc(pc, "invalid string ref %u\n",
9676				    DIF_INSTR_STRING(instr));
9677			}
9678			if (rd >= nregs)
9679				err += efunc(pc, "invalid register %u\n", rd);
9680			if (rd == 0)
9681				err += efunc(pc, "cannot write to %r0\n");
9682			break;
9683		case DIF_OP_LDGA:
9684		case DIF_OP_LDTA:
9685			if (r1 > DIF_VAR_ARRAY_MAX)
9686				err += efunc(pc, "invalid array %u\n", r1);
9687			if (r2 >= nregs)
9688				err += efunc(pc, "invalid register %u\n", r2);
9689			if (rd >= nregs)
9690				err += efunc(pc, "invalid register %u\n", rd);
9691			if (rd == 0)
9692				err += efunc(pc, "cannot write to %r0\n");
9693			break;
9694		case DIF_OP_LDGS:
9695		case DIF_OP_LDTS:
9696		case DIF_OP_LDLS:
9697		case DIF_OP_LDGAA:
9698		case DIF_OP_LDTAA:
9699			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9700				err += efunc(pc, "invalid variable %u\n", v);
9701			if (rd >= nregs)
9702				err += efunc(pc, "invalid register %u\n", rd);
9703			if (rd == 0)
9704				err += efunc(pc, "cannot write to %r0\n");
9705			break;
9706		case DIF_OP_STGS:
9707		case DIF_OP_STTS:
9708		case DIF_OP_STLS:
9709		case DIF_OP_STGAA:
9710		case DIF_OP_STTAA:
9711			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
9712				err += efunc(pc, "invalid variable %u\n", v);
9713			if (rs >= nregs)
9714				err += efunc(pc, "invalid register %u\n", rd);
9715			break;
9716		case DIF_OP_CALL:
9717			if (subr > DIF_SUBR_MAX)
9718				err += efunc(pc, "invalid subr %u\n", subr);
9719			if (rd >= nregs)
9720				err += efunc(pc, "invalid register %u\n", rd);
9721			if (rd == 0)
9722				err += efunc(pc, "cannot write to %r0\n");
9723
9724			if (subr == DIF_SUBR_COPYOUT ||
9725			    subr == DIF_SUBR_COPYOUTSTR) {
9726				dp->dtdo_destructive = 1;
9727			}
9728
9729			if (subr == DIF_SUBR_GETF) {
9730				/*
9731				 * If we have a getf() we need to record that
9732				 * in our state.  Note that our state can be
9733				 * NULL if this is a helper -- but in that
9734				 * case, the call to getf() is itself illegal,
9735				 * and will be caught (slightly later) when
9736				 * the helper is validated.
9737				 */
9738				if (vstate->dtvs_state != NULL)
9739					vstate->dtvs_state->dts_getf++;
9740			}
9741
9742			break;
9743		case DIF_OP_PUSHTR:
9744			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
9745				err += efunc(pc, "invalid ref type %u\n", type);
9746			if (r2 >= nregs)
9747				err += efunc(pc, "invalid register %u\n", r2);
9748			if (rs >= nregs)
9749				err += efunc(pc, "invalid register %u\n", rs);
9750			break;
9751		case DIF_OP_PUSHTV:
9752			if (type != DIF_TYPE_CTF)
9753				err += efunc(pc, "invalid val type %u\n", type);
9754			if (r2 >= nregs)
9755				err += efunc(pc, "invalid register %u\n", r2);
9756			if (rs >= nregs)
9757				err += efunc(pc, "invalid register %u\n", rs);
9758			break;
9759		default:
9760			err += efunc(pc, "invalid opcode %u\n",
9761			    DIF_INSTR_OP(instr));
9762		}
9763	}
9764
9765	if (dp->dtdo_len != 0 &&
9766	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
9767		err += efunc(dp->dtdo_len - 1,
9768		    "expected 'ret' as last DIF instruction\n");
9769	}
9770
9771	if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
9772		/*
9773		 * If we're not returning by reference, the size must be either
9774		 * 0 or the size of one of the base types.
9775		 */
9776		switch (dp->dtdo_rtype.dtdt_size) {
9777		case 0:
9778		case sizeof (uint8_t):
9779		case sizeof (uint16_t):
9780		case sizeof (uint32_t):
9781		case sizeof (uint64_t):
9782			break;
9783
9784		default:
9785			err += efunc(dp->dtdo_len - 1, "bad return size\n");
9786		}
9787	}
9788
9789	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
9790		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
9791		dtrace_diftype_t *vt, *et;
9792		uint_t id, ndx;
9793
9794		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
9795		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
9796		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
9797			err += efunc(i, "unrecognized variable scope %d\n",
9798			    v->dtdv_scope);
9799			break;
9800		}
9801
9802		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
9803		    v->dtdv_kind != DIFV_KIND_SCALAR) {
9804			err += efunc(i, "unrecognized variable type %d\n",
9805			    v->dtdv_kind);
9806			break;
9807		}
9808
9809		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
9810			err += efunc(i, "%d exceeds variable id limit\n", id);
9811			break;
9812		}
9813
9814		if (id < DIF_VAR_OTHER_UBASE)
9815			continue;
9816
9817		/*
9818		 * For user-defined variables, we need to check that this
9819		 * definition is identical to any previous definition that we
9820		 * encountered.
9821		 */
9822		ndx = id - DIF_VAR_OTHER_UBASE;
9823
9824		switch (v->dtdv_scope) {
9825		case DIFV_SCOPE_GLOBAL:
9826			if (ndx < vstate->dtvs_nglobals) {
9827				dtrace_statvar_t *svar;
9828
9829				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
9830					existing = &svar->dtsv_var;
9831			}
9832
9833			break;
9834
9835		case DIFV_SCOPE_THREAD:
9836			if (ndx < vstate->dtvs_ntlocals)
9837				existing = &vstate->dtvs_tlocals[ndx];
9838			break;
9839
9840		case DIFV_SCOPE_LOCAL:
9841			if (ndx < vstate->dtvs_nlocals) {
9842				dtrace_statvar_t *svar;
9843
9844				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
9845					existing = &svar->dtsv_var;
9846			}
9847
9848			break;
9849		}
9850
9851		vt = &v->dtdv_type;
9852
9853		if (vt->dtdt_flags & DIF_TF_BYREF) {
9854			if (vt->dtdt_size == 0) {
9855				err += efunc(i, "zero-sized variable\n");
9856				break;
9857			}
9858
9859			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
9860			    vt->dtdt_size > dtrace_global_maxsize) {
9861				err += efunc(i, "oversized by-ref global\n");
9862				break;
9863			}
9864		}
9865
9866		if (existing == NULL || existing->dtdv_id == 0)
9867			continue;
9868
9869		ASSERT(existing->dtdv_id == v->dtdv_id);
9870		ASSERT(existing->dtdv_scope == v->dtdv_scope);
9871
9872		if (existing->dtdv_kind != v->dtdv_kind)
9873			err += efunc(i, "%d changed variable kind\n", id);
9874
9875		et = &existing->dtdv_type;
9876
9877		if (vt->dtdt_flags != et->dtdt_flags) {
9878			err += efunc(i, "%d changed variable type flags\n", id);
9879			break;
9880		}
9881
9882		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
9883			err += efunc(i, "%d changed variable type size\n", id);
9884			break;
9885		}
9886	}
9887
9888	return (err);
9889}
9890
9891/*
9892 * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
9893 * are much more constrained than normal DIFOs.  Specifically, they may
9894 * not:
9895 *
9896 * 1. Make calls to subroutines other than copyin(), copyinstr() or
9897 *    miscellaneous string routines
9898 * 2. Access DTrace variables other than the args[] array, and the
9899 *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
9900 * 3. Have thread-local variables.
9901 * 4. Have dynamic variables.
9902 */
9903static int
9904dtrace_difo_validate_helper(dtrace_difo_t *dp)
9905{
9906	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9907	int err = 0;
9908	uint_t pc;
9909
9910	for (pc = 0; pc < dp->dtdo_len; pc++) {
9911		dif_instr_t instr = dp->dtdo_buf[pc];
9912
9913		uint_t v = DIF_INSTR_VAR(instr);
9914		uint_t subr = DIF_INSTR_SUBR(instr);
9915		uint_t op = DIF_INSTR_OP(instr);
9916
9917		switch (op) {
9918		case DIF_OP_OR:
9919		case DIF_OP_XOR:
9920		case DIF_OP_AND:
9921		case DIF_OP_SLL:
9922		case DIF_OP_SRL:
9923		case DIF_OP_SRA:
9924		case DIF_OP_SUB:
9925		case DIF_OP_ADD:
9926		case DIF_OP_MUL:
9927		case DIF_OP_SDIV:
9928		case DIF_OP_UDIV:
9929		case DIF_OP_SREM:
9930		case DIF_OP_UREM:
9931		case DIF_OP_COPYS:
9932		case DIF_OP_NOT:
9933		case DIF_OP_MOV:
9934		case DIF_OP_RLDSB:
9935		case DIF_OP_RLDSH:
9936		case DIF_OP_RLDSW:
9937		case DIF_OP_RLDUB:
9938		case DIF_OP_RLDUH:
9939		case DIF_OP_RLDUW:
9940		case DIF_OP_RLDX:
9941		case DIF_OP_ULDSB:
9942		case DIF_OP_ULDSH:
9943		case DIF_OP_ULDSW:
9944		case DIF_OP_ULDUB:
9945		case DIF_OP_ULDUH:
9946		case DIF_OP_ULDUW:
9947		case DIF_OP_ULDX:
9948		case DIF_OP_STB:
9949		case DIF_OP_STH:
9950		case DIF_OP_STW:
9951		case DIF_OP_STX:
9952		case DIF_OP_ALLOCS:
9953		case DIF_OP_CMP:
9954		case DIF_OP_SCMP:
9955		case DIF_OP_TST:
9956		case DIF_OP_BA:
9957		case DIF_OP_BE:
9958		case DIF_OP_BNE:
9959		case DIF_OP_BG:
9960		case DIF_OP_BGU:
9961		case DIF_OP_BGE:
9962		case DIF_OP_BGEU:
9963		case DIF_OP_BL:
9964		case DIF_OP_BLU:
9965		case DIF_OP_BLE:
9966		case DIF_OP_BLEU:
9967		case DIF_OP_RET:
9968		case DIF_OP_NOP:
9969		case DIF_OP_POPTS:
9970		case DIF_OP_FLUSHTS:
9971		case DIF_OP_SETX:
9972		case DIF_OP_SETS:
9973		case DIF_OP_LDGA:
9974		case DIF_OP_LDLS:
9975		case DIF_OP_STGS:
9976		case DIF_OP_STLS:
9977		case DIF_OP_PUSHTR:
9978		case DIF_OP_PUSHTV:
9979			break;
9980
9981		case DIF_OP_LDGS:
9982			if (v >= DIF_VAR_OTHER_UBASE)
9983				break;
9984
9985			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
9986				break;
9987
9988			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
9989			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
9990			    v == DIF_VAR_EXECARGS ||
9991			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
9992			    v == DIF_VAR_UID || v == DIF_VAR_GID)
9993				break;
9994
9995			err += efunc(pc, "illegal variable %u\n", v);
9996			break;
9997
9998		case DIF_OP_LDTA:
9999		case DIF_OP_LDTS:
10000		case DIF_OP_LDGAA:
10001		case DIF_OP_LDTAA:
10002			err += efunc(pc, "illegal dynamic variable load\n");
10003			break;
10004
10005		case DIF_OP_STTS:
10006		case DIF_OP_STGAA:
10007		case DIF_OP_STTAA:
10008			err += efunc(pc, "illegal dynamic variable store\n");
10009			break;
10010
10011		case DIF_OP_CALL:
10012			if (subr == DIF_SUBR_ALLOCA ||
10013			    subr == DIF_SUBR_BCOPY ||
10014			    subr == DIF_SUBR_COPYIN ||
10015			    subr == DIF_SUBR_COPYINTO ||
10016			    subr == DIF_SUBR_COPYINSTR ||
10017			    subr == DIF_SUBR_INDEX ||
10018			    subr == DIF_SUBR_INET_NTOA ||
10019			    subr == DIF_SUBR_INET_NTOA6 ||
10020			    subr == DIF_SUBR_INET_NTOP ||
10021			    subr == DIF_SUBR_JSON ||
10022			    subr == DIF_SUBR_LLTOSTR ||
10023			    subr == DIF_SUBR_STRTOLL ||
10024			    subr == DIF_SUBR_RINDEX ||
10025			    subr == DIF_SUBR_STRCHR ||
10026			    subr == DIF_SUBR_STRJOIN ||
10027			    subr == DIF_SUBR_STRRCHR ||
10028			    subr == DIF_SUBR_STRSTR ||
10029			    subr == DIF_SUBR_HTONS ||
10030			    subr == DIF_SUBR_HTONL ||
10031			    subr == DIF_SUBR_HTONLL ||
10032			    subr == DIF_SUBR_NTOHS ||
10033			    subr == DIF_SUBR_NTOHL ||
10034			    subr == DIF_SUBR_NTOHLL ||
10035			    subr == DIF_SUBR_MEMREF ||
10036			    subr == DIF_SUBR_TYPEREF)
10037				break;
10038
10039			err += efunc(pc, "invalid subr %u\n", subr);
10040			break;
10041
10042		default:
10043			err += efunc(pc, "invalid opcode %u\n",
10044			    DIF_INSTR_OP(instr));
10045		}
10046	}
10047
10048	return (err);
10049}
10050
10051/*
10052 * Returns 1 if the expression in the DIF object can be cached on a per-thread
10053 * basis; 0 if not.
10054 */
10055static int
10056dtrace_difo_cacheable(dtrace_difo_t *dp)
10057{
10058	int i;
10059
10060	if (dp == NULL)
10061		return (0);
10062
10063	for (i = 0; i < dp->dtdo_varlen; i++) {
10064		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10065
10066		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
10067			continue;
10068
10069		switch (v->dtdv_id) {
10070		case DIF_VAR_CURTHREAD:
10071		case DIF_VAR_PID:
10072		case DIF_VAR_TID:
10073		case DIF_VAR_EXECARGS:
10074		case DIF_VAR_EXECNAME:
10075		case DIF_VAR_ZONENAME:
10076			break;
10077
10078		default:
10079			return (0);
10080		}
10081	}
10082
10083	/*
10084	 * This DIF object may be cacheable.  Now we need to look for any
10085	 * array loading instructions, any memory loading instructions, or
10086	 * any stores to thread-local variables.
10087	 */
10088	for (i = 0; i < dp->dtdo_len; i++) {
10089		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
10090
10091		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
10092		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
10093		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
10094		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
10095			return (0);
10096	}
10097
10098	return (1);
10099}
10100
10101static void
10102dtrace_difo_hold(dtrace_difo_t *dp)
10103{
10104	int i;
10105
10106	ASSERT(MUTEX_HELD(&dtrace_lock));
10107
10108	dp->dtdo_refcnt++;
10109	ASSERT(dp->dtdo_refcnt != 0);
10110
10111	/*
10112	 * We need to check this DIF object for references to the variable
10113	 * DIF_VAR_VTIMESTAMP.
10114	 */
10115	for (i = 0; i < dp->dtdo_varlen; i++) {
10116		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10117
10118		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10119			continue;
10120
10121		if (dtrace_vtime_references++ == 0)
10122			dtrace_vtime_enable();
10123	}
10124}
10125
10126/*
10127 * This routine calculates the dynamic variable chunksize for a given DIF
10128 * object.  The calculation is not fool-proof, and can probably be tricked by
10129 * malicious DIF -- but it works for all compiler-generated DIF.  Because this
10130 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
10131 * if a dynamic variable size exceeds the chunksize.
10132 */
10133static void
10134dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10135{
10136	uint64_t sval = 0;
10137	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
10138	const dif_instr_t *text = dp->dtdo_buf;
10139	uint_t pc, srd = 0;
10140	uint_t ttop = 0;
10141	size_t size, ksize;
10142	uint_t id, i;
10143
10144	for (pc = 0; pc < dp->dtdo_len; pc++) {
10145		dif_instr_t instr = text[pc];
10146		uint_t op = DIF_INSTR_OP(instr);
10147		uint_t rd = DIF_INSTR_RD(instr);
10148		uint_t r1 = DIF_INSTR_R1(instr);
10149		uint_t nkeys = 0;
10150		uchar_t scope = 0;
10151
10152		dtrace_key_t *key = tupregs;
10153
10154		switch (op) {
10155		case DIF_OP_SETX:
10156			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
10157			srd = rd;
10158			continue;
10159
10160		case DIF_OP_STTS:
10161			key = &tupregs[DIF_DTR_NREGS];
10162			key[0].dttk_size = 0;
10163			key[1].dttk_size = 0;
10164			nkeys = 2;
10165			scope = DIFV_SCOPE_THREAD;
10166			break;
10167
10168		case DIF_OP_STGAA:
10169		case DIF_OP_STTAA:
10170			nkeys = ttop;
10171
10172			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
10173				key[nkeys++].dttk_size = 0;
10174
10175			key[nkeys++].dttk_size = 0;
10176
10177			if (op == DIF_OP_STTAA) {
10178				scope = DIFV_SCOPE_THREAD;
10179			} else {
10180				scope = DIFV_SCOPE_GLOBAL;
10181			}
10182
10183			break;
10184
10185		case DIF_OP_PUSHTR:
10186			if (ttop == DIF_DTR_NREGS)
10187				return;
10188
10189			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
10190				/*
10191				 * If the register for the size of the "pushtr"
10192				 * is %r0 (or the value is 0) and the type is
10193				 * a string, we'll use the system-wide default
10194				 * string size.
10195				 */
10196				tupregs[ttop++].dttk_size =
10197				    dtrace_strsize_default;
10198			} else {
10199				if (srd == 0)
10200					return;
10201
10202				tupregs[ttop++].dttk_size = sval;
10203			}
10204
10205			break;
10206
10207		case DIF_OP_PUSHTV:
10208			if (ttop == DIF_DTR_NREGS)
10209				return;
10210
10211			tupregs[ttop++].dttk_size = 0;
10212			break;
10213
10214		case DIF_OP_FLUSHTS:
10215			ttop = 0;
10216			break;
10217
10218		case DIF_OP_POPTS:
10219			if (ttop != 0)
10220				ttop--;
10221			break;
10222		}
10223
10224		sval = 0;
10225		srd = 0;
10226
10227		if (nkeys == 0)
10228			continue;
10229
10230		/*
10231		 * We have a dynamic variable allocation; calculate its size.
10232		 */
10233		for (ksize = 0, i = 0; i < nkeys; i++)
10234			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
10235
10236		size = sizeof (dtrace_dynvar_t);
10237		size += sizeof (dtrace_key_t) * (nkeys - 1);
10238		size += ksize;
10239
10240		/*
10241		 * Now we need to determine the size of the stored data.
10242		 */
10243		id = DIF_INSTR_VAR(instr);
10244
10245		for (i = 0; i < dp->dtdo_varlen; i++) {
10246			dtrace_difv_t *v = &dp->dtdo_vartab[i];
10247
10248			if (v->dtdv_id == id && v->dtdv_scope == scope) {
10249				size += v->dtdv_type.dtdt_size;
10250				break;
10251			}
10252		}
10253
10254		if (i == dp->dtdo_varlen)
10255			return;
10256
10257		/*
10258		 * We have the size.  If this is larger than the chunk size
10259		 * for our dynamic variable state, reset the chunk size.
10260		 */
10261		size = P2ROUNDUP(size, sizeof (uint64_t));
10262
10263		if (size > vstate->dtvs_dynvars.dtds_chunksize)
10264			vstate->dtvs_dynvars.dtds_chunksize = size;
10265	}
10266}
10267
10268static void
10269dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10270{
10271	int i, oldsvars, osz, nsz, otlocals, ntlocals;
10272	uint_t id;
10273
10274	ASSERT(MUTEX_HELD(&dtrace_lock));
10275	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
10276
10277	for (i = 0; i < dp->dtdo_varlen; i++) {
10278		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10279		dtrace_statvar_t *svar, ***svarp = NULL;
10280		size_t dsize = 0;
10281		uint8_t scope = v->dtdv_scope;
10282		int *np = NULL;
10283
10284		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10285			continue;
10286
10287		id -= DIF_VAR_OTHER_UBASE;
10288
10289		switch (scope) {
10290		case DIFV_SCOPE_THREAD:
10291			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
10292				dtrace_difv_t *tlocals;
10293
10294				if ((ntlocals = (otlocals << 1)) == 0)
10295					ntlocals = 1;
10296
10297				osz = otlocals * sizeof (dtrace_difv_t);
10298				nsz = ntlocals * sizeof (dtrace_difv_t);
10299
10300				tlocals = kmem_zalloc(nsz, KM_SLEEP);
10301
10302				if (osz != 0) {
10303					bcopy(vstate->dtvs_tlocals,
10304					    tlocals, osz);
10305					kmem_free(vstate->dtvs_tlocals, osz);
10306				}
10307
10308				vstate->dtvs_tlocals = tlocals;
10309				vstate->dtvs_ntlocals = ntlocals;
10310			}
10311
10312			vstate->dtvs_tlocals[id] = *v;
10313			continue;
10314
10315		case DIFV_SCOPE_LOCAL:
10316			np = &vstate->dtvs_nlocals;
10317			svarp = &vstate->dtvs_locals;
10318
10319			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10320				dsize = NCPU * (v->dtdv_type.dtdt_size +
10321				    sizeof (uint64_t));
10322			else
10323				dsize = NCPU * sizeof (uint64_t);
10324
10325			break;
10326
10327		case DIFV_SCOPE_GLOBAL:
10328			np = &vstate->dtvs_nglobals;
10329			svarp = &vstate->dtvs_globals;
10330
10331			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10332				dsize = v->dtdv_type.dtdt_size +
10333				    sizeof (uint64_t);
10334
10335			break;
10336
10337		default:
10338			ASSERT(0);
10339		}
10340
10341		while (id >= (oldsvars = *np)) {
10342			dtrace_statvar_t **statics;
10343			int newsvars, oldsize, newsize;
10344
10345			if ((newsvars = (oldsvars << 1)) == 0)
10346				newsvars = 1;
10347
10348			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
10349			newsize = newsvars * sizeof (dtrace_statvar_t *);
10350
10351			statics = kmem_zalloc(newsize, KM_SLEEP);
10352
10353			if (oldsize != 0) {
10354				bcopy(*svarp, statics, oldsize);
10355				kmem_free(*svarp, oldsize);
10356			}
10357
10358			*svarp = statics;
10359			*np = newsvars;
10360		}
10361
10362		if ((svar = (*svarp)[id]) == NULL) {
10363			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
10364			svar->dtsv_var = *v;
10365
10366			if ((svar->dtsv_size = dsize) != 0) {
10367				svar->dtsv_data = (uint64_t)(uintptr_t)
10368				    kmem_zalloc(dsize, KM_SLEEP);
10369			}
10370
10371			(*svarp)[id] = svar;
10372		}
10373
10374		svar->dtsv_refcnt++;
10375	}
10376
10377	dtrace_difo_chunksize(dp, vstate);
10378	dtrace_difo_hold(dp);
10379}
10380
10381static dtrace_difo_t *
10382dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10383{
10384	dtrace_difo_t *new;
10385	size_t sz;
10386
10387	ASSERT(dp->dtdo_buf != NULL);
10388	ASSERT(dp->dtdo_refcnt != 0);
10389
10390	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10391
10392	ASSERT(dp->dtdo_buf != NULL);
10393	sz = dp->dtdo_len * sizeof (dif_instr_t);
10394	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
10395	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
10396	new->dtdo_len = dp->dtdo_len;
10397
10398	if (dp->dtdo_strtab != NULL) {
10399		ASSERT(dp->dtdo_strlen != 0);
10400		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
10401		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
10402		new->dtdo_strlen = dp->dtdo_strlen;
10403	}
10404
10405	if (dp->dtdo_inttab != NULL) {
10406		ASSERT(dp->dtdo_intlen != 0);
10407		sz = dp->dtdo_intlen * sizeof (uint64_t);
10408		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
10409		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
10410		new->dtdo_intlen = dp->dtdo_intlen;
10411	}
10412
10413	if (dp->dtdo_vartab != NULL) {
10414		ASSERT(dp->dtdo_varlen != 0);
10415		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
10416		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
10417		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
10418		new->dtdo_varlen = dp->dtdo_varlen;
10419	}
10420
10421	dtrace_difo_init(new, vstate);
10422	return (new);
10423}
10424
10425static void
10426dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10427{
10428	int i;
10429
10430	ASSERT(dp->dtdo_refcnt == 0);
10431
10432	for (i = 0; i < dp->dtdo_varlen; i++) {
10433		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10434		dtrace_statvar_t *svar, **svarp = NULL;
10435		uint_t id;
10436		uint8_t scope = v->dtdv_scope;
10437		int *np = NULL;
10438
10439		switch (scope) {
10440		case DIFV_SCOPE_THREAD:
10441			continue;
10442
10443		case DIFV_SCOPE_LOCAL:
10444			np = &vstate->dtvs_nlocals;
10445			svarp = vstate->dtvs_locals;
10446			break;
10447
10448		case DIFV_SCOPE_GLOBAL:
10449			np = &vstate->dtvs_nglobals;
10450			svarp = vstate->dtvs_globals;
10451			break;
10452
10453		default:
10454			ASSERT(0);
10455		}
10456
10457		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10458			continue;
10459
10460		id -= DIF_VAR_OTHER_UBASE;
10461		ASSERT(id < *np);
10462
10463		svar = svarp[id];
10464		ASSERT(svar != NULL);
10465		ASSERT(svar->dtsv_refcnt > 0);
10466
10467		if (--svar->dtsv_refcnt > 0)
10468			continue;
10469
10470		if (svar->dtsv_size != 0) {
10471			ASSERT(svar->dtsv_data != 0);
10472			kmem_free((void *)(uintptr_t)svar->dtsv_data,
10473			    svar->dtsv_size);
10474		}
10475
10476		kmem_free(svar, sizeof (dtrace_statvar_t));
10477		svarp[id] = NULL;
10478	}
10479
10480	if (dp->dtdo_buf != NULL)
10481		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10482	if (dp->dtdo_inttab != NULL)
10483		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10484	if (dp->dtdo_strtab != NULL)
10485		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10486	if (dp->dtdo_vartab != NULL)
10487		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10488
10489	kmem_free(dp, sizeof (dtrace_difo_t));
10490}
10491
10492static void
10493dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10494{
10495	int i;
10496
10497	ASSERT(MUTEX_HELD(&dtrace_lock));
10498	ASSERT(dp->dtdo_refcnt != 0);
10499
10500	for (i = 0; i < dp->dtdo_varlen; i++) {
10501		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10502
10503		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10504			continue;
10505
10506		ASSERT(dtrace_vtime_references > 0);
10507		if (--dtrace_vtime_references == 0)
10508			dtrace_vtime_disable();
10509	}
10510
10511	if (--dp->dtdo_refcnt == 0)
10512		dtrace_difo_destroy(dp, vstate);
10513}
10514
10515/*
10516 * DTrace Format Functions
10517 */
10518static uint16_t
10519dtrace_format_add(dtrace_state_t *state, char *str)
10520{
10521	char *fmt, **new;
10522	uint16_t ndx, len = strlen(str) + 1;
10523
10524	fmt = kmem_zalloc(len, KM_SLEEP);
10525	bcopy(str, fmt, len);
10526
10527	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10528		if (state->dts_formats[ndx] == NULL) {
10529			state->dts_formats[ndx] = fmt;
10530			return (ndx + 1);
10531		}
10532	}
10533
10534	if (state->dts_nformats == USHRT_MAX) {
10535		/*
10536		 * This is only likely if a denial-of-service attack is being
10537		 * attempted.  As such, it's okay to fail silently here.
10538		 */
10539		kmem_free(fmt, len);
10540		return (0);
10541	}
10542
10543	/*
10544	 * For simplicity, we always resize the formats array to be exactly the
10545	 * number of formats.
10546	 */
10547	ndx = state->dts_nformats++;
10548	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10549
10550	if (state->dts_formats != NULL) {
10551		ASSERT(ndx != 0);
10552		bcopy(state->dts_formats, new, ndx * sizeof (char *));
10553		kmem_free(state->dts_formats, ndx * sizeof (char *));
10554	}
10555
10556	state->dts_formats = new;
10557	state->dts_formats[ndx] = fmt;
10558
10559	return (ndx + 1);
10560}
10561
10562static void
10563dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10564{
10565	char *fmt;
10566
10567	ASSERT(state->dts_formats != NULL);
10568	ASSERT(format <= state->dts_nformats);
10569	ASSERT(state->dts_formats[format - 1] != NULL);
10570
10571	fmt = state->dts_formats[format - 1];
10572	kmem_free(fmt, strlen(fmt) + 1);
10573	state->dts_formats[format - 1] = NULL;
10574}
10575
10576static void
10577dtrace_format_destroy(dtrace_state_t *state)
10578{
10579	int i;
10580
10581	if (state->dts_nformats == 0) {
10582		ASSERT(state->dts_formats == NULL);
10583		return;
10584	}
10585
10586	ASSERT(state->dts_formats != NULL);
10587
10588	for (i = 0; i < state->dts_nformats; i++) {
10589		char *fmt = state->dts_formats[i];
10590
10591		if (fmt == NULL)
10592			continue;
10593
10594		kmem_free(fmt, strlen(fmt) + 1);
10595	}
10596
10597	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10598	state->dts_nformats = 0;
10599	state->dts_formats = NULL;
10600}
10601
10602/*
10603 * DTrace Predicate Functions
10604 */
10605static dtrace_predicate_t *
10606dtrace_predicate_create(dtrace_difo_t *dp)
10607{
10608	dtrace_predicate_t *pred;
10609
10610	ASSERT(MUTEX_HELD(&dtrace_lock));
10611	ASSERT(dp->dtdo_refcnt != 0);
10612
10613	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10614	pred->dtp_difo = dp;
10615	pred->dtp_refcnt = 1;
10616
10617	if (!dtrace_difo_cacheable(dp))
10618		return (pred);
10619
10620	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10621		/*
10622		 * This is only theoretically possible -- we have had 2^32
10623		 * cacheable predicates on this machine.  We cannot allow any
10624		 * more predicates to become cacheable:  as unlikely as it is,
10625		 * there may be a thread caching a (now stale) predicate cache
10626		 * ID. (N.B.: the temptation is being successfully resisted to
10627		 * have this cmn_err() "Holy shit -- we executed this code!")
