dtrace.c revision 266667
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 * $FreeBSD: stable/10/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c 266667 2014-05-25 18:19:57Z markj $
22 */
23
24/*
25 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 * Copyright (c) 2012 by Delphix. All rights reserved.
28 */
29
30#pragma ident	"%Z%%M%	%I%	%E% SMI"
31
32/*
33 * DTrace - Dynamic Tracing for Solaris
34 *
35 * This is the implementation of the Solaris Dynamic Tracing framework
36 * (DTrace).  The user-visible interface to DTrace is described at length in
37 * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
38 * library, the in-kernel DTrace framework, and the DTrace providers are
39 * described in the block comments in the <sys/dtrace.h> header file.  The
40 * internal architecture of DTrace is described in the block comments in the
41 * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
42 * implementation very much assume mastery of all of these sources; if one has
43 * an unanswered question about the implementation, one should consult them
44 * first.
45 *
46 * The functions here are ordered roughly as follows:
47 *
48 *   - Probe context functions
49 *   - Probe hashing functions
50 *   - Non-probe context utility functions
51 *   - Matching functions
52 *   - Provider-to-Framework API functions
53 *   - Probe management functions
54 *   - DIF object functions
55 *   - Format functions
56 *   - Predicate functions
57 *   - ECB functions
58 *   - Buffer functions
59 *   - Enabling functions
60 *   - DOF functions
61 *   - Anonymous enabling functions
62 *   - Consumer state functions
63 *   - Helper functions
64 *   - Hook functions
65 *   - Driver cookbook functions
66 *
67 * Each group of functions begins with a block comment labelled the "DTrace
68 * [Group] Functions", allowing one to find each block by searching forward
69 * on capital-f functions.
70 */
71#include <sys/errno.h>
72#if !defined(sun)
73#include <sys/time.h>
74#endif
75#include <sys/stat.h>
76#include <sys/modctl.h>
77#include <sys/conf.h>
78#include <sys/systm.h>
79#if defined(sun)
80#include <sys/ddi.h>
81#include <sys/sunddi.h>
82#endif
83#include <sys/cpuvar.h>
84#include <sys/kmem.h>
85#if defined(sun)
86#include <sys/strsubr.h>
87#endif
88#include <sys/sysmacros.h>
89#include <sys/dtrace_impl.h>
90#include <sys/atomic.h>
91#include <sys/cmn_err.h>
92#if defined(sun)
93#include <sys/mutex_impl.h>
94#include <sys/rwlock_impl.h>
95#endif
96#include <sys/ctf_api.h>
97#if defined(sun)
98#include <sys/panic.h>
99#include <sys/priv_impl.h>
100#endif
101#include <sys/policy.h>
102#if defined(sun)
103#include <sys/cred_impl.h>
104#include <sys/procfs_isa.h>
105#endif
106#include <sys/taskq.h>
107#if defined(sun)
108#include <sys/mkdev.h>
109#include <sys/kdi.h>
110#endif
111#include <sys/zone.h>
112#include <sys/socket.h>
113#include <netinet/in.h>
114
115/* FreeBSD includes: */
116#if !defined(sun)
117#include <sys/callout.h>
118#include <sys/ctype.h>
119#include <sys/eventhandler.h>
120#include <sys/limits.h>
121#include <sys/kdb.h>
122#include <sys/kernel.h>
123#include <sys/malloc.h>
124#include <sys/sysctl.h>
125#include <sys/lock.h>
126#include <sys/mutex.h>
127#include <sys/rwlock.h>
128#include <sys/sx.h>
129#include <sys/dtrace_bsd.h>
130#include <netinet/in.h>
131#include "dtrace_cddl.h"
132#include "dtrace_debug.c"
133#endif
134
135/*
136 * DTrace Tunable Variables
137 *
138 * The following variables may be tuned by adding a line to /etc/system that
139 * includes both the name of the DTrace module ("dtrace") and the name of the
140 * variable.  For example:
141 *
142 *   set dtrace:dtrace_destructive_disallow = 1
143 *
144 * In general, the only variables that one should be tuning this way are those
145 * that affect system-wide DTrace behavior, and for which the default behavior
146 * is undesirable.  Most of these variables are tunable on a per-consumer
147 * basis using DTrace options, and need not be tuned on a system-wide basis.
148 * When tuning these variables, avoid pathological values; while some attempt
149 * is made to verify the integrity of these variables, they are not considered
150 * part of the supported interface to DTrace, and they are therefore not
151 * checked comprehensively.  Further, these variables should not be tuned
152 * dynamically via "mdb -kw" or other means; they should only be tuned via
153 * /etc/system.
154 */
155int		dtrace_destructive_disallow = 0;
156dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
157size_t		dtrace_difo_maxsize = (256 * 1024);
158dtrace_optval_t	dtrace_dof_maxsize = (8 * 1024 * 1024);
159size_t		dtrace_global_maxsize = (16 * 1024);
160size_t		dtrace_actions_max = (16 * 1024);
161size_t		dtrace_retain_max = 1024;
162dtrace_optval_t	dtrace_helper_actions_max = 128;
163dtrace_optval_t	dtrace_helper_providers_max = 32;
164dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
165size_t		dtrace_strsize_default = 256;
166dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
167dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
168dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
169dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
170dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
171dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
172dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
173dtrace_optval_t	dtrace_nspec_default = 1;
174dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
175dtrace_optval_t dtrace_stackframes_default = 20;
176dtrace_optval_t dtrace_ustackframes_default = 20;
177dtrace_optval_t dtrace_jstackframes_default = 50;
178dtrace_optval_t dtrace_jstackstrsize_default = 512;
179int		dtrace_msgdsize_max = 128;
180hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
181hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
182int		dtrace_devdepth_max = 32;
183int		dtrace_err_verbose;
184hrtime_t	dtrace_deadman_interval = NANOSEC;
185hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
186hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
187hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
188
189/*
190 * DTrace External Variables
191 *
192 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
193 * available to DTrace consumers via the backtick (`) syntax.  One of these,
194 * dtrace_zero, is made deliberately so:  it is provided as a source of
195 * well-known, zero-filled memory.  While this variable is not documented,
196 * it is used by some translators as an implementation detail.
197 */
198const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
199
200/*
201 * DTrace Internal Variables
202 */
203#if defined(sun)
204static dev_info_t	*dtrace_devi;		/* device info */
205#endif
206#if defined(sun)
207static vmem_t		*dtrace_arena;		/* probe ID arena */
208static vmem_t		*dtrace_minor;		/* minor number arena */
209#else
210static taskq_t		*dtrace_taskq;		/* task queue */
211static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
212#endif
213static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
214static int		dtrace_nprobes;		/* number of probes */
215static dtrace_provider_t *dtrace_provider;	/* provider list */
216static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
217static int		dtrace_opens;		/* number of opens */
218static int		dtrace_helpers;		/* number of helpers */
219#if defined(sun)
220static void		*dtrace_softstate;	/* softstate pointer */
221#endif
222static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
223static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
224static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
225static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
226static int		dtrace_toxranges;	/* number of toxic ranges */
227static int		dtrace_toxranges_max;	/* size of toxic range array */
228static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
229static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
230static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
231static kthread_t	*dtrace_panicked;	/* panicking thread */
232static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
233static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
234static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
235static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
236static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
237#if !defined(sun)
238static struct mtx	dtrace_unr_mtx;
239MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
240int		dtrace_in_probe;	/* non-zero if executing a probe */
241#if defined(__i386__) || defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
242uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
243#endif
244static eventhandler_tag	dtrace_kld_load_tag;
245static eventhandler_tag	dtrace_kld_unload_try_tag;
246#endif
247
248/*
249 * DTrace Locking
250 * DTrace is protected by three (relatively coarse-grained) locks:
251 *
252 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
253 *     including enabling state, probes, ECBs, consumer state, helper state,
254 *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
255 *     probe context is lock-free -- synchronization is handled via the
256 *     dtrace_sync() cross call mechanism.
257 *
258 * (2) dtrace_provider_lock is required when manipulating provider state, or
259 *     when provider state must be held constant.
260 *
261 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
262 *     when meta provider state must be held constant.
263 *
264 * The lock ordering between these three locks is dtrace_meta_lock before
265 * dtrace_provider_lock before dtrace_lock.  (In particular, there are
266 * several places where dtrace_provider_lock is held by the framework as it
267 * calls into the providers -- which then call back into the framework,
268 * grabbing dtrace_lock.)
269 *
270 * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
271 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
272 * role as a coarse-grained lock; it is acquired before both of these locks.
273 * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
274 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
275 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
276 * acquired _between_ dtrace_provider_lock and dtrace_lock.
277 */
278static kmutex_t		dtrace_lock;		/* probe state lock */
279static kmutex_t		dtrace_provider_lock;	/* provider state lock */
280static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
281
282#if !defined(sun)
283/* XXX FreeBSD hacks. */
284#define cr_suid		cr_svuid
285#define cr_sgid		cr_svgid
286#define	ipaddr_t	in_addr_t
287#define mod_modname	pathname
288#define vuprintf	vprintf
289#define ttoproc(_a)	((_a)->td_proc)
290#define crgetzoneid(_a)	0
291#define	NCPU		MAXCPU
292#define SNOCD		0
293#define CPU_ON_INTR(_a)	0
294
295#define PRIV_EFFECTIVE		(1 << 0)
296#define PRIV_DTRACE_KERNEL	(1 << 1)
297#define PRIV_DTRACE_PROC	(1 << 2)
298#define PRIV_DTRACE_USER	(1 << 3)
299#define PRIV_PROC_OWNER		(1 << 4)
300#define PRIV_PROC_ZONE		(1 << 5)
301#define PRIV_ALL		~0
302
303SYSCTL_DECL(_debug_dtrace);
304SYSCTL_DECL(_kern_dtrace);
305#endif
306
307#if defined(sun)
308#define curcpu	CPU->cpu_id
309#endif
310
311
312/*
313 * DTrace Provider Variables
314 *
315 * These are the variables relating to DTrace as a provider (that is, the
316 * provider of the BEGIN, END, and ERROR probes).
317 */
318static dtrace_pattr_t	dtrace_provider_attr = {
319{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
320{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
321{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
322{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
323{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
324};
325
326static void
327dtrace_nullop(void)
328{}
329
330static dtrace_pops_t	dtrace_provider_ops = {
331	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
332	(void (*)(void *, modctl_t *))dtrace_nullop,
333	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
334	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
335	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
336	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
337	NULL,
338	NULL,
339	NULL,
340	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
341};
342
343static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
344static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
345dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
346
347/*
348 * DTrace Helper Tracing Variables
349 */
350uint32_t dtrace_helptrace_next = 0;
351uint32_t dtrace_helptrace_nlocals;
352char	*dtrace_helptrace_buffer;
353int	dtrace_helptrace_bufsize = 512 * 1024;
354
355#ifdef DEBUG
356int	dtrace_helptrace_enabled = 1;
357#else
358int	dtrace_helptrace_enabled = 0;
359#endif
360
361/*
362 * DTrace Error Hashing
363 *
364 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
365 * table.  This is very useful for checking coverage of tests that are
366 * expected to induce DIF or DOF processing errors, and may be useful for
367 * debugging problems in the DIF code generator or in DOF generation .  The
368 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
369 */
370#ifdef DEBUG
371static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
372static const char *dtrace_errlast;
373static kthread_t *dtrace_errthread;
374static kmutex_t dtrace_errlock;
375#endif
376
377/*
378 * DTrace Macros and Constants
379 *
380 * These are various macros that are useful in various spots in the
381 * implementation, along with a few random constants that have no meaning
382 * outside of the implementation.  There is no real structure to this cpp
383 * mishmash -- but is there ever?
384 */
385#define	DTRACE_HASHSTR(hash, probe)	\
386	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
387
388#define	DTRACE_HASHNEXT(hash, probe)	\
389	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
390
391#define	DTRACE_HASHPREV(hash, probe)	\
392	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
393
394#define	DTRACE_HASHEQ(hash, lhs, rhs)	\
395	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
396	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
397
398#define	DTRACE_AGGHASHSIZE_SLEW		17
399
400#define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
401
402/*
403 * The key for a thread-local variable consists of the lower 61 bits of the
404 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
405 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
406 * equal to a variable identifier.  This is necessary (but not sufficient) to
407 * assure that global associative arrays never collide with thread-local
408 * variables.  To guarantee that they cannot collide, we must also define the
409 * order for keying dynamic variables.  That order is:
410 *
411 *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
412 *
413 * Because the variable-key and the tls-key are in orthogonal spaces, there is
414 * no way for a global variable key signature to match a thread-local key
415 * signature.
416 */
417#if defined(sun)
418#define	DTRACE_TLS_THRKEY(where) { \
419	uint_t intr = 0; \
420	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
421	for (; actv; actv >>= 1) \
422		intr++; \
423	ASSERT(intr < (1 << 3)); \
424	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
425	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
426}
427#else
428#define	DTRACE_TLS_THRKEY(where) { \
429	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
430	uint_t intr = 0; \
431	uint_t actv = _c->cpu_intr_actv; \
432	for (; actv; actv >>= 1) \
433		intr++; \
434	ASSERT(intr < (1 << 3)); \
435	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
436	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
437}
438#endif
439
440#define	DT_BSWAP_8(x)	((x) & 0xff)
441#define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
442#define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
443#define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
444
445#define	DT_MASK_LO 0x00000000FFFFFFFFULL
446
447#define	DTRACE_STORE(type, tomax, offset, what) \
448	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
449
450#ifndef __x86
451#define	DTRACE_ALIGNCHECK(addr, size, flags)				\
452	if (addr & (size - 1)) {					\
453		*flags |= CPU_DTRACE_BADALIGN;				\
454		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
455		return (0);						\
456	}
457#else
458#define	DTRACE_ALIGNCHECK(addr, size, flags)
459#endif
460
461/*
462 * Test whether a range of memory starting at testaddr of size testsz falls
463 * within the range of memory described by addr, sz.  We take care to avoid
464 * problems with overflow and underflow of the unsigned quantities, and
465 * disallow all negative sizes.  Ranges of size 0 are allowed.
466 */
467#define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
468	((testaddr) - (baseaddr) < (basesz) && \
469	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
470	(testaddr) + (testsz) >= (testaddr))
471
472/*
473 * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
474 * alloc_sz on the righthand side of the comparison in order to avoid overflow
475 * or underflow in the comparison with it.  This is simpler than the INRANGE
476 * check above, because we know that the dtms_scratch_ptr is valid in the
477 * range.  Allocations of size zero are allowed.
478 */
479#define	DTRACE_INSCRATCH(mstate, alloc_sz) \
480	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
481	(mstate)->dtms_scratch_ptr >= (alloc_sz))
482
483#define	DTRACE_LOADFUNC(bits)						\
484/*CSTYLED*/								\
485uint##bits##_t								\
486dtrace_load##bits(uintptr_t addr)					\
487{									\
488	size_t size = bits / NBBY;					\
489	/*CSTYLED*/							\
490	uint##bits##_t rval;						\
491	int i;								\
492	volatile uint16_t *flags = (volatile uint16_t *)		\
493	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
494									\
495	DTRACE_ALIGNCHECK(addr, size, flags);				\
496									\
497	for (i = 0; i < dtrace_toxranges; i++) {			\
498		if (addr >= dtrace_toxrange[i].dtt_limit)		\
499			continue;					\
500									\
501		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
502			continue;					\
503									\
504		/*							\
505		 * This address falls within a toxic region; return 0.	\
506		 */							\
507		*flags |= CPU_DTRACE_BADADDR;				\
508		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
509		return (0);						\
510	}								\
511									\
512	*flags |= CPU_DTRACE_NOFAULT;					\
513	/*CSTYLED*/							\
514	rval = *((volatile uint##bits##_t *)addr);			\
515	*flags &= ~CPU_DTRACE_NOFAULT;					\
516									\
517	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
518}
519
520#ifdef _LP64
521#define	dtrace_loadptr	dtrace_load64
522#else
523#define	dtrace_loadptr	dtrace_load32
524#endif
525
526#define	DTRACE_DYNHASH_FREE	0
527#define	DTRACE_DYNHASH_SINK	1
528#define	DTRACE_DYNHASH_VALID	2
529
530#define	DTRACE_MATCH_NEXT	0
531#define	DTRACE_MATCH_DONE	1
532#define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
533#define	DTRACE_STATE_ALIGN	64
534
535#define	DTRACE_FLAGS2FLT(flags)						\
536	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
537	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
538	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
539	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
540	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
541	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
542	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
543	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
544	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
545	DTRACEFLT_UNKNOWN)
546
547#define	DTRACEACT_ISSTRING(act)						\
548	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
549	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
550
551/* Function prototype definitions: */
552static size_t dtrace_strlen(const char *, size_t);
553static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
554static void dtrace_enabling_provide(dtrace_provider_t *);
555static int dtrace_enabling_match(dtrace_enabling_t *, int *);
556static void dtrace_enabling_matchall(void);
557static void dtrace_enabling_reap(void);
558static dtrace_state_t *dtrace_anon_grab(void);
559static uint64_t dtrace_helper(int, dtrace_mstate_t *,
560    dtrace_state_t *, uint64_t, uint64_t);
561static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
562static void dtrace_buffer_drop(dtrace_buffer_t *);
563static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
564static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
565    dtrace_state_t *, dtrace_mstate_t *);
566static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
567    dtrace_optval_t);
568static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
569static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
570uint16_t dtrace_load16(uintptr_t);
571uint32_t dtrace_load32(uintptr_t);
572uint64_t dtrace_load64(uintptr_t);
573uint8_t dtrace_load8(uintptr_t);
574void dtrace_dynvar_clean(dtrace_dstate_t *);
575dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
576    size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
577uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
578
579/*
580 * DTrace Probe Context Functions
581 *
582 * These functions are called from probe context.  Because probe context is
583 * any context in which C may be called, arbitrarily locks may be held,
584 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
585 * As a result, functions called from probe context may only call other DTrace
586 * support functions -- they may not interact at all with the system at large.
587 * (Note that the ASSERT macro is made probe-context safe by redefining it in
588 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
589 * loads are to be performed from probe context, they _must_ be in terms of
590 * the safe dtrace_load*() variants.
591 *
592 * Some functions in this block are not actually called from probe context;
593 * for these functions, there will be a comment above the function reading
594 * "Note:  not called from probe context."
595 */
596void
597dtrace_panic(const char *format, ...)
598{
599	va_list alist;
600
601	va_start(alist, format);
602	dtrace_vpanic(format, alist);
603	va_end(alist);
604}
605
606int
607dtrace_assfail(const char *a, const char *f, int l)
608{
609	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
610
611	/*
612	 * We just need something here that even the most clever compiler
613	 * cannot optimize away.
614	 */
615	return (a[(uintptr_t)f]);
616}
617
618/*
619 * Atomically increment a specified error counter from probe context.
620 */
621static void
622dtrace_error(uint32_t *counter)
623{
624	/*
625	 * Most counters stored to in probe context are per-CPU counters.
626	 * However, there are some error conditions that are sufficiently
627	 * arcane that they don't merit per-CPU storage.  If these counters
628	 * are incremented concurrently on different CPUs, scalability will be
629	 * adversely affected -- but we don't expect them to be white-hot in a
630	 * correctly constructed enabling...
631	 */
632	uint32_t oval, nval;
633
634	do {
635		oval = *counter;
636
637		if ((nval = oval + 1) == 0) {
638			/*
639			 * If the counter would wrap, set it to 1 -- assuring
640			 * that the counter is never zero when we have seen
641			 * errors.  (The counter must be 32-bits because we
642			 * aren't guaranteed a 64-bit compare&swap operation.)
643			 * To save this code both the infamy of being fingered
644			 * by a priggish news story and the indignity of being
645			 * the target of a neo-puritan witch trial, we're
646			 * carefully avoiding any colorful description of the
647			 * likelihood of this condition -- but suffice it to
648			 * say that it is only slightly more likely than the
649			 * overflow of predicate cache IDs, as discussed in
650			 * dtrace_predicate_create().
651			 */
652			nval = 1;
653		}
654	} while (dtrace_cas32(counter, oval, nval) != oval);
655}
656
657/*
658 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
659 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
660 */
661DTRACE_LOADFUNC(8)
662DTRACE_LOADFUNC(16)
663DTRACE_LOADFUNC(32)
664DTRACE_LOADFUNC(64)
665
666static int
667dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
668{
669	if (dest < mstate->dtms_scratch_base)
670		return (0);
671
672	if (dest + size < dest)
673		return (0);
674
675	if (dest + size > mstate->dtms_scratch_ptr)
676		return (0);
677
678	return (1);
679}
680
681static int
682dtrace_canstore_statvar(uint64_t addr, size_t sz,
683    dtrace_statvar_t **svars, int nsvars)
684{
685	int i;
686
687	for (i = 0; i < nsvars; i++) {
688		dtrace_statvar_t *svar = svars[i];
689
690		if (svar == NULL || svar->dtsv_size == 0)
691			continue;
692
693		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
694			return (1);
695	}
696
697	return (0);
698}
699
700/*
701 * Check to see if the address is within a memory region to which a store may
702 * be issued.  This includes the DTrace scratch areas, and any DTrace variable
703 * region.  The caller of dtrace_canstore() is responsible for performing any
704 * alignment checks that are needed before stores are actually executed.
705 */
706static int
707dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
708    dtrace_vstate_t *vstate)
709{
710	/*
711	 * First, check to see if the address is in scratch space...
712	 */
713	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
714	    mstate->dtms_scratch_size))
715		return (1);
716
717	/*
718	 * Now check to see if it's a dynamic variable.  This check will pick
719	 * up both thread-local variables and any global dynamically-allocated
720	 * variables.
721	 */
722	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
723	    vstate->dtvs_dynvars.dtds_size)) {
724		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
725		uintptr_t base = (uintptr_t)dstate->dtds_base +
726		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
727		uintptr_t chunkoffs;
728
729		/*
730		 * Before we assume that we can store here, we need to make
731		 * sure that it isn't in our metadata -- storing to our
732		 * dynamic variable metadata would corrupt our state.  For
733		 * the range to not include any dynamic variable metadata,
734		 * it must:
735		 *
736		 *	(1) Start above the hash table that is at the base of
737		 *	the dynamic variable space
738		 *
739		 *	(2) Have a starting chunk offset that is beyond the
740		 *	dtrace_dynvar_t that is at the base of every chunk
741		 *
742		 *	(3) Not span a chunk boundary
743		 *
744		 */
745		if (addr < base)
746			return (0);
747
748		chunkoffs = (addr - base) % dstate->dtds_chunksize;
749
750		if (chunkoffs < sizeof (dtrace_dynvar_t))
751			return (0);
752
753		if (chunkoffs + sz > dstate->dtds_chunksize)
754			return (0);
755
756		return (1);
757	}
758
759	/*
760	 * Finally, check the static local and global variables.  These checks
761	 * take the longest, so we perform them last.
762	 */
763	if (dtrace_canstore_statvar(addr, sz,
764	    vstate->dtvs_locals, vstate->dtvs_nlocals))
765		return (1);
766
767	if (dtrace_canstore_statvar(addr, sz,
768	    vstate->dtvs_globals, vstate->dtvs_nglobals))
769		return (1);
770
771	return (0);
772}
773
774
775/*
776 * Convenience routine to check to see if the address is within a memory
777 * region in which a load may be issued given the user's privilege level;
778 * if not, it sets the appropriate error flags and loads 'addr' into the
779 * illegal value slot.
780 *
781 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
782 * appropriate memory access protection.
783 */
784static int
785dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
786    dtrace_vstate_t *vstate)
787{
788	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
789
790	/*
791	 * If we hold the privilege to read from kernel memory, then
792	 * everything is readable.
793	 */
794	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
795		return (1);
796
797	/*
798	 * You can obviously read that which you can store.
799	 */
800	if (dtrace_canstore(addr, sz, mstate, vstate))
801		return (1);
802
803	/*
804	 * We're allowed to read from our own string table.
805	 */
806	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
807	    mstate->dtms_difo->dtdo_strlen))
808		return (1);
809
810	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
811	*illval = addr;
812	return (0);
813}
814
815/*
816 * Convenience routine to check to see if a given string is within a memory
817 * region in which a load may be issued given the user's privilege level;
818 * this exists so that we don't need to issue unnecessary dtrace_strlen()
819 * calls in the event that the user has all privileges.
820 */
821static int
822dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
823    dtrace_vstate_t *vstate)
824{
825	size_t strsz;
826
827	/*
828	 * If we hold the privilege to read from kernel memory, then
829	 * everything is readable.
830	 */
831	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
832		return (1);
833
834	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
835	if (dtrace_canload(addr, strsz, mstate, vstate))
836		return (1);
837
838	return (0);
839}
840
841/*
842 * Convenience routine to check to see if a given variable is within a memory
843 * region in which a load may be issued given the user's privilege level.
844 */
845static int
846dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
847    dtrace_vstate_t *vstate)
848{
849	size_t sz;
850	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
851
852	/*
853	 * If we hold the privilege to read from kernel memory, then
854	 * everything is readable.
855	 */
856	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
857		return (1);
858
859	if (type->dtdt_kind == DIF_TYPE_STRING)
860		sz = dtrace_strlen(src,
861		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
862	else
863		sz = type->dtdt_size;
864
865	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
866}
867
868/*
869 * Compare two strings using safe loads.
870 */
871static int
872dtrace_strncmp(char *s1, char *s2, size_t limit)
873{
874	uint8_t c1, c2;
875	volatile uint16_t *flags;
876
877	if (s1 == s2 || limit == 0)
878		return (0);
879
880	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
881
882	do {
883		if (s1 == NULL) {
884			c1 = '\0';
885		} else {
886			c1 = dtrace_load8((uintptr_t)s1++);
887		}
888
889		if (s2 == NULL) {
890			c2 = '\0';
891		} else {
892			c2 = dtrace_load8((uintptr_t)s2++);
893		}
894
895		if (c1 != c2)
896			return (c1 - c2);
897	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
898
899	return (0);
900}
901
902/*
903 * Compute strlen(s) for a string using safe memory accesses.  The additional
904 * len parameter is used to specify a maximum length to ensure completion.
905 */
906static size_t
907dtrace_strlen(const char *s, size_t lim)
908{
909	uint_t len;
910
911	for (len = 0; len != lim; len++) {
912		if (dtrace_load8((uintptr_t)s++) == '\0')
913			break;
914	}
915
916	return (len);
917}
918
919/*
920 * Check if an address falls within a toxic region.
921 */
922static int
923dtrace_istoxic(uintptr_t kaddr, size_t size)
924{
925	uintptr_t taddr, tsize;
926	int i;
927
928	for (i = 0; i < dtrace_toxranges; i++) {
929		taddr = dtrace_toxrange[i].dtt_base;
930		tsize = dtrace_toxrange[i].dtt_limit - taddr;
931
932		if (kaddr - taddr < tsize) {
933			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
934			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
935			return (1);
936		}
937
938		if (taddr - kaddr < size) {
939			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
940			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
941			return (1);
942		}
943	}
944
945	return (0);
946}
947
948/*
949 * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
950 * memory specified by the DIF program.  The dst is assumed to be safe memory
951 * that we can store to directly because it is managed by DTrace.  As with
952 * standard bcopy, overlapping copies are handled properly.
953 */
954static void
955dtrace_bcopy(const void *src, void *dst, size_t len)
956{
957	if (len != 0) {
958		uint8_t *s1 = dst;
959		const uint8_t *s2 = src;
960
961		if (s1 <= s2) {
962			do {
963				*s1++ = dtrace_load8((uintptr_t)s2++);
964			} while (--len != 0);
965		} else {
966			s2 += len;
967			s1 += len;
968
969			do {
970				*--s1 = dtrace_load8((uintptr_t)--s2);
971			} while (--len != 0);
972		}
973	}
974}
975
976/*
977 * Copy src to dst using safe memory accesses, up to either the specified
978 * length, or the point that a nul byte is encountered.  The src is assumed to
979 * be unsafe memory specified by the DIF program.  The dst is assumed to be
980 * safe memory that we can store to directly because it is managed by DTrace.
981 * Unlike dtrace_bcopy(), overlapping regions are not handled.
982 */
983static void
984dtrace_strcpy(const void *src, void *dst, size_t len)
985{
986	if (len != 0) {
987		uint8_t *s1 = dst, c;
988		const uint8_t *s2 = src;
989
990		do {
991			*s1++ = c = dtrace_load8((uintptr_t)s2++);
992		} while (--len != 0 && c != '\0');
993	}
994}
995
996/*
997 * Copy src to dst, deriving the size and type from the specified (BYREF)
998 * variable type.  The src is assumed to be unsafe memory specified by the DIF
999 * program.  The dst is assumed to be DTrace variable memory that is of the
1000 * specified type; we assume that we can store to directly.
1001 */
1002static void
1003dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1004{
1005	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1006
1007	if (type->dtdt_kind == DIF_TYPE_STRING) {
1008		dtrace_strcpy(src, dst, type->dtdt_size);
1009	} else {
1010		dtrace_bcopy(src, dst, type->dtdt_size);
1011	}
1012}
1013
1014/*
1015 * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1016 * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1017 * safe memory that we can access directly because it is managed by DTrace.
1018 */
1019static int
1020dtrace_bcmp(const void *s1, const void *s2, size_t len)
1021{
1022	volatile uint16_t *flags;
1023
1024	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1025
1026	if (s1 == s2)
1027		return (0);
1028
1029	if (s1 == NULL || s2 == NULL)
1030		return (1);
1031
1032	if (s1 != s2 && len != 0) {
1033		const uint8_t *ps1 = s1;
1034		const uint8_t *ps2 = s2;
1035
1036		do {
1037			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1038				return (1);
1039		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1040	}
1041	return (0);
1042}
1043
1044/*
1045 * Zero the specified region using a simple byte-by-byte loop.  Note that this
1046 * is for safe DTrace-managed memory only.
1047 */
1048static void
1049dtrace_bzero(void *dst, size_t len)
1050{
1051	uchar_t *cp;
1052
1053	for (cp = dst; len != 0; len--)
1054		*cp++ = 0;
1055}
1056
1057static void
1058dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1059{
1060	uint64_t result[2];
1061
1062	result[0] = addend1[0] + addend2[0];
1063	result[1] = addend1[1] + addend2[1] +
1064	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1065
1066	sum[0] = result[0];
1067	sum[1] = result[1];
1068}
1069
1070/*
1071 * Shift the 128-bit value in a by b. If b is positive, shift left.
1072 * If b is negative, shift right.
1073 */
1074static void
1075dtrace_shift_128(uint64_t *a, int b)
1076{
1077	uint64_t mask;
1078
1079	if (b == 0)
1080		return;
1081
1082	if (b < 0) {
1083		b = -b;
1084		if (b >= 64) {
1085			a[0] = a[1] >> (b - 64);
1086			a[1] = 0;
1087		} else {
1088			a[0] >>= b;
1089			mask = 1LL << (64 - b);
1090			mask -= 1;
1091			a[0] |= ((a[1] & mask) << (64 - b));
1092			a[1] >>= b;
1093		}
1094	} else {
1095		if (b >= 64) {
1096			a[1] = a[0] << (b - 64);
1097			a[0] = 0;
1098		} else {
1099			a[1] <<= b;
1100			mask = a[0] >> (64 - b);
1101			a[1] |= mask;
1102			a[0] <<= b;
1103		}
1104	}
1105}
1106
1107/*
1108 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1109 * use native multiplication on those, and then re-combine into the
1110 * resulting 128-bit value.
1111 *
1112 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1113 *     hi1 * hi2 << 64 +
1114 *     hi1 * lo2 << 32 +
1115 *     hi2 * lo1 << 32 +
1116 *     lo1 * lo2
1117 */
1118static void
1119dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1120{
1121	uint64_t hi1, hi2, lo1, lo2;
1122	uint64_t tmp[2];
1123
1124	hi1 = factor1 >> 32;
1125	hi2 = factor2 >> 32;
1126
1127	lo1 = factor1 & DT_MASK_LO;
1128	lo2 = factor2 & DT_MASK_LO;
1129
1130	product[0] = lo1 * lo2;
1131	product[1] = hi1 * hi2;
1132
1133	tmp[0] = hi1 * lo2;
1134	tmp[1] = 0;
1135	dtrace_shift_128(tmp, 32);
1136	dtrace_add_128(product, tmp, product);
1137
1138	tmp[0] = hi2 * lo1;
1139	tmp[1] = 0;
1140	dtrace_shift_128(tmp, 32);
1141	dtrace_add_128(product, tmp, product);
1142}
1143
1144/*
1145 * This privilege check should be used by actions and subroutines to
1146 * verify that the user credentials of the process that enabled the
1147 * invoking ECB match the target credentials
1148 */
1149static int
1150dtrace_priv_proc_common_user(dtrace_state_t *state)
1151{
1152	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1153
1154	/*
1155	 * We should always have a non-NULL state cred here, since if cred
1156	 * is null (anonymous tracing), we fast-path bypass this routine.
1157	 */
1158	ASSERT(s_cr != NULL);
1159
1160	if ((cr = CRED()) != NULL &&
1161	    s_cr->cr_uid == cr->cr_uid &&
1162	    s_cr->cr_uid == cr->cr_ruid &&
1163	    s_cr->cr_uid == cr->cr_suid &&
1164	    s_cr->cr_gid == cr->cr_gid &&
1165	    s_cr->cr_gid == cr->cr_rgid &&
1166	    s_cr->cr_gid == cr->cr_sgid)
1167		return (1);
1168
1169	return (0);
1170}
1171
1172/*
1173 * This privilege check should be used by actions and subroutines to
1174 * verify that the zone of the process that enabled the invoking ECB
1175 * matches the target credentials
1176 */
1177static int
1178dtrace_priv_proc_common_zone(dtrace_state_t *state)
1179{
1180#if defined(sun)
1181	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1182
1183	/*
1184	 * We should always have a non-NULL state cred here, since if cred
1185	 * is null (anonymous tracing), we fast-path bypass this routine.
1186	 */
1187	ASSERT(s_cr != NULL);
1188
1189	if ((cr = CRED()) != NULL &&
1190	    s_cr->cr_zone == cr->cr_zone)
1191		return (1);
1192
1193	return (0);
1194#else
1195	return (1);
1196#endif
1197}
1198
1199/*
1200 * This privilege check should be used by actions and subroutines to
1201 * verify that the process has not setuid or changed credentials.
1202 */
1203static int
1204dtrace_priv_proc_common_nocd(void)
1205{
1206	proc_t *proc;
1207
1208	if ((proc = ttoproc(curthread)) != NULL &&
1209	    !(proc->p_flag & SNOCD))
1210		return (1);
1211
1212	return (0);
1213}
1214
1215static int
1216dtrace_priv_proc_destructive(dtrace_state_t *state)
1217{
1218	int action = state->dts_cred.dcr_action;
1219
1220	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1221	    dtrace_priv_proc_common_zone(state) == 0)
1222		goto bad;
1223
1224	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1225	    dtrace_priv_proc_common_user(state) == 0)
1226		goto bad;
1227
1228	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1229	    dtrace_priv_proc_common_nocd() == 0)
1230		goto bad;
1231
1232	return (1);
1233
1234bad:
1235	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1236
1237	return (0);
1238}
1239
1240static int
1241dtrace_priv_proc_control(dtrace_state_t *state)
1242{
1243	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1244		return (1);
1245
1246	if (dtrace_priv_proc_common_zone(state) &&
1247	    dtrace_priv_proc_common_user(state) &&
1248	    dtrace_priv_proc_common_nocd())
1249		return (1);
1250
1251	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1252
1253	return (0);
1254}
1255
1256static int
1257dtrace_priv_proc(dtrace_state_t *state)
1258{
1259	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1260		return (1);
1261
1262	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1263
1264	return (0);
1265}
1266
1267static int
1268dtrace_priv_kernel(dtrace_state_t *state)
1269{
1270	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1271		return (1);
1272
1273	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1274
1275	return (0);
1276}
1277
1278static int
1279dtrace_priv_kernel_destructive(dtrace_state_t *state)
1280{
1281	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1282		return (1);
1283
1284	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1285
1286	return (0);
1287}
1288
1289/*
1290 * Note:  not called from probe context.  This function is called
1291 * asynchronously (and at a regular interval) from outside of probe context to
1292 * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1293 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1294 */
1295void
1296dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1297{
1298	dtrace_dynvar_t *dirty;
1299	dtrace_dstate_percpu_t *dcpu;
1300	int i, work = 0;
1301
1302	for (i = 0; i < NCPU; i++) {
1303		dcpu = &dstate->dtds_percpu[i];
1304
1305		ASSERT(dcpu->dtdsc_rinsing == NULL);
1306
1307		/*
1308		 * If the dirty list is NULL, there is no dirty work to do.
1309		 */
1310		if (dcpu->dtdsc_dirty == NULL)
1311			continue;
1312
1313		/*
1314		 * If the clean list is non-NULL, then we're not going to do
1315		 * any work for this CPU -- it means that there has not been
1316		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1317		 * since the last time we cleaned house.
1318		 */
1319		if (dcpu->dtdsc_clean != NULL)
1320			continue;
1321
1322		work = 1;
1323
1324		/*
1325		 * Atomically move the dirty list aside.
1326		 */
1327		do {
1328			dirty = dcpu->dtdsc_dirty;
1329
1330			/*
1331			 * Before we zap the dirty list, set the rinsing list.
1332			 * (This allows for a potential assertion in
1333			 * dtrace_dynvar():  if a free dynamic variable appears
1334			 * on a hash chain, either the dirty list or the
1335			 * rinsing list for some CPU must be non-NULL.)
1336			 */
1337			dcpu->dtdsc_rinsing = dirty;
1338			dtrace_membar_producer();
1339		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1340		    dirty, NULL) != dirty);
1341	}
1342
1343	if (!work) {
1344		/*
1345		 * We have no work to do; we can simply return.
1346		 */
1347		return;
1348	}
1349
1350	dtrace_sync();
1351
1352	for (i = 0; i < NCPU; i++) {
1353		dcpu = &dstate->dtds_percpu[i];
1354
1355		if (dcpu->dtdsc_rinsing == NULL)
1356			continue;
1357
1358		/*
1359		 * We are now guaranteed that no hash chain contains a pointer
1360		 * into this dirty list; we can make it clean.
1361		 */
1362		ASSERT(dcpu->dtdsc_clean == NULL);
1363		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1364		dcpu->dtdsc_rinsing = NULL;
1365	}
1366
1367	/*
1368	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1369	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1370	 * This prevents a race whereby a CPU incorrectly decides that
1371	 * the state should be something other than DTRACE_DSTATE_CLEAN
1372	 * after dtrace_dynvar_clean() has completed.
1373	 */
1374	dtrace_sync();
1375
1376	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1377}
1378
1379/*
1380 * Depending on the value of the op parameter, this function looks-up,
1381 * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1382 * allocation is requested, this function will return a pointer to a
1383 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1384 * variable can be allocated.  If NULL is returned, the appropriate counter
1385 * will be incremented.
1386 */
1387dtrace_dynvar_t *
1388dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1389    dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1390    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1391{
1392	uint64_t hashval = DTRACE_DYNHASH_VALID;
1393	dtrace_dynhash_t *hash = dstate->dtds_hash;
1394	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1395	processorid_t me = curcpu, cpu = me;
1396	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1397	size_t bucket, ksize;
1398	size_t chunksize = dstate->dtds_chunksize;
1399	uintptr_t kdata, lock, nstate;
1400	uint_t i;
1401
1402	ASSERT(nkeys != 0);
1403
1404	/*
1405	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1406	 * algorithm.  For the by-value portions, we perform the algorithm in
1407	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1408	 * bit, and seems to have only a minute effect on distribution.  For
1409	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1410	 * over each referenced byte.  It's painful to do this, but it's much
1411	 * better than pathological hash distribution.  The efficacy of the
1412	 * hashing algorithm (and a comparison with other algorithms) may be
1413	 * found by running the ::dtrace_dynstat MDB dcmd.
1414	 */
1415	for (i = 0; i < nkeys; i++) {
1416		if (key[i].dttk_size == 0) {
1417			uint64_t val = key[i].dttk_value;
1418
1419			hashval += (val >> 48) & 0xffff;
1420			hashval += (hashval << 10);
1421			hashval ^= (hashval >> 6);
1422
1423			hashval += (val >> 32) & 0xffff;
1424			hashval += (hashval << 10);
1425			hashval ^= (hashval >> 6);
1426
1427			hashval += (val >> 16) & 0xffff;
1428			hashval += (hashval << 10);
1429			hashval ^= (hashval >> 6);
1430
1431			hashval += val & 0xffff;
1432			hashval += (hashval << 10);
1433			hashval ^= (hashval >> 6);
1434		} else {
1435			/*
1436			 * This is incredibly painful, but it beats the hell
1437			 * out of the alternative.
1438			 */
1439			uint64_t j, size = key[i].dttk_size;
1440			uintptr_t base = (uintptr_t)key[i].dttk_value;
1441
1442			if (!dtrace_canload(base, size, mstate, vstate))
1443				break;
1444
1445			for (j = 0; j < size; j++) {
1446				hashval += dtrace_load8(base + j);
1447				hashval += (hashval << 10);
1448				hashval ^= (hashval >> 6);
1449			}
1450		}
1451	}
1452
1453	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1454		return (NULL);
1455
1456	hashval += (hashval << 3);
1457	hashval ^= (hashval >> 11);
1458	hashval += (hashval << 15);
1459
1460	/*
1461	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1462	 * comes out to be one of our two sentinel hash values.  If this
1463	 * actually happens, we set the hashval to be a value known to be a
1464	 * non-sentinel value.
1465	 */
1466	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1467		hashval = DTRACE_DYNHASH_VALID;
1468
1469	/*
1470	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1471	 * important here, tricks can be pulled to reduce it.  (However, it's
1472	 * critical that hash collisions be kept to an absolute minimum;
1473	 * they're much more painful than a divide.)  It's better to have a
1474	 * solution that generates few collisions and still keeps things
1475	 * relatively simple.
1476	 */
1477	bucket = hashval % dstate->dtds_hashsize;
1478
1479	if (op == DTRACE_DYNVAR_DEALLOC) {
1480		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1481
1482		for (;;) {
1483			while ((lock = *lockp) & 1)
1484				continue;
1485
1486			if (dtrace_casptr((volatile void *)lockp,
1487			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1488				break;
1489		}
1490
1491		dtrace_membar_producer();
1492	}
1493
1494top:
1495	prev = NULL;
1496	lock = hash[bucket].dtdh_lock;
1497
1498	dtrace_membar_consumer();
1499
1500	start = hash[bucket].dtdh_chain;
1501	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1502	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1503	    op != DTRACE_DYNVAR_DEALLOC));
1504
1505	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1506		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1507		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1508
1509		if (dvar->dtdv_hashval != hashval) {
1510			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1511				/*
1512				 * We've reached the sink, and therefore the
1513				 * end of the hash chain; we can kick out of
1514				 * the loop knowing that we have seen a valid
1515				 * snapshot of state.
1516				 */
1517				ASSERT(dvar->dtdv_next == NULL);
1518				ASSERT(dvar == &dtrace_dynhash_sink);
1519				break;
1520			}
1521
1522			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1523				/*
1524				 * We've gone off the rails:  somewhere along
1525				 * the line, one of the members of this hash
1526				 * chain was deleted.  Note that we could also
1527				 * detect this by simply letting this loop run
1528				 * to completion, as we would eventually hit
1529				 * the end of the dirty list.  However, we
1530				 * want to avoid running the length of the
1531				 * dirty list unnecessarily (it might be quite
1532				 * long), so we catch this as early as
1533				 * possible by detecting the hash marker.  In
1534				 * this case, we simply set dvar to NULL and
1535				 * break; the conditional after the loop will
1536				 * send us back to top.
1537				 */
1538				dvar = NULL;
1539				break;
1540			}
1541
1542			goto next;
1543		}
1544
1545		if (dtuple->dtt_nkeys != nkeys)
1546			goto next;
1547
1548		for (i = 0; i < nkeys; i++, dkey++) {
1549			if (dkey->dttk_size != key[i].dttk_size)
1550				goto next; /* size or type mismatch */
1551
1552			if (dkey->dttk_size != 0) {
1553				if (dtrace_bcmp(
1554				    (void *)(uintptr_t)key[i].dttk_value,
1555				    (void *)(uintptr_t)dkey->dttk_value,
1556				    dkey->dttk_size))
1557					goto next;
1558			} else {
1559				if (dkey->dttk_value != key[i].dttk_value)
1560					goto next;
1561			}
1562		}
1563
1564		if (op != DTRACE_DYNVAR_DEALLOC)
1565			return (dvar);
1566
1567		ASSERT(dvar->dtdv_next == NULL ||
1568		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1569
1570		if (prev != NULL) {
1571			ASSERT(hash[bucket].dtdh_chain != dvar);
1572			ASSERT(start != dvar);
1573			ASSERT(prev->dtdv_next == dvar);
1574			prev->dtdv_next = dvar->dtdv_next;
1575		} else {
1576			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1577			    start, dvar->dtdv_next) != start) {
1578				/*
1579				 * We have failed to atomically swing the
1580				 * hash table head pointer, presumably because
1581				 * of a conflicting allocation on another CPU.
1582				 * We need to reread the hash chain and try
1583				 * again.
1584				 */
1585				goto top;
1586			}
1587		}
1588
1589		dtrace_membar_producer();
1590
1591		/*
1592		 * Now set the hash value to indicate that it's free.
1593		 */
1594		ASSERT(hash[bucket].dtdh_chain != dvar);
1595		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1596
1597		dtrace_membar_producer();
1598
1599		/*
1600		 * Set the next pointer to point at the dirty list, and
1601		 * atomically swing the dirty pointer to the newly freed dvar.
1602		 */
1603		do {
1604			next = dcpu->dtdsc_dirty;
1605			dvar->dtdv_next = next;
1606		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1607
1608		/*
1609		 * Finally, unlock this hash bucket.
1610		 */
1611		ASSERT(hash[bucket].dtdh_lock == lock);
1612		ASSERT(lock & 1);
1613		hash[bucket].dtdh_lock++;
1614
1615		return (NULL);
1616next:
1617		prev = dvar;
1618		continue;
1619	}
1620
1621	if (dvar == NULL) {
1622		/*
1623		 * If dvar is NULL, it is because we went off the rails:
1624		 * one of the elements that we traversed in the hash chain
1625		 * was deleted while we were traversing it.  In this case,
1626		 * we assert that we aren't doing a dealloc (deallocs lock
1627		 * the hash bucket to prevent themselves from racing with
1628		 * one another), and retry the hash chain traversal.
1629		 */
1630		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1631		goto top;
1632	}
1633
1634	if (op != DTRACE_DYNVAR_ALLOC) {
1635		/*
1636		 * If we are not to allocate a new variable, we want to
1637		 * return NULL now.  Before we return, check that the value
1638		 * of the lock word hasn't changed.  If it has, we may have
1639		 * seen an inconsistent snapshot.
1640		 */
1641		if (op == DTRACE_DYNVAR_NOALLOC) {
1642			if (hash[bucket].dtdh_lock != lock)
1643				goto top;
1644		} else {
1645			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1646			ASSERT(hash[bucket].dtdh_lock == lock);
1647			ASSERT(lock & 1);
1648			hash[bucket].dtdh_lock++;
1649		}
1650
1651		return (NULL);
1652	}
1653
1654	/*
1655	 * We need to allocate a new dynamic variable.  The size we need is the
1656	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1657	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1658	 * the size of any referred-to data (dsize).  We then round the final
1659	 * size up to the chunksize for allocation.
1660	 */
1661	for (ksize = 0, i = 0; i < nkeys; i++)
1662		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1663
1664	/*
1665	 * This should be pretty much impossible, but could happen if, say,
1666	 * strange DIF specified the tuple.  Ideally, this should be an
1667	 * assertion and not an error condition -- but that requires that the
1668	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1669	 * bullet-proof.  (That is, it must not be able to be fooled by
1670	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1671	 * solving this would presumably not amount to solving the Halting
1672	 * Problem -- but it still seems awfully hard.
1673	 */
1674	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1675	    ksize + dsize > chunksize) {
1676		dcpu->dtdsc_drops++;
1677		return (NULL);
1678	}
1679
1680	nstate = DTRACE_DSTATE_EMPTY;
1681
1682	do {
1683retry:
1684		free = dcpu->dtdsc_free;
1685
1686		if (free == NULL) {
1687			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1688			void *rval;
1689
1690			if (clean == NULL) {
1691				/*
1692				 * We're out of dynamic variable space on
1693				 * this CPU.  Unless we have tried all CPUs,
1694				 * we'll try to allocate from a different
1695				 * CPU.
1696				 */
1697				switch (dstate->dtds_state) {
1698				case DTRACE_DSTATE_CLEAN: {
1699					void *sp = &dstate->dtds_state;
1700
1701					if (++cpu >= NCPU)
1702						cpu = 0;
1703
1704					if (dcpu->dtdsc_dirty != NULL &&
1705					    nstate == DTRACE_DSTATE_EMPTY)
1706						nstate = DTRACE_DSTATE_DIRTY;
1707
1708					if (dcpu->dtdsc_rinsing != NULL)
1709						nstate = DTRACE_DSTATE_RINSING;
1710
1711					dcpu = &dstate->dtds_percpu[cpu];
1712
1713					if (cpu != me)
1714						goto retry;
1715
1716					(void) dtrace_cas32(sp,
1717					    DTRACE_DSTATE_CLEAN, nstate);
1718
1719					/*
1720					 * To increment the correct bean
1721					 * counter, take another lap.
1722					 */
1723					goto retry;
1724				}
1725
1726				case DTRACE_DSTATE_DIRTY:
1727					dcpu->dtdsc_dirty_drops++;
1728					break;
1729
1730				case DTRACE_DSTATE_RINSING:
1731					dcpu->dtdsc_rinsing_drops++;
1732					break;
1733
1734				case DTRACE_DSTATE_EMPTY:
1735					dcpu->dtdsc_drops++;
1736					break;
1737				}
1738
1739				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1740				return (NULL);
1741			}
1742
1743			/*
1744			 * The clean list appears to be non-empty.  We want to
1745			 * move the clean list to the free list; we start by
1746			 * moving the clean pointer aside.
1747			 */
1748			if (dtrace_casptr(&dcpu->dtdsc_clean,
1749			    clean, NULL) != clean) {
1750				/*
1751				 * We are in one of two situations:
1752				 *
1753				 *  (a)	The clean list was switched to the
1754				 *	free list by another CPU.
1755				 *
1756				 *  (b)	The clean list was added to by the
1757				 *	cleansing cyclic.
1758				 *
1759				 * In either of these situations, we can
1760				 * just reattempt the free list allocation.
1761				 */
1762				goto retry;
1763			}
1764
1765			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1766
1767			/*
1768			 * Now we'll move the clean list to the free list.
1769			 * It's impossible for this to fail:  the only way
1770			 * the free list can be updated is through this
1771			 * code path, and only one CPU can own the clean list.
1772			 * Thus, it would only be possible for this to fail if
1773			 * this code were racing with dtrace_dynvar_clean().
1774			 * (That is, if dtrace_dynvar_clean() updated the clean
1775			 * list, and we ended up racing to update the free
1776			 * list.)  This race is prevented by the dtrace_sync()
1777			 * in dtrace_dynvar_clean() -- which flushes the
1778			 * owners of the clean lists out before resetting
1779			 * the clean lists.
1780			 */
1781			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1782			ASSERT(rval == NULL);
1783			goto retry;
1784		}
1785
1786		dvar = free;
1787		new_free = dvar->dtdv_next;
1788	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1789
1790	/*
1791	 * We have now allocated a new chunk.  We copy the tuple keys into the
1792	 * tuple array and copy any referenced key data into the data space
1793	 * following the tuple array.  As we do this, we relocate dttk_value
1794	 * in the final tuple to point to the key data address in the chunk.
1795	 */
1796	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1797	dvar->dtdv_data = (void *)(kdata + ksize);
1798	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1799
1800	for (i = 0; i < nkeys; i++) {
1801		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1802		size_t kesize = key[i].dttk_size;
1803
1804		if (kesize != 0) {
1805			dtrace_bcopy(
1806			    (const void *)(uintptr_t)key[i].dttk_value,
1807			    (void *)kdata, kesize);
1808			dkey->dttk_value = kdata;
1809			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1810		} else {
1811			dkey->dttk_value = key[i].dttk_value;
1812		}
1813
1814		dkey->dttk_size = kesize;
1815	}
1816
1817	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1818	dvar->dtdv_hashval = hashval;
1819	dvar->dtdv_next = start;
1820
1821	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1822		return (dvar);
1823
1824	/*
1825	 * The cas has failed.  Either another CPU is adding an element to
1826	 * this hash chain, or another CPU is deleting an element from this
1827	 * hash chain.  The simplest way to deal with both of these cases
1828	 * (though not necessarily the most efficient) is to free our
1829	 * allocated block and tail-call ourselves.  Note that the free is
1830	 * to the dirty list and _not_ to the free list.  This is to prevent
1831	 * races with allocators, above.
1832	 */
1833	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1834
1835	dtrace_membar_producer();
1836
1837	do {
1838		free = dcpu->dtdsc_dirty;
1839		dvar->dtdv_next = free;
1840	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1841
1842	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1843}
1844
1845/*ARGSUSED*/
1846static void
1847dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1848{
1849	if ((int64_t)nval < (int64_t)*oval)
1850		*oval = nval;
1851}
1852
1853/*ARGSUSED*/
1854static void
1855dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1856{
1857	if ((int64_t)nval > (int64_t)*oval)
1858		*oval = nval;
1859}
1860
1861static void
1862dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1863{
1864	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1865	int64_t val = (int64_t)nval;
1866
1867	if (val < 0) {
1868		for (i = 0; i < zero; i++) {
1869			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1870				quanta[i] += incr;
1871				return;
1872			}
1873		}
1874	} else {
1875		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1876			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1877				quanta[i - 1] += incr;
1878				return;
1879			}
1880		}
1881
1882		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1883		return;
1884	}
1885
1886	ASSERT(0);
1887}
1888
1889static void
1890dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1891{
1892	uint64_t arg = *lquanta++;
1893	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1894	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1895	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1896	int32_t val = (int32_t)nval, level;
1897
1898	ASSERT(step != 0);
1899	ASSERT(levels != 0);
1900
1901	if (val < base) {
1902		/*
1903		 * This is an underflow.
1904		 */
1905		lquanta[0] += incr;
1906		return;
1907	}
1908
1909	level = (val - base) / step;
1910
1911	if (level < levels) {
1912		lquanta[level + 1] += incr;
1913		return;
1914	}
1915
1916	/*
1917	 * This is an overflow.
1918	 */
1919	lquanta[levels + 1] += incr;
1920}
1921
1922static int
1923dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
1924    uint16_t high, uint16_t nsteps, int64_t value)
1925{
1926	int64_t this = 1, last, next;
1927	int base = 1, order;
1928
1929	ASSERT(factor <= nsteps);
1930	ASSERT(nsteps % factor == 0);
1931
1932	for (order = 0; order < low; order++)
1933		this *= factor;
1934
1935	/*
1936	 * If our value is less than our factor taken to the power of the
1937	 * low order of magnitude, it goes into the zeroth bucket.
1938	 */
1939	if (value < (last = this))
1940		return (0);
1941
1942	for (this *= factor; order <= high; order++) {
1943		int nbuckets = this > nsteps ? nsteps : this;
1944
1945		if ((next = this * factor) < this) {
1946			/*
1947			 * We should not generally get log/linear quantizations
1948			 * with a high magnitude that allows 64-bits to
1949			 * overflow, but we nonetheless protect against this
1950			 * by explicitly checking for overflow, and clamping
1951			 * our value accordingly.
1952			 */
1953			value = this - 1;
1954		}
1955
1956		if (value < this) {
1957			/*
1958			 * If our value lies within this order of magnitude,
1959			 * determine its position by taking the offset within
1960			 * the order of magnitude, dividing by the bucket
1961			 * width, and adding to our (accumulated) base.
1962			 */
1963			return (base + (value - last) / (this / nbuckets));
1964		}
1965
1966		base += nbuckets - (nbuckets / factor);
1967		last = this;
1968		this = next;
1969	}
1970
1971	/*
1972	 * Our value is greater than or equal to our factor taken to the
1973	 * power of one plus the high magnitude -- return the top bucket.
1974	 */
1975	return (base);
1976}
1977
1978static void
1979dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
1980{
1981	uint64_t arg = *llquanta++;
1982	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1983	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
1984	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
1985	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1986
1987	llquanta[dtrace_aggregate_llquantize_bucket(factor,
1988	    low, high, nsteps, nval)] += incr;
1989}
1990
1991/*ARGSUSED*/
1992static void
1993dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1994{
1995	data[0]++;
1996	data[1] += nval;
1997}
1998
1999/*ARGSUSED*/
2000static void
2001dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2002{
2003	int64_t snval = (int64_t)nval;
2004	uint64_t tmp[2];
2005
2006	data[0]++;
2007	data[1] += nval;
2008
2009	/*
2010	 * What we want to say here is:
2011	 *
2012	 * data[2] += nval * nval;
2013	 *
2014	 * But given that nval is 64-bit, we could easily overflow, so
2015	 * we do this as 128-bit arithmetic.
2016	 */
2017	if (snval < 0)
2018		snval = -snval;
2019
2020	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2021	dtrace_add_128(data + 2, tmp, data + 2);
2022}
2023
2024/*ARGSUSED*/
2025static void
2026dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2027{
2028	*oval = *oval + 1;
2029}
2030
2031/*ARGSUSED*/
2032static void
2033dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2034{
2035	*oval += nval;
2036}
2037
2038/*
2039 * Aggregate given the tuple in the principal data buffer, and the aggregating
2040 * action denoted by the specified dtrace_aggregation_t.  The aggregation
2041 * buffer is specified as the buf parameter.  This routine does not return
2042 * failure; if there is no space in the aggregation buffer, the data will be
2043 * dropped, and a corresponding counter incremented.
2044 */
2045static void
2046dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2047    intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2048{
2049	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2050	uint32_t i, ndx, size, fsize;
2051	uint32_t align = sizeof (uint64_t) - 1;
2052	dtrace_aggbuffer_t *agb;
2053	dtrace_aggkey_t *key;
2054	uint32_t hashval = 0, limit, isstr;
2055	caddr_t tomax, data, kdata;
2056	dtrace_actkind_t action;
2057	dtrace_action_t *act;
2058	uintptr_t offs;
2059
2060	if (buf == NULL)
2061		return;
2062
2063	if (!agg->dtag_hasarg) {
2064		/*
2065		 * Currently, only quantize() and lquantize() take additional
2066		 * arguments, and they have the same semantics:  an increment
2067		 * value that defaults to 1 when not present.  If additional
2068		 * aggregating actions take arguments, the setting of the
2069		 * default argument value will presumably have to become more
2070		 * sophisticated...
2071		 */
2072		arg = 1;
2073	}
2074
2075	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2076	size = rec->dtrd_offset - agg->dtag_base;
2077	fsize = size + rec->dtrd_size;
2078
2079	ASSERT(dbuf->dtb_tomax != NULL);
2080	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2081
2082	if ((tomax = buf->dtb_tomax) == NULL) {
2083		dtrace_buffer_drop(buf);
2084		return;
2085	}
2086
2087	/*
2088	 * The metastructure is always at the bottom of the buffer.
2089	 */
2090	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2091	    sizeof (dtrace_aggbuffer_t));
2092
2093	if (buf->dtb_offset == 0) {
2094		/*
2095		 * We just kludge up approximately 1/8th of the size to be
2096		 * buckets.  If this guess ends up being routinely
2097		 * off-the-mark, we may need to dynamically readjust this
2098		 * based on past performance.
2099		 */
2100		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2101
2102		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2103		    (uintptr_t)tomax || hashsize == 0) {
2104			/*
2105			 * We've been given a ludicrously small buffer;
2106			 * increment our drop count and leave.
2107			 */
2108			dtrace_buffer_drop(buf);
2109			return;
2110		}
2111
2112		/*
2113		 * And now, a pathetic attempt to try to get a an odd (or
2114		 * perchance, a prime) hash size for better hash distribution.
2115		 */
2116		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2117			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2118
2119		agb->dtagb_hashsize = hashsize;
2120		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2121		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2122		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2123
2124		for (i = 0; i < agb->dtagb_hashsize; i++)
2125			agb->dtagb_hash[i] = NULL;
2126	}
2127
2128	ASSERT(agg->dtag_first != NULL);
2129	ASSERT(agg->dtag_first->dta_intuple);
2130
2131	/*
2132	 * Calculate the hash value based on the key.  Note that we _don't_
2133	 * include the aggid in the hashing (but we will store it as part of
2134	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2135	 * algorithm: a simple, quick algorithm that has no known funnels, and
2136	 * gets good distribution in practice.  The efficacy of the hashing
2137	 * algorithm (and a comparison with other algorithms) may be found by
2138	 * running the ::dtrace_aggstat MDB dcmd.
2139	 */
2140	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2141		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2142		limit = i + act->dta_rec.dtrd_size;
2143		ASSERT(limit <= size);
2144		isstr = DTRACEACT_ISSTRING(act);
2145
2146		for (; i < limit; i++) {
2147			hashval += data[i];
2148			hashval += (hashval << 10);
2149			hashval ^= (hashval >> 6);
2150
2151			if (isstr && data[i] == '\0')
2152				break;
2153		}
2154	}
2155
2156	hashval += (hashval << 3);
2157	hashval ^= (hashval >> 11);
2158	hashval += (hashval << 15);
2159
2160	/*
2161	 * Yes, the divide here is expensive -- but it's generally the least
2162	 * of the performance issues given the amount of data that we iterate
2163	 * over to compute hash values, compare data, etc.
2164	 */
2165	ndx = hashval % agb->dtagb_hashsize;
2166
2167	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2168		ASSERT((caddr_t)key >= tomax);
2169		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2170
2171		if (hashval != key->dtak_hashval || key->dtak_size != size)
2172			continue;
2173
2174		kdata = key->dtak_data;
2175		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2176
2177		for (act = agg->dtag_first; act->dta_intuple;
2178		    act = act->dta_next) {
2179			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2180			limit = i + act->dta_rec.dtrd_size;
2181			ASSERT(limit <= size);
2182			isstr = DTRACEACT_ISSTRING(act);
2183
2184			for (; i < limit; i++) {
2185				if (kdata[i] != data[i])
2186					goto next;
2187
2188				if (isstr && data[i] == '\0')
2189					break;
2190			}
2191		}
2192
2193		if (action != key->dtak_action) {
2194			/*
2195			 * We are aggregating on the same value in the same
2196			 * aggregation with two different aggregating actions.
2197			 * (This should have been picked up in the compiler,
2198			 * so we may be dealing with errant or devious DIF.)
2199			 * This is an error condition; we indicate as much,
2200			 * and return.
2201			 */
2202			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2203			return;
2204		}
2205
2206		/*
2207		 * This is a hit:  we need to apply the aggregator to
2208		 * the value at this key.
2209		 */
2210		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2211		return;
2212next:
2213		continue;
2214	}
2215
2216	/*
2217	 * We didn't find it.  We need to allocate some zero-filled space,
2218	 * link it into the hash table appropriately, and apply the aggregator
2219	 * to the (zero-filled) value.
2220	 */
2221	offs = buf->dtb_offset;
2222	while (offs & (align - 1))
2223		offs += sizeof (uint32_t);
2224
2225	/*
2226	 * If we don't have enough room to both allocate a new key _and_
2227	 * its associated data, increment the drop count and return.
2228	 */
2229	if ((uintptr_t)tomax + offs + fsize >
2230	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2231		dtrace_buffer_drop(buf);
2232		return;
2233	}
2234
2235	/*CONSTCOND*/
2236	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2237	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2238	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2239
2240	key->dtak_data = kdata = tomax + offs;
2241	buf->dtb_offset = offs + fsize;
2242
2243	/*
2244	 * Now copy the data across.
2245	 */
2246	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2247
2248	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2249		kdata[i] = data[i];
2250
2251	/*
2252	 * Because strings are not zeroed out by default, we need to iterate
2253	 * looking for actions that store strings, and we need to explicitly
2254	 * pad these strings out with zeroes.
2255	 */
2256	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2257		int nul;
2258
2259		if (!DTRACEACT_ISSTRING(act))
2260			continue;
2261
2262		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2263		limit = i + act->dta_rec.dtrd_size;
2264		ASSERT(limit <= size);
2265
2266		for (nul = 0; i < limit; i++) {
2267			if (nul) {
2268				kdata[i] = '\0';
2269				continue;
2270			}
2271
2272			if (data[i] != '\0')
2273				continue;
2274
2275			nul = 1;
2276		}
2277	}
2278
2279	for (i = size; i < fsize; i++)
2280		kdata[i] = 0;
2281
2282	key->dtak_hashval = hashval;
2283	key->dtak_size = size;
2284	key->dtak_action = action;
2285	key->dtak_next = agb->dtagb_hash[ndx];
2286	agb->dtagb_hash[ndx] = key;
2287
2288	/*
2289	 * Finally, apply the aggregator.
2290	 */
2291	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2292	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2293}
2294
2295/*
2296 * Given consumer state, this routine finds a speculation in the INACTIVE
2297 * state and transitions it into the ACTIVE state.  If there is no speculation
2298 * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2299 * incremented -- it is up to the caller to take appropriate action.
2300 */
2301static int
2302dtrace_speculation(dtrace_state_t *state)
2303{
2304	int i = 0;
2305	dtrace_speculation_state_t current;
2306	uint32_t *stat = &state->dts_speculations_unavail, count;
2307
2308	while (i < state->dts_nspeculations) {
2309		dtrace_speculation_t *spec = &state->dts_speculations[i];
2310
2311		current = spec->dtsp_state;
2312
2313		if (current != DTRACESPEC_INACTIVE) {
2314			if (current == DTRACESPEC_COMMITTINGMANY ||
2315			    current == DTRACESPEC_COMMITTING ||
2316			    current == DTRACESPEC_DISCARDING)
2317				stat = &state->dts_speculations_busy;
2318			i++;
2319			continue;
2320		}
2321
2322		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2323		    current, DTRACESPEC_ACTIVE) == current)
2324			return (i + 1);
2325	}
2326
2327	/*
2328	 * We couldn't find a speculation.  If we found as much as a single
2329	 * busy speculation buffer, we'll attribute this failure as "busy"
2330	 * instead of "unavail".
2331	 */
2332	do {
2333		count = *stat;
2334	} while (dtrace_cas32(stat, count, count + 1) != count);
2335
2336	return (0);
2337}
2338
2339/*
2340 * This routine commits an active speculation.  If the specified speculation
2341 * is not in a valid state to perform a commit(), this routine will silently do
2342 * nothing.  The state of the specified speculation is transitioned according
2343 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2344 */
2345static void
2346dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2347    dtrace_specid_t which)
2348{
2349	dtrace_speculation_t *spec;
2350	dtrace_buffer_t *src, *dest;
2351	uintptr_t daddr, saddr, dlimit, slimit;
2352	dtrace_speculation_state_t current, new = 0;
2353	intptr_t offs;
2354	uint64_t timestamp;
2355
2356	if (which == 0)
2357		return;
2358
2359	if (which > state->dts_nspeculations) {
2360		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2361		return;
2362	}
2363
2364	spec = &state->dts_speculations[which - 1];
2365	src = &spec->dtsp_buffer[cpu];
2366	dest = &state->dts_buffer[cpu];
2367
2368	do {
2369		current = spec->dtsp_state;
2370
2371		if (current == DTRACESPEC_COMMITTINGMANY)
2372			break;
2373
2374		switch (current) {
2375		case DTRACESPEC_INACTIVE:
2376		case DTRACESPEC_DISCARDING:
2377			return;
2378
2379		case DTRACESPEC_COMMITTING:
2380			/*
2381			 * This is only possible if we are (a) commit()'ing
2382			 * without having done a prior speculate() on this CPU
2383			 * and (b) racing with another commit() on a different
2384			 * CPU.  There's nothing to do -- we just assert that
2385			 * our offset is 0.
2386			 */
2387			ASSERT(src->dtb_offset == 0);
2388			return;
2389
2390		case DTRACESPEC_ACTIVE:
2391			new = DTRACESPEC_COMMITTING;
2392			break;
2393
2394		case DTRACESPEC_ACTIVEONE:
2395			/*
2396			 * This speculation is active on one CPU.  If our
2397			 * buffer offset is non-zero, we know that the one CPU
2398			 * must be us.  Otherwise, we are committing on a
2399			 * different CPU from the speculate(), and we must
2400			 * rely on being asynchronously cleaned.
2401			 */
2402			if (src->dtb_offset != 0) {
2403				new = DTRACESPEC_COMMITTING;
2404				break;
2405			}
2406			/*FALLTHROUGH*/
2407
2408		case DTRACESPEC_ACTIVEMANY:
2409			new = DTRACESPEC_COMMITTINGMANY;
2410			break;
2411
2412		default:
2413			ASSERT(0);
2414		}
2415	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2416	    current, new) != current);
2417
2418	/*
2419	 * We have set the state to indicate that we are committing this
2420	 * speculation.  Now reserve the necessary space in the destination
2421	 * buffer.
2422	 */
2423	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2424	    sizeof (uint64_t), state, NULL)) < 0) {
2425		dtrace_buffer_drop(dest);
2426		goto out;
2427	}
2428
2429	/*
2430	 * We have sufficient space to copy the speculative buffer into the
2431	 * primary buffer.  First, modify the speculative buffer, filling
2432	 * in the timestamp of all entries with the current time.  The data
2433	 * must have the commit() time rather than the time it was traced,
2434	 * so that all entries in the primary buffer are in timestamp order.
2435	 */
2436	timestamp = dtrace_gethrtime();
2437	saddr = (uintptr_t)src->dtb_tomax;
2438	slimit = saddr + src->dtb_offset;
2439	while (saddr < slimit) {
2440		size_t size;
2441		dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2442
2443		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2444			saddr += sizeof (dtrace_epid_t);
2445			continue;
2446		}
2447		ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2448		size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2449
2450		ASSERT3U(saddr + size, <=, slimit);
2451		ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2452		ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2453
2454		DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2455
2456		saddr += size;
2457	}
2458
2459	/*
2460	 * Copy the buffer across.  (Note that this is a
2461	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2462	 * a serious performance issue, a high-performance DTrace-specific
2463	 * bcopy() should obviously be invented.)
2464	 */
2465	daddr = (uintptr_t)dest->dtb_tomax + offs;
2466	dlimit = daddr + src->dtb_offset;
2467	saddr = (uintptr_t)src->dtb_tomax;
2468
2469	/*
2470	 * First, the aligned portion.
2471	 */
2472	while (dlimit - daddr >= sizeof (uint64_t)) {
2473		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2474
2475		daddr += sizeof (uint64_t);
2476		saddr += sizeof (uint64_t);
2477	}
2478
2479	/*
2480	 * Now any left-over bit...
2481	 */
2482	while (dlimit - daddr)
2483		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2484
2485	/*
2486	 * Finally, commit the reserved space in the destination buffer.
2487	 */
2488	dest->dtb_offset = offs + src->dtb_offset;
2489
2490out:
2491	/*
2492	 * If we're lucky enough to be the only active CPU on this speculation
2493	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2494	 */
2495	if (current == DTRACESPEC_ACTIVE ||
2496	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2497		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2498		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2499
2500		ASSERT(rval == DTRACESPEC_COMMITTING);
2501	}
2502
2503	src->dtb_offset = 0;
2504	src->dtb_xamot_drops += src->dtb_drops;
2505	src->dtb_drops = 0;
2506}
2507
2508/*
2509 * This routine discards an active speculation.  If the specified speculation
2510 * is not in a valid state to perform a discard(), this routine will silently
2511 * do nothing.  The state of the specified speculation is transitioned
2512 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2513 */
2514static void
2515dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2516    dtrace_specid_t which)
2517{
2518	dtrace_speculation_t *spec;
2519	dtrace_speculation_state_t current, new = 0;
2520	dtrace_buffer_t *buf;
2521
2522	if (which == 0)
2523		return;
2524
2525	if (which > state->dts_nspeculations) {
2526		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2527		return;
2528	}
2529
2530	spec = &state->dts_speculations[which - 1];
2531	buf = &spec->dtsp_buffer[cpu];
2532
2533	do {
2534		current = spec->dtsp_state;
2535
2536		switch (current) {
2537		case DTRACESPEC_INACTIVE:
2538		case DTRACESPEC_COMMITTINGMANY:
2539		case DTRACESPEC_COMMITTING:
2540		case DTRACESPEC_DISCARDING:
2541			return;
2542
2543		case DTRACESPEC_ACTIVE:
2544		case DTRACESPEC_ACTIVEMANY:
2545			new = DTRACESPEC_DISCARDING;
2546			break;
2547
2548		case DTRACESPEC_ACTIVEONE:
2549			if (buf->dtb_offset != 0) {
2550				new = DTRACESPEC_INACTIVE;
2551			} else {
2552				new = DTRACESPEC_DISCARDING;
2553			}
2554			break;
2555
2556		default:
2557			ASSERT(0);
2558		}
2559	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2560	    current, new) != current);
2561
2562	buf->dtb_offset = 0;
2563	buf->dtb_drops = 0;
2564}
2565
2566/*
2567 * Note:  not called from probe context.  This function is called
2568 * asynchronously from cross call context to clean any speculations that are
2569 * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2570 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2571 * speculation.
2572 */
2573static void
2574dtrace_speculation_clean_here(dtrace_state_t *state)
2575{
2576	dtrace_icookie_t cookie;
2577	processorid_t cpu = curcpu;
2578	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2579	dtrace_specid_t i;
2580
2581	cookie = dtrace_interrupt_disable();
2582
2583	if (dest->dtb_tomax == NULL) {
2584		dtrace_interrupt_enable(cookie);
2585		return;
2586	}
2587
2588	for (i = 0; i < state->dts_nspeculations; i++) {
2589		dtrace_speculation_t *spec = &state->dts_speculations[i];
2590		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2591
2592		if (src->dtb_tomax == NULL)
2593			continue;
2594
2595		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2596			src->dtb_offset = 0;
2597			continue;
2598		}
2599
2600		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2601			continue;
2602
2603		if (src->dtb_offset == 0)
2604			continue;
2605
2606		dtrace_speculation_commit(state, cpu, i + 1);
2607	}
2608
2609	dtrace_interrupt_enable(cookie);
2610}
2611
2612/*
2613 * Note:  not called from probe context.  This function is called
2614 * asynchronously (and at a regular interval) to clean any speculations that
2615 * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2616 * is work to be done, it cross calls all CPUs to perform that work;
2617 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2618 * INACTIVE state until they have been cleaned by all CPUs.
2619 */
2620static void
2621dtrace_speculation_clean(dtrace_state_t *state)
2622{
2623	int work = 0, rv;
2624	dtrace_specid_t i;
2625
2626	for (i = 0; i < state->dts_nspeculations; i++) {
2627		dtrace_speculation_t *spec = &state->dts_speculations[i];
2628
2629		ASSERT(!spec->dtsp_cleaning);
2630
2631		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2632		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2633			continue;
2634
2635		work++;
2636		spec->dtsp_cleaning = 1;
2637	}
2638
2639	if (!work)
2640		return;
2641
2642	dtrace_xcall(DTRACE_CPUALL,
2643	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2644
2645	/*
2646	 * We now know that all CPUs have committed or discarded their
2647	 * speculation buffers, as appropriate.  We can now set the state
2648	 * to inactive.
2649	 */
2650	for (i = 0; i < state->dts_nspeculations; i++) {
2651		dtrace_speculation_t *spec = &state->dts_speculations[i];
2652		dtrace_speculation_state_t current, new;
2653
2654		if (!spec->dtsp_cleaning)
2655			continue;
2656
2657		current = spec->dtsp_state;
2658		ASSERT(current == DTRACESPEC_DISCARDING ||
2659		    current == DTRACESPEC_COMMITTINGMANY);
2660
2661		new = DTRACESPEC_INACTIVE;
2662
2663		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2664		ASSERT(rv == current);
2665		spec->dtsp_cleaning = 0;
2666	}
2667}
2668
2669/*
2670 * Called as part of a speculate() to get the speculative buffer associated
2671 * with a given speculation.  Returns NULL if the specified speculation is not
2672 * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2673 * the active CPU is not the specified CPU -- the speculation will be
2674 * atomically transitioned into the ACTIVEMANY state.
2675 */
2676static dtrace_buffer_t *
2677dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2678    dtrace_specid_t which)
2679{
2680	dtrace_speculation_t *spec;
2681	dtrace_speculation_state_t current, new = 0;
2682	dtrace_buffer_t *buf;
2683
2684	if (which == 0)
2685		return (NULL);
2686
2687	if (which > state->dts_nspeculations) {
2688		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2689		return (NULL);
2690	}
2691
2692	spec = &state->dts_speculations[which - 1];
2693	buf = &spec->dtsp_buffer[cpuid];
2694
2695	do {
2696		current = spec->dtsp_state;
2697
2698		switch (current) {
2699		case DTRACESPEC_INACTIVE:
2700		case DTRACESPEC_COMMITTINGMANY:
2701		case DTRACESPEC_DISCARDING:
2702			return (NULL);
2703
2704		case DTRACESPEC_COMMITTING:
2705			ASSERT(buf->dtb_offset == 0);
2706			return (NULL);
2707
2708		case DTRACESPEC_ACTIVEONE:
2709			/*
2710			 * This speculation is currently active on one CPU.
2711			 * Check the offset in the buffer; if it's non-zero,
2712			 * that CPU must be us (and we leave the state alone).
2713			 * If it's zero, assume that we're starting on a new
2714			 * CPU -- and change the state to indicate that the
2715			 * speculation is active on more than one CPU.
2716			 */
2717			if (buf->dtb_offset != 0)
2718				return (buf);
2719
2720			new = DTRACESPEC_ACTIVEMANY;
2721			break;
2722
2723		case DTRACESPEC_ACTIVEMANY:
2724			return (buf);
2725
2726		case DTRACESPEC_ACTIVE:
2727			new = DTRACESPEC_ACTIVEONE;
2728			break;
2729
2730		default:
2731			ASSERT(0);
2732		}
2733	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2734	    current, new) != current);
2735
2736	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2737	return (buf);
2738}
2739
2740/*
2741 * Return a string.  In the event that the user lacks the privilege to access
2742 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2743 * don't fail access checking.
2744 *
2745 * dtrace_dif_variable() uses this routine as a helper for various
2746 * builtin values such as 'execname' and 'probefunc.'
2747 */
2748uintptr_t
2749dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2750    dtrace_mstate_t *mstate)
2751{
2752	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2753	uintptr_t ret;
2754	size_t strsz;
2755
2756	/*
2757	 * The easy case: this probe is allowed to read all of memory, so
2758	 * we can just return this as a vanilla pointer.
2759	 */
2760	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2761		return (addr);
2762
2763	/*
2764	 * This is the tougher case: we copy the string in question from
2765	 * kernel memory into scratch memory and return it that way: this
2766	 * ensures that we won't trip up when access checking tests the
2767	 * BYREF return value.
2768	 */
2769	strsz = dtrace_strlen((char *)addr, size) + 1;
2770
2771	if (mstate->dtms_scratch_ptr + strsz >
2772	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2773		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2774		return (0);
2775	}
2776
2777	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2778	    strsz);
2779	ret = mstate->dtms_scratch_ptr;
2780	mstate->dtms_scratch_ptr += strsz;
2781	return (ret);
2782}
2783
2784/*
2785 * Return a string from a memoy address which is known to have one or
2786 * more concatenated, individually zero terminated, sub-strings.
2787 * In the event that the user lacks the privilege to access
2788 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2789 * don't fail access checking.
2790 *
2791 * dtrace_dif_variable() uses this routine as a helper for various
2792 * builtin values such as 'execargs'.
2793 */
2794static uintptr_t
2795dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2796    dtrace_mstate_t *mstate)
2797{
2798	char *p;
2799	size_t i;
2800	uintptr_t ret;
2801
2802	if (mstate->dtms_scratch_ptr + strsz >
2803	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2804		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2805		return (0);
2806	}
2807
2808	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2809	    strsz);
2810
2811	/* Replace sub-string termination characters with a space. */
2812	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2813	    p++, i++)
2814		if (*p == '\0')
2815			*p = ' ';
2816
2817	ret = mstate->dtms_scratch_ptr;
2818	mstate->dtms_scratch_ptr += strsz;
2819	return (ret);
2820}
2821
2822/*
2823 * This function implements the DIF emulator's variable lookups.  The emulator
2824 * passes a reserved variable identifier and optional built-in array index.
2825 */
2826static uint64_t
2827dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2828    uint64_t ndx)
2829{
2830	/*
2831	 * If we're accessing one of the uncached arguments, we'll turn this
2832	 * into a reference in the args array.
2833	 */
2834	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2835		ndx = v - DIF_VAR_ARG0;
2836		v = DIF_VAR_ARGS;
2837	}
2838
2839	switch (v) {
2840	case DIF_VAR_ARGS:
2841		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2842		if (ndx >= sizeof (mstate->dtms_arg) /
2843		    sizeof (mstate->dtms_arg[0])) {
2844			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2845			dtrace_provider_t *pv;
2846			uint64_t val;
2847
2848			pv = mstate->dtms_probe->dtpr_provider;
2849			if (pv->dtpv_pops.dtps_getargval != NULL)
2850				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2851				    mstate->dtms_probe->dtpr_id,
2852				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2853			else
2854				val = dtrace_getarg(ndx, aframes);
2855
2856			/*
2857			 * This is regrettably required to keep the compiler
2858			 * from tail-optimizing the call to dtrace_getarg().
2859			 * The condition always evaluates to true, but the
2860			 * compiler has no way of figuring that out a priori.
2861			 * (None of this would be necessary if the compiler
2862			 * could be relied upon to _always_ tail-optimize
2863			 * the call to dtrace_getarg() -- but it can't.)
2864			 */
2865			if (mstate->dtms_probe != NULL)
2866				return (val);
2867
2868			ASSERT(0);
2869		}
2870
2871		return (mstate->dtms_arg[ndx]);
2872
2873#if defined(sun)
2874	case DIF_VAR_UREGS: {
2875		klwp_t *lwp;
2876
2877		if (!dtrace_priv_proc(state))
2878			return (0);
2879
2880		if ((lwp = curthread->t_lwp) == NULL) {
2881			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2882			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
2883			return (0);
2884		}
2885
2886		return (dtrace_getreg(lwp->lwp_regs, ndx));
2887		return (0);
2888	}
2889#else
2890	case DIF_VAR_UREGS: {
2891		struct trapframe *tframe;
2892
2893		if (!dtrace_priv_proc(state))
2894			return (0);
2895
2896		if ((tframe = curthread->td_frame) == NULL) {
2897			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2898			cpu_core[curcpu].cpuc_dtrace_illval = 0;
2899			return (0);
2900		}
2901
2902		return (dtrace_getreg(tframe, ndx));
2903	}
2904#endif
2905
2906	case DIF_VAR_CURTHREAD:
2907		if (!dtrace_priv_kernel(state))
2908			return (0);
2909		return ((uint64_t)(uintptr_t)curthread);
2910
2911	case DIF_VAR_TIMESTAMP:
2912		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2913			mstate->dtms_timestamp = dtrace_gethrtime();
2914			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2915		}
2916		return (mstate->dtms_timestamp);
2917
2918	case DIF_VAR_VTIMESTAMP:
2919		ASSERT(dtrace_vtime_references != 0);
2920		return (curthread->t_dtrace_vtime);
2921
2922	case DIF_VAR_WALLTIMESTAMP:
2923		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2924			mstate->dtms_walltimestamp = dtrace_gethrestime();
2925			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2926		}
2927		return (mstate->dtms_walltimestamp);
2928
2929#if defined(sun)
2930	case DIF_VAR_IPL:
2931		if (!dtrace_priv_kernel(state))
2932			return (0);
2933		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2934			mstate->dtms_ipl = dtrace_getipl();
2935			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2936		}
2937		return (mstate->dtms_ipl);
2938#endif
2939
2940	case DIF_VAR_EPID:
2941		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2942		return (mstate->dtms_epid);
2943
2944	case DIF_VAR_ID:
2945		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2946		return (mstate->dtms_probe->dtpr_id);
2947
2948	case DIF_VAR_STACKDEPTH:
2949		if (!dtrace_priv_kernel(state))
2950			return (0);
2951		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2952			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2953
2954			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2955			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2956		}
2957		return (mstate->dtms_stackdepth);
2958
2959	case DIF_VAR_USTACKDEPTH:
2960		if (!dtrace_priv_proc(state))
2961			return (0);
2962		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2963			/*
2964			 * See comment in DIF_VAR_PID.
2965			 */
2966			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2967			    CPU_ON_INTR(CPU)) {
2968				mstate->dtms_ustackdepth = 0;
2969			} else {
2970				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2971				mstate->dtms_ustackdepth =
2972				    dtrace_getustackdepth();
2973				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2974			}
2975			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2976		}
2977		return (mstate->dtms_ustackdepth);
2978
2979	case DIF_VAR_CALLER:
2980		if (!dtrace_priv_kernel(state))
2981			return (0);
2982		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2983			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2984
2985			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2986				/*
2987				 * If this is an unanchored probe, we are
2988				 * required to go through the slow path:
2989				 * dtrace_caller() only guarantees correct
2990				 * results for anchored probes.
2991				 */
2992				pc_t caller[2] = {0, 0};
2993
2994				dtrace_getpcstack(caller, 2, aframes,
2995				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2996				mstate->dtms_caller = caller[1];
2997			} else if ((mstate->dtms_caller =
2998			    dtrace_caller(aframes)) == -1) {
2999				/*
3000				 * We have failed to do this the quick way;
3001				 * we must resort to the slower approach of
3002				 * calling dtrace_getpcstack().
3003				 */
3004				pc_t caller = 0;
3005
3006				dtrace_getpcstack(&caller, 1, aframes, NULL);
3007				mstate->dtms_caller = caller;
3008			}
3009
3010			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3011		}
3012		return (mstate->dtms_caller);
3013
3014	case DIF_VAR_UCALLER:
3015		if (!dtrace_priv_proc(state))
3016			return (0);
3017
3018		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3019			uint64_t ustack[3];
3020
3021			/*
3022			 * dtrace_getupcstack() fills in the first uint64_t
3023			 * with the current PID.  The second uint64_t will
3024			 * be the program counter at user-level.  The third
3025			 * uint64_t will contain the caller, which is what
3026			 * we're after.
3027			 */
3028			ustack[2] = 0;
3029			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3030			dtrace_getupcstack(ustack, 3);
3031			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3032			mstate->dtms_ucaller = ustack[2];
3033			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3034		}
3035
3036		return (mstate->dtms_ucaller);
3037
3038	case DIF_VAR_PROBEPROV:
3039		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3040		return (dtrace_dif_varstr(
3041		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3042		    state, mstate));
3043
3044	case DIF_VAR_PROBEMOD:
3045		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3046		return (dtrace_dif_varstr(
3047		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3048		    state, mstate));
3049
3050	case DIF_VAR_PROBEFUNC:
3051		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3052		return (dtrace_dif_varstr(
3053		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3054		    state, mstate));
3055
3056	case DIF_VAR_PROBENAME:
3057		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3058		return (dtrace_dif_varstr(
3059		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3060		    state, mstate));
3061
3062	case DIF_VAR_PID:
3063		if (!dtrace_priv_proc(state))
3064			return (0);
3065
3066#if defined(sun)
3067		/*
3068		 * Note that we are assuming that an unanchored probe is
3069		 * always due to a high-level interrupt.  (And we're assuming
3070		 * that there is only a single high level interrupt.)
3071		 */
3072		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3073			return (pid0.pid_id);
3074
3075		/*
3076		 * It is always safe to dereference one's own t_procp pointer:
3077		 * it always points to a valid, allocated proc structure.
3078		 * Further, it is always safe to dereference the p_pidp member
3079		 * of one's own proc structure.  (These are truisms becuase
3080		 * threads and processes don't clean up their own state --
3081		 * they leave that task to whomever reaps them.)
3082		 */
3083		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3084#else
3085		return ((uint64_t)curproc->p_pid);
3086#endif
3087
3088	case DIF_VAR_PPID:
3089		if (!dtrace_priv_proc(state))
3090			return (0);
3091
3092#if defined(sun)
3093		/*
3094		 * See comment in DIF_VAR_PID.
3095		 */
3096		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3097			return (pid0.pid_id);
3098
3099		/*
3100		 * It is always safe to dereference one's own t_procp pointer:
3101		 * it always points to a valid, allocated proc structure.
3102		 * (This is true because threads don't clean up their own
3103		 * state -- they leave that task to whomever reaps them.)
3104		 */
3105		return ((uint64_t)curthread->t_procp->p_ppid);
3106#else
3107		return ((uint64_t)curproc->p_pptr->p_pid);
3108#endif
3109
3110	case DIF_VAR_TID:
3111#if defined(sun)
3112		/*
3113		 * See comment in DIF_VAR_PID.
3114		 */
3115		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3116			return (0);
3117#endif
3118
3119		return ((uint64_t)curthread->t_tid);
3120
3121	case DIF_VAR_EXECARGS: {
3122		struct pargs *p_args = curthread->td_proc->p_args;
3123
3124		if (p_args == NULL)
3125			return(0);
3126
3127		return (dtrace_dif_varstrz(
3128		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3129	}
3130
3131	case DIF_VAR_EXECNAME:
3132#if defined(sun)
3133		if (!dtrace_priv_proc(state))
3134			return (0);
3135
3136		/*
3137		 * See comment in DIF_VAR_PID.
3138		 */
3139		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3140			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3141
3142		/*
3143		 * It is always safe to dereference one's own t_procp pointer:
3144		 * it always points to a valid, allocated proc structure.
3145		 * (This is true because threads don't clean up their own
3146		 * state -- they leave that task to whomever reaps them.)
3147		 */
3148		return (dtrace_dif_varstr(
3149		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3150		    state, mstate));
3151#else
3152		return (dtrace_dif_varstr(
3153		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3154#endif
3155
3156	case DIF_VAR_ZONENAME:
3157#if defined(sun)
3158		if (!dtrace_priv_proc(state))
3159			return (0);
3160
3161		/*
3162		 * See comment in DIF_VAR_PID.
3163		 */
3164		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3165			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3166
3167		/*
3168		 * It is always safe to dereference one's own t_procp pointer:
3169		 * it always points to a valid, allocated proc structure.
3170		 * (This is true because threads don't clean up their own
3171		 * state -- they leave that task to whomever reaps them.)
3172		 */
3173		return (dtrace_dif_varstr(
3174		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3175		    state, mstate));
3176#else
3177		return (0);
3178#endif
3179
3180	case DIF_VAR_UID:
3181		if (!dtrace_priv_proc(state))
3182			return (0);
3183
3184#if defined(sun)
3185		/*
3186		 * See comment in DIF_VAR_PID.
3187		 */
3188		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3189			return ((uint64_t)p0.p_cred->cr_uid);
3190#endif
3191
3192		/*
3193		 * It is always safe to dereference one's own t_procp pointer:
3194		 * it always points to a valid, allocated proc structure.
3195		 * (This is true because threads don't clean up their own
3196		 * state -- they leave that task to whomever reaps them.)
3197		 *
3198		 * Additionally, it is safe to dereference one's own process
3199		 * credential, since this is never NULL after process birth.
3200		 */
3201		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3202
3203	case DIF_VAR_GID:
3204		if (!dtrace_priv_proc(state))
3205			return (0);
3206
3207#if defined(sun)
3208		/*
3209		 * See comment in DIF_VAR_PID.
3210		 */
3211		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3212			return ((uint64_t)p0.p_cred->cr_gid);
3213#endif
3214
3215		/*
3216		 * It is always safe to dereference one's own t_procp pointer:
3217		 * it always points to a valid, allocated proc structure.
3218		 * (This is true because threads don't clean up their own
3219		 * state -- they leave that task to whomever reaps them.)
3220		 *
3221		 * Additionally, it is safe to dereference one's own process
3222		 * credential, since this is never NULL after process birth.
3223		 */
3224		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3225
3226	case DIF_VAR_ERRNO: {
3227#if defined(sun)
3228		klwp_t *lwp;
3229		if (!dtrace_priv_proc(state))
3230			return (0);
3231
3232		/*
3233		 * See comment in DIF_VAR_PID.
3234		 */
3235		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3236			return (0);
3237
3238		/*
3239		 * It is always safe to dereference one's own t_lwp pointer in
3240		 * the event that this pointer is non-NULL.  (This is true
3241		 * because threads and lwps don't clean up their own state --
3242		 * they leave that task to whomever reaps them.)
3243		 */
3244		if ((lwp = curthread->t_lwp) == NULL)
3245			return (0);
3246
3247		return ((uint64_t)lwp->lwp_errno);
3248#else
3249		return (curthread->td_errno);
3250#endif
3251	}
3252#if !defined(sun)
3253	case DIF_VAR_CPU: {
3254		return curcpu;
3255	}
3256#endif
3257	default:
3258		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3259		return (0);
3260	}
3261}
3262
3263/*
3264 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3265 * Notice that we don't bother validating the proper number of arguments or
3266 * their types in the tuple stack.  This isn't needed because all argument
3267 * interpretation is safe because of our load safety -- the worst that can
3268 * happen is that a bogus program can obtain bogus results.
3269 */
3270static void
3271dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3272    dtrace_key_t *tupregs, int nargs,
3273    dtrace_mstate_t *mstate, dtrace_state_t *state)
3274{
3275	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
3276	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
3277	dtrace_vstate_t *vstate = &state->dts_vstate;
3278
3279#if defined(sun)
3280	union {
3281		mutex_impl_t mi;
3282		uint64_t mx;
3283	} m;
3284
3285	union {
3286		krwlock_t ri;
3287		uintptr_t rw;
3288	} r;
3289#else
3290	struct thread *lowner;
3291	union {
3292		struct lock_object *li;
3293		uintptr_t lx;
3294	} l;
3295#endif
3296
3297	switch (subr) {
3298	case DIF_SUBR_RAND:
3299		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3300		break;
3301
3302#if defined(sun)
3303	case DIF_SUBR_MUTEX_OWNED:
3304		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3305		    mstate, vstate)) {
3306			regs[rd] = 0;
3307			break;
3308		}
3309
3310		m.mx = dtrace_load64(tupregs[0].dttk_value);
3311		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3312			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3313		else
3314			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3315		break;
3316
3317	case DIF_SUBR_MUTEX_OWNER:
3318		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3319		    mstate, vstate)) {
3320			regs[rd] = 0;
3321			break;
3322		}
3323
3324		m.mx = dtrace_load64(tupregs[0].dttk_value);
3325		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3326		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3327			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3328		else
3329			regs[rd] = 0;
3330		break;
3331
3332	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3333		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3334		    mstate, vstate)) {
3335			regs[rd] = 0;
3336			break;
3337		}
3338
3339		m.mx = dtrace_load64(tupregs[0].dttk_value);
3340		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3341		break;
3342
3343	case DIF_SUBR_MUTEX_TYPE_SPIN:
3344		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3345		    mstate, vstate)) {
3346			regs[rd] = 0;
3347			break;
3348		}
3349
3350		m.mx = dtrace_load64(tupregs[0].dttk_value);
3351		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3352		break;
3353
3354	case DIF_SUBR_RW_READ_HELD: {
3355		uintptr_t tmp;
3356
3357		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3358		    mstate, vstate)) {
3359			regs[rd] = 0;
3360			break;
3361		}
3362
3363		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3364		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3365		break;
3366	}
3367
3368	case DIF_SUBR_RW_WRITE_HELD:
3369		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3370		    mstate, vstate)) {
3371			regs[rd] = 0;
3372			break;
3373		}
3374
3375		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3376		regs[rd] = _RW_WRITE_HELD(&r.ri);
3377		break;
3378
3379	case DIF_SUBR_RW_ISWRITER:
3380		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3381		    mstate, vstate)) {
3382			regs[rd] = 0;
3383			break;
3384		}
3385
3386		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3387		regs[rd] = _RW_ISWRITER(&r.ri);
3388		break;
3389
3390#else
3391	case DIF_SUBR_MUTEX_OWNED:
3392		if (!dtrace_canload(tupregs[0].dttk_value,
3393			sizeof (struct lock_object), mstate, vstate)) {
3394			regs[rd] = 0;
3395			break;
3396		}
3397		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3398		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3399		break;
3400
3401	case DIF_SUBR_MUTEX_OWNER:
3402		if (!dtrace_canload(tupregs[0].dttk_value,
3403			sizeof (struct lock_object), mstate, vstate)) {
3404			regs[rd] = 0;
3405			break;
3406		}
3407		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3408		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3409		regs[rd] = (uintptr_t)lowner;
3410		break;
3411
3412	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3413		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3414		    mstate, vstate)) {
3415			regs[rd] = 0;
3416			break;
3417		}
3418		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3419		/* XXX - should be only LC_SLEEPABLE? */
3420		regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
3421		    (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
3422		break;
3423
3424	case DIF_SUBR_MUTEX_TYPE_SPIN:
3425		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3426		    mstate, vstate)) {
3427			regs[rd] = 0;
3428			break;
3429		}
3430		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3431		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
3432		break;
3433
3434	case DIF_SUBR_RW_READ_HELD:
3435	case DIF_SUBR_SX_SHARED_HELD:
3436		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3437		    mstate, vstate)) {
3438			regs[rd] = 0;
3439			break;
3440		}
3441		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3442		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3443		    lowner == NULL;
3444		break;
3445
3446	case DIF_SUBR_RW_WRITE_HELD:
3447	case DIF_SUBR_SX_EXCLUSIVE_HELD:
3448		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3449		    mstate, vstate)) {
3450			regs[rd] = 0;
3451			break;
3452		}
3453		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3454		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3455		regs[rd] = (lowner == curthread);
3456		break;
3457
3458	case DIF_SUBR_RW_ISWRITER:
3459	case DIF_SUBR_SX_ISEXCLUSIVE:
3460		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3461		    mstate, vstate)) {
3462			regs[rd] = 0;
3463			break;
3464		}
3465		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3466		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3467		    lowner != NULL;
3468		break;
3469#endif /* ! defined(sun) */
3470
3471	case DIF_SUBR_BCOPY: {
3472		/*
3473		 * We need to be sure that the destination is in the scratch
3474		 * region -- no other region is allowed.