10628		 */
10629		return (pred);
10630	}
10631
10632	pred->dtp_cacheid = dtrace_predcache_id++;
10633
10634	return (pred);
10635}
10636
10637static void
10638dtrace_predicate_hold(dtrace_predicate_t *pred)
10639{
10640	ASSERT(MUTEX_HELD(&dtrace_lock));
10641	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
10642	ASSERT(pred->dtp_refcnt > 0);
10643
10644	pred->dtp_refcnt++;
10645}
10646
10647static void
10648dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
10649{
10650	dtrace_difo_t *dp = pred->dtp_difo;
10651
10652	ASSERT(MUTEX_HELD(&dtrace_lock));
10653	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
10654	ASSERT(pred->dtp_refcnt > 0);
10655
10656	if (--pred->dtp_refcnt == 0) {
10657		dtrace_difo_release(pred->dtp_difo, vstate);
10658		kmem_free(pred, sizeof (dtrace_predicate_t));
10659	}
10660}
10661
10662/*
10663 * DTrace Action Description Functions
10664 */
10665static dtrace_actdesc_t *
10666dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
10667    uint64_t uarg, uint64_t arg)
10668{
10669	dtrace_actdesc_t *act;
10670
10671#if defined(sun)
10672	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
10673	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
10674#endif
10675
10676	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
10677	act->dtad_kind = kind;
10678	act->dtad_ntuple = ntuple;
10679	act->dtad_uarg = uarg;
10680	act->dtad_arg = arg;
10681	act->dtad_refcnt = 1;
10682
10683	return (act);
10684}
10685
10686static void
10687dtrace_actdesc_hold(dtrace_actdesc_t *act)
10688{
10689	ASSERT(act->dtad_refcnt >= 1);
10690	act->dtad_refcnt++;
10691}
10692
10693static void
10694dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
10695{
10696	dtrace_actkind_t kind = act->dtad_kind;
10697	dtrace_difo_t *dp;
10698
10699	ASSERT(act->dtad_refcnt >= 1);
10700
10701	if (--act->dtad_refcnt != 0)
10702		return;
10703
10704	if ((dp = act->dtad_difo) != NULL)
10705		dtrace_difo_release(dp, vstate);
10706
10707	if (DTRACEACT_ISPRINTFLIKE(kind)) {
10708		char *str = (char *)(uintptr_t)act->dtad_arg;
10709
10710#if defined(sun)
10711		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
10712		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
10713#endif
10714
10715		if (str != NULL)
10716			kmem_free(str, strlen(str) + 1);
10717	}
10718
10719	kmem_free(act, sizeof (dtrace_actdesc_t));
10720}
10721
10722/*
10723 * DTrace ECB Functions
10724 */
10725static dtrace_ecb_t *
10726dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
10727{
10728	dtrace_ecb_t *ecb;
10729	dtrace_epid_t epid;
10730
10731	ASSERT(MUTEX_HELD(&dtrace_lock));
10732
10733	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
10734	ecb->dte_predicate = NULL;
10735	ecb->dte_probe = probe;
10736
10737	/*
10738	 * The default size is the size of the default action: recording
10739	 * the header.
10740	 */
10741	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
10742	ecb->dte_alignment = sizeof (dtrace_epid_t);
10743
10744	epid = state->dts_epid++;
10745
10746	if (epid - 1 >= state->dts_necbs) {
10747		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
10748		int necbs = state->dts_necbs << 1;
10749
10750		ASSERT(epid == state->dts_necbs + 1);
10751
10752		if (necbs == 0) {
10753			ASSERT(oecbs == NULL);
10754			necbs = 1;
10755		}
10756
10757		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
10758
10759		if (oecbs != NULL)
10760			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
10761
10762		dtrace_membar_producer();
10763		state->dts_ecbs = ecbs;
10764
10765		if (oecbs != NULL) {
10766			/*
10767			 * If this state is active, we must dtrace_sync()
10768			 * before we can free the old dts_ecbs array:  we're
10769			 * coming in hot, and there may be active ring
10770			 * buffer processing (which indexes into the dts_ecbs
10771			 * array) on another CPU.
10772			 */
10773			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
10774				dtrace_sync();
10775
10776			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
10777		}
10778
10779		dtrace_membar_producer();
10780		state->dts_necbs = necbs;
10781	}
10782
10783	ecb->dte_state = state;
10784
10785	ASSERT(state->dts_ecbs[epid - 1] == NULL);
10786	dtrace_membar_producer();
10787	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
10788
10789	return (ecb);
10790}
10791
10792static void
10793dtrace_ecb_enable(dtrace_ecb_t *ecb)
10794{
10795	dtrace_probe_t *probe = ecb->dte_probe;
10796
10797	ASSERT(MUTEX_HELD(&cpu_lock));
10798	ASSERT(MUTEX_HELD(&dtrace_lock));
10799	ASSERT(ecb->dte_next == NULL);
10800
10801	if (probe == NULL) {
10802		/*
10803		 * This is the NULL probe -- there's nothing to do.
10804		 */
10805		return;
10806	}
10807
10808	if (probe->dtpr_ecb == NULL) {
10809		dtrace_provider_t *prov = probe->dtpr_provider;
10810
10811		/*
10812		 * We're the first ECB on this probe.
10813		 */
10814		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
10815
10816		if (ecb->dte_predicate != NULL)
10817			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
10818
10819		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
10820		    probe->dtpr_id, probe->dtpr_arg);
10821	} else {
10822		/*
10823		 * This probe is already active.  Swing the last pointer to
10824		 * point to the new ECB, and issue a dtrace_sync() to assure
10825		 * that all CPUs have seen the change.
10826		 */
10827		ASSERT(probe->dtpr_ecb_last != NULL);
10828		probe->dtpr_ecb_last->dte_next = ecb;
10829		probe->dtpr_ecb_last = ecb;
10830		probe->dtpr_predcache = 0;
10831
10832		dtrace_sync();
10833	}
10834}
10835
10836static void
10837dtrace_ecb_resize(dtrace_ecb_t *ecb)
10838{
10839	dtrace_action_t *act;
10840	uint32_t curneeded = UINT32_MAX;
10841	uint32_t aggbase = UINT32_MAX;
10842
10843	/*
10844	 * If we record anything, we always record the dtrace_rechdr_t.  (And
10845	 * we always record it first.)
10846	 */
10847	ecb->dte_size = sizeof (dtrace_rechdr_t);
10848	ecb->dte_alignment = sizeof (dtrace_epid_t);
10849
10850	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10851		dtrace_recdesc_t *rec = &act->dta_rec;
10852		ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
10853
10854		ecb->dte_alignment = MAX(ecb->dte_alignment,
10855		    rec->dtrd_alignment);
10856
10857		if (DTRACEACT_ISAGG(act->dta_kind)) {
10858			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10859
10860			ASSERT(rec->dtrd_size != 0);
10861			ASSERT(agg->dtag_first != NULL);
10862			ASSERT(act->dta_prev->dta_intuple);
10863			ASSERT(aggbase != UINT32_MAX);
10864			ASSERT(curneeded != UINT32_MAX);
10865
10866			agg->dtag_base = aggbase;
10867
10868			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10869			rec->dtrd_offset = curneeded;
10870			curneeded += rec->dtrd_size;
10871			ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
10872
10873			aggbase = UINT32_MAX;
10874			curneeded = UINT32_MAX;
10875		} else if (act->dta_intuple) {
10876			if (curneeded == UINT32_MAX) {
10877				/*
10878				 * This is the first record in a tuple.  Align
10879				 * curneeded to be at offset 4 in an 8-byte
10880				 * aligned block.
10881				 */
10882				ASSERT(act->dta_prev == NULL ||
10883				    !act->dta_prev->dta_intuple);
10884				ASSERT3U(aggbase, ==, UINT32_MAX);
10885				curneeded = P2PHASEUP(ecb->dte_size,
10886				    sizeof (uint64_t), sizeof (dtrace_aggid_t));
10887
10888				aggbase = curneeded - sizeof (dtrace_aggid_t);
10889				ASSERT(IS_P2ALIGNED(aggbase,
10890				    sizeof (uint64_t)));
10891			}
10892			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10893			rec->dtrd_offset = curneeded;
10894			curneeded += rec->dtrd_size;
10895		} else {
10896			/* tuples must be followed by an aggregation */
10897			ASSERT(act->dta_prev == NULL ||
10898			    !act->dta_prev->dta_intuple);
10899
10900			ecb->dte_size = P2ROUNDUP(ecb->dte_size,
10901			    rec->dtrd_alignment);
10902			rec->dtrd_offset = ecb->dte_size;
10903			ecb->dte_size += rec->dtrd_size;
10904			ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
10905		}
10906	}
10907
10908	if ((act = ecb->dte_action) != NULL &&
10909	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
10910	    ecb->dte_size == sizeof (dtrace_rechdr_t)) {
10911		/*
10912		 * If the size is still sizeof (dtrace_rechdr_t), then all
10913		 * actions store no data; set the size to 0.
10914		 */
10915		ecb->dte_size = 0;
10916	}
10917
10918	ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
10919	ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
10920	ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
10921	    ecb->dte_needed);
10922}
10923
10924static dtrace_action_t *
10925dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10926{
10927	dtrace_aggregation_t *agg;
10928	size_t size = sizeof (uint64_t);
10929	int ntuple = desc->dtad_ntuple;
10930	dtrace_action_t *act;
10931	dtrace_recdesc_t *frec;
10932	dtrace_aggid_t aggid;
10933	dtrace_state_t *state = ecb->dte_state;
10934
10935	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
10936	agg->dtag_ecb = ecb;
10937
10938	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
10939
10940	switch (desc->dtad_kind) {
10941	case DTRACEAGG_MIN:
10942		agg->dtag_initial = INT64_MAX;
10943		agg->dtag_aggregate = dtrace_aggregate_min;
10944		break;
10945
10946	case DTRACEAGG_MAX:
10947		agg->dtag_initial = INT64_MIN;
10948		agg->dtag_aggregate = dtrace_aggregate_max;
10949		break;
10950
10951	case DTRACEAGG_COUNT:
10952		agg->dtag_aggregate = dtrace_aggregate_count;
10953		break;
10954
10955	case DTRACEAGG_QUANTIZE:
10956		agg->dtag_aggregate = dtrace_aggregate_quantize;
10957		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
10958		    sizeof (uint64_t);
10959		break;
10960
10961	case DTRACEAGG_LQUANTIZE: {
10962		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
10963		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
10964
10965		agg->dtag_initial = desc->dtad_arg;
10966		agg->dtag_aggregate = dtrace_aggregate_lquantize;
10967
10968		if (step == 0 || levels == 0)
10969			goto err;
10970
10971		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10972		break;
10973	}
10974
10975	case DTRACEAGG_LLQUANTIZE: {
10976		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
10977		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
10978		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
10979		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
10980		int64_t v;
10981
10982		agg->dtag_initial = desc->dtad_arg;
10983		agg->dtag_aggregate = dtrace_aggregate_llquantize;
10984
10985		if (factor < 2 || low >= high || nsteps < factor)
10986			goto err;
10987
10988		/*
10989		 * Now check that the number of steps evenly divides a power
10990		 * of the factor.  (This assures both integer bucket size and
10991		 * linearity within each magnitude.)
10992		 */
10993		for (v = factor; v < nsteps; v *= factor)
10994			continue;
10995
10996		if ((v % nsteps) || (nsteps % factor))
10997			goto err;
10998
10999		size = (dtrace_aggregate_llquantize_bucket(factor,
11000		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
11001		break;
11002	}
11003
11004	case DTRACEAGG_AVG:
11005		agg->dtag_aggregate = dtrace_aggregate_avg;
11006		size = sizeof (uint64_t) * 2;
11007		break;
11008
11009	case DTRACEAGG_STDDEV:
11010		agg->dtag_aggregate = dtrace_aggregate_stddev;
11011		size = sizeof (uint64_t) * 4;
11012		break;
11013
11014	case DTRACEAGG_SUM:
11015		agg->dtag_aggregate = dtrace_aggregate_sum;
11016		break;
11017
11018	default:
11019		goto err;
11020	}
11021
11022	agg->dtag_action.dta_rec.dtrd_size = size;
11023
11024	if (ntuple == 0)
11025		goto err;
11026
11027	/*
11028	 * We must make sure that we have enough actions for the n-tuple.
11029	 */
11030	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
11031		if (DTRACEACT_ISAGG(act->dta_kind))
11032			break;
11033
11034		if (--ntuple == 0) {
11035			/*
11036			 * This is the action with which our n-tuple begins.
11037			 */
11038			agg->dtag_first = act;
11039			goto success;
11040		}
11041	}
11042
11043	/*
11044	 * This n-tuple is short by ntuple elements.  Return failure.
11045	 */
11046	ASSERT(ntuple != 0);
11047err:
11048	kmem_free(agg, sizeof (dtrace_aggregation_t));
11049	return (NULL);
11050
11051success:
11052	/*
11053	 * If the last action in the tuple has a size of zero, it's actually
11054	 * an expression argument for the aggregating action.
11055	 */
11056	ASSERT(ecb->dte_action_last != NULL);
11057	act = ecb->dte_action_last;
11058
11059	if (act->dta_kind == DTRACEACT_DIFEXPR) {
11060		ASSERT(act->dta_difo != NULL);
11061
11062		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
11063			agg->dtag_hasarg = 1;
11064	}
11065
11066	/*
11067	 * We need to allocate an id for this aggregation.
11068	 */
11069#if defined(sun)
11070	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
11071	    VM_BESTFIT | VM_SLEEP);
11072#else
11073	aggid = alloc_unr(state->dts_aggid_arena);
11074#endif
11075
11076	if (aggid - 1 >= state->dts_naggregations) {
11077		dtrace_aggregation_t **oaggs = state->dts_aggregations;
11078		dtrace_aggregation_t **aggs;
11079		int naggs = state->dts_naggregations << 1;
11080		int onaggs = state->dts_naggregations;
11081
11082		ASSERT(aggid == state->dts_naggregations + 1);
11083
11084		if (naggs == 0) {
11085			ASSERT(oaggs == NULL);
11086			naggs = 1;
11087		}
11088
11089		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
11090
11091		if (oaggs != NULL) {
11092			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
11093			kmem_free(oaggs, onaggs * sizeof (*aggs));
11094		}
11095
11096		state->dts_aggregations = aggs;
11097		state->dts_naggregations = naggs;
11098	}
11099
11100	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
11101	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
11102
11103	frec = &agg->dtag_first->dta_rec;
11104	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
11105		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
11106
11107	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
11108		ASSERT(!act->dta_intuple);
11109		act->dta_intuple = 1;
11110	}
11111
11112	return (&agg->dtag_action);
11113}
11114
11115static void
11116dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
11117{
11118	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11119	dtrace_state_t *state = ecb->dte_state;
11120	dtrace_aggid_t aggid = agg->dtag_id;
11121
11122	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
11123#if defined(sun)
11124	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
11125#else
11126	free_unr(state->dts_aggid_arena, aggid);
11127#endif
11128
11129	ASSERT(state->dts_aggregations[aggid - 1] == agg);
11130	state->dts_aggregations[aggid - 1] = NULL;
11131
11132	kmem_free(agg, sizeof (dtrace_aggregation_t));
11133}
11134
11135static int
11136dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11137{
11138	dtrace_action_t *action, *last;
11139	dtrace_difo_t *dp = desc->dtad_difo;
11140	uint32_t size = 0, align = sizeof (uint8_t), mask;
11141	uint16_t format = 0;
11142	dtrace_recdesc_t *rec;
11143	dtrace_state_t *state = ecb->dte_state;
11144	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
11145	uint64_t arg = desc->dtad_arg;
11146
11147	ASSERT(MUTEX_HELD(&dtrace_lock));
11148	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
11149
11150	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
11151		/*
11152		 * If this is an aggregating action, there must be neither
11153		 * a speculate nor a commit on the action chain.
11154		 */
11155		dtrace_action_t *act;
11156
11157		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11158			if (act->dta_kind == DTRACEACT_COMMIT)
11159				return (EINVAL);
11160
11161			if (act->dta_kind == DTRACEACT_SPECULATE)
11162				return (EINVAL);
11163		}
11164
11165		action = dtrace_ecb_aggregation_create(ecb, desc);
11166
11167		if (action == NULL)
11168			return (EINVAL);
11169	} else {
11170		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
11171		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
11172		    dp != NULL && dp->dtdo_destructive)) {
11173			state->dts_destructive = 1;
11174		}
11175
11176		switch (desc->dtad_kind) {
11177		case DTRACEACT_PRINTF:
11178		case DTRACEACT_PRINTA:
11179		case DTRACEACT_SYSTEM:
11180		case DTRACEACT_FREOPEN:
11181		case DTRACEACT_DIFEXPR:
11182			/*
11183			 * We know that our arg is a string -- turn it into a
11184			 * format.
11185			 */
11186			if (arg == 0) {
11187				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
11188				    desc->dtad_kind == DTRACEACT_DIFEXPR);
11189				format = 0;
11190			} else {
11191				ASSERT(arg != 0);
11192#if defined(sun)
11193				ASSERT(arg > KERNELBASE);
11194#endif
11195				format = dtrace_format_add(state,
11196				    (char *)(uintptr_t)arg);
11197			}
11198
11199			/*FALLTHROUGH*/
11200		case DTRACEACT_LIBACT:
11201		case DTRACEACT_TRACEMEM:
11202		case DTRACEACT_TRACEMEM_DYNSIZE:
11203			if (dp == NULL)
11204				return (EINVAL);
11205
11206			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
11207				break;
11208
11209			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
11210				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11211					return (EINVAL);
11212
11213				size = opt[DTRACEOPT_STRSIZE];
11214			}
11215
11216			break;
11217
11218		case DTRACEACT_STACK:
11219			if ((nframes = arg) == 0) {
11220				nframes = opt[DTRACEOPT_STACKFRAMES];
11221				ASSERT(nframes > 0);
11222				arg = nframes;
11223			}
11224
11225			size = nframes * sizeof (pc_t);
11226			break;
11227
11228		case DTRACEACT_JSTACK:
11229			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
11230				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
11231
11232			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
11233				nframes = opt[DTRACEOPT_JSTACKFRAMES];
11234
11235			arg = DTRACE_USTACK_ARG(nframes, strsize);
11236
11237			/*FALLTHROUGH*/
11238		case DTRACEACT_USTACK:
11239			if (desc->dtad_kind != DTRACEACT_JSTACK &&
11240			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
11241				strsize = DTRACE_USTACK_STRSIZE(arg);
11242				nframes = opt[DTRACEOPT_USTACKFRAMES];
11243				ASSERT(nframes > 0);
11244				arg = DTRACE_USTACK_ARG(nframes, strsize);
11245			}
11246
11247			/*
11248			 * Save a slot for the pid.
11249			 */
11250			size = (nframes + 1) * sizeof (uint64_t);
11251			size += DTRACE_USTACK_STRSIZE(arg);
11252			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
11253
11254			break;
11255
11256		case DTRACEACT_SYM:
11257		case DTRACEACT_MOD:
11258			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
11259			    sizeof (uint64_t)) ||
11260			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11261				return (EINVAL);
11262			break;
11263
11264		case DTRACEACT_USYM:
11265		case DTRACEACT_UMOD:
11266		case DTRACEACT_UADDR:
11267			if (dp == NULL ||
11268			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
11269			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11270				return (EINVAL);
11271
11272			/*
11273			 * We have a slot for the pid, plus a slot for the
11274			 * argument.  To keep things simple (aligned with
11275			 * bitness-neutral sizing), we store each as a 64-bit
11276			 * quantity.
11277			 */
11278			size = 2 * sizeof (uint64_t);
11279			break;
11280
11281		case DTRACEACT_STOP:
11282		case DTRACEACT_BREAKPOINT:
11283		case DTRACEACT_PANIC:
11284			break;
11285
11286		case DTRACEACT_CHILL:
11287		case DTRACEACT_DISCARD:
11288		case DTRACEACT_RAISE:
11289			if (dp == NULL)
11290				return (EINVAL);
11291			break;
11292
11293		case DTRACEACT_EXIT:
11294			if (dp == NULL ||
11295			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
11296			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11297				return (EINVAL);
11298			break;
11299
11300		case DTRACEACT_SPECULATE:
11301			if (ecb->dte_size > sizeof (dtrace_rechdr_t))
11302				return (EINVAL);
11303
11304			if (dp == NULL)
11305				return (EINVAL);
11306
11307			state->dts_speculates = 1;
11308			break;
11309
11310		case DTRACEACT_PRINTM:
11311		    	size = dp->dtdo_rtype.dtdt_size;
11312			break;
11313
11314		case DTRACEACT_PRINTT:
11315		    	size = dp->dtdo_rtype.dtdt_size;
11316			break;
11317
11318		case DTRACEACT_COMMIT: {
11319			dtrace_action_t *act = ecb->dte_action;
11320
11321			for (; act != NULL; act = act->dta_next) {
11322				if (act->dta_kind == DTRACEACT_COMMIT)
11323					return (EINVAL);
11324			}
11325
11326			if (dp == NULL)
11327				return (EINVAL);
11328			break;
11329		}
11330
11331		default:
11332			return (EINVAL);
11333		}
11334
11335		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
11336			/*
11337			 * If this is a data-storing action or a speculate,
11338			 * we must be sure that there isn't a commit on the
11339			 * action chain.
11340			 */
11341			dtrace_action_t *act = ecb->dte_action;
11342
11343			for (; act != NULL; act = act->dta_next) {
11344				if (act->dta_kind == DTRACEACT_COMMIT)
11345					return (EINVAL);
11346			}
11347		}
11348
11349		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
11350		action->dta_rec.dtrd_size = size;
11351	}
11352
11353	action->dta_refcnt = 1;
11354	rec = &action->dta_rec;
11355	size = rec->dtrd_size;
11356
11357	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
11358		if (!(size & mask)) {
11359			align = mask + 1;
11360			break;
11361		}
11362	}
11363
11364	action->dta_kind = desc->dtad_kind;
11365
11366	if ((action->dta_difo = dp) != NULL)
11367		dtrace_difo_hold(dp);
11368
11369	rec->dtrd_action = action->dta_kind;
11370	rec->dtrd_arg = arg;
11371	rec->dtrd_uarg = desc->dtad_uarg;
11372	rec->dtrd_alignment = (uint16_t)align;
11373	rec->dtrd_format = format;
11374
11375	if ((last = ecb->dte_action_last) != NULL) {
11376		ASSERT(ecb->dte_action != NULL);
11377		action->dta_prev = last;
11378		last->dta_next = action;
11379	} else {
11380		ASSERT(ecb->dte_action == NULL);
11381		ecb->dte_action = action;
11382	}
11383
11384	ecb->dte_action_last = action;
11385
11386	return (0);
11387}
11388
11389static void
11390dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
11391{
11392	dtrace_action_t *act = ecb->dte_action, *next;
11393	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
11394	dtrace_difo_t *dp;
11395	uint16_t format;
11396
11397	if (act != NULL && act->dta_refcnt > 1) {
11398		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
11399		act->dta_refcnt--;
11400	} else {
11401		for (; act != NULL; act = next) {
11402			next = act->dta_next;
11403			ASSERT(next != NULL || act == ecb->dte_action_last);
11404			ASSERT(act->dta_refcnt == 1);
11405
11406			if ((format = act->dta_rec.dtrd_format) != 0)
11407				dtrace_format_remove(ecb->dte_state, format);
11408
11409			if ((dp = act->dta_difo) != NULL)
11410				dtrace_difo_release(dp, vstate);
11411
11412			if (DTRACEACT_ISAGG(act->dta_kind)) {
11413				dtrace_ecb_aggregation_destroy(ecb, act);
11414			} else {
11415				kmem_free(act, sizeof (dtrace_action_t));
11416			}
11417		}
11418	}
11419
11420	ecb->dte_action = NULL;
11421	ecb->dte_action_last = NULL;
11422	ecb->dte_size = 0;
11423}
11424
11425static void
11426dtrace_ecb_disable(dtrace_ecb_t *ecb)
11427{
11428	/*
11429	 * We disable the ECB by removing it from its probe.
11430	 */
11431	dtrace_ecb_t *pecb, *prev = NULL;
11432	dtrace_probe_t *probe = ecb->dte_probe;
11433
11434	ASSERT(MUTEX_HELD(&dtrace_lock));
11435
11436	if (probe == NULL) {
11437		/*
11438		 * This is the NULL probe; there is nothing to disable.
11439		 */
11440		return;
11441	}
11442
11443	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
11444		if (pecb == ecb)
11445			break;
11446		prev = pecb;
11447	}
11448
11449	ASSERT(pecb != NULL);
11450
11451	if (prev == NULL) {
11452		probe->dtpr_ecb = ecb->dte_next;
11453	} else {
11454		prev->dte_next = ecb->dte_next;
11455	}
11456
11457	if (ecb == probe->dtpr_ecb_last) {
11458		ASSERT(ecb->dte_next == NULL);
11459		probe->dtpr_ecb_last = prev;
11460	}
11461
11462	/*
11463	 * The ECB has been disconnected from the probe; now sync to assure
11464	 * that all CPUs have seen the change before returning.
11465	 */
11466	dtrace_sync();
11467
11468	if (probe->dtpr_ecb == NULL) {
11469		/*
11470		 * That was the last ECB on the probe; clear the predicate
11471		 * cache ID for the probe, disable it and sync one more time
11472		 * to assure that we'll never hit it again.
11473		 */
11474		dtrace_provider_t *prov = probe->dtpr_provider;
11475
11476		ASSERT(ecb->dte_next == NULL);
11477		ASSERT(probe->dtpr_ecb_last == NULL);
11478		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
11479		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
11480		    probe->dtpr_id, probe->dtpr_arg);
11481		dtrace_sync();
11482	} else {
11483		/*
11484		 * There is at least one ECB remaining on the probe.  If there
11485		 * is _exactly_ one, set the probe's predicate cache ID to be
11486		 * the predicate cache ID of the remaining ECB.
11487		 */
11488		ASSERT(probe->dtpr_ecb_last != NULL);
11489		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
11490
11491		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
11492			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
11493
11494			ASSERT(probe->dtpr_ecb->dte_next == NULL);
11495
11496			if (p != NULL)
11497				probe->dtpr_predcache = p->dtp_cacheid;
11498		}
11499
11500		ecb->dte_next = NULL;
11501	}
11502}
11503
11504static void
11505dtrace_ecb_destroy(dtrace_ecb_t *ecb)
11506{
11507	dtrace_state_t *state = ecb->dte_state;
11508	dtrace_vstate_t *vstate = &state->dts_vstate;
11509	dtrace_predicate_t *pred;
11510	dtrace_epid_t epid = ecb->dte_epid;
11511
11512	ASSERT(MUTEX_HELD(&dtrace_lock));
11513	ASSERT(ecb->dte_next == NULL);
11514	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
11515
11516	if ((pred = ecb->dte_predicate) != NULL)
11517		dtrace_predicate_release(pred, vstate);
11518
11519	dtrace_ecb_action_remove(ecb);
11520
11521	ASSERT(state->dts_ecbs[epid - 1] == ecb);
11522	state->dts_ecbs[epid - 1] = NULL;
11523
11524	kmem_free(ecb, sizeof (dtrace_ecb_t));
11525}
11526
11527static dtrace_ecb_t *
11528dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
11529    dtrace_enabling_t *enab)
11530{
11531	dtrace_ecb_t *ecb;
11532	dtrace_predicate_t *pred;
11533	dtrace_actdesc_t *act;
11534	dtrace_provider_t *prov;
11535	dtrace_ecbdesc_t *desc = enab->dten_current;
11536
11537	ASSERT(MUTEX_HELD(&dtrace_lock));
11538	ASSERT(state != NULL);
11539
11540	ecb = dtrace_ecb_add(state, probe);
11541	ecb->dte_uarg = desc->dted_uarg;
11542
11543	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11544		dtrace_predicate_hold(pred);
11545		ecb->dte_predicate = pred;
11546	}
11547
11548	if (probe != NULL) {
11549		/*
11550		 * If the provider shows more leg than the consumer is old
11551		 * enough to see, we need to enable the appropriate implicit
11552		 * predicate bits to prevent the ecb from activating at
11553		 * revealing times.
11554		 *
11555		 * Providers specifying DTRACE_PRIV_USER at register time
11556		 * are stating that they need the /proc-style privilege
11557		 * model to be enforced, and this is what DTRACE_COND_OWNER
11558		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11559		 */
11560		prov = probe->dtpr_provider;
11561		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11562		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11563			ecb->dte_cond |= DTRACE_COND_OWNER;
11564
11565		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11566		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11567			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11568
11569		/*
11570		 * If the provider shows us kernel innards and the user
11571		 * is lacking sufficient privilege, enable the
11572		 * DTRACE_COND_USERMODE implicit predicate.
11573		 */
11574		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11575		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11576			ecb->dte_cond |= DTRACE_COND_USERMODE;
11577	}
11578
11579	if (dtrace_ecb_create_cache != NULL) {
11580		/*
11581		 * If we have a cached ecb, we'll use its action list instead
11582		 * of creating our own (saving both time and space).
11583		 */
11584		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11585		dtrace_action_t *act = cached->dte_action;
11586
11587		if (act != NULL) {
11588			ASSERT(act->dta_refcnt > 0);
11589			act->dta_refcnt++;
11590			ecb->dte_action = act;
11591			ecb->dte_action_last = cached->dte_action_last;
11592			ecb->dte_needed = cached->dte_needed;
11593			ecb->dte_size = cached->dte_size;
11594			ecb->dte_alignment = cached->dte_alignment;
11595		}
11596
11597		return (ecb);
11598	}
11599
11600	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11601		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11602			dtrace_ecb_destroy(ecb);
11603			return (NULL);
11604		}
11605	}
11606
11607	dtrace_ecb_resize(ecb);
11608
11609	return (dtrace_ecb_create_cache = ecb);
11610}
11611
11612static int
11613dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11614{
11615	dtrace_ecb_t *ecb;
11616	dtrace_enabling_t *enab = arg;
11617	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11618
11619	ASSERT(state != NULL);
11620
11621	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11622		/*
11623		 * This probe was created in a generation for which this
11624		 * enabling has previously created ECBs; we don't want to
11625		 * enable it again, so just kick out.
11626		 */
11627		return (DTRACE_MATCH_NEXT);
11628	}
11629
11630	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
11631		return (DTRACE_MATCH_DONE);
11632
11633	dtrace_ecb_enable(ecb);
11634	return (DTRACE_MATCH_NEXT);
11635}
11636
11637static dtrace_ecb_t *
11638dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
11639{
11640	dtrace_ecb_t *ecb;
11641
11642	ASSERT(MUTEX_HELD(&dtrace_lock));
11643
11644	if (id == 0 || id > state->dts_necbs)
11645		return (NULL);
11646
11647	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
11648	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
11649
11650	return (state->dts_ecbs[id - 1]);
11651}
11652
11653static dtrace_aggregation_t *
11654dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
11655{
11656	dtrace_aggregation_t *agg;
11657
11658	ASSERT(MUTEX_HELD(&dtrace_lock));
11659
11660	if (id == 0 || id > state->dts_naggregations)
11661		return (NULL);
11662
11663	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
11664	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
11665	    agg->dtag_id == id);
11666
11667	return (state->dts_aggregations[id - 1]);
11668}
11669
11670/*
11671 * DTrace Buffer Functions
11672 *
11673 * The following functions manipulate DTrace buffers.  Most of these functions
11674 * are called in the context of establishing or processing consumer state;
11675 * exceptions are explicitly noted.