3475		 */
3476		uintptr_t src = tupregs[0].dttk_value;
3477		uintptr_t dest = tupregs[1].dttk_value;
3478		size_t size = tupregs[2].dttk_value;
3479
3480		if (!dtrace_inscratch(dest, size, mstate)) {
3481			*flags |= CPU_DTRACE_BADADDR;
3482			*illval = regs[rd];
3483			break;
3484		}
3485
3486		if (!dtrace_canload(src, size, mstate, vstate)) {
3487			regs[rd] = 0;
3488			break;
3489		}
3490
3491		dtrace_bcopy((void *)src, (void *)dest, size);
3492		break;
3493	}
3494
3495	case DIF_SUBR_ALLOCA:
3496	case DIF_SUBR_COPYIN: {
3497		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3498		uint64_t size =
3499		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3500		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3501
3502		/*
3503		 * This action doesn't require any credential checks since
3504		 * probes will not activate in user contexts to which the
3505		 * enabling user does not have permissions.
3506		 */
3507
3508		/*
3509		 * Rounding up the user allocation size could have overflowed
3510		 * a large, bogus allocation (like -1ULL) to 0.
3511		 */
3512		if (scratch_size < size ||
3513		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3514			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3515			regs[rd] = 0;
3516			break;
3517		}
3518
3519		if (subr == DIF_SUBR_COPYIN) {
3520			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3521			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3522			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3523		}
3524
3525		mstate->dtms_scratch_ptr += scratch_size;
3526		regs[rd] = dest;
3527		break;
3528	}
3529
3530	case DIF_SUBR_COPYINTO: {
3531		uint64_t size = tupregs[1].dttk_value;
3532		uintptr_t dest = tupregs[2].dttk_value;
3533
3534		/*
3535		 * This action doesn't require any credential checks since
3536		 * probes will not activate in user contexts to which the
3537		 * enabling user does not have permissions.
3538		 */
3539		if (!dtrace_inscratch(dest, size, mstate)) {
3540			*flags |= CPU_DTRACE_BADADDR;
3541			*illval = regs[rd];
3542			break;
3543		}
3544
3545		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3546		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3547		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3548		break;
3549	}
3550
3551	case DIF_SUBR_COPYINSTR: {
3552		uintptr_t dest = mstate->dtms_scratch_ptr;
3553		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3554
3555		if (nargs > 1 && tupregs[1].dttk_value < size)
3556			size = tupregs[1].dttk_value + 1;
3557
3558		/*
3559		 * This action doesn't require any credential checks since
3560		 * probes will not activate in user contexts to which the
3561		 * enabling user does not have permissions.
3562		 */
3563		if (!DTRACE_INSCRATCH(mstate, size)) {
3564			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3565			regs[rd] = 0;
3566			break;
3567		}
3568
3569		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3570		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3571		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3572
3573		((char *)dest)[size - 1] = '\0';
3574		mstate->dtms_scratch_ptr += size;
3575		regs[rd] = dest;
3576		break;
3577	}
3578
3579#if defined(sun)
3580	case DIF_SUBR_MSGSIZE:
3581	case DIF_SUBR_MSGDSIZE: {
3582		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3583		uintptr_t wptr, rptr;
3584		size_t count = 0;
3585		int cont = 0;
3586
3587		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3588
3589			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3590			    vstate)) {
3591				regs[rd] = 0;
3592				break;
3593			}
3594
3595			wptr = dtrace_loadptr(baddr +
3596			    offsetof(mblk_t, b_wptr));
3597
3598			rptr = dtrace_loadptr(baddr +
3599			    offsetof(mblk_t, b_rptr));
3600
3601			if (wptr < rptr) {
3602				*flags |= CPU_DTRACE_BADADDR;
3603				*illval = tupregs[0].dttk_value;
3604				break;
3605			}
3606
3607			daddr = dtrace_loadptr(baddr +
3608			    offsetof(mblk_t, b_datap));
3609
3610			baddr = dtrace_loadptr(baddr +
3611			    offsetof(mblk_t, b_cont));
3612
3613			/*
3614			 * We want to prevent against denial-of-service here,
3615			 * so we're only going to search the list for
3616			 * dtrace_msgdsize_max mblks.
3617			 */
3618			if (cont++ > dtrace_msgdsize_max) {
3619				*flags |= CPU_DTRACE_ILLOP;
3620				break;
3621			}
3622
3623			if (subr == DIF_SUBR_MSGDSIZE) {
3624				if (dtrace_load8(daddr +
3625				    offsetof(dblk_t, db_type)) != M_DATA)
3626					continue;
3627			}
3628
3629			count += wptr - rptr;
3630		}
3631
3632		if (!(*flags & CPU_DTRACE_FAULT))
3633			regs[rd] = count;
3634
3635		break;
3636	}
3637#endif
3638
3639	case DIF_SUBR_PROGENYOF: {
3640		pid_t pid = tupregs[0].dttk_value;
3641		proc_t *p;
3642		int rval = 0;
3643
3644		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3645
3646		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3647#if defined(sun)
3648			if (p->p_pidp->pid_id == pid) {
3649#else
3650			if (p->p_pid == pid) {
3651#endif
3652				rval = 1;
3653				break;
3654			}
3655		}
3656
3657		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3658
3659		regs[rd] = rval;
3660		break;
3661	}
3662
3663	case DIF_SUBR_SPECULATION:
3664		regs[rd] = dtrace_speculation(state);
3665		break;
3666
3667	case DIF_SUBR_COPYOUT: {
3668		uintptr_t kaddr = tupregs[0].dttk_value;
3669		uintptr_t uaddr = tupregs[1].dttk_value;
3670		uint64_t size = tupregs[2].dttk_value;
3671
3672		if (!dtrace_destructive_disallow &&
3673		    dtrace_priv_proc_control(state) &&
3674		    !dtrace_istoxic(kaddr, size)) {
3675			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3676			dtrace_copyout(kaddr, uaddr, size, flags);
3677			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3678		}
3679		break;
3680	}
3681
3682	case DIF_SUBR_COPYOUTSTR: {
3683		uintptr_t kaddr = tupregs[0].dttk_value;
3684		uintptr_t uaddr = tupregs[1].dttk_value;
3685		uint64_t size = tupregs[2].dttk_value;
3686
3687		if (!dtrace_destructive_disallow &&
3688		    dtrace_priv_proc_control(state) &&
3689		    !dtrace_istoxic(kaddr, size)) {
3690			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3691			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3692			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3693		}
3694		break;
3695	}
3696
3697	case DIF_SUBR_STRLEN: {
3698		size_t sz;
3699		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3700		sz = dtrace_strlen((char *)addr,
3701		    state->dts_options[DTRACEOPT_STRSIZE]);
3702
3703		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3704			regs[rd] = 0;
3705			break;
3706		}
3707
3708		regs[rd] = sz;
3709
3710		break;
3711	}
3712
3713	case DIF_SUBR_STRCHR:
3714	case DIF_SUBR_STRRCHR: {
3715		/*
3716		 * We're going to iterate over the string looking for the
3717		 * specified character.  We will iterate until we have reached
3718		 * the string length or we have found the character.  If this
3719		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3720		 * of the specified character instead of the first.
3721		 */
3722		uintptr_t saddr = tupregs[0].dttk_value;
3723		uintptr_t addr = tupregs[0].dttk_value;
3724		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3725		char c, target = (char)tupregs[1].dttk_value;
3726
3727		for (regs[rd] = 0; addr < limit; addr++) {
3728			if ((c = dtrace_load8(addr)) == target) {
3729				regs[rd] = addr;
3730
3731				if (subr == DIF_SUBR_STRCHR)
3732					break;
3733			}
3734
3735			if (c == '\0')
3736				break;
3737		}
3738
3739		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3740			regs[rd] = 0;
3741			break;
3742		}
3743
3744		break;
3745	}
3746
3747	case DIF_SUBR_STRSTR:
3748	case DIF_SUBR_INDEX:
3749	case DIF_SUBR_RINDEX: {
3750		/*
3751		 * We're going to iterate over the string looking for the
3752		 * specified string.  We will iterate until we have reached
3753		 * the string length or we have found the string.  (Yes, this
3754		 * is done in the most naive way possible -- but considering
3755		 * that the string we're searching for is likely to be
3756		 * relatively short, the complexity of Rabin-Karp or similar
3757		 * hardly seems merited.)
3758		 */
3759		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3760		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3761		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3762		size_t len = dtrace_strlen(addr, size);
3763		size_t sublen = dtrace_strlen(substr, size);
3764		char *limit = addr + len, *orig = addr;
3765		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3766		int inc = 1;
3767
3768		regs[rd] = notfound;
3769
3770		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3771			regs[rd] = 0;
3772			break;
3773		}
3774
3775		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3776		    vstate)) {
3777			regs[rd] = 0;
3778			break;
3779		}
3780
3781		/*
3782		 * strstr() and index()/rindex() have similar semantics if
3783		 * both strings are the empty string: strstr() returns a
3784		 * pointer to the (empty) string, and index() and rindex()
3785		 * both return index 0 (regardless of any position argument).
3786		 */
3787		if (sublen == 0 && len == 0) {
3788			if (subr == DIF_SUBR_STRSTR)
3789				regs[rd] = (uintptr_t)addr;
3790			else
3791				regs[rd] = 0;
3792			break;
3793		}
3794
3795		if (subr != DIF_SUBR_STRSTR) {
3796			if (subr == DIF_SUBR_RINDEX) {
3797				limit = orig - 1;
3798				addr += len;
3799				inc = -1;
3800			}
3801
3802			/*
3803			 * Both index() and rindex() take an optional position
3804			 * argument that denotes the starting position.
3805			 */
3806			if (nargs == 3) {
3807				int64_t pos = (int64_t)tupregs[2].dttk_value;
3808
3809				/*
3810				 * If the position argument to index() is
3811				 * negative, Perl implicitly clamps it at
3812				 * zero.  This semantic is a little surprising
3813				 * given the special meaning of negative
3814				 * positions to similar Perl functions like
3815				 * substr(), but it appears to reflect a
3816				 * notion that index() can start from a
3817				 * negative index and increment its way up to
3818				 * the string.  Given this notion, Perl's
3819				 * rindex() is at least self-consistent in
3820				 * that it implicitly clamps positions greater
3821				 * than the string length to be the string
3822				 * length.  Where Perl completely loses
3823				 * coherence, however, is when the specified
3824				 * substring is the empty string ("").  In
3825				 * this case, even if the position is
3826				 * negative, rindex() returns 0 -- and even if
3827				 * the position is greater than the length,
3828				 * index() returns the string length.  These
3829				 * semantics violate the notion that index()
3830				 * should never return a value less than the
3831				 * specified position and that rindex() should
3832				 * never return a value greater than the
3833				 * specified position.  (One assumes that
3834				 * these semantics are artifacts of Perl's
3835				 * implementation and not the results of
3836				 * deliberate design -- it beggars belief that
3837				 * even Larry Wall could desire such oddness.)
3838				 * While in the abstract one would wish for
3839				 * consistent position semantics across
3840				 * substr(), index() and rindex() -- or at the
3841				 * very least self-consistent position
3842				 * semantics for index() and rindex() -- we
3843				 * instead opt to keep with the extant Perl
3844				 * semantics, in all their broken glory.  (Do
3845				 * we have more desire to maintain Perl's
3846				 * semantics than Perl does?  Probably.)
3847				 */
3848				if (subr == DIF_SUBR_RINDEX) {
3849					if (pos < 0) {
3850						if (sublen == 0)
3851							regs[rd] = 0;
3852						break;
3853					}
3854
3855					if (pos > len)
3856						pos = len;
3857				} else {
3858					if (pos < 0)
3859						pos = 0;
3860
3861					if (pos >= len) {
3862						if (sublen == 0)
3863							regs[rd] = len;
3864						break;
3865					}
3866				}
3867
3868				addr = orig + pos;
3869			}
3870		}
3871
3872		for (regs[rd] = notfound; addr != limit; addr += inc) {
3873			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3874				if (subr != DIF_SUBR_STRSTR) {
3875					/*
3876					 * As D index() and rindex() are
3877					 * modeled on Perl (and not on awk),
3878					 * we return a zero-based (and not a
3879					 * one-based) index.  (For you Perl
3880					 * weenies: no, we're not going to add
3881					 * $[ -- and shouldn't you be at a con
3882					 * or something?)
3883					 */
3884					regs[rd] = (uintptr_t)(addr - orig);
3885					break;
3886				}
3887
3888				ASSERT(subr == DIF_SUBR_STRSTR);
3889				regs[rd] = (uintptr_t)addr;
3890				break;
3891			}
3892		}
3893
3894		break;
3895	}
3896
3897	case DIF_SUBR_STRTOK: {
3898		uintptr_t addr = tupregs[0].dttk_value;
3899		uintptr_t tokaddr = tupregs[1].dttk_value;
3900		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3901		uintptr_t limit, toklimit = tokaddr + size;
3902		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
3903		char *dest = (char *)mstate->dtms_scratch_ptr;
3904		int i;
3905
3906		/*
3907		 * Check both the token buffer and (later) the input buffer,
3908		 * since both could be non-scratch addresses.
3909		 */
3910		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3911			regs[rd] = 0;
3912			break;
3913		}
3914
3915		if (!DTRACE_INSCRATCH(mstate, size)) {
3916			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3917			regs[rd] = 0;
3918			break;
3919		}
3920
3921		if (addr == 0) {
3922			/*
3923			 * If the address specified is NULL, we use our saved
3924			 * strtok pointer from the mstate.  Note that this
3925			 * means that the saved strtok pointer is _only_
3926			 * valid within multiple enablings of the same probe --
3927			 * it behaves like an implicit clause-local variable.
3928			 */
3929			addr = mstate->dtms_strtok;
3930		} else {
3931			/*
3932			 * If the user-specified address is non-NULL we must
3933			 * access check it.  This is the only time we have
3934			 * a chance to do so, since this address may reside
3935			 * in the string table of this clause-- future calls
3936			 * (when we fetch addr from mstate->dtms_strtok)
3937			 * would fail this access check.
3938			 */
3939			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3940				regs[rd] = 0;
3941				break;
3942			}
3943		}
3944
3945		/*
3946		 * First, zero the token map, and then process the token
3947		 * string -- setting a bit in the map for every character
3948		 * found in the token string.
3949		 */
3950		for (i = 0; i < sizeof (tokmap); i++)
3951			tokmap[i] = 0;
3952
3953		for (; tokaddr < toklimit; tokaddr++) {
3954			if ((c = dtrace_load8(tokaddr)) == '\0')
3955				break;
3956
3957			ASSERT((c >> 3) < sizeof (tokmap));
3958			tokmap[c >> 3] |= (1 << (c & 0x7));
3959		}
3960
3961		for (limit = addr + size; addr < limit; addr++) {
3962			/*
3963			 * We're looking for a character that is _not_ contained
3964			 * in the token string.
3965			 */
3966			if ((c = dtrace_load8(addr)) == '\0')
3967				break;
3968
3969			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3970				break;
3971		}
3972
3973		if (c == '\0') {
3974			/*
3975			 * We reached the end of the string without finding
3976			 * any character that was not in the token string.
3977			 * We return NULL in this case, and we set the saved
3978			 * address to NULL as well.
3979			 */
3980			regs[rd] = 0;
3981			mstate->dtms_strtok = 0;
3982			break;
3983		}
3984
3985		/*
3986		 * From here on, we're copying into the destination string.
3987		 */
3988		for (i = 0; addr < limit && i < size - 1; addr++) {
3989			if ((c = dtrace_load8(addr)) == '\0')
3990				break;
3991
3992			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3993				break;
3994
3995			ASSERT(i < size);
3996			dest[i++] = c;
3997		}
3998
3999		ASSERT(i < size);
4000		dest[i] = '\0';
4001		regs[rd] = (uintptr_t)dest;
4002		mstate->dtms_scratch_ptr += size;
4003		mstate->dtms_strtok = addr;
4004		break;
4005	}
4006
4007	case DIF_SUBR_SUBSTR: {
4008		uintptr_t s = tupregs[0].dttk_value;
4009		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4010		char *d = (char *)mstate->dtms_scratch_ptr;
4011		int64_t index = (int64_t)tupregs[1].dttk_value;
4012		int64_t remaining = (int64_t)tupregs[2].dttk_value;
4013		size_t len = dtrace_strlen((char *)s, size);
4014		int64_t i = 0;
4015
4016		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4017			regs[rd] = 0;
4018			break;
4019		}
4020
4021		if (!DTRACE_INSCRATCH(mstate, size)) {
4022			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4023			regs[rd] = 0;
4024			break;
4025		}
4026
4027		if (nargs <= 2)
4028			remaining = (int64_t)size;
4029
4030		if (index < 0) {
4031			index += len;
4032
4033			if (index < 0 && index + remaining > 0) {
4034				remaining += index;
4035				index = 0;
4036			}
4037		}
4038
4039		if (index >= len || index < 0) {
4040			remaining = 0;
4041		} else if (remaining < 0) {
4042			remaining += len - index;
4043		} else if (index + remaining > size) {
4044			remaining = size - index;
4045		}
4046
4047		for (i = 0; i < remaining; i++) {
4048			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4049				break;
4050		}
4051
4052		d[i] = '\0';
4053
4054		mstate->dtms_scratch_ptr += size;
4055		regs[rd] = (uintptr_t)d;
4056		break;
4057	}
4058
4059	case DIF_SUBR_TOUPPER:
4060	case DIF_SUBR_TOLOWER: {
4061		uintptr_t s = tupregs[0].dttk_value;
4062		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4063		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4064		size_t len = dtrace_strlen((char *)s, size);
4065		char lower, upper, convert;
4066		int64_t i;
4067
4068		if (subr == DIF_SUBR_TOUPPER) {
4069			lower = 'a';
4070			upper = 'z';
4071			convert = 'A';
4072		} else {
4073			lower = 'A';
4074			upper = 'Z';
4075			convert = 'a';
4076		}
4077
4078		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4079			regs[rd] = 0;
4080			break;
4081		}
4082
4083		if (!DTRACE_INSCRATCH(mstate, size)) {
4084			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4085			regs[rd] = 0;
4086			break;
4087		}
4088
4089		for (i = 0; i < size - 1; i++) {
4090			if ((c = dtrace_load8(s + i)) == '\0')
4091				break;
4092
4093			if (c >= lower && c <= upper)
4094				c = convert + (c - lower);
4095
4096			dest[i] = c;
4097		}
4098
4099		ASSERT(i < size);
4100		dest[i] = '\0';
4101		regs[rd] = (uintptr_t)dest;
4102		mstate->dtms_scratch_ptr += size;
4103		break;
4104	}
4105
4106#if defined(sun)
4107	case DIF_SUBR_GETMAJOR:
4108#ifdef _LP64
4109		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4110#else
4111		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4112#endif
4113		break;
4114
4115	case DIF_SUBR_GETMINOR:
4116#ifdef _LP64
4117		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4118#else
4119		regs[rd] = tupregs[0].dttk_value & MAXMIN;
4120#endif
4121		break;
4122
4123	case DIF_SUBR_DDI_PATHNAME: {
4124		/*
4125		 * This one is a galactic mess.  We are going to roughly
4126		 * emulate ddi_pathname(), but it's made more complicated
4127		 * by the fact that we (a) want to include the minor name and
4128		 * (b) must proceed iteratively instead of recursively.
4129		 */
4130		uintptr_t dest = mstate->dtms_scratch_ptr;
4131		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4132		char *start = (char *)dest, *end = start + size - 1;
4133		uintptr_t daddr = tupregs[0].dttk_value;
4134		int64_t minor = (int64_t)tupregs[1].dttk_value;
4135		char *s;
4136		int i, len, depth = 0;
4137
4138		/*
4139		 * Due to all the pointer jumping we do and context we must
4140		 * rely upon, we just mandate that the user must have kernel
4141		 * read privileges to use this routine.
4142		 */
4143		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4144			*flags |= CPU_DTRACE_KPRIV;
4145			*illval = daddr;
4146			regs[rd] = 0;
4147		}
4148
4149		if (!DTRACE_INSCRATCH(mstate, size)) {
4150			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4151			regs[rd] = 0;
4152			break;
4153		}
4154
4155		*end = '\0';
4156
4157		/*
4158		 * We want to have a name for the minor.  In order to do this,
4159		 * we need to walk the minor list from the devinfo.  We want
4160		 * to be sure that we don't infinitely walk a circular list,
4161		 * so we check for circularity by sending a scout pointer
4162		 * ahead two elements for every element that we iterate over;
4163		 * if the list is circular, these will ultimately point to the
4164		 * same element.  You may recognize this little trick as the
4165		 * answer to a stupid interview question -- one that always
4166		 * seems to be asked by those who had to have it laboriously
4167		 * explained to them, and who can't even concisely describe
4168		 * the conditions under which one would be forced to resort to
4169		 * this technique.  Needless to say, those conditions are
4170		 * found here -- and probably only here.  Is this the only use
4171		 * of this infamous trick in shipping, production code?  If it
4172		 * isn't, it probably should be...
4173		 */
4174		if (minor != -1) {
4175			uintptr_t maddr = dtrace_loadptr(daddr +
4176			    offsetof(struct dev_info, devi_minor));
4177
4178			uintptr_t next = offsetof(struct ddi_minor_data, next);
4179			uintptr_t name = offsetof(struct ddi_minor_data,
4180			    d_minor) + offsetof(struct ddi_minor, name);
4181			uintptr_t dev = offsetof(struct ddi_minor_data,
4182			    d_minor) + offsetof(struct ddi_minor, dev);
4183			uintptr_t scout;
4184
4185			if (maddr != NULL)
4186				scout = dtrace_loadptr(maddr + next);
4187
4188			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4189				uint64_t m;
4190#ifdef _LP64
4191				m = dtrace_load64(maddr + dev) & MAXMIN64;
4192#else
4193				m = dtrace_load32(maddr + dev) & MAXMIN;
4194#endif
4195				if (m != minor) {
4196					maddr = dtrace_loadptr(maddr + next);
4197
4198					if (scout == NULL)
4199						continue;
4200
4201					scout = dtrace_loadptr(scout + next);
4202
4203					if (scout == NULL)
4204						continue;
4205
4206					scout = dtrace_loadptr(scout + next);
4207
4208					if (scout == NULL)
4209						continue;
4210
4211					if (scout == maddr) {
4212						*flags |= CPU_DTRACE_ILLOP;
4213						break;
4214					}
4215
4216					continue;
4217				}
4218
4219				/*
4220				 * We have the minor data.  Now we need to
4221				 * copy the minor's name into the end of the
4222				 * pathname.
4223				 */
4224				s = (char *)dtrace_loadptr(maddr + name);
4225				len = dtrace_strlen(s, size);
4226
4227				if (*flags & CPU_DTRACE_FAULT)
4228					break;
4229
4230				if (len != 0) {
4231					if ((end -= (len + 1)) < start)
4232						break;
4233
4234					*end = ':';
4235				}
4236
4237				for (i = 1; i <= len; i++)
4238					end[i] = dtrace_load8((uintptr_t)s++);
4239				break;
4240			}
4241		}
4242
4243		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4244			ddi_node_state_t devi_state;
4245
4246			devi_state = dtrace_load32(daddr +
4247			    offsetof(struct dev_info, devi_node_state));
4248
4249			if (*flags & CPU_DTRACE_FAULT)
4250				break;
4251
4252			if (devi_state >= DS_INITIALIZED) {
4253				s = (char *)dtrace_loadptr(daddr +
4254				    offsetof(struct dev_info, devi_addr));
4255				len = dtrace_strlen(s, size);
4256
4257				if (*flags & CPU_DTRACE_FAULT)
4258					break;
4259
4260				if (len != 0) {
4261					if ((end -= (len + 1)) < start)
4262						break;
4263
4264					*end = '@';
4265				}
4266
4267				for (i = 1; i <= len; i++)
4268					end[i] = dtrace_load8((uintptr_t)s++);
4269			}
4270
4271			/*
4272			 * Now for the node name...
4273			 */
4274			s = (char *)dtrace_loadptr(daddr +
4275			    offsetof(struct dev_info, devi_node_name));
4276
4277			daddr = dtrace_loadptr(daddr +
4278			    offsetof(struct dev_info, devi_parent));
4279
4280			/*
4281			 * If our parent is NULL (that is, if we're the root
4282			 * node), we're going to use the special path
4283			 * "devices".
4284			 */
4285			if (daddr == 0)
4286				s = "devices";
4287
4288			len = dtrace_strlen(s, size);
4289			if (*flags & CPU_DTRACE_FAULT)
4290				break;
4291
4292			if ((end -= (len + 1)) < start)
4293				break;
4294
4295			for (i = 1; i <= len; i++)
4296				end[i] = dtrace_load8((uintptr_t)s++);
4297			*end = '/';
4298
4299			if (depth++ > dtrace_devdepth_max) {
4300				*flags |= CPU_DTRACE_ILLOP;
4301				break;
4302			}
4303		}
4304
4305		if (end < start)
4306			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4307
4308		if (daddr == 0) {
4309			regs[rd] = (uintptr_t)end;
4310			mstate->dtms_scratch_ptr += size;
4311		}
4312
4313		break;
4314	}
4315#endif
4316
4317	case DIF_SUBR_STRJOIN: {
4318		char *d = (char *)mstate->dtms_scratch_ptr;
4319		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4320		uintptr_t s1 = tupregs[0].dttk_value;
4321		uintptr_t s2 = tupregs[1].dttk_value;
4322		int i = 0;
4323
4324		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4325		    !dtrace_strcanload(s2, size, mstate, vstate)) {
4326			regs[rd] = 0;
4327			break;
4328		}
4329
4330		if (!DTRACE_INSCRATCH(mstate, size)) {
4331			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4332			regs[rd] = 0;
4333			break;
4334		}
4335
4336		for (;;) {
4337			if (i >= size) {
4338				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4339				regs[rd] = 0;
4340				break;
4341			}
4342
4343			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4344				i--;
4345				break;
4346			}
4347		}
4348
4349		for (;;) {
4350			if (i >= size) {
4351				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4352				regs[rd] = 0;
4353				break;
4354			}
4355
4356			if ((d[i++] = dtrace_load8(s2++)) == '\0')
4357				break;
4358		}
4359
4360		if (i < size) {
4361			mstate->dtms_scratch_ptr += i;
4362			regs[rd] = (uintptr_t)d;
4363		}
4364
4365		break;
4366	}
4367
4368	case DIF_SUBR_LLTOSTR: {
4369		int64_t i = (int64_t)tupregs[0].dttk_value;
4370		uint64_t val, digit;
4371		uint64_t size = 65;	/* enough room for 2^64 in binary */
4372		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4373		int base = 10;
4374
4375		if (nargs > 1) {
4376			if ((base = tupregs[1].dttk_value) <= 1 ||
4377			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4378				*flags |= CPU_DTRACE_ILLOP;
4379				break;
4380			}
4381		}
4382
4383		val = (base == 10 && i < 0) ? i * -1 : i;
4384
4385		if (!DTRACE_INSCRATCH(mstate, size)) {
4386			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4387			regs[rd] = 0;
4388			break;
4389		}
4390
4391		for (*end-- = '\0'; val; val /= base) {
4392			if ((digit = val % base) <= '9' - '0') {
4393				*end-- = '0' + digit;
4394			} else {
4395				*end-- = 'a' + (digit - ('9' - '0') - 1);
4396			}
4397		}
4398
4399		if (i == 0 && base == 16)
4400			*end-- = '0';
4401
4402		if (base == 16)
4403			*end-- = 'x';
4404
4405		if (i == 0 || base == 8 || base == 16)
4406			*end-- = '0';
4407
4408		if (i < 0 && base == 10)
4409			*end-- = '-';
4410
4411		regs[rd] = (uintptr_t)end + 1;
4412		mstate->dtms_scratch_ptr += size;
4413		break;
4414	}
4415
4416	case DIF_SUBR_HTONS:
4417	case DIF_SUBR_NTOHS:
4418#if BYTE_ORDER == BIG_ENDIAN
4419		regs[rd] = (uint16_t)tupregs[0].dttk_value;
4420#else
4421		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4422#endif
4423		break;
4424
4425
4426	case DIF_SUBR_HTONL:
4427	case DIF_SUBR_NTOHL:
4428#if BYTE_ORDER == BIG_ENDIAN
4429		regs[rd] = (uint32_t)tupregs[0].dttk_value;
4430#else
4431		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4432#endif
4433		break;
4434
4435
4436	case DIF_SUBR_HTONLL:
4437	case DIF_SUBR_NTOHLL:
4438#if BYTE_ORDER == BIG_ENDIAN
4439		regs[rd] = (uint64_t)tupregs[0].dttk_value;
4440#else
4441		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4442#endif
4443		break;
4444
4445
4446	case DIF_SUBR_DIRNAME:
4447	case DIF_SUBR_BASENAME: {
4448		char *dest = (char *)mstate->dtms_scratch_ptr;
4449		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4450		uintptr_t src = tupregs[0].dttk_value;
4451		int i, j, len = dtrace_strlen((char *)src, size);
4452		int lastbase = -1, firstbase = -1, lastdir = -1;
4453		int start, end;
4454
4455		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4456			regs[rd] = 0;
4457			break;
4458		}
4459
4460		if (!DTRACE_INSCRATCH(mstate, size)) {
4461			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4462			regs[rd] = 0;
4463			break;
4464		}
4465
4466		/*
4467		 * The basename and dirname for a zero-length string is
4468		 * defined to be "."
4469		 */
4470		if (len == 0) {
4471			len = 1;
4472			src = (uintptr_t)".";
4473		}
4474
4475		/*
4476		 * Start from the back of the string, moving back toward the
4477		 * front until we see a character that isn't a slash.  That
4478		 * character is the last character in the basename.
4479		 */
4480		for (i = len - 1; i >= 0; i--) {
4481			if (dtrace_load8(src + i) != '/')
4482				break;
4483		}
4484
4485		if (i >= 0)
4486			lastbase = i;
4487
4488		/*
4489		 * Starting from the last character in the basename, move
4490		 * towards the front until we find a slash.  The character
4491		 * that we processed immediately before that is the first
4492		 * character in the basename.
4493		 */
4494		for (; i >= 0; i--) {
4495			if (dtrace_load8(src + i) == '/')
4496				break;
4497		}
4498
4499		if (i >= 0)
4500			firstbase = i + 1;
4501
4502		/*
4503		 * Now keep going until we find a non-slash character.  That
4504		 * character is the last character in the dirname.
4505		 */
4506		for (; i >= 0; i--) {
4507			if (dtrace_load8(src + i) != '/')
4508				break;
4509		}
4510
4511		if (i >= 0)
4512			lastdir = i;
4513
4514		ASSERT(!(lastbase == -1 && firstbase != -1));
4515		ASSERT(!(firstbase == -1 && lastdir != -1));
4516
4517		if (lastbase == -1) {
4518			/*
4519			 * We didn't find a non-slash character.  We know that
4520			 * the length is non-zero, so the whole string must be
4521			 * slashes.  In either the dirname or the basename
4522			 * case, we return '/'.
4523			 */
4524			ASSERT(firstbase == -1);
4525			firstbase = lastbase = lastdir = 0;
4526		}
4527
4528		if (firstbase == -1) {
4529			/*
4530			 * The entire string consists only of a basename
4531			 * component.  If we're looking for dirname, we need
4532			 * to change our string to be just "."; if we're
4533			 * looking for a basename, we'll just set the first
4534			 * character of the basename to be 0.
4535			 */
4536			if (subr == DIF_SUBR_DIRNAME) {
4537				ASSERT(lastdir == -1);
4538				src = (uintptr_t)".";
4539				lastdir = 0;
4540			} else {
4541				firstbase = 0;
4542			}
4543		}
4544
4545		if (subr == DIF_SUBR_DIRNAME) {
4546			if (lastdir == -1) {
4547				/*
4548				 * We know that we have a slash in the name --
4549				 * or lastdir would be set to 0, above.  And
4550				 * because lastdir is -1, we know that this
4551				 * slash must be the first character.  (That
4552				 * is, the full string must be of the form
4553				 * "/basename".)  In this case, the last
4554				 * character of the directory name is 0.
4555				 */
4556				lastdir = 0;
4557			}
4558
4559			start = 0;
4560			end = lastdir;
4561		} else {
4562			ASSERT(subr == DIF_SUBR_BASENAME);
4563			ASSERT(firstbase != -1 && lastbase != -1);
4564			start = firstbase;
4565			end = lastbase;
4566		}
4567
4568		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4569			dest[j] = dtrace_load8(src + i);
4570
4571		dest[j] = '\0';
4572		regs[rd] = (uintptr_t)dest;
4573		mstate->dtms_scratch_ptr += size;
4574		break;
4575	}
4576
4577	case DIF_SUBR_CLEANPATH: {
4578		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4579		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4580		uintptr_t src = tupregs[0].dttk_value;
4581		int i = 0, j = 0;
4582
4583		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4584			regs[rd] = 0;
4585			break;
4586		}
4587
4588		if (!DTRACE_INSCRATCH(mstate, size)) {
4589			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4590			regs[rd] = 0;
4591			break;
4592		}
4593
4594		/*
4595		 * Move forward, loading each character.
4596		 */
4597		do {
4598			c = dtrace_load8(src + i++);
4599next:
4600			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
4601				break;
4602
4603			if (c != '/') {
4604				dest[j++] = c;
4605				continue;
4606			}
4607
4608			c = dtrace_load8(src + i++);
4609
4610			if (c == '/') {
4611				/*
4612				 * We have two slashes -- we can just advance
4613				 * to the next character.
4614				 */
4615				goto next;
4616			}
4617
4618			if (c != '.') {
4619				/*
4620				 * This is not "." and it's not ".." -- we can
4621				 * just store the "/" and this character and
4622				 * drive on.
4623				 */
4624				dest[j++] = '/';
4625				dest[j++] = c;
4626				continue;
4627			}
4628
4629			c = dtrace_load8(src + i++);
4630
4631			if (c == '/') {
4632				/*
4633				 * This is a "/./" component.  We're not going
4634				 * to store anything in the destination buffer;
4635				 * we're just going to go to the next component.
4636				 */
4637				goto next;
4638			}
4639
4640			if (c != '.') {
4641				/*
4642				 * This is not ".." -- we can just store the
4643				 * "/." and this character and continue
4644				 * processing.
4645				 */
4646				dest[j++] = '/';
4647				dest[j++] = '.';
4648				dest[j++] = c;
4649				continue;
4650			}
4651
4652			c = dtrace_load8(src + i++);
4653
4654			if (c != '/' && c != '\0') {
4655				/*
4656				 * This is not ".." -- it's "..[mumble]".
4657				 * We'll store the "/.." and this character
4658				 * and continue processing.
4659				 */
4660				dest[j++] = '/';
4661				dest[j++] = '.';
4662				dest[j++] = '.';
4663				dest[j++] = c;
4664				continue;
4665			}
4666
4667			/*
4668			 * This is "/../" or "/..\0".  We need to back up
4669			 * our destination pointer until we find a "/".
4670			 */
4671			i--;
4672			while (j != 0 && dest[--j] != '/')
4673				continue;
4674
4675			if (c == '\0')
4676				dest[++j] = '/';
4677		} while (c != '\0');
4678
4679		dest[j] = '\0';
4680		regs[rd] = (uintptr_t)dest;
4681		mstate->dtms_scratch_ptr += size;
4682		break;
4683	}
4684
4685	case DIF_SUBR_INET_NTOA:
4686	case DIF_SUBR_INET_NTOA6:
4687	case DIF_SUBR_INET_NTOP: {
4688		size_t size;
4689		int af, argi, i;
4690		char *base, *end;
4691
4692		if (subr == DIF_SUBR_INET_NTOP) {
4693			af = (int)tupregs[0].dttk_value;
4694			argi = 1;
4695		} else {
4696			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4697			argi = 0;
4698		}
4699
4700		if (af == AF_INET) {
4701			ipaddr_t ip4;
4702			uint8_t *ptr8, val;
4703
4704			/*
4705			 * Safely load the IPv4 address.
4706			 */
4707			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4708
4709			/*
4710			 * Check an IPv4 string will fit in scratch.
4711			 */
4712			size = INET_ADDRSTRLEN;
4713			if (!DTRACE_INSCRATCH(mstate, size)) {
4714				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4715				regs[rd] = 0;
4716				break;
4717			}
4718			base = (char *)mstate->dtms_scratch_ptr;
4719			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4720
4721			/*
4722			 * Stringify as a dotted decimal quad.
4723			 */
4724			*end-- = '\0';
4725			ptr8 = (uint8_t *)&ip4;
4726			for (i = 3; i >= 0; i--) {
4727				val = ptr8[i];
4728
4729				if (val == 0) {
4730					*end-- = '0';
4731				} else {
4732					for (; val; val /= 10) {
4733						*end-- = '0' + (val % 10);
4734					}
4735				}
4736
4737				if (i > 0)
4738					*end-- = '.';
4739			}
4740			ASSERT(end + 1 >= base);
4741
4742		} else if (af == AF_INET6) {
4743			struct in6_addr ip6;
4744			int firstzero, tryzero, numzero, v6end;
4745			uint16_t val;
4746			const char digits[] = "0123456789abcdef";
4747
4748			/*
4749			 * Stringify using RFC 1884 convention 2 - 16 bit
4750			 * hexadecimal values with a zero-run compression.
4751			 * Lower case hexadecimal digits are used.
4752			 * 	eg, fe80::214:4fff:fe0b:76c8.
4753			 * The IPv4 embedded form is returned for inet_ntop,
4754			 * just the IPv4 string is returned for inet_ntoa6.
4755			 */
4756
4757			/*
4758			 * Safely load the IPv6 address.
4759			 */
4760			dtrace_bcopy(
4761			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4762			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4763
4764			/*
4765			 * Check an IPv6 string will fit in scratch.
4766			 */
4767			size = INET6_ADDRSTRLEN;
4768			if (!DTRACE_INSCRATCH(mstate, size)) {
4769				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4770				regs[rd] = 0;
4771				break;
4772			}
4773			base = (char *)mstate->dtms_scratch_ptr;
4774			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4775			*end-- = '\0';
4776
4777			/*
4778			 * Find the longest run of 16 bit zero values
4779			 * for the single allowed zero compression - "::".
4780			 */
4781			firstzero = -1;
4782			tryzero = -1;
4783			numzero = 1;
4784			for (i = 0; i < sizeof (struct in6_addr); i++) {
4785#if defined(sun)
4786				if (ip6._S6_un._S6_u8[i] == 0 &&
4787#else
4788				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4789#endif
4790				    tryzero == -1 && i % 2 == 0) {
4791					tryzero = i;
4792					continue;
4793				}
4794
4795				if (tryzero != -1 &&
4796#if defined(sun)
4797				    (ip6._S6_un._S6_u8[i] != 0 ||
4798#else
4799				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4800#endif
4801				    i == sizeof (struct in6_addr) - 1)) {
4802
4803					if (i - tryzero <= numzero) {
4804						tryzero = -1;
4805						continue;
4806					}
4807
4808					firstzero = tryzero;
4809					numzero = i - i % 2 - tryzero;
4810					tryzero = -1;
4811
4812#if defined(sun)
4813					if (ip6._S6_un._S6_u8[i] == 0 &&
4814#else
4815					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4816#endif
4817					    i == sizeof (struct in6_addr) - 1)
4818						numzero += 2;
4819				}
4820			}
4821			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4822
4823			/*
4824			 * Check for an IPv4 embedded address.
4825			 */
4826			v6end = sizeof (struct in6_addr) - 2;
4827			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4828			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4829				for (i = sizeof (struct in6_addr) - 1;
4830				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
4831					ASSERT(end >= base);
4832
4833#if defined(sun)
4834					val = ip6._S6_un._S6_u8[i];
4835#else
4836					val = ip6.__u6_addr.__u6_addr8[i];
4837#endif
4838
4839					if (val == 0) {
4840						*end-- = '0';
4841					} else {
4842						for (; val; val /= 10) {
4843							*end-- = '0' + val % 10;
4844						}
4845					}
4846
4847					if (i > DTRACE_V4MAPPED_OFFSET)
4848						*end-- = '.';
4849				}
4850
4851				if (subr == DIF_SUBR_INET_NTOA6)
4852					goto inetout;
4853
4854				/*
4855				 * Set v6end to skip the IPv4 address that
4856				 * we have already stringified.
4857				 */
4858				v6end = 10;
4859			}
4860
4861			/*
4862			 * Build the IPv6 string by working through the
4863			 * address in reverse.
4864			 */
4865			for (i = v6end; i >= 0; i -= 2) {
4866				ASSERT(end >= base);
4867
4868				if (i == firstzero + numzero - 2) {
4869					*end-- = ':';
4870					*end-- = ':';
4871					i -= numzero - 2;
4872					continue;
4873				}
4874
4875				if (i < 14 && i != firstzero - 2)
4876					*end-- = ':';
4877
4878#if defined(sun)
4879				val = (ip6._S6_un._S6_u8[i] << 8) +
4880				    ip6._S6_un._S6_u8[i + 1];
4881#else
4882				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4883				    ip6.__u6_addr.__u6_addr8[i + 1];
4884#endif
4885
4886				if (val == 0) {
4887					*end-- = '0';
4888				} else {
4889					for (; val; val /= 16) {
4890						*end-- = digits[val % 16];
4891					}
4892				}
4893			}
4894			ASSERT(end + 1 >= base);
4895
4896		} else {
4897			/*
4898			 * The user didn't use AH_INET or AH_INET6.
4899			 */
4900			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4901			regs[rd] = 0;
4902			break;
4903		}
4904
4905inetout:	regs[rd] = (uintptr_t)end + 1;
4906		mstate->dtms_scratch_ptr += size;
4907		break;
4908	}
4909
4910	case DIF_SUBR_MEMREF: {
4911		uintptr_t size = 2 * sizeof(uintptr_t);
4912		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4913		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4914
4915		/* address and length */
4916		memref[0] = tupregs[0].dttk_value;
4917		memref[1] = tupregs[1].dttk_value;
4918
4919		regs[rd] = (uintptr_t) memref;
4920		mstate->dtms_scratch_ptr += scratch_size;
4921		break;
4922	}
4923
4924	case DIF_SUBR_TYPEREF: {
4925		uintptr_t size = 4 * sizeof(uintptr_t);
4926		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4927		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4928
4929		/* address, num_elements, type_str, type_len */
4930		typeref[0] = tupregs[0].dttk_value;
4931		typeref[1] = tupregs[1].dttk_value;
4932		typeref[2] = tupregs[2].dttk_value;
4933		typeref[3] = tupregs[3].dttk_value;
4934
4935		regs[rd] = (uintptr_t) typeref;
4936		mstate->dtms_scratch_ptr += scratch_size;
4937		break;
4938	}
4939	}
4940}
4941
4942/*
4943 * Emulate the execution of DTrace IR instructions specified by the given
4944 * DIF object.  This function is deliberately void of assertions as all of
4945 * the necessary checks are handled by a call to dtrace_difo_validate().
4946 */
4947static uint64_t
4948dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4949    dtrace_vstate_t *vstate, dtrace_state_t *state)
4950{
4951	const dif_instr_t *text = difo->dtdo_buf;
4952	const uint_t textlen = difo->dtdo_len;
4953	const char *strtab = difo->dtdo_strtab;
4954	const uint64_t *inttab = difo->dtdo_inttab;
4955
4956	uint64_t rval = 0;
4957	dtrace_statvar_t *svar;
4958	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4959	dtrace_difv_t *v;
4960	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4961	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4962
4963	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4964	uint64_t regs[DIF_DIR_NREGS];
4965	uint64_t *tmp;
4966
4967	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4968	int64_t cc_r;
4969	uint_t pc = 0, id, opc = 0;
4970	uint8_t ttop = 0;
4971	dif_instr_t instr;
4972	uint_t r1, r2, rd;
4973
4974	/*
4975	 * We stash the current DIF object into the machine state: we need it
4976	 * for subsequent access checking.
4977	 */
4978	mstate->dtms_difo = difo;
4979
4980	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4981
4982	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4983		opc = pc;
4984
4985		instr = text[pc++];
4986		r1 = DIF_INSTR_R1(instr);
4987		r2 = DIF_INSTR_R2(instr);
4988		rd = DIF_INSTR_RD(instr);
4989
4990		switch (DIF_INSTR_OP(instr)) {
4991		case DIF_OP_OR:
4992			regs[rd] = regs[r1] | regs[r2];
4993			break;
4994		case DIF_OP_XOR:
4995			regs[rd] = regs[r1] ^ regs[r2];
4996			break;
4997		case DIF_OP_AND:
4998			regs[rd] = regs[r1] & regs[r2];
4999			break;
5000		case DIF_OP_SLL:
5001			regs[rd] = regs[r1] << regs[r2];
5002			break;
5003		case DIF_OP_SRL:
5004			regs[rd] = regs[r1] >> regs[r2];
5005			break;
5006		case DIF_OP_SUB:
5007			regs[rd] = regs[r1] - regs[r2];
5008			break;
5009		case DIF_OP_ADD:
5010			regs[rd] = regs[r1] + regs[r2];
5011			break;
5012		case DIF_OP_MUL:
5013			regs[rd] = regs[r1] * regs[r2];
5014			break;
5015		case DIF_OP_SDIV:
5016			if (regs[r2] == 0) {
5017				regs[rd] = 0;
5018				*flags |= CPU_DTRACE_DIVZERO;
5019			} else {
5020				regs[rd] = (int64_t)regs[r1] /
5021				    (int64_t)regs[r2];
5022			}
5023			break;
5024
5025		case DIF_OP_UDIV:
5026			if (regs[r2] == 0) {
5027				regs[rd] = 0;
5028				*flags |= CPU_DTRACE_DIVZERO;
5029			} else {
5030				regs[rd] = regs[r1] / regs[r2];
5031			}
5032			break;
5033
5034		case DIF_OP_SREM:
5035			if (regs[r2] == 0) {
5036				regs[rd] = 0;
5037				*flags |= CPU_DTRACE_DIVZERO;
5038			} else {
5039				regs[rd] = (int64_t)regs[r1] %
5040				    (int64_t)regs[r2];
5041			}
5042			break;
5043
5044		case DIF_OP_UREM:
5045			if (regs[r2] == 0) {
5046				regs[rd] = 0;
5047				*flags |= CPU_DTRACE_DIVZERO;
5048			} else {
5049				regs[rd] = regs[r1] % regs[r2];
5050			}
5051			break;
5052
5053		case DIF_OP_NOT:
5054			regs[rd] = ~regs[r1];
5055			break;
5056		case DIF_OP_MOV:
5057			regs[rd] = regs[r1];
5058			break;
5059		case DIF_OP_CMP:
5060			cc_r = regs[r1] - regs[r2];
5061			cc_n = cc_r < 0;
5062			cc_z = cc_r == 0;
5063			cc_v = 0;
5064			cc_c = regs[r1] < regs[r2];
5065			break;
5066		case DIF_OP_TST:
5067			cc_n = cc_v = cc_c = 0;
5068			cc_z = regs[r1] == 0;
5069			break;
5070		case DIF_OP_BA:
5071			pc = DIF_INSTR_LABEL(instr);
5072			break;
5073		case DIF_OP_BE:
5074			if (cc_z)
5075				pc = DIF_INSTR_LABEL(instr);
5076			break;
5077		case DIF_OP_BNE:
5078			if (cc_z == 0)
5079				pc = DIF_INSTR_LABEL(instr);
5080			break;
5081		case DIF_OP_BG:
5082			if ((cc_z | (cc_n ^ cc_v)) == 0)
5083				pc = DIF_INSTR_LABEL(instr);
5084			break;
5085		case DIF_OP_BGU:
5086			if ((cc_c | cc_z) == 0)
5087				pc = DIF_INSTR_LABEL(instr);
5088			break;
5089		case DIF_OP_BGE:
5090			if ((cc_n ^ cc_v) == 0)
5091				pc = DIF_INSTR_LABEL(instr);
5092			break;
5093		case DIF_OP_BGEU:
5094			if (cc_c == 0)
5095				pc = DIF_INSTR_LABEL(instr);
5096			break;
5097		case DIF_OP_BL:
5098			if (cc_n ^ cc_v)
5099				pc = DIF_INSTR_LABEL(instr);
5100			break;
5101		case DIF_OP_BLU:
5102			if (cc_c)
5103				pc = DIF_INSTR_LABEL(instr);
5104			break;
5105		case DIF_OP_BLE:
5106			if (cc_z | (cc_n ^ cc_v))
5107				pc = DIF_INSTR_LABEL(instr);
5108			break;
5109		case DIF_OP_BLEU:
5110			if (cc_c | cc_z)
5111				pc = DIF_INSTR_LABEL(instr);
5112			break;
5113		case DIF_OP_RLDSB:
5114			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5115				*flags |= CPU_DTRACE_KPRIV;
5116				*illval = regs[r1];
5117				break;
5118			}
5119			/*FALLTHROUGH*/
5120		case DIF_OP_LDSB:
5121			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5122			break;
5123		case DIF_OP_RLDSH:
5124			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5125				*flags |= CPU_DTRACE_KPRIV;
5126				*illval = regs[r1];
5127				break;
5128			}
5129			/*FALLTHROUGH*/
5130		case DIF_OP_LDSH:
5131			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5132			break;
5133		case DIF_OP_RLDSW:
5134			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5135				*flags |= CPU_DTRACE_KPRIV;
5136				*illval = regs[r1];
5137				break;
5138			}
5139			/*FALLTHROUGH*/
5140		case DIF_OP_LDSW:
5141			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5142			break;
5143		case DIF_OP_RLDUB:
5144			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5145				*flags |= CPU_DTRACE_KPRIV;
5146				*illval = regs[r1];
5147				break;
5148			}
5149			/*FALLTHROUGH*/
5150		case DIF_OP_LDUB:
5151			regs[rd] = dtrace_load8(regs[r1]);
5152			break;
5153		case DIF_OP_RLDUH:
5154			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5155				*flags |= CPU_DTRACE_KPRIV;
5156				*illval = regs[r1];
5157				break;
5158			}
5159			/*FALLTHROUGH*/
5160		case DIF_OP_LDUH:
5161			regs[rd] = dtrace_load16(regs[r1]);
5162			break;
5163		case DIF_OP_RLDUW:
5164			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5165				*flags |= CPU_DTRACE_KPRIV;
5166				*illval = regs[r1];
5167				break;
5168			}
5169			/*FALLTHROUGH*/
5170		case DIF_OP_LDUW:
5171			regs[rd] = dtrace_load32(regs[r1]);
5172			break;
5173		case DIF_OP_RLDX:
5174			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
5175				*flags |= CPU_DTRACE_KPRIV;
5176				*illval = regs[r1];
5177				break;
5178			}
5179			/*FALLTHROUGH*/
5180		case DIF_OP_LDX:
5181			regs[rd] = dtrace_load64(regs[r1]);
5182			break;
5183		case DIF_OP_ULDSB:
5184			regs[rd] = (int8_t)
5185			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5186			break;
5187		case DIF_OP_ULDSH:
5188			regs[rd] = (int16_t)
5189			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5190			break;
5191		case DIF_OP_ULDSW:
5192			regs[rd] = (int32_t)
5193			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5194			break;
5195		case DIF_OP_ULDUB:
5196			regs[rd] =
5197			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5198			break;
5199		case DIF_OP_ULDUH:
5200			regs[rd] =
5201			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5202			break;
5203		case DIF_OP_ULDUW:
5204			regs[rd] =
5205			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5206			break;
5207		case DIF_OP_ULDX:
5208			regs[rd] =
5209			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5210			break;
5211		case DIF_OP_RET:
5212			rval = regs[rd];
5213			pc = textlen;
5214			break;
5215		case DIF_OP_NOP:
5216			break;
5217		case DIF_OP_SETX:
5218			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5219			break;
5220		case DIF_OP_SETS:
5221			regs[rd] = (uint64_t)(uintptr_t)
5222			    (strtab + DIF_INSTR_STRING(instr));
5223			break;
5224		case DIF_OP_SCMP: {
5225			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5226			uintptr_t s1 = regs[r1];
5227			uintptr_t s2 = regs[r2];
5228
5229			if (s1 != 0 &&
5230			    !dtrace_strcanload(s1, sz, mstate, vstate))
5231				break;
5232			if (s2 != 0 &&
5233			    !dtrace_strcanload(s2, sz, mstate, vstate))
5234				break;
5235
5236			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5237
5238			cc_n = cc_r < 0;
5239			cc_z = cc_r == 0;
5240			cc_v = cc_c = 0;
5241			break;
5242		}
5243		case DIF_OP_LDGA:
5244			regs[rd] = dtrace_dif_variable(mstate, state,
5245			    r1, regs[r2]);
5246			break;
5247		case DIF_OP_LDGS:
5248			id = DIF_INSTR_VAR(instr);
5249
5250			if (id >= DIF_VAR_OTHER_UBASE) {
5251				uintptr_t a;
5252
5253				id -= DIF_VAR_OTHER_UBASE;
5254				svar = vstate->dtvs_globals[id];
5255				ASSERT(svar != NULL);
5256				v = &svar->dtsv_var;
5257
5258				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5259					regs[rd] = svar->dtsv_data;
5260					break;
5261				}
5262
5263				a = (uintptr_t)svar->dtsv_data;
5264
5265				if (*(uint8_t *)a == UINT8_MAX) {
5266					/*
5267					 * If the 0th byte is set to UINT8_MAX
5268					 * then this is to be treated as a
5269					 * reference to a NULL variable.
5270					 */
5271					regs[rd] = 0;
5272				} else {
5273					regs[rd] = a + sizeof (uint64_t);
5274				}
5275
5276				break;
5277			}
5278
5279			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5280			break;
5281
5282		case DIF_OP_STGS:
5283			id = DIF_INSTR_VAR(instr);
5284
5285			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5286			id -= DIF_VAR_OTHER_UBASE;
5287
5288			svar = vstate->dtvs_globals[id];
5289			ASSERT(svar != NULL);
5290			v = &svar->dtsv_var;
5291
5292			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5293				uintptr_t a = (uintptr_t)svar->dtsv_data;
5294
5295				ASSERT(a != 0);
5296				ASSERT(svar->dtsv_size != 0);
5297
5298				if (regs[rd] == 0) {
5299					*(uint8_t *)a = UINT8_MAX;
5300					break;
5301				} else {
5302					*(uint8_t *)a = 0;
5303					a += sizeof (uint64_t);
5304				}
5305				if (!dtrace_vcanload(
5306				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5307				    mstate, vstate))
5308					break;
5309
5310				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5311				    (void *)a, &v->dtdv_type);
5312				break;
5313			}
5314
5315			svar->dtsv_data = regs[rd];
5316			break;
5317
5318		case DIF_OP_LDTA:
5319			/*
5320			 * There are no DTrace built-in thread-local arrays at
5321			 * present.  This opcode is saved for future work.
5322			 */
5323			*flags |= CPU_DTRACE_ILLOP;
5324			regs[rd] = 0;
5325			break;
5326
5327		case DIF_OP_LDLS:
5328			id = DIF_INSTR_VAR(instr);
5329
5330			if (id < DIF_VAR_OTHER_UBASE) {
5331				/*
5332				 * For now, this has no meaning.
5333				 */
5334				regs[rd] = 0;
5335				break;
5336			}
5337
5338			id -= DIF_VAR_OTHER_UBASE;
5339
5340			ASSERT(id < vstate->dtvs_nlocals);
5341			ASSERT(vstate->dtvs_locals != NULL);
5342
5343			svar = vstate->dtvs_locals[id];
5344			ASSERT(svar != NULL);
5345			v = &svar->dtsv_var;
5346
5347			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5348				uintptr_t a = (uintptr_t)svar->dtsv_data;
5349				size_t sz = v->dtdv_type.dtdt_size;
5350
5351				sz += sizeof (uint64_t);
5352				ASSERT(svar->dtsv_size == NCPU * sz);
5353				a += curcpu * sz;
5354
5355				if (*(uint8_t *)a == UINT8_MAX) {
5356					/*
5357					 * If the 0th byte is set to UINT8_MAX
5358					 * then this is to be treated as a
5359					 * reference to a NULL variable.
5360					 */
5361					regs[rd] = 0;
5362				} else {
5363					regs[rd] = a + sizeof (uint64_t);
5364				}
5365
5366				break;
5367			}
5368
5369			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5370			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5371			regs[rd] = tmp[curcpu];
5372			break;
5373
5374		case DIF_OP_STLS:
5375			id = DIF_INSTR_VAR(instr);
5376
5377			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5378			id -= DIF_VAR_OTHER_UBASE;
5379			ASSERT(id < vstate->dtvs_nlocals);
5380
5381			ASSERT(vstate->dtvs_locals != NULL);
5382			svar = vstate->dtvs_locals[id];
5383			ASSERT(svar != NULL);
5384			v = &svar->dtsv_var;
5385
5386			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5387				uintptr_t a = (uintptr_t)svar->dtsv_data;
5388				size_t sz = v->dtdv_type.dtdt_size;
5389
5390				sz += sizeof (uint64_t);
5391				ASSERT(svar->dtsv_size == NCPU * sz);
5392				a += curcpu * sz;
5393
5394				if (regs[rd] == 0) {
5395					*(uint8_t *)a = UINT8_MAX;
5396					break;
5397				} else {
5398					*(uint8_t *)a = 0;
5399					a += sizeof (uint64_t);
5400				}
5401
5402				if (!dtrace_vcanload(
5403				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5404				    mstate, vstate))
5405					break;
5406
5407				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5408				    (void *)a, &v->dtdv_type);
5409				break;
5410			}
5411
5412			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5413			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5414			tmp[curcpu] = regs[rd];
5415			break;
5416
5417		case DIF_OP_LDTS: {
5418			dtrace_dynvar_t *dvar;
5419			dtrace_key_t *key;
5420
5421			id = DIF_INSTR_VAR(instr);
5422			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5423			id -= DIF_VAR_OTHER_UBASE;
5424			v = &vstate->dtvs_tlocals[id];
5425
5426			key = &tupregs[DIF_DTR_NREGS];
5427			key[0].dttk_value = (uint64_t)id;
5428			key[0].dttk_size = 0;
5429			DTRACE_TLS_THRKEY(key[1].dttk_value);
5430			key[1].dttk_size = 0;
5431
5432			dvar = dtrace_dynvar(dstate, 2, key,
5433			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5434			    mstate, vstate);
5435
5436			if (dvar == NULL) {
5437				regs[rd] = 0;
5438				break;
5439			}
5440
5441			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5442				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5443			} else {
5444				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5445			}
5446
5447			break;
5448		}
5449
5450		case DIF_OP_STTS: {
5451			dtrace_dynvar_t *dvar;
5452			dtrace_key_t *key;
5453
5454			id = DIF_INSTR_VAR(instr);
5455			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5456			id -= DIF_VAR_OTHER_UBASE;
5457
5458			key = &tupregs[DIF_DTR_NREGS];
5459			key[0].dttk_value = (uint64_t)id;
5460			key[0].dttk_size = 0;
5461			DTRACE_TLS_THRKEY(key[1].dttk_value);
5462			key[1].dttk_size = 0;
5463			v = &vstate->dtvs_tlocals[id];
5464
5465			dvar = dtrace_dynvar(dstate, 2, key,
5466			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5467			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5468			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5469			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5470
5471			/*
5472			 * Given that we're storing to thread-local data,
5473			 * we need to flush our predicate cache.
5474			 */
5475			curthread->t_predcache = 0;
5476
5477			if (dvar == NULL)
5478				break;
5479
5480			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5481				if (!dtrace_vcanload(
5482				    (void *)(uintptr_t)regs[rd],
5483				    &v->dtdv_type, mstate, vstate))
5484					break;
5485
5486				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5487				    dvar->dtdv_data, &v->dtdv_type);
5488			} else {
5489				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5490			}
5491
5492			break;
5493		}
5494
5495		case DIF_OP_SRA:
5496			regs[rd] = (int64_t)regs[r1] >> regs[r2];
5497			break;
5498
5499		case DIF_OP_CALL:
5500			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5501			    regs, tupregs, ttop, mstate, state);
5502			break;
5503
5504		case DIF_OP_PUSHTR:
5505			if (ttop == DIF_DTR_NREGS) {
5506				*flags |= CPU_DTRACE_TUPOFLOW;
5507				break;
5508			}
5509
5510			if (r1 == DIF_TYPE_STRING) {
5511				/*
5512				 * If this is a string type and the size is 0,
5513				 * we'll use the system-wide default string
5514				 * size.  Note that we are _not_ looking at
5515				 * the value of the DTRACEOPT_STRSIZE option;
5516				 * had this been set, we would expect to have
5517				 * a non-zero size value in the "pushtr".
5518				 */
5519				tupregs[ttop].dttk_size =
5520				    dtrace_strlen((char *)(uintptr_t)regs[rd],
5521				    regs[r2] ? regs[r2] :
5522				    dtrace_strsize_default) + 1;
5523			} else {
5524				tupregs[ttop].dttk_size = regs[r2];
5525			}
5526
5527			tupregs[ttop++].dttk_value = regs[rd];
5528			break;
5529
5530		case DIF_OP_PUSHTV:
5531			if (ttop == DIF_DTR_NREGS) {
5532				*flags |= CPU_DTRACE_TUPOFLOW;
5533				break;
5534			}
5535
5536			tupregs[ttop].dttk_value = regs[rd];
5537			tupregs[ttop++].dttk_size = 0;
5538			break;
5539
5540		case DIF_OP_POPTS:
5541			if (ttop != 0)
5542				ttop--;
5543			break;
5544
5545		case DIF_OP_FLUSHTS:
5546			ttop = 0;
5547			break;
5548
5549		case DIF_OP_LDGAA:
5550		case DIF_OP_LDTAA: {
5551			dtrace_dynvar_t *dvar;
5552			dtrace_key_t *key = tupregs;
5553			uint_t nkeys = ttop;
5554
5555			id = DIF_INSTR_VAR(instr);
5556			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5557			id -= DIF_VAR_OTHER_UBASE;
5558
5559			key[nkeys].dttk_value = (uint64_t)id;
5560			key[nkeys++].dttk_size = 0;
5561
5562			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5563				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5564				key[nkeys++].dttk_size = 0;
5565				v = &vstate->dtvs_tlocals[id];
5566			} else {
5567				v = &vstate->dtvs_globals[id]->dtsv_var;
5568			}
5569
5570			dvar = dtrace_dynvar(dstate, nkeys, key,
5571			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5572			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5573			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5574
5575			if (dvar == NULL) {
5576				regs[rd] = 0;
5577				break;
5578			}
5579
5580			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5581				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5582			} else {
5583				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5584			}
5585
5586			break;
5587		}
5588
5589		case DIF_OP_STGAA:
5590		case DIF_OP_STTAA: {
5591			dtrace_dynvar_t *dvar;
5592			dtrace_key_t *key = tupregs;
5593			uint_t nkeys = ttop;
5594
5595			id = DIF_INSTR_VAR(instr);
5596			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5597			id -= DIF_VAR_OTHER_UBASE;
5598
5599			key[nkeys].dttk_value = (uint64_t)id;
5600			key[nkeys++].dttk_size = 0;
5601
5602			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5603				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5604				key[nkeys++].dttk_size = 0;
5605				v = &vstate->dtvs_tlocals[id];
5606			} else {
5607				v = &vstate->dtvs_globals[id]->dtsv_var;
5608			}
5609
5610			dvar = dtrace_dynvar(dstate, nkeys, key,
5611			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5612			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5613			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5614			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5615
5616			if (dvar == NULL)
5617				break;
5618
5619			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5620				if (!dtrace_vcanload(
5621				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5622				    mstate, vstate))
5623					break;
5624
5625				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5626				    dvar->dtdv_data, &v->dtdv_type);
5627			} else {
5628				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5629			}
5630
5631			break;
5632		}
5633
5634		case DIF_OP_ALLOCS: {
5635			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5636			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5637
5638			/*
5639			 * Rounding up the user allocation size could have
5640			 * overflowed large, bogus allocations (like -1ULL) to
5641			 * 0.
5642			 */
5643			if (size < regs[r1] ||
5644			    !DTRACE_INSCRATCH(mstate, size)) {
5645				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5646				regs[rd] = 0;
5647				break;
5648			}
5649
5650			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5651			mstate->dtms_scratch_ptr += size;
5652			regs[rd] = ptr;
5653			break;
5654		}
5655
5656		case DIF_OP_COPYS:
5657			if (!dtrace_canstore(regs[rd], regs[r2],
5658			    mstate, vstate)) {
5659				*flags |= CPU_DTRACE_BADADDR;
5660				*illval = regs[rd];
5661				break;
5662			}
5663
5664			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5665				break;
5666
5667			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5668			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5669			break;
5670
5671		case DIF_OP_STB:
5672			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5673				*flags |= CPU_DTRACE_BADADDR;
5674				*illval = regs[rd];
5675				break;
5676			}
5677			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5678			break;
5679
5680		case DIF_OP_STH:
5681			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5682				*flags |= CPU_DTRACE_BADADDR;
5683				*illval = regs[rd];
5684				break;
5685			}
5686			if (regs[rd] & 1) {
5687				*flags |= CPU_DTRACE_BADALIGN;
5688				*illval = regs[rd];
5689				break;
5690			}
5691			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5692			break;
5693
5694		case DIF_OP_STW:
5695			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5696				*flags |= CPU_DTRACE_BADADDR;
5697				*illval = regs[rd];
5698				break;
5699			}
5700			if (regs[rd] & 3) {
5701				*flags |= CPU_DTRACE_BADALIGN;
5702				*illval = regs[rd];
5703				break;
5704			}
5705			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5706			break;
5707
5708		case DIF_OP_STX:
5709			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5710				*flags |= CPU_DTRACE_BADADDR;
5711				*illval = regs[rd];
5712				break;
5713			}
5714			if (regs[rd] & 7) {
5715				*flags |= CPU_DTRACE_BADALIGN;
5716				*illval = regs[rd];
5717				break;
5718			}
5719			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5720			break;
5721		}
5722	}
5723
5724	if (!(*flags & CPU_DTRACE_FAULT))
5725		return (rval);
5726
5727	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5728	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5729
5730	return (0);
5731}
5732
5733static void
5734dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5735{
5736	dtrace_probe_t *probe = ecb->dte_probe;
5737	dtrace_provider_t *prov = probe->dtpr_provider;
5738	char c[DTRACE_FULLNAMELEN + 80], *str;
5739	char *msg = "dtrace: breakpoint action at probe ";
5740	char *ecbmsg = " (ecb ";
5741	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5742	uintptr_t val = (uintptr_t)ecb;
5743	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5744
5745	if (dtrace_destructive_disallow)
5746		return;
5747
5748	/*
5749	 * It's impossible to be taking action on the NULL probe.
5750	 */
5751	ASSERT(probe != NULL);
5752
5753	/*
5754	 * This is a poor man's (destitute man's?) sprintf():  we want to
5755	 * print the provider name, module name, function name and name of
5756	 * the probe, along with the hex address of the ECB with the breakpoint
5757	 * action -- all of which we must place in the character buffer by
5758	 * hand.
5759	 */
5760	while (*msg != '\0')
5761		c[i++] = *msg++;
5762
5763	for (str = prov->dtpv_name; *str != '\0'; str++)
5764		c[i++] = *str;
5765	c[i++] = ':';
5766
5767	for (str = probe->dtpr_mod; *str != '\0'; str++)
5768		c[i++] = *str;
5769	c[i++] = ':';
5770
5771	for (str = probe->dtpr_func; *str != '\0'; str++)
5772		c[i++] = *str;
5773	c[i++] = ':';
5774
5775	for (str = probe->dtpr_name; *str != '\0'; str++)
5776		c[i++] = *str;
5777
5778	while (*ecbmsg != '\0')
5779		c[i++] = *ecbmsg++;
5780
5781	while (shift >= 0) {
5782		mask = (uintptr_t)0xf << shift;
5783
5784		if (val >= ((uintptr_t)1 << shift))
5785			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5786		shift -= 4;
5787	}
5788
5789	c[i++] = ')';
5790	c[i] = '\0';
5791
5792#if defined(sun)
5793	debug_enter(c);
5794#else
5795	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
5796#endif
5797}
5798
5799static void
5800dtrace_action_panic(dtrace_ecb_t *ecb)
5801{
5802	dtrace_probe_t *probe = ecb->dte_probe;
5803
5804	/*
5805	 * It's impossible to be taking action on the NULL probe.
5806	 */
5807	ASSERT(probe != NULL);
5808
5809	if (dtrace_destructive_disallow)
5810		return;
5811
5812	if (dtrace_panicked != NULL)
5813		return;
5814
5815	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5816		return;
5817
5818	/*
5819	 * We won the right to panic.  (We want to be sure that only one
5820	 * thread calls panic() from dtrace_probe(), and that panic() is
5821	 * called exactly once.)
5822	 */
5823	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5824	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5825	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5826}
5827
5828static void
5829dtrace_action_raise(uint64_t sig)
5830{
5831	if (dtrace_destructive_disallow)
5832		return;
5833
5834	if (sig >= NSIG) {
5835		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5836		return;
5837	}
5838
5839#if defined(sun)
5840	/*
5841	 * raise() has a queue depth of 1 -- we ignore all subsequent
5842	 * invocations of the raise() action.
5843	 */
5844	if (curthread->t_dtrace_sig == 0)
5845		curthread->t_dtrace_sig = (uint8_t)sig;
5846
5847	curthread->t_sig_check = 1;
5848	aston(curthread);
5849#else
5850	struct proc *p = curproc;
5851	PROC_LOCK(p);
5852	kern_psignal(p, sig);
5853	PROC_UNLOCK(p);
5854#endif
5855}
5856
5857static void
5858dtrace_action_stop(void)
5859{
5860	if (dtrace_destructive_disallow)
5861		return;
5862
5863#if defined(sun)
5864	if (!curthread->t_dtrace_stop) {
5865		curthread->t_dtrace_stop = 1;
5866		curthread->t_sig_check = 1;
5867		aston(curthread);
5868	}
5869#else
5870	struct proc *p = curproc;
5871	PROC_LOCK(p);
5872	kern_psignal(p, SIGSTOP);
5873	PROC_UNLOCK(p);
5874#endif
5875}
5876
5877static void
5878dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5879{
5880	hrtime_t now;
5881	volatile uint16_t *flags;
5882#if defined(sun)
5883	cpu_t *cpu = CPU;
5884#else
5885	cpu_t *cpu = &solaris_cpu[curcpu];
5886#endif
5887
5888	if (dtrace_destructive_disallow)
5889		return;
5890
5891	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5892
5893	now = dtrace_gethrtime();
5894
5895	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5896		/*
5897		 * We need to advance the mark to the current time.
5898		 */
5899		cpu->cpu_dtrace_chillmark = now;
5900		cpu->cpu_dtrace_chilled = 0;
5901	}
5902
5903	/*
5904	 * Now check to see if the requested chill time would take us over
5905	 * the maximum amount of time allowed in the chill interval.  (Or
5906	 * worse, if the calculation itself induces overflow.)
5907	 */
5908	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5909	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5910		*flags |= CPU_DTRACE_ILLOP;
5911		return;
5912	}
5913
5914	while (dtrace_gethrtime() - now < val)
5915		continue;
5916
5917	/*
5918	 * Normally, we assure that the value of the variable "timestamp" does
5919	 * not change within an ECB.  The presence of chill() represents an
5920	 * exception to this rule, however.
5921	 */
5922	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5923	cpu->cpu_dtrace_chilled += val;
5924}
5925
5926static void
5927dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5928    uint64_t *buf, uint64_t arg)
5929{
5930	int nframes = DTRACE_USTACK_NFRAMES(arg);
5931	int strsize = DTRACE_USTACK_STRSIZE(arg);
5932	uint64_t *pcs = &buf[1], *fps;
5933	char *str = (char *)&pcs[nframes];
5934	int size, offs = 0, i, j;
5935	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5936	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5937	char *sym;
5938
5939	/*
5940	 * Should be taking a faster path if string space has not been
5941	 * allocated.
5942	 */
5943	ASSERT(strsize != 0);
5944
5945	/*
5946	 * We will first allocate some temporary space for the frame pointers.
5947	 */
5948	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5949	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5950	    (nframes * sizeof (uint64_t));
5951
5952	if (!DTRACE_INSCRATCH(mstate, size)) {
5953		/*
5954		 * Not enough room for our frame pointers -- need to indicate
5955		 * that we ran out of scratch space.
5956		 */
5957		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5958		return;
5959	}
5960
5961	mstate->dtms_scratch_ptr += size;
5962	saved = mstate->dtms_scratch_ptr;
5963
5964	/*
5965	 * Now get a stack with both program counters and frame pointers.
5966	 */
5967	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5968	dtrace_getufpstack(buf, fps, nframes + 1);
5969	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5970
5971	/*
5972	 * If that faulted, we're cooked.
5973	 */
5974	if (*flags & CPU_DTRACE_FAULT)
5975		goto out;
5976
5977	/*
5978	 * Now we want to walk up the stack, calling the USTACK helper.  For
5979	 * each iteration, we restore the scratch pointer.
5980	 */
5981	for (i = 0; i < nframes; i++) {
5982		mstate->dtms_scratch_ptr = saved;
5983
5984		if (offs >= strsize)
5985			break;
5986
5987		sym = (char *)(uintptr_t)dtrace_helper(
5988		    DTRACE_HELPER_ACTION_USTACK,
5989		    mstate, state, pcs[i], fps[i]);
5990
5991		/*
5992		 * If we faulted while running the helper, we're going to
5993		 * clear the fault and null out the corresponding string.
5994		 */
5995		if (*flags & CPU_DTRACE_FAULT) {
5996			*flags &= ~CPU_DTRACE_FAULT;
5997			str[offs++] = '\0';
5998			continue;
5999		}
6000
6001		if (sym == NULL) {
6002			str[offs++] = '\0';
6003			continue;
6004		}
6005
6006		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6007
6008		/*
6009		 * Now copy in the string that the helper returned to us.
6010		 */
6011		for (j = 0; offs + j < strsize; j++) {
6012			if ((str[offs + j] = sym[j]) == '\0')
6013				break;
6014		}
6015
6016		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6017
6018		offs += j + 1;
6019	}
6020
6021	if (offs >= strsize) {
6022		/*
6023		 * If we didn't have room for all of the strings, we don't
6024		 * abort processing -- this needn't be a fatal error -- but we
6025		 * still want to increment a counter (dts_stkstroverflows) to
6026		 * allow this condition to be warned about.  (If this is from
6027		 * a jstack() action, it is easily tuned via jstackstrsize.)
6028		 */
6029		dtrace_error(&state->dts_stkstroverflows);
6030	}
6031
6032	while (offs < strsize)
6033		str[offs++] = '\0';
6034
6035out:
6036	mstate->dtms_scratch_ptr = old;
6037}
6038
6039/*
6040 * If you're looking for the epicenter of DTrace, you just found it.  This
6041 * is the function called by the provider to fire a probe -- from which all
6042 * subsequent probe-context DTrace activity emanates.
6043 */
6044void
6045dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6046    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6047{
6048	processorid_t cpuid;
6049	dtrace_icookie_t cookie;
6050	dtrace_probe_t *probe;
6051	dtrace_mstate_t mstate;
6052	dtrace_ecb_t *ecb;
6053	dtrace_action_t *act;
6054	intptr_t offs;
6055	size_t size;
6056	int vtime, onintr;
6057	volatile uint16_t *flags;
6058	hrtime_t now;
6059
6060	if (panicstr != NULL)
6061		return;
6062
6063#if defined(sun)
6064	/*
6065	 * Kick out immediately if this CPU is still being born (in which case
6066	 * curthread will be set to -1) or the current thread can't allow
6067	 * probes in its current context.
6068	 */
6069	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6070		return;
6071#endif
6072
6073	cookie = dtrace_interrupt_disable();
6074	probe = dtrace_probes[id - 1];
6075	cpuid = curcpu;
6076	onintr = CPU_ON_INTR(CPU);
6077
6078	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6079	    probe->dtpr_predcache == curthread->t_predcache) {
6080		/*
6081		 * We have hit in the predicate cache; we know that
6082		 * this predicate would evaluate to be false.
6083		 */
6084		dtrace_interrupt_enable(cookie);
6085		return;
6086	}
6087
6088#if defined(sun)
6089	if (panic_quiesce) {
6090#else
6091	if (panicstr != NULL) {
6092#endif
6093		/*
6094		 * We don't trace anything if we're panicking.
6095		 */
6096		dtrace_interrupt_enable(cookie);
6097		return;
6098	}
6099
6100	now = dtrace_gethrtime();
6101	vtime = dtrace_vtime_references != 0;
6102
6103	if (vtime && curthread->t_dtrace_start)
6104		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6105
6106	mstate.dtms_difo = NULL;
6107	mstate.dtms_probe = probe;
6108	mstate.dtms_strtok = 0;
6109	mstate.dtms_arg[0] = arg0;
6110	mstate.dtms_arg[1] = arg1;
6111	mstate.dtms_arg[2] = arg2;
6112	mstate.dtms_arg[3] = arg3;
6113	mstate.dtms_arg[4] = arg4;
6114
6115	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6116
6117	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6118		dtrace_predicate_t *pred = ecb->dte_predicate;
6119		dtrace_state_t *state = ecb->dte_state;
6120		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6121		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6122		dtrace_vstate_t *vstate = &state->dts_vstate;
6123		dtrace_provider_t *prov = probe->dtpr_provider;
6124		uint64_t tracememsize = 0;
6125		int committed = 0;
6126		caddr_t tomax;
6127
6128		/*
6129		 * A little subtlety with the following (seemingly innocuous)
6130		 * declaration of the automatic 'val':  by looking at the
6131		 * code, you might think that it could be declared in the
6132		 * action processing loop, below.  (That is, it's only used in
6133		 * the action processing loop.)  However, it must be declared
6134		 * out of that scope because in the case of DIF expression
6135		 * arguments to aggregating actions, one iteration of the
6136		 * action loop will use the last iteration's value.
6137		 */
6138		uint64_t val = 0;
6139
6140		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6141		*flags &= ~CPU_DTRACE_ERROR;
6142
6143		if (prov == dtrace_provider) {
6144			/*
6145			 * If dtrace itself is the provider of this probe,
6146			 * we're only going to continue processing the ECB if
6147			 * arg0 (the dtrace_state_t) is equal to the ECB's
6148			 * creating state.  (This prevents disjoint consumers
6149			 * from seeing one another's metaprobes.)
6150			 */
6151			if (arg0 != (uint64_t)(uintptr_t)state)
6152				continue;
6153		}
6154
6155		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6156			/*
6157			 * We're not currently active.  If our provider isn't
6158			 * the dtrace pseudo provider, we're not interested.
6159			 */
6160			if (prov != dtrace_provider)
6161				continue;
6162
6163			/*
6164			 * Now we must further check if we are in the BEGIN
6165			 * probe.  If we are, we will only continue processing
6166			 * if we're still in WARMUP -- if one BEGIN enabling
6167			 * has invoked the exit() action, we don't want to
6168			 * evaluate subsequent BEGIN enablings.
6169			 */
6170			if (probe->dtpr_id == dtrace_probeid_begin &&
6171			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6172				ASSERT(state->dts_activity ==
6173				    DTRACE_ACTIVITY_DRAINING);
6174				continue;
6175			}
6176		}
6177
6178		if (ecb->dte_cond) {
6179			/*
6180			 * If the dte_cond bits indicate that this
6181			 * consumer is only allowed to see user-mode firings
6182			 * of this probe, call the provider's dtps_usermode()
6183			 * entry point to check that the probe was fired
6184			 * while in a user context. Skip this ECB if that's
6185			 * not the case.
6186			 */
6187			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
6188			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
6189			    probe->dtpr_id, probe->dtpr_arg) == 0)
6190				continue;
6191
6192#if defined(sun)
6193			/*
6194			 * This is more subtle than it looks. We have to be
6195			 * absolutely certain that CRED() isn't going to
6196			 * change out from under us so it's only legit to
6197			 * examine that structure if we're in constrained
6198			 * situations. Currently, the only times we'll this
6199			 * check is if a non-super-user has enabled the
6200			 * profile or syscall providers -- providers that
6201			 * allow visibility of all processes. For the
6202			 * profile case, the check above will ensure that
6203			 * we're examining a user context.
6204			 */
6205			if (ecb->dte_cond & DTRACE_COND_OWNER) {
6206				cred_t *cr;
6207				cred_t *s_cr =
6208				    ecb->dte_state->dts_cred.dcr_cred;
6209				proc_t *proc;
6210
6211				ASSERT(s_cr != NULL);
6212
6213				if ((cr = CRED()) == NULL ||
6214				    s_cr->cr_uid != cr->cr_uid ||
6215				    s_cr->cr_uid != cr->cr_ruid ||
6216				    s_cr->cr_uid != cr->cr_suid ||
6217				    s_cr->cr_gid != cr->cr_gid ||
6218				    s_cr->cr_gid != cr->cr_rgid ||
6219				    s_cr->cr_gid != cr->cr_sgid ||
6220				    (proc = ttoproc(curthread)) == NULL ||
6221				    (proc->p_flag & SNOCD))
6222					continue;
6223			}
6224
6225			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6226				cred_t *cr;
6227				cred_t *s_cr =
6228				    ecb->dte_state->dts_cred.dcr_cred;
6229
6230				ASSERT(s_cr != NULL);
6231
6232				if ((cr = CRED()) == NULL ||
6233				    s_cr->cr_zone->zone_id !=
6234				    cr->cr_zone->zone_id)
6235					continue;
6236			}
6237#endif
6238		}
6239
6240		if (now - state->dts_alive > dtrace_deadman_timeout) {
6241			/*
6242			 * We seem to be dead.  Unless we (a) have kernel
6243			 * destructive permissions (b) have explicitly enabled
6244			 * destructive actions and (c) destructive actions have
6245			 * not been disabled, we're going to transition into
6246			 * the KILLED state, from which no further processing
6247			 * on this state will be performed.
6248			 */
6249			if (!dtrace_priv_kernel_destructive(state) ||
6250			    !state->dts_cred.dcr_destructive ||
6251			    dtrace_destructive_disallow) {
6252				void *activity = &state->dts_activity;
6253				dtrace_activity_t current;
6254
6255				do {
6256					current = state->dts_activity;
6257				} while (dtrace_cas32(activity, current,
6258				    DTRACE_ACTIVITY_KILLED) != current);
6259
6260				continue;
6261			}
6262		}
6263
6264		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6265		    ecb->dte_alignment, state, &mstate)) < 0)
6266			continue;
6267
6268		tomax = buf->dtb_tomax;
6269		ASSERT(tomax != NULL);
6270
6271		if (ecb->dte_size != 0) {
6272			dtrace_rechdr_t dtrh;
6273			if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
6274				mstate.dtms_timestamp = dtrace_gethrtime();
6275				mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
6276			}
6277			ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
6278			dtrh.dtrh_epid = ecb->dte_epid;
6279			DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
6280			    mstate.dtms_timestamp);
6281			*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
6282		}
6283
6284		mstate.dtms_epid = ecb->dte_epid;
6285		mstate.dtms_present |= DTRACE_MSTATE_EPID;
6286
6287		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6288			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6289		else
6290			mstate.dtms_access = 0;
6291
6292		if (pred != NULL) {
6293			dtrace_difo_t *dp = pred->dtp_difo;
6294			int rval;
6295
6296			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6297
6298			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6299				dtrace_cacheid_t cid = probe->dtpr_predcache;
6300
6301				if (cid != DTRACE_CACHEIDNONE && !onintr) {
6302					/*
6303					 * Update the predicate cache...
6304					 */
6305					ASSERT(cid == pred->dtp_cacheid);
6306					curthread->t_predcache = cid;
6307				}
6308
6309				continue;
6310			}
6311		}
6312
6313		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6314		    act != NULL; act = act->dta_next) {
6315			size_t valoffs;
6316			dtrace_difo_t *dp;
6317			dtrace_recdesc_t *rec = &act->dta_rec;
6318
6319			size = rec->dtrd_size;
6320			valoffs = offs + rec->dtrd_offset;
6321
6322			if (DTRACEACT_ISAGG(act->dta_kind)) {
6323				uint64_t v = 0xbad;
6324				dtrace_aggregation_t *agg;
6325
6326				agg = (dtrace_aggregation_t *)act;
6327
6328				if ((dp = act->dta_difo) != NULL)
6329					v = dtrace_dif_emulate(dp,
6330					    &mstate, vstate, state);
6331
6332				if (*flags & CPU_DTRACE_ERROR)
6333					continue;
6334
6335				/*
6336				 * Note that we always pass the expression
6337				 * value from the previous iteration of the
6338				 * action loop.  This value will only be used
6339				 * if there is an expression argument to the
6340				 * aggregating action, denoted by the
6341				 * dtag_hasarg field.
6342				 */
6343				dtrace_aggregate(agg, buf,
6344				    offs, aggbuf, v, val);
6345				continue;
6346			}
6347
6348			switch (act->dta_kind) {
6349			case DTRACEACT_STOP:
6350				if (dtrace_priv_proc_destructive(state))
6351					dtrace_action_stop();
6352				continue;
6353
6354			case DTRACEACT_BREAKPOINT:
6355				if (dtrace_priv_kernel_destructive(state))
6356					dtrace_action_breakpoint(ecb);
6357				continue;
6358
6359			case DTRACEACT_PANIC:
6360				if (dtrace_priv_kernel_destructive(state))
6361					dtrace_action_panic(ecb);
6362				continue;
6363
6364			case DTRACEACT_STACK:
6365				if (!dtrace_priv_kernel(state))
6366					continue;
6367
6368				dtrace_getpcstack((pc_t *)(tomax + valoffs),
6369				    size / sizeof (pc_t), probe->dtpr_aframes,
6370				    DTRACE_ANCHORED(probe) ? NULL :
6371				    (uint32_t *)arg0);
6372				continue;
6373
6374			case DTRACEACT_JSTACK:
6375			case DTRACEACT_USTACK:
6376				if (!dtrace_priv_proc(state))
6377					continue;
6378
6379				/*
6380				 * See comment in DIF_VAR_PID.
6381				 */
6382				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6383				    CPU_ON_INTR(CPU)) {
6384					int depth = DTRACE_USTACK_NFRAMES(
6385					    rec->dtrd_arg) + 1;
6386
6387					dtrace_bzero((void *)(tomax + valoffs),
6388					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6389					    + depth * sizeof (uint64_t));
6390
6391					continue;
6392				}
6393
6394				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6395				    curproc->p_dtrace_helpers != NULL) {
6396					/*
6397					 * This is the slow path -- we have
6398					 * allocated string space, and we're
6399					 * getting the stack of a process that
6400					 * has helpers.  Call into a separate
6401					 * routine to perform this processing.
6402					 */
6403					dtrace_action_ustack(&mstate, state,
6404					    (uint64_t *)(tomax + valoffs),
6405					    rec->dtrd_arg);
6406					continue;
6407				}
6408
6409				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6410				dtrace_getupcstack((uint64_t *)
6411				    (tomax + valoffs),
6412				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6413				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6414				continue;
6415
6416			default:
6417				break;
6418			}
6419
6420			dp = act->dta_difo;
6421			ASSERT(dp != NULL);
6422
6423			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6424
6425			if (*flags & CPU_DTRACE_ERROR)
6426				continue;
6427
6428			switch (act->dta_kind) {
6429			case DTRACEACT_SPECULATE: {
6430				dtrace_rechdr_t *dtrh;
6431
6432				ASSERT(buf == &state->dts_buffer[cpuid]);
6433				buf = dtrace_speculation_buffer(state,
6434				    cpuid, val);
6435
6436				if (buf == NULL) {
6437					*flags |= CPU_DTRACE_DROP;
6438					continue;
6439				}
6440
6441				offs = dtrace_buffer_reserve(buf,
6442				    ecb->dte_needed, ecb->dte_alignment,
6443				    state, NULL);
6444
6445				if (offs < 0) {
6446					*flags |= CPU_DTRACE_DROP;
6447					continue;
6448				}
6449
6450				tomax = buf->dtb_tomax;
6451				ASSERT(tomax != NULL);
6452
6453				if (ecb->dte_size == 0)
6454					continue;
6455
6456				ASSERT3U(ecb->dte_size, >=,
6457				    sizeof (dtrace_rechdr_t));
6458				dtrh = ((void *)(tomax + offs));
6459				dtrh->dtrh_epid = ecb->dte_epid;
6460				/*
6461				 * When the speculation is committed, all of
6462				 * the records in the speculative buffer will
6463				 * have their timestamps set to the commit
6464				 * time.  Until then, it is set to a sentinel
6465				 * value, for debugability.
6466				 */
6467				DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
6468				continue;
6469			}
6470
6471			case DTRACEACT_PRINTM: {
6472				/* The DIF returns a 'memref'. */
6473				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6474
6475				/* Get the size from the memref. */
6476				size = memref[1];
6477
6478				/*
6479				 * Check if the size exceeds the allocated
6480				 * buffer size.
6481				 */
6482				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6483					/* Flag a drop! */
6484					*flags |= CPU_DTRACE_DROP;
6485					continue;
6486				}
6487
6488				/* Store the size in the buffer first. */
6489				DTRACE_STORE(uintptr_t, tomax,
6490				    valoffs, size);
6491
6492				/*
6493				 * Offset the buffer address to the start
6494				 * of the data.
6495				 */
6496				valoffs += sizeof(uintptr_t);
6497
6498				/*
6499				 * Reset to the memory address rather than
6500				 * the memref array, then let the BYREF
6501				 * code below do the work to store the
6502				 * memory data in the buffer.
6503				 */
6504				val = memref[0];
6505				break;
6506			}
6507
6508			case DTRACEACT_PRINTT: {
6509				/* The DIF returns a 'typeref'. */
6510				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6511				char c = '\0' + 1;
6512				size_t s;
6513
6514				/*
6515				 * Get the type string length and round it
6516				 * up so that the data that follows is
6517				 * aligned for easy access.
6518				 */
6519				size_t typs = strlen((char *) typeref[2]) + 1;
6520				typs = roundup(typs,  sizeof(uintptr_t));
6521
6522				/*
6523				 *Get the size from the typeref using the
6524				 * number of elements and the type size.
6525				 */
6526				size = typeref[1] * typeref[3];
6527
6528				/*
6529				 * Check if the size exceeds the allocated
6530				 * buffer size.
6531				 */
6532				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6533					/* Flag a drop! */
6534					*flags |= CPU_DTRACE_DROP;
6535
6536				}
6537
6538				/* Store the size in the buffer first. */
6539				DTRACE_STORE(uintptr_t, tomax,
6540				    valoffs, size);
6541				valoffs += sizeof(uintptr_t);
6542
6543				/* Store the type size in the buffer. */
6544				DTRACE_STORE(uintptr_t, tomax,
6545				    valoffs, typeref[3]);
6546				valoffs += sizeof(uintptr_t);
6547
6548				val = typeref[2];
6549
6550				for (s = 0; s < typs; s++) {
6551					if (c != '\0')
6552						c = dtrace_load8(val++);
6553
6554					DTRACE_STORE(uint8_t, tomax,
6555					    valoffs++, c);
6556				}
6557
6558				/*
6559				 * Reset to the memory address rather than
6560				 * the typeref array, then let the BYREF
6561				 * code below do the work to store the
6562				 * memory data in the buffer.
6563				 */
6564				val = typeref[0];
6565				break;
6566			}
6567
6568			case DTRACEACT_CHILL:
6569				if (dtrace_priv_kernel_destructive(state))
6570					dtrace_action_chill(&mstate, val);
6571				continue;
6572
6573			case DTRACEACT_RAISE:
6574				if (dtrace_priv_proc_destructive(state))
6575					dtrace_action_raise(val);
6576				continue;
6577
6578			case DTRACEACT_COMMIT:
6579				ASSERT(!committed);
6580
6581				/*
6582				 * We need to commit our buffer state.
6583				 */
6584				if (ecb->dte_size)
6585					buf->dtb_offset = offs + ecb->dte_size;
6586				buf = &state->dts_buffer[cpuid];
6587				dtrace_speculation_commit(state, cpuid, val);
6588				committed = 1;
6589				continue;
6590
6591			case DTRACEACT_DISCARD:
6592				dtrace_speculation_discard(state, cpuid, val);
6593				continue;
6594
6595			case DTRACEACT_DIFEXPR:
6596			case DTRACEACT_LIBACT:
6597			case DTRACEACT_PRINTF:
6598			case DTRACEACT_PRINTA:
6599			case DTRACEACT_SYSTEM:
6600			case DTRACEACT_FREOPEN:
6601			case DTRACEACT_TRACEMEM:
6602				break;
6603
6604			case DTRACEACT_TRACEMEM_DYNSIZE:
6605				tracememsize = val;
6606				break;
6607
6608			case DTRACEACT_SYM:
6609			case DTRACEACT_MOD:
6610				if (!dtrace_priv_kernel(state))
6611					continue;
6612				break;
6613
6614			case DTRACEACT_USYM:
6615			case DTRACEACT_UMOD:
6616			case DTRACEACT_UADDR: {
6617#if defined(sun)
6618				struct pid *pid = curthread->t_procp->p_pidp;
6619#endif
6620
6621				if (!dtrace_priv_proc(state))
6622					continue;
6623
6624				DTRACE_STORE(uint64_t, tomax,
6625#if defined(sun)
6626				    valoffs, (uint64_t)pid->pid_id);
6627#else
6628				    valoffs, (uint64_t) curproc->p_pid);
6629#endif
6630				DTRACE_STORE(uint64_t, tomax,
6631				    valoffs + sizeof (uint64_t), val);
6632
6633				continue;
6634			}
6635
6636			case DTRACEACT_EXIT: {
6637				/*
6638				 * For the exit action, we are going to attempt
6639				 * to atomically set our activity to be
6640				 * draining.  If this fails (either because
6641				 * another CPU has beat us to the exit action,
6642				 * or because our current activity is something
6643				 * other than ACTIVE or WARMUP), we will
6644				 * continue.  This assures that the exit action
6645				 * can be successfully recorded at most once
6646				 * when we're in the ACTIVE state.  If we're
6647				 * encountering the exit() action while in
6648				 * COOLDOWN, however, we want to honor the new
6649				 * status code.  (We know that we're the only
6650				 * thread in COOLDOWN, so there is no race.)