11676 */
11677
11678/*
11679 * Note:  called from cross call context.  This function switches the two
11680 * buffers on a given CPU.  The atomicity of this operation is assured by
11681 * disabling interrupts while the actual switch takes place; the disabling of
11682 * interrupts serializes the execution with any execution of dtrace_probe() on
11683 * the same CPU.
11684 */
11685static void
11686dtrace_buffer_switch(dtrace_buffer_t *buf)
11687{
11688	caddr_t tomax = buf->dtb_tomax;
11689	caddr_t xamot = buf->dtb_xamot;
11690	dtrace_icookie_t cookie;
11691	hrtime_t now;
11692
11693	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11694	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
11695
11696	cookie = dtrace_interrupt_disable();
11697	now = dtrace_gethrtime();
11698	buf->dtb_tomax = xamot;
11699	buf->dtb_xamot = tomax;
11700	buf->dtb_xamot_drops = buf->dtb_drops;
11701	buf->dtb_xamot_offset = buf->dtb_offset;
11702	buf->dtb_xamot_errors = buf->dtb_errors;
11703	buf->dtb_xamot_flags = buf->dtb_flags;
11704	buf->dtb_offset = 0;
11705	buf->dtb_drops = 0;
11706	buf->dtb_errors = 0;
11707	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
11708	buf->dtb_interval = now - buf->dtb_switched;
11709	buf->dtb_switched = now;
11710	dtrace_interrupt_enable(cookie);
11711}
11712
11713/*
11714 * Note:  called from cross call context.  This function activates a buffer
11715 * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
11716 * is guaranteed by the disabling of interrupts.
11717 */
11718static void
11719dtrace_buffer_activate(dtrace_state_t *state)
11720{
11721	dtrace_buffer_t *buf;
11722	dtrace_icookie_t cookie = dtrace_interrupt_disable();
11723
11724	buf = &state->dts_buffer[curcpu];
11725
11726	if (buf->dtb_tomax != NULL) {
11727		/*
11728		 * We might like to assert that the buffer is marked inactive,
11729		 * but this isn't necessarily true:  the buffer for the CPU
11730		 * that processes the BEGIN probe has its buffer activated
11731		 * manually.  In this case, we take the (harmless) action
11732		 * re-clearing the bit INACTIVE bit.
11733		 */
11734		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
11735	}
11736
11737	dtrace_interrupt_enable(cookie);
11738}
11739
11740static int
11741dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
11742    processorid_t cpu, int *factor)
11743{
11744#if defined(sun)
11745	cpu_t *cp;
11746#endif
11747	dtrace_buffer_t *buf;
11748	int allocated = 0, desired = 0;
11749
11750#if defined(sun)
11751	ASSERT(MUTEX_HELD(&cpu_lock));
11752	ASSERT(MUTEX_HELD(&dtrace_lock));
11753
11754	*factor = 1;
11755
11756	if (size > dtrace_nonroot_maxsize &&
11757	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
11758		return (EFBIG);
11759
11760	cp = cpu_list;
11761
11762	do {
11763		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11764			continue;
11765
11766		buf = &bufs[cp->cpu_id];
11767
11768		/*
11769		 * If there is already a buffer allocated for this CPU, it
11770		 * is only possible that this is a DR event.  In this case,
11771		 */
11772		if (buf->dtb_tomax != NULL) {
11773			ASSERT(buf->dtb_size == size);
11774			continue;
11775		}
11776
11777		ASSERT(buf->dtb_xamot == NULL);
11778
11779		if ((buf->dtb_tomax = kmem_zalloc(size,
11780		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11781			goto err;
11782
11783		buf->dtb_size = size;
11784		buf->dtb_flags = flags;
11785		buf->dtb_offset = 0;
11786		buf->dtb_drops = 0;
11787
11788		if (flags & DTRACEBUF_NOSWITCH)
11789			continue;
11790
11791		if ((buf->dtb_xamot = kmem_zalloc(size,
11792		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11793			goto err;
11794	} while ((cp = cp->cpu_next) != cpu_list);
11795
11796	return (0);
11797
11798err:
11799	cp = cpu_list;
11800
11801	do {
11802		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11803			continue;
11804
11805		buf = &bufs[cp->cpu_id];
11806		desired += 2;
11807
11808		if (buf->dtb_xamot != NULL) {
11809			ASSERT(buf->dtb_tomax != NULL);
11810			ASSERT(buf->dtb_size == size);
11811			kmem_free(buf->dtb_xamot, size);
11812			allocated++;
11813		}
11814
11815		if (buf->dtb_tomax != NULL) {
11816			ASSERT(buf->dtb_size == size);
11817			kmem_free(buf->dtb_tomax, size);
11818			allocated++;
11819		}
11820
11821		buf->dtb_tomax = NULL;
11822		buf->dtb_xamot = NULL;
11823		buf->dtb_size = 0;
11824	} while ((cp = cp->cpu_next) != cpu_list);
11825#else
11826	int i;
11827
11828	*factor = 1;
11829#if defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
11830	/*
11831	 * FreeBSD isn't good at limiting the amount of memory we
11832	 * ask to malloc, so let's place a limit here before trying
11833	 * to do something that might well end in tears at bedtime.
11834	 */
11835	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
11836		return (ENOMEM);
11837#endif
11838
11839	ASSERT(MUTEX_HELD(&dtrace_lock));
11840	CPU_FOREACH(i) {
11841		if (cpu != DTRACE_CPUALL && cpu != i)
11842			continue;
11843
11844		buf = &bufs[i];
11845
11846		/*
11847		 * If there is already a buffer allocated for this CPU, it
11848		 * is only possible that this is a DR event.  In this case,
11849		 * the buffer size must match our specified size.
11850		 */
11851		if (buf->dtb_tomax != NULL) {
11852			ASSERT(buf->dtb_size == size);
11853			continue;
11854		}
11855
11856		ASSERT(buf->dtb_xamot == NULL);
11857
11858		if ((buf->dtb_tomax = kmem_zalloc(size,
11859		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11860			goto err;
11861
11862		buf->dtb_size = size;
11863		buf->dtb_flags = flags;
11864		buf->dtb_offset = 0;
11865		buf->dtb_drops = 0;
11866
11867		if (flags & DTRACEBUF_NOSWITCH)
11868			continue;
11869
11870		if ((buf->dtb_xamot = kmem_zalloc(size,
11871		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11872			goto err;
11873	}
11874
11875	return (0);
11876
11877err:
11878	/*
11879	 * Error allocating memory, so free the buffers that were
11880	 * allocated before the failed allocation.
11881	 */
11882	CPU_FOREACH(i) {
11883		if (cpu != DTRACE_CPUALL && cpu != i)
11884			continue;
11885
11886		buf = &bufs[i];
11887		desired += 2;
11888
11889		if (buf->dtb_xamot != NULL) {
11890			ASSERT(buf->dtb_tomax != NULL);
11891			ASSERT(buf->dtb_size == size);
11892			kmem_free(buf->dtb_xamot, size);
11893			allocated++;
11894		}
11895
11896		if (buf->dtb_tomax != NULL) {
11897			ASSERT(buf->dtb_size == size);
11898			kmem_free(buf->dtb_tomax, size);
11899			allocated++;
11900		}
11901
11902		buf->dtb_tomax = NULL;
11903		buf->dtb_xamot = NULL;
11904		buf->dtb_size = 0;
11905
11906	}
11907#endif
11908	*factor = desired / (allocated > 0 ? allocated : 1);
11909
11910	return (ENOMEM);
11911}
11912
11913/*
11914 * Note:  called from probe context.  This function just increments the drop
11915 * count on a buffer.  It has been made a function to allow for the
11916 * possibility of understanding the source of mysterious drop counts.  (A
11917 * problem for which one may be particularly disappointed that DTrace cannot
11918 * be used to understand DTrace.)
11919 */
11920static void
11921dtrace_buffer_drop(dtrace_buffer_t *buf)
11922{
11923	buf->dtb_drops++;
11924}
11925
11926/*
11927 * Note:  called from probe context.  This function is called to reserve space
11928 * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
11929 * mstate.  Returns the new offset in the buffer, or a negative value if an
11930 * error has occurred.
11931 */
11932static intptr_t
11933dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
11934    dtrace_state_t *state, dtrace_mstate_t *mstate)
11935{
11936	intptr_t offs = buf->dtb_offset, soffs;
11937	intptr_t woffs;
11938	caddr_t tomax;
11939	size_t total;
11940
11941	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
11942		return (-1);
11943
11944	if ((tomax = buf->dtb_tomax) == NULL) {
11945		dtrace_buffer_drop(buf);
11946		return (-1);
11947	}
11948
11949	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
11950		while (offs & (align - 1)) {
11951			/*
11952			 * Assert that our alignment is off by a number which
11953			 * is itself sizeof (uint32_t) aligned.
11954			 */
11955			ASSERT(!((align - (offs & (align - 1))) &
11956			    (sizeof (uint32_t) - 1)));
11957			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11958			offs += sizeof (uint32_t);
11959		}
11960
11961		if ((soffs = offs + needed) > buf->dtb_size) {
11962			dtrace_buffer_drop(buf);
11963			return (-1);
11964		}
11965
11966		if (mstate == NULL)
11967			return (offs);
11968
11969		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
11970		mstate->dtms_scratch_size = buf->dtb_size - soffs;
11971		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11972
11973		return (offs);
11974	}
11975
11976	if (buf->dtb_flags & DTRACEBUF_FILL) {
11977		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
11978		    (buf->dtb_flags & DTRACEBUF_FULL))
11979			return (-1);
11980		goto out;
11981	}
11982
11983	total = needed + (offs & (align - 1));
11984
11985	/*
11986	 * For a ring buffer, life is quite a bit more complicated.  Before
11987	 * we can store any padding, we need to adjust our wrapping offset.
11988	 * (If we've never before wrapped or we're not about to, no adjustment
11989	 * is required.)
11990	 */
11991	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
11992	    offs + total > buf->dtb_size) {
11993		woffs = buf->dtb_xamot_offset;
11994
11995		if (offs + total > buf->dtb_size) {
11996			/*
11997			 * We can't fit in the end of the buffer.  First, a
11998			 * sanity check that we can fit in the buffer at all.
11999			 */
12000			if (total > buf->dtb_size) {
12001				dtrace_buffer_drop(buf);
12002				return (-1);
12003			}
12004
12005			/*
12006			 * We're going to be storing at the top of the buffer,
12007			 * so now we need to deal with the wrapped offset.  We
12008			 * only reset our wrapped offset to 0 if it is
12009			 * currently greater than the current offset.  If it
12010			 * is less than the current offset, it is because a
12011			 * previous allocation induced a wrap -- but the
12012			 * allocation didn't subsequently take the space due
12013			 * to an error or false predicate evaluation.  In this
12014			 * case, we'll just leave the wrapped offset alone: if
12015			 * the wrapped offset hasn't been advanced far enough
12016			 * for this allocation, it will be adjusted in the
12017			 * lower loop.
12018			 */
12019			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
12020				if (woffs >= offs)
12021					woffs = 0;
12022			} else {
12023				woffs = 0;
12024			}
12025
12026			/*
12027			 * Now we know that we're going to be storing to the
12028			 * top of the buffer and that there is room for us
12029			 * there.  We need to clear the buffer from the current
12030			 * offset to the end (there may be old gunk there).
12031			 */
12032			while (offs < buf->dtb_size)
12033				tomax[offs++] = 0;
12034
12035			/*
12036			 * We need to set our offset to zero.  And because we
12037			 * are wrapping, we need to set the bit indicating as
12038			 * much.  We can also adjust our needed space back
12039			 * down to the space required by the ECB -- we know
12040			 * that the top of the buffer is aligned.
12041			 */
12042			offs = 0;
12043			total = needed;
12044			buf->dtb_flags |= DTRACEBUF_WRAPPED;
12045		} else {
12046			/*
12047			 * There is room for us in the buffer, so we simply
12048			 * need to check the wrapped offset.
12049			 */
12050			if (woffs < offs) {
12051				/*
12052				 * The wrapped offset is less than the offset.
12053				 * This can happen if we allocated buffer space
12054				 * that induced a wrap, but then we didn't
12055				 * subsequently take the space due to an error
12056				 * or false predicate evaluation.  This is
12057				 * okay; we know that _this_ allocation isn't
12058				 * going to induce a wrap.  We still can't
12059				 * reset the wrapped offset to be zero,
12060				 * however: the space may have been trashed in
12061				 * the previous failed probe attempt.  But at
12062				 * least the wrapped offset doesn't need to
12063				 * be adjusted at all...
12064				 */
12065				goto out;
12066			}
12067		}
12068
12069		while (offs + total > woffs) {
12070			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
12071			size_t size;
12072
12073			if (epid == DTRACE_EPIDNONE) {
12074				size = sizeof (uint32_t);
12075			} else {
12076				ASSERT3U(epid, <=, state->dts_necbs);
12077				ASSERT(state->dts_ecbs[epid - 1] != NULL);
12078
12079				size = state->dts_ecbs[epid - 1]->dte_size;
12080			}
12081
12082			ASSERT(woffs + size <= buf->dtb_size);
12083			ASSERT(size != 0);
12084
12085			if (woffs + size == buf->dtb_size) {
12086				/*
12087				 * We've reached the end of the buffer; we want
12088				 * to set the wrapped offset to 0 and break
12089				 * out.  However, if the offs is 0, then we're
12090				 * in a strange edge-condition:  the amount of
12091				 * space that we want to reserve plus the size
12092				 * of the record that we're overwriting is
12093				 * greater than the size of the buffer.  This
12094				 * is problematic because if we reserve the
12095				 * space but subsequently don't consume it (due
12096				 * to a failed predicate or error) the wrapped
12097				 * offset will be 0 -- yet the EPID at offset 0
12098				 * will not be committed.  This situation is
12099				 * relatively easy to deal with:  if we're in
12100				 * this case, the buffer is indistinguishable
12101				 * from one that hasn't wrapped; we need only
12102				 * finish the job by clearing the wrapped bit,
12103				 * explicitly setting the offset to be 0, and
12104				 * zero'ing out the old data in the buffer.
12105				 */
12106				if (offs == 0) {
12107					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
12108					buf->dtb_offset = 0;
12109					woffs = total;
12110
12111					while (woffs < buf->dtb_size)
12112						tomax[woffs++] = 0;
12113				}
12114
12115				woffs = 0;
12116				break;
12117			}
12118
12119			woffs += size;
12120		}
12121
12122		/*
12123		 * We have a wrapped offset.  It may be that the wrapped offset
12124		 * has become zero -- that's okay.
12125		 */
12126		buf->dtb_xamot_offset = woffs;
12127	}
12128
12129out:
12130	/*
12131	 * Now we can plow the buffer with any necessary padding.
12132	 */
12133	while (offs & (align - 1)) {
12134		/*
12135		 * Assert that our alignment is off by a number which
12136		 * is itself sizeof (uint32_t) aligned.
12137		 */
12138		ASSERT(!((align - (offs & (align - 1))) &
12139		    (sizeof (uint32_t) - 1)));
12140		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12141		offs += sizeof (uint32_t);
12142	}
12143
12144	if (buf->dtb_flags & DTRACEBUF_FILL) {
12145		if (offs + needed > buf->dtb_size - state->dts_reserve) {
12146			buf->dtb_flags |= DTRACEBUF_FULL;
12147			return (-1);
12148		}
12149	}
12150
12151	if (mstate == NULL)
12152		return (offs);
12153
12154	/*
12155	 * For ring buffers and fill buffers, the scratch space is always
12156	 * the inactive buffer.
12157	 */
12158	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
12159	mstate->dtms_scratch_size = buf->dtb_size;
12160	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12161
12162	return (offs);
12163}
12164
12165static void
12166dtrace_buffer_polish(dtrace_buffer_t *buf)
12167{
12168	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
12169	ASSERT(MUTEX_HELD(&dtrace_lock));
12170
12171	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
12172		return;
12173
12174	/*
12175	 * We need to polish the ring buffer.  There are three cases:
12176	 *
12177	 * - The first (and presumably most common) is that there is no gap
12178	 *   between the buffer offset and the wrapped offset.  In this case,
12179	 *   there is nothing in the buffer that isn't valid data; we can
12180	 *   mark the buffer as polished and return.
12181	 *
12182	 * - The second (less common than the first but still more common
12183	 *   than the third) is that there is a gap between the buffer offset
12184	 *   and the wrapped offset, and the wrapped offset is larger than the
12185	 *   buffer offset.  This can happen because of an alignment issue, or
12186	 *   can happen because of a call to dtrace_buffer_reserve() that
12187	 *   didn't subsequently consume the buffer space.  In this case,
12188	 *   we need to zero the data from the buffer offset to the wrapped
12189	 *   offset.
12190	 *
12191	 * - The third (and least common) is that there is a gap between the
12192	 *   buffer offset and the wrapped offset, but the wrapped offset is
12193	 *   _less_ than the buffer offset.  This can only happen because a
12194	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
12195	 *   was not subsequently consumed.  In this case, we need to zero the
12196	 *   space from the offset to the end of the buffer _and_ from the
12197	 *   top of the buffer to the wrapped offset.
12198	 */
12199	if (buf->dtb_offset < buf->dtb_xamot_offset) {
12200		bzero(buf->dtb_tomax + buf->dtb_offset,
12201		    buf->dtb_xamot_offset - buf->dtb_offset);
12202	}
12203
12204	if (buf->dtb_offset > buf->dtb_xamot_offset) {
12205		bzero(buf->dtb_tomax + buf->dtb_offset,
12206		    buf->dtb_size - buf->dtb_offset);
12207		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
12208	}
12209}
12210
12211/*
12212 * This routine determines if data generated at the specified time has likely
12213 * been entirely consumed at user-level.  This routine is called to determine
12214 * if an ECB on a defunct probe (but for an active enabling) can be safely
12215 * disabled and destroyed.
12216 */
12217static int
12218dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
12219{
12220	int i;
12221
12222	for (i = 0; i < NCPU; i++) {
12223		dtrace_buffer_t *buf = &bufs[i];
12224
12225		if (buf->dtb_size == 0)
12226			continue;
12227
12228		if (buf->dtb_flags & DTRACEBUF_RING)
12229			return (0);
12230
12231		if (!buf->dtb_switched && buf->dtb_offset != 0)
12232			return (0);
12233
12234		if (buf->dtb_switched - buf->dtb_interval < when)
12235			return (0);
12236	}
12237
12238	return (1);
12239}
12240
12241static void
12242dtrace_buffer_free(dtrace_buffer_t *bufs)
12243{
12244	int i;
12245
12246	for (i = 0; i < NCPU; i++) {
12247		dtrace_buffer_t *buf = &bufs[i];
12248
12249		if (buf->dtb_tomax == NULL) {
12250			ASSERT(buf->dtb_xamot == NULL);
12251			ASSERT(buf->dtb_size == 0);
12252			continue;
12253		}
12254
12255		if (buf->dtb_xamot != NULL) {
12256			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12257			kmem_free(buf->dtb_xamot, buf->dtb_size);
12258		}
12259
12260		kmem_free(buf->dtb_tomax, buf->dtb_size);
12261		buf->dtb_size = 0;
12262		buf->dtb_tomax = NULL;
12263		buf->dtb_xamot = NULL;
12264	}
12265}
12266
12267/*
12268 * DTrace Enabling Functions
12269 */
12270static dtrace_enabling_t *
12271dtrace_enabling_create(dtrace_vstate_t *vstate)
12272{
12273	dtrace_enabling_t *enab;
12274
12275	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
12276	enab->dten_vstate = vstate;
12277
12278	return (enab);
12279}
12280
12281static void
12282dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
12283{
12284	dtrace_ecbdesc_t **ndesc;
12285	size_t osize, nsize;
12286
12287	/*
12288	 * We can't add to enablings after we've enabled them, or after we've
12289	 * retained them.
12290	 */
12291	ASSERT(enab->dten_probegen == 0);
12292	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12293
12294	if (enab->dten_ndesc < enab->dten_maxdesc) {
12295		enab->dten_desc[enab->dten_ndesc++] = ecb;
12296		return;
12297	}
12298
12299	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12300
12301	if (enab->dten_maxdesc == 0) {
12302		enab->dten_maxdesc = 1;
12303	} else {
12304		enab->dten_maxdesc <<= 1;
12305	}
12306
12307	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
12308
12309	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12310	ndesc = kmem_zalloc(nsize, KM_SLEEP);
12311	bcopy(enab->dten_desc, ndesc, osize);
12312	if (enab->dten_desc != NULL)
12313		kmem_free(enab->dten_desc, osize);
12314
12315	enab->dten_desc = ndesc;
12316	enab->dten_desc[enab->dten_ndesc++] = ecb;
12317}
12318
12319static void
12320dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
12321    dtrace_probedesc_t *pd)
12322{
12323	dtrace_ecbdesc_t *new;
12324	dtrace_predicate_t *pred;
12325	dtrace_actdesc_t *act;
12326
12327	/*
12328	 * We're going to create a new ECB description that matches the
12329	 * specified ECB in every way, but has the specified probe description.
12330	 */
12331	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12332
12333	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
12334		dtrace_predicate_hold(pred);
12335
12336	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
12337		dtrace_actdesc_hold(act);
12338
12339	new->dted_action = ecb->dted_action;
12340	new->dted_pred = ecb->dted_pred;
12341	new->dted_probe = *pd;
12342	new->dted_uarg = ecb->dted_uarg;
12343
12344	dtrace_enabling_add(enab, new);
12345}
12346
12347static void
12348dtrace_enabling_dump(dtrace_enabling_t *enab)
12349{
12350	int i;
12351
12352	for (i = 0; i < enab->dten_ndesc; i++) {
12353		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
12354
12355		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
12356		    desc->dtpd_provider, desc->dtpd_mod,
12357		    desc->dtpd_func, desc->dtpd_name);
12358	}
12359}
12360
12361static void
12362dtrace_enabling_destroy(dtrace_enabling_t *enab)
12363{
12364	int i;
12365	dtrace_ecbdesc_t *ep;
12366	dtrace_vstate_t *vstate = enab->dten_vstate;
12367
12368	ASSERT(MUTEX_HELD(&dtrace_lock));
12369
12370	for (i = 0; i < enab->dten_ndesc; i++) {
12371		dtrace_actdesc_t *act, *next;
12372		dtrace_predicate_t *pred;
12373
12374		ep = enab->dten_desc[i];
12375
12376		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
12377			dtrace_predicate_release(pred, vstate);
12378
12379		for (act = ep->dted_action; act != NULL; act = next) {
12380			next = act->dtad_next;
12381			dtrace_actdesc_release(act, vstate);
12382		}
12383
12384		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12385	}
12386
12387	if (enab->dten_desc != NULL)
12388		kmem_free(enab->dten_desc,
12389		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
12390
12391	/*
12392	 * If this was a retained enabling, decrement the dts_nretained count
12393	 * and take it off of the dtrace_retained list.
12394	 */
12395	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
12396	    dtrace_retained == enab) {
12397		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12398		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
12399		enab->dten_vstate->dtvs_state->dts_nretained--;
12400		dtrace_retained_gen++;
12401	}
12402
12403	if (enab->dten_prev == NULL) {
12404		if (dtrace_retained == enab) {
12405			dtrace_retained = enab->dten_next;
12406
12407			if (dtrace_retained != NULL)
12408				dtrace_retained->dten_prev = NULL;
12409		}
12410	} else {
12411		ASSERT(enab != dtrace_retained);
12412		ASSERT(dtrace_retained != NULL);
12413		enab->dten_prev->dten_next = enab->dten_next;
12414	}
12415
12416	if (enab->dten_next != NULL) {
12417		ASSERT(dtrace_retained != NULL);
12418		enab->dten_next->dten_prev = enab->dten_prev;
12419	}
12420
12421	kmem_free(enab, sizeof (dtrace_enabling_t));
12422}
12423
12424static int
12425dtrace_enabling_retain(dtrace_enabling_t *enab)
12426{
12427	dtrace_state_t *state;
12428
12429	ASSERT(MUTEX_HELD(&dtrace_lock));
12430	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12431	ASSERT(enab->dten_vstate != NULL);
12432
12433	state = enab->dten_vstate->dtvs_state;
12434	ASSERT(state != NULL);
12435
12436	/*
12437	 * We only allow each state to retain dtrace_retain_max enablings.
12438	 */
12439	if (state->dts_nretained >= dtrace_retain_max)
12440		return (ENOSPC);
12441
12442	state->dts_nretained++;
12443	dtrace_retained_gen++;
12444
12445	if (dtrace_retained == NULL) {
12446		dtrace_retained = enab;
12447		return (0);
12448	}
12449
12450	enab->dten_next = dtrace_retained;
12451	dtrace_retained->dten_prev = enab;
12452	dtrace_retained = enab;
12453
12454	return (0);
12455}
12456
12457static int
12458dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
12459    dtrace_probedesc_t *create)
12460{
12461	dtrace_enabling_t *new, *enab;
12462	int found = 0, err = ENOENT;
12463
12464	ASSERT(MUTEX_HELD(&dtrace_lock));
12465	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
12466	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
12467	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
12468	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
12469
12470	new = dtrace_enabling_create(&state->dts_vstate);
12471
12472	/*
12473	 * Iterate over all retained enablings, looking for enablings that
12474	 * match the specified state.
12475	 */
12476	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12477		int i;
12478
12479		/*
12480		 * dtvs_state can only be NULL for helper enablings -- and
12481		 * helper enablings can't be retained.
12482		 */
12483		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12484
12485		if (enab->dten_vstate->dtvs_state != state)
12486			continue;
12487
12488		/*
12489		 * Now iterate over each probe description; we're looking for
12490		 * an exact match to the specified probe description.
12491		 */
12492		for (i = 0; i < enab->dten_ndesc; i++) {
12493			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12494			dtrace_probedesc_t *pd = &ep->dted_probe;
12495
12496			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
12497				continue;
12498
12499			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
12500				continue;
12501
12502			if (strcmp(pd->dtpd_func, match->dtpd_func))
12503				continue;
12504
12505			if (strcmp(pd->dtpd_name, match->dtpd_name))
12506				continue;
12507
12508			/*
12509			 * We have a winning probe!  Add it to our growing
12510			 * enabling.
12511			 */
12512			found = 1;
12513			dtrace_enabling_addlike(new, ep, create);
12514		}
12515	}
12516
12517	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
12518		dtrace_enabling_destroy(new);
12519		return (err);
12520	}
12521
12522	return (0);
12523}
12524
12525static void
12526dtrace_enabling_retract(dtrace_state_t *state)
12527{
12528	dtrace_enabling_t *enab, *next;
12529
12530	ASSERT(MUTEX_HELD(&dtrace_lock));
12531
12532	/*
12533	 * Iterate over all retained enablings, destroy the enablings retained
12534	 * for the specified state.
12535	 */
12536	for (enab = dtrace_retained; enab != NULL; enab = next) {
12537		next = enab->dten_next;
12538
12539		/*
12540		 * dtvs_state can only be NULL for helper enablings -- and
12541		 * helper enablings can't be retained.
12542		 */
12543		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12544
12545		if (enab->dten_vstate->dtvs_state == state) {
12546			ASSERT(state->dts_nretained > 0);
12547			dtrace_enabling_destroy(enab);
12548		}
12549	}
12550
12551	ASSERT(state->dts_nretained == 0);
12552}
12553
12554static int
12555dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
12556{
12557	int i = 0;
12558	int matched = 0;
12559
12560	ASSERT(MUTEX_HELD(&cpu_lock));
12561	ASSERT(MUTEX_HELD(&dtrace_lock));
12562
12563	for (i = 0; i < enab->dten_ndesc; i++) {
12564		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12565
12566		enab->dten_current = ep;
12567		enab->dten_error = 0;
12568
12569		matched += dtrace_probe_enable(&ep->dted_probe, enab);
12570
12571		if (enab->dten_error != 0) {
12572			/*
12573			 * If we get an error half-way through enabling the
12574			 * probes, we kick out -- perhaps with some number of
12575			 * them enabled.  Leaving enabled probes enabled may
12576			 * be slightly confusing for user-level, but we expect
12577			 * that no one will attempt to actually drive on in
12578			 * the face of such errors.  If this is an anonymous
12579			 * enabling (indicated with a NULL nmatched pointer),
12580			 * we cmn_err() a message.  We aren't expecting to
12581			 * get such an error -- such as it can exist at all,
12582			 * it would be a result of corrupted DOF in the driver
12583			 * properties.
12584			 */
12585			if (nmatched == NULL) {
12586				cmn_err(CE_WARN, "dtrace_enabling_match() "
12587				    "error on %p: %d", (void *)ep,
12588				    enab->dten_error);
12589			}
12590
12591			return (enab->dten_error);
12592		}
12593	}
12594
12595	enab->dten_probegen = dtrace_probegen;
12596	if (nmatched != NULL)
12597		*nmatched = matched;
12598
12599	return (0);
12600}
12601
12602static void
12603dtrace_enabling_matchall(void)
12604{
12605	dtrace_enabling_t *enab;
12606
12607	mutex_enter(&cpu_lock);
12608	mutex_enter(&dtrace_lock);
12609
12610	/*
12611	 * Iterate over all retained enablings to see if any probes match
12612	 * against them.  We only perform this operation on enablings for which
12613	 * we have sufficient permissions by virtue of being in the global zone
12614	 * or in the same zone as the DTrace client.  Because we can be called
12615	 * after dtrace_detach() has been called, we cannot assert that there
12616	 * are retained enablings.  We can safely load from dtrace_retained,
12617	 * however:  the taskq_destroy() at the end of dtrace_detach() will
12618	 * block pending our completion.
12619	 */
12620	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12621#if defined(sun)
12622		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
12623
12624		if (INGLOBALZONE(curproc) ||
12625		    cr != NULL && getzoneid() == crgetzoneid(cr))
12626#endif
12627			(void) dtrace_enabling_match(enab, NULL);
12628	}
12629
12630	mutex_exit(&dtrace_lock);
12631	mutex_exit(&cpu_lock);
12632}
12633
12634/*
12635 * If an enabling is to be enabled without having matched probes (that is, if
12636 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
12637 * enabling must be _primed_ by creating an ECB for every ECB description.
12638 * This must be done to assure that we know the number of speculations, the
12639 * number of aggregations, the minimum buffer size needed, etc. before we
12640 * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
12641 * enabling any probes, we create ECBs for every ECB decription, but with a
12642 * NULL probe -- which is exactly what this function does.
12643 */
12644static void
12645dtrace_enabling_prime(dtrace_state_t *state)
12646{
12647	dtrace_enabling_t *enab;
12648	int i;
12649
12650	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12651		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12652
12653		if (enab->dten_vstate->dtvs_state != state)
12654			continue;
12655
12656		/*
12657		 * We don't want to prime an enabling more than once, lest
12658		 * we allow a malicious user to induce resource exhaustion.
12659		 * (The ECBs that result from priming an enabling aren't
12660		 * leaked -- but they also aren't deallocated until the
12661		 * consumer state is destroyed.)