6651				 */
6652				void *activity = &state->dts_activity;
6653				dtrace_activity_t current = state->dts_activity;
6654
6655				if (current == DTRACE_ACTIVITY_COOLDOWN)
6656					break;
6657
6658				if (current != DTRACE_ACTIVITY_WARMUP)
6659					current = DTRACE_ACTIVITY_ACTIVE;
6660
6661				if (dtrace_cas32(activity, current,
6662				    DTRACE_ACTIVITY_DRAINING) != current) {
6663					*flags |= CPU_DTRACE_DROP;
6664					continue;
6665				}
6666
6667				break;
6668			}
6669
6670			default:
6671				ASSERT(0);
6672			}
6673
6674			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6675				uintptr_t end = valoffs + size;
6676
6677				if (tracememsize != 0 &&
6678				    valoffs + tracememsize < end) {
6679					end = valoffs + tracememsize;
6680					tracememsize = 0;
6681				}
6682
6683				if (!dtrace_vcanload((void *)(uintptr_t)val,
6684				    &dp->dtdo_rtype, &mstate, vstate))
6685					continue;
6686
6687				/*
6688				 * If this is a string, we're going to only
6689				 * load until we find the zero byte -- after
6690				 * which we'll store zero bytes.
6691				 */
6692				if (dp->dtdo_rtype.dtdt_kind ==
6693				    DIF_TYPE_STRING) {
6694					char c = '\0' + 1;
6695					int intuple = act->dta_intuple;
6696					size_t s;
6697
6698					for (s = 0; s < size; s++) {
6699						if (c != '\0')
6700							c = dtrace_load8(val++);
6701
6702						DTRACE_STORE(uint8_t, tomax,
6703						    valoffs++, c);
6704
6705						if (c == '\0' && intuple)
6706							break;
6707					}
6708
6709					continue;
6710				}
6711
6712				while (valoffs < end) {
6713					DTRACE_STORE(uint8_t, tomax, valoffs++,
6714					    dtrace_load8(val++));
6715				}
6716
6717				continue;
6718			}
6719
6720			switch (size) {
6721			case 0:
6722				break;
6723
6724			case sizeof (uint8_t):
6725				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6726				break;
6727			case sizeof (uint16_t):
6728				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6729				break;
6730			case sizeof (uint32_t):
6731				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6732				break;
6733			case sizeof (uint64_t):
6734				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6735				break;
6736			default:
6737				/*
6738				 * Any other size should have been returned by
6739				 * reference, not by value.
6740				 */
6741				ASSERT(0);
6742				break;
6743			}
6744		}
6745
6746		if (*flags & CPU_DTRACE_DROP)
6747			continue;
6748
6749		if (*flags & CPU_DTRACE_FAULT) {
6750			int ndx;
6751			dtrace_action_t *err;
6752
6753			buf->dtb_errors++;
6754
6755			if (probe->dtpr_id == dtrace_probeid_error) {
6756				/*
6757				 * There's nothing we can do -- we had an
6758				 * error on the error probe.  We bump an
6759				 * error counter to at least indicate that
6760				 * this condition happened.
6761				 */
6762				dtrace_error(&state->dts_dblerrors);
6763				continue;
6764			}
6765
6766			if (vtime) {
6767				/*
6768				 * Before recursing on dtrace_probe(), we
6769				 * need to explicitly clear out our start
6770				 * time to prevent it from being accumulated
6771				 * into t_dtrace_vtime.
6772				 */
6773				curthread->t_dtrace_start = 0;
6774			}
6775
6776			/*
6777			 * Iterate over the actions to figure out which action
6778			 * we were processing when we experienced the error.
6779			 * Note that act points _past_ the faulting action; if
6780			 * act is ecb->dte_action, the fault was in the
6781			 * predicate, if it's ecb->dte_action->dta_next it's
6782			 * in action #1, and so on.
6783			 */
6784			for (err = ecb->dte_action, ndx = 0;
6785			    err != act; err = err->dta_next, ndx++)
6786				continue;
6787
6788			dtrace_probe_error(state, ecb->dte_epid, ndx,
6789			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6790			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6791			    cpu_core[cpuid].cpuc_dtrace_illval);
6792
6793			continue;
6794		}
6795
6796		if (!committed)
6797			buf->dtb_offset = offs + ecb->dte_size;
6798	}
6799
6800	if (vtime)
6801		curthread->t_dtrace_start = dtrace_gethrtime();
6802
6803	dtrace_interrupt_enable(cookie);
6804}
6805
6806/*
6807 * DTrace Probe Hashing Functions
6808 *
6809 * The functions in this section (and indeed, the functions in remaining
6810 * sections) are not _called_ from probe context.  (Any exceptions to this are
6811 * marked with a "Note:".)  Rather, they are called from elsewhere in the
6812 * DTrace framework to look-up probes in, add probes to and remove probes from
6813 * the DTrace probe hashes.  (Each probe is hashed by each element of the
6814 * probe tuple -- allowing for fast lookups, regardless of what was
6815 * specified.)
6816 */
6817static uint_t
6818dtrace_hash_str(const char *p)
6819{
6820	unsigned int g;
6821	uint_t hval = 0;
6822
6823	while (*p) {
6824		hval = (hval << 4) + *p++;
6825		if ((g = (hval & 0xf0000000)) != 0)
6826			hval ^= g >> 24;
6827		hval &= ~g;
6828	}
6829	return (hval);
6830}
6831
6832static dtrace_hash_t *
6833dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6834{
6835	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6836
6837	hash->dth_stroffs = stroffs;
6838	hash->dth_nextoffs = nextoffs;
6839	hash->dth_prevoffs = prevoffs;
6840
6841	hash->dth_size = 1;
6842	hash->dth_mask = hash->dth_size - 1;
6843
6844	hash->dth_tab = kmem_zalloc(hash->dth_size *
6845	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6846
6847	return (hash);
6848}
6849
6850static void
6851dtrace_hash_destroy(dtrace_hash_t *hash)
6852{
6853#ifdef DEBUG
6854	int i;
6855
6856	for (i = 0; i < hash->dth_size; i++)
6857		ASSERT(hash->dth_tab[i] == NULL);
6858#endif
6859
6860	kmem_free(hash->dth_tab,
6861	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6862	kmem_free(hash, sizeof (dtrace_hash_t));
6863}
6864
6865static void
6866dtrace_hash_resize(dtrace_hash_t *hash)
6867{
6868	int size = hash->dth_size, i, ndx;
6869	int new_size = hash->dth_size << 1;
6870	int new_mask = new_size - 1;
6871	dtrace_hashbucket_t **new_tab, *bucket, *next;
6872
6873	ASSERT((new_size & new_mask) == 0);
6874
6875	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6876
6877	for (i = 0; i < size; i++) {
6878		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6879			dtrace_probe_t *probe = bucket->dthb_chain;
6880
6881			ASSERT(probe != NULL);
6882			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6883
6884			next = bucket->dthb_next;
6885			bucket->dthb_next = new_tab[ndx];
6886			new_tab[ndx] = bucket;
6887		}
6888	}
6889
6890	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6891	hash->dth_tab = new_tab;
6892	hash->dth_size = new_size;
6893	hash->dth_mask = new_mask;
6894}
6895
6896static void
6897dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6898{
6899	int hashval = DTRACE_HASHSTR(hash, new);
6900	int ndx = hashval & hash->dth_mask;
6901	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6902	dtrace_probe_t **nextp, **prevp;
6903
6904	for (; bucket != NULL; bucket = bucket->dthb_next) {
6905		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6906			goto add;
6907	}
6908
6909	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6910		dtrace_hash_resize(hash);
6911		dtrace_hash_add(hash, new);
6912		return;
6913	}
6914
6915	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6916	bucket->dthb_next = hash->dth_tab[ndx];
6917	hash->dth_tab[ndx] = bucket;
6918	hash->dth_nbuckets++;
6919
6920add:
6921	nextp = DTRACE_HASHNEXT(hash, new);
6922	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6923	*nextp = bucket->dthb_chain;
6924
6925	if (bucket->dthb_chain != NULL) {
6926		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6927		ASSERT(*prevp == NULL);
6928		*prevp = new;
6929	}
6930
6931	bucket->dthb_chain = new;
6932	bucket->dthb_len++;
6933}
6934
6935static dtrace_probe_t *
6936dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6937{
6938	int hashval = DTRACE_HASHSTR(hash, template);
6939	int ndx = hashval & hash->dth_mask;
6940	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6941
6942	for (; bucket != NULL; bucket = bucket->dthb_next) {
6943		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6944			return (bucket->dthb_chain);
6945	}
6946
6947	return (NULL);
6948}
6949
6950static int
6951dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6952{
6953	int hashval = DTRACE_HASHSTR(hash, template);
6954	int ndx = hashval & hash->dth_mask;
6955	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6956
6957	for (; bucket != NULL; bucket = bucket->dthb_next) {
6958		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6959			return (bucket->dthb_len);
6960	}
6961
6962	return (0);
6963}
6964
6965static void
6966dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6967{
6968	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6969	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6970
6971	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6972	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6973
6974	/*
6975	 * Find the bucket that we're removing this probe from.
6976	 */
6977	for (; bucket != NULL; bucket = bucket->dthb_next) {
6978		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6979			break;
6980	}
6981
6982	ASSERT(bucket != NULL);
6983
6984	if (*prevp == NULL) {
6985		if (*nextp == NULL) {
6986			/*
6987			 * The removed probe was the only probe on this
6988			 * bucket; we need to remove the bucket.
6989			 */
6990			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6991
6992			ASSERT(bucket->dthb_chain == probe);
6993			ASSERT(b != NULL);
6994
6995			if (b == bucket) {
6996				hash->dth_tab[ndx] = bucket->dthb_next;
6997			} else {
6998				while (b->dthb_next != bucket)
6999					b = b->dthb_next;
7000				b->dthb_next = bucket->dthb_next;
7001			}
7002
7003			ASSERT(hash->dth_nbuckets > 0);
7004			hash->dth_nbuckets--;
7005			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
7006			return;
7007		}
7008
7009		bucket->dthb_chain = *nextp;
7010	} else {
7011		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
7012	}
7013
7014	if (*nextp != NULL)
7015		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
7016}
7017
7018/*
7019 * DTrace Utility Functions
7020 *
7021 * These are random utility functions that are _not_ called from probe context.
7022 */
7023static int
7024dtrace_badattr(const dtrace_attribute_t *a)
7025{
7026	return (a->dtat_name > DTRACE_STABILITY_MAX ||
7027	    a->dtat_data > DTRACE_STABILITY_MAX ||
7028	    a->dtat_class > DTRACE_CLASS_MAX);
7029}
7030
7031/*
7032 * Return a duplicate copy of a string.  If the specified string is NULL,
7033 * this function returns a zero-length string.
7034 */
7035static char *
7036dtrace_strdup(const char *str)
7037{
7038	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
7039
7040	if (str != NULL)
7041		(void) strcpy(new, str);
7042
7043	return (new);
7044}
7045
7046#define	DTRACE_ISALPHA(c)	\
7047	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
7048
7049static int
7050dtrace_badname(const char *s)
7051{
7052	char c;
7053
7054	if (s == NULL || (c = *s++) == '\0')
7055		return (0);
7056
7057	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
7058		return (1);
7059
7060	while ((c = *s++) != '\0') {
7061		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
7062		    c != '-' && c != '_' && c != '.' && c != '`')
7063			return (1);
7064	}
7065
7066	return (0);
7067}
7068
7069static void
7070dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
7071{
7072	uint32_t priv;
7073
7074#if defined(sun)
7075	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
7076		/*
7077		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7078		 */
7079		priv = DTRACE_PRIV_ALL;
7080	} else {
7081		*uidp = crgetuid(cr);
7082		*zoneidp = crgetzoneid(cr);
7083
7084		priv = 0;
7085		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
7086			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
7087		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
7088			priv |= DTRACE_PRIV_USER;
7089		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
7090			priv |= DTRACE_PRIV_PROC;
7091		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
7092			priv |= DTRACE_PRIV_OWNER;
7093		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
7094			priv |= DTRACE_PRIV_ZONEOWNER;
7095	}
7096#else
7097	priv = DTRACE_PRIV_ALL;
7098#endif
7099
7100	*privp = priv;
7101}
7102
7103#ifdef DTRACE_ERRDEBUG
7104static void
7105dtrace_errdebug(const char *str)
7106{
7107	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
7108	int occupied = 0;
7109
7110	mutex_enter(&dtrace_errlock);
7111	dtrace_errlast = str;
7112	dtrace_errthread = curthread;
7113
7114	while (occupied++ < DTRACE_ERRHASHSZ) {
7115		if (dtrace_errhash[hval].dter_msg == str) {
7116			dtrace_errhash[hval].dter_count++;
7117			goto out;
7118		}
7119
7120		if (dtrace_errhash[hval].dter_msg != NULL) {
7121			hval = (hval + 1) % DTRACE_ERRHASHSZ;
7122			continue;
7123		}
7124
7125		dtrace_errhash[hval].dter_msg = str;
7126		dtrace_errhash[hval].dter_count = 1;
7127		goto out;
7128	}
7129
7130	panic("dtrace: undersized error hash");
7131out:
7132	mutex_exit(&dtrace_errlock);
7133}
7134#endif
7135
7136/*
7137 * DTrace Matching Functions
7138 *
7139 * These functions are used to match groups of probes, given some elements of
7140 * a probe tuple, or some globbed expressions for elements of a probe tuple.
7141 */
7142static int
7143dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7144    zoneid_t zoneid)
7145{
7146	if (priv != DTRACE_PRIV_ALL) {
7147		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7148		uint32_t match = priv & ppriv;
7149
7150		/*
7151		 * No PRIV_DTRACE_* privileges...
7152		 */
7153		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7154		    DTRACE_PRIV_KERNEL)) == 0)
7155			return (0);
7156
7157		/*
7158		 * No matching bits, but there were bits to match...
7159		 */
7160		if (match == 0 && ppriv != 0)
7161			return (0);
7162
7163		/*
7164		 * Need to have permissions to the process, but don't...
7165		 */
7166		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7167		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7168			return (0);
7169		}
7170
7171		/*
7172		 * Need to be in the same zone unless we possess the
7173		 * privilege to examine all zones.
7174		 */
7175		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7176		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7177			return (0);
7178		}
7179	}
7180
7181	return (1);
7182}
7183
7184/*
7185 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7186 * consists of input pattern strings and an ops-vector to evaluate them.
7187 * This function returns >0 for match, 0 for no match, and <0 for error.
7188 */
7189static int
7190dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7191    uint32_t priv, uid_t uid, zoneid_t zoneid)
7192{
7193	dtrace_provider_t *pvp = prp->dtpr_provider;
7194	int rv;
7195
7196	if (pvp->dtpv_defunct)
7197		return (0);
7198
7199	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7200		return (rv);
7201
7202	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7203		return (rv);
7204
7205	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7206		return (rv);
7207
7208	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7209		return (rv);
7210
7211	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7212		return (0);
7213
7214	return (rv);
7215}
7216
7217/*
7218 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7219 * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7220 * libc's version, the kernel version only applies to 8-bit ASCII strings.
7221 * In addition, all of the recursion cases except for '*' matching have been
7222 * unwound.  For '*', we still implement recursive evaluation, but a depth
7223 * counter is maintained and matching is aborted if we recurse too deep.
7224 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7225 */
7226static int
7227dtrace_match_glob(const char *s, const char *p, int depth)
7228{
7229	const char *olds;
7230	char s1, c;
7231	int gs;
7232
7233	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7234		return (-1);
7235
7236	if (s == NULL)
7237		s = ""; /* treat NULL as empty string */
7238
7239top:
7240	olds = s;
7241	s1 = *s++;
7242
7243	if (p == NULL)
7244		return (0);
7245
7246	if ((c = *p++) == '\0')
7247		return (s1 == '\0');
7248
7249	switch (c) {
7250	case '[': {
7251		int ok = 0, notflag = 0;
7252		char lc = '\0';
7253
7254		if (s1 == '\0')
7255			return (0);
7256
7257		if (*p == '!') {
7258			notflag = 1;
7259			p++;
7260		}
7261
7262		if ((c = *p++) == '\0')
7263			return (0);
7264
7265		do {
7266			if (c == '-' && lc != '\0' && *p != ']') {
7267				if ((c = *p++) == '\0')
7268					return (0);
7269				if (c == '\\' && (c = *p++) == '\0')
7270					return (0);
7271
7272				if (notflag) {
7273					if (s1 < lc || s1 > c)
7274						ok++;
7275					else
7276						return (0);
7277				} else if (lc <= s1 && s1 <= c)
7278					ok++;
7279
7280			} else if (c == '\\' && (c = *p++) == '\0')
7281				return (0);
7282
7283			lc = c; /* save left-hand 'c' for next iteration */
7284
7285			if (notflag) {
7286				if (s1 != c)
7287					ok++;
7288				else
7289					return (0);
7290			} else if (s1 == c)
7291				ok++;
7292
7293			if ((c = *p++) == '\0')
7294				return (0);
7295
7296		} while (c != ']');
7297
7298		if (ok)
7299			goto top;
7300
7301		return (0);
7302	}
7303
7304	case '\\':
7305		if ((c = *p++) == '\0')
7306			return (0);
7307		/*FALLTHRU*/
7308
7309	default:
7310		if (c != s1)
7311			return (0);
7312		/*FALLTHRU*/
7313
7314	case '?':
7315		if (s1 != '\0')
7316			goto top;
7317		return (0);
7318
7319	case '*':
7320		while (*p == '*')
7321			p++; /* consecutive *'s are identical to a single one */
7322
7323		if (*p == '\0')
7324			return (1);
7325
7326		for (s = olds; *s != '\0'; s++) {
7327			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7328				return (gs);
7329		}
7330
7331		return (0);
7332	}
7333}
7334
7335/*ARGSUSED*/
7336static int
7337dtrace_match_string(const char *s, const char *p, int depth)
7338{
7339	return (s != NULL && strcmp(s, p) == 0);
7340}
7341
7342/*ARGSUSED*/
7343static int
7344dtrace_match_nul(const char *s, const char *p, int depth)
7345{
7346	return (1); /* always match the empty pattern */
7347}
7348
7349/*ARGSUSED*/
7350static int
7351dtrace_match_nonzero(const char *s, const char *p, int depth)
7352{
7353	return (s != NULL && s[0] != '\0');
7354}
7355
7356static int
7357dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7358    zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7359{
7360	dtrace_probe_t template, *probe;
7361	dtrace_hash_t *hash = NULL;
7362	int len, best = INT_MAX, nmatched = 0;
7363	dtrace_id_t i;
7364
7365	ASSERT(MUTEX_HELD(&dtrace_lock));
7366
7367	/*
7368	 * If the probe ID is specified in the key, just lookup by ID and
7369	 * invoke the match callback once if a matching probe is found.
7370	 */
7371	if (pkp->dtpk_id != DTRACE_IDNONE) {
7372		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7373		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7374			(void) (*matched)(probe, arg);
7375			nmatched++;
7376		}
7377		return (nmatched);
7378	}
7379
7380	template.dtpr_mod = (char *)pkp->dtpk_mod;
7381	template.dtpr_func = (char *)pkp->dtpk_func;
7382	template.dtpr_name = (char *)pkp->dtpk_name;
7383
7384	/*
7385	 * We want to find the most distinct of the module name, function
7386	 * name, and name.  So for each one that is not a glob pattern or
7387	 * empty string, we perform a lookup in the corresponding hash and
7388	 * use the hash table with the fewest collisions to do our search.
7389	 */
7390	if (pkp->dtpk_mmatch == &dtrace_match_string &&
7391	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7392		best = len;
7393		hash = dtrace_bymod;
7394	}
7395
7396	if (pkp->dtpk_fmatch == &dtrace_match_string &&
7397	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7398		best = len;
7399		hash = dtrace_byfunc;
7400	}
7401
7402	if (pkp->dtpk_nmatch == &dtrace_match_string &&
7403	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7404		best = len;
7405		hash = dtrace_byname;
7406	}
7407
7408	/*
7409	 * If we did not select a hash table, iterate over every probe and
7410	 * invoke our callback for each one that matches our input probe key.
7411	 */
7412	if (hash == NULL) {
7413		for (i = 0; i < dtrace_nprobes; i++) {
7414			if ((probe = dtrace_probes[i]) == NULL ||
7415			    dtrace_match_probe(probe, pkp, priv, uid,
7416			    zoneid) <= 0)
7417				continue;
7418
7419			nmatched++;
7420
7421			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7422				break;
7423		}
7424
7425		return (nmatched);
7426	}
7427
7428	/*
7429	 * If we selected a hash table, iterate over each probe of the same key
7430	 * name and invoke the callback for every probe that matches the other
7431	 * attributes of our input probe key.
7432	 */
7433	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7434	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
7435
7436		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7437			continue;
7438
7439		nmatched++;
7440
7441		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7442			break;
7443	}
7444
7445	return (nmatched);
7446}
7447
7448/*
7449 * Return the function pointer dtrace_probecmp() should use to compare the
7450 * specified pattern with a string.  For NULL or empty patterns, we select
7451 * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7452 * For non-empty non-glob strings, we use dtrace_match_string().
7453 */
7454static dtrace_probekey_f *
7455dtrace_probekey_func(const char *p)
7456{
7457	char c;
7458
7459	if (p == NULL || *p == '\0')
7460		return (&dtrace_match_nul);
7461
7462	while ((c = *p++) != '\0') {
7463		if (c == '[' || c == '?' || c == '*' || c == '\\')
7464			return (&dtrace_match_glob);
7465	}
7466
7467	return (&dtrace_match_string);
7468}
7469
7470/*
7471 * Build a probe comparison key for use with dtrace_match_probe() from the
7472 * given probe description.  By convention, a null key only matches anchored
7473 * probes: if each field is the empty string, reset dtpk_fmatch to
7474 * dtrace_match_nonzero().
7475 */
7476static void
7477dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7478{
7479	pkp->dtpk_prov = pdp->dtpd_provider;
7480	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7481
7482	pkp->dtpk_mod = pdp->dtpd_mod;
7483	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7484
7485	pkp->dtpk_func = pdp->dtpd_func;
7486	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7487
7488	pkp->dtpk_name = pdp->dtpd_name;
7489	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7490
7491	pkp->dtpk_id = pdp->dtpd_id;
7492
7493	if (pkp->dtpk_id == DTRACE_IDNONE &&
7494	    pkp->dtpk_pmatch == &dtrace_match_nul &&
7495	    pkp->dtpk_mmatch == &dtrace_match_nul &&
7496	    pkp->dtpk_fmatch == &dtrace_match_nul &&
7497	    pkp->dtpk_nmatch == &dtrace_match_nul)
7498		pkp->dtpk_fmatch = &dtrace_match_nonzero;
7499}
7500
7501/*
7502 * DTrace Provider-to-Framework API Functions
7503 *
7504 * These functions implement much of the Provider-to-Framework API, as
7505 * described in <sys/dtrace.h>.  The parts of the API not in this section are
7506 * the functions in the API for probe management (found below), and
7507 * dtrace_probe() itself (found above).
7508 */
7509
7510/*
7511 * Register the calling provider with the DTrace framework.  This should
7512 * generally be called by DTrace providers in their attach(9E) entry point.
7513 */
7514int
7515dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7516    cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7517{
7518	dtrace_provider_t *provider;
7519
7520	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7521		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7522		    "arguments", name ? name : "<NULL>");
7523		return (EINVAL);
7524	}
7525
7526	if (name[0] == '\0' || dtrace_badname(name)) {
7527		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7528		    "provider name", name);
7529		return (EINVAL);
7530	}
7531
7532	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7533	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7534	    pops->dtps_destroy == NULL ||
7535	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7536		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7537		    "provider ops", name);
7538		return (EINVAL);
7539	}
7540
7541	if (dtrace_badattr(&pap->dtpa_provider) ||
7542	    dtrace_badattr(&pap->dtpa_mod) ||
7543	    dtrace_badattr(&pap->dtpa_func) ||
7544	    dtrace_badattr(&pap->dtpa_name) ||
7545	    dtrace_badattr(&pap->dtpa_args)) {
7546		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7547		    "provider attributes", name);
7548		return (EINVAL);
7549	}
7550
7551	if (priv & ~DTRACE_PRIV_ALL) {
7552		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7553		    "privilege attributes", name);
7554		return (EINVAL);
7555	}
7556
7557	if ((priv & DTRACE_PRIV_KERNEL) &&
7558	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7559	    pops->dtps_usermode == NULL) {
7560		cmn_err(CE_WARN, "failed to register provider '%s': need "
7561		    "dtps_usermode() op for given privilege attributes", name);
7562		return (EINVAL);
7563	}
7564
7565	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7566	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7567	(void) strcpy(provider->dtpv_name, name);
7568
7569	provider->dtpv_attr = *pap;
7570	provider->dtpv_priv.dtpp_flags = priv;
7571	if (cr != NULL) {
7572		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7573		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7574	}
7575	provider->dtpv_pops = *pops;
7576
7577	if (pops->dtps_provide == NULL) {
7578		ASSERT(pops->dtps_provide_module != NULL);
7579		provider->dtpv_pops.dtps_provide =
7580		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
7581	}
7582
7583	if (pops->dtps_provide_module == NULL) {
7584		ASSERT(pops->dtps_provide != NULL);
7585		provider->dtpv_pops.dtps_provide_module =
7586		    (void (*)(void *, modctl_t *))dtrace_nullop;
7587	}
7588
7589	if (pops->dtps_suspend == NULL) {
7590		ASSERT(pops->dtps_resume == NULL);
7591		provider->dtpv_pops.dtps_suspend =
7592		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7593		provider->dtpv_pops.dtps_resume =
7594		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7595	}
7596
7597	provider->dtpv_arg = arg;
7598	*idp = (dtrace_provider_id_t)provider;
7599
7600	if (pops == &dtrace_provider_ops) {
7601		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7602		ASSERT(MUTEX_HELD(&dtrace_lock));
7603		ASSERT(dtrace_anon.dta_enabling == NULL);
7604
7605		/*
7606		 * We make sure that the DTrace provider is at the head of
7607		 * the provider chain.
7608		 */
7609		provider->dtpv_next = dtrace_provider;
7610		dtrace_provider = provider;
7611		return (0);
7612	}
7613
7614	mutex_enter(&dtrace_provider_lock);
7615	mutex_enter(&dtrace_lock);
7616
7617	/*
7618	 * If there is at least one provider registered, we'll add this
7619	 * provider after the first provider.
7620	 */
7621	if (dtrace_provider != NULL) {
7622		provider->dtpv_next = dtrace_provider->dtpv_next;
7623		dtrace_provider->dtpv_next = provider;
7624	} else {
7625		dtrace_provider = provider;
7626	}
7627
7628	if (dtrace_retained != NULL) {
7629		dtrace_enabling_provide(provider);
7630
7631		/*
7632		 * Now we need to call dtrace_enabling_matchall() -- which
7633		 * will acquire cpu_lock and dtrace_lock.  We therefore need
7634		 * to drop all of our locks before calling into it...
7635		 */
7636		mutex_exit(&dtrace_lock);
7637		mutex_exit(&dtrace_provider_lock);
7638		dtrace_enabling_matchall();
7639
7640		return (0);
7641	}
7642
7643	mutex_exit(&dtrace_lock);
7644	mutex_exit(&dtrace_provider_lock);
7645
7646	return (0);
7647}
7648
7649/*
7650 * Unregister the specified provider from the DTrace framework.  This should
7651 * generally be called by DTrace providers in their detach(9E) entry point.
7652 */
7653int
7654dtrace_unregister(dtrace_provider_id_t id)
7655{
7656	dtrace_provider_t *old = (dtrace_provider_t *)id;
7657	dtrace_provider_t *prev = NULL;
7658	int i, self = 0, noreap = 0;
7659	dtrace_probe_t *probe, *first = NULL;
7660
7661	if (old->dtpv_pops.dtps_enable ==
7662	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
7663		/*
7664		 * If DTrace itself is the provider, we're called with locks
7665		 * already held.
7666		 */
7667		ASSERT(old == dtrace_provider);
7668#if defined(sun)
7669		ASSERT(dtrace_devi != NULL);
7670#endif
7671		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7672		ASSERT(MUTEX_HELD(&dtrace_lock));
7673		self = 1;
7674
7675		if (dtrace_provider->dtpv_next != NULL) {
7676			/*
7677			 * There's another provider here; return failure.
7678			 */
7679			return (EBUSY);
7680		}
7681	} else {
7682		mutex_enter(&dtrace_provider_lock);
7683#if defined(sun)
7684		mutex_enter(&mod_lock);
7685#endif
7686		mutex_enter(&dtrace_lock);
7687	}
7688
7689	/*
7690	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7691	 * probes, we refuse to let providers slither away, unless this
7692	 * provider has already been explicitly invalidated.
7693	 */
7694	if (!old->dtpv_defunct &&
7695	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7696	    dtrace_anon.dta_state->dts_necbs > 0))) {
7697		if (!self) {
7698			mutex_exit(&dtrace_lock);
7699#if defined(sun)
7700			mutex_exit(&mod_lock);
7701#endif
7702			mutex_exit(&dtrace_provider_lock);
7703		}
7704		return (EBUSY);
7705	}
7706
7707	/*
7708	 * Attempt to destroy the probes associated with this provider.
7709	 */
7710	for (i = 0; i < dtrace_nprobes; i++) {
7711		if ((probe = dtrace_probes[i]) == NULL)
7712			continue;
7713
7714		if (probe->dtpr_provider != old)
7715			continue;
7716
7717		if (probe->dtpr_ecb == NULL)
7718			continue;
7719
7720		/*
7721		 * If we are trying to unregister a defunct provider, and the
7722		 * provider was made defunct within the interval dictated by
7723		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
7724		 * attempt to reap our enablings.  To denote that the provider
7725		 * should reattempt to unregister itself at some point in the
7726		 * future, we will return a differentiable error code (EAGAIN
7727		 * instead of EBUSY) in this case.
7728		 */
7729		if (dtrace_gethrtime() - old->dtpv_defunct >
7730		    dtrace_unregister_defunct_reap)
7731			noreap = 1;
7732
7733		if (!self) {
7734			mutex_exit(&dtrace_lock);
7735#if defined(sun)
7736			mutex_exit(&mod_lock);
7737#endif
7738			mutex_exit(&dtrace_provider_lock);
7739		}
7740
7741		if (noreap)
7742			return (EBUSY);
7743
7744		(void) taskq_dispatch(dtrace_taskq,
7745		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
7746
7747		return (EAGAIN);
7748	}
7749
7750	/*
7751	 * All of the probes for this provider are disabled; we can safely
7752	 * remove all of them from their hash chains and from the probe array.
7753	 */
7754	for (i = 0; i < dtrace_nprobes; i++) {
7755		if ((probe = dtrace_probes[i]) == NULL)
7756			continue;
7757
7758		if (probe->dtpr_provider != old)
7759			continue;
7760
7761		dtrace_probes[i] = NULL;
7762
7763		dtrace_hash_remove(dtrace_bymod, probe);
7764		dtrace_hash_remove(dtrace_byfunc, probe);
7765		dtrace_hash_remove(dtrace_byname, probe);
7766
7767		if (first == NULL) {
7768			first = probe;
7769			probe->dtpr_nextmod = NULL;
7770		} else {
7771			probe->dtpr_nextmod = first;
7772			first = probe;
7773		}
7774	}
7775
7776	/*
7777	 * The provider's probes have been removed from the hash chains and
7778	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7779	 * everyone has cleared out from any probe array processing.
7780	 */
7781	dtrace_sync();
7782
7783	for (probe = first; probe != NULL; probe = first) {
7784		first = probe->dtpr_nextmod;
7785
7786		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7787		    probe->dtpr_arg);
7788		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7789		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7790		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7791#if defined(sun)
7792		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7793#else
7794		free_unr(dtrace_arena, probe->dtpr_id);
7795#endif
7796		kmem_free(probe, sizeof (dtrace_probe_t));
7797	}
7798
7799	if ((prev = dtrace_provider) == old) {
7800#if defined(sun)
7801		ASSERT(self || dtrace_devi == NULL);
7802		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7803#endif
7804		dtrace_provider = old->dtpv_next;
7805	} else {
7806		while (prev != NULL && prev->dtpv_next != old)
7807			prev = prev->dtpv_next;
7808
7809		if (prev == NULL) {
7810			panic("attempt to unregister non-existent "
7811			    "dtrace provider %p\n", (void *)id);
7812		}
7813
7814		prev->dtpv_next = old->dtpv_next;
7815	}
7816
7817	if (!self) {
7818		mutex_exit(&dtrace_lock);
7819#if defined(sun)
7820		mutex_exit(&mod_lock);
7821#endif
7822		mutex_exit(&dtrace_provider_lock);
7823	}
7824
7825	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7826	kmem_free(old, sizeof (dtrace_provider_t));
7827
7828	return (0);
7829}
7830
7831/*
7832 * Invalidate the specified provider.  All subsequent probe lookups for the
7833 * specified provider will fail, but its probes will not be removed.
7834 */
7835void
7836dtrace_invalidate(dtrace_provider_id_t id)
7837{
7838	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7839
7840	ASSERT(pvp->dtpv_pops.dtps_enable !=
7841	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7842
7843	mutex_enter(&dtrace_provider_lock);
7844	mutex_enter(&dtrace_lock);
7845
7846	pvp->dtpv_defunct = dtrace_gethrtime();
7847
7848	mutex_exit(&dtrace_lock);
7849	mutex_exit(&dtrace_provider_lock);
7850}
7851
7852/*
7853 * Indicate whether or not DTrace has attached.
7854 */
7855int
7856dtrace_attached(void)
7857{
7858	/*
7859	 * dtrace_provider will be non-NULL iff the DTrace driver has
7860	 * attached.  (It's non-NULL because DTrace is always itself a
7861	 * provider.)
7862	 */
7863	return (dtrace_provider != NULL);
7864}
7865
7866/*
7867 * Remove all the unenabled probes for the given provider.  This function is
7868 * not unlike dtrace_unregister(), except that it doesn't remove the provider
7869 * -- just as many of its associated probes as it can.
7870 */
7871int
7872dtrace_condense(dtrace_provider_id_t id)
7873{
7874	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7875	int i;
7876	dtrace_probe_t *probe;
7877
7878	/*
7879	 * Make sure this isn't the dtrace provider itself.
7880	 */
7881	ASSERT(prov->dtpv_pops.dtps_enable !=
7882	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7883
7884	mutex_enter(&dtrace_provider_lock);
7885	mutex_enter(&dtrace_lock);
7886
7887	/*
7888	 * Attempt to destroy the probes associated with this provider.
7889	 */
7890	for (i = 0; i < dtrace_nprobes; i++) {
7891		if ((probe = dtrace_probes[i]) == NULL)
7892			continue;
7893
7894		if (probe->dtpr_provider != prov)
7895			continue;
7896
7897		if (probe->dtpr_ecb != NULL)
7898			continue;
7899
7900		dtrace_probes[i] = NULL;
7901
7902		dtrace_hash_remove(dtrace_bymod, probe);
7903		dtrace_hash_remove(dtrace_byfunc, probe);
7904		dtrace_hash_remove(dtrace_byname, probe);
7905
7906		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7907		    probe->dtpr_arg);
7908		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7909		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7910		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7911		kmem_free(probe, sizeof (dtrace_probe_t));
7912#if defined(sun)
7913		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7914#else
7915		free_unr(dtrace_arena, i + 1);
7916#endif
7917	}
7918
7919	mutex_exit(&dtrace_lock);
7920	mutex_exit(&dtrace_provider_lock);
7921
7922	return (0);
7923}
7924
7925/*
7926 * DTrace Probe Management Functions
7927 *
7928 * The functions in this section perform the DTrace probe management,
7929 * including functions to create probes, look-up probes, and call into the
7930 * providers to request that probes be provided.  Some of these functions are
7931 * in the Provider-to-Framework API; these functions can be identified by the
7932 * fact that they are not declared "static".
7933 */
7934
7935/*
7936 * Create a probe with the specified module name, function name, and name.
7937 */
7938dtrace_id_t
7939dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7940    const char *func, const char *name, int aframes, void *arg)
7941{
7942	dtrace_probe_t *probe, **probes;
7943	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7944	dtrace_id_t id;
7945
7946	if (provider == dtrace_provider) {
7947		ASSERT(MUTEX_HELD(&dtrace_lock));
7948	} else {
7949		mutex_enter(&dtrace_lock);
7950	}
7951
7952#if defined(sun)
7953	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7954	    VM_BESTFIT | VM_SLEEP);
7955#else
7956	id = alloc_unr(dtrace_arena);
7957#endif
7958	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7959
7960	probe->dtpr_id = id;
7961	probe->dtpr_gen = dtrace_probegen++;
7962	probe->dtpr_mod = dtrace_strdup(mod);
7963	probe->dtpr_func = dtrace_strdup(func);
7964	probe->dtpr_name = dtrace_strdup(name);
7965	probe->dtpr_arg = arg;
7966	probe->dtpr_aframes = aframes;
7967	probe->dtpr_provider = provider;
7968
7969	dtrace_hash_add(dtrace_bymod, probe);
7970	dtrace_hash_add(dtrace_byfunc, probe);
7971	dtrace_hash_add(dtrace_byname, probe);
7972
7973	if (id - 1 >= dtrace_nprobes) {
7974		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7975		size_t nsize = osize << 1;
7976
7977		if (nsize == 0) {
7978			ASSERT(osize == 0);
7979			ASSERT(dtrace_probes == NULL);
7980			nsize = sizeof (dtrace_probe_t *);
7981		}
7982
7983		probes = kmem_zalloc(nsize, KM_SLEEP);
7984
7985		if (dtrace_probes == NULL) {
7986			ASSERT(osize == 0);
7987			dtrace_probes = probes;
7988			dtrace_nprobes = 1;
7989		} else {
7990			dtrace_probe_t **oprobes = dtrace_probes;
7991
7992			bcopy(oprobes, probes, osize);
7993			dtrace_membar_producer();
7994			dtrace_probes = probes;
7995
7996			dtrace_sync();
7997
7998			/*
7999			 * All CPUs are now seeing the new probes array; we can
8000			 * safely free the old array.
8001			 */
8002			kmem_free(oprobes, osize);
8003			dtrace_nprobes <<= 1;
8004		}
8005
8006		ASSERT(id - 1 < dtrace_nprobes);
8007	}
8008
8009	ASSERT(dtrace_probes[id - 1] == NULL);
8010	dtrace_probes[id - 1] = probe;
8011
8012	if (provider != dtrace_provider)
8013		mutex_exit(&dtrace_lock);
8014
8015	return (id);
8016}
8017
8018static dtrace_probe_t *
8019dtrace_probe_lookup_id(dtrace_id_t id)
8020{
8021	ASSERT(MUTEX_HELD(&dtrace_lock));
8022
8023	if (id == 0 || id > dtrace_nprobes)
8024		return (NULL);
8025
8026	return (dtrace_probes[id - 1]);
8027}
8028
8029static int
8030dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
8031{
8032	*((dtrace_id_t *)arg) = probe->dtpr_id;
8033
8034	return (DTRACE_MATCH_DONE);
8035}
8036
8037/*
8038 * Look up a probe based on provider and one or more of module name, function
8039 * name and probe name.
8040 */
8041dtrace_id_t
8042dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
8043    char *func, char *name)
8044{
8045	dtrace_probekey_t pkey;
8046	dtrace_id_t id;
8047	int match;
8048
8049	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
8050	pkey.dtpk_pmatch = &dtrace_match_string;
8051	pkey.dtpk_mod = mod;
8052	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
8053	pkey.dtpk_func = func;
8054	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
8055	pkey.dtpk_name = name;
8056	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
8057	pkey.dtpk_id = DTRACE_IDNONE;
8058
8059	mutex_enter(&dtrace_lock);
8060	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
8061	    dtrace_probe_lookup_match, &id);
8062	mutex_exit(&dtrace_lock);
8063
8064	ASSERT(match == 1 || match == 0);
8065	return (match ? id : 0);
8066}
8067
8068/*
8069 * Returns the probe argument associated with the specified probe.
8070 */
8071void *
8072dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
8073{
8074	dtrace_probe_t *probe;
8075	void *rval = NULL;
8076
8077	mutex_enter(&dtrace_lock);
8078
8079	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
8080	    probe->dtpr_provider == (dtrace_provider_t *)id)
8081		rval = probe->dtpr_arg;
8082
8083	mutex_exit(&dtrace_lock);
8084
8085	return (rval);
8086}
8087
8088/*
8089 * Copy a probe into a probe description.
8090 */
8091static void
8092dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
8093{
8094	bzero(pdp, sizeof (dtrace_probedesc_t));
8095	pdp->dtpd_id = prp->dtpr_id;
8096
8097	(void) strncpy(pdp->dtpd_provider,
8098	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
8099
8100	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
8101	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
8102	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
8103}
8104
8105/*
8106 * Called to indicate that a probe -- or probes -- should be provided by a
8107 * specfied provider.  If the specified description is NULL, the provider will
8108 * be told to provide all of its probes.  (This is done whenever a new
8109 * consumer comes along, or whenever a retained enabling is to be matched.) If
8110 * the specified description is non-NULL, the provider is given the
8111 * opportunity to dynamically provide the specified probe, allowing providers
8112 * to support the creation of probes on-the-fly.  (So-called _autocreated_
8113 * probes.)  If the provider is NULL, the operations will be applied to all
8114 * providers; if the provider is non-NULL the operations will only be applied
8115 * to the specified provider.  The dtrace_provider_lock must be held, and the
8116 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8117 * will need to grab the dtrace_lock when it reenters the framework through
8118 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8119 */
8120static void
8121dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
8122{
8123#if defined(sun)
8124	modctl_t *ctl;
8125#endif
8126	int all = 0;
8127
8128	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8129
8130	if (prv == NULL) {
8131		all = 1;
8132		prv = dtrace_provider;
8133	}
8134
8135	do {
8136		/*
8137		 * First, call the blanket provide operation.
8138		 */
8139		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8140
8141#if defined(sun)
8142		/*
8143		 * Now call the per-module provide operation.  We will grab
8144		 * mod_lock to prevent the list from being modified.  Note
8145		 * that this also prevents the mod_busy bits from changing.
8146		 * (mod_busy can only be changed with mod_lock held.)
8147		 */
8148		mutex_enter(&mod_lock);
8149
8150		ctl = &modules;
8151		do {
8152			if (ctl->mod_busy || ctl->mod_mp == NULL)
8153				continue;
8154
8155			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8156
8157		} while ((ctl = ctl->mod_next) != &modules);
8158
8159		mutex_exit(&mod_lock);
8160#endif
8161	} while (all && (prv = prv->dtpv_next) != NULL);
8162}
8163
8164#if defined(sun)
8165/*
8166 * Iterate over each probe, and call the Framework-to-Provider API function
8167 * denoted by offs.
8168 */
8169static void
8170dtrace_probe_foreach(uintptr_t offs)
8171{
8172	dtrace_provider_t *prov;
8173	void (*func)(void *, dtrace_id_t, void *);
8174	dtrace_probe_t *probe;
8175	dtrace_icookie_t cookie;
8176	int i;
8177
8178	/*
8179	 * We disable interrupts to walk through the probe array.  This is
8180	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8181	 * won't see stale data.
8182	 */
8183	cookie = dtrace_interrupt_disable();
8184
8185	for (i = 0; i < dtrace_nprobes; i++) {
8186		if ((probe = dtrace_probes[i]) == NULL)
8187			continue;
8188
8189		if (probe->dtpr_ecb == NULL) {
8190			/*
8191			 * This probe isn't enabled -- don't call the function.
8192			 */
8193			continue;
8194		}
8195
8196		prov = probe->dtpr_provider;
8197		func = *((void(**)(void *, dtrace_id_t, void *))
8198		    ((uintptr_t)&prov->dtpv_pops + offs));
8199
8200		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8201	}
8202
8203	dtrace_interrupt_enable(cookie);
8204}
8205#endif
8206
8207static int
8208dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8209{
8210	dtrace_probekey_t pkey;
8211	uint32_t priv;
8212	uid_t uid;
8213	zoneid_t zoneid;
8214
8215	ASSERT(MUTEX_HELD(&dtrace_lock));
8216	dtrace_ecb_create_cache = NULL;
8217
8218	if (desc == NULL) {
8219		/*
8220		 * If we're passed a NULL description, we're being asked to
8221		 * create an ECB with a NULL probe.
8222		 */
8223		(void) dtrace_ecb_create_enable(NULL, enab);
8224		return (0);
8225	}
8226
8227	dtrace_probekey(desc, &pkey);
8228	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8229	    &priv, &uid, &zoneid);
8230
8231	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8232	    enab));
8233}
8234
8235/*
8236 * DTrace Helper Provider Functions
8237 */
8238static void
8239dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8240{
8241	attr->dtat_name = DOF_ATTR_NAME(dofattr);
8242	attr->dtat_data = DOF_ATTR_DATA(dofattr);
8243	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8244}
8245
8246static void
8247dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8248    const dof_provider_t *dofprov, char *strtab)
8249{
8250	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8251	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8252	    dofprov->dofpv_provattr);
8253	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8254	    dofprov->dofpv_modattr);
8255	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8256	    dofprov->dofpv_funcattr);
8257	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8258	    dofprov->dofpv_nameattr);
8259	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8260	    dofprov->dofpv_argsattr);
8261}
8262
8263static void
8264dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8265{
8266	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8267	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8268	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8269	dof_provider_t *provider;
8270	dof_probe_t *probe;
8271	uint32_t *off, *enoff;
8272	uint8_t *arg;
8273	char *strtab;
8274	uint_t i, nprobes;
8275	dtrace_helper_provdesc_t dhpv;
8276	dtrace_helper_probedesc_t dhpb;
8277	dtrace_meta_t *meta = dtrace_meta_pid;
8278	dtrace_mops_t *mops = &meta->dtm_mops;
8279	void *parg;
8280
8281	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8282	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8283	    provider->dofpv_strtab * dof->dofh_secsize);
8284	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8285	    provider->dofpv_probes * dof->dofh_secsize);
8286	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8287	    provider->dofpv_prargs * dof->dofh_secsize);
8288	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8289	    provider->dofpv_proffs * dof->dofh_secsize);
8290
8291	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8292	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8293	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8294	enoff = NULL;
8295
8296	/*
8297	 * See dtrace_helper_provider_validate().
8298	 */
8299	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8300	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8301		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8302		    provider->dofpv_prenoffs * dof->dofh_secsize);
8303		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8304	}
8305
8306	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8307
8308	/*
8309	 * Create the provider.
8310	 */
8311	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8312
8313	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8314		return;
8315
8316	meta->dtm_count++;
8317
8318	/*
8319	 * Create the probes.
8320	 */
8321	for (i = 0; i < nprobes; i++) {
8322		probe = (dof_probe_t *)(uintptr_t)(daddr +
8323		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8324
8325		dhpb.dthpb_mod = dhp->dofhp_mod;
8326		dhpb.dthpb_func = strtab + probe->dofpr_func;
8327		dhpb.dthpb_name = strtab + probe->dofpr_name;
8328		dhpb.dthpb_base = probe->dofpr_addr;
8329		dhpb.dthpb_offs = off + probe->dofpr_offidx;
8330		dhpb.dthpb_noffs = probe->dofpr_noffs;
8331		if (enoff != NULL) {
8332			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8333			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8334		} else {
8335			dhpb.dthpb_enoffs = NULL;
8336			dhpb.dthpb_nenoffs = 0;
8337		}
8338		dhpb.dthpb_args = arg + probe->dofpr_argidx;
8339		dhpb.dthpb_nargc = probe->dofpr_nargc;
8340		dhpb.dthpb_xargc = probe->dofpr_xargc;
8341		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8342		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8343
8344		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8345	}
8346}
8347
8348static void
8349dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8350{
8351	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8352	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8353	int i;
8354
8355	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8356
8357	for (i = 0; i < dof->dofh_secnum; i++) {
8358		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8359		    dof->dofh_secoff + i * dof->dofh_secsize);
8360
8361		if (sec->dofs_type != DOF_SECT_PROVIDER)
8362			continue;
8363
8364		dtrace_helper_provide_one(dhp, sec, pid);
8365	}
8366
8367	/*
8368	 * We may have just created probes, so we must now rematch against
8369	 * any retained enablings.  Note that this call will acquire both
8370	 * cpu_lock and dtrace_lock; the fact that we are holding
8371	 * dtrace_meta_lock now is what defines the ordering with respect to
8372	 * these three locks.
8373	 */
8374	dtrace_enabling_matchall();
8375}
8376
8377static void
8378dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8379{
8380	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8381	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8382	dof_sec_t *str_sec;
8383	dof_provider_t *provider;
8384	char *strtab;
8385	dtrace_helper_provdesc_t dhpv;
8386	dtrace_meta_t *meta = dtrace_meta_pid;
8387	dtrace_mops_t *mops = &meta->dtm_mops;
8388
8389	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8390	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8391	    provider->dofpv_strtab * dof->dofh_secsize);
8392
8393	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8394
8395	/*
8396	 * Create the provider.
8397	 */
8398	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8399
8400	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8401
8402	meta->dtm_count--;
8403}
8404
8405static void
8406dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8407{
8408	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8409	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8410	int i;
8411
8412	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8413
8414	for (i = 0; i < dof->dofh_secnum; i++) {
8415		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8416		    dof->dofh_secoff + i * dof->dofh_secsize);
8417
8418		if (sec->dofs_type != DOF_SECT_PROVIDER)
8419			continue;
8420
8421		dtrace_helper_provider_remove_one(dhp, sec, pid);
8422	}
8423}
8424
8425/*
8426 * DTrace Meta Provider-to-Framework API Functions
8427 *
8428 * These functions implement the Meta Provider-to-Framework API, as described
8429 * in <sys/dtrace.h>.
8430 */
8431int
8432dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8433    dtrace_meta_provider_id_t *idp)
8434{
8435	dtrace_meta_t *meta;
8436	dtrace_helpers_t *help, *next;
8437	int i;
8438
8439	*idp = DTRACE_METAPROVNONE;
8440
8441	/*
8442	 * We strictly don't need the name, but we hold onto it for
8443	 * debuggability. All hail error queues!
8444	 */
8445	if (name == NULL) {
8446		cmn_err(CE_WARN, "failed to register meta-provider: "
8447		    "invalid name");
8448		return (EINVAL);
8449	}
8450
8451	if (mops == NULL ||
8452	    mops->dtms_create_probe == NULL ||
8453	    mops->dtms_provide_pid == NULL ||
8454	    mops->dtms_remove_pid == NULL) {
8455		cmn_err(CE_WARN, "failed to register meta-register %s: "
8456		    "invalid ops", name);
8457		return (EINVAL);
8458	}
8459
8460	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8461	meta->dtm_mops = *mops;
8462	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8463	(void) strcpy(meta->dtm_name, name);
8464	meta->dtm_arg = arg;
8465
8466	mutex_enter(&dtrace_meta_lock);
8467	mutex_enter(&dtrace_lock);
8468
8469	if (dtrace_meta_pid != NULL) {
8470		mutex_exit(&dtrace_lock);
8471		mutex_exit(&dtrace_meta_lock);
8472		cmn_err(CE_WARN, "failed to register meta-register %s: "
8473		    "user-land meta-provider exists", name);
8474		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8475		kmem_free(meta, sizeof (dtrace_meta_t));
8476		return (EINVAL);
8477	}
8478
8479	dtrace_meta_pid = meta;
8480	*idp = (dtrace_meta_provider_id_t)meta;
8481
8482	/*
8483	 * If there are providers and probes ready to go, pass them
8484	 * off to the new meta provider now.
8485	 */
8486
8487	help = dtrace_deferred_pid;
8488	dtrace_deferred_pid = NULL;
8489
8490	mutex_exit(&dtrace_lock);
8491
8492	while (help != NULL) {
8493		for (i = 0; i < help->dthps_nprovs; i++) {
8494			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8495			    help->dthps_pid);
8496		}
8497
8498		next = help->dthps_next;
8499		help->dthps_next = NULL;
8500		help->dthps_prev = NULL;
8501		help->dthps_deferred = 0;
8502		help = next;
8503	}
8504
8505	mutex_exit(&dtrace_meta_lock);
8506
8507	return (0);
8508}
8509
8510int
8511dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8512{
8513	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8514
8515	mutex_enter(&dtrace_meta_lock);
8516	mutex_enter(&dtrace_lock);
8517
8518	if (old == dtrace_meta_pid) {
8519		pp = &dtrace_meta_pid;
8520	} else {
8521		panic("attempt to unregister non-existent "
8522		    "dtrace meta-provider %p\n", (void *)old);
8523	}
8524
8525	if (old->dtm_count != 0) {
8526		mutex_exit(&dtrace_lock);
8527		mutex_exit(&dtrace_meta_lock);
8528		return (EBUSY);
8529	}
8530
8531	*pp = NULL;
8532
8533	mutex_exit(&dtrace_lock);
8534	mutex_exit(&dtrace_meta_lock);
8535
8536	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8537	kmem_free(old, sizeof (dtrace_meta_t));
8538
8539	return (0);
8540}
8541
8542
8543/*
8544 * DTrace DIF Object Functions
8545 */
8546static int
8547dtrace_difo_err(uint_t pc, const char *format, ...)
8548{
8549	if (dtrace_err_verbose) {
8550		va_list alist;
8551
8552		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
8553		va_start(alist, format);
8554		(void) vuprintf(format, alist);
8555		va_end(alist);
8556	}
8557
8558#ifdef DTRACE_ERRDEBUG
8559	dtrace_errdebug(format);
8560#endif
8561	return (1);
8562}
8563
8564/*
8565 * Validate a DTrace DIF object by checking the IR instructions.  The following
8566 * rules are currently enforced by dtrace_difo_validate():
8567 *
8568 * 1. Each instruction must have a valid opcode
8569 * 2. Each register, string, variable, or subroutine reference must be valid
8570 * 3. No instruction can modify register %r0 (must be zero)
8571 * 4. All instruction reserved bits must be set to zero
8572 * 5. The last instruction must be a "ret" instruction
8573 * 6. All branch targets must reference a valid instruction _after_ the branch
8574 */
8575static int
8576dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8577    cred_t *cr)
8578{
8579	int err = 0, i;
8580	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8581	int kcheckload;
8582	uint_t pc;
8583
8584	kcheckload = cr == NULL ||
8585	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8586
8587	dp->dtdo_destructive = 0;
8588
8589	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8590		dif_instr_t instr = dp->dtdo_buf[pc];
8591
8592		uint_t r1 = DIF_INSTR_R1(instr);
8593		uint_t r2 = DIF_INSTR_R2(instr);
8594		uint_t rd = DIF_INSTR_RD(instr);
8595		uint_t rs = DIF_INSTR_RS(instr);
8596		uint_t label = DIF_INSTR_LABEL(instr);
8597		uint_t v = DIF_INSTR_VAR(instr);
8598		uint_t subr = DIF_INSTR_SUBR(instr);
8599		uint_t type = DIF_INSTR_TYPE(instr);
8600		uint_t op = DIF_INSTR_OP(instr);
8601
8602		switch (op) {
8603		case DIF_OP_OR:
8604		case DIF_OP_XOR:
8605		case DIF_OP_AND:
8606		case DIF_OP_SLL:
8607		case DIF_OP_SRL:
8608		case DIF_OP_SRA:
8609		case DIF_OP_SUB:
8610		case DIF_OP_ADD:
8611		case DIF_OP_MUL:
8612		case DIF_OP_SDIV:
8613		case DIF_OP_UDIV:
8614		case DIF_OP_SREM:
8615		case DIF_OP_UREM:
8616		case DIF_OP_COPYS:
8617			if (r1 >= nregs)
8618				err += efunc(pc, "invalid register %u\n", r1);
8619			if (r2 >= nregs)
8620				err += efunc(pc, "invalid register %u\n", r2);
8621			if (rd >= nregs)
8622				err += efunc(pc, "invalid register %u\n", rd);
8623			if (rd == 0)
8624				err += efunc(pc, "cannot write to %r0\n");
8625			break;
8626		case DIF_OP_NOT:
8627		case DIF_OP_MOV:
8628		case DIF_OP_ALLOCS:
8629			if (r1 >= nregs)
8630				err += efunc(pc, "invalid register %u\n", r1);
8631			if (r2 != 0)
8632				err += efunc(pc, "non-zero reserved bits\n");
8633			if (rd >= nregs)
8634				err += efunc(pc, "invalid register %u\n", rd);
8635			if (rd == 0)
8636				err += efunc(pc, "cannot write to %r0\n");
8637			break;
8638		case DIF_OP_LDSB:
8639		case DIF_OP_LDSH:
8640		case DIF_OP_LDSW:
8641		case DIF_OP_LDUB:
8642		case DIF_OP_LDUH:
8643		case DIF_OP_LDUW:
8644		case DIF_OP_LDX:
8645			if (r1 >= nregs)
8646				err += efunc(pc, "invalid register %u\n", r1);
8647			if (r2 != 0)
8648				err += efunc(pc, "non-zero reserved bits\n");
8649			if (rd >= nregs)
8650				err += efunc(pc, "invalid register %u\n", rd);
8651			if (rd == 0)
8652				err += efunc(pc, "cannot write to %r0\n");
8653			if (kcheckload)
8654				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8655				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8656			break;
8657		case DIF_OP_RLDSB:
8658		case DIF_OP_RLDSH:
8659		case DIF_OP_RLDSW:
8660		case DIF_OP_RLDUB:
8661		case DIF_OP_RLDUH:
8662		case DIF_OP_RLDUW:
8663		case DIF_OP_RLDX:
8664			if (r1 >= nregs)
8665				err += efunc(pc, "invalid register %u\n", r1);
8666			if (r2 != 0)
8667				err += efunc(pc, "non-zero reserved bits\n");
8668			if (rd >= nregs)
8669				err += efunc(pc, "invalid register %u\n", rd);
8670			if (rd == 0)
8671				err += efunc(pc, "cannot write to %r0\n");
8672			break;
8673		case DIF_OP_ULDSB:
8674		case DIF_OP_ULDSH:
8675		case DIF_OP_ULDSW:
8676		case DIF_OP_ULDUB:
8677		case DIF_OP_ULDUH:
8678		case DIF_OP_ULDUW:
8679		case DIF_OP_ULDX:
8680			if (r1 >= nregs)
8681				err += efunc(pc, "invalid register %u\n", r1);
8682			if (r2 != 0)
8683				err += efunc(pc, "non-zero reserved bits\n");
8684			if (rd >= nregs)
8685				err += efunc(pc, "invalid register %u\n", rd);
8686			if (rd == 0)
8687				err += efunc(pc, "cannot write to %r0\n");
8688			break;
8689		case DIF_OP_STB:
8690		case DIF_OP_STH:
8691		case DIF_OP_STW:
8692		case DIF_OP_STX:
8693			if (r1 >= nregs)
8694				err += efunc(pc, "invalid register %u\n", r1);
8695			if (r2 != 0)
8696				err += efunc(pc, "non-zero reserved bits\n");
8697			if (rd >= nregs)
8698				err += efunc(pc, "invalid register %u\n", rd);
8699			if (rd == 0)
8700				err += efunc(pc, "cannot write to 0 address\n");
8701			break;
8702		case DIF_OP_CMP:
8703		case DIF_OP_SCMP:
8704			if (r1 >= nregs)
8705				err += efunc(pc, "invalid register %u\n", r1);
8706			if (r2 >= nregs)
8707				err += efunc(pc, "invalid register %u\n", r2);
8708			if (rd != 0)
8709				err += efunc(pc, "non-zero reserved bits\n");
8710			break;
8711		case DIF_OP_TST:
8712			if (r1 >= nregs)
8713				err += efunc(pc, "invalid register %u\n", r1);
8714			if (r2 != 0 || rd != 0)
8715				err += efunc(pc, "non-zero reserved bits\n");
8716			break;
8717		case DIF_OP_BA:
8718		case DIF_OP_BE:
8719		case DIF_OP_BNE:
8720		case DIF_OP_BG:
8721		case DIF_OP_BGU:
8722		case DIF_OP_BGE:
8723		case DIF_OP_BGEU:
8724		case DIF_OP_BL:
8725		case DIF_OP_BLU:
8726		case DIF_OP_BLE:
8727		case DIF_OP_BLEU:
8728			if (label >= dp->dtdo_len) {
8729				err += efunc(pc, "invalid branch target %u\n",
8730				    label);
8731			}
8732			if (label <= pc) {
8733				err += efunc(pc, "backward branch to %u\n",
8734				    label);
8735			}
8736			break;
8737		case DIF_OP_RET:
8738			if (r1 != 0 || r2 != 0)
8739				err += efunc(pc, "non-zero reserved bits\n");
8740			if (rd >= nregs)
8741				err += efunc(pc, "invalid register %u\n", rd);
8742			break;
8743		case DIF_OP_NOP:
8744		case DIF_OP_POPTS:
8745		case DIF_OP_FLUSHTS:
8746			if (r1 != 0 || r2 != 0 || rd != 0)
8747				err += efunc(pc, "non-zero reserved bits\n");
8748			break;
8749		case DIF_OP_SETX:
8750			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8751				err += efunc(pc, "invalid integer ref %u\n",
8752				    DIF_INSTR_INTEGER(instr));
8753			}
8754			if (rd >= nregs)
8755				err += efunc(pc, "invalid register %u\n", rd);
8756			if (rd == 0)
8757				err += efunc(pc, "cannot write to %r0\n");
8758			break;
8759		case DIF_OP_SETS:
8760			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8761				err += efunc(pc, "invalid string ref %u\n",
8762				    DIF_INSTR_STRING(instr));
8763			}
8764			if (rd >= nregs)
8765				err += efunc(pc, "invalid register %u\n", rd);
8766			if (rd == 0)
8767				err += efunc(pc, "cannot write to %r0\n");
8768			break;
8769		case DIF_OP_LDGA:
8770		case DIF_OP_LDTA:
8771			if (r1 > DIF_VAR_ARRAY_MAX)
8772				err += efunc(pc, "invalid array %u\n", r1);
8773			if (r2 >= nregs)
8774				err += efunc(pc, "invalid register %u\n", r2);
8775			if (rd >= nregs)
8776				err += efunc(pc, "invalid register %u\n", rd);
8777			if (rd == 0)
8778				err += efunc(pc, "cannot write to %r0\n");
8779			break;
8780		case DIF_OP_LDGS:
8781		case DIF_OP_LDTS:
8782		case DIF_OP_LDLS:
8783		case DIF_OP_LDGAA:
8784		case DIF_OP_LDTAA:
8785			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8786				err += efunc(pc, "invalid variable %u\n", v);
8787			if (rd >= nregs)
8788				err += efunc(pc, "invalid register %u\n", rd);
8789			if (rd == 0)
8790				err += efunc(pc, "cannot write to %r0\n");
8791			break;
8792		case DIF_OP_STGS:
8793		case DIF_OP_STTS:
8794		case DIF_OP_STLS:
8795		case DIF_OP_STGAA:
8796		case DIF_OP_STTAA:
8797			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8798				err += efunc(pc, "invalid variable %u\n", v);
8799			if (rs >= nregs)
8800				err += efunc(pc, "invalid register %u\n", rd);
8801			break;
8802		case DIF_OP_CALL:
8803			if (subr > DIF_SUBR_MAX)
8804				err += efunc(pc, "invalid subr %u\n", subr);
8805			if (rd >= nregs)
8806				err += efunc(pc, "invalid register %u\n", rd);
8807			if (rd == 0)
8808				err += efunc(pc, "cannot write to %r0\n");
8809
8810			if (subr == DIF_SUBR_COPYOUT ||
8811			    subr == DIF_SUBR_COPYOUTSTR) {
8812				dp->dtdo_destructive = 1;
8813			}
8814			break;
8815		case DIF_OP_PUSHTR:
8816			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8817				err += efunc(pc, "invalid ref type %u\n", type);
8818			if (r2 >= nregs)
8819				err += efunc(pc, "invalid register %u\n", r2);
8820			if (rs >= nregs)
8821				err += efunc(pc, "invalid register %u\n", rs);
8822			break;
8823		case DIF_OP_PUSHTV:
8824			if (type != DIF_TYPE_CTF)
8825				err += efunc(pc, "invalid val type %u\n", type);
8826			if (r2 >= nregs)
8827				err += efunc(pc, "invalid register %u\n", r2);
8828			if (rs >= nregs)
8829				err += efunc(pc, "invalid register %u\n", rs);
8830			break;
8831		default:
8832			err += efunc(pc, "invalid opcode %u\n",
8833			    DIF_INSTR_OP(instr));
8834		}
8835	}
8836
8837	if (dp->dtdo_len != 0 &&
8838	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8839		err += efunc(dp->dtdo_len - 1,
8840		    "expected 'ret' as last DIF instruction\n");
8841	}
8842
8843	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8844		/*
8845		 * If we're not returning by reference, the size must be either
8846		 * 0 or the size of one of the base types.
8847		 */
8848		switch (dp->dtdo_rtype.dtdt_size) {
8849		case 0:
8850		case sizeof (uint8_t):
8851		case sizeof (uint16_t):
8852		case sizeof (uint32_t):
8853		case sizeof (uint64_t):
8854			break;
8855
8856		default:
8857			err += efunc(dp->dtdo_len - 1, "bad return size");
8858		}
8859	}
8860
8861	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8862		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8863		dtrace_diftype_t *vt, *et;
8864		uint_t id, ndx;
8865
8866		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8867		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8868		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8869			err += efunc(i, "unrecognized variable scope %d\n",
8870			    v->dtdv_scope);
8871			break;
8872		}
8873
8874		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8875		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8876			err += efunc(i, "unrecognized variable type %d\n",
8877			    v->dtdv_kind);
8878			break;
8879		}
8880
8881		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8882			err += efunc(i, "%d exceeds variable id limit\n", id);
8883			break;
8884		}
8885
8886		if (id < DIF_VAR_OTHER_UBASE)
8887			continue;
8888
8889		/*
8890		 * For user-defined variables, we need to check that this
8891		 * definition is identical to any previous definition that we
8892		 * encountered.
8893		 */
8894		ndx = id - DIF_VAR_OTHER_UBASE;
8895
8896		switch (v->dtdv_scope) {
8897		case DIFV_SCOPE_GLOBAL:
8898			if (ndx < vstate->dtvs_nglobals) {
8899				dtrace_statvar_t *svar;
8900
8901				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8902					existing = &svar->dtsv_var;
8903			}
8904
8905			break;
8906
8907		case DIFV_SCOPE_THREAD:
8908			if (ndx < vstate->dtvs_ntlocals)
8909				existing = &vstate->dtvs_tlocals[ndx];
8910			break;
8911
8912		case DIFV_SCOPE_LOCAL:
8913			if (ndx < vstate->dtvs_nlocals) {
8914				dtrace_statvar_t *svar;
8915
8916				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8917					existing = &svar->dtsv_var;
8918			}
8919
8920			break;
8921		}
8922
8923		vt = &v->dtdv_type;
8924
8925		if (vt->dtdt_flags & DIF_TF_BYREF) {
8926			if (vt->dtdt_size == 0) {
8927				err += efunc(i, "zero-sized variable\n");
8928				break;
8929			}
8930
8931			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8932			    vt->dtdt_size > dtrace_global_maxsize) {
8933				err += efunc(i, "oversized by-ref global\n");
8934				break;
8935			}
8936		}
8937
8938		if (existing == NULL || existing->dtdv_id == 0)
8939			continue;
8940
8941		ASSERT(existing->dtdv_id == v->dtdv_id);
8942		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8943
8944		if (existing->dtdv_kind != v->dtdv_kind)
8945			err += efunc(i, "%d changed variable kind\n", id);
8946
8947		et = &existing->dtdv_type;
8948
8949		if (vt->dtdt_flags != et->dtdt_flags) {
8950			err += efunc(i, "%d changed variable type flags\n", id);
8951			break;
8952		}
8953
8954		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8955			err += efunc(i, "%d changed variable type size\n", id);
8956			break;
8957		}
8958	}
8959
8960	return (err);
8961}
8962
8963/*
8964 * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8965 * are much more constrained than normal DIFOs.  Specifically, they may
8966 * not:
8967 *
8968 * 1. Make calls to subroutines other than copyin(), copyinstr() or
8969 *    miscellaneous string routines
8970 * 2. Access DTrace variables other than the args[] array, and the
8971 *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8972 * 3. Have thread-local variables.
8973 * 4. Have dynamic variables.
8974 */
8975static int
8976dtrace_difo_validate_helper(dtrace_difo_t *dp)
8977{
8978	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8979	int err = 0;
8980	uint_t pc;
8981
8982	for (pc = 0; pc < dp->dtdo_len; pc++) {
8983		dif_instr_t instr = dp->dtdo_buf[pc];
8984
8985		uint_t v = DIF_INSTR_VAR(instr);
8986		uint_t subr = DIF_INSTR_SUBR(instr);
8987		uint_t op = DIF_INSTR_OP(instr);
8988
8989		switch (op) {
8990		case DIF_OP_OR:
8991		case DIF_OP_XOR:
8992		case DIF_OP_AND:
8993		case DIF_OP_SLL:
8994		case DIF_OP_SRL:
8995		case DIF_OP_SRA:
8996		case DIF_OP_SUB:
8997		case DIF_OP_ADD:
8998		case DIF_OP_MUL:
8999		case DIF_OP_SDIV:
9000		case DIF_OP_UDIV:
9001		case DIF_OP_SREM:
9002		case DIF_OP_UREM:
9003		case DIF_OP_COPYS:
9004		case DIF_OP_NOT:
9005		case DIF_OP_MOV:
9006		case DIF_OP_RLDSB:
9007		case DIF_OP_RLDSH:
9008		case DIF_OP_RLDSW:
9009		case DIF_OP_RLDUB:
9010		case DIF_OP_RLDUH:
9011		case DIF_OP_RLDUW:
9012		case DIF_OP_RLDX:
9013		case DIF_OP_ULDSB:
9014		case DIF_OP_ULDSH:
9015		case DIF_OP_ULDSW:
9016		case DIF_OP_ULDUB:
9017		case DIF_OP_ULDUH:
9018		case DIF_OP_ULDUW:
9019		case DIF_OP_ULDX:
9020		case DIF_OP_STB:
9021		case DIF_OP_STH:
9022		case DIF_OP_STW:
9023		case DIF_OP_STX:
9024		case DIF_OP_ALLOCS:
9025		case DIF_OP_CMP:
9026		case DIF_OP_SCMP:
9027		case DIF_OP_TST:
9028		case DIF_OP_BA:
9029		case DIF_OP_BE:
9030		case DIF_OP_BNE:
9031		case DIF_OP_BG:
9032		case DIF_OP_BGU:
9033		case DIF_OP_BGE:
9034		case DIF_OP_BGEU:
9035		case DIF_OP_BL:
9036		case DIF_OP_BLU:
9037		case DIF_OP_BLE:
9038		case DIF_OP_BLEU:
9039		case DIF_OP_RET:
9040		case DIF_OP_NOP:
9041		case DIF_OP_POPTS:
9042		case DIF_OP_FLUSHTS:
9043		case DIF_OP_SETX:
9044		case DIF_OP_SETS:
9045		case DIF_OP_LDGA:
9046		case DIF_OP_LDLS:
9047		case DIF_OP_STGS:
9048		case DIF_OP_STLS:
9049		case DIF_OP_PUSHTR:
9050		case DIF_OP_PUSHTV:
9051			break;
9052
9053		case DIF_OP_LDGS:
9054			if (v >= DIF_VAR_OTHER_UBASE)
9055				break;
9056
9057			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
9058				break;
9059
9060			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
9061			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
9062			    v == DIF_VAR_EXECARGS ||
9063			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
9064			    v == DIF_VAR_UID || v == DIF_VAR_GID)
9065				break;
9066
9067			err += efunc(pc, "illegal variable %u\n", v);
9068			break;
9069
9070		case DIF_OP_LDTA:
9071		case DIF_OP_LDTS:
9072		case DIF_OP_LDGAA:
9073		case DIF_OP_LDTAA:
9074			err += efunc(pc, "illegal dynamic variable load\n");
9075			break;
9076
9077		case DIF_OP_STTS:
9078		case DIF_OP_STGAA:
9079		case DIF_OP_STTAA:
9080			err += efunc(pc, "illegal dynamic variable store\n");
9081			break;
9082
9083		case DIF_OP_CALL:
9084			if (subr == DIF_SUBR_ALLOCA ||
9085			    subr == DIF_SUBR_BCOPY ||
9086			    subr == DIF_SUBR_COPYIN ||
9087			    subr == DIF_SUBR_COPYINTO ||
9088			    subr == DIF_SUBR_COPYINSTR ||
9089			    subr == DIF_SUBR_INDEX ||
9090			    subr == DIF_SUBR_INET_NTOA ||
9091			    subr == DIF_SUBR_INET_NTOA6 ||
9092			    subr == DIF_SUBR_INET_NTOP ||
9093			    subr == DIF_SUBR_LLTOSTR ||
9094			    subr == DIF_SUBR_RINDEX ||
9095			    subr == DIF_SUBR_STRCHR ||
9096			    subr == DIF_SUBR_STRJOIN ||
9097			    subr == DIF_SUBR_STRRCHR ||
9098			    subr == DIF_SUBR_STRSTR ||
9099			    subr == DIF_SUBR_HTONS ||
9100			    subr == DIF_SUBR_HTONL ||
9101			    subr == DIF_SUBR_HTONLL ||
9102			    subr == DIF_SUBR_NTOHS ||
9103			    subr == DIF_SUBR_NTOHL ||
9104			    subr == DIF_SUBR_NTOHLL ||
9105			    subr == DIF_SUBR_MEMREF ||
9106			    subr == DIF_SUBR_TYPEREF)
9107				break;
9108
9109			err += efunc(pc, "invalid subr %u\n", subr);
9110			break;
9111
9112		default:
9113			err += efunc(pc, "invalid opcode %u\n",
9114			    DIF_INSTR_OP(instr));
9115		}
9116	}
9117
9118	return (err);
9119}
9120
9121/*
9122 * Returns 1 if the expression in the DIF object can be cached on a per-thread
9123 * basis; 0 if not.
9124 */
9125static int
9126dtrace_difo_cacheable(dtrace_difo_t *dp)
9127{
9128	int i;
9129
9130	if (dp == NULL)
9131		return (0);
9132
9133	for (i = 0; i < dp->dtdo_varlen; i++) {
9134		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9135
9136		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9137			continue;
9138
9139		switch (v->dtdv_id) {
9140		case DIF_VAR_CURTHREAD:
9141		case DIF_VAR_PID:
9142		case DIF_VAR_TID:
9143		case DIF_VAR_EXECARGS:
9144		case DIF_VAR_EXECNAME:
9145		case DIF_VAR_ZONENAME:
9146			break;
9147
9148		default:
9149			return (0);
9150		}
9151	}
9152
9153	/*
9154	 * This DIF object may be cacheable.  Now we need to look for any
9155	 * array loading instructions, any memory loading instructions, or
9156	 * any stores to thread-local variables.
9157	 */
9158	for (i = 0; i < dp->dtdo_len; i++) {
9159		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9160
9161		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9162		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9163		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9164		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
9165			return (0);
9166	}
9167
9168	return (1);
9169}
9170
9171static void
9172dtrace_difo_hold(dtrace_difo_t *dp)
9173{
9174	int i;
9175
9176	ASSERT(MUTEX_HELD(&dtrace_lock));
9177
9178	dp->dtdo_refcnt++;
9179	ASSERT(dp->dtdo_refcnt != 0);
9180
9181	/*
9182	 * We need to check this DIF object for references to the variable
9183	 * DIF_VAR_VTIMESTAMP.
9184	 */
9185	for (i = 0; i < dp->dtdo_varlen; i++) {
9186		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9187
9188		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9189			continue;
9190
9191		if (dtrace_vtime_references++ == 0)
9192			dtrace_vtime_enable();
9193	}
9194}
9195
9196/*
9197 * This routine calculates the dynamic variable chunksize for a given DIF
9198 * object.  The calculation is not fool-proof, and can probably be tricked by
9199 * malicious DIF -- but it works for all compiler-generated DIF.  Because this
9200 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9201 * if a dynamic variable size exceeds the chunksize.
9202 */
9203static void
9204dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9205{
9206	uint64_t sval = 0;
9207	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9208	const dif_instr_t *text = dp->dtdo_buf;
9209	uint_t pc, srd = 0;
9210	uint_t ttop = 0;
9211	size_t size, ksize;
9212	uint_t id, i;
9213
9214	for (pc = 0; pc < dp->dtdo_len; pc++) {
9215		dif_instr_t instr = text[pc];
9216		uint_t op = DIF_INSTR_OP(instr);
9217		uint_t rd = DIF_INSTR_RD(instr);
9218		uint_t r1 = DIF_INSTR_R1(instr);
9219		uint_t nkeys = 0;
9220		uchar_t scope = 0;
9221
9222		dtrace_key_t *key = tupregs;
9223
9224		switch (op) {
9225		case DIF_OP_SETX:
9226			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9227			srd = rd;
9228			continue;
9229
9230		case DIF_OP_STTS:
9231			key = &tupregs[DIF_DTR_NREGS];
9232			key[0].dttk_size = 0;
9233			key[1].dttk_size = 0;
9234			nkeys = 2;
9235			scope = DIFV_SCOPE_THREAD;
9236			break;
9237
9238		case DIF_OP_STGAA:
9239		case DIF_OP_STTAA:
9240			nkeys = ttop;
9241
9242			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9243				key[nkeys++].dttk_size = 0;
9244
9245			key[nkeys++].dttk_size = 0;
9246
9247			if (op == DIF_OP_STTAA) {
9248				scope = DIFV_SCOPE_THREAD;
9249			} else {
9250				scope = DIFV_SCOPE_GLOBAL;
9251			}
9252
9253			break;
9254
9255		case DIF_OP_PUSHTR:
9256			if (ttop == DIF_DTR_NREGS)
9257				return;
9258
9259			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9260				/*
9261				 * If the register for the size of the "pushtr"
9262				 * is %r0 (or the value is 0) and the type is
9263				 * a string, we'll use the system-wide default
9264				 * string size.
9265				 */
9266				tupregs[ttop++].dttk_size =
9267				    dtrace_strsize_default;
9268			} else {
9269				if (srd == 0)
9270					return;
9271
9272				tupregs[ttop++].dttk_size = sval;
9273			}
9274
9275			break;
9276
9277		case DIF_OP_PUSHTV:
9278			if (ttop == DIF_DTR_NREGS)
9279				return;
9280
9281			tupregs[ttop++].dttk_size = 0;
9282			break;
9283
9284		case DIF_OP_FLUSHTS:
9285			ttop = 0;
9286			break;
9287
9288		case DIF_OP_POPTS:
9289			if (ttop != 0)
9290				ttop--;
9291			break;
9292		}
9293
9294		sval = 0;
9295		srd = 0;
9296
9297		if (nkeys == 0)
9298			continue;
9299
9300		/*
9301		 * We have a dynamic variable allocation; calculate its size.
9302		 */
9303		for (ksize = 0, i = 0; i < nkeys; i++)
9304			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9305
9306		size = sizeof (dtrace_dynvar_t);
9307		size += sizeof (dtrace_key_t) * (nkeys - 1);
9308		size += ksize;
9309
9310		/*
9311		 * Now we need to determine the size of the stored data.
9312		 */
9313		id = DIF_INSTR_VAR(instr);
9314
9315		for (i = 0; i < dp->dtdo_varlen; i++) {
9316			dtrace_difv_t *v = &dp->dtdo_vartab[i];
9317
9318			if (v->dtdv_id == id && v->dtdv_scope == scope) {
9319				size += v->dtdv_type.dtdt_size;
9320				break;
9321			}
9322		}
9323
9324		if (i == dp->dtdo_varlen)
9325			return;
9326
9327		/*
9328		 * We have the size.  If this is larger than the chunk size
9329		 * for our dynamic variable state, reset the chunk size.
9330		 */
9331		size = P2ROUNDUP(size, sizeof (uint64_t));
9332
9333		if (size > vstate->dtvs_dynvars.dtds_chunksize)
9334			vstate->dtvs_dynvars.dtds_chunksize = size;
9335	}
9336}
9337
9338static void
9339dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9340{
9341	int i, oldsvars, osz, nsz, otlocals, ntlocals;
9342	uint_t id;
9343
9344	ASSERT(MUTEX_HELD(&dtrace_lock));
9345	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9346
9347	for (i = 0; i < dp->dtdo_varlen; i++) {
9348		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9349		dtrace_statvar_t *svar, ***svarp = NULL;
9350		size_t dsize = 0;
9351		uint8_t scope = v->dtdv_scope;
9352		int *np = NULL;
9353
9354		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9355			continue;
9356
9357		id -= DIF_VAR_OTHER_UBASE;
9358
9359		switch (scope) {
9360		case DIFV_SCOPE_THREAD:
9361			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9362				dtrace_difv_t *tlocals;
9363
9364				if ((ntlocals = (otlocals << 1)) == 0)
9365					ntlocals = 1;
9366
9367				osz = otlocals * sizeof (dtrace_difv_t);
9368				nsz = ntlocals * sizeof (dtrace_difv_t);
9369
9370				tlocals = kmem_zalloc(nsz, KM_SLEEP);
9371
9372				if (osz != 0) {
9373					bcopy(vstate->dtvs_tlocals,
9374					    tlocals, osz);
9375					kmem_free(vstate->dtvs_tlocals, osz);
9376				}
9377
9378				vstate->dtvs_tlocals = tlocals;
9379				vstate->dtvs_ntlocals = ntlocals;
9380			}
9381
9382			vstate->dtvs_tlocals[id] = *v;
9383			continue;
9384
9385		case DIFV_SCOPE_LOCAL:
9386			np = &vstate->dtvs_nlocals;
9387			svarp = &vstate->dtvs_locals;
9388
9389			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9390				dsize = NCPU * (v->dtdv_type.dtdt_size +
9391				    sizeof (uint64_t));
9392			else
9393				dsize = NCPU * sizeof (uint64_t);
9394
9395			break;
9396
9397		case DIFV_SCOPE_GLOBAL:
9398			np = &vstate->dtvs_nglobals;
9399			svarp = &vstate->dtvs_globals;
9400
9401			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9402				dsize = v->dtdv_type.dtdt_size +
9403				    sizeof (uint64_t);
9404
9405			break;
9406
9407		default:
9408			ASSERT(0);
9409		}
9410
9411		while (id >= (oldsvars = *np)) {
9412			dtrace_statvar_t **statics;
9413			int newsvars, oldsize, newsize;
9414
9415			if ((newsvars = (oldsvars << 1)) == 0)
9416				newsvars = 1;
9417
9418			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9419			newsize = newsvars * sizeof (dtrace_statvar_t *);
9420
9421			statics = kmem_zalloc(newsize, KM_SLEEP);
9422
9423			if (oldsize != 0) {
9424				bcopy(*svarp, statics, oldsize);
9425				kmem_free(*svarp, oldsize);
9426			}
9427
9428			*svarp = statics;
9429			*np = newsvars;
9430		}
9431
9432		if ((svar = (*svarp)[id]) == NULL) {
9433			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9434			svar->dtsv_var = *v;
9435
9436			if ((svar->dtsv_size = dsize) != 0) {
9437				svar->dtsv_data = (uint64_t)(uintptr_t)
9438				    kmem_zalloc(dsize, KM_SLEEP);
9439			}
9440
9441			(*svarp)[id] = svar;
9442		}
9443
9444		svar->dtsv_refcnt++;
9445	}
9446
9447	dtrace_difo_chunksize(dp, vstate);
9448	dtrace_difo_hold(dp);
9449}
9450
9451static dtrace_difo_t *
9452dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9453{
9454	dtrace_difo_t *new;
9455	size_t sz;
9456
9457	ASSERT(dp->dtdo_buf != NULL);
9458	ASSERT(dp->dtdo_refcnt != 0);
9459
9460	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9461
9462	ASSERT(dp->dtdo_buf != NULL);
9463	sz = dp->dtdo_len * sizeof (dif_instr_t);
9464	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9465	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9466	new->dtdo_len = dp->dtdo_len;
9467
9468	if (dp->dtdo_strtab != NULL) {
9469		ASSERT(dp->dtdo_strlen != 0);
9470		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9471		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9472		new->dtdo_strlen = dp->dtdo_strlen;
9473	}
9474
9475	if (dp->dtdo_inttab != NULL) {
9476		ASSERT(dp->dtdo_intlen != 0);
9477		sz = dp->dtdo_intlen * sizeof (uint64_t);
9478		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9479		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9480		new->dtdo_intlen = dp->dtdo_intlen;
9481	}
9482
9483	if (dp->dtdo_vartab != NULL) {
9484		ASSERT(dp->dtdo_varlen != 0);
9485		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9486		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9487		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9488		new->dtdo_varlen = dp->dtdo_varlen;
9489	}
9490
9491	dtrace_difo_init(new, vstate);
9492	return (new);
9493}
9494
9495static void
9496dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9497{
9498	int i;
9499
9500	ASSERT(dp->dtdo_refcnt == 0);
9501
9502	for (i = 0; i < dp->dtdo_varlen; i++) {
9503		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9504		dtrace_statvar_t *svar, **svarp = NULL;
9505		uint_t id;
9506		uint8_t scope = v->dtdv_scope;
9507		int *np = NULL;
9508
9509		switch (scope) {
9510		case DIFV_SCOPE_THREAD:
9511			continue;
9512
9513		case DIFV_SCOPE_LOCAL:
9514			np = &vstate->dtvs_nlocals;
9515			svarp = vstate->dtvs_locals;
9516			break;
9517
9518		case DIFV_SCOPE_GLOBAL:
9519			np = &vstate->dtvs_nglobals;
9520			svarp = vstate->dtvs_globals;
9521			break;
9522
9523		default:
9524			ASSERT(0);
9525		}
9526
9527		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9528			continue;
9529
9530		id -= DIF_VAR_OTHER_UBASE;
9531		ASSERT(id < *np);
9532
9533		svar = svarp[id];
9534		ASSERT(svar != NULL);
9535		ASSERT(svar->dtsv_refcnt > 0);
9536
9537		if (--svar->dtsv_refcnt > 0)
9538			continue;
9539
9540		if (svar->dtsv_size != 0) {
9541			ASSERT(svar->dtsv_data != 0);
9542			kmem_free((void *)(uintptr_t)svar->dtsv_data,
9543			    svar->dtsv_size);
9544		}
9545
9546		kmem_free(svar, sizeof (dtrace_statvar_t));
9547		svarp[id] = NULL;
9548	}
9549
9550	if (dp->dtdo_buf != NULL)
9551		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9552	if (dp->dtdo_inttab != NULL)
9553		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9554	if (dp->dtdo_strtab != NULL)
9555		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9556	if (dp->dtdo_vartab != NULL)
9557		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9558
9559	kmem_free(dp, sizeof (dtrace_difo_t));
9560}
9561
9562static void
9563dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9564{
9565	int i;
9566
9567	ASSERT(MUTEX_HELD(&dtrace_lock));
9568	ASSERT(dp->dtdo_refcnt != 0);
9569
9570	for (i = 0; i < dp->dtdo_varlen; i++) {
9571		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9572
9573		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9574			continue;
9575
9576		ASSERT(dtrace_vtime_references > 0);
9577		if (--dtrace_vtime_references == 0)
9578			dtrace_vtime_disable();
9579	}
9580
9581	if (--dp->dtdo_refcnt == 0)
9582		dtrace_difo_destroy(dp, vstate);
9583}
9584
9585/*
9586 * DTrace Format Functions
9587 */
9588static uint16_t
9589dtrace_format_add(dtrace_state_t *state, char *str)
9590{
9591	char *fmt, **new;
9592	uint16_t ndx, len = strlen(str) + 1;
9593
9594	fmt = kmem_zalloc(len, KM_SLEEP);
9595	bcopy(str, fmt, len);
9596
9597	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9598		if (state->dts_formats[ndx] == NULL) {
9599			state->dts_formats[ndx] = fmt;
9600			return (ndx + 1);
9601		}
9602	}
9603
9604	if (state->dts_nformats == USHRT_MAX) {
9605		/*
9606		 * This is only likely if a denial-of-service attack is being
9607		 * attempted.  As such, it's okay to fail silently here.
9608		 */
9609		kmem_free(fmt, len);
9610		return (0);
9611	}
9612
9613	/*
9614	 * For simplicity, we always resize the formats array to be exactly the
9615	 * number of formats.
9616	 */
9617	ndx = state->dts_nformats++;
9618	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9619
9620	if (state->dts_formats != NULL) {
9621		ASSERT(ndx != 0);
9622		bcopy(state->dts_formats, new, ndx * sizeof (char *));
9623		kmem_free(state->dts_formats, ndx * sizeof (char *));
9624	}
9625
9626	state->dts_formats = new;
9627	state->dts_formats[ndx] = fmt;
9628
9629	return (ndx + 1);
9630}
9631
9632static void
9633dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9634{
9635	char *fmt;
9636
9637	ASSERT(state->dts_formats != NULL);
9638	ASSERT(format <= state->dts_nformats);
9639	ASSERT(state->dts_formats[format - 1] != NULL);
9640
9641	fmt = state->dts_formats[format - 1];
9642	kmem_free(fmt, strlen(fmt) + 1);
9643	state->dts_formats[format - 1] = NULL;
9644}
9645
9646static void
9647dtrace_format_destroy(dtrace_state_t *state)
9648{
9649	int i;
9650
9651	if (state->dts_nformats == 0) {
9652		ASSERT(state->dts_formats == NULL);
9653		return;
9654	}
9655
9656	ASSERT(state->dts_formats != NULL);
9657
9658	for (i = 0; i < state->dts_nformats; i++) {
9659		char *fmt = state->dts_formats[i];
9660
9661		if (fmt == NULL)
9662			continue;
9663
9664		kmem_free(fmt, strlen(fmt) + 1);
9665	}
9666
9667	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9668	state->dts_nformats = 0;
9669	state->dts_formats = NULL;
9670}
9671
9672/*
9673 * DTrace Predicate Functions
9674 */
9675static dtrace_predicate_t *
9676dtrace_predicate_create(dtrace_difo_t *dp)
9677{
9678	dtrace_predicate_t *pred;
9679
9680	ASSERT(MUTEX_HELD(&dtrace_lock));
9681	ASSERT(dp->dtdo_refcnt != 0);
9682
9683	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9684	pred->dtp_difo = dp;
9685	pred->dtp_refcnt = 1;
9686
9687	if (!dtrace_difo_cacheable(dp))
9688		return (pred);
9689
9690	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9691		/*
9692		 * This is only theoretically possible -- we have had 2^32
9693		 * cacheable predicates on this machine.  We cannot allow any
9694		 * more predicates to become cacheable:  as unlikely as it is,
9695		 * there may be a thread caching a (now stale) predicate cache
9696		 * ID. (N.B.: the temptation is being successfully resisted to
9697		 * have this cmn_err() "Holy shit -- we executed this code!")
9698		 */
9699		return (pred);
9700	}
9701
9702	pred->dtp_cacheid = dtrace_predcache_id++;
9703
9704	return (pred);
9705}
9706
9707static void
9708dtrace_predicate_hold(dtrace_predicate_t *pred)
9709{
9710	ASSERT(MUTEX_HELD(&dtrace_lock));
9711	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9712	ASSERT(pred->dtp_refcnt > 0);
9713
9714	pred->dtp_refcnt++;
9715}
9716
9717static void
9718dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9719{
9720	dtrace_difo_t *dp = pred->dtp_difo;
9721
9722	ASSERT(MUTEX_HELD(&dtrace_lock));
9723	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9724	ASSERT(pred->dtp_refcnt > 0);
9725
9726	if (--pred->dtp_refcnt == 0) {
9727		dtrace_difo_release(pred->dtp_difo, vstate);
9728		kmem_free(pred, sizeof (dtrace_predicate_t));
9729	}
9730}
9731
9732/*
9733 * DTrace Action Description Functions
9734 */
9735static dtrace_actdesc_t *
9736dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9737    uint64_t uarg, uint64_t arg)
9738{
9739	dtrace_actdesc_t *act;
9740
9741#if defined(sun)
9742	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9743	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9744#endif
9745
9746	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9747	act->dtad_kind = kind;
9748	act->dtad_ntuple = ntuple;
9749	act->dtad_uarg = uarg;
9750	act->dtad_arg = arg;
9751	act->dtad_refcnt = 1;
9752
9753	return (act);
9754}
9755
9756static void
9757dtrace_actdesc_hold(dtrace_actdesc_t *act)
9758{
9759	ASSERT(act->dtad_refcnt >= 1);
9760	act->dtad_refcnt++;
9761}
9762
9763static void
9764dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9765{
9766	dtrace_actkind_t kind = act->dtad_kind;
9767	dtrace_difo_t *dp;
9768
9769	ASSERT(act->dtad_refcnt >= 1);
9770
9771	if (--act->dtad_refcnt != 0)
9772		return;
9773
9774	if ((dp = act->dtad_difo) != NULL)
9775		dtrace_difo_release(dp, vstate);
9776
9777	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9778		char *str = (char *)(uintptr_t)act->dtad_arg;
9779
9780#if defined(sun)
9781		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9782		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9783#endif
9784
9785		if (str != NULL)
9786			kmem_free(str, strlen(str) + 1);
9787	}
9788
9789	kmem_free(act, sizeof (dtrace_actdesc_t));
9790}
9791
9792/*
9793 * DTrace ECB Functions
9794 */
9795static dtrace_ecb_t *
9796dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9797{
9798	dtrace_ecb_t *ecb;
9799	dtrace_epid_t epid;
9800
9801	ASSERT(MUTEX_HELD(&dtrace_lock));
9802
9803	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9804	ecb->dte_predicate = NULL;
9805	ecb->dte_probe = probe;
9806
9807	/*
9808	 * The default size is the size of the default action: recording
9809	 * the header.
9810	 */
9811	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
9812	ecb->dte_alignment = sizeof (dtrace_epid_t);
9813
9814	epid = state->dts_epid++;
9815
9816	if (epid - 1 >= state->dts_necbs) {
9817		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9818		int necbs = state->dts_necbs << 1;
9819
9820		ASSERT(epid == state->dts_necbs + 1);
9821
9822		if (necbs == 0) {
9823			ASSERT(oecbs == NULL);
9824			necbs = 1;
9825		}
9826
9827		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9828
9829		if (oecbs != NULL)
9830			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9831
9832		dtrace_membar_producer();
9833		state->dts_ecbs = ecbs;
9834
9835		if (oecbs != NULL) {
9836			/*
9837			 * If this state is active, we must dtrace_sync()
9838			 * before we can free the old dts_ecbs array:  we're
9839			 * coming in hot, and there may be active ring
9840			 * buffer processing (which indexes into the dts_ecbs
9841			 * array) on another CPU.
9842			 */
9843			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9844				dtrace_sync();
9845
9846			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9847		}
9848
9849		dtrace_membar_producer();
9850		state->dts_necbs = necbs;
9851	}
9852
9853	ecb->dte_state = state;
9854
9855	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9856	dtrace_membar_producer();
9857	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9858
9859	return (ecb);
9860}
9861
9862static void
9863dtrace_ecb_enable(dtrace_ecb_t *ecb)
9864{
9865	dtrace_probe_t *probe = ecb->dte_probe;
9866
9867	ASSERT(MUTEX_HELD(&cpu_lock));
9868	ASSERT(MUTEX_HELD(&dtrace_lock));
9869	ASSERT(ecb->dte_next == NULL);
9870
9871	if (probe == NULL) {
9872		/*
9873		 * This is the NULL probe -- there's nothing to do.
9874		 */
9875		return;
9876	}
9877
9878	if (probe->dtpr_ecb == NULL) {
9879		dtrace_provider_t *prov = probe->dtpr_provider;
9880
9881		/*
9882		 * We're the first ECB on this probe.
9883		 */
9884		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9885
9886		if (ecb->dte_predicate != NULL)
9887			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9888
9889		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9890		    probe->dtpr_id, probe->dtpr_arg);
9891	} else {
9892		/*
9893		 * This probe is already active.  Swing the last pointer to
9894		 * point to the new ECB, and issue a dtrace_sync() to assure
9895		 * that all CPUs have seen the change.