12662		 */
12663		if (enab->dten_primed)
12664			continue;
12665
12666		for (i = 0; i < enab->dten_ndesc; i++) {
12667			enab->dten_current = enab->dten_desc[i];
12668			(void) dtrace_probe_enable(NULL, enab);
12669		}
12670
12671		enab->dten_primed = 1;
12672	}
12673}
12674
12675/*
12676 * Called to indicate that probes should be provided due to retained
12677 * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
12678 * must take an initial lap through the enabling calling the dtps_provide()
12679 * entry point explicitly to allow for autocreated probes.
12680 */
12681static void
12682dtrace_enabling_provide(dtrace_provider_t *prv)
12683{
12684	int i, all = 0;
12685	dtrace_probedesc_t desc;
12686	dtrace_genid_t gen;
12687
12688	ASSERT(MUTEX_HELD(&dtrace_lock));
12689	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
12690
12691	if (prv == NULL) {
12692		all = 1;
12693		prv = dtrace_provider;
12694	}
12695
12696	do {
12697		dtrace_enabling_t *enab;
12698		void *parg = prv->dtpv_arg;
12699
12700retry:
12701		gen = dtrace_retained_gen;
12702		for (enab = dtrace_retained; enab != NULL;
12703		    enab = enab->dten_next) {
12704			for (i = 0; i < enab->dten_ndesc; i++) {
12705				desc = enab->dten_desc[i]->dted_probe;
12706				mutex_exit(&dtrace_lock);
12707				prv->dtpv_pops.dtps_provide(parg, &desc);
12708				mutex_enter(&dtrace_lock);
12709				/*
12710				 * Process the retained enablings again if
12711				 * they have changed while we weren't holding
12712				 * dtrace_lock.
12713				 */
12714				if (gen != dtrace_retained_gen)
12715					goto retry;
12716			}
12717		}
12718	} while (all && (prv = prv->dtpv_next) != NULL);
12719
12720	mutex_exit(&dtrace_lock);
12721	dtrace_probe_provide(NULL, all ? NULL : prv);
12722	mutex_enter(&dtrace_lock);
12723}
12724
12725/*
12726 * Called to reap ECBs that are attached to probes from defunct providers.
12727 */
12728static void
12729dtrace_enabling_reap(void)
12730{
12731	dtrace_provider_t *prov;
12732	dtrace_probe_t *probe;
12733	dtrace_ecb_t *ecb;
12734	hrtime_t when;
12735	int i;
12736
12737	mutex_enter(&cpu_lock);
12738	mutex_enter(&dtrace_lock);
12739
12740	for (i = 0; i < dtrace_nprobes; i++) {
12741		if ((probe = dtrace_probes[i]) == NULL)
12742			continue;
12743
12744		if (probe->dtpr_ecb == NULL)
12745			continue;
12746
12747		prov = probe->dtpr_provider;
12748
12749		if ((when = prov->dtpv_defunct) == 0)
12750			continue;
12751
12752		/*
12753		 * We have ECBs on a defunct provider:  we want to reap these
12754		 * ECBs to allow the provider to unregister.  The destruction
12755		 * of these ECBs must be done carefully:  if we destroy the ECB
12756		 * and the consumer later wishes to consume an EPID that
12757		 * corresponds to the destroyed ECB (and if the EPID metadata
12758		 * has not been previously consumed), the consumer will abort
12759		 * processing on the unknown EPID.  To reduce (but not, sadly,
12760		 * eliminate) the possibility of this, we will only destroy an
12761		 * ECB for a defunct provider if, for the state that
12762		 * corresponds to the ECB:
12763		 *
12764		 *  (a)	There is no speculative tracing (which can effectively
12765		 *	cache an EPID for an arbitrary amount of time).
12766		 *
12767		 *  (b)	The principal buffers have been switched twice since the
12768		 *	provider became defunct.
12769		 *
12770		 *  (c)	The aggregation buffers are of zero size or have been
12771		 *	switched twice since the provider became defunct.
12772		 *
12773		 * We use dts_speculates to determine (a) and call a function
12774		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
12775		 * that as soon as we've been unable to destroy one of the ECBs
12776		 * associated with the probe, we quit trying -- reaping is only
12777		 * fruitful in as much as we can destroy all ECBs associated
12778		 * with the defunct provider's probes.
12779		 */
12780		while ((ecb = probe->dtpr_ecb) != NULL) {
12781			dtrace_state_t *state = ecb->dte_state;
12782			dtrace_buffer_t *buf = state->dts_buffer;
12783			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
12784
12785			if (state->dts_speculates)
12786				break;
12787
12788			if (!dtrace_buffer_consumed(buf, when))
12789				break;
12790
12791			if (!dtrace_buffer_consumed(aggbuf, when))
12792				break;
12793
12794			dtrace_ecb_disable(ecb);
12795			ASSERT(probe->dtpr_ecb != ecb);
12796			dtrace_ecb_destroy(ecb);
12797		}
12798	}
12799
12800	mutex_exit(&dtrace_lock);
12801	mutex_exit(&cpu_lock);
12802}
12803
12804/*
12805 * DTrace DOF Functions
12806 */
12807/*ARGSUSED*/
12808static void
12809dtrace_dof_error(dof_hdr_t *dof, const char *str)
12810{
12811	if (dtrace_err_verbose)
12812		cmn_err(CE_WARN, "failed to process DOF: %s", str);
12813
12814#ifdef DTRACE_ERRDEBUG
12815	dtrace_errdebug(str);
12816#endif
12817}
12818
12819/*
12820 * Create DOF out of a currently enabled state.  Right now, we only create
12821 * DOF containing the run-time options -- but this could be expanded to create
12822 * complete DOF representing the enabled state.
12823 */
12824static dof_hdr_t *
12825dtrace_dof_create(dtrace_state_t *state)
12826{
12827	dof_hdr_t *dof;
12828	dof_sec_t *sec;
12829	dof_optdesc_t *opt;
12830	int i, len = sizeof (dof_hdr_t) +
12831	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
12832	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12833
12834	ASSERT(MUTEX_HELD(&dtrace_lock));
12835
12836	dof = kmem_zalloc(len, KM_SLEEP);
12837	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
12838	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
12839	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
12840	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
12841
12842	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
12843	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
12844	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
12845	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
12846	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
12847	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
12848
12849	dof->dofh_flags = 0;
12850	dof->dofh_hdrsize = sizeof (dof_hdr_t);
12851	dof->dofh_secsize = sizeof (dof_sec_t);
12852	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
12853	dof->dofh_secoff = sizeof (dof_hdr_t);
12854	dof->dofh_loadsz = len;
12855	dof->dofh_filesz = len;
12856	dof->dofh_pad = 0;
12857
12858	/*
12859	 * Fill in the option section header...
12860	 */
12861	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
12862	sec->dofs_type = DOF_SECT_OPTDESC;
12863	sec->dofs_align = sizeof (uint64_t);
12864	sec->dofs_flags = DOF_SECF_LOAD;
12865	sec->dofs_entsize = sizeof (dof_optdesc_t);
12866
12867	opt = (dof_optdesc_t *)((uintptr_t)sec +
12868	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
12869
12870	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
12871	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12872
12873	for (i = 0; i < DTRACEOPT_MAX; i++) {
12874		opt[i].dofo_option = i;
12875		opt[i].dofo_strtab = DOF_SECIDX_NONE;
12876		opt[i].dofo_value = state->dts_options[i];
12877	}
12878
12879	return (dof);
12880}
12881
12882static dof_hdr_t *
12883dtrace_dof_copyin(uintptr_t uarg, int *errp)
12884{
12885	dof_hdr_t hdr, *dof;
12886
12887	ASSERT(!MUTEX_HELD(&dtrace_lock));
12888
12889	/*
12890	 * First, we're going to copyin() the sizeof (dof_hdr_t).
12891	 */
12892	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
12893		dtrace_dof_error(NULL, "failed to copyin DOF header");
12894		*errp = EFAULT;
12895		return (NULL);
12896	}
12897
12898	/*
12899	 * Now we'll allocate the entire DOF and copy it in -- provided
12900	 * that the length isn't outrageous.
12901	 */
12902	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
12903		dtrace_dof_error(&hdr, "load size exceeds maximum");
12904		*errp = E2BIG;
12905		return (NULL);
12906	}
12907
12908	if (hdr.dofh_loadsz < sizeof (hdr)) {
12909		dtrace_dof_error(&hdr, "invalid load size");
12910		*errp = EINVAL;
12911		return (NULL);
12912	}
12913
12914	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
12915
12916	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
12917	    dof->dofh_loadsz != hdr.dofh_loadsz) {
12918		kmem_free(dof, hdr.dofh_loadsz);
12919		*errp = EFAULT;
12920		return (NULL);
12921	}
12922
12923	return (dof);
12924}
12925
12926#if !defined(sun)
12927static __inline uchar_t
12928dtrace_dof_char(char c) {
12929	switch (c) {
12930	case '0':
12931	case '1':
12932	case '2':
12933	case '3':
12934	case '4':
12935	case '5':
12936	case '6':
12937	case '7':
12938	case '8':
12939	case '9':
12940		return (c - '0');
12941	case 'A':
12942	case 'B':
12943	case 'C':
12944	case 'D':
12945	case 'E':
12946	case 'F':
12947		return (c - 'A' + 10);
12948	case 'a':
12949	case 'b':
12950	case 'c':
12951	case 'd':
12952	case 'e':
12953	case 'f':
12954		return (c - 'a' + 10);
12955	}
12956	/* Should not reach here. */
12957	return (0);
12958}
12959#endif
12960
12961static dof_hdr_t *
12962dtrace_dof_property(const char *name)
12963{
12964	uchar_t *buf;
12965	uint64_t loadsz;
12966	unsigned int len, i;
12967	dof_hdr_t *dof;
12968
12969#if defined(sun)
12970	/*
12971	 * Unfortunately, array of values in .conf files are always (and
12972	 * only) interpreted to be integer arrays.  We must read our DOF
12973	 * as an integer array, and then squeeze it into a byte array.
12974	 */
12975	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
12976	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
12977		return (NULL);
12978
12979	for (i = 0; i < len; i++)
12980		buf[i] = (uchar_t)(((int *)buf)[i]);
12981
12982	if (len < sizeof (dof_hdr_t)) {
12983		ddi_prop_free(buf);
12984		dtrace_dof_error(NULL, "truncated header");
12985		return (NULL);
12986	}
12987
12988	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
12989		ddi_prop_free(buf);
12990		dtrace_dof_error(NULL, "truncated DOF");
12991		return (NULL);
12992	}
12993
12994	if (loadsz >= dtrace_dof_maxsize) {
12995		ddi_prop_free(buf);
12996		dtrace_dof_error(NULL, "oversized DOF");
12997		return (NULL);
12998	}
12999
13000	dof = kmem_alloc(loadsz, KM_SLEEP);
13001	bcopy(buf, dof, loadsz);
13002	ddi_prop_free(buf);
13003#else
13004	char *p;
13005	char *p_env;
13006
13007	if ((p_env = getenv(name)) == NULL)
13008		return (NULL);
13009
13010	len = strlen(p_env) / 2;
13011
13012	buf = kmem_alloc(len, KM_SLEEP);
13013
13014	dof = (dof_hdr_t *) buf;
13015
13016	p = p_env;
13017
13018	for (i = 0; i < len; i++) {
13019		buf[i] = (dtrace_dof_char(p[0]) << 4) |
13020		     dtrace_dof_char(p[1]);
13021		p += 2;
13022	}
13023
13024	freeenv(p_env);
13025
13026	if (len < sizeof (dof_hdr_t)) {
13027		kmem_free(buf, 0);
13028		dtrace_dof_error(NULL, "truncated header");
13029		return (NULL);
13030	}
13031
13032	if (len < (loadsz = dof->dofh_loadsz)) {
13033		kmem_free(buf, 0);
13034		dtrace_dof_error(NULL, "truncated DOF");
13035		return (NULL);
13036	}
13037
13038	if (loadsz >= dtrace_dof_maxsize) {
13039		kmem_free(buf, 0);
13040		dtrace_dof_error(NULL, "oversized DOF");
13041		return (NULL);
13042	}
13043#endif
13044
13045	return (dof);
13046}
13047
13048static void
13049dtrace_dof_destroy(dof_hdr_t *dof)
13050{
13051	kmem_free(dof, dof->dofh_loadsz);
13052}
13053
13054/*
13055 * Return the dof_sec_t pointer corresponding to a given section index.  If the
13056 * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
13057 * a type other than DOF_SECT_NONE is specified, the header is checked against
13058 * this type and NULL is returned if the types do not match.
13059 */
13060static dof_sec_t *
13061dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
13062{
13063	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
13064	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
13065
13066	if (i >= dof->dofh_secnum) {
13067		dtrace_dof_error(dof, "referenced section index is invalid");
13068		return (NULL);
13069	}
13070
13071	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
13072		dtrace_dof_error(dof, "referenced section is not loadable");
13073		return (NULL);
13074	}
13075
13076	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
13077		dtrace_dof_error(dof, "referenced section is the wrong type");
13078		return (NULL);
13079	}
13080
13081	return (sec);
13082}
13083
13084static dtrace_probedesc_t *
13085dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
13086{
13087	dof_probedesc_t *probe;
13088	dof_sec_t *strtab;
13089	uintptr_t daddr = (uintptr_t)dof;
13090	uintptr_t str;
13091	size_t size;
13092
13093	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
13094		dtrace_dof_error(dof, "invalid probe section");
13095		return (NULL);
13096	}
13097
13098	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13099		dtrace_dof_error(dof, "bad alignment in probe description");
13100		return (NULL);
13101	}
13102
13103	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
13104		dtrace_dof_error(dof, "truncated probe description");
13105		return (NULL);
13106	}
13107
13108	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
13109	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
13110
13111	if (strtab == NULL)
13112		return (NULL);
13113
13114	str = daddr + strtab->dofs_offset;
13115	size = strtab->dofs_size;
13116
13117	if (probe->dofp_provider >= strtab->dofs_size) {
13118		dtrace_dof_error(dof, "corrupt probe provider");
13119		return (NULL);
13120	}
13121
13122	(void) strncpy(desc->dtpd_provider,
13123	    (char *)(str + probe->dofp_provider),
13124	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
13125
13126	if (probe->dofp_mod >= strtab->dofs_size) {
13127		dtrace_dof_error(dof, "corrupt probe module");
13128		return (NULL);
13129	}
13130
13131	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
13132	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
13133
13134	if (probe->dofp_func >= strtab->dofs_size) {
13135		dtrace_dof_error(dof, "corrupt probe function");
13136		return (NULL);
13137	}
13138
13139	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
13140	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
13141
13142	if (probe->dofp_name >= strtab->dofs_size) {
13143		dtrace_dof_error(dof, "corrupt probe name");
13144		return (NULL);
13145	}
13146
13147	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
13148	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
13149
13150	return (desc);
13151}
13152
13153static dtrace_difo_t *
13154dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13155    cred_t *cr)
13156{
13157	dtrace_difo_t *dp;
13158	size_t ttl = 0;
13159	dof_difohdr_t *dofd;
13160	uintptr_t daddr = (uintptr_t)dof;
13161	size_t max = dtrace_difo_maxsize;
13162	int i, l, n;
13163
13164	static const struct {
13165		int section;
13166		int bufoffs;
13167		int lenoffs;
13168		int entsize;
13169		int align;
13170		const char *msg;
13171	} difo[] = {
13172		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
13173		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
13174		sizeof (dif_instr_t), "multiple DIF sections" },
13175
13176		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
13177		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
13178		sizeof (uint64_t), "multiple integer tables" },
13179
13180		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
13181		offsetof(dtrace_difo_t, dtdo_strlen), 0,
13182		sizeof (char), "multiple string tables" },
13183
13184		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
13185		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
13186		sizeof (uint_t), "multiple variable tables" },
13187
13188		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
13189	};
13190
13191	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
13192		dtrace_dof_error(dof, "invalid DIFO header section");
13193		return (NULL);
13194	}
13195
13196	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13197		dtrace_dof_error(dof, "bad alignment in DIFO header");
13198		return (NULL);
13199	}
13200
13201	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
13202	    sec->dofs_size % sizeof (dof_secidx_t)) {
13203		dtrace_dof_error(dof, "bad size in DIFO header");
13204		return (NULL);
13205	}
13206
13207	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13208	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
13209
13210	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
13211	dp->dtdo_rtype = dofd->dofd_rtype;
13212
13213	for (l = 0; l < n; l++) {
13214		dof_sec_t *subsec;
13215		void **bufp;
13216		uint32_t *lenp;
13217
13218		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
13219		    dofd->dofd_links[l])) == NULL)
13220			goto err; /* invalid section link */
13221
13222		if (ttl + subsec->dofs_size > max) {
13223			dtrace_dof_error(dof, "exceeds maximum size");
13224			goto err;
13225		}
13226
13227		ttl += subsec->dofs_size;
13228
13229		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
13230			if (subsec->dofs_type != difo[i].section)
13231				continue;
13232
13233			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
13234				dtrace_dof_error(dof, "section not loaded");
13235				goto err;
13236			}
13237
13238			if (subsec->dofs_align != difo[i].align) {
13239				dtrace_dof_error(dof, "bad alignment");
13240				goto err;
13241			}
13242
13243			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
13244			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
13245
13246			if (*bufp != NULL) {
13247				dtrace_dof_error(dof, difo[i].msg);
13248				goto err;
13249			}
13250
13251			if (difo[i].entsize != subsec->dofs_entsize) {
13252				dtrace_dof_error(dof, "entry size mismatch");
13253				goto err;
13254			}
13255
13256			if (subsec->dofs_entsize != 0 &&
13257			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
13258				dtrace_dof_error(dof, "corrupt entry size");
13259				goto err;
13260			}
13261
13262			*lenp = subsec->dofs_size;
13263			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
13264			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
13265			    *bufp, subsec->dofs_size);
13266
13267			if (subsec->dofs_entsize != 0)
13268				*lenp /= subsec->dofs_entsize;
13269
13270			break;
13271		}
13272
13273		/*
13274		 * If we encounter a loadable DIFO sub-section that is not
13275		 * known to us, assume this is a broken program and fail.
13276		 */
13277		if (difo[i].section == DOF_SECT_NONE &&
13278		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
13279			dtrace_dof_error(dof, "unrecognized DIFO subsection");
13280			goto err;
13281		}
13282	}
13283
13284	if (dp->dtdo_buf == NULL) {
13285		/*
13286		 * We can't have a DIF object without DIF text.
13287		 */
13288		dtrace_dof_error(dof, "missing DIF text");
13289		goto err;
13290	}
13291
13292	/*
13293	 * Before we validate the DIF object, run through the variable table
13294	 * looking for the strings -- if any of their size are under, we'll set
13295	 * their size to be the system-wide default string size.  Note that
13296	 * this should _not_ happen if the "strsize" option has been set --
13297	 * in this case, the compiler should have set the size to reflect the
13298	 * setting of the option.
13299	 */
13300	for (i = 0; i < dp->dtdo_varlen; i++) {
13301		dtrace_difv_t *v = &dp->dtdo_vartab[i];
13302		dtrace_diftype_t *t = &v->dtdv_type;
13303
13304		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
13305			continue;
13306
13307		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
13308			t->dtdt_size = dtrace_strsize_default;
13309	}
13310
13311	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
13312		goto err;
13313
13314	dtrace_difo_init(dp, vstate);
13315	return (dp);
13316
13317err:
13318	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
13319	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
13320	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
13321	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
13322
13323	kmem_free(dp, sizeof (dtrace_difo_t));
13324	return (NULL);
13325}
13326
13327static dtrace_predicate_t *
13328dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13329    cred_t *cr)
13330{
13331	dtrace_difo_t *dp;
13332
13333	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
13334		return (NULL);
13335
13336	return (dtrace_predicate_create(dp));
13337}
13338
13339static dtrace_actdesc_t *
13340dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13341    cred_t *cr)
13342{
13343	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
13344	dof_actdesc_t *desc;
13345	dof_sec_t *difosec;
13346	size_t offs;
13347	uintptr_t daddr = (uintptr_t)dof;
13348	uint64_t arg;
13349	dtrace_actkind_t kind;
13350
13351	if (sec->dofs_type != DOF_SECT_ACTDESC) {
13352		dtrace_dof_error(dof, "invalid action section");
13353		return (NULL);
13354	}
13355
13356	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
13357		dtrace_dof_error(dof, "truncated action description");
13358		return (NULL);
13359	}
13360
13361	if (sec->dofs_align != sizeof (uint64_t)) {
13362		dtrace_dof_error(dof, "bad alignment in action description");
13363		return (NULL);
13364	}
13365
13366	if (sec->dofs_size < sec->dofs_entsize) {
13367		dtrace_dof_error(dof, "section entry size exceeds total size");
13368		return (NULL);
13369	}
13370
13371	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
13372		dtrace_dof_error(dof, "bad entry size in action description");
13373		return (NULL);
13374	}
13375
13376	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
13377		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
13378		return (NULL);
13379	}
13380
13381	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
13382		desc = (dof_actdesc_t *)(daddr +
13383		    (uintptr_t)sec->dofs_offset + offs);
13384		kind = (dtrace_actkind_t)desc->dofa_kind;
13385
13386		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
13387		    (kind != DTRACEACT_PRINTA ||
13388		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
13389		    (kind == DTRACEACT_DIFEXPR &&
13390		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
13391			dof_sec_t *strtab;
13392			char *str, *fmt;
13393			uint64_t i;
13394
13395			/*
13396			 * The argument to these actions is an index into the
13397			 * DOF string table.  For printf()-like actions, this
13398			 * is the format string.  For print(), this is the
13399			 * CTF type of the expression result.
13400			 */
13401			if ((strtab = dtrace_dof_sect(dof,
13402			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
13403				goto err;
13404
13405			str = (char *)((uintptr_t)dof +
13406			    (uintptr_t)strtab->dofs_offset);
13407
13408			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
13409				if (str[i] == '\0')
13410					break;
13411			}
13412
13413			if (i >= strtab->dofs_size) {
13414				dtrace_dof_error(dof, "bogus format string");
13415				goto err;
13416			}
13417
13418			if (i == desc->dofa_arg) {
13419				dtrace_dof_error(dof, "empty format string");
13420				goto err;
13421			}
13422
13423			i -= desc->dofa_arg;
13424			fmt = kmem_alloc(i + 1, KM_SLEEP);
13425			bcopy(&str[desc->dofa_arg], fmt, i + 1);
13426			arg = (uint64_t)(uintptr_t)fmt;
13427		} else {
13428			if (kind == DTRACEACT_PRINTA) {
13429				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
13430				arg = 0;
13431			} else {
13432				arg = desc->dofa_arg;
13433			}
13434		}
13435
13436		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
13437		    desc->dofa_uarg, arg);
13438
13439		if (last != NULL) {
13440			last->dtad_next = act;
13441		} else {
13442			first = act;
13443		}
13444
13445		last = act;
13446
13447		if (desc->dofa_difo == DOF_SECIDX_NONE)
13448			continue;
13449
13450		if ((difosec = dtrace_dof_sect(dof,
13451		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
13452			goto err;
13453
13454		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
13455
13456		if (act->dtad_difo == NULL)
13457			goto err;
13458	}
13459
13460	ASSERT(first != NULL);
13461	return (first);
13462
13463err:
13464	for (act = first; act != NULL; act = next) {
13465		next = act->dtad_next;
13466		dtrace_actdesc_release(act, vstate);
13467	}
13468
13469	return (NULL);
13470}
13471
13472static dtrace_ecbdesc_t *
13473dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13474    cred_t *cr)
13475{
13476	dtrace_ecbdesc_t *ep;
13477	dof_ecbdesc_t *ecb;
13478	dtrace_probedesc_t *desc;
13479	dtrace_predicate_t *pred = NULL;
13480
13481	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
13482		dtrace_dof_error(dof, "truncated ECB description");
13483		return (NULL);
13484	}
13485
13486	if (sec->dofs_align != sizeof (uint64_t)) {
13487		dtrace_dof_error(dof, "bad alignment in ECB description");
13488		return (NULL);
13489	}
13490
13491	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
13492	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
13493
13494	if (sec == NULL)
13495		return (NULL);
13496
13497	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
13498	ep->dted_uarg = ecb->dofe_uarg;
13499	desc = &ep->dted_probe;
13500
13501	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
13502		goto err;
13503
13504	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
13505		if ((sec = dtrace_dof_sect(dof,
13506		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
13507			goto err;
13508
13509		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
13510			goto err;
13511
13512		ep->dted_pred.dtpdd_predicate = pred;
13513	}
13514
13515	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
13516		if ((sec = dtrace_dof_sect(dof,
13517		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
13518			goto err;
13519
13520		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
13521
13522		if (ep->dted_action == NULL)
13523			goto err;
13524	}
13525
13526	return (ep);
13527
13528err:
13529	if (pred != NULL)
13530		dtrace_predicate_release(pred, vstate);
13531	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
13532	return (NULL);
13533}
13534
13535/*
13536 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
13537 * specified DOF.  At present, this amounts to simply adding 'ubase' to the
13538 * site of any user SETX relocations to account for load object base address.
13539 * In the future, if we need other relocations, this function can be extended.
13540 */
13541static int
13542dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
13543{
13544	uintptr_t daddr = (uintptr_t)dof;
13545	dof_relohdr_t *dofr =
13546	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13547	dof_sec_t *ss, *rs, *ts;
13548	dof_relodesc_t *r;
13549	uint_t i, n;
13550
13551	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
13552	    sec->dofs_align != sizeof (dof_secidx_t)) {
13553		dtrace_dof_error(dof, "invalid relocation header");
13554		return (-1);
13555	}
13556
13557	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
13558	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
13559	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
13560
13561	if (ss == NULL || rs == NULL || ts == NULL)
13562		return (-1); /* dtrace_dof_error() has been called already */
13563
13564	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
13565	    rs->dofs_align != sizeof (uint64_t)) {
13566		dtrace_dof_error(dof, "invalid relocation section");
13567		return (-1);
13568	}
13569
13570	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
13571	n = rs->dofs_size / rs->dofs_entsize;
13572
13573	for (i = 0; i < n; i++) {
13574		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
13575
13576		switch (r->dofr_type) {
13577		case DOF_RELO_NONE:
13578			break;
13579		case DOF_RELO_SETX:
13580			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
13581			    sizeof (uint64_t) > ts->dofs_size) {
13582				dtrace_dof_error(dof, "bad relocation offset");
13583				return (-1);
13584			}
13585
13586			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
13587				dtrace_dof_error(dof, "misaligned setx relo");
13588				return (-1);
13589			}
13590
13591			*(uint64_t *)taddr += ubase;
13592			break;
13593		default:
13594			dtrace_dof_error(dof, "invalid relocation type");
13595			return (-1);
13596		}
13597
13598		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
13599	}
13600
13601	return (0);
13602}
13603
13604/*
13605 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
13606 * header:  it should be at the front of a memory region that is at least
13607 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
13608 * size.  It need not be validated in any other way.
13609 */
13610static int
13611dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
13612    dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
13613{
13614	uint64_t len = dof->dofh_loadsz, seclen;
13615	uintptr_t daddr = (uintptr_t)dof;
13616	dtrace_ecbdesc_t *ep;
13617	dtrace_enabling_t *enab;
13618	uint_t i;
13619
13620	ASSERT(MUTEX_HELD(&dtrace_lock));
13621	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
13622
13623	/*
13624	 * Check the DOF header identification bytes.  In addition to checking
13625	 * valid settings, we also verify that unused bits/bytes are zeroed so
13626	 * we can use them later without fear of regressing existing binaries.
13627	 */
13628	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
13629	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
13630		dtrace_dof_error(dof, "DOF magic string mismatch");
13631		return (-1);
13632	}
13633
13634	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
13635	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
13636		dtrace_dof_error(dof, "DOF has invalid data model");
13637		return (-1);
13638	}
13639
13640	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
13641		dtrace_dof_error(dof, "DOF encoding mismatch");
13642		return (-1);
13643	}
13644
13645	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
13646	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
13647		dtrace_dof_error(dof, "DOF version mismatch");
13648		return (-1);
13649	}
13650
13651	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
13652		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
13653		return (-1);
13654	}
13655
13656	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
13657		dtrace_dof_error(dof, "DOF uses too many integer registers");
13658		return (-1);
13659	}
13660
13661	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
13662		dtrace_dof_error(dof, "DOF uses too many tuple registers");
13663		return (-1);
13664	}
13665
13666	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
13667		if (dof->dofh_ident[i] != 0) {
13668			dtrace_dof_error(dof, "DOF has invalid ident byte set");
13669			return (-1);
13670		}
13671	}
13672
13673	if (dof->dofh_flags & ~DOF_FL_VALID) {
13674		dtrace_dof_error(dof, "DOF has invalid flag bits set");
13675		return (-1);
13676	}
13677
13678	if (dof->dofh_secsize == 0) {
13679		dtrace_dof_error(dof, "zero section header size");
13680		return (-1);
13681	}
13682
13683	/*
13684	 * Check that the section headers don't exceed the amount of DOF
13685	 * data.  Note that we cast the section size and number of sections
13686	 * to uint64_t's to prevent possible overflow in the multiplication.
13687	 */
13688	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
13689
13690	if (dof->dofh_secoff > len || seclen > len ||
13691	    dof->dofh_secoff + seclen > len) {
13692		dtrace_dof_error(dof, "truncated section headers");
13693		return (-1);
13694	}
13695
13696	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
13697		dtrace_dof_error(dof, "misaligned section headers");
13698		return (-1);
13699	}
13700
13701	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
13702		dtrace_dof_error(dof, "misaligned section size");
13703		return (-1);
13704	}
13705
13706	/*
13707	 * Take an initial pass through the section headers to be sure that
13708	 * the headers don't have stray offsets.  If the 'noprobes' flag is
13709	 * set, do not permit sections relating to providers, probes, or args.
13710	 */
13711	for (i = 0; i < dof->dofh_secnum; i++) {
13712		dof_sec_t *sec = (dof_sec_t *)(daddr +
13713		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13714
13715		if (noprobes) {
13716			switch (sec->dofs_type) {
13717			case DOF_SECT_PROVIDER:
13718			case DOF_SECT_PROBES:
13719			case DOF_SECT_PRARGS:
13720			case DOF_SECT_PROFFS:
13721				dtrace_dof_error(dof, "illegal sections "
13722				    "for enabling");
13723				return (-1);
13724			}
13725		}
13726
13727		if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
13728		    !(sec->dofs_flags & DOF_SECF_LOAD)) {
13729			dtrace_dof_error(dof, "loadable section with load "
13730			    "flag unset");
13731			return (-1);
13732		}
13733
13734		if (!(sec->dofs_flags & DOF_SECF_LOAD))
13735			continue; /* just ignore non-loadable sections */
13736
13737		if (sec->dofs_align & (sec->dofs_align - 1)) {
13738			dtrace_dof_error(dof, "bad section alignment");
13739			return (-1);
13740		}
13741
13742		if (sec->dofs_offset & (sec->dofs_align - 1)) {
13743			dtrace_dof_error(dof, "misaligned section");
13744			return (-1);
13745		}
13746
13747		if (sec->dofs_offset > len || sec->dofs_size > len ||
13748		    sec->dofs_offset + sec->dofs_size > len) {
13749			dtrace_dof_error(dof, "corrupt section header");
13750			return (-1);
13751		}
13752
13753		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
13754		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
13755			dtrace_dof_error(dof, "non-terminating string table");
13756			return (-1);
13757		}
13758	}
13759
13760	/*
13761	 * Take a second pass through the sections and locate and perform any
13762	 * relocations that are present.  We do this after the first pass to
13763	 * be sure that all sections have had their headers validated.