9896		 */
9897		ASSERT(probe->dtpr_ecb_last != NULL);
9898		probe->dtpr_ecb_last->dte_next = ecb;
9899		probe->dtpr_ecb_last = ecb;
9900		probe->dtpr_predcache = 0;
9901
9902		dtrace_sync();
9903	}
9904}
9905
9906static void
9907dtrace_ecb_resize(dtrace_ecb_t *ecb)
9908{
9909	dtrace_action_t *act;
9910	uint32_t curneeded = UINT32_MAX;
9911	uint32_t aggbase = UINT32_MAX;
9912
9913	/*
9914	 * If we record anything, we always record the dtrace_rechdr_t.  (And
9915	 * we always record it first.)
9916	 */
9917	ecb->dte_size = sizeof (dtrace_rechdr_t);
9918	ecb->dte_alignment = sizeof (dtrace_epid_t);
9919
9920	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9921		dtrace_recdesc_t *rec = &act->dta_rec;
9922		ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
9923
9924		ecb->dte_alignment = MAX(ecb->dte_alignment,
9925		    rec->dtrd_alignment);
9926
9927		if (DTRACEACT_ISAGG(act->dta_kind)) {
9928			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9929
9930			ASSERT(rec->dtrd_size != 0);
9931			ASSERT(agg->dtag_first != NULL);
9932			ASSERT(act->dta_prev->dta_intuple);
9933			ASSERT(aggbase != UINT32_MAX);
9934			ASSERT(curneeded != UINT32_MAX);
9935
9936			agg->dtag_base = aggbase;
9937
9938			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
9939			rec->dtrd_offset = curneeded;
9940			curneeded += rec->dtrd_size;
9941			ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
9942
9943			aggbase = UINT32_MAX;
9944			curneeded = UINT32_MAX;
9945		} else if (act->dta_intuple) {
9946			if (curneeded == UINT32_MAX) {
9947				/*
9948				 * This is the first record in a tuple.  Align
9949				 * curneeded to be at offset 4 in an 8-byte
9950				 * aligned block.
9951				 */
9952				ASSERT(act->dta_prev == NULL ||
9953				    !act->dta_prev->dta_intuple);
9954				ASSERT3U(aggbase, ==, UINT32_MAX);
9955				curneeded = P2PHASEUP(ecb->dte_size,
9956				    sizeof (uint64_t), sizeof (dtrace_aggid_t));
9957
9958				aggbase = curneeded - sizeof (dtrace_aggid_t);
9959				ASSERT(IS_P2ALIGNED(aggbase,
9960				    sizeof (uint64_t)));
9961			}
9962			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
9963			rec->dtrd_offset = curneeded;
9964			curneeded += rec->dtrd_size;
9965		} else {
9966			/* tuples must be followed by an aggregation */
9967			ASSERT(act->dta_prev == NULL ||
9968			    !act->dta_prev->dta_intuple);
9969
9970			ecb->dte_size = P2ROUNDUP(ecb->dte_size,
9971			    rec->dtrd_alignment);
9972			rec->dtrd_offset = ecb->dte_size;
9973			ecb->dte_size += rec->dtrd_size;
9974			ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
9975		}
9976	}
9977
9978	if ((act = ecb->dte_action) != NULL &&
9979	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9980	    ecb->dte_size == sizeof (dtrace_rechdr_t)) {
9981		/*
9982		 * If the size is still sizeof (dtrace_rechdr_t), then all
9983		 * actions store no data; set the size to 0.
9984		 */
9985		ecb->dte_size = 0;
9986	}
9987
9988	ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
9989	ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
9990	ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
9991	    ecb->dte_needed);
9992}
9993
9994static dtrace_action_t *
9995dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9996{
9997	dtrace_aggregation_t *agg;
9998	size_t size = sizeof (uint64_t);
9999	int ntuple = desc->dtad_ntuple;
10000	dtrace_action_t *act;
10001	dtrace_recdesc_t *frec;
10002	dtrace_aggid_t aggid;
10003	dtrace_state_t *state = ecb->dte_state;
10004
10005	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
10006	agg->dtag_ecb = ecb;
10007
10008	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
10009
10010	switch (desc->dtad_kind) {
10011	case DTRACEAGG_MIN:
10012		agg->dtag_initial = INT64_MAX;
10013		agg->dtag_aggregate = dtrace_aggregate_min;
10014		break;
10015
10016	case DTRACEAGG_MAX:
10017		agg->dtag_initial = INT64_MIN;
10018		agg->dtag_aggregate = dtrace_aggregate_max;
10019		break;
10020
10021	case DTRACEAGG_COUNT:
10022		agg->dtag_aggregate = dtrace_aggregate_count;
10023		break;
10024
10025	case DTRACEAGG_QUANTIZE:
10026		agg->dtag_aggregate = dtrace_aggregate_quantize;
10027		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
10028		    sizeof (uint64_t);
10029		break;
10030
10031	case DTRACEAGG_LQUANTIZE: {
10032		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
10033		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
10034
10035		agg->dtag_initial = desc->dtad_arg;
10036		agg->dtag_aggregate = dtrace_aggregate_lquantize;
10037
10038		if (step == 0 || levels == 0)
10039			goto err;
10040
10041		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10042		break;
10043	}
10044
10045	case DTRACEAGG_LLQUANTIZE: {
10046		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
10047		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
10048		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
10049		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
10050		int64_t v;
10051
10052		agg->dtag_initial = desc->dtad_arg;
10053		agg->dtag_aggregate = dtrace_aggregate_llquantize;
10054
10055		if (factor < 2 || low >= high || nsteps < factor)
10056			goto err;
10057
10058		/*
10059		 * Now check that the number of steps evenly divides a power
10060		 * of the factor.  (This assures both integer bucket size and
10061		 * linearity within each magnitude.)
10062		 */
10063		for (v = factor; v < nsteps; v *= factor)
10064			continue;
10065
10066		if ((v % nsteps) || (nsteps % factor))
10067			goto err;
10068
10069		size = (dtrace_aggregate_llquantize_bucket(factor,
10070		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
10071		break;
10072	}
10073
10074	case DTRACEAGG_AVG:
10075		agg->dtag_aggregate = dtrace_aggregate_avg;
10076		size = sizeof (uint64_t) * 2;
10077		break;
10078
10079	case DTRACEAGG_STDDEV:
10080		agg->dtag_aggregate = dtrace_aggregate_stddev;
10081		size = sizeof (uint64_t) * 4;
10082		break;
10083
10084	case DTRACEAGG_SUM:
10085		agg->dtag_aggregate = dtrace_aggregate_sum;
10086		break;
10087
10088	default:
10089		goto err;
10090	}
10091
10092	agg->dtag_action.dta_rec.dtrd_size = size;
10093
10094	if (ntuple == 0)
10095		goto err;
10096
10097	/*
10098	 * We must make sure that we have enough actions for the n-tuple.
10099	 */
10100	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
10101		if (DTRACEACT_ISAGG(act->dta_kind))
10102			break;
10103
10104		if (--ntuple == 0) {
10105			/*
10106			 * This is the action with which our n-tuple begins.
10107			 */
10108			agg->dtag_first = act;
10109			goto success;
10110		}
10111	}
10112
10113	/*
10114	 * This n-tuple is short by ntuple elements.  Return failure.
10115	 */
10116	ASSERT(ntuple != 0);
10117err:
10118	kmem_free(agg, sizeof (dtrace_aggregation_t));
10119	return (NULL);
10120
10121success:
10122	/*
10123	 * If the last action in the tuple has a size of zero, it's actually
10124	 * an expression argument for the aggregating action.
10125	 */
10126	ASSERT(ecb->dte_action_last != NULL);
10127	act = ecb->dte_action_last;
10128
10129	if (act->dta_kind == DTRACEACT_DIFEXPR) {
10130		ASSERT(act->dta_difo != NULL);
10131
10132		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10133			agg->dtag_hasarg = 1;
10134	}
10135
10136	/*
10137	 * We need to allocate an id for this aggregation.
10138	 */
10139#if defined(sun)
10140	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10141	    VM_BESTFIT | VM_SLEEP);
10142#else
10143	aggid = alloc_unr(state->dts_aggid_arena);
10144#endif
10145
10146	if (aggid - 1 >= state->dts_naggregations) {
10147		dtrace_aggregation_t **oaggs = state->dts_aggregations;
10148		dtrace_aggregation_t **aggs;
10149		int naggs = state->dts_naggregations << 1;
10150		int onaggs = state->dts_naggregations;
10151
10152		ASSERT(aggid == state->dts_naggregations + 1);
10153
10154		if (naggs == 0) {
10155			ASSERT(oaggs == NULL);
10156			naggs = 1;
10157		}
10158
10159		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10160
10161		if (oaggs != NULL) {
10162			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10163			kmem_free(oaggs, onaggs * sizeof (*aggs));
10164		}
10165
10166		state->dts_aggregations = aggs;
10167		state->dts_naggregations = naggs;
10168	}
10169
10170	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10171	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10172
10173	frec = &agg->dtag_first->dta_rec;
10174	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10175		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10176
10177	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10178		ASSERT(!act->dta_intuple);
10179		act->dta_intuple = 1;
10180	}
10181
10182	return (&agg->dtag_action);
10183}
10184
10185static void
10186dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10187{
10188	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10189	dtrace_state_t *state = ecb->dte_state;
10190	dtrace_aggid_t aggid = agg->dtag_id;
10191
10192	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10193#if defined(sun)
10194	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10195#else
10196	free_unr(state->dts_aggid_arena, aggid);
10197#endif
10198
10199	ASSERT(state->dts_aggregations[aggid - 1] == agg);
10200	state->dts_aggregations[aggid - 1] = NULL;
10201
10202	kmem_free(agg, sizeof (dtrace_aggregation_t));
10203}
10204
10205static int
10206dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10207{
10208	dtrace_action_t *action, *last;
10209	dtrace_difo_t *dp = desc->dtad_difo;
10210	uint32_t size = 0, align = sizeof (uint8_t), mask;
10211	uint16_t format = 0;
10212	dtrace_recdesc_t *rec;
10213	dtrace_state_t *state = ecb->dte_state;
10214	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
10215	uint64_t arg = desc->dtad_arg;
10216
10217	ASSERT(MUTEX_HELD(&dtrace_lock));
10218	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10219
10220	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10221		/*
10222		 * If this is an aggregating action, there must be neither
10223		 * a speculate nor a commit on the action chain.
10224		 */
10225		dtrace_action_t *act;
10226
10227		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10228			if (act->dta_kind == DTRACEACT_COMMIT)
10229				return (EINVAL);
10230
10231			if (act->dta_kind == DTRACEACT_SPECULATE)
10232				return (EINVAL);
10233		}
10234
10235		action = dtrace_ecb_aggregation_create(ecb, desc);
10236
10237		if (action == NULL)
10238			return (EINVAL);
10239	} else {
10240		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10241		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10242		    dp != NULL && dp->dtdo_destructive)) {
10243			state->dts_destructive = 1;
10244		}
10245
10246		switch (desc->dtad_kind) {
10247		case DTRACEACT_PRINTF:
10248		case DTRACEACT_PRINTA:
10249		case DTRACEACT_SYSTEM:
10250		case DTRACEACT_FREOPEN:
10251		case DTRACEACT_DIFEXPR:
10252			/*
10253			 * We know that our arg is a string -- turn it into a
10254			 * format.
10255			 */
10256			if (arg == 0) {
10257				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
10258				    desc->dtad_kind == DTRACEACT_DIFEXPR);
10259				format = 0;
10260			} else {
10261				ASSERT(arg != 0);
10262#if defined(sun)
10263				ASSERT(arg > KERNELBASE);
10264#endif
10265				format = dtrace_format_add(state,
10266				    (char *)(uintptr_t)arg);
10267			}
10268
10269			/*FALLTHROUGH*/
10270		case DTRACEACT_LIBACT:
10271		case DTRACEACT_TRACEMEM:
10272		case DTRACEACT_TRACEMEM_DYNSIZE:
10273			if (dp == NULL)
10274				return (EINVAL);
10275
10276			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10277				break;
10278
10279			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10280				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10281					return (EINVAL);
10282
10283				size = opt[DTRACEOPT_STRSIZE];
10284			}
10285
10286			break;
10287
10288		case DTRACEACT_STACK:
10289			if ((nframes = arg) == 0) {
10290				nframes = opt[DTRACEOPT_STACKFRAMES];
10291				ASSERT(nframes > 0);
10292				arg = nframes;
10293			}
10294
10295			size = nframes * sizeof (pc_t);
10296			break;
10297
10298		case DTRACEACT_JSTACK:
10299			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10300				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10301
10302			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10303				nframes = opt[DTRACEOPT_JSTACKFRAMES];
10304
10305			arg = DTRACE_USTACK_ARG(nframes, strsize);
10306
10307			/*FALLTHROUGH*/
10308		case DTRACEACT_USTACK:
10309			if (desc->dtad_kind != DTRACEACT_JSTACK &&
10310			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10311				strsize = DTRACE_USTACK_STRSIZE(arg);
10312				nframes = opt[DTRACEOPT_USTACKFRAMES];
10313				ASSERT(nframes > 0);
10314				arg = DTRACE_USTACK_ARG(nframes, strsize);
10315			}
10316
10317			/*
10318			 * Save a slot for the pid.
10319			 */
10320			size = (nframes + 1) * sizeof (uint64_t);
10321			size += DTRACE_USTACK_STRSIZE(arg);
10322			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10323
10324			break;
10325
10326		case DTRACEACT_SYM:
10327		case DTRACEACT_MOD:
10328			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10329			    sizeof (uint64_t)) ||
10330			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10331				return (EINVAL);
10332			break;
10333
10334		case DTRACEACT_USYM:
10335		case DTRACEACT_UMOD:
10336		case DTRACEACT_UADDR:
10337			if (dp == NULL ||
10338			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10339			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10340				return (EINVAL);
10341
10342			/*
10343			 * We have a slot for the pid, plus a slot for the
10344			 * argument.  To keep things simple (aligned with
10345			 * bitness-neutral sizing), we store each as a 64-bit
10346			 * quantity.
10347			 */
10348			size = 2 * sizeof (uint64_t);
10349			break;
10350
10351		case DTRACEACT_STOP:
10352		case DTRACEACT_BREAKPOINT:
10353		case DTRACEACT_PANIC:
10354			break;
10355
10356		case DTRACEACT_CHILL:
10357		case DTRACEACT_DISCARD:
10358		case DTRACEACT_RAISE:
10359			if (dp == NULL)
10360				return (EINVAL);
10361			break;
10362
10363		case DTRACEACT_EXIT:
10364			if (dp == NULL ||
10365			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10366			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10367				return (EINVAL);
10368			break;
10369
10370		case DTRACEACT_SPECULATE:
10371			if (ecb->dte_size > sizeof (dtrace_rechdr_t))
10372				return (EINVAL);
10373
10374			if (dp == NULL)
10375				return (EINVAL);
10376
10377			state->dts_speculates = 1;
10378			break;
10379
10380		case DTRACEACT_PRINTM:
10381		    	size = dp->dtdo_rtype.dtdt_size;
10382			break;
10383
10384		case DTRACEACT_PRINTT:
10385		    	size = dp->dtdo_rtype.dtdt_size;
10386			break;
10387
10388		case DTRACEACT_COMMIT: {
10389			dtrace_action_t *act = ecb->dte_action;
10390
10391			for (; act != NULL; act = act->dta_next) {
10392				if (act->dta_kind == DTRACEACT_COMMIT)
10393					return (EINVAL);
10394			}
10395
10396			if (dp == NULL)
10397				return (EINVAL);
10398			break;
10399		}
10400
10401		default:
10402			return (EINVAL);
10403		}
10404
10405		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10406			/*
10407			 * If this is a data-storing action or a speculate,
10408			 * we must be sure that there isn't a commit on the
10409			 * action chain.
10410			 */
10411			dtrace_action_t *act = ecb->dte_action;
10412
10413			for (; act != NULL; act = act->dta_next) {
10414				if (act->dta_kind == DTRACEACT_COMMIT)
10415					return (EINVAL);
10416			}
10417		}
10418
10419		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10420		action->dta_rec.dtrd_size = size;
10421	}
10422
10423	action->dta_refcnt = 1;
10424	rec = &action->dta_rec;
10425	size = rec->dtrd_size;
10426
10427	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10428		if (!(size & mask)) {
10429			align = mask + 1;
10430			break;
10431		}
10432	}
10433
10434	action->dta_kind = desc->dtad_kind;
10435
10436	if ((action->dta_difo = dp) != NULL)
10437		dtrace_difo_hold(dp);
10438
10439	rec->dtrd_action = action->dta_kind;
10440	rec->dtrd_arg = arg;
10441	rec->dtrd_uarg = desc->dtad_uarg;
10442	rec->dtrd_alignment = (uint16_t)align;
10443	rec->dtrd_format = format;
10444
10445	if ((last = ecb->dte_action_last) != NULL) {
10446		ASSERT(ecb->dte_action != NULL);
10447		action->dta_prev = last;
10448		last->dta_next = action;
10449	} else {
10450		ASSERT(ecb->dte_action == NULL);
10451		ecb->dte_action = action;
10452	}
10453
10454	ecb->dte_action_last = action;
10455
10456	return (0);
10457}
10458
10459static void
10460dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10461{
10462	dtrace_action_t *act = ecb->dte_action, *next;
10463	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10464	dtrace_difo_t *dp;
10465	uint16_t format;
10466
10467	if (act != NULL && act->dta_refcnt > 1) {
10468		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10469		act->dta_refcnt--;
10470	} else {
10471		for (; act != NULL; act = next) {
10472			next = act->dta_next;
10473			ASSERT(next != NULL || act == ecb->dte_action_last);
10474			ASSERT(act->dta_refcnt == 1);
10475
10476			if ((format = act->dta_rec.dtrd_format) != 0)
10477				dtrace_format_remove(ecb->dte_state, format);
10478
10479			if ((dp = act->dta_difo) != NULL)
10480				dtrace_difo_release(dp, vstate);
10481
10482			if (DTRACEACT_ISAGG(act->dta_kind)) {
10483				dtrace_ecb_aggregation_destroy(ecb, act);
10484			} else {
10485				kmem_free(act, sizeof (dtrace_action_t));
10486			}
10487		}
10488	}
10489
10490	ecb->dte_action = NULL;
10491	ecb->dte_action_last = NULL;
10492	ecb->dte_size = 0;
10493}
10494
10495static void
10496dtrace_ecb_disable(dtrace_ecb_t *ecb)
10497{
10498	/*
10499	 * We disable the ECB by removing it from its probe.
10500	 */
10501	dtrace_ecb_t *pecb, *prev = NULL;
10502	dtrace_probe_t *probe = ecb->dte_probe;
10503
10504	ASSERT(MUTEX_HELD(&dtrace_lock));
10505
10506	if (probe == NULL) {
10507		/*
10508		 * This is the NULL probe; there is nothing to disable.
10509		 */
10510		return;
10511	}
10512
10513	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10514		if (pecb == ecb)
10515			break;
10516		prev = pecb;
10517	}
10518
10519	ASSERT(pecb != NULL);
10520
10521	if (prev == NULL) {
10522		probe->dtpr_ecb = ecb->dte_next;
10523	} else {
10524		prev->dte_next = ecb->dte_next;
10525	}
10526
10527	if (ecb == probe->dtpr_ecb_last) {
10528		ASSERT(ecb->dte_next == NULL);
10529		probe->dtpr_ecb_last = prev;
10530	}
10531
10532	/*
10533	 * The ECB has been disconnected from the probe; now sync to assure
10534	 * that all CPUs have seen the change before returning.
10535	 */
10536	dtrace_sync();
10537
10538	if (probe->dtpr_ecb == NULL) {
10539		/*
10540		 * That was the last ECB on the probe; clear the predicate
10541		 * cache ID for the probe, disable it and sync one more time
10542		 * to assure that we'll never hit it again.
10543		 */
10544		dtrace_provider_t *prov = probe->dtpr_provider;
10545
10546		ASSERT(ecb->dte_next == NULL);
10547		ASSERT(probe->dtpr_ecb_last == NULL);
10548		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10549		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10550		    probe->dtpr_id, probe->dtpr_arg);
10551		dtrace_sync();
10552	} else {
10553		/*
10554		 * There is at least one ECB remaining on the probe.  If there
10555		 * is _exactly_ one, set the probe's predicate cache ID to be
10556		 * the predicate cache ID of the remaining ECB.
10557		 */
10558		ASSERT(probe->dtpr_ecb_last != NULL);
10559		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10560
10561		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10562			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10563
10564			ASSERT(probe->dtpr_ecb->dte_next == NULL);
10565
10566			if (p != NULL)
10567				probe->dtpr_predcache = p->dtp_cacheid;
10568		}
10569
10570		ecb->dte_next = NULL;
10571	}
10572}
10573
10574static void
10575dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10576{
10577	dtrace_state_t *state = ecb->dte_state;
10578	dtrace_vstate_t *vstate = &state->dts_vstate;
10579	dtrace_predicate_t *pred;
10580	dtrace_epid_t epid = ecb->dte_epid;
10581
10582	ASSERT(MUTEX_HELD(&dtrace_lock));
10583	ASSERT(ecb->dte_next == NULL);
10584	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10585
10586	if ((pred = ecb->dte_predicate) != NULL)
10587		dtrace_predicate_release(pred, vstate);
10588
10589	dtrace_ecb_action_remove(ecb);
10590
10591	ASSERT(state->dts_ecbs[epid - 1] == ecb);
10592	state->dts_ecbs[epid - 1] = NULL;
10593
10594	kmem_free(ecb, sizeof (dtrace_ecb_t));
10595}
10596
10597static dtrace_ecb_t *
10598dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10599    dtrace_enabling_t *enab)
10600{
10601	dtrace_ecb_t *ecb;
10602	dtrace_predicate_t *pred;
10603	dtrace_actdesc_t *act;
10604	dtrace_provider_t *prov;
10605	dtrace_ecbdesc_t *desc = enab->dten_current;
10606
10607	ASSERT(MUTEX_HELD(&dtrace_lock));
10608	ASSERT(state != NULL);
10609
10610	ecb = dtrace_ecb_add(state, probe);
10611	ecb->dte_uarg = desc->dted_uarg;
10612
10613	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10614		dtrace_predicate_hold(pred);
10615		ecb->dte_predicate = pred;
10616	}
10617
10618	if (probe != NULL) {
10619		/*
10620		 * If the provider shows more leg than the consumer is old
10621		 * enough to see, we need to enable the appropriate implicit
10622		 * predicate bits to prevent the ecb from activating at
10623		 * revealing times.
10624		 *
10625		 * Providers specifying DTRACE_PRIV_USER at register time
10626		 * are stating that they need the /proc-style privilege
10627		 * model to be enforced, and this is what DTRACE_COND_OWNER
10628		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10629		 */
10630		prov = probe->dtpr_provider;
10631		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10632		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10633			ecb->dte_cond |= DTRACE_COND_OWNER;
10634
10635		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10636		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10637			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10638
10639		/*
10640		 * If the provider shows us kernel innards and the user
10641		 * is lacking sufficient privilege, enable the
10642		 * DTRACE_COND_USERMODE implicit predicate.
10643		 */
10644		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10645		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10646			ecb->dte_cond |= DTRACE_COND_USERMODE;
10647	}
10648
10649	if (dtrace_ecb_create_cache != NULL) {
10650		/*
10651		 * If we have a cached ecb, we'll use its action list instead
10652		 * of creating our own (saving both time and space).
10653		 */
10654		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10655		dtrace_action_t *act = cached->dte_action;
10656
10657		if (act != NULL) {
10658			ASSERT(act->dta_refcnt > 0);
10659			act->dta_refcnt++;
10660			ecb->dte_action = act;
10661			ecb->dte_action_last = cached->dte_action_last;
10662			ecb->dte_needed = cached->dte_needed;
10663			ecb->dte_size = cached->dte_size;
10664			ecb->dte_alignment = cached->dte_alignment;
10665		}
10666
10667		return (ecb);
10668	}
10669
10670	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10671		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10672			dtrace_ecb_destroy(ecb);
10673			return (NULL);
10674		}
10675	}
10676
10677	dtrace_ecb_resize(ecb);
10678
10679	return (dtrace_ecb_create_cache = ecb);
10680}
10681
10682static int
10683dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10684{
10685	dtrace_ecb_t *ecb;
10686	dtrace_enabling_t *enab = arg;
10687	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10688
10689	ASSERT(state != NULL);
10690
10691	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10692		/*
10693		 * This probe was created in a generation for which this
10694		 * enabling has previously created ECBs; we don't want to
10695		 * enable it again, so just kick out.
10696		 */
10697		return (DTRACE_MATCH_NEXT);
10698	}
10699
10700	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10701		return (DTRACE_MATCH_DONE);
10702
10703	dtrace_ecb_enable(ecb);
10704	return (DTRACE_MATCH_NEXT);
10705}
10706
10707static dtrace_ecb_t *
10708dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10709{
10710	dtrace_ecb_t *ecb;
10711
10712	ASSERT(MUTEX_HELD(&dtrace_lock));
10713
10714	if (id == 0 || id > state->dts_necbs)
10715		return (NULL);
10716
10717	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10718	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10719
10720	return (state->dts_ecbs[id - 1]);
10721}
10722
10723static dtrace_aggregation_t *
10724dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10725{
10726	dtrace_aggregation_t *agg;
10727
10728	ASSERT(MUTEX_HELD(&dtrace_lock));
10729
10730	if (id == 0 || id > state->dts_naggregations)
10731		return (NULL);
10732
10733	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10734	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10735	    agg->dtag_id == id);
10736
10737	return (state->dts_aggregations[id - 1]);
10738}
10739
10740/*
10741 * DTrace Buffer Functions
10742 *
10743 * The following functions manipulate DTrace buffers.  Most of these functions
10744 * are called in the context of establishing or processing consumer state;
10745 * exceptions are explicitly noted.
10746 */
10747
10748/*
10749 * Note:  called from cross call context.  This function switches the two
10750 * buffers on a given CPU.  The atomicity of this operation is assured by
10751 * disabling interrupts while the actual switch takes place; the disabling of
10752 * interrupts serializes the execution with any execution of dtrace_probe() on
10753 * the same CPU.
10754 */
10755static void
10756dtrace_buffer_switch(dtrace_buffer_t *buf)
10757{
10758	caddr_t tomax = buf->dtb_tomax;
10759	caddr_t xamot = buf->dtb_xamot;
10760	dtrace_icookie_t cookie;
10761	hrtime_t now;
10762
10763	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10764	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10765
10766	cookie = dtrace_interrupt_disable();
10767	now = dtrace_gethrtime();
10768	buf->dtb_tomax = xamot;
10769	buf->dtb_xamot = tomax;
10770	buf->dtb_xamot_drops = buf->dtb_drops;
10771	buf->dtb_xamot_offset = buf->dtb_offset;
10772	buf->dtb_xamot_errors = buf->dtb_errors;
10773	buf->dtb_xamot_flags = buf->dtb_flags;
10774	buf->dtb_offset = 0;
10775	buf->dtb_drops = 0;
10776	buf->dtb_errors = 0;
10777	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10778	buf->dtb_interval = now - buf->dtb_switched;
10779	buf->dtb_switched = now;
10780	dtrace_interrupt_enable(cookie);
10781}
10782
10783/*
10784 * Note:  called from cross call context.  This function activates a buffer
10785 * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10786 * is guaranteed by the disabling of interrupts.
10787 */
10788static void
10789dtrace_buffer_activate(dtrace_state_t *state)
10790{
10791	dtrace_buffer_t *buf;
10792	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10793
10794	buf = &state->dts_buffer[curcpu];
10795
10796	if (buf->dtb_tomax != NULL) {
10797		/*
10798		 * We might like to assert that the buffer is marked inactive,
10799		 * but this isn't necessarily true:  the buffer for the CPU
10800		 * that processes the BEGIN probe has its buffer activated
10801		 * manually.  In this case, we take the (harmless) action
10802		 * re-clearing the bit INACTIVE bit.
10803		 */
10804		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10805	}
10806
10807	dtrace_interrupt_enable(cookie);
10808}
10809
10810static int
10811dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10812    processorid_t cpu, int *factor)
10813{
10814#if defined(sun)
10815	cpu_t *cp;
10816#endif
10817	dtrace_buffer_t *buf;
10818	int allocated = 0, desired = 0;
10819
10820#if defined(sun)
10821	ASSERT(MUTEX_HELD(&cpu_lock));
10822	ASSERT(MUTEX_HELD(&dtrace_lock));
10823
10824	*factor = 1;
10825
10826	if (size > dtrace_nonroot_maxsize &&
10827	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10828		return (EFBIG);
10829
10830	cp = cpu_list;
10831
10832	do {
10833		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10834			continue;
10835
10836		buf = &bufs[cp->cpu_id];
10837
10838		/*
10839		 * If there is already a buffer allocated for this CPU, it
10840		 * is only possible that this is a DR event.  In this case,
10841		 */
10842		if (buf->dtb_tomax != NULL) {
10843			ASSERT(buf->dtb_size == size);
10844			continue;
10845		}
10846
10847		ASSERT(buf->dtb_xamot == NULL);
10848
10849		if ((buf->dtb_tomax = kmem_zalloc(size,
10850		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10851			goto err;
10852
10853		buf->dtb_size = size;
10854		buf->dtb_flags = flags;
10855		buf->dtb_offset = 0;
10856		buf->dtb_drops = 0;
10857
10858		if (flags & DTRACEBUF_NOSWITCH)
10859			continue;
10860
10861		if ((buf->dtb_xamot = kmem_zalloc(size,
10862		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10863			goto err;
10864	} while ((cp = cp->cpu_next) != cpu_list);
10865
10866	return (0);
10867
10868err:
10869	cp = cpu_list;
10870
10871	do {
10872		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10873			continue;
10874
10875		buf = &bufs[cp->cpu_id];
10876		desired += 2;
10877
10878		if (buf->dtb_xamot != NULL) {
10879			ASSERT(buf->dtb_tomax != NULL);
10880			ASSERT(buf->dtb_size == size);
10881			kmem_free(buf->dtb_xamot, size);
10882			allocated++;
10883		}
10884
10885		if (buf->dtb_tomax != NULL) {
10886			ASSERT(buf->dtb_size == size);
10887			kmem_free(buf->dtb_tomax, size);
10888			allocated++;
10889		}
10890
10891		buf->dtb_tomax = NULL;
10892		buf->dtb_xamot = NULL;
10893		buf->dtb_size = 0;
10894	} while ((cp = cp->cpu_next) != cpu_list);
10895#else
10896	int i;
10897
10898	*factor = 1;
10899#if defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
10900	/*
10901	 * FreeBSD isn't good at limiting the amount of memory we
10902	 * ask to malloc, so let's place a limit here before trying
10903	 * to do something that might well end in tears at bedtime.
10904	 */
10905	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10906		return (ENOMEM);
10907#endif
10908
10909	ASSERT(MUTEX_HELD(&dtrace_lock));
10910	CPU_FOREACH(i) {
10911		if (cpu != DTRACE_CPUALL && cpu != i)
10912			continue;
10913
10914		buf = &bufs[i];
10915
10916		/*
10917		 * If there is already a buffer allocated for this CPU, it
10918		 * is only possible that this is a DR event.  In this case,
10919		 * the buffer size must match our specified size.
10920		 */
10921		if (buf->dtb_tomax != NULL) {
10922			ASSERT(buf->dtb_size == size);
10923			continue;
10924		}
10925
10926		ASSERT(buf->dtb_xamot == NULL);
10927
10928		if ((buf->dtb_tomax = kmem_zalloc(size,
10929		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10930			goto err;
10931
10932		buf->dtb_size = size;
10933		buf->dtb_flags = flags;
10934		buf->dtb_offset = 0;
10935		buf->dtb_drops = 0;
10936
10937		if (flags & DTRACEBUF_NOSWITCH)
10938			continue;
10939
10940		if ((buf->dtb_xamot = kmem_zalloc(size,
10941		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10942			goto err;
10943	}
10944
10945	return (0);
10946
10947err:
10948	/*
10949	 * Error allocating memory, so free the buffers that were
10950	 * allocated before the failed allocation.
10951	 */
10952	CPU_FOREACH(i) {
10953		if (cpu != DTRACE_CPUALL && cpu != i)
10954			continue;
10955
10956		buf = &bufs[i];
10957		desired += 2;
10958
10959		if (buf->dtb_xamot != NULL) {
10960			ASSERT(buf->dtb_tomax != NULL);
10961			ASSERT(buf->dtb_size == size);
10962			kmem_free(buf->dtb_xamot, size);
10963			allocated++;
10964		}
10965
10966		if (buf->dtb_tomax != NULL) {
10967			ASSERT(buf->dtb_size == size);
10968			kmem_free(buf->dtb_tomax, size);
10969			allocated++;
10970		}
10971
10972		buf->dtb_tomax = NULL;
10973		buf->dtb_xamot = NULL;
10974		buf->dtb_size = 0;
10975
10976	}
10977#endif
10978	*factor = desired / (allocated > 0 ? allocated : 1);
10979
10980	return (ENOMEM);
10981}
10982
10983/*
10984 * Note:  called from probe context.  This function just increments the drop
10985 * count on a buffer.  It has been made a function to allow for the
10986 * possibility of understanding the source of mysterious drop counts.  (A
10987 * problem for which one may be particularly disappointed that DTrace cannot
10988 * be used to understand DTrace.)
10989 */
10990static void
10991dtrace_buffer_drop(dtrace_buffer_t *buf)
10992{
10993	buf->dtb_drops++;
10994}
10995
10996/*
10997 * Note:  called from probe context.  This function is called to reserve space
10998 * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10999 * mstate.  Returns the new offset in the buffer, or a negative value if an
11000 * error has occurred.
11001 */
11002static intptr_t
11003dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
11004    dtrace_state_t *state, dtrace_mstate_t *mstate)
11005{
11006	intptr_t offs = buf->dtb_offset, soffs;
11007	intptr_t woffs;
11008	caddr_t tomax;
11009	size_t total;
11010
11011	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
11012		return (-1);
11013
11014	if ((tomax = buf->dtb_tomax) == NULL) {
11015		dtrace_buffer_drop(buf);
11016		return (-1);
11017	}
11018
11019	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
11020		while (offs & (align - 1)) {
11021			/*
11022			 * Assert that our alignment is off by a number which
11023			 * is itself sizeof (uint32_t) aligned.
11024			 */
11025			ASSERT(!((align - (offs & (align - 1))) &
11026			    (sizeof (uint32_t) - 1)));
11027			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11028			offs += sizeof (uint32_t);
11029		}
11030
11031		if ((soffs = offs + needed) > buf->dtb_size) {
11032			dtrace_buffer_drop(buf);
11033			return (-1);
11034		}
11035
11036		if (mstate == NULL)
11037			return (offs);
11038
11039		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
11040		mstate->dtms_scratch_size = buf->dtb_size - soffs;
11041		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11042
11043		return (offs);
11044	}
11045
11046	if (buf->dtb_flags & DTRACEBUF_FILL) {
11047		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
11048		    (buf->dtb_flags & DTRACEBUF_FULL))
11049			return (-1);
11050		goto out;
11051	}
11052
11053	total = needed + (offs & (align - 1));
11054
11055	/*
11056	 * For a ring buffer, life is quite a bit more complicated.  Before
11057	 * we can store any padding, we need to adjust our wrapping offset.
11058	 * (If we've never before wrapped or we're not about to, no adjustment
11059	 * is required.)
11060	 */
11061	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
11062	    offs + total > buf->dtb_size) {
11063		woffs = buf->dtb_xamot_offset;
11064
11065		if (offs + total > buf->dtb_size) {
11066			/*
11067			 * We can't fit in the end of the buffer.  First, a
11068			 * sanity check that we can fit in the buffer at all.
11069			 */
11070			if (total > buf->dtb_size) {
11071				dtrace_buffer_drop(buf);
11072				return (-1);
11073			}
11074
11075			/*
11076			 * We're going to be storing at the top of the buffer,
11077			 * so now we need to deal with the wrapped offset.  We
11078			 * only reset our wrapped offset to 0 if it is
11079			 * currently greater than the current offset.  If it
11080			 * is less than the current offset, it is because a
11081			 * previous allocation induced a wrap -- but the
11082			 * allocation didn't subsequently take the space due
11083			 * to an error or false predicate evaluation.  In this
11084			 * case, we'll just leave the wrapped offset alone: if
11085			 * the wrapped offset hasn't been advanced far enough
11086			 * for this allocation, it will be adjusted in the
11087			 * lower loop.
11088			 */
11089			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
11090				if (woffs >= offs)
11091					woffs = 0;
11092			} else {
11093				woffs = 0;
11094			}
11095
11096			/*
11097			 * Now we know that we're going to be storing to the
11098			 * top of the buffer and that there is room for us
11099			 * there.  We need to clear the buffer from the current
11100			 * offset to the end (there may be old gunk there).
11101			 */
11102			while (offs < buf->dtb_size)
11103				tomax[offs++] = 0;
11104
11105			/*
11106			 * We need to set our offset to zero.  And because we
11107			 * are wrapping, we need to set the bit indicating as
11108			 * much.  We can also adjust our needed space back
11109			 * down to the space required by the ECB -- we know
11110			 * that the top of the buffer is aligned.
11111			 */
11112			offs = 0;
11113			total = needed;
11114			buf->dtb_flags |= DTRACEBUF_WRAPPED;
11115		} else {
11116			/*
11117			 * There is room for us in the buffer, so we simply
11118			 * need to check the wrapped offset.
11119			 */
11120			if (woffs < offs) {
11121				/*
11122				 * The wrapped offset is less than the offset.
11123				 * This can happen if we allocated buffer space
11124				 * that induced a wrap, but then we didn't
11125				 * subsequently take the space due to an error
11126				 * or false predicate evaluation.  This is
11127				 * okay; we know that _this_ allocation isn't
11128				 * going to induce a wrap.  We still can't
11129				 * reset the wrapped offset to be zero,
11130				 * however: the space may have been trashed in
11131				 * the previous failed probe attempt.  But at
11132				 * least the wrapped offset doesn't need to
11133				 * be adjusted at all...
11134				 */
11135				goto out;
11136			}
11137		}
11138
11139		while (offs + total > woffs) {
11140			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11141			size_t size;
11142
11143			if (epid == DTRACE_EPIDNONE) {
11144				size = sizeof (uint32_t);
11145			} else {
11146				ASSERT3U(epid, <=, state->dts_necbs);
11147				ASSERT(state->dts_ecbs[epid - 1] != NULL);
11148
11149				size = state->dts_ecbs[epid - 1]->dte_size;
11150			}
11151
11152			ASSERT(woffs + size <= buf->dtb_size);
11153			ASSERT(size != 0);
11154
11155			if (woffs + size == buf->dtb_size) {
11156				/*
11157				 * We've reached the end of the buffer; we want
11158				 * to set the wrapped offset to 0 and break
11159				 * out.  However, if the offs is 0, then we're
11160				 * in a strange edge-condition:  the amount of
11161				 * space that we want to reserve plus the size
11162				 * of the record that we're overwriting is
11163				 * greater than the size of the buffer.  This
11164				 * is problematic because if we reserve the
11165				 * space but subsequently don't consume it (due
11166				 * to a failed predicate or error) the wrapped
11167				 * offset will be 0 -- yet the EPID at offset 0
11168				 * will not be committed.  This situation is
11169				 * relatively easy to deal with:  if we're in
11170				 * this case, the buffer is indistinguishable
11171				 * from one that hasn't wrapped; we need only
11172				 * finish the job by clearing the wrapped bit,
11173				 * explicitly setting the offset to be 0, and
11174				 * zero'ing out the old data in the buffer.
11175				 */
11176				if (offs == 0) {
11177					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11178					buf->dtb_offset = 0;
11179					woffs = total;
11180
11181					while (woffs < buf->dtb_size)
11182						tomax[woffs++] = 0;
11183				}
11184
11185				woffs = 0;
11186				break;
11187			}
11188
11189			woffs += size;
11190		}
11191
11192		/*
11193		 * We have a wrapped offset.  It may be that the wrapped offset
11194		 * has become zero -- that's okay.
11195		 */
11196		buf->dtb_xamot_offset = woffs;
11197	}
11198
11199out:
11200	/*
11201	 * Now we can plow the buffer with any necessary padding.
11202	 */
11203	while (offs & (align - 1)) {
11204		/*
11205		 * Assert that our alignment is off by a number which
11206		 * is itself sizeof (uint32_t) aligned.
11207		 */
11208		ASSERT(!((align - (offs & (align - 1))) &
11209		    (sizeof (uint32_t) - 1)));
11210		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11211		offs += sizeof (uint32_t);
11212	}
11213
11214	if (buf->dtb_flags & DTRACEBUF_FILL) {
11215		if (offs + needed > buf->dtb_size - state->dts_reserve) {
11216			buf->dtb_flags |= DTRACEBUF_FULL;
11217			return (-1);
11218		}
11219	}
11220
11221	if (mstate == NULL)
11222		return (offs);
11223
11224	/*
11225	 * For ring buffers and fill buffers, the scratch space is always
11226	 * the inactive buffer.
11227	 */
11228	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11229	mstate->dtms_scratch_size = buf->dtb_size;
11230	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11231
11232	return (offs);
11233}
11234
11235static void
11236dtrace_buffer_polish(dtrace_buffer_t *buf)
11237{
11238	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11239	ASSERT(MUTEX_HELD(&dtrace_lock));
11240
11241	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11242		return;
11243
11244	/*
11245	 * We need to polish the ring buffer.  There are three cases:
11246	 *
11247	 * - The first (and presumably most common) is that there is no gap
11248	 *   between the buffer offset and the wrapped offset.  In this case,
11249	 *   there is nothing in the buffer that isn't valid data; we can
11250	 *   mark the buffer as polished and return.
11251	 *
11252	 * - The second (less common than the first but still more common
11253	 *   than the third) is that there is a gap between the buffer offset
11254	 *   and the wrapped offset, and the wrapped offset is larger than the
11255	 *   buffer offset.  This can happen because of an alignment issue, or
11256	 *   can happen because of a call to dtrace_buffer_reserve() that
11257	 *   didn't subsequently consume the buffer space.  In this case,
11258	 *   we need to zero the data from the buffer offset to the wrapped
11259	 *   offset.
11260	 *
11261	 * - The third (and least common) is that there is a gap between the
11262	 *   buffer offset and the wrapped offset, but the wrapped offset is
11263	 *   _less_ than the buffer offset.  This can only happen because a
11264	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
11265	 *   was not subsequently consumed.  In this case, we need to zero the
11266	 *   space from the offset to the end of the buffer _and_ from the
11267	 *   top of the buffer to the wrapped offset.
11268	 */
11269	if (buf->dtb_offset < buf->dtb_xamot_offset) {
11270		bzero(buf->dtb_tomax + buf->dtb_offset,
11271		    buf->dtb_xamot_offset - buf->dtb_offset);
11272	}
11273
11274	if (buf->dtb_offset > buf->dtb_xamot_offset) {
11275		bzero(buf->dtb_tomax + buf->dtb_offset,
11276		    buf->dtb_size - buf->dtb_offset);
11277		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11278	}
11279}
11280
11281/*
11282 * This routine determines if data generated at the specified time has likely
11283 * been entirely consumed at user-level.  This routine is called to determine
11284 * if an ECB on a defunct probe (but for an active enabling) can be safely
11285 * disabled and destroyed.
11286 */
11287static int
11288dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
11289{
11290	int i;
11291
11292	for (i = 0; i < NCPU; i++) {
11293		dtrace_buffer_t *buf = &bufs[i];
11294
11295		if (buf->dtb_size == 0)
11296			continue;
11297
11298		if (buf->dtb_flags & DTRACEBUF_RING)
11299			return (0);
11300
11301		if (!buf->dtb_switched && buf->dtb_offset != 0)
11302			return (0);
11303
11304		if (buf->dtb_switched - buf->dtb_interval < when)
11305			return (0);
11306	}
11307
11308	return (1);
11309}
11310
11311static void
11312dtrace_buffer_free(dtrace_buffer_t *bufs)
11313{
11314	int i;
11315
11316	for (i = 0; i < NCPU; i++) {
11317		dtrace_buffer_t *buf = &bufs[i];
11318
11319		if (buf->dtb_tomax == NULL) {
11320			ASSERT(buf->dtb_xamot == NULL);
11321			ASSERT(buf->dtb_size == 0);
11322			continue;
11323		}
11324
11325		if (buf->dtb_xamot != NULL) {
11326			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11327			kmem_free(buf->dtb_xamot, buf->dtb_size);
11328		}
11329
11330		kmem_free(buf->dtb_tomax, buf->dtb_size);
11331		buf->dtb_size = 0;
11332		buf->dtb_tomax = NULL;
11333		buf->dtb_xamot = NULL;
11334	}
11335}
11336
11337/*
11338 * DTrace Enabling Functions
11339 */
11340static dtrace_enabling_t *
11341dtrace_enabling_create(dtrace_vstate_t *vstate)
11342{
11343	dtrace_enabling_t *enab;
11344
11345	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11346	enab->dten_vstate = vstate;
11347
11348	return (enab);
11349}
11350
11351static void
11352dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11353{
11354	dtrace_ecbdesc_t **ndesc;
11355	size_t osize, nsize;
11356
11357	/*
11358	 * We can't add to enablings after we've enabled them, or after we've
11359	 * retained them.
11360	 */
11361	ASSERT(enab->dten_probegen == 0);
11362	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11363
11364	if (enab->dten_ndesc < enab->dten_maxdesc) {
11365		enab->dten_desc[enab->dten_ndesc++] = ecb;
11366		return;
11367	}
11368
11369	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11370
11371	if (enab->dten_maxdesc == 0) {
11372		enab->dten_maxdesc = 1;
11373	} else {
11374		enab->dten_maxdesc <<= 1;
11375	}
11376
11377	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11378
11379	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11380	ndesc = kmem_zalloc(nsize, KM_SLEEP);
11381	bcopy(enab->dten_desc, ndesc, osize);
11382	if (enab->dten_desc != NULL)
11383		kmem_free(enab->dten_desc, osize);
11384
11385	enab->dten_desc = ndesc;
11386	enab->dten_desc[enab->dten_ndesc++] = ecb;
11387}
11388
11389static void
11390dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11391    dtrace_probedesc_t *pd)
11392{
11393	dtrace_ecbdesc_t *new;
11394	dtrace_predicate_t *pred;
11395	dtrace_actdesc_t *act;
11396
11397	/*
11398	 * We're going to create a new ECB description that matches the
11399	 * specified ECB in every way, but has the specified probe description.
11400	 */
11401	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11402
11403	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11404		dtrace_predicate_hold(pred);
11405
11406	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11407		dtrace_actdesc_hold(act);
11408
11409	new->dted_action = ecb->dted_action;
11410	new->dted_pred = ecb->dted_pred;
11411	new->dted_probe = *pd;
11412	new->dted_uarg = ecb->dted_uarg;
11413
11414	dtrace_enabling_add(enab, new);
11415}
11416
11417static void
11418dtrace_enabling_dump(dtrace_enabling_t *enab)
11419{
11420	int i;
11421
11422	for (i = 0; i < enab->dten_ndesc; i++) {
11423		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11424
11425		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11426		    desc->dtpd_provider, desc->dtpd_mod,
11427		    desc->dtpd_func, desc->dtpd_name);
11428	}
11429}
11430
11431static void
11432dtrace_enabling_destroy(dtrace_enabling_t *enab)
11433{
11434	int i;
11435	dtrace_ecbdesc_t *ep;
11436	dtrace_vstate_t *vstate = enab->dten_vstate;
11437
11438	ASSERT(MUTEX_HELD(&dtrace_lock));
11439
11440	for (i = 0; i < enab->dten_ndesc; i++) {
11441		dtrace_actdesc_t *act, *next;
11442		dtrace_predicate_t *pred;
11443
11444		ep = enab->dten_desc[i];
11445
11446		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11447			dtrace_predicate_release(pred, vstate);
11448
11449		for (act = ep->dted_action; act != NULL; act = next) {
11450			next = act->dtad_next;
11451			dtrace_actdesc_release(act, vstate);
11452		}
11453
11454		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11455	}
11456
11457	if (enab->dten_desc != NULL)
11458		kmem_free(enab->dten_desc,
11459		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11460
11461	/*
11462	 * If this was a retained enabling, decrement the dts_nretained count
11463	 * and take it off of the dtrace_retained list.
11464	 */
11465	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11466	    dtrace_retained == enab) {
11467		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11468		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11469		enab->dten_vstate->dtvs_state->dts_nretained--;
11470	}
11471
11472	if (enab->dten_prev == NULL) {
11473		if (dtrace_retained == enab) {
11474			dtrace_retained = enab->dten_next;
11475
11476			if (dtrace_retained != NULL)
11477				dtrace_retained->dten_prev = NULL;
11478		}
11479	} else {
11480		ASSERT(enab != dtrace_retained);
11481		ASSERT(dtrace_retained != NULL);
11482		enab->dten_prev->dten_next = enab->dten_next;
11483	}
11484
11485	if (enab->dten_next != NULL) {
11486		ASSERT(dtrace_retained != NULL);
11487		enab->dten_next->dten_prev = enab->dten_prev;
11488	}
11489
11490	kmem_free(enab, sizeof (dtrace_enabling_t));
11491}
11492
11493static int
11494dtrace_enabling_retain(dtrace_enabling_t *enab)
11495{
11496	dtrace_state_t *state;
11497
11498	ASSERT(MUTEX_HELD(&dtrace_lock));
11499	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11500	ASSERT(enab->dten_vstate != NULL);
11501
11502	state = enab->dten_vstate->dtvs_state;
11503	ASSERT(state != NULL);
11504
11505	/*
11506	 * We only allow each state to retain dtrace_retain_max enablings.
11507	 */
11508	if (state->dts_nretained >= dtrace_retain_max)
11509		return (ENOSPC);
11510
11511	state->dts_nretained++;
11512
11513	if (dtrace_retained == NULL) {
11514		dtrace_retained = enab;
11515		return (0);
11516	}
11517
11518	enab->dten_next = dtrace_retained;
11519	dtrace_retained->dten_prev = enab;
11520	dtrace_retained = enab;
11521
11522	return (0);
11523}
11524
11525static int
11526dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11527    dtrace_probedesc_t *create)
11528{
11529	dtrace_enabling_t *new, *enab;
11530	int found = 0, err = ENOENT;
11531
11532	ASSERT(MUTEX_HELD(&dtrace_lock));
11533	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11534	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11535	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11536	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11537
11538	new = dtrace_enabling_create(&state->dts_vstate);
11539
11540	/*
11541	 * Iterate over all retained enablings, looking for enablings that
11542	 * match the specified state.
11543	 */
11544	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11545		int i;
11546
11547		/*
11548		 * dtvs_state can only be NULL for helper enablings -- and
11549		 * helper enablings can't be retained.
11550		 */
11551		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11552
11553		if (enab->dten_vstate->dtvs_state != state)
11554			continue;
11555
11556		/*
11557		 * Now iterate over each probe description; we're looking for
11558		 * an exact match to the specified probe description.
11559		 */
11560		for (i = 0; i < enab->dten_ndesc; i++) {
11561			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11562			dtrace_probedesc_t *pd = &ep->dted_probe;
11563
11564			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11565				continue;
11566
11567			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11568				continue;
11569
11570			if (strcmp(pd->dtpd_func, match->dtpd_func))
11571				continue;
11572
11573			if (strcmp(pd->dtpd_name, match->dtpd_name))
11574				continue;
11575
11576			/*
11577			 * We have a winning probe!  Add it to our growing
11578			 * enabling.
11579			 */
11580			found = 1;
11581			dtrace_enabling_addlike(new, ep, create);
11582		}
11583	}
11584
11585	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11586		dtrace_enabling_destroy(new);
11587		return (err);
11588	}
11589
11590	return (0);
11591}
11592
11593static void
11594dtrace_enabling_retract(dtrace_state_t *state)
11595{
11596	dtrace_enabling_t *enab, *next;
11597
11598	ASSERT(MUTEX_HELD(&dtrace_lock));
11599
11600	/*
11601	 * Iterate over all retained enablings, destroy the enablings retained
11602	 * for the specified state.
11603	 */
11604	for (enab = dtrace_retained; enab != NULL; enab = next) {
11605		next = enab->dten_next;
11606
11607		/*
11608		 * dtvs_state can only be NULL for helper enablings -- and
11609		 * helper enablings can't be retained.
11610		 */
11611		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11612
11613		if (enab->dten_vstate->dtvs_state == state) {
11614			ASSERT(state->dts_nretained > 0);
11615			dtrace_enabling_destroy(enab);
11616		}
11617	}
11618
11619	ASSERT(state->dts_nretained == 0);
11620}
11621
11622static int
11623dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11624{
11625	int i = 0;
11626	int matched = 0;
11627
11628	ASSERT(MUTEX_HELD(&cpu_lock));
11629	ASSERT(MUTEX_HELD(&dtrace_lock));
11630
11631	for (i = 0; i < enab->dten_ndesc; i++) {
11632		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11633
11634		enab->dten_current = ep;
11635		enab->dten_error = 0;
11636
11637		matched += dtrace_probe_enable(&ep->dted_probe, enab);
11638
11639		if (enab->dten_error != 0) {
11640			/*
11641			 * If we get an error half-way through enabling the
11642			 * probes, we kick out -- perhaps with some number of
11643			 * them enabled.  Leaving enabled probes enabled may
11644			 * be slightly confusing for user-level, but we expect
11645			 * that no one will attempt to actually drive on in
11646			 * the face of such errors.  If this is an anonymous
11647			 * enabling (indicated with a NULL nmatched pointer),
11648			 * we cmn_err() a message.  We aren't expecting to
11649			 * get such an error -- such as it can exist at all,
11650			 * it would be a result of corrupted DOF in the driver
11651			 * properties.
11652			 */
11653			if (nmatched == NULL) {
11654				cmn_err(CE_WARN, "dtrace_enabling_match() "
11655				    "error on %p: %d", (void *)ep,
11656				    enab->dten_error);
11657			}
11658
11659			return (enab->dten_error);
11660		}
11661	}
11662
11663	enab->dten_probegen = dtrace_probegen;
11664	if (nmatched != NULL)
11665		*nmatched = matched;
11666
11667	return (0);
11668}
11669
11670static void
11671dtrace_enabling_matchall(void)
11672{
11673	dtrace_enabling_t *enab;
11674
11675	mutex_enter(&cpu_lock);
11676	mutex_enter(&dtrace_lock);
11677
11678	/*
11679	 * Iterate over all retained enablings to see if any probes match
11680	 * against them.  We only perform this operation on enablings for which
11681	 * we have sufficient permissions by virtue of being in the global zone
11682	 * or in the same zone as the DTrace client.  Because we can be called
11683	 * after dtrace_detach() has been called, we cannot assert that there
11684	 * are retained enablings.  We can safely load from dtrace_retained,
11685	 * however:  the taskq_destroy() at the end of dtrace_detach() will
11686	 * block pending our completion.
11687	 */
11688	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11689#if defined(sun)
11690		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
11691
11692		if (INGLOBALZONE(curproc) || getzoneid() == crgetzoneid(cr))
11693#endif
11694			(void) dtrace_enabling_match(enab, NULL);
11695	}
11696
11697	mutex_exit(&dtrace_lock);
11698	mutex_exit(&cpu_lock);
11699}
11700
11701/*
11702 * If an enabling is to be enabled without having matched probes (that is, if
11703 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11704 * enabling must be _primed_ by creating an ECB for every ECB description.
11705 * This must be done to assure that we know the number of speculations, the
11706 * number of aggregations, the minimum buffer size needed, etc. before we
11707 * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11708 * enabling any probes, we create ECBs for every ECB decription, but with a
11709 * NULL probe -- which is exactly what this function does.
11710 */
11711static void
11712dtrace_enabling_prime(dtrace_state_t *state)
11713{
11714	dtrace_enabling_t *enab;
11715	int i;
11716
11717	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11718		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11719
11720		if (enab->dten_vstate->dtvs_state != state)
11721			continue;
11722
11723		/*
11724		 * We don't want to prime an enabling more than once, lest
11725		 * we allow a malicious user to induce resource exhaustion.
11726		 * (The ECBs that result from priming an enabling aren't
11727		 * leaked -- but they also aren't deallocated until the
11728		 * consumer state is destroyed.)
11729		 */
11730		if (enab->dten_primed)
11731			continue;
11732
11733		for (i = 0; i < enab->dten_ndesc; i++) {
11734			enab->dten_current = enab->dten_desc[i];
11735			(void) dtrace_probe_enable(NULL, enab);
11736		}
11737
11738		enab->dten_primed = 1;
11739	}
11740}
11741
11742/*
11743 * Called to indicate that probes should be provided due to retained
11744 * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11745 * must take an initial lap through the enabling calling the dtps_provide()
11746 * entry point explicitly to allow for autocreated probes.
11747 */
11748static void
11749dtrace_enabling_provide(dtrace_provider_t *prv)
11750{
11751	int i, all = 0;
11752	dtrace_probedesc_t desc;
11753
11754	ASSERT(MUTEX_HELD(&dtrace_lock));
11755	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11756
11757	if (prv == NULL) {
11758		all = 1;
11759		prv = dtrace_provider;
11760	}
11761
11762	do {
11763		dtrace_enabling_t *enab = dtrace_retained;
11764		void *parg = prv->dtpv_arg;
11765
11766		for (; enab != NULL; enab = enab->dten_next) {
11767			for (i = 0; i < enab->dten_ndesc; i++) {
11768				desc = enab->dten_desc[i]->dted_probe;
11769				mutex_exit(&dtrace_lock);
11770				prv->dtpv_pops.dtps_provide(parg, &desc);
11771				mutex_enter(&dtrace_lock);
11772			}
11773		}
11774	} while (all && (prv = prv->dtpv_next) != NULL);
11775
11776	mutex_exit(&dtrace_lock);
11777	dtrace_probe_provide(NULL, all ? NULL : prv);
11778	mutex_enter(&dtrace_lock);
11779}
11780
11781/*
11782 * Called to reap ECBs that are attached to probes from defunct providers.
11783 */
11784static void
11785dtrace_enabling_reap(void)
11786{
11787	dtrace_provider_t *prov;
11788	dtrace_probe_t *probe;
11789	dtrace_ecb_t *ecb;
11790	hrtime_t when;
11791	int i;
11792
11793	mutex_enter(&cpu_lock);
11794	mutex_enter(&dtrace_lock);
11795
11796	for (i = 0; i < dtrace_nprobes; i++) {
11797		if ((probe = dtrace_probes[i]) == NULL)
11798			continue;
11799
11800		if (probe->dtpr_ecb == NULL)
11801			continue;
11802
11803		prov = probe->dtpr_provider;
11804
11805		if ((when = prov->dtpv_defunct) == 0)
11806			continue;
11807
11808		/*
11809		 * We have ECBs on a defunct provider:  we want to reap these
11810		 * ECBs to allow the provider to unregister.  The destruction
11811		 * of these ECBs must be done carefully:  if we destroy the ECB
11812		 * and the consumer later wishes to consume an EPID that
11813		 * corresponds to the destroyed ECB (and if the EPID metadata
11814		 * has not been previously consumed), the consumer will abort
11815		 * processing on the unknown EPID.  To reduce (but not, sadly,
11816		 * eliminate) the possibility of this, we will only destroy an
11817		 * ECB for a defunct provider if, for the state that
11818		 * corresponds to the ECB:
11819		 *
11820		 *  (a)	There is no speculative tracing (which can effectively
11821		 *	cache an EPID for an arbitrary amount of time).
11822		 *
11823		 *  (b)	The principal buffers have been switched twice since the
11824		 *	provider became defunct.
11825		 *
11826		 *  (c)	The aggregation buffers are of zero size or have been
11827		 *	switched twice since the provider became defunct.
11828		 *
11829		 * We use dts_speculates to determine (a) and call a function
11830		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
11831		 * that as soon as we've been unable to destroy one of the ECBs
11832		 * associated with the probe, we quit trying -- reaping is only
11833		 * fruitful in as much as we can destroy all ECBs associated
11834		 * with the defunct provider's probes.
11835		 */
11836		while ((ecb = probe->dtpr_ecb) != NULL) {
11837			dtrace_state_t *state = ecb->dte_state;
11838			dtrace_buffer_t *buf = state->dts_buffer;
11839			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
11840
11841			if (state->dts_speculates)
11842				break;
11843
11844			if (!dtrace_buffer_consumed(buf, when))
11845				break;
11846
11847			if (!dtrace_buffer_consumed(aggbuf, when))
11848				break;
11849
11850			dtrace_ecb_disable(ecb);
11851			ASSERT(probe->dtpr_ecb != ecb);
11852			dtrace_ecb_destroy(ecb);
11853		}
11854	}
11855
11856	mutex_exit(&dtrace_lock);
11857	mutex_exit(&cpu_lock);
11858}
11859
11860/*
11861 * DTrace DOF Functions
11862 */
11863/*ARGSUSED*/
11864static void
11865dtrace_dof_error(dof_hdr_t *dof, const char *str)
11866{
11867	if (dtrace_err_verbose)
11868		cmn_err(CE_WARN, "failed to process DOF: %s", str);
11869
11870#ifdef DTRACE_ERRDEBUG
11871	dtrace_errdebug(str);
11872#endif
11873}
11874
11875/*
11876 * Create DOF out of a currently enabled state.  Right now, we only create
11877 * DOF containing the run-time options -- but this could be expanded to create
11878 * complete DOF representing the enabled state.
11879 */
11880static dof_hdr_t *
11881dtrace_dof_create(dtrace_state_t *state)
11882{
11883	dof_hdr_t *dof;
11884	dof_sec_t *sec;
11885	dof_optdesc_t *opt;
11886	int i, len = sizeof (dof_hdr_t) +
11887	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11888	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11889
11890	ASSERT(MUTEX_HELD(&dtrace_lock));
11891
11892	dof = kmem_zalloc(len, KM_SLEEP);
11893	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11894	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11895	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11896	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11897
11898	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11899	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11900	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11901	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11902	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11903	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11904
11905	dof->dofh_flags = 0;
11906	dof->dofh_hdrsize = sizeof (dof_hdr_t);
11907	dof->dofh_secsize = sizeof (dof_sec_t);
11908	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
11909	dof->dofh_secoff = sizeof (dof_hdr_t);
11910	dof->dofh_loadsz = len;
11911	dof->dofh_filesz = len;
11912	dof->dofh_pad = 0;
11913
11914	/*
11915	 * Fill in the option section header...
11916	 */
11917	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11918	sec->dofs_type = DOF_SECT_OPTDESC;
11919	sec->dofs_align = sizeof (uint64_t);
11920	sec->dofs_flags = DOF_SECF_LOAD;
11921	sec->dofs_entsize = sizeof (dof_optdesc_t);
11922
11923	opt = (dof_optdesc_t *)((uintptr_t)sec +
11924	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11925
11926	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11927	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11928
11929	for (i = 0; i < DTRACEOPT_MAX; i++) {
11930		opt[i].dofo_option = i;
11931		opt[i].dofo_strtab = DOF_SECIDX_NONE;
11932		opt[i].dofo_value = state->dts_options[i];
11933	}
11934
11935	return (dof);
11936}
11937
11938static dof_hdr_t *
11939dtrace_dof_copyin(uintptr_t uarg, int *errp)
11940{
11941	dof_hdr_t hdr, *dof;
11942
11943	ASSERT(!MUTEX_HELD(&dtrace_lock));
11944
11945	/*
11946	 * First, we're going to copyin() the sizeof (dof_hdr_t).
11947	 */
11948	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11949		dtrace_dof_error(NULL, "failed to copyin DOF header");
11950		*errp = EFAULT;
11951		return (NULL);
11952	}
11953
11954	/*
11955	 * Now we'll allocate the entire DOF and copy it in -- provided
11956	 * that the length isn't outrageous.
11957	 */
11958	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11959		dtrace_dof_error(&hdr, "load size exceeds maximum");
11960		*errp = E2BIG;
11961		return (NULL);
11962	}
11963
11964	if (hdr.dofh_loadsz < sizeof (hdr)) {
11965		dtrace_dof_error(&hdr, "invalid load size");
11966		*errp = EINVAL;
11967		return (NULL);
11968	}
11969
11970	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11971
11972	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
11973		kmem_free(dof, hdr.dofh_loadsz);
11974		*errp = EFAULT;
11975		return (NULL);
11976	}
11977
11978	return (dof);
11979}
11980
11981#if !defined(sun)
11982static __inline uchar_t
11983dtrace_dof_char(char c) {
11984	switch (c) {
11985	case '0':
11986	case '1':
11987	case '2':
11988	case '3':
11989	case '4':
11990	case '5':
11991	case '6':
11992	case '7':
11993	case '8':
11994	case '9':
11995		return (c - '0');
11996	case 'A':
11997	case 'B':
11998	case 'C':
11999	case 'D':
12000	case 'E':
12001	case 'F':
12002		return (c - 'A' + 10);
12003	case 'a':
12004	case 'b':
12005	case 'c':
12006	case 'd':
12007	case 'e':
12008	case 'f':
12009		return (c - 'a' + 10);
12010	}
12011	/* Should not reach here. */
12012	return (0);
12013}
12014#endif
12015
12016static dof_hdr_t *
12017dtrace_dof_property(const char *name)
12018{
12019	uchar_t *buf;
12020	uint64_t loadsz;
12021	unsigned int len, i;
12022	dof_hdr_t *dof;
12023
12024#if defined(sun)
12025	/*
12026	 * Unfortunately, array of values in .conf files are always (and
12027	 * only) interpreted to be integer arrays.  We must read our DOF
12028	 * as an integer array, and then squeeze it into a byte array.
12029	 */
12030	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
12031	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
12032		return (NULL);
12033
12034	for (i = 0; i < len; i++)
12035		buf[i] = (uchar_t)(((int *)buf)[i]);
12036
12037	if (len < sizeof (dof_hdr_t)) {
12038		ddi_prop_free(buf);
12039		dtrace_dof_error(NULL, "truncated header");
12040		return (NULL);
12041	}
12042
12043	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
12044		ddi_prop_free(buf);
12045		dtrace_dof_error(NULL, "truncated DOF");
12046		return (NULL);
12047	}
12048
12049	if (loadsz >= dtrace_dof_maxsize) {
12050		ddi_prop_free(buf);
12051		dtrace_dof_error(NULL, "oversized DOF");
12052		return (NULL);
12053	}
12054
12055	dof = kmem_alloc(loadsz, KM_SLEEP);
12056	bcopy(buf, dof, loadsz);
12057	ddi_prop_free(buf);
12058#else
12059	char *p;
12060	char *p_env;
12061
12062	if ((p_env = getenv(name)) == NULL)
12063		return (NULL);
12064
12065	len = strlen(p_env) / 2;
12066
12067	buf = kmem_alloc(len, KM_SLEEP);
12068
12069	dof = (dof_hdr_t *) buf;
12070
12071	p = p_env;
12072
12073	for (i = 0; i < len; i++) {
12074		buf[i] = (dtrace_dof_char(p[0]) << 4) |
12075		     dtrace_dof_char(p[1]);
12076		p += 2;
12077	}
12078
12079	freeenv(p_env);
12080
12081	if (len < sizeof (dof_hdr_t)) {
12082		kmem_free(buf, 0);
12083		dtrace_dof_error(NULL, "truncated header");
12084		return (NULL);
12085	}
12086
12087	if (len < (loadsz = dof->dofh_loadsz)) {
12088		kmem_free(buf, 0);
12089		dtrace_dof_error(NULL, "truncated DOF");
12090		return (NULL);
12091	}
12092
12093	if (loadsz >= dtrace_dof_maxsize) {
12094		kmem_free(buf, 0);
12095		dtrace_dof_error(NULL, "oversized DOF");
12096		return (NULL);
12097	}
12098#endif
12099
12100	return (dof);
12101}
12102
12103static void
12104dtrace_dof_destroy(dof_hdr_t *dof)
12105{
12106	kmem_free(dof, dof->dofh_loadsz);
12107}
12108
12109/*
12110 * Return the dof_sec_t pointer corresponding to a given section index.  If the
12111 * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
12112 * a type other than DOF_SECT_NONE is specified, the header is checked against
12113 * this type and NULL is returned if the types do not match.
12114 */
12115static dof_sec_t *
12116dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
12117{
12118	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
12119	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
12120
12121	if (i >= dof->dofh_secnum) {
12122		dtrace_dof_error(dof, "referenced section index is invalid");
12123		return (NULL);
12124	}
12125
12126	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
12127		dtrace_dof_error(dof, "referenced section is not loadable");
12128		return (NULL);
12129	}
12130
12131	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
12132		dtrace_dof_error(dof, "referenced section is the wrong type");
12133		return (NULL);
12134	}
12135
12136	return (sec);
12137}
12138
12139static dtrace_probedesc_t *
12140dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
12141{
12142	dof_probedesc_t *probe;
12143	dof_sec_t *strtab;
12144	uintptr_t daddr = (uintptr_t)dof;
12145	uintptr_t str;
12146	size_t size;
12147
12148	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
12149		dtrace_dof_error(dof, "invalid probe section");
12150		return (NULL);
12151	}
12152
12153	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12154		dtrace_dof_error(dof, "bad alignment in probe description");
12155		return (NULL);
12156	}
12157
12158	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
12159		dtrace_dof_error(dof, "truncated probe description");
12160		return (NULL);
12161	}
12162
12163	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
12164	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
12165
12166	if (strtab == NULL)
12167		return (NULL);
12168
12169	str = daddr + strtab->dofs_offset;
12170	size = strtab->dofs_size;
12171
12172	if (probe->dofp_provider >= strtab->dofs_size) {
12173		dtrace_dof_error(dof, "corrupt probe provider");
12174		return (NULL);
12175	}
12176
12177	(void) strncpy(desc->dtpd_provider,
12178	    (char *)(str + probe->dofp_provider),
12179	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
12180
12181	if (probe->dofp_mod >= strtab->dofs_size) {
12182		dtrace_dof_error(dof, "corrupt probe module");
12183		return (NULL);
12184	}
12185
12186	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
12187	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
12188
12189	if (probe->dofp_func >= strtab->dofs_size) {
12190		dtrace_dof_error(dof, "corrupt probe function");
12191		return (NULL);
12192	}
12193
12194	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
12195	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
12196
12197	if (probe->dofp_name >= strtab->dofs_size) {
12198		dtrace_dof_error(dof, "corrupt probe name");
12199		return (NULL);
12200	}
12201
12202	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
12203	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
12204
12205	return (desc);
12206}
12207
12208static dtrace_difo_t *
12209dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12210    cred_t *cr)
12211{
12212	dtrace_difo_t *dp;
12213	size_t ttl = 0;
12214	dof_difohdr_t *dofd;
12215	uintptr_t daddr = (uintptr_t)dof;
12216	size_t max = dtrace_difo_maxsize;
12217	int i, l, n;
12218
12219	static const struct {
12220		int section;
12221		int bufoffs;
12222		int lenoffs;
12223		int entsize;
12224		int align;
12225		const char *msg;
12226	} difo[] = {
12227		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12228		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12229		sizeof (dif_instr_t), "multiple DIF sections" },
12230
12231		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12232		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12233		sizeof (uint64_t), "multiple integer tables" },
12234
12235		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12236		offsetof(dtrace_difo_t, dtdo_strlen), 0,
12237		sizeof (char), "multiple string tables" },
12238
12239		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12240		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12241		sizeof (uint_t), "multiple variable tables" },
12242
12243		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
12244	};
12245
12246	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12247		dtrace_dof_error(dof, "invalid DIFO header section");
12248		return (NULL);
12249	}
12250
12251	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12252		dtrace_dof_error(dof, "bad alignment in DIFO header");
12253		return (NULL);
12254	}
12255
12256	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12257	    sec->dofs_size % sizeof (dof_secidx_t)) {
12258		dtrace_dof_error(dof, "bad size in DIFO header");
12259		return (NULL);
12260	}
12261
12262	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12263	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12264
12265	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12266	dp->dtdo_rtype = dofd->dofd_rtype;
12267
12268	for (l = 0; l < n; l++) {
12269		dof_sec_t *subsec;
12270		void **bufp;
12271		uint32_t *lenp;
12272
12273		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12274		    dofd->dofd_links[l])) == NULL)
12275			goto err; /* invalid section link */
12276
12277		if (ttl + subsec->dofs_size > max) {
12278			dtrace_dof_error(dof, "exceeds maximum size");
12279			goto err;
12280		}
12281
12282		ttl += subsec->dofs_size;
12283
12284		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12285			if (subsec->dofs_type != difo[i].section)
12286				continue;
12287
12288			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12289				dtrace_dof_error(dof, "section not loaded");
12290				goto err;
12291			}
12292
12293			if (subsec->dofs_align != difo[i].align) {
12294				dtrace_dof_error(dof, "bad alignment");
12295				goto err;
12296			}
12297
12298			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12299			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12300
12301			if (*bufp != NULL) {
12302				dtrace_dof_error(dof, difo[i].msg);
12303				goto err;
12304			}
12305
12306			if (difo[i].entsize != subsec->dofs_entsize) {
12307				dtrace_dof_error(dof, "entry size mismatch");
12308				goto err;
12309			}
12310
12311			if (subsec->dofs_entsize != 0 &&
12312			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12313				dtrace_dof_error(dof, "corrupt entry size");
12314				goto err;
12315			}
12316
12317			*lenp = subsec->dofs_size;
12318			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12319			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12320			    *bufp, subsec->dofs_size);
12321
12322			if (subsec->dofs_entsize != 0)
12323				*lenp /= subsec->dofs_entsize;
12324
12325			break;
12326		}
12327
12328		/*
12329		 * If we encounter a loadable DIFO sub-section that is not
12330		 * known to us, assume this is a broken program and fail.
12331		 */
12332		if (difo[i].section == DOF_SECT_NONE &&
12333		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
12334			dtrace_dof_error(dof, "unrecognized DIFO subsection");
12335			goto err;
12336		}
12337	}
12338
12339	if (dp->dtdo_buf == NULL) {
12340		/*
12341		 * We can't have a DIF object without DIF text.
12342		 */
12343		dtrace_dof_error(dof, "missing DIF text");
12344		goto err;
12345	}
12346
12347	/*
12348	 * Before we validate the DIF object, run through the variable table
12349	 * looking for the strings -- if any of their size are under, we'll set
12350	 * their size to be the system-wide default string size.  Note that
12351	 * this should _not_ happen if the "strsize" option has been set --
12352	 * in this case, the compiler should have set the size to reflect the
12353	 * setting of the option.
12354	 */
12355	for (i = 0; i < dp->dtdo_varlen; i++) {
12356		dtrace_difv_t *v = &dp->dtdo_vartab[i];
12357		dtrace_diftype_t *t = &v->dtdv_type;
12358
12359		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12360			continue;
12361
12362		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12363			t->dtdt_size = dtrace_strsize_default;
12364	}
12365
12366	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12367		goto err;
12368
12369	dtrace_difo_init(dp, vstate);
12370	return (dp);
12371
12372err:
12373	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12374	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12375	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12376	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12377
12378	kmem_free(dp, sizeof (dtrace_difo_t));
12379	return (NULL);
12380}
12381
12382static dtrace_predicate_t *
12383dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12384    cred_t *cr)
12385{
12386	dtrace_difo_t *dp;
12387
12388	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12389		return (NULL);
12390
12391	return (dtrace_predicate_create(dp));
12392}
12393
12394static dtrace_actdesc_t *
12395dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12396    cred_t *cr)
12397{
12398	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12399	dof_actdesc_t *desc;
12400	dof_sec_t *difosec;
12401	size_t offs;
12402	uintptr_t daddr = (uintptr_t)dof;
12403	uint64_t arg;
12404	dtrace_actkind_t kind;
12405
12406	if (sec->dofs_type != DOF_SECT_ACTDESC) {
12407		dtrace_dof_error(dof, "invalid action section");
12408		return (NULL);
12409	}
12410
12411	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12412		dtrace_dof_error(dof, "truncated action description");
12413		return (NULL);
12414	}
12415
12416	if (sec->dofs_align != sizeof (uint64_t)) {
12417		dtrace_dof_error(dof, "bad alignment in action description");
12418		return (NULL);
12419	}
12420
12421	if (sec->dofs_size < sec->dofs_entsize) {
12422		dtrace_dof_error(dof, "section entry size exceeds total size");
12423		return (NULL);
12424	}
12425
12426	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12427		dtrace_dof_error(dof, "bad entry size in action description");
12428		return (NULL);
12429	}
12430
12431	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12432		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12433		return (NULL);
12434	}
12435
12436	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12437		desc = (dof_actdesc_t *)(daddr +
12438		    (uintptr_t)sec->dofs_offset + offs);
12439		kind = (dtrace_actkind_t)desc->dofa_kind;
12440
12441		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
12442		    (kind != DTRACEACT_PRINTA ||
12443		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
12444		    (kind == DTRACEACT_DIFEXPR &&
12445		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
12446			dof_sec_t *strtab;
12447			char *str, *fmt;
12448			uint64_t i;
12449
12450			/*
12451			 * The argument to these actions is an index into the
12452			 * DOF string table.  For printf()-like actions, this
12453			 * is the format string.  For print(), this is the
12454			 * CTF type of the expression result.
12455			 */
12456			if ((strtab = dtrace_dof_sect(dof,
12457			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12458				goto err;
12459
12460			str = (char *)((uintptr_t)dof +
12461			    (uintptr_t)strtab->dofs_offset);
12462
12463			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12464				if (str[i] == '\0')
12465					break;
12466			}
12467
12468			if (i >= strtab->dofs_size) {
12469				dtrace_dof_error(dof, "bogus format string");
12470				goto err;
12471			}
12472
12473			if (i == desc->dofa_arg) {
12474				dtrace_dof_error(dof, "empty format string");
12475				goto err;
12476			}
12477
12478			i -= desc->dofa_arg;
12479			fmt = kmem_alloc(i + 1, KM_SLEEP);
12480			bcopy(&str[desc->dofa_arg], fmt, i + 1);
12481			arg = (uint64_t)(uintptr_t)fmt;
12482		} else {
12483			if (kind == DTRACEACT_PRINTA) {
12484				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12485				arg = 0;
12486			} else {
12487				arg = desc->dofa_arg;
12488			}
12489		}
12490
12491		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12492		    desc->dofa_uarg, arg);
12493
12494		if (last != NULL) {
12495			last->dtad_next = act;
12496		} else {
12497			first = act;
12498		}
12499
12500		last = act;
12501
12502		if (desc->dofa_difo == DOF_SECIDX_NONE)
12503			continue;
12504
12505		if ((difosec = dtrace_dof_sect(dof,
12506		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12507			goto err;
12508
12509		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12510
12511		if (act->dtad_difo == NULL)
12512			goto err;
12513	}
12514
12515	ASSERT(first != NULL);
12516	return (first);
12517
12518err:
12519	for (act = first; act != NULL; act = next) {
12520		next = act->dtad_next;
12521		dtrace_actdesc_release(act, vstate);
12522	}
12523
12524	return (NULL);
12525}
12526
12527static dtrace_ecbdesc_t *
12528dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12529    cred_t *cr)
12530{
12531	dtrace_ecbdesc_t *ep;
12532	dof_ecbdesc_t *ecb;
12533	dtrace_probedesc_t *desc;
12534	dtrace_predicate_t *pred = NULL;
12535
12536	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12537		dtrace_dof_error(dof, "truncated ECB description");
12538		return (NULL);
12539	}
12540
12541	if (sec->dofs_align != sizeof (uint64_t)) {
12542		dtrace_dof_error(dof, "bad alignment in ECB description");
12543		return (NULL);
12544	}
12545
12546	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12547	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12548
12549	if (sec == NULL)
12550		return (NULL);
12551
12552	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12553	ep->dted_uarg = ecb->dofe_uarg;
12554	desc = &ep->dted_probe;
12555
12556	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12557		goto err;
12558
12559	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12560		if ((sec = dtrace_dof_sect(dof,
12561		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12562			goto err;
12563
12564		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12565			goto err;
12566
12567		ep->dted_pred.dtpdd_predicate = pred;
12568	}
12569
12570	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12571		if ((sec = dtrace_dof_sect(dof,
12572		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12573			goto err;
12574
12575		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12576
12577		if (ep->dted_action == NULL)
12578			goto err;
12579	}
12580
12581	return (ep);
12582
12583err:
12584	if (pred != NULL)
12585		dtrace_predicate_release(pred, vstate);
12586	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12587	return (NULL);
12588}
12589
12590/*
12591 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12592 * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12593 * site of any user SETX relocations to account for load object base address.
12594 * In the future, if we need other relocations, this function can be extended.
12595 */
12596static int
12597dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12598{
12599	uintptr_t daddr = (uintptr_t)dof;
12600	dof_relohdr_t *dofr =
12601	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12602	dof_sec_t *ss, *rs, *ts;
12603	dof_relodesc_t *r;
12604	uint_t i, n;
12605
12606	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12607	    sec->dofs_align != sizeof (dof_secidx_t)) {
12608		dtrace_dof_error(dof, "invalid relocation header");
12609		return (-1);
12610	}
12611
12612	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12613	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12614	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12615
12616	if (ss == NULL || rs == NULL || ts == NULL)
12617		return (-1); /* dtrace_dof_error() has been called already */
12618
12619	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12620	    rs->dofs_align != sizeof (uint64_t)) {
12621		dtrace_dof_error(dof, "invalid relocation section");
12622		return (-1);
12623	}
12624
12625	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12626	n = rs->dofs_size / rs->dofs_entsize;
12627
12628	for (i = 0; i < n; i++) {
12629		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12630
12631		switch (r->dofr_type) {
12632		case DOF_RELO_NONE:
12633			break;
12634		case DOF_RELO_SETX:
12635			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12636			    sizeof (uint64_t) > ts->dofs_size) {
12637				dtrace_dof_error(dof, "bad relocation offset");
12638				return (-1);
12639			}
12640
12641			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12642				dtrace_dof_error(dof, "misaligned setx relo");
12643				return (-1);
12644			}
12645
12646			*(uint64_t *)taddr += ubase;
12647			break;
12648		default:
12649			dtrace_dof_error(dof, "invalid relocation type");
12650			return (-1);
12651		}
12652
12653		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12654	}
12655
12656	return (0);
12657}
12658
12659/*
12660 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12661 * header:  it should be at the front of a memory region that is at least
12662 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12663 * size.  It need not be validated in any other way.
12664 */
12665static int
12666dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12667    dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12668{
12669	uint64_t len = dof->dofh_loadsz, seclen;
12670	uintptr_t daddr = (uintptr_t)dof;
12671	dtrace_ecbdesc_t *ep;
12672	dtrace_enabling_t *enab;
12673	uint_t i;
12674
12675	ASSERT(MUTEX_HELD(&dtrace_lock));
12676	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12677
12678	/*
12679	 * Check the DOF header identification bytes.  In addition to checking
12680	 * valid settings, we also verify that unused bits/bytes are zeroed so
12681	 * we can use them later without fear of regressing existing binaries.
12682	 */
12683	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12684	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12685		dtrace_dof_error(dof, "DOF magic string mismatch");
12686		return (-1);
12687	}
12688
12689	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12690	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12691		dtrace_dof_error(dof, "DOF has invalid data model");
12692		return (-1);
12693	}
12694
12695	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12696		dtrace_dof_error(dof, "DOF encoding mismatch");
12697		return (-1);
12698	}
12699
12700	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12701	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12702		dtrace_dof_error(dof, "DOF version mismatch");
12703		return (-1);
12704	}
12705
12706	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12707		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12708		return (-1);
12709	}
12710
12711	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12712		dtrace_dof_error(dof, "DOF uses too many integer registers");
12713		return (-1);
12714	}
12715
12716	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12717		dtrace_dof_error(dof, "DOF uses too many tuple registers");
12718		return (-1);
12719	}
12720
12721	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12722		if (dof->dofh_ident[i] != 0) {
12723			dtrace_dof_error(dof, "DOF has invalid ident byte set");
12724			return (-1);
12725		}
12726	}
12727
12728	if (dof->dofh_flags & ~DOF_FL_VALID) {
12729		dtrace_dof_error(dof, "DOF has invalid flag bits set");
12730		return (-1);
12731	}
12732
12733	if (dof->dofh_secsize == 0) {
12734		dtrace_dof_error(dof, "zero section header size");
12735		return (-1);
12736	}
12737
12738	/*
12739	 * Check that the section headers don't exceed the amount of DOF
12740	 * data.  Note that we cast the section size and number of sections
12741	 * to uint64_t's to prevent possible overflow in the multiplication.
12742	 */
12743	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12744
12745	if (dof->dofh_secoff > len || seclen > len ||
12746	    dof->dofh_secoff + seclen > len) {
12747		dtrace_dof_error(dof, "truncated section headers");
12748		return (-1);
12749	}
12750
12751	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12752		dtrace_dof_error(dof, "misaligned section headers");
12753		return (-1);
12754	}
12755
12756	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12757		dtrace_dof_error(dof, "misaligned section size");
12758		return (-1);
12759	}
12760
12761	/*
12762	 * Take an initial pass through the section headers to be sure that
12763	 * the headers don't have stray offsets.  If the 'noprobes' flag is
12764	 * set, do not permit sections relating to providers, probes, or args.
12765	 */
12766	for (i = 0; i < dof->dofh_secnum; i++) {
12767		dof_sec_t *sec = (dof_sec_t *)(daddr +
12768		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12769
12770		if (noprobes) {
12771			switch (sec->dofs_type) {
12772			case DOF_SECT_PROVIDER:
12773			case DOF_SECT_PROBES:
12774			case DOF_SECT_PRARGS:
12775			case DOF_SECT_PROFFS:
12776				dtrace_dof_error(dof, "illegal sections "
12777				    "for enabling");
12778				return (-1);
12779			}
12780		}
12781
12782		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12783			continue; /* just ignore non-loadable sections */
12784
12785		if (sec->dofs_align & (sec->dofs_align - 1)) {
12786			dtrace_dof_error(dof, "bad section alignment");
12787			return (-1);
12788		}
12789
12790		if (sec->dofs_offset & (sec->dofs_align - 1)) {
12791			dtrace_dof_error(dof, "misaligned section");
12792			return (-1);
12793		}
12794
12795		if (sec->dofs_offset > len || sec->dofs_size > len ||
12796		    sec->dofs_offset + sec->dofs_size > len) {
12797			dtrace_dof_error(dof, "corrupt section header");
12798			return (-1);
12799		}
12800
12801		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12802		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12803			dtrace_dof_error(dof, "non-terminating string table");
12804			return (-1);
12805		}
12806	}
12807
12808	/*
12809	 * Take a second pass through the sections and locate and perform any
12810	 * relocations that are present.  We do this after the first pass to
12811	 * be sure that all sections have had their headers validated.
12812	 */
12813	for (i = 0; i < dof->dofh_secnum; i++) {
12814		dof_sec_t *sec = (dof_sec_t *)(daddr +
12815		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12816
12817		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12818			continue; /* skip sections that are not loadable */
12819
12820		switch (sec->dofs_type) {
12821		case DOF_SECT_URELHDR:
12822			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12823				return (-1);
12824			break;
12825		}
12826	}
12827
12828	if ((enab = *enabp) == NULL)
12829		enab = *enabp = dtrace_enabling_create(vstate);
12830
12831	for (i = 0; i < dof->dofh_secnum; i++) {
12832		dof_sec_t *sec = (dof_sec_t *)(daddr +
12833		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12834
12835		if (sec->dofs_type != DOF_SECT_ECBDESC)
12836			continue;
12837
12838		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12839			dtrace_enabling_destroy(enab);
12840			*enabp = NULL;
12841			return (-1);
12842		}
12843
12844		dtrace_enabling_add(enab, ep);
12845	}
12846
12847	return (0);
12848}
12849
12850/*
12851 * Process DOF for any options.  This routine assumes that the DOF has been
12852 * at least processed by dtrace_dof_slurp().
12853 */
12854static int
12855dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12856{
12857	int i, rval;
12858	uint32_t entsize;
12859	size_t offs;
12860	dof_optdesc_t *desc;
12861
12862	for (i = 0; i < dof->dofh_secnum; i++) {
12863		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12864		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12865
12866		if (sec->dofs_type != DOF_SECT_OPTDESC)
12867			continue;
12868
12869		if (sec->dofs_align != sizeof (uint64_t)) {
12870			dtrace_dof_error(dof, "bad alignment in "
12871			    "option description");
12872			return (EINVAL);
12873		}
12874
12875		if ((entsize = sec->dofs_entsize) == 0) {
12876			dtrace_dof_error(dof, "zeroed option entry size");
12877			return (EINVAL);
12878		}
12879
12880		if (entsize < sizeof (dof_optdesc_t)) {
12881			dtrace_dof_error(dof, "bad option entry size");
12882			return (EINVAL);
12883		}
12884
12885		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12886			desc = (dof_optdesc_t *)((uintptr_t)dof +
12887			    (uintptr_t)sec->dofs_offset + offs);
12888
12889			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12890				dtrace_dof_error(dof, "non-zero option string");
12891				return (EINVAL);
12892			}
12893
12894			if (desc->dofo_value == DTRACEOPT_UNSET) {
12895				dtrace_dof_error(dof, "unset option");
12896				return (EINVAL);
12897			}
12898
12899			if ((rval = dtrace_state_option(state,
12900			    desc->dofo_option, desc->dofo_value)) != 0) {
12901				dtrace_dof_error(dof, "rejected option");
12902				return (rval);
12903			}
12904		}
12905	}
12906
12907	return (0);
12908}
12909
12910/*
12911 * DTrace Consumer State Functions
12912 */
12913static int
12914dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12915{
12916	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12917	void *base;
12918	uintptr_t limit;
12919	dtrace_dynvar_t *dvar, *next, *start;
12920	int i;
12921
12922	ASSERT(MUTEX_HELD(&dtrace_lock));
12923	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12924
12925	bzero(dstate, sizeof (dtrace_dstate_t));
12926
12927	if ((dstate->dtds_chunksize = chunksize) == 0)
12928		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12929
12930	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12931		size = min;
12932
12933	if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12934		return (ENOMEM);
12935
12936	dstate->dtds_size = size;
12937	dstate->dtds_base = base;
12938	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12939	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12940
12941	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12942
12943	if (hashsize != 1 && (hashsize & 1))
12944		hashsize--;
12945
12946	dstate->dtds_hashsize = hashsize;
12947	dstate->dtds_hash = dstate->dtds_base;
12948
12949	/*
12950	 * Set all of our hash buckets to point to the single sink, and (if
12951	 * it hasn't already been set), set the sink's hash value to be the
12952	 * sink sentinel value.  The sink is needed for dynamic variable
12953	 * lookups to know that they have iterated over an entire, valid hash
12954	 * chain.
12955	 */
12956	for (i = 0; i < hashsize; i++)
12957		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12958
12959	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12960		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12961
12962	/*
12963	 * Determine number of active CPUs.  Divide free list evenly among
12964	 * active CPUs.
12965	 */
12966	start = (dtrace_dynvar_t *)
12967	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12968	limit = (uintptr_t)base + size;
12969
12970	maxper = (limit - (uintptr_t)start) / NCPU;
12971	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12972
12973#if !defined(sun)
12974	CPU_FOREACH(i) {
12975#else
12976	for (i = 0; i < NCPU; i++) {
12977#endif
12978		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12979
12980		/*
12981		 * If we don't even have enough chunks to make it once through
12982		 * NCPUs, we're just going to allocate everything to the first
12983		 * CPU.  And if we're on the last CPU, we're going to allocate
12984		 * whatever is left over.  In either case, we set the limit to
12985		 * be the limit of the dynamic variable space.
12986		 */
12987		if (maxper == 0 || i == NCPU - 1) {
12988			limit = (uintptr_t)base + size;
12989			start = NULL;
12990		} else {
12991			limit = (uintptr_t)start + maxper;
12992			start = (dtrace_dynvar_t *)limit;
12993		}
12994
12995		ASSERT(limit <= (uintptr_t)base + size);
12996
12997		for (;;) {
12998			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12999			    dstate->dtds_chunksize);
13000
13001			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
13002				break;
13003
13004			dvar->dtdv_next = next;
13005			dvar = next;
13006		}
13007
13008		if (maxper == 0)
13009			break;
13010	}
13011
13012	return (0);
13013}
13014
13015static void
13016dtrace_dstate_fini(dtrace_dstate_t *dstate)
13017{
13018	ASSERT(MUTEX_HELD(&cpu_lock));
13019
13020	if (dstate->dtds_base == NULL)
13021		return;
13022
13023	kmem_free(dstate->dtds_base, dstate->dtds_size);
13024	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
13025}
13026
13027static void
13028dtrace_vstate_fini(dtrace_vstate_t *vstate)
13029{
13030	/*
13031	 * Logical XOR, where are you?
13032	 */
13033	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
13034
13035	if (vstate->dtvs_nglobals > 0) {
13036		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
13037		    sizeof (dtrace_statvar_t *));
13038	}
13039
13040	if (vstate->dtvs_ntlocals > 0) {
13041		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
13042		    sizeof (dtrace_difv_t));
13043	}
13044
13045	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
13046
13047	if (vstate->dtvs_nlocals > 0) {
13048		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
13049		    sizeof (dtrace_statvar_t *));
13050	}
13051}
13052
13053#if defined(sun)
13054static void
13055dtrace_state_clean(dtrace_state_t *state)
13056{
13057	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13058		return;
13059
13060	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13061	dtrace_speculation_clean(state);
13062}
13063
13064static void
13065dtrace_state_deadman(dtrace_state_t *state)
13066{
13067	hrtime_t now;
13068
13069	dtrace_sync();
13070
13071	now = dtrace_gethrtime();
13072
13073	if (state != dtrace_anon.dta_state &&
13074	    now - state->dts_laststatus >= dtrace_deadman_user)
13075		return;
13076
13077	/*
13078	 * We must be sure that dts_alive never appears to be less than the
13079	 * value upon entry to dtrace_state_deadman(), and because we lack a
13080	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13081	 * store INT64_MAX to it, followed by a memory barrier, followed by
13082	 * the new value.  This assures that dts_alive never appears to be
13083	 * less than its true value, regardless of the order in which the
13084	 * stores to the underlying storage are issued.
13085	 */
13086	state->dts_alive = INT64_MAX;
13087	dtrace_membar_producer();
13088	state->dts_alive = now;
13089}
13090#else
13091static void
13092dtrace_state_clean(void *arg)
13093{
13094	dtrace_state_t *state = arg;
13095	dtrace_optval_t *opt = state->dts_options;
13096
13097	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13098		return;
13099
13100	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13101	dtrace_speculation_clean(state);
13102
13103	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13104	    dtrace_state_clean, state);
13105}
13106
13107static void
13108dtrace_state_deadman(void *arg)
13109{
13110	dtrace_state_t *state = arg;
13111	hrtime_t now;
13112
13113	dtrace_sync();
13114
13115	dtrace_debug_output();
13116
13117	now = dtrace_gethrtime();
13118
13119	if (state != dtrace_anon.dta_state &&
13120	    now - state->dts_laststatus >= dtrace_deadman_user)
13121		return;
13122
13123	/*
13124	 * We must be sure that dts_alive never appears to be less than the
13125	 * value upon entry to dtrace_state_deadman(), and because we lack a
13126	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13127	 * store INT64_MAX to it, followed by a memory barrier, followed by
13128	 * the new value.  This assures that dts_alive never appears to be
13129	 * less than its true value, regardless of the order in which the
13130	 * stores to the underlying storage are issued.
13131	 */
13132	state->dts_alive = INT64_MAX;
13133	dtrace_membar_producer();
13134	state->dts_alive = now;
13135
13136	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13137	    dtrace_state_deadman, state);
13138}
13139#endif
13140
13141static dtrace_state_t *
13142#if defined(sun)
13143dtrace_state_create(dev_t *devp, cred_t *cr)
13144#else
13145dtrace_state_create(struct cdev *dev)
13146#endif
13147{
13148#if defined(sun)
13149	minor_t minor;
13150	major_t major;
13151#else
13152	cred_t *cr = NULL;
13153	int m = 0;
13154#endif
13155	char c[30];
13156	dtrace_state_t *state;
13157	dtrace_optval_t *opt;
13158	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
13159
13160	ASSERT(MUTEX_HELD(&dtrace_lock));
13161	ASSERT(MUTEX_HELD(&cpu_lock));
13162
13163#if defined(sun)
13164	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
13165	    VM_BESTFIT | VM_SLEEP);
13166
13167	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
13168		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13169		return (NULL);
13170	}
13171
13172	state = ddi_get_soft_state(dtrace_softstate, minor);
13173#else
13174	if (dev != NULL