13764	 */
13765	for (i = 0; i < dof->dofh_secnum; i++) {
13766		dof_sec_t *sec = (dof_sec_t *)(daddr +
13767		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13768
13769		if (!(sec->dofs_flags & DOF_SECF_LOAD))
13770			continue; /* skip sections that are not loadable */
13771
13772		switch (sec->dofs_type) {
13773		case DOF_SECT_URELHDR:
13774			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
13775				return (-1);
13776			break;
13777		}
13778	}
13779
13780	if ((enab = *enabp) == NULL)
13781		enab = *enabp = dtrace_enabling_create(vstate);
13782
13783	for (i = 0; i < dof->dofh_secnum; i++) {
13784		dof_sec_t *sec = (dof_sec_t *)(daddr +
13785		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13786
13787		if (sec->dofs_type != DOF_SECT_ECBDESC)
13788			continue;
13789
13790		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
13791			dtrace_enabling_destroy(enab);
13792			*enabp = NULL;
13793			return (-1);
13794		}
13795
13796		dtrace_enabling_add(enab, ep);
13797	}
13798
13799	return (0);
13800}
13801
13802/*
13803 * Process DOF for any options.  This routine assumes that the DOF has been
13804 * at least processed by dtrace_dof_slurp().
13805 */
13806static int
13807dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
13808{
13809	int i, rval;
13810	uint32_t entsize;
13811	size_t offs;
13812	dof_optdesc_t *desc;
13813
13814	for (i = 0; i < dof->dofh_secnum; i++) {
13815		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
13816		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13817
13818		if (sec->dofs_type != DOF_SECT_OPTDESC)
13819			continue;
13820
13821		if (sec->dofs_align != sizeof (uint64_t)) {
13822			dtrace_dof_error(dof, "bad alignment in "
13823			    "option description");
13824			return (EINVAL);
13825		}
13826
13827		if ((entsize = sec->dofs_entsize) == 0) {
13828			dtrace_dof_error(dof, "zeroed option entry size");
13829			return (EINVAL);
13830		}
13831
13832		if (entsize < sizeof (dof_optdesc_t)) {
13833			dtrace_dof_error(dof, "bad option entry size");
13834			return (EINVAL);
13835		}
13836
13837		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
13838			desc = (dof_optdesc_t *)((uintptr_t)dof +
13839			    (uintptr_t)sec->dofs_offset + offs);
13840
13841			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
13842				dtrace_dof_error(dof, "non-zero option string");
13843				return (EINVAL);
13844			}
13845
13846			if (desc->dofo_value == DTRACEOPT_UNSET) {
13847				dtrace_dof_error(dof, "unset option");
13848				return (EINVAL);
13849			}
13850
13851			if ((rval = dtrace_state_option(state,
13852			    desc->dofo_option, desc->dofo_value)) != 0) {
13853				dtrace_dof_error(dof, "rejected option");
13854				return (rval);
13855			}
13856		}
13857	}
13858
13859	return (0);
13860}
13861
13862/*
13863 * DTrace Consumer State Functions
13864 */
13865static int
13866dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
13867{
13868	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
13869	void *base;
13870	uintptr_t limit;
13871	dtrace_dynvar_t *dvar, *next, *start;
13872	int i;
13873
13874	ASSERT(MUTEX_HELD(&dtrace_lock));
13875	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
13876
13877	bzero(dstate, sizeof (dtrace_dstate_t));
13878
13879	if ((dstate->dtds_chunksize = chunksize) == 0)
13880		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
13881
13882	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
13883		size = min;
13884
13885	if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
13886		return (ENOMEM);
13887
13888	dstate->dtds_size = size;
13889	dstate->dtds_base = base;
13890	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
13891	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
13892
13893	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
13894
13895	if (hashsize != 1 && (hashsize & 1))
13896		hashsize--;
13897
13898	dstate->dtds_hashsize = hashsize;
13899	dstate->dtds_hash = dstate->dtds_base;
13900
13901	/*
13902	 * Set all of our hash buckets to point to the single sink, and (if
13903	 * it hasn't already been set), set the sink's hash value to be the
13904	 * sink sentinel value.  The sink is needed for dynamic variable
13905	 * lookups to know that they have iterated over an entire, valid hash
13906	 * chain.
13907	 */
13908	for (i = 0; i < hashsize; i++)
13909		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
13910
13911	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
13912		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
13913
13914	/*
13915	 * Determine number of active CPUs.  Divide free list evenly among
13916	 * active CPUs.
13917	 */
13918	start = (dtrace_dynvar_t *)
13919	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
13920	limit = (uintptr_t)base + size;
13921
13922	maxper = (limit - (uintptr_t)start) / NCPU;
13923	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
13924
13925#if !defined(sun)
13926	CPU_FOREACH(i) {
13927#else
13928	for (i = 0; i < NCPU; i++) {
13929#endif
13930		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
13931
13932		/*
13933		 * If we don't even have enough chunks to make it once through
13934		 * NCPUs, we're just going to allocate everything to the first
13935		 * CPU.  And if we're on the last CPU, we're going to allocate
13936		 * whatever is left over.  In either case, we set the limit to
13937		 * be the limit of the dynamic variable space.
13938		 */
13939		if (maxper == 0 || i == NCPU - 1) {
13940			limit = (uintptr_t)base + size;
13941			start = NULL;
13942		} else {
13943			limit = (uintptr_t)start + maxper;
13944			start = (dtrace_dynvar_t *)limit;
13945		}
13946
13947		ASSERT(limit <= (uintptr_t)base + size);
13948
13949		for (;;) {
13950			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
13951			    dstate->dtds_chunksize);
13952
13953			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
13954				break;
13955
13956			dvar->dtdv_next = next;
13957			dvar = next;
13958		}
13959
13960		if (maxper == 0)
13961			break;
13962	}
13963
13964	return (0);
13965}
13966
13967static void
13968dtrace_dstate_fini(dtrace_dstate_t *dstate)
13969{
13970	ASSERT(MUTEX_HELD(&cpu_lock));
13971
13972	if (dstate->dtds_base == NULL)
13973		return;
13974
13975	kmem_free(dstate->dtds_base, dstate->dtds_size);
13976	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
13977}
13978
13979static void
13980dtrace_vstate_fini(dtrace_vstate_t *vstate)
13981{
13982	/*
13983	 * Logical XOR, where are you?
13984	 */
13985	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
13986
13987	if (vstate->dtvs_nglobals > 0) {
13988		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
13989		    sizeof (dtrace_statvar_t *));
13990	}
13991
13992	if (vstate->dtvs_ntlocals > 0) {
13993		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
13994		    sizeof (dtrace_difv_t));
13995	}
13996
13997	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
13998
13999	if (vstate->dtvs_nlocals > 0) {
14000		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
14001		    sizeof (dtrace_statvar_t *));
14002	}
14003}
14004
14005#if defined(sun)
14006static void
14007dtrace_state_clean(dtrace_state_t *state)
14008{
14009	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14010		return;
14011
14012	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14013	dtrace_speculation_clean(state);
14014}
14015
14016static void
14017dtrace_state_deadman(dtrace_state_t *state)
14018{
14019	hrtime_t now;
14020
14021	dtrace_sync();
14022
14023	now = dtrace_gethrtime();
14024
14025	if (state != dtrace_anon.dta_state &&
14026	    now - state->dts_laststatus >= dtrace_deadman_user)
14027		return;
14028
14029	/*
14030	 * We must be sure that dts_alive never appears to be less than the
14031	 * value upon entry to dtrace_state_deadman(), and because we lack a
14032	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14033	 * store INT64_MAX to it, followed by a memory barrier, followed by
14034	 * the new value.  This assures that dts_alive never appears to be
14035	 * less than its true value, regardless of the order in which the
14036	 * stores to the underlying storage are issued.
14037	 */
14038	state->dts_alive = INT64_MAX;
14039	dtrace_membar_producer();
14040	state->dts_alive = now;
14041}
14042#else
14043static void
14044dtrace_state_clean(void *arg)
14045{
14046	dtrace_state_t *state = arg;
14047	dtrace_optval_t *opt = state->dts_options;
14048
14049	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14050		return;
14051
14052	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14053	dtrace_speculation_clean(state);
14054
14055	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
14056	    dtrace_state_clean, state);
14057}
14058
14059static void
14060dtrace_state_deadman(void *arg)
14061{
14062	dtrace_state_t *state = arg;
14063	hrtime_t now;
14064
14065	dtrace_sync();
14066
14067	dtrace_debug_output();
14068
14069	now = dtrace_gethrtime();
14070
14071	if (state != dtrace_anon.dta_state &&
14072	    now - state->dts_laststatus >= dtrace_deadman_user)
14073		return;
14074
14075	/*
14076	 * We must be sure that dts_alive never appears to be less than the
14077	 * value upon entry to dtrace_state_deadman(), and because we lack a
14078	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14079	 * store INT64_MAX to it, followed by a memory barrier, followed by
14080	 * the new value.  This assures that dts_alive never appears to be
14081	 * less than its true value, regardless of the order in which the
14082	 * stores to the underlying storage are issued.
14083	 */
14084	state->dts_alive = INT64_MAX;
14085	dtrace_membar_producer();
14086	state->dts_alive = now;
14087
14088	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
14089	    dtrace_state_deadman, state);
14090}
14091#endif
14092
14093static dtrace_state_t *
14094#if defined(sun)
14095dtrace_state_create(dev_t *devp, cred_t *cr)
14096#else
14097dtrace_state_create(struct cdev *dev)
14098#endif
14099{
14100#if defined(sun)
14101	minor_t minor;
14102	major_t major;
14103#else
14104	cred_t *cr = NULL;
14105	int m = 0;
14106#endif
14107	char c[30];
14108	dtrace_state_t *state;
14109	dtrace_optval_t *opt;
14110	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
14111
14112	ASSERT(MUTEX_HELD(&dtrace_lock));
14113	ASSERT(MUTEX_HELD(&cpu_lock));
14114
14115#if defined(sun)
14116	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
14117	    VM_BESTFIT | VM_SLEEP);
14118
14119	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
14120		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14121		return (NULL);
14122	}
14123
14124	state = ddi_get_soft_state(dtrace_softstate, minor);
14125#else
14126	if (dev != NULL) {
14127		cr = dev->si_cred;
14128		m = dev2unit(dev);
14129		}
14130
14131	/* Allocate memory for the state. */
14132	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
14133#endif
14134
14135	state->dts_epid = DTRACE_EPIDNONE + 1;
14136
14137	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
14138#if defined(sun)
14139	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
14140	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
14141
14142	if (devp != NULL) {
14143		major = getemajor(*devp);
14144	} else {
14145		major = ddi_driver_major(dtrace_devi);
14146	}
14147
14148	state->dts_dev = makedevice(major, minor);
14149
14150	if (devp != NULL)
14151		*devp = state->dts_dev;
14152#else
14153	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
14154	state->dts_dev = dev;
14155#endif
14156
14157	/*
14158	 * We allocate NCPU buffers.  On the one hand, this can be quite
14159	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
14160	 * other hand, it saves an additional memory reference in the probe
14161	 * path.
14162	 */
14163	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
14164	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
14165
14166#if defined(sun)
14167	state->dts_cleaner = CYCLIC_NONE;
14168	state->dts_deadman = CYCLIC_NONE;
14169#else
14170	callout_init(&state->dts_cleaner, CALLOUT_MPSAFE);
14171	callout_init(&state->dts_deadman, CALLOUT_MPSAFE);
14172#endif
14173	state->dts_vstate.dtvs_state = state;
14174
14175	for (i = 0; i < DTRACEOPT_MAX; i++)
14176		state->dts_options[i] = DTRACEOPT_UNSET;
14177
14178	/*
14179	 * Set the default options.
14180	 */
14181	opt = state->dts_options;
14182	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
14183	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
14184	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
14185	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
14186	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
14187	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
14188	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
14189	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
14190	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
14191	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
14192	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
14193	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
14194	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
14195	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
14196
14197	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
14198
14199	/*
14200	 * Depending on the user credentials, we set flag bits which alter probe
14201	 * visibility or the amount of destructiveness allowed.  In the case of
14202	 * actual anonymous tracing, or the possession of all privileges, all of
14203	 * the normal checks are bypassed.
14204	 */
14205	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
14206		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
14207		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
14208	} else {
14209		/*
14210		 * Set up the credentials for this instantiation.  We take a
14211		 * hold on the credential to prevent it from disappearing on
14212		 * us; this in turn prevents the zone_t referenced by this
14213		 * credential from disappearing.  This means that we can
14214		 * examine the credential and the zone from probe context.
14215		 */
14216		crhold(cr);
14217		state->dts_cred.dcr_cred = cr;
14218
14219		/*
14220		 * CRA_PROC means "we have *some* privilege for dtrace" and
14221		 * unlocks the use of variables like pid, zonename, etc.
14222		 */
14223		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
14224		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14225			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
14226		}
14227
14228		/*
14229		 * dtrace_user allows use of syscall and profile providers.
14230		 * If the user also has proc_owner and/or proc_zone, we
14231		 * extend the scope to include additional visibility and
14232		 * destructive power.
14233		 */
14234		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
14235			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
14236				state->dts_cred.dcr_visible |=
14237				    DTRACE_CRV_ALLPROC;
14238
14239				state->dts_cred.dcr_action |=
14240				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14241			}
14242
14243			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
14244				state->dts_cred.dcr_visible |=
14245				    DTRACE_CRV_ALLZONE;
14246
14247				state->dts_cred.dcr_action |=
14248				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14249			}
14250
14251			/*
14252			 * If we have all privs in whatever zone this is,
14253			 * we can do destructive things to processes which
14254			 * have altered credentials.
14255			 */
14256#if defined(sun)
14257			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14258			    cr->cr_zone->zone_privset)) {
14259				state->dts_cred.dcr_action |=
14260				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14261			}
14262#endif
14263		}
14264
14265		/*
14266		 * Holding the dtrace_kernel privilege also implies that
14267		 * the user has the dtrace_user privilege from a visibility
14268		 * perspective.  But without further privileges, some
14269		 * destructive actions are not available.
14270		 */
14271		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
14272			/*
14273			 * Make all probes in all zones visible.  However,
14274			 * this doesn't mean that all actions become available
14275			 * to all zones.
14276			 */
14277			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
14278			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
14279
14280			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
14281			    DTRACE_CRA_PROC;
14282			/*
14283			 * Holding proc_owner means that destructive actions
14284			 * for *this* zone are allowed.
14285			 */
14286			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14287				state->dts_cred.dcr_action |=
14288				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14289
14290			/*
14291			 * Holding proc_zone means that destructive actions
14292			 * for this user/group ID in all zones is allowed.
14293			 */
14294			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14295				state->dts_cred.dcr_action |=
14296				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14297
14298#if defined(sun)
14299			/*
14300			 * If we have all privs in whatever zone this is,
14301			 * we can do destructive things to processes which
14302			 * have altered credentials.
14303			 */
14304			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14305			    cr->cr_zone->zone_privset)) {
14306				state->dts_cred.dcr_action |=
14307				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14308			}
14309#endif
14310		}
14311
14312		/*
14313		 * Holding the dtrace_proc privilege gives control over fasttrap
14314		 * and pid providers.  We need to grant wider destructive
14315		 * privileges in the event that the user has proc_owner and/or
14316		 * proc_zone.
14317		 */
14318		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14319			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14320				state->dts_cred.dcr_action |=
14321				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14322
14323			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14324				state->dts_cred.dcr_action |=
14325				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14326		}
14327	}
14328
14329	return (state);
14330}
14331
14332static int
14333dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
14334{
14335	dtrace_optval_t *opt = state->dts_options, size;
14336	processorid_t cpu = 0;;
14337	int flags = 0, rval, factor, divisor = 1;
14338
14339	ASSERT(MUTEX_HELD(&dtrace_lock));
14340	ASSERT(MUTEX_HELD(&cpu_lock));
14341	ASSERT(which < DTRACEOPT_MAX);
14342	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
14343	    (state == dtrace_anon.dta_state &&
14344	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
14345
14346	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
14347		return (0);
14348
14349	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
14350		cpu = opt[DTRACEOPT_CPU];
14351
14352	if (which == DTRACEOPT_SPECSIZE)
14353		flags |= DTRACEBUF_NOSWITCH;
14354
14355	if (which == DTRACEOPT_BUFSIZE) {
14356		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
14357			flags |= DTRACEBUF_RING;
14358
14359		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
14360			flags |= DTRACEBUF_FILL;
14361
14362		if (state != dtrace_anon.dta_state ||
14363		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14364			flags |= DTRACEBUF_INACTIVE;
14365	}
14366
14367	for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
14368		/*
14369		 * The size must be 8-byte aligned.  If the size is not 8-byte
14370		 * aligned, drop it down by the difference.
14371		 */
14372		if (size & (sizeof (uint64_t) - 1))
14373			size -= size & (sizeof (uint64_t) - 1);
14374
14375		if (size < state->dts_reserve) {
14376			/*
14377			 * Buffers always must be large enough to accommodate
14378			 * their prereserved space.  We return E2BIG instead
14379			 * of ENOMEM in this case to allow for user-level
14380			 * software to differentiate the cases.
14381			 */
14382			return (E2BIG);
14383		}
14384
14385		rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
14386
14387		if (rval != ENOMEM) {
14388			opt[which] = size;
14389			return (rval);
14390		}
14391
14392		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14393			return (rval);
14394
14395		for (divisor = 2; divisor < factor; divisor <<= 1)
14396			continue;
14397	}
14398
14399	return (ENOMEM);
14400}
14401
14402static int
14403dtrace_state_buffers(dtrace_state_t *state)
14404{
14405	dtrace_speculation_t *spec = state->dts_speculations;
14406	int rval, i;
14407
14408	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
14409	    DTRACEOPT_BUFSIZE)) != 0)
14410		return (rval);
14411
14412	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
14413	    DTRACEOPT_AGGSIZE)) != 0)
14414		return (rval);
14415
14416	for (i = 0; i < state->dts_nspeculations; i++) {
14417		if ((rval = dtrace_state_buffer(state,
14418		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
14419			return (rval);
14420	}
14421
14422	return (0);
14423}
14424
14425static void
14426dtrace_state_prereserve(dtrace_state_t *state)
14427{
14428	dtrace_ecb_t *ecb;
14429	dtrace_probe_t *probe;
14430
14431	state->dts_reserve = 0;
14432
14433	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
14434		return;
14435
14436	/*
14437	 * If our buffer policy is a "fill" buffer policy, we need to set the
14438	 * prereserved space to be the space required by the END probes.
14439	 */
14440	probe = dtrace_probes[dtrace_probeid_end - 1];
14441	ASSERT(probe != NULL);
14442
14443	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
14444		if (ecb->dte_state != state)
14445			continue;
14446
14447		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
14448	}
14449}
14450
14451static int
14452dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
14453{
14454	dtrace_optval_t *opt = state->dts_options, sz, nspec;
14455	dtrace_speculation_t *spec;
14456	dtrace_buffer_t *buf;
14457#if defined(sun)
14458	cyc_handler_t hdlr;
14459	cyc_time_t when;
14460#endif
14461	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14462	dtrace_icookie_t cookie;
14463
14464	mutex_enter(&cpu_lock);
14465	mutex_enter(&dtrace_lock);
14466
14467	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14468		rval = EBUSY;
14469		goto out;
14470	}
14471
14472	/*
14473	 * Before we can perform any checks, we must prime all of the
14474	 * retained enablings that correspond to this state.
14475	 */
14476	dtrace_enabling_prime(state);
14477
14478	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
14479		rval = EACCES;
14480		goto out;
14481	}
14482
14483	dtrace_state_prereserve(state);
14484
14485	/*
14486	 * Now we want to do is try to allocate our speculations.
14487	 * We do not automatically resize the number of speculations; if
14488	 * this fails, we will fail the operation.
14489	 */
14490	nspec = opt[DTRACEOPT_NSPEC];
14491	ASSERT(nspec != DTRACEOPT_UNSET);
14492
14493	if (nspec > INT_MAX) {
14494		rval = ENOMEM;
14495		goto out;
14496	}
14497
14498	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
14499	    KM_NOSLEEP | KM_NORMALPRI);
14500
14501	if (spec == NULL) {
14502		rval = ENOMEM;
14503		goto out;
14504	}
14505
14506	state->dts_speculations = spec;
14507	state->dts_nspeculations = (int)nspec;
14508
14509	for (i = 0; i < nspec; i++) {
14510		if ((buf = kmem_zalloc(bufsize,
14511		    KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
14512			rval = ENOMEM;
14513			goto err;
14514		}
14515
14516		spec[i].dtsp_buffer = buf;
14517	}
14518
14519	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
14520		if (dtrace_anon.dta_state == NULL) {
14521			rval = ENOENT;
14522			goto out;
14523		}
14524
14525		if (state->dts_necbs != 0) {
14526			rval = EALREADY;
14527			goto out;
14528		}
14529
14530		state->dts_anon = dtrace_anon_grab();
14531		ASSERT(state->dts_anon != NULL);
14532		state = state->dts_anon;
14533
14534		/*
14535		 * We want "grabanon" to be set in the grabbed state, so we'll
14536		 * copy that option value from the grabbing state into the
14537		 * grabbed state.
14538		 */
14539		state->dts_options[DTRACEOPT_GRABANON] =
14540		    opt[DTRACEOPT_GRABANON];
14541
14542		*cpu = dtrace_anon.dta_beganon;
14543
14544		/*
14545		 * If the anonymous state is active (as it almost certainly
14546		 * is if the anonymous enabling ultimately matched anything),
14547		 * we don't allow any further option processing -- but we
14548		 * don't return failure.
14549		 */
14550		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14551			goto out;
14552	}
14553
14554	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
14555	    opt[DTRACEOPT_AGGSIZE] != 0) {
14556		if (state->dts_aggregations == NULL) {
14557			/*
14558			 * We're not going to create an aggregation buffer
14559			 * because we don't have any ECBs that contain
14560			 * aggregations -- set this option to 0.
14561			 */
14562			opt[DTRACEOPT_AGGSIZE] = 0;
14563		} else {
14564			/*
14565			 * If we have an aggregation buffer, we must also have
14566			 * a buffer to use as scratch.
14567			 */
14568			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
14569			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
14570				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
14571			}
14572		}
14573	}
14574
14575	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
14576	    opt[DTRACEOPT_SPECSIZE] != 0) {
14577		if (!state->dts_speculates) {
14578			/*
14579			 * We're not going to create speculation buffers
14580			 * because we don't have any ECBs that actually
14581			 * speculate -- set the speculation size to 0.
14582			 */
14583			opt[DTRACEOPT_SPECSIZE] = 0;
14584		}
14585	}
14586
14587	/*
14588	 * The bare minimum size for any buffer that we're actually going to
14589	 * do anything to is sizeof (uint64_t).
14590	 */
14591	sz = sizeof (uint64_t);
14592
14593	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
14594	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
14595	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
14596		/*
14597		 * A buffer size has been explicitly set to 0 (or to a size
14598		 * that will be adjusted to 0) and we need the space -- we
14599		 * need to return failure.  We return ENOSPC to differentiate
14600		 * it from failing to allocate a buffer due to failure to meet
14601		 * the reserve (for which we return E2BIG).
14602		 */
14603		rval = ENOSPC;
14604		goto out;
14605	}
14606
14607	if ((rval = dtrace_state_buffers(state)) != 0)
14608		goto err;
14609
14610	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
14611		sz = dtrace_dstate_defsize;
14612
14613	do {
14614		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
14615
14616		if (rval == 0)
14617			break;
14618
14619		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14620			goto err;
14621	} while (sz >>= 1);
14622
14623	opt[DTRACEOPT_DYNVARSIZE] = sz;
14624
14625	if (rval != 0)
14626		goto err;
14627
14628	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
14629		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
14630
14631	if (opt[DTRACEOPT_CLEANRATE] == 0)
14632		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
14633
14634	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
14635		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
14636
14637	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
14638		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
14639
14640	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
14641#if defined(sun)
14642	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
14643	hdlr.cyh_arg = state;
14644	hdlr.cyh_level = CY_LOW_LEVEL;
14645
14646	when.cyt_when = 0;
14647	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
14648
14649	state->dts_cleaner = cyclic_add(&hdlr, &when);
14650
14651	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
14652	hdlr.cyh_arg = state;
14653	hdlr.cyh_level = CY_LOW_LEVEL;
14654
14655	when.cyt_when = 0;
14656	when.cyt_interval = dtrace_deadman_interval;
14657
14658	state->dts_deadman = cyclic_add(&hdlr, &when);
14659#else
14660	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
14661	    dtrace_state_clean, state);
14662	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
14663	    dtrace_state_deadman, state);
14664#endif
14665
14666	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
14667
14668#if defined(sun)
14669	if (state->dts_getf != 0 &&
14670	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14671		/*
14672		 * We don't have kernel privs but we have at least one call
14673		 * to getf(); we need to bump our zone's count, and (if
14674		 * this is the first enabling to have an unprivileged call
14675		 * to getf()) we need to hook into closef().
14676		 */
14677		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
14678
14679		if (dtrace_getf++ == 0) {
14680			ASSERT(dtrace_closef == NULL);
14681			dtrace_closef = dtrace_getf_barrier;
14682		}
14683	}
14684#endif
14685
14686	/*
14687	 * Now it's time to actually fire the BEGIN probe.  We need to disable
14688	 * interrupts here both to record the CPU on which we fired the BEGIN
14689	 * probe (the data from this CPU will be processed first at user
14690	 * level) and to manually activate the buffer for this CPU.
14691	 */
14692	cookie = dtrace_interrupt_disable();
14693	*cpu = curcpu;
14694	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
14695	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
14696
14697	dtrace_probe(dtrace_probeid_begin,
14698	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14699	dtrace_interrupt_enable(cookie);
14700	/*
14701	 * We may have had an exit action from a BEGIN probe; only change our
14702	 * state to ACTIVE if we're still in WARMUP.
14703	 */
14704	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
14705	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
14706
14707	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
14708		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
14709
14710	/*
14711	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
14712	 * want each CPU to transition its principal buffer out of the
14713	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
14714	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
14715	 * atomically transition from processing none of a state's ECBs to
14716	 * processing all of them.
14717	 */
14718	dtrace_xcall(DTRACE_CPUALL,
14719	    (dtrace_xcall_t)dtrace_buffer_activate, state);
14720	goto out;
14721
14722err:
14723	dtrace_buffer_free(state->dts_buffer);
14724	dtrace_buffer_free(state->dts_aggbuffer);
14725
14726	if ((nspec = state->dts_nspeculations) == 0) {
14727		ASSERT(state->dts_speculations == NULL);
14728		goto out;
14729	}
14730
14731	spec = state->dts_speculations;
14732	ASSERT(spec != NULL);
14733
14734	for (i = 0; i < state->dts_nspeculations; i++) {
14735		if ((buf = spec[i].dtsp_buffer) == NULL)
14736			break;
14737
14738		dtrace_buffer_free(buf);
14739		kmem_free(buf, bufsize);
14740	}
14741
14742	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14743	state->dts_nspeculations = 0;
14744	state->dts_speculations = NULL;
14745
14746out:
14747	mutex_exit(&dtrace_lock);
14748	mutex_exit(&cpu_lock);
14749
14750	return (rval);
14751}
14752
14753static int
14754dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
14755{
14756	dtrace_icookie_t cookie;
14757
14758	ASSERT(MUTEX_HELD(&dtrace_lock));
14759
14760	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
14761	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
14762		return (EINVAL);
14763
14764	/*
14765	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
14766	 * to be sure that every CPU has seen it.  See below for the details
14767	 * on why this is done.
14768	 */
14769	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
14770	dtrace_sync();
14771
14772	/*
14773	 * By this point, it is impossible for any CPU to be still processing
14774	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
14775	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
14776	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
14777	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
14778	 * iff we're in the END probe.
14779	 */
14780	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
14781	dtrace_sync();
14782	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
14783
14784	/*
14785	 * Finally, we can release the reserve and call the END probe.  We
14786	 * disable interrupts across calling the END probe to allow us to
14787	 * return the CPU on which we actually called the END probe.  This
14788	 * allows user-land to be sure that this CPU's principal buffer is
14789	 * processed last.
14790	 */
14791	state->dts_reserve = 0;
14792
14793	cookie = dtrace_interrupt_disable();
14794	*cpu = curcpu;
14795	dtrace_probe(dtrace_probeid_end,
14796	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14797	dtrace_interrupt_enable(cookie);
14798
14799	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
14800	dtrace_sync();
14801
14802#if defined(sun)
14803	if (state->dts_getf != 0 &&
14804	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14805		/*
14806		 * We don't have kernel privs but we have at least one call
14807		 * to getf(); we need to lower our zone's count, and (if
14808		 * this is the last enabling to have an unprivileged call
14809		 * to getf()) we need to clear the closef() hook.
14810		 */
14811		ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
14812		ASSERT(dtrace_closef == dtrace_getf_barrier);
14813		ASSERT(dtrace_getf > 0);
14814
14815		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
14816
14817		if (--dtrace_getf == 0)
14818			dtrace_closef = NULL;
14819	}
14820#endif
14821
14822	return (0);
14823}
14824
14825static int
14826dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
14827    dtrace_optval_t val)
14828{
14829	ASSERT(MUTEX_HELD(&dtrace_lock));
14830
14831	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14832		return (EBUSY);
14833
14834	if (option >= DTRACEOPT_MAX)
14835		return (EINVAL);
14836
14837	if (option != DTRACEOPT_CPU && val < 0)
14838		return (EINVAL);
14839
14840	switch (option) {
14841	case DTRACEOPT_DESTRUCTIVE:
14842		if (dtrace_destructive_disallow)
14843			return (EACCES);
14844
14845		state->dts_cred.dcr_destructive = 1;
14846		break;
14847
14848	case DTRACEOPT_BUFSIZE:
14849	case DTRACEOPT_DYNVARSIZE:
14850	case DTRACEOPT_AGGSIZE:
14851	case DTRACEOPT_SPECSIZE:
14852	case DTRACEOPT_STRSIZE:
14853		if (val < 0)
14854			return (EINVAL);
14855
14856		if (val >= LONG_MAX) {
14857			/*
14858			 * If this is an otherwise negative value, set it to
14859			 * the highest multiple of 128m less than LONG_MAX.
14860			 * Technically, we're adjusting the size without
14861			 * regard to the buffer resizing policy, but in fact,
14862			 * this has no effect -- if we set the buffer size to
14863			 * ~LONG_MAX and the buffer policy is ultimately set to
14864			 * be "manual", the buffer allocation is guaranteed to
14865			 * fail, if only because the allocation requires two
14866			 * buffers.  (We set the the size to the highest
14867			 * multiple of 128m because it ensures that the size
14868			 * will remain a multiple of a megabyte when
14869			 * repeatedly halved -- all the way down to 15m.)
14870			 */
14871			val = LONG_MAX - (1 << 27) + 1;
14872		}
14873	}
14874
14875	state->dts_options[option] = val;
14876
14877	return (0);
14878}
14879
14880static void
14881dtrace_state_destroy(dtrace_state_t *state)
14882{
14883	dtrace_ecb_t *ecb;
14884	dtrace_vstate_t *vstate = &state->dts_vstate;
14885#if defined(sun)
14886	minor_t minor = getminor(state->dts_dev);
14887#endif
14888	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14889	dtrace_speculation_t *spec = state->dts_speculations;
14890	int nspec = state->dts_nspeculations;
14891	uint32_t match;
14892
14893	ASSERT(MUTEX_HELD(&dtrace_lock));
14894	ASSERT(MUTEX_HELD(&cpu_lock));
14895
14896	/*
14897	 * First, retract any retained enablings for this state.
14898	 */
14899	dtrace_enabling_retract(state);
14900	ASSERT(state->dts_nretained == 0);
14901
14902	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
14903	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
14904		/*
14905		 * We have managed to come into dtrace_state_destroy() on a
14906		 * hot enabling -- almost certainly because of a disorderly
14907		 * shutdown of a consumer.  (That is, a consumer that is
14908		 * exiting without having called dtrace_stop().) In this case,
14909		 * we're going to set our activity to be KILLED, and then
14910		 * issue a sync to be sure that everyone is out of probe
14911		 * context before we start blowing away ECBs.
14912		 */
14913		state->dts_activity = DTRACE_ACTIVITY_KILLED;
14914		dtrace_sync();
14915	}
14916
14917	/*
14918	 * Release the credential hold we took in dtrace_state_create().
14919	 */
14920	if (state->dts_cred.dcr_cred != NULL)
14921		crfree(state->dts_cred.dcr_cred);
14922
14923	/*
14924	 * Now we can safely disable and destroy any enabled probes.  Because
14925	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
14926	 * (especially if they're all enabled), we take two passes through the
14927	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
14928	 * in the second we disable whatever is left over.
14929	 */
14930	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
14931		for (i = 0; i < state->dts_necbs; i++) {
14932			if ((ecb = state->dts_ecbs[i]) == NULL)
14933				continue;
14934
14935			if (match && ecb->dte_probe != NULL) {
14936				dtrace_probe_t *probe = ecb->dte_probe;
14937				dtrace_provider_t *prov = probe->dtpr_provider;
14938
14939				if (!(prov->dtpv_priv.dtpp_flags & match))
14940					continue;
14941			}
14942
14943			dtrace_ecb_disable(ecb);
14944			dtrace_ecb_destroy(ecb);
14945		}
14946
14947		if (!match)
14948			break;
14949	}
14950
14951	/*
14952	 * Before we free the buffers, perform one more sync to assure that
14953	 * every CPU is out of probe context.
14954	 */
14955	dtrace_sync();
14956
14957	dtrace_buffer_free(state->dts_buffer);
14958	dtrace_buffer_free(state->dts_aggbuffer);
14959
14960	for (i = 0; i < nspec; i++)
14961		dtrace_buffer_free(spec[i].dtsp_buffer);
14962
14963#if defined(sun)
14964	if (state->dts_cleaner != CYCLIC_NONE)
14965		cyclic_remove(state->dts_cleaner);
14966
14967	if (state->dts_deadman != CYCLIC_NONE)
14968		cyclic_remove(state->dts_deadman);
14969#else
14970	callout_stop(&state->dts_cleaner);
14971	callout_drain(&state->dts_cleaner);
14972	callout_stop(&state->dts_deadman);
14973	callout_drain(&state->dts_deadman);
14974#endif
14975
14976	dtrace_dstate_fini(&vstate->dtvs_dynvars);
14977	dtrace_vstate_fini(vstate);
14978	if (state->dts_ecbs != NULL)
14979		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
14980
14981	if (state->dts_aggregations != NULL) {
14982#ifdef DEBUG
14983		for (i = 0; i < state->dts_naggregations; i++)
14984			ASSERT(state->dts_aggregations[i] == NULL);
14985#endif
14986		ASSERT(state->dts_naggregations > 0);
14987		kmem_free(state->dts_aggregations,
14988		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
14989	}
14990
14991	kmem_free(state->dts_buffer, bufsize);
14992	kmem_free(state->dts_aggbuffer, bufsize);
14993
14994	for (i = 0; i < nspec; i++)
14995		kmem_free(spec[i].dtsp_buffer, bufsize);
14996
14997	if (spec != NULL)
14998		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14999
15000	dtrace_format_destroy(state);
15001
15002	if (state->dts_aggid_arena != NULL) {
15003#if defined(sun)
15004		vmem_destroy(state->dts_aggid_arena);
15005#else
15006		delete_unrhdr(state->dts_aggid_arena);
15007#endif
15008		state->dts_aggid_arena = NULL;
15009	}
15010#if defined(sun)
15011	ddi_soft_state_free(dtrace_softstate, minor);
15012	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
15013#endif
15014}
15015
15016/*
15017 * DTrace Anonymous Enabling Functions
15018 */
15019static dtrace_state_t *
15020dtrace_anon_grab(void)
15021{
15022	dtrace_state_t *state;
15023
15024	ASSERT(MUTEX_HELD(&dtrace_lock));
15025
15026	if ((state = dtrace_anon.dta_state) == NULL) {
15027		ASSERT(dtrace_anon.dta_enabling == NULL);
15028		return (NULL);
15029	}
15030
15031	ASSERT(dtrace_anon.dta_enabling != NULL);
15032	ASSERT(dtrace_retained != NULL);
15033
15034	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
15035	dtrace_anon.dta_enabling = NULL;
15036	dtrace_anon.dta_state = NULL;
15037
15038	return (state);
15039}
15040
15041static void
15042dtrace_anon_property(void)
15043{
15044	int i, rv;
15045	dtrace_state_t *state;
15046	dof_hdr_t *dof;
15047	char c[32];		/* enough for "dof-data-" + digits */
15048
15049	ASSERT(MUTEX_HELD(&dtrace_lock));
15050	ASSERT(MUTEX_HELD(&cpu_lock));
15051
15052	for (i = 0; ; i++) {
15053		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
15054
15055		dtrace_err_verbose = 1;
15056
15057		if ((dof = dtrace_dof_property(c)) == NULL) {
15058			dtrace_err_verbose = 0;
15059			break;
15060		}
15061
15062#if defined(sun)
15063		/*
15064		 * We want to create anonymous state, so we need to transition
15065		 * the kernel debugger to indicate that DTrace is active.  If
15066		 * this fails (e.g. because the debugger has modified text in
15067		 * some way), we won't continue with the processing.
15068		 */
15069		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15070			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
15071			    "enabling ignored.");
15072			dtrace_dof_destroy(dof);
15073			break;
15074		}
15075#endif
15076
15077		/*
15078		 * If we haven't allocated an anonymous state, we'll do so now.
15079		 */
15080		if ((state = dtrace_anon.dta_state) == NULL) {
15081#if defined(sun)
15082			state = dtrace_state_create(NULL, NULL);
15083#else
15084			state = dtrace_state_create(NULL);
15085#endif
15086			dtrace_anon.dta_state = state;
15087
15088			if (state == NULL) {
15089				/*
15090				 * This basically shouldn't happen:  the only
15091				 * failure mode from dtrace_state_create() is a
15092				 * failure of ddi_soft_state_zalloc() that
15093				 * itself should never happen.  Still, the
15094				 * interface allows for a failure mode, and
15095				 * we want to fail as gracefully as possible:
15096				 * we'll emit an error message and cease
15097				 * processing anonymous state in this case.
15098				 */
15099				cmn_err(CE_WARN, "failed to create "
15100				    "anonymous state");
15101				dtrace_dof_destroy(dof);
15102				break;
15103			}
15104		}
15105
15106		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
15107		    &dtrace_anon.dta_enabling, 0, B_TRUE);
15108
15109		if (rv == 0)
15110			rv = dtrace_dof_options(dof, state);
15111
15112		dtrace_err_verbose = 0;
15113		dtrace_dof_destroy(dof);
15114
15115		if (rv != 0) {
15116			/*
15117			 * This is malformed DOF; chuck any anonymous state
15118			 * that we created.
15119			 */
15120			ASSERT(dtrace_anon.dta_enabling == NULL);
15121			dtrace_state_destroy(state);
15122			dtrace_anon.dta_state = NULL;
15123			break;
15124		}
15125
15126		ASSERT(dtrace_anon.dta_enabling != NULL);
15127	}
15128
15129	if (dtrace_anon.dta_enabling != NULL) {
15130		int rval;
15131
15132		/*
15133		 * dtrace_enabling_retain() can only fail because we are
15134		 * trying to retain more enablings than are allowed -- but
15135		 * we only have one anonymous enabling, and we are guaranteed
15136		 * to be allowed at least one retained enabling; we assert
15137		 * that dtrace_enabling_retain() returns success.
15138		 */
15139		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
15140		ASSERT(rval == 0);
15141
15142		dtrace_enabling_dump(dtrace_anon.dta_enabling);
15143	}
15144}
15145
15146/*
15147 * DTrace Helper Functions
15148 */
15149static void
15150dtrace_helper_trace(dtrace_helper_action_t *helper,
15151    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
15152{
15153	uint32_t size, next, nnext, i;
15154	dtrace_helptrace_t *ent;
15155	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
15156
15157	if (!dtrace_helptrace_enabled)
15158		return;
15159
15160	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
15161
15162	/*
15163	 * What would a tracing framework be without its own tracing
15164	 * framework?  (Well, a hell of a lot simpler, for starters...)
15165	 */
15166	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
15167	    sizeof (uint64_t) - sizeof (uint64_t);
15168
15169	/*
15170	 * Iterate until we can allocate a slot in the trace buffer.
15171	 */
15172	do {
15173		next = dtrace_helptrace_next;
15174
15175		if (next + size < dtrace_helptrace_bufsize) {
15176			nnext = next + size;
15177		} else {
15178			nnext = size;
15179		}
15180	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
15181
15182	/*
15183	 * We have our slot; fill it in.
15184	 */
15185	if (nnext == size)
15186		next = 0;
15187
15188	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
15189	ent->dtht_helper = helper;
15190	ent->dtht_where = where;
15191	ent->dtht_nlocals = vstate->dtvs_nlocals;
15192
15193	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
15194	    mstate->dtms_fltoffs : -1;
15195	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
15196	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
15197
15198	for (i = 0; i < vstate->dtvs_nlocals; i++) {
15199		dtrace_statvar_t *svar;
15200
15201		if ((svar = vstate->dtvs_locals[i]) == NULL)
15202			continue;
15203
15204		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
15205		ent->dtht_locals[i] =
15206		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
15207	}
15208}
15209
15210static uint64_t
15211dtrace_helper(int which, dtrace_mstate_t *mstate,
15212    dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
15213{
15214	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
15215	uint64_t sarg0 = mstate->dtms_arg[0];
15216	uint64_t sarg1 = mstate->dtms_arg[1];
15217	uint64_t rval = 0;
15218	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
15219	dtrace_helper_action_t *helper;
15220	dtrace_vstate_t *vstate;
15221	dtrace_difo_t *pred;
15222	int i, trace = dtrace_helptrace_enabled;
15223
15224	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
15225
15226	if (helpers == NULL)
15227		return (0);
15228
15229	if ((helper = helpers->dthps_actions[which]) == NULL)
15230		return (0);
15231
15232	vstate = &helpers->dthps_vstate;
15233	mstate->dtms_arg[0] = arg0;
15234	mstate->dtms_arg[1] = arg1;
15235
15236	/*
15237	 * Now iterate over each helper.  If its predicate evaluates to 'true',
15238	 * we'll call the corresponding actions.  Note that the below calls
15239	 * to dtrace_dif_emulate() may set faults in machine state.  This is
15240	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
15241	 * the stored DIF offset with its own (which is the desired behavior).
15242	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
15243	 * from machine state; this is okay, too.
15244	 */
15245	for (; helper != NULL; helper = helper->dtha_next) {
15246		if ((pred = helper->dtha_predicate) != NULL) {
15247			if (trace)
15248				dtrace_helper_trace(helper, mstate, vstate, 0);
15249
15250			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
15251				goto next;
15252
15253			if (*flags & CPU_DTRACE_FAULT)
15254				goto err;
15255		}
15256
15257		for (i = 0; i < helper->dtha_nactions; i++) {
15258			if (trace)
15259				dtrace_helper_trace(helper,
15260				    mstate, vstate, i + 1);
15261
15262			rval = dtrace_dif_emulate(helper->dtha_actions[i],
15263			    mstate, vstate, state);
15264
15265			if (*flags & CPU_DTRACE_FAULT)
15266				goto err;
15267		}
15268
15269next:
15270		if (trace)
15271			dtrace_helper_trace(helper, mstate, vstate,
15272			    DTRACE_HELPTRACE_NEXT);
15273	}
15274
15275	if (trace)
15276		dtrace_helper_trace(helper, mstate, vstate,
15277		    DTRACE_HELPTRACE_DONE);
15278
15279	/*
15280	 * Restore the arg0 that we saved upon entry.
15281	 */
15282	mstate->dtms_arg[0] = sarg0;
15283	mstate->dtms_arg[1] = sarg1;
15284
15285	return (rval);
15286
15287err:
15288	if (trace)
15289		dtrace_helper_trace(helper, mstate, vstate,
15290		    DTRACE_HELPTRACE_ERR);
15291
15292	/*
15293	 * Restore the arg0 that we saved upon entry.
15294	 */
15295	mstate->dtms_arg[0] = sarg0;
15296	mstate->dtms_arg[1] = sarg1;
15297
15298	return (0);
15299}
15300
15301static void
15302dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
15303    dtrace_vstate_t *vstate)
15304{
15305	int i;
15306
15307	if (helper->dtha_predicate != NULL)
15308		dtrace_difo_release(helper->dtha_predicate, vstate);
15309
15310	for (i = 0; i < helper->dtha_nactions; i++) {
15311		ASSERT(helper->dtha_actions[i] != NULL);
15312		dtrace_difo_release(helper->dtha_actions[i], vstate);
15313	}
15314
15315	kmem_free(helper->dtha_actions,
15316	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
15317	kmem_free(helper, sizeof (dtrace_helper_action_t));
15318}
15319
15320static int
15321dtrace_helper_destroygen(int gen)
15322{
15323	proc_t *p = curproc;
15324	dtrace_helpers_t *help = p->p_dtrace_helpers;
15325	dtrace_vstate_t *vstate;
15326	int i;
15327
15328	ASSERT(MUTEX_HELD(&dtrace_lock));
15329
15330	if (help == NULL || gen > help->dthps_generation)
15331		return (EINVAL);
15332
15333	vstate = &help->dthps_vstate;
15334
15335	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15336		dtrace_helper_action_t *last = NULL, *h, *next;
15337
15338		for (h = help->dthps_actions[i]; h != NULL; h = next) {
15339			next = h->dtha_next;
15340
15341			if (h->dtha_generation == gen) {
15342				if (last != NULL) {
15343					last->dtha_next = next;
15344				} else {
15345					help->dthps_actions[i] = next;
15346				}
15347
15348				dtrace_helper_action_destroy(h, vstate);
15349			} else {
15350				last = h;
15351			}
15352		}
15353	}
15354
15355	/*
15356	 * Interate until we've cleared out all helper providers with the
15357	 * given generation number.
15358	 */
15359	for (;;) {
15360		dtrace_helper_provider_t *prov;
15361
15362		/*
15363		 * Look for a helper provider with the right generation. We
15364		 * have to start back at the beginning of the list each time
15365		 * because we drop dtrace_lock. It's unlikely that we'll make
15366		 * more than two passes.
15367		 */
15368		for (i = 0; i < help->dthps_nprovs; i++) {
15369			prov = help->dthps_provs[i];
15370
15371			if (prov->dthp_generation == gen)
15372				break;
15373		}
15374
15375		/*
15376		 * If there were no matches, we're done.
15377		 */
15378		if (i == help->dthps_nprovs)
15379			break;
15380
15381		/*
15382		 * Move the last helper provider into this slot.
15383		 */
15384		help->dthps_nprovs--;
15385		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
15386		help->dthps_provs[help->dthps_nprovs] = NULL;
15387
15388		mutex_exit(&dtrace_lock);
15389
15390		/*
15391		 * If we have a meta provider, remove this helper provider.
15392		 */
15393		mutex_enter(&dtrace_meta_lock);
15394		if (dtrace_meta_pid != NULL) {
15395			ASSERT(dtrace_deferred_pid == NULL);
15396			dtrace_helper_provider_remove(&prov->dthp_prov,
15397			    p->p_pid);
15398		}
15399		mutex_exit(&dtrace_meta_lock);
15400
15401		dtrace_helper_provider_destroy(prov);
15402
15403		mutex_enter(&dtrace_lock);
15404	}
15405
15406	return (0);
15407}
15408
15409static int
15410dtrace_helper_validate(dtrace_helper_action_t *helper)
15411{
15412	int err = 0, i;
15413	dtrace_difo_t *dp;
15414
15415	if ((dp = helper->dtha_predicate) != NULL)
15416		err += dtrace_difo_validate_helper(dp);
15417
15418	for (i = 0; i < helper->dtha_nactions; i++)
15419		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
15420
15421	return (err == 0);
15422}
15423
15424static int
15425dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
15426{
15427	dtrace_helpers_t *help;
15428	dtrace_helper_action_t *helper, *last;
15429	dtrace_actdesc_t *act;
15430	dtrace_vstate_t *vstate;
15431	dtrace_predicate_t *pred;
15432	int count = 0, nactions = 0, i;
15433
15434	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
15435		return (EINVAL);
15436
15437	help = curproc->p_dtrace_helpers;
15438	last = help->dthps_actions[which];
15439	vstate = &help->dthps_vstate;
15440
15441	for (count = 0; last != NULL; last = last->dtha_next) {
15442		count++;
15443		if (last->dtha_next == NULL)
15444			break;
15445	}
15446
15447	/*
15448	 * If we already have dtrace_helper_actions_max helper actions for this
15449	 * helper action type, we'll refuse to add a new one.
15450	 */
15451	if (count >= dtrace_helper_actions_max)
15452		return (ENOSPC);
15453
15454	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
15455	helper->dtha_generation = help->dthps_generation;
15456
15457	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
15458		ASSERT(pred->dtp_difo != NULL);
15459		dtrace_difo_hold(pred->dtp_difo);
15460		helper->dtha_predicate = pred->dtp_difo;
15461	}
15462
15463	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
15464		if (act->dtad_kind != DTRACEACT_DIFEXPR)
15465			goto err;
15466
15467		if (act->dtad_difo == NULL)
15468			goto err;
15469
15470		nactions++;
15471	}
15472
15473	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
15474	    (helper->dtha_nactions = nactions), KM_SLEEP);
15475
15476	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
15477		dtrace_difo_hold(act->dtad_difo);
15478		helper->dtha_actions[i++] = act->dtad_difo;
15479	}
15480
15481	if (!dtrace_helper_validate(helper))
15482		goto err;
15483
15484	if (last == NULL) {
15485		help->dthps_actions[which] = helper;
15486	} else {
15487		last->dtha_next = helper;
15488	}
15489
15490	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
15491		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
15492		dtrace_helptrace_next = 0;
15493	}
15494
15495	return (0);
15496err:
15497	dtrace_helper_action_destroy(helper, vstate);
15498	return (EINVAL);
15499}
15500
15501static void
15502dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
15503    dof_helper_t *dofhp)
15504{
15505	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
15506
15507	mutex_enter(&dtrace_meta_lock);
15508	mutex_enter(&dtrace_lock);
15509
15510	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
15511		/*
15512		 * If the dtrace module is loaded but not attached, or if
15513		 * there aren't isn't a meta provider registered to deal with
15514		 * these provider descriptions, we need to postpone creating
15515		 * the actual providers until later.
15516		 */
15517
15518		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
15519		    dtrace_deferred_pid != help) {
15520			help->dthps_deferred = 1;
15521			help->dthps_pid = p->p_pid;
15522			help->dthps_next = dtrace_deferred_pid;
15523			help->dthps_prev = NULL;
15524			if (dtrace_deferred_pid != NULL)
15525				dtrace_deferred_pid->dthps_prev = help;
15526			dtrace_deferred_pid = help;
15527		}
15528
15529		mutex_exit(&dtrace_lock);
15530
15531	} else if (dofhp != NULL) {
15532		/*
15533		 * If the dtrace module is loaded and we have a particular
15534		 * helper provider description, pass that off to the
15535		 * meta provider.
15536		 */
15537
15538		mutex_exit(&dtrace_lock);
15539
15540		dtrace_helper_provide(dofhp, p->p_pid);
15541
15542	} else {
15543		/*
15544		 * Otherwise, just pass all the helper provider descriptions
15545		 * off to the meta provider.
15546		 */
15547
15548		int i;
15549		mutex_exit(&dtrace_lock);
15550
15551		for (i = 0; i < help->dthps_nprovs; i++) {
15552			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
15553			    p->p_pid);
15554		}
15555	}
15556
15557	mutex_exit(&dtrace_meta_lock);
15558}
15559
15560static int
15561dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
15562{
15563	dtrace_helpers_t *help;
15564	dtrace_helper_provider_t *hprov, **tmp_provs;
15565	uint_t tmp_maxprovs, i;
15566
15567	ASSERT(MUTEX_HELD(&dtrace_lock));
15568
15569	help = curproc->p_dtrace_helpers;
15570	ASSERT(help != NULL);
15571
15572	/*
15573	 * If we already have dtrace_helper_providers_max helper providers,
15574	 * we're refuse to add a new one.
15575	 */
15576	if (help->dthps_nprovs >= dtrace_helper_providers_max)
15577		return (ENOSPC);
15578
15579	/*
15580	 * Check to make sure this isn't a duplicate.
15581	 */
15582	for (i = 0; i < help->dthps_nprovs; i++) {
15583		if (dofhp->dofhp_dof ==
15584		    help->dthps_provs[i]->dthp_prov.dofhp_dof)
15585			return (EALREADY);
15586	}
15587
15588	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
15589	hprov->dthp_prov = *dofhp;
15590	hprov->dthp_ref = 1;
15591	hprov->dthp_generation = gen;
15592
15593	/*
15594	 * Allocate a bigger table for helper providers if it's already full.
15595	 */
15596	if (help->dthps_maxprovs == help->dthps_nprovs) {
15597		tmp_maxprovs = help->dthps_maxprovs;
15598		tmp_provs = help->dthps_provs;
15599
15600		if (help->dthps_maxprovs == 0)
15601			help->dthps_maxprovs = 2;
15602		else
15603			help->dthps_maxprovs *= 2;
15604		if (help->dthps_maxprovs > dtrace_helper_providers_max)
15605			help->dthps_maxprovs = dtrace_helper_providers_max;
15606
15607		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
15608
15609		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
15610		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15611
15612		if (tmp_provs != NULL) {
15613			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
15614			    sizeof (dtrace_helper_provider_t *));
15615			kmem_free(tmp_provs, tmp_maxprovs *
15616			    sizeof (dtrace_helper_provider_t *));
15617		}
15618	}
15619
15620	help->dthps_provs[help->dthps_nprovs] = hprov;
15621	help->dthps_nprovs++;
15622
15623	return (0);
15624}
15625
15626static void
15627dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
15628{
15629	mutex_enter(&dtrace_lock);
15630
15631	if (--hprov->dthp_ref == 0) {
15632		dof_hdr_t *dof;
15633		mutex_exit(&dtrace_lock);
15634		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
15635		dtrace_dof_destroy(dof);
15636		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
15637	} else {
15638		mutex_exit(&dtrace_lock);
15639	}
15640}
15641
15642static int
15643dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
15644{
15645	uintptr_t daddr = (uintptr_t)dof;
15646	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
15647	dof_provider_t *provider;
15648	dof_probe_t *probe;
15649	uint8_t *arg;
15650	char *strtab, *typestr;
15651	dof_stridx_t typeidx;
15652	size_t typesz;
15653	uint_t nprobes, j, k;
15654
15655	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
15656
15657	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
15658		dtrace_dof_error(dof, "misaligned section offset");
15659		return (-1);
15660	}
15661
15662	/*
15663	 * The section needs to be large enough to contain the DOF provider
15664	 * structure appropriate for the given version.
15665	 */
15666	if (sec->dofs_size <
15667	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
15668	    offsetof(dof_provider_t, dofpv_prenoffs) :
15669	    sizeof (dof_provider_t))) {
15670		dtrace_dof_error(dof, "provider section too small");
15671		return (-1);
15672	}
15673
15674	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
15675	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
15676	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
15677	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
15678	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
15679
15680	if (str_sec == NULL || prb_sec == NULL ||
15681	    arg_sec == NULL || off_sec == NULL)
15682		return (-1);
15683
15684	enoff_sec = NULL;
15685
15686	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
15687	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
15688	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
15689	    provider->dofpv_prenoffs)) == NULL)
15690		return (-1);
15691
15692	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
15693
15694	if (provider->dofpv_name >= str_sec->dofs_size ||
15695	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
15696		dtrace_dof_error(dof, "invalid provider name");
15697		return (-1);
15698	}
15699
15700	if (prb_sec->dofs_entsize == 0 ||
15701	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
15702		dtrace_dof_error(dof, "invalid entry size");
15703		return (-1);
15704	}
15705
15706	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
15707		dtrace_dof_error(dof, "misaligned entry size");
15708		return (-1);
15709	}
15710
15711	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
15712		dtrace_dof_error(dof, "invalid entry size");
15713		return (-1);
15714	}
15715
15716	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
15717		dtrace_dof_error(dof, "misaligned section offset");
15718		return (-1);
15719	}
15720
15721	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
15722		dtrace_dof_error(dof, "invalid entry size");
15723		return (-1);
15724	}
15725
15726	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
15727
15728	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
15729
15730	/*
15731	 * Take a pass through the probes to check for errors.
15732	 */
15733	for (j = 0; j < nprobes; j++) {
15734		probe = (dof_probe_t *)(uintptr_t)(daddr +
15735		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
15736
15737		if (probe->dofpr_func >= str_sec->dofs_size) {
15738			dtrace_dof_error(dof, "invalid function name");
15739			return (-1);
15740		}
15741
15742		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
15743			dtrace_dof_error(dof, "function name too long");
15744			return (-1);
15745		}
15746
15747		if (probe->dofpr_name >= str_sec->dofs_size ||
15748		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
15749			dtrace_dof_error(dof, "invalid probe name");
15750			return (-1);
15751		}
15752
15753		/*
15754		 * The offset count must not wrap the index, and the offsets
15755		 * must also not overflow the section's data.
15756		 */
15757		if (probe->dofpr_offidx + probe->dofpr_noffs <
15758		    probe->dofpr_offidx ||
15759		    (probe->dofpr_offidx + probe->dofpr_noffs) *
15760		    off_sec->dofs_entsize > off_sec->dofs_size) {
15761			dtrace_dof_error(dof, "invalid probe offset");
15762			return (-1);
15763		}
15764
15765		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
15766			/*
15767			 * If there's no is-enabled offset section, make sure
15768			 * there aren't any is-enabled offsets. Otherwise
15769			 * perform the same checks as for probe offsets
15770			 * (immediately above).
15771			 */
15772			if (enoff_sec == NULL) {
15773				if (probe->dofpr_enoffidx != 0 ||
15774				    probe->dofpr_nenoffs != 0) {
15775					dtrace_dof_error(dof, "is-enabled "
15776					    "offsets with null section");
15777					return (-1);
15778				}
15779			} else if (probe->dofpr_enoffidx +
15780			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
15781			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
15782			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
15783				dtrace_dof_error(dof, "invalid is-enabled "
15784				    "offset");
15785				return (-1);
15786			}
15787
15788			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
15789				dtrace_dof_error(dof, "zero probe and "
15790				    "is-enabled offsets");
15791				return (-1);
15792			}
15793		} else if (probe->dofpr_noffs == 0) {
15794			dtrace_dof_error(dof, "zero probe offsets");
15795			return (-1);
15796		}
15797
15798		if (probe->dofpr_argidx + probe->dofpr_xargc <
15799		    probe->dofpr_argidx ||
15800		    (probe->dofpr_argidx + probe->dofpr_xargc) *
15801		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
15802			dtrace_dof_error(dof, "invalid args");
15803			return (-1);
15804		}
15805
15806		typeidx = probe->dofpr_nargv;
15807		typestr = strtab + probe->dofpr_nargv;
15808		for (k = 0; k < probe->dofpr_nargc; k++) {
15809			if (typeidx >= str_sec->dofs_size) {
15810				dtrace_dof_error(dof, "bad "
15811				    "native argument type");
15812				return (-1);
15813			}
15814
15815			typesz = strlen(typestr) + 1;
15816			if (typesz > DTRACE_ARGTYPELEN) {
15817				dtrace_dof_error(dof, "native "
15818				    "argument type too long");
15819				return (-1);
15820			}
15821			typeidx += typesz;
15822			typestr += typesz;
15823		}
15824
15825		typeidx = probe->dofpr_xargv;
15826		typestr = strtab + probe->dofpr_xargv;
15827		for (k = 0; k < probe->dofpr_xargc; k++) {
15828			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
15829				dtrace_dof_error(dof, "bad "
15830				    "native argument index");
15831				return (-1);
15832			}
15833
15834			if (typeidx >= str_sec->dofs_size) {
15835				dtrace_dof_error(dof, "bad "
15836				    "translated argument type");
15837				return (-1);
15838			}
15839
15840			typesz = strlen(typestr) + 1;
15841			if (typesz > DTRACE_ARGTYPELEN) {
15842				dtrace_dof_error(dof, "translated argument "
15843				    "type too long");
15844				return (-1);
15845			}
15846
15847			typeidx += typesz;
15848			typestr += typesz;
15849		}
15850	}
15851
15852	return (0);
15853}
15854
15855static int
15856dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
15857{
15858	dtrace_helpers_t *help;
15859	dtrace_vstate_t *vstate;
15860	dtrace_enabling_t *enab = NULL;
15861	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
15862	uintptr_t daddr = (uintptr_t)dof;
15863
15864	ASSERT(MUTEX_HELD(&dtrace_lock));
15865
15866	if ((help = curproc->p_dtrace_helpers) == NULL)
15867		help = dtrace_helpers_create(curproc);
15868
15869	vstate = &help->dthps_vstate;
15870
15871	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
15872	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
15873		dtrace_dof_destroy(dof);
15874		return (rv);
15875	}
15876
15877	/*
15878	 * Look for helper providers and validate their descriptions.
15879	 */
15880	if (dhp != NULL) {
15881		for (i = 0; i < dof->dofh_secnum; i++) {
15882			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
15883			    dof->dofh_secoff + i * dof->dofh_secsize);
15884
15885			if (sec->dofs_type != DOF_SECT_PROVIDER)
15886				continue;
15887
15888			if (dtrace_helper_provider_validate(dof, sec) != 0) {
15889				dtrace_enabling_destroy(enab);
15890				dtrace_dof_destroy(dof);
15891				return (-1);
15892			}
15893
15894			nprovs++;
15895		}
15896	}
15897
15898	/*
15899	 * Now we need to walk through the ECB descriptions in the enabling.
15900	 */
15901	for (i = 0; i < enab->dten_ndesc; i++) {
15902		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
15903		dtrace_probedesc_t *desc = &ep->dted_probe;
15904
15905		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
15906			continue;
15907
15908		if (strcmp(desc->dtpd_mod, "helper") != 0)
15909			continue;
15910
15911		if (strcmp(desc->dtpd_func, "ustack") != 0)
15912			continue;
15913
15914		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
15915		    ep)) != 0) {
15916			/*
15917			 * Adding this helper action failed -- we are now going
15918			 * to rip out the entire generation and return failure.
15919			 */
15920			(void) dtrace_helper_destroygen(help->dthps_generation);
15921			dtrace_enabling_destroy(enab);
15922			dtrace_dof_destroy(dof);
15923			return (-1);
15924		}
15925
15926		nhelpers++;
15927	}
15928
15929	if (nhelpers < enab->dten_ndesc)
15930		dtrace_dof_error(dof, "unmatched helpers");
15931
15932	gen = help->dthps_generation++;
15933	dtrace_enabling_destroy(enab);
15934
15935	if (dhp != NULL && nprovs > 0) {
15936		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
15937		if (dtrace_helper_provider_add(dhp, gen) == 0) {
15938			mutex_exit(&dtrace_lock);
15939			dtrace_helper_provider_register(curproc, help, dhp);
15940			mutex_enter(&dtrace_lock);
15941
15942			destroy = 0;
15943		}
15944	}
15945
15946	if (destroy)
15947		dtrace_dof_destroy(dof);
15948
15949	return (gen);
15950}
15951
15952static dtrace_helpers_t *
15953dtrace_helpers_create(proc_t *p)
15954{
15955	dtrace_helpers_t *help;
15956
15957	ASSERT(MUTEX_HELD(&dtrace_lock));
15958	ASSERT(p->p_dtrace_helpers == NULL);
15959
15960	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
15961	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
15962	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
15963
15964	p->p_dtrace_helpers = help;
15965	dtrace_helpers++;
15966
15967	return (help);
15968}
15969
15970#if defined(sun)
15971static
15972#endif
15973void
15974dtrace_helpers_destroy(proc_t *p)
15975{
15976	dtrace_helpers_t *help;
15977	dtrace_vstate_t *vstate;
15978#if defined(sun)
15979	proc_t *p = curproc;
15980#endif
15981	int i;
15982
15983	mutex_enter(&dtrace_lock);
15984
15985	ASSERT(p->p_dtrace_helpers != NULL);
15986	ASSERT(dtrace_helpers > 0);
15987
15988	help = p->p_dtrace_helpers;
15989	vstate = &help->dthps_vstate;
15990
15991	/*
15992	 * We're now going to lose the help from this process.
15993	 */
15994	p->p_dtrace_helpers = NULL;
15995	dtrace_sync();
15996
15997	/*
15998	 * Destory the helper actions.
15999	 */
16000	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16001		dtrace_helper_action_t *h, *next;
16002
16003		for (h = help->dthps_actions[i]; h != NULL; h = next) {
16004			next = h->dtha_next;
16005			dtrace_helper_action_destroy(h, vstate);
16006			h = next;
16007		}
16008	}
16009
16010	mutex_exit(&dtrace_lock);
16011
16012	/*
16013	 * Destroy the helper providers.
16014	 */
16015	if (help->dthps_maxprovs > 0) {
16016		mutex_enter(&dtrace_meta_lock);
16017		if (dtrace_meta_pid != NULL) {
16018			ASSERT(dtrace_deferred_pid == NULL);
16019
16020			for (i = 0; i < help->dthps_nprovs; i++) {
16021				dtrace_helper_provider_remove(
16022				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
16023			}
16024		} else {
16025			mutex_enter(&dtrace_lock);
16026			ASSERT(help->dthps_deferred == 0 ||
16027			    help->dthps_next != NULL ||
16028			    help->dthps_prev != NULL ||
16029			    help == dtrace_deferred_pid);
16030
16031			/*
16032			 * Remove the helper from the deferred list.
16033			 */
16034			if (help->dthps_next != NULL)
16035				help->dthps_next->dthps_prev = help->dthps_prev;
16036			if (help->dthps_prev != NULL)
16037				help->dthps_prev->dthps_next = help->dthps_next;
16038			if (dtrace_deferred_pid == help) {
16039				dtrace_deferred_pid = help->dthps_next;
16040				ASSERT(help->dthps_prev == NULL);
16041			}
16042
16043			mutex_exit(&dtrace_lock);
16044		}
16045
16046		mutex_exit(&dtrace_meta_lock);
16047
16048		for (i = 0; i < help->dthps_nprovs; i++) {
16049			dtrace_helper_provider_destroy(help->dthps_provs[i]);
16050		}
16051
16052		kmem_free(help->dthps_provs, help->dthps_maxprovs *
16053		    sizeof (dtrace_helper_provider_t *));
16054	}
16055
16056	mutex_enter(&dtrace_lock);
16057
16058	dtrace_vstate_fini(&help->dthps_vstate);
16059	kmem_free(help->dthps_actions,
16060	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
16061	kmem_free(help, sizeof (dtrace_helpers_t));
16062
16063	--dtrace_helpers;
16064	mutex_exit(&dtrace_lock);
16065}
16066
16067#if defined(sun)
16068static
16069#endif
16070void
16071dtrace_helpers_duplicate(proc_t *from, proc_t *to)
16072{
16073	dtrace_helpers_t *help, *newhelp;
16074	dtrace_helper_action_t *helper, *new, *last;
16075	dtrace_difo_t *dp;
16076	dtrace_vstate_t *vstate;
16077	int i, j, sz, hasprovs = 0;
16078
16079	mutex_enter(&dtrace_lock);
16080	ASSERT(from->p_dtrace_helpers != NULL);
16081	ASSERT(dtrace_helpers > 0);
16082
16083	help = from->p_dtrace_helpers;
16084	newhelp = dtrace_helpers_create(to);
16085	ASSERT(to->p_dtrace_helpers != NULL);
16086
16087	newhelp->dthps_generation = help->dthps_generation;
16088	vstate = &newhelp->dthps_vstate;
16089
16090	/*
16091	 * Duplicate the helper actions.
16092	 */
16093	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16094		if ((helper = help->dthps_actions[i]) == NULL)
16095			continue;
16096
16097		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
16098			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
16099			    KM_SLEEP);
16100			new->dtha_generation = helper->dtha_generation;
16101
16102			if ((dp = helper->dtha_predicate) != NULL) {
16103				dp = dtrace_difo_duplicate(dp, vstate);
16104				new->dtha_predicate = dp;
16105			}
16106
16107			new->dtha_nactions = helper->dtha_nactions;
16108			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
16109			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
16110
16111			for (j = 0; j < new->dtha_nactions; j++) {
16112				dtrace_difo_t *dp = helper->dtha_actions[j];
16113
16114				ASSERT(dp != NULL);
16115				dp = dtrace_difo_duplicate(dp, vstate);
16116				new->dtha_actions[j] = dp;
16117			}
16118
16119			if (last != NULL) {
16120				last->dtha_next = new;
16121			} else {
16122				newhelp->dthps_actions[i] = new;
16123			}
16124
16125			last = new;
16126		}
16127	}
16128
16129	/*
16130	 * Duplicate the helper providers and register them with the
16131	 * DTrace framework.
16132	 */
16133	if (help->dthps_nprovs > 0) {
16134		newhelp->dthps_nprovs = help->dthps_nprovs;
16135		newhelp->dthps_maxprovs = help->dthps_nprovs;
16136		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
16137		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16138		for (i = 0; i < newhelp->dthps_nprovs; i++) {
16139			newhelp->dthps_provs[i] = help->dthps_provs[i];
16140			newhelp->dthps_provs[i]->dthp_ref++;
16141		}
16142
16143		hasprovs = 1;
16144	}
16145
16146	mutex_exit(&dtrace_lock);
16147
16148	if (hasprovs)
16149		dtrace_helper_provider_register(to, newhelp, NULL);
16150}
16151
16152/*
16153 * DTrace Hook Functions
16154 */
16155static void
16156dtrace_module_loaded(modctl_t *ctl)
16157{
16158	dtrace_provider_t *prv;
16159
16160	mutex_enter(&dtrace_provider_lock);
16161#if defined(sun)
16162	mutex_enter(&mod_lock);
16163#endif
16164
16165#if defined(sun)
16166	ASSERT(ctl->mod_busy);
16167#endif
16168
16169	/*
16170	 * We're going to call each providers per-module provide operation
16171	 * specifying only this module.
16172	 */
16173	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
16174		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
16175
16176#if defined(sun)
16177	mutex_exit(&mod_lock);
16178#endif
16179	mutex_exit(&dtrace_provider_lock);
16180
16181	/*
16182	 * If we have any retained enablings, we need to match against them.
16183	 * Enabling probes requires that cpu_lock be held, and we cannot hold
16184	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
16185	 * module.  (In particular, this happens when loading scheduling
16186	 * classes.)  So if we have any retained enablings, we need to dispatch
16187	 * our task queue to do the match for us.
16188	 */
16189	mutex_enter(&dtrace_lock);
16190
16191	if (dtrace_retained == NULL) {
16192		mutex_exit(&dtrace_lock);
16193		return;
16194	}
16195
16196	(void) taskq_dispatch(dtrace_taskq,
16197	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
16198
16199	mutex_exit(&dtrace_lock);
16200
16201	/*
16202	 * And now, for a little heuristic sleaze:  in general, we want to
16203	 * match modules as soon as they load.  However, we cannot guarantee
16204	 * this, because it would lead us to the lock ordering violation
16205	 * outlined above.  The common case, of course, is that cpu_lock is
16206	 * _not_ held -- so we delay here for a clock tick, hoping that that's
16207	 * long enough for the task queue to do its work.  If it's not, it's
16208	 * not a serious problem -- it just means that the module that we
16209	 * just loaded may not be immediately instrumentable.
16210	 */
16211	delay(1);
16212}
16213
16214static void
16215#if defined(sun)
16216dtrace_module_unloaded(modctl_t *ctl)
16217#else
16218dtrace_module_unloaded(modctl_t *ctl, int *error)
16219#endif
16220{
16221	dtrace_probe_t template, *probe, *first, *next;
16222	dtrace_provider_t *prov;
16223#if !defined(sun)
16224	char modname[DTRACE_MODNAMELEN];
16225	size_t len;
16226#endif
16227
16228#if defined(sun)
16229	template.dtpr_mod = ctl->mod_modname;
16230#else
16231	/* Handle the fact that ctl->filename may end in ".ko". */
16232	strlcpy(modname, ctl->filename, sizeof(modname));
16233	len = strlen(ctl->filename);
16234	if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
16235		modname[len - 3] = '\0';
16236	template.dtpr_mod = modname;
16237#endif
16238
16239	mutex_enter(&dtrace_provider_lock);
16240#if defined(sun)
16241	mutex_enter(&mod_lock);
16242#endif
16243	mutex_enter(&dtrace_lock);
16244
16245#if !defined(sun)
16246	if (ctl->nenabled > 0) {
16247		/* Don't allow unloads if a probe is enabled. */
16248		mutex_exit(&dtrace_provider_lock);
16249		mutex_exit(&dtrace_lock);
16250		*error = -1;
16251		printf(
16252	"kldunload: attempt to unload module that has DTrace probes enabled\n");
16253		return;
16254	}
16255#endif
16256
16257	if (dtrace_bymod == NULL) {
16258		/*
16259		 * The DTrace module is loaded (obviously) but not attached;
16260		 * we don't have any work to do.
16261		 */
16262		mutex_exit(&dtrace_provider_lock);
16263#if defined(sun)
16264		mutex_exit(&mod_lock);
16265#endif
16266		mutex_exit(&dtrace_lock);
16267		return;
16268	}
16269
16270	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
16271	    probe != NULL; probe = probe->dtpr_nextmod) {
16272		if (probe->dtpr_ecb != NULL) {
16273			mutex_exit(&dtrace_provider_lock);
16274#if defined(sun)
16275			mutex_exit(&mod_lock);
16276#endif
16277			mutex_exit(&dtrace_lock);
16278
16279			/*
16280			 * This shouldn't _actually_ be possible -- we're
16281			 * unloading a module that has an enabled probe in it.
16282			 * (It's normally up to the provider to make sure that
16283			 * this can't happen.)  However, because dtps_enable()
16284			 * doesn't have a failure mode, there can be an
16285			 * enable/unload race.  Upshot:  we don't want to
16286			 * assert, but we're not going to disable the
16287			 * probe, either.
16288			 */
16289			if (dtrace_err_verbose) {
16290#if defined(sun)
16291				cmn_err(CE_WARN, "unloaded module '%s' had "
16292				    "enabled probes", ctl->mod_modname);
16293#else
16294				cmn_err(CE_WARN, "unloaded module '%s' had "
16295				    "enabled probes", modname);
16296#endif
16297			}
16298
16299			return;
16300		}
16301	}
16302
16303	probe = first;
16304
16305	for (first = NULL; probe != NULL; probe = next) {
16306		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
16307
16308		dtrace_probes[probe->dtpr_id - 1] = NULL;
16309
16310		next = probe->dtpr_nextmod;
16311		dtrace_hash_remove(dtrace_bymod, probe);
16312		dtrace_hash_remove(dtrace_byfunc, probe);
16313		dtrace_hash_remove(dtrace_byname, probe);
16314
16315		if (first == NULL) {
16316			first = probe;
16317			probe->dtpr_nextmod = NULL;
16318		} else {
16319			probe->dtpr_nextmod = first;
16320			first = probe;
16321		}
16322	}
16323
16324	/*
16325	 * We've removed all of the module's probes from the hash chains and
16326	 * from the probe array.  Now issue a dtrace_sync() to be sure that
16327	 * everyone has cleared out from any probe array processing.
16328	 */
16329	dtrace_sync();
16330
16331	for (probe = first; probe != NULL; probe = first) {
16332		first = probe->dtpr_nextmod;
16333		prov = probe->dtpr_provider;
16334		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
16335		    probe->dtpr_arg);
16336		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
16337		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
16338		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
16339#if defined(sun)
16340		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
16341#else
16342		free_unr(dtrace_arena, probe->dtpr_id);
16343#endif
16344		kmem_free(probe, sizeof (dtrace_probe_t));
16345	}
16346
16347	mutex_exit(&dtrace_lock);
16348#if defined(sun)
16349	mutex_exit(&mod_lock);
16350#endif
16351	mutex_exit(&dtrace_provider_lock);
16352}
16353
16354#if !defined(sun)
16355static void
16356dtrace_kld_load(void *arg __unused, linker_file_t lf)
16357{
16358
16359	dtrace_module_loaded(lf);
16360}
16361
16362static void
16363dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error)
16364{
16365
16366	if (*error != 0)
16367		/* We already have an error, so don't do anything. */
16368		return;
16369	dtrace_module_unloaded(lf, error);
16370}
16371#endif
16372
16373#if defined(sun)
16374static void
16375dtrace_suspend(void)
16376{
16377	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
16378}
16379
16380static void
16381dtrace_resume(void)
16382{
16383	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
16384}
16385#endif
16386
16387static int
16388dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
16389{
16390	ASSERT(MUTEX_HELD(&cpu_lock));
16391	mutex_enter(&dtrace_lock);
16392
16393	switch (what) {
16394	case CPU_CONFIG: {
16395		dtrace_state_t *state;
16396		dtrace_optval_t *opt, rs, c;
16397
16398		/*
16399		 * For now, we only allocate a new buffer for anonymous state.
16400		 */
16401		if ((state = dtrace_anon.dta_state) == NULL)
16402			break;
16403
16404		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
16405			break;
16406
16407		opt = state->dts_options;
16408		c = opt[DTRACEOPT_CPU];
16409
16410		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
16411			break;
16412
16413		/*
16414		 * Regardless of what the actual policy is, we're going to
16415		 * temporarily set our resize policy to be manual.  We're
16416		 * also going to temporarily set our CPU option to denote
16417		 * the newly configured CPU.
16418		 */
16419		rs = opt[DTRACEOPT_BUFRESIZE];
16420		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
16421		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
16422
16423		(void) dtrace_state_buffers(state);
16424
16425		opt[DTRACEOPT_BUFRESIZE] = rs;
16426		opt[DTRACEOPT_CPU] = c;
16427
16428		break;
16429	}
16430
16431	case CPU_UNCONFIG:
16432		/*
16433		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
16434		 * buffer will be freed when the consumer exits.)
16435		 */
16436		break;
16437
16438	default:
16439		break;
16440	}
16441
16442	mutex_exit(&dtrace_lock);
16443	return (0);
16444}
16445
16446#if defined(sun)
16447static void
16448dtrace_cpu_setup_initial(processorid_t cpu)
16449{
16450	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
16451}
16452#endif
16453
16454static void
16455dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
16456{
16457	if (dtrace_toxranges >= dtrace_toxranges_max) {
16458		int osize, nsize;
16459		dtrace_toxrange_t *range;
16460
16461		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16462
16463		if (osize == 0) {
16464			ASSERT(dtrace_toxrange == NULL);
16465			ASSERT(dtrace_toxranges_max == 0);
16466			dtrace_toxranges_max = 1;
16467		} else {
16468			dtrace_toxranges_max <<= 1;
16469		}
16470
16471		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16472		range = kmem_zalloc(nsize, KM_SLEEP);
16473
16474		if (dtrace_toxrange != NULL) {
16475			ASSERT(osize != 0);
16476			bcopy(dtrace_toxrange, range, osize);
16477			kmem_free(dtrace_toxrange, osize);
16478		}
16479
16480		dtrace_toxrange = range;
16481	}
16482
16483	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
16484	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
16485
16486	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
16487	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
16488	dtrace_toxranges++;
16489}
16490
16491static void
16492dtrace_getf_barrier()
16493{
16494#if defined(sun)
16495	/*
16496	 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
16497	 * that contain calls to getf(), this routine will be called on every
16498	 * closef() before either the underlying vnode is released or the
16499	 * file_t itself is freed.  By the time we are here, it is essential
16500	 * that the file_t can no longer be accessed from a call to getf()
16501	 * in probe context -- that assures that a dtrace_sync() can be used
16502	 * to clear out any enablings referring to the old structures.
16503	 */
16504	if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
16505	    kcred->cr_zone->zone_dtrace_getf != 0)
16506		dtrace_sync();
16507#endif
16508}
16509
16510/*
16511 * DTrace Driver Cookbook Functions
16512 */
16513#if defined(sun)
16514/*ARGSUSED*/
16515static int
16516dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
16517{
16518	dtrace_provider_id_t id;
16519	dtrace_state_t *state = NULL;
16520	dtrace_enabling_t *enab;
16521
16522	mutex_enter(&cpu_lock);
16523	mutex_enter(&dtrace_provider_lock);
16524	mutex_enter(&dtrace_lock);
16525
16526	if (ddi_soft_state_init(&dtrace_softstate,
16527	    sizeof (dtrace_state_t), 0) != 0) {
16528		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
16529		mutex_exit(&cpu_lock);
16530		mutex_exit(&dtrace_provider_lock);
16531		mutex_exit(&dtrace_lock);
16532		return (DDI_FAILURE);
16533	}
16534
16535	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
16536	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
16537	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
16538	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
16539		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
16540		ddi_remove_minor_node(devi, NULL);
16541		ddi_soft_state_fini(&dtrace_softstate);
16542		mutex_exit(&cpu_lock);
16543		mutex_exit(&dtrace_provider_lock);
16544		mutex_exit(&dtrace_lock);
16545		return (DDI_FAILURE);
16546	}
16547
16548	ddi_report_dev(devi);
16549	dtrace_devi = devi;
16550
16551	dtrace_modload = dtrace_module_loaded;
16552	dtrace_modunload = dtrace_module_unloaded;
16553	dtrace_cpu_init = dtrace_cpu_setup_initial;
16554	dtrace_helpers_cleanup = dtrace_helpers_destroy;
16555	dtrace_helpers_fork = dtrace_helpers_duplicate;
16556	dtrace_cpustart_init = dtrace_suspend;
16557	dtrace_cpustart_fini = dtrace_resume;
16558	dtrace_debugger_init = dtrace_suspend;
16559	dtrace_debugger_fini = dtrace_resume;
16560
16561	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16562
16563	ASSERT(MUTEX_HELD(&cpu_lock));
16564
16565	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
16566	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
16567	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
16568	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
16569	    VM_SLEEP | VMC_IDENTIFIER);
16570	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
16571	    1, INT_MAX, 0);
16572
16573	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
16574	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
16575	    NULL, NULL, NULL, NULL, NULL, 0);
16576
16577	ASSERT(MUTEX_HELD(&cpu_lock));
16578	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
16579	    offsetof(dtrace_probe_t, dtpr_nextmod),
16580	    offsetof(dtrace_probe_t, dtpr_prevmod));
16581
16582	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
16583	    offsetof(dtrace_probe_t, dtpr_nextfunc),
16584	    offsetof(dtrace_probe_t, dtpr_prevfunc));
16585
16586	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
16587	    offsetof(dtrace_probe_t, dtpr_nextname),
16588	    offsetof(dtrace_probe_t, dtpr_prevname));
16589
16590	if (dtrace_retain_max < 1) {
16591		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
16592		    "setting to 1", dtrace_retain_max);
16593		dtrace_retain_max = 1;
16594	}
16595
16596	/*
16597	 * Now discover our toxic ranges.
16598	 */
16599	dtrace_toxic_ranges(dtrace_toxrange_add);
16600
16601	/*
16602	 * Before we register ourselves as a provider to our own framework,
16603	 * we would like to assert that dtrace_provider is NULL -- but that's
16604	 * not true if we were loaded as a dependency of a DTrace provider.
16605	 * Once we've registered, we can assert that dtrace_provider is our
16606	 * pseudo provider.
16607	 */
16608	(void) dtrace_register("dtrace", &dtrace_provider_attr,
16609	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
16610
16611	ASSERT(dtrace_provider != NULL);
16612	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
16613
16614	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
16615	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
16616	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
16617	    dtrace_provider, NULL, NULL, "END", 0, NULL);
16618	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
16619	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
16620
16621	dtrace_anon_property();
16622	mutex_exit(&cpu_lock);
16623
16624	/*
16625	 * If DTrace helper tracing is enabled, we need to allocate the
16626	 * trace buffer and initialize the values.
16627	 */
16628	if (dtrace_helptrace_enabled) {
16629		ASSERT(dtrace_helptrace_buffer == NULL);
16630		dtrace_helptrace_buffer =
16631		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
16632		dtrace_helptrace_next = 0;
16633	}
16634
16635	/*
16636	 * If there are already providers, we must ask them to provide their
16637	 * probes, and then match any anonymous enabling against them.  Note
16638	 * that there should be no other retained enablings at this time:
16639	 * the only retained enablings at this time should be the anonymous
16640	 * enabling.
16641	 */
16642	if (dtrace_anon.dta_enabling != NULL) {
16643		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
16644
16645		dtrace_enabling_provide(NULL);
16646		state = dtrace_anon.dta_state;
16647
16648		/*
16649		 * We couldn't hold cpu_lock across the above call to
16650		 * dtrace_enabling_provide(), but we must hold it to actually
16651		 * enable the probes.  We have to drop all of our locks, pick
16652		 * up cpu_lock, and regain our locks before matching the
16653		 * retained anonymous enabling.
16654		 */
16655		mutex_exit(&dtrace_lock);
16656		mutex_exit(&dtrace_provider_lock);
16657
16658		mutex_enter(&cpu_lock);
16659		mutex_enter(&dtrace_provider_lock);
16660		mutex_enter(&dtrace_lock);
16661
16662		if ((enab = dtrace_anon.dta_enabling) != NULL)
16663			(void) dtrace_enabling_match(enab, NULL);
16664
16665		mutex_exit(&cpu_lock);
16666	}
16667
16668	mutex_exit(&dtrace_lock);
16669	mutex_exit(&dtrace_provider_lock);
16670
16671	if (state != NULL) {
16672		/*
16673		 * If we created any anonymous state, set it going now.
16674		 */
16675		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
16676	}
16677
16678	return (DDI_SUCCESS);
16679}
16680#endif
16681
16682#if !defined(sun)
16683#if __FreeBSD_version >= 800039
16684static void dtrace_dtr(void *);
16685#endif
16686#endif
16687
16688/*ARGSUSED*/
16689static int
16690#if defined(sun)
16691dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
16692#else
16693dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
16694#endif
16695{
16696	dtrace_state_t *state;
16697	uint32_t priv;
16698	uid_t uid;
16699	zoneid_t zoneid;
16700
16701#if defined(sun)
16702	if (getminor(*devp) == DTRACEMNRN_HELPER)
16703		return (0);
16704
16705	/*
16706	 * If this wasn't an open with the "helper" minor, then it must be
16707	 * the "dtrace" minor.
16708	 */
16709	if (getminor(*devp) == DTRACEMNRN_DTRACE)
16710		return (ENXIO);
16711#else
16712	cred_t *cred_p = NULL;
16713
16714#if __FreeBSD_version < 800039
16715	/*
16716	 * The first minor device is the one that is cloned so there is
16717	 * nothing more to do here.
16718	 */
16719	if (dev2unit(dev) == 0)
16720		return 0;
16721
16722	/*
16723	 * Devices are cloned, so if the DTrace state has already
16724	 * been allocated, that means this device belongs to a
16725	 * different client. Each client should open '/dev/dtrace'
16726	 * to get a cloned device.
16727	 */
16728	if (dev->si_drv1 != NULL)
16729		return (EBUSY);
16730#endif
16731
16732	cred_p = dev->si_cred;
16733#endif
16734
16735	/*
16736	 * If no DTRACE_PRIV_* bits are set in the credential, then the
16737	 * caller lacks sufficient permission to do anything with DTrace.
16738	 */
16739	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
16740	if (priv == DTRACE_PRIV_NONE) {
16741#if !defined(sun)
16742#if __FreeBSD_version < 800039
16743		/* Destroy the cloned device. */
16744                destroy_dev(dev);
16745#endif
16746#endif
16747
16748		return (EACCES);
16749	}
16750
16751	/*
16752	 * Ask all providers to provide all their probes.
16753	 */
16754	mutex_enter(&dtrace_provider_lock);
16755	dtrace_probe_provide(NULL, NULL);
16756	mutex_exit(&dtrace_provider_lock);
16757
16758	mutex_enter(&cpu_lock);
16759	mutex_enter(&dtrace_lock);
16760	dtrace_opens++;
16761	dtrace_membar_producer();
16762
16763#if defined(sun)
16764	/*
16765	 * If the kernel debugger is active (that is, if the kernel debugger
16766	 * modified text in some way), we won't allow the open.
16767	 */
16768	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
16769		dtrace_opens--;
16770		mutex_exit(&cpu_lock);
16771		mutex_exit(&dtrace_lock);
16772		return (EBUSY);
16773	}
16774
16775	state = dtrace_state_create(devp, cred_p);
16776#else
16777	state = dtrace_state_create(dev);
16778#if __FreeBSD_version < 800039
16779	dev->si_drv1 = state;
16780#else
16781	devfs_set_cdevpriv(state, dtrace_dtr);
16782#endif
16783#endif
16784
16785	mutex_exit(&cpu_lock);
16786
16787	if (state == NULL) {
16788#if defined(sun)
16789		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
16790			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16791#else
16792		--dtrace_opens;
16793#endif
16794		mutex_exit(&dtrace_lock);
16795#if !defined(sun)
16796#if __FreeBSD_version < 800039
16797		/* Destroy the cloned device. */
16798                destroy_dev(dev);
16799#endif
16800#endif
16801		return (EAGAIN);
16802	}
16803
16804	mutex_exit(&dtrace_lock);
16805
16806	return (0);
16807}
16808
16809/*ARGSUSED*/
16810#if defined(sun)
16811static int
16812dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
16813#elif __FreeBSD_version < 800039
16814static int
16815dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td)
16816#else
16817static void
16818dtrace_dtr(void *data)
16819#endif
16820{
16821#if defined(sun)
16822	minor_t minor = getminor(dev);
16823	dtrace_state_t *state;
16824
16825	if (minor == DTRACEMNRN_HELPER)
16826		return (0);
16827
16828	state = ddi_get_soft_state(dtrace_softstate, minor);
16829#else
16830#if __FreeBSD_version < 800039
16831	dtrace_state_t *state = dev->si_drv1;
16832
16833	/* Check if this is not a cloned device. */
16834	if (dev2unit(dev) == 0)
16835		return (0);
16836#else
16837	dtrace_state_t *state = data;
16838#endif
16839
16840#endif
16841
16842	mutex_enter(&cpu_lock);
16843	mutex_enter(&dtrace_lock);
16844
16845	if (state != NULL) {
16846		if (state->dts_anon) {
16847			/*
16848			 * There is anonymous state. Destroy that first.
16849			 */
16850			ASSERT(dtrace_anon.dta_state == NULL);
16851			dtrace_state_destroy(state->dts_anon);
16852		}
16853
16854		dtrace_state_destroy(state);
16855
16856#if !defined(sun)
16857		kmem_free(state, 0);
16858#if __FreeBSD_version < 800039
16859		dev->si_drv1 = NULL;
16860#endif
16861#endif
16862	}
16863
16864	ASSERT(dtrace_opens > 0);
16865#if defined(sun)
16866	/*
16867	 * Only relinquish control of the kernel debugger interface when there
16868	 * are no consumers and no anonymous enablings.
16869	 */
16870	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
16871		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16872#else
16873	--dtrace_opens;
16874#endif
16875
16876	mutex_exit(&dtrace_lock);
16877	mutex_exit(&cpu_lock);
16878
16879#if __FreeBSD_version < 800039
16880	/* Schedule this cloned device to be destroyed. */
16881	destroy_dev_sched(dev);
16882#endif
16883
16884#if defined(sun) || __FreeBSD_version < 800039
16885	return (0);
16886#endif
16887}
16888
16889#if defined(sun)
16890/*ARGSUSED*/
16891static int
16892dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
16893{
16894	int rval;
16895	dof_helper_t help, *dhp = NULL;
16896
16897	switch (cmd) {
16898	case DTRACEHIOC_ADDDOF:
16899		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
16900			dtrace_dof_error(NULL, "failed to copyin DOF helper");
16901			return (EFAULT);
16902		}
16903
16904		dhp = &help;
16905		arg = (intptr_t)help.dofhp_dof;
16906		/*FALLTHROUGH*/
16907
16908	case DTRACEHIOC_ADD: {
16909		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
16910
16911		if (dof == NULL)
16912			return (rval);
16913
16914		mutex_enter(&dtrace_lock);
16915
16916		/*
16917		 * dtrace_helper_slurp() takes responsibility for the dof --
16918		 * it may free it now or it may save it and free it later.
16919		 */
16920		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
16921			*rv = rval;
16922			rval = 0;
16923		} else {
16924			rval = EINVAL;
16925		}
16926
16927		mutex_exit(&dtrace_lock);
16928		return (rval);
16929	}
16930
16931	case DTRACEHIOC_REMOVE: {
16932		mutex_enter(&dtrace_lock);
16933		rval = dtrace_helper_destroygen(arg);
16934		mutex_exit(&dtrace_lock);
16935
16936		return (rval);
16937	}
16938
16939	default:
16940		break;
16941	}
16942
16943	return (ENOTTY);
16944}
16945
16946/*ARGSUSED*/
16947static int
16948dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
16949{
16950	minor_t minor = getminor(dev);
16951	dtrace_state_t *state;
16952	int rval;
16953
16954	if (minor == DTRACEMNRN_HELPER)
16955		return (dtrace_ioctl_helper(cmd, arg, rv));
16956
16957	state = ddi_get_soft_state(dtrace_softstate, minor);
16958
16959	if (state->dts_anon) {
16960		ASSERT(dtrace_anon.dta_state == NULL);
16961		state = state->dts_anon;
16962	}
16963
16964	switch (cmd) {
16965	case DTRACEIOC_PROVIDER: {
16966		dtrace_providerdesc_t pvd;
16967		dtrace_provider_t *pvp;
16968
16969		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
16970			return (EFAULT);
16971
16972		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
16973		mutex_enter(&dtrace_provider_lock);
16974
16975		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
16976			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
16977				break;
16978		}
16979
16980		mutex_exit(&dtrace_provider_lock);
16981
16982		if (pvp == NULL)
16983			return (ESRCH);
16984
16985		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
16986		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
16987
16988		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
16989			return (EFAULT);
16990
16991		return (0);
16992	}
16993
16994	case DTRACEIOC_EPROBE: {
16995		dtrace_eprobedesc_t epdesc;
16996		dtrace_ecb_t *ecb;
16997		dtrace_action_t *act;
16998		void *buf;
16999		size_t size;
17000		uintptr_t dest;
17001		int nrecs;
17002
17003		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
17004			return (EFAULT);
17005
17006		mutex_enter(&dtrace_lock);
17007
17008		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
17009			mutex_exit(&dtrace_lock);
17010			return (EINVAL);
17011		}
17012
17013		if (ecb->dte_probe == NULL) {
17014			mutex_exit(&dtrace_lock);
17015			return (EINVAL);
17016		}
17017
17018		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
17019		epdesc.dtepd_uarg = ecb->dte_uarg;
17020		epdesc.dtepd_size = ecb->dte_size;
17021
17022		nrecs = epdesc.dtepd_nrecs;
17023		epdesc.dtepd_nrecs = 0;
17024		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17025			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17026				continue;
17027
17028			epdesc.dtepd_nrecs++;
17029		}
17030
17031		/*
17032		 * Now that we have the size, we need to allocate a temporary
17033		 * buffer in which to store the complete description.  We need
17034		 * the temporary buffer to be able to drop dtrace_lock()
17035		 * across the copyout(), below.
17036		 */
17037		size = sizeof (dtrace_eprobedesc_t) +
17038		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
17039
17040		buf = kmem_alloc(size, KM_SLEEP);
17041		dest = (uintptr_t)buf;
17042
17043		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
17044		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
17045
17046		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17047			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17048				continue;
17049
17050			if (nrecs-- == 0)
17051				break;
17052
17053			bcopy(&act->dta_rec, (void *)dest,
17054			    sizeof (dtrace_recdesc_t));
17055			dest += sizeof (dtrace_recdesc_t);
17056		}
17057
17058		mutex_exit(&dtrace_lock);
17059
17060		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17061			kmem_free(buf, size);
17062			return (EFAULT);
17063		}
17064
17065		kmem_free(buf, size);
17066		return (0);
17067	}
17068
17069	case DTRACEIOC_AGGDESC: {
17070		dtrace_aggdesc_t aggdesc;
17071		dtrace_action_t *act;
17072		dtrace_aggregation_t *agg;
17073		int nrecs;
17074		uint32_t offs;
17075		dtrace_recdesc_t *lrec;
17076		void *buf;
17077		size_t size;
17078		uintptr_t dest;
17079
17080		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
17081			return (EFAULT);
17082
17083		mutex_enter(&dtrace_lock);
17084
17085		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
17086			mutex_exit(&dtrace_lock);
17087			return (EINVAL);
17088		}
17089
17090		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
17091
17092		nrecs = aggdesc.dtagd_nrecs;
17093		aggdesc.dtagd_nrecs = 0;
17094
17095		offs = agg->dtag_base;
17096		lrec = &agg->dtag_action.dta_rec;
17097		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
17098
17099		for (act = agg->dtag_first; ; act = act->dta_next) {
17100			ASSERT(act->dta_intuple ||
17101			    DTRACEACT_ISAGG(act->dta_kind));
17102
17103			/*
17104			 * If this action has a record size of zero, it
17105			 * denotes an argument to the aggregating action.
17106			 * Because the presence of this record doesn't (or
17107			 * shouldn't) affect the way the data is interpreted,
17108			 * we don't copy it out to save user-level the
17109			 * confusion of dealing with a zero-length record.
17110			 */
17111			if (act->dta_rec.dtrd_size == 0) {
17112				ASSERT(agg->dtag_hasarg);
17113				continue;
17114			}
17115
17116			aggdesc.dtagd_nrecs++;
17117
17118			if (act == &agg->dtag_action)
17119				break;
17120		}
17121
17122		/*
17123		 * Now that we have the size, we need to allocate a temporary
17124		 * buffer in which to store the complete description.  We need
17125		 * the temporary buffer to be able to drop dtrace_lock()
17126		 * across the copyout(), below.
17127		 */
17128		size = sizeof (dtrace_aggdesc_t) +
17129		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
17130
17131		buf = kmem_alloc(size, KM_SLEEP);
17132		dest = (uintptr_t)buf;
17133
17134		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
17135		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
17136
17137		for (act = agg->dtag_first; ; act = act->dta_next) {
17138			dtrace_recdesc_t rec = act->dta_rec;
17139
17140			/*
17141			 * See the comment in the above loop for why we pass
17142			 * over zero-length records.
17143			 */
17144			if (rec.dtrd_size == 0) {
17145				ASSERT(agg->dtag_hasarg);
17146				continue;
17147			}
17148
17149			if (nrecs-- == 0)
17150				break;
17151
17152			rec.dtrd_offset -= offs;
17153			bcopy(&rec, (void *)dest, sizeof (rec));
17154			dest += sizeof (dtrace_recdesc_t);
17155
17156			if (act == &agg->dtag_action)
17157				break;
17158		}
17159
17160		mutex_exit(&dtrace_lock);
17161
17162		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17163			kmem_free(buf, size);
17164			return (EFAULT);
17165		}
17166
17167		kmem_free(buf, size);
17168		return (0);
17169	}
17170
17171	case DTRACEIOC_ENABLE: {
17172		dof_hdr_t *dof;
17173		dtrace_enabling_t *enab = NULL;
17174		dtrace_vstate_t *vstate;
17175		int err = 0;
17176
17177		*rv = 0;
17178
17179		/*
17180		 * If a NULL argument has been passed, we take this as our
17181		 * cue to reevaluate our enablings.
17182		 */
17183		if (arg == NULL) {
17184			dtrace_enabling_matchall();
17185
17186			return (0);
17187		}
17188
17189		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
17190			return (rval);
17191
17192		mutex_enter(&cpu_lock);
17193		mutex_enter(&dtrace_lock);
17194		vstate = &state->dts_vstate;
17195
17196		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
17197			mutex_exit(&dtrace_lock);
17198			mutex_exit(&cpu_lock);
17199			dtrace_dof_destroy(dof);
17200			return (EBUSY);
17201		}
17202
17203		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
17204			mutex_exit(&dtrace_lock);
17205			mutex_exit(&cpu_lock);
17206			dtrace_dof_destroy(dof);
17207			return (EINVAL);
17208		}
17209
17210		if ((rval = dtrace_dof_options(dof, state)) != 0) {
17211			dtrace_enabling_destroy(enab);
17212			mutex_exit(&dtrace_lock);
17213			mutex_exit(&cpu_lock);
17214			dtrace_dof_destroy(dof);
17215			return (rval);
17216		}
17217
17218		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
17219			err = dtrace_enabling_retain(enab);
17220		} else {
17221			dtrace_enabling_destroy(enab);
17222		}
17223
17224		mutex_exit(&cpu_lock);
17225		mutex_exit(&dtrace_lock);
17226		dtrace_dof_destroy(dof);
17227
17228		return (err);
17229	}
17230
17231	case DTRACEIOC_REPLICATE: {
17232		dtrace_repldesc_t desc;
17233		dtrace_probedesc_t *match = &desc.dtrpd_match;
17234		dtrace_probedesc_t *create = &desc.dtrpd_create;
17235		int err;
17236
17237		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17238			return (EFAULT);
17239
17240		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17241		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17242		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17243		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17244
17245		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17246		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17247		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17248		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17249
17250		mutex_enter(&dtrace_lock);
17251		err = dtrace_enabling_replicate(state, match, create);
17252		mutex_exit(&dtrace_lock);
17253
17254		return (err);
17255	}
17256
17257	case DTRACEIOC_PROBEMATCH:
17258	case DTRACEIOC_PROBES: {
17259		dtrace_probe_t *probe = NULL;
17260		dtrace_probedesc_t desc;
17261		dtrace_probekey_t pkey;
17262		dtrace_id_t i;
17263		int m = 0;
17264		uint32_t priv;
17265		uid_t uid;
17266		zoneid_t zoneid;
17267
17268		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17269			return (EFAULT);
17270
17271		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17272		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17273		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17274		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17275
17276		/*
17277		 * Before we attempt to match this probe, we want to give
17278		 * all providers the opportunity to provide it.
17279		 */
17280		if (desc.dtpd_id == DTRACE_IDNONE) {
17281			mutex_enter(&dtrace_provider_lock);
17282			dtrace_probe_provide(&desc, NULL);
17283			mutex_exit(&dtrace_provider_lock);
17284			desc.dtpd_id++;
17285		}
17286
17287		if (cmd == DTRACEIOC_PROBEMATCH)  {
17288			dtrace_probekey(&desc, &pkey);
17289			pkey.dtpk_id = DTRACE_IDNONE;
17290		}
17291
17292		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
17293
17294		mutex_enter(&dtrace_lock);
17295
17296		if (cmd == DTRACEIOC_PROBEMATCH) {
17297			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17298				if ((probe = dtrace_probes[i - 1]) != NULL &&
17299				    (m = dtrace_match_probe(probe, &pkey,
17300				    priv, uid, zoneid)) != 0)
17301					break;
17302			}
17303
17304			if (m < 0) {
17305				mutex_exit(&dtrace_lock);
17306				return (EINVAL);
17307			}
17308
17309		} else {
17310			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17311				if ((probe = dtrace_probes[i - 1]) != NULL &&
17312				    dtrace_match_priv(probe, priv, uid, zoneid))
17313					break;
17314			}
17315		}
17316
17317		if (probe == NULL) {
17318			mutex_exit(&dtrace_lock);
17319			return (ESRCH);
17320		}
17321
17322		dtrace_probe_description(probe, &desc);
17323		mutex_exit(&dtrace_lock);
17324
17325		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17326			return (EFAULT);
17327
17328		return (0);
17329	}
17330
17331	case DTRACEIOC_PROBEARG: {
17332		dtrace_argdesc_t desc;
17333		dtrace_probe_t *probe;
17334		dtrace_provider_t *prov;
17335
17336		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17337			return (EFAULT);
17338
17339		if (desc.dtargd_id == DTRACE_IDNONE)
17340			return (EINVAL);
17341
17342		if (desc.dtargd_ndx == DTRACE_ARGNONE)
17343			return (EINVAL);
17344
17345		mutex_enter(&dtrace_provider_lock);
17346		mutex_enter(&mod_lock);
17347		mutex_enter(&dtrace_lock);
17348
17349		if (desc.dtargd_id > dtrace_nprobes) {
17350			mutex_exit(&dtrace_lock);
17351			mutex_exit(&mod_lock);
17352			mutex_exit(&dtrace_provider_lock);
17353			return (EINVAL);
17354		}
17355
17356		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
17357			mutex_exit(&dtrace_lock);
17358			mutex_exit(&mod_lock);
17359			mutex_exit(&dtrace_provider_lock);
17360			return (EINVAL);
17361		}
17362
17363		mutex_exit(&dtrace_lock);
17364
17365		prov = probe->dtpr_provider;
17366
17367		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
17368			/*
17369			 * There isn't any typed information for this probe.
17370			 * Set the argument number to DTRACE_ARGNONE.
17371			 */
17372			desc.dtargd_ndx = DTRACE_ARGNONE;
17373		} else {
17374			desc.dtargd_native[0] = '\0';
17375			desc.dtargd_xlate[0] = '\0';
17376			desc.dtargd_mapping = desc.dtargd_ndx;
17377
17378			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
17379			    probe->dtpr_id, probe->dtpr_arg, &desc);
17380		}
17381
17382		mutex_exit(&mod_lock);
17383		mutex_exit(&dtrace_provider_lock);
17384
17385		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17386			return (EFAULT);
17387
17388		return (0);
17389	}
17390
17391	case DTRACEIOC_GO: {
17392		processorid_t cpuid;
17393		rval = dtrace_state_go(state, &cpuid);
17394
17395		if (rval != 0)
17396			return (rval);
17397
17398		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17399			return (EFAULT);
17400
17401		return (0);
17402	}
17403
17404	case DTRACEIOC_STOP: {
17405		processorid_t cpuid;
17406
17407		mutex_enter(&dtrace_lock);
17408		rval = dtrace_state_stop(state, &cpuid);
17409		mutex_exit(&dtrace_lock);
17410
17411		if (rval != 0)
17412			return (rval);
17413
17414		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17415			return (EFAULT);
17416
17417		return (0);
17418	}
17419
17420	case DTRACEIOC_DOFGET: {
17421		dof_hdr_t hdr, *dof;
17422		uint64_t len;
17423
17424		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
17425			return (EFAULT);
17426
17427		mutex_enter(&dtrace_lock);
17428		dof = dtrace_dof_create(state);
17429		mutex_exit(&dtrace_lock);
17430
17431		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
17432		rval = copyout(dof, (void *)arg, len);
17433		dtrace_dof_destroy(dof);
17434
17435		return (rval == 0 ? 0 : EFAULT);
17436	}
17437
17438	case DTRACEIOC_AGGSNAP:
17439	case DTRACEIOC_BUFSNAP: {
17440		dtrace_bufdesc_t desc;
17441		caddr_t cached;
17442		dtrace_buffer_t *buf;
17443
17444		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17445			return (EFAULT);
17446
17447		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
17448			return (EINVAL);
17449
17450		mutex_enter(&dtrace_lock);
17451
17452		if (cmd == DTRACEIOC_BUFSNAP) {
17453			buf = &state->dts_buffer[desc.dtbd_cpu];
17454		} else {
17455			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
17456		}
17457
17458		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
17459			size_t sz = buf->dtb_offset;
17460
17461			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
17462				mutex_exit(&dtrace_lock);
17463				return (EBUSY);
17464			}
17465
17466			/*
17467			 * If this buffer has already been consumed, we're
17468			 * going to indicate that there's nothing left here
17469			 * to consume.
17470			 */
17471			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
17472				mutex_exit(&dtrace_lock);
17473
17474				desc.dtbd_size = 0;
17475				desc.dtbd_drops = 0;
17476				desc.dtbd_errors = 0;
17477				desc.dtbd_oldest = 0;
17478				sz = sizeof (desc);
17479
17480				if (copyout(&desc, (void *)arg, sz) != 0)
17481					return (EFAULT);
17482
17483				return (0);
17484			}
17485
17486			/*
17487			 * If this is a ring buffer that has wrapped, we want
17488			 * to copy the whole thing out.
17489			 */
17490			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
17491				dtrace_buffer_polish(buf);
17492				sz = buf->dtb_size;
17493			}
17494
17495			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
17496				mutex_exit(&dtrace_lock);
17497				return (EFAULT);
17498			}
17499
17500			desc.dtbd_size = sz;
17501			desc.dtbd_drops = buf->dtb_drops;
17502			desc.dtbd_errors = buf->dtb_errors;
17503			desc.dtbd_oldest = buf->dtb_xamot_offset;
17504			desc.dtbd_timestamp = dtrace_gethrtime();
17505
17506			mutex_exit(&dtrace_lock);
17507
17508			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17509				return (EFAULT);
17510
17511			buf->dtb_flags |= DTRACEBUF_CONSUMED;
17512
17513			return (0);
17514		}
17515
17516		if (buf->dtb_tomax == NULL) {
17517			ASSERT(buf->dtb_xamot == NULL);
17518			mutex_exit(&dtrace_lock);
17519			return (ENOENT);
17520		}
17521
17522		cached = buf->dtb_tomax;
17523		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
17524
17525		dtrace_xcall(desc.dtbd_cpu,
17526		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
17527
17528		state->dts_errors += buf->dtb_xamot_errors;
17529
17530		/*
17531		 * If the buffers did not actually switch, then the cross call
17532		 * did not take place -- presumably because the given CPU is
17533		 * not in the ready set.  If this is the case, we'll return
17534		 * ENOENT.
17535		 */
17536		if (buf->dtb_tomax == cached) {
17537			ASSERT(buf->dtb_xamot != cached);
17538			mutex_exit(&dtrace_lock);
17539			return (ENOENT);
17540		}
17541
17542		ASSERT(cached == buf->dtb_xamot);
17543
17544		/*
17545		 * We have our snapshot; now copy it out.
17546		 */
17547		if (copyout(buf->dtb_xamot, desc.dtbd_data,
17548		    buf->dtb_xamot_offset) != 0) {
17549			mutex_exit(&dtrace_lock);
17550			return (EFAULT);
17551		}
17552
17553		desc.dtbd_size = buf->dtb_xamot_offset;
17554		desc.dtbd_drops = buf->dtb_xamot_drops;
17555		desc.dtbd_errors = buf->dtb_xamot_errors;
17556		desc.dtbd_oldest = 0;
17557		desc.dtbd_timestamp = buf->dtb_switched;
17558
17559		mutex_exit(&dtrace_lock);
17560
17561		/*
17562		 * Finally, copy out the buffer description.
17563		 */
17564		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17565			return (EFAULT);
17566
17567		return (0);
17568	}
17569
17570	case DTRACEIOC_CONF: {
17571		dtrace_conf_t conf;
17572
17573		bzero(&conf, sizeof (conf));
17574		conf.dtc_difversion = DIF_VERSION;
17575		conf.dtc_difintregs = DIF_DIR_NREGS;
17576		conf.dtc_diftupregs = DIF_DTR_NREGS;
17577		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
17578
17579		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
17580			return (EFAULT);
17581
17582		return (0);
17583	}
17584
17585	case DTRACEIOC_STATUS: {
17586		dtrace_status_t stat;
17587		dtrace_dstate_t *dstate;
17588		int i, j;
17589		uint64_t nerrs;
17590
17591		/*
17592		 * See the comment in dtrace_state_deadman() for the reason
17593		 * for setting dts_laststatus to INT64_MAX before setting
17594		 * it to the correct value.
17595		 */
17596		state->dts_laststatus = INT64_MAX;
17597		dtrace_membar_producer();
17598		state->dts_laststatus = dtrace_gethrtime();
17599
17600		bzero(&stat, sizeof (stat));
17601
17602		mutex_enter(&dtrace_lock);
17603
17604		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
17605			mutex_exit(&dtrace_lock);
17606			return (ENOENT);
17607		}
17608
17609		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
17610			stat.dtst_exiting = 1;
17611
17612		nerrs = state->dts_errors;
17613		dstate = &state->dts_vstate.dtvs_dynvars;
17614
17615		for (i = 0; i < NCPU; i++) {
17616			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
17617
17618			stat.dtst_dyndrops += dcpu->dtdsc_drops;
17619			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
17620			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
17621
17622			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
17623				stat.dtst_filled++;
17624
17625			nerrs += state->dts_buffer[i].dtb_errors;
17626
17627			for (j = 0; j < state->dts_nspeculations; j++) {
17628				dtrace_speculation_t *spec;
17629				dtrace_buffer_t *buf;
17630
17631				spec = &state->dts_speculations[j];
17632				buf = &spec->dtsp_buffer[i];
17633				stat.dtst_specdrops += buf->dtb_xamot_drops;
17634			}
17635		}
17636
17637		stat.dtst_specdrops_busy = state->dts_speculations_busy;
17638		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
17639		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
17640		stat.dtst_dblerrors = state->dts_dblerrors;
17641		stat.dtst_killed =
17642		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
17643		stat.dtst_errors = nerrs;
17644
17645		mutex_exit(&dtrace_lock);
17646
17647		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
17648			return (EFAULT);
17649
17650		return (0);
17651	}
17652
17653	case DTRACEIOC_FORMAT: {
17654		dtrace_fmtdesc_t fmt;
17655		char *str;
17656		int len;
17657
17658		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
17659			return (EFAULT);
17660
17661		mutex_enter(&dtrace_lock);
17662
17663		if (fmt.dtfd_format == 0 ||
17664		    fmt.dtfd_format > state->dts_nformats) {
17665			mutex_exit(&dtrace_lock);
17666			return (EINVAL);
17667		}
17668
17669		/*
17670		 * Format strings are allocated contiguously and they are
17671		 * never freed; if a format index is less than the number
17672		 * of formats, we can assert that the format map is non-NULL
17673		 * and that the format for the specified index is non-NULL.
17674		 */
17675		ASSERT(state->dts_formats != NULL);
17676		str = state->dts_formats[fmt.dtfd_format - 1];
17677		ASSERT(str != NULL);
17678
17679		len = strlen(str) + 1;
17680
17681		if (len > fmt.dtfd_length) {
17682			fmt.dtfd_length = len;
17683
17684			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
17685				mutex_exit(&dtrace_lock);
17686				return (EINVAL);
17687			}
17688		} else {
17689			if (copyout(str, fmt.dtfd_string, len) != 0) {
17690				mutex_exit(&dtrace_lock);
17691				return (EINVAL);
17692			}
17693		}
17694
17695		mutex_exit(&dtrace_lock);
17696		return (0);
17697	}
17698
17699	default:
17700		break;
17701	}
17702
17703	return (ENOTTY);
17704}
17705
17706/*ARGSUSED*/
17707static int
17708dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
17709{
17710	dtrace_state_t *state;
17711
17712	switch (cmd) {
17713	case DDI_DETACH:
17714		break;
17715
17716	case DDI_SUSPEND:
17717		return (DDI_SUCCESS);
17718
17719	default:
17720		return (DDI_FAILURE);
17721	}
17722
17723	mutex_enter(&cpu_lock);
17724	mutex_enter(&dtrace_provider_lock);
17725	mutex_enter(&dtrace_lock);
17726
17727	ASSERT(dtrace_opens == 0);
17728
17729	if (dtrace_helpers > 0) {
17730		mutex_exit(&dtrace_provider_lock);
17731		mutex_exit(&dtrace_lock);
17732		mutex_exit(&cpu_lock);
17733		return (DDI_FAILURE);
17734	}
17735
17736	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
17737		mutex_exit(&dtrace_provider_lock);
17738		mutex_exit(&dtrace_lock);
17739		mutex_exit(&cpu_lock);
17740		return (DDI_FAILURE);
17741	}
17742
17743	dtrace_provider = NULL;
17744
17745	if ((state = dtrace_anon_grab()) != NULL) {
17746		/*
17747		 * If there were ECBs on this state, the provider should
17748		 * have not been allowed to detach; assert that there is
17749		 * none.
17750		 */
17751		ASSERT(state->dts_necbs == 0);
17752		dtrace_state_destroy(state);
17753
17754		/*
17755		 * If we're being detached with anonymous state, we need to
17756		 * indicate to the kernel debugger that DTrace is now inactive.
17757		 */
17758		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17759	}
17760
17761	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
17762	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
17763	dtrace_cpu_init = NULL;
17764	dtrace_helpers_cleanup = NULL;
17765	dtrace_helpers_fork = NULL;
17766	dtrace_cpustart_init = NULL;
17767	dtrace_cpustart_fini = NULL;
17768	dtrace_debugger_init = NULL;
17769	dtrace_debugger_fini = NULL;
17770	dtrace_modload = NULL;
17771	dtrace_modunload = NULL;
17772
17773	ASSERT(dtrace_getf == 0);
17774	ASSERT(dtrace_closef == NULL);
17775
17776	mutex_exit(&cpu_lock);
17777
17778	if (dtrace_helptrace_enabled) {
17779		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
17780		dtrace_helptrace_buffer = NULL;
17781	}
17782
17783	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
17784	dtrace_probes = NULL;
17785	dtrace_nprobes = 0;
17786
17787	dtrace_hash_destroy(dtrace_bymod);
17788	dtrace_hash_destroy(dtrace_byfunc);
17789	dtrace_hash_destroy(dtrace_byname);
17790	dtrace_bymod = NULL;
17791	dtrace_byfunc = NULL;
17792	dtrace_byname = NULL;
17793
17794	kmem_cache_destroy(dtrace_state_cache);
17795	vmem_destroy(dtrace_minor);
17796	vmem_destroy(dtrace_arena);
17797
17798	if (dtrace_toxrange != NULL) {
17799		kmem_free(dtrace_toxrange,
17800		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
17801		dtrace_toxrange = NULL;
17802		dtrace_toxranges = 0;
17803		dtrace_toxranges_max = 0;
17804	}
17805
17806	ddi_remove_minor_node(dtrace_devi, NULL);
17807	dtrace_devi = NULL;
17808
17809	ddi_soft_state_fini(&dtrace_softstate);
17810
17811	ASSERT(dtrace_vtime_references == 0);
17812	ASSERT(dtrace_opens == 0);
17813	ASSERT(dtrace_retained == NULL);
17814
17815	mutex_exit(&dtrace_lock);
17816	mutex_exit(&dtrace_provider_lock);
17817
17818	/*
17819	 * We don't destroy the task queue until after we have dropped our
17820	 * locks (taskq_destroy() may block on running tasks).  To prevent
17821	 * attempting to do work after we have effectively detached but before
17822	 * the task queue has been destroyed, all tasks dispatched via the
17823	 * task queue must check that DTrace is still attached before
17824	 * performing any operation.
17825	 */
17826	taskq_destroy(dtrace_taskq);
17827	dtrace_taskq = NULL;
17828
17829	return (DDI_SUCCESS);
17830}
17831#endif
17832
17833#if defined(sun)
17834/*ARGSUSED*/
17835static int
17836dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
17837{
17838	int error;
17839
17840	switch (infocmd) {
17841	case DDI_INFO_DEVT2DEVINFO:
17842		*result = (void *)dtrace_devi;
17843		error = DDI_SUCCESS;
17844		break;
17845	case DDI_INFO_DEVT2INSTANCE:
17846		*result = (void *)0;
17847		error = DDI_SUCCESS;
17848		break;
17849	default:
17850		error = DDI_FAILURE;
17851	}
17852	return (error);
17853}
17854#endif
17855
17856#if defined(sun)
17857static struct cb_ops dtrace_cb_ops = {
17858	dtrace_open,		/* open */
17859	dtrace_close,		/* close */
17860	nulldev,		/* strategy */
17861	nulldev,		/* print */
17862	nodev,			/* dump */
17863	nodev,			/* read */
17864	nodev,			/* write */
17865	dtrace_ioctl,		/* ioctl */
17866	nodev,			/* devmap */
17867	nodev,			/* mmap */
17868	nodev,			/* segmap */
17869	nochpoll,		/* poll */
17870	ddi_prop_op,		/* cb_prop_op */
17871	0,			/* streamtab  */
17872	D_NEW | D_MP		/* Driver compatibility flag */
17873};
17874
17875static struct dev_ops dtrace_ops = {
17876	DEVO_REV,		/* devo_rev */
17877	0,			/* refcnt */
17878	dtrace_info,		/* get_dev_info */
17879	nulldev,		/* identify */
17880	nulldev,		/* probe */
17881	dtrace_attach,		/* attach */
17882	dtrace_detach,		/* detach */
17883	nodev,			/* reset */
17884	&dtrace_cb_ops,		/* driver operations */
17885	NULL,			/* bus operations */
17886	nodev			/* dev power */
17887};
17888
17889static struct modldrv modldrv = {
17890	&mod_driverops,		/* module type (this is a pseudo driver) */
17891	"Dynamic Tracing",	/* name of module */
17892	&dtrace_ops,		/* driver ops */
17893};
17894
17895static struct modlinkage modlinkage = {
17896	MODREV_1,
17897	(void *)&modldrv,
17898	NULL
17899};
17900
17901int
17902_init(void)
17903{
17904	return (mod_install(&modlinkage));
17905}
17906
17907int
17908_info(struct modinfo *modinfop)
17909{
17910	return (mod_info(&modlinkage, modinfop));
17911}
17912
17913int
17914_fini(void)
17915{
17916	return (mod_remove(&modlinkage));
17917}
17918#else
17919
17920static d_ioctl_t	dtrace_ioctl;
17921static d_ioctl_t	dtrace_ioctl_helper;
17922static void		dtrace_load(void *);
17923static int		dtrace_unload(void);
17924#if __FreeBSD_version < 800039
17925static void		dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
17926static struct clonedevs	*dtrace_clones;		/* Ptr to the array of cloned devices. */
17927static eventhandler_tag	eh_tag;			/* Event handler tag. */
17928#else
17929static struct cdev	*dtrace_dev;
17930static struct cdev	*helper_dev;
17931#endif
17932
17933void dtrace_invop_init(void);
17934void dtrace_invop_uninit(void);
17935
17936static struct cdevsw dtrace_cdevsw = {
17937	.d_version	= D_VERSION,
17938#if __FreeBSD_version < 800039
17939	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
17940	.d_close	= dtrace_close,
17941#endif
17942	.d_ioctl	= dtrace_ioctl,
17943	.d_open		= dtrace_open,
17944	.d_name		= "dtrace",
17945};
17946
17947static struct cdevsw helper_cdevsw = {
17948	.d_version	= D_VERSION,
17949	.d_ioctl	= dtrace_ioctl_helper,
17950	.d_name		= "helper",
17951};
17952
17953#include <dtrace_anon.c>
17954#if __FreeBSD_version < 800039
17955#include <dtrace_clone.c>
17956#endif
17957#include <dtrace_ioctl.c>
17958#include <dtrace_load.c>
17959#include <dtrace_modevent.c>
17960#include <dtrace_sysctl.c>
17961#include <dtrace_unload.c>
17962#include <dtrace_vtime.c>
17963#include <dtrace_hacks.c>
17964#include <dtrace_isa.c>
17965
17966SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
17967SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
17968SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
17969
17970DEV_MODULE(dtrace, dtrace_modevent, NULL);
17971MODULE_VERSION(dtrace, 1);
17972MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
17973MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
17974#endif
17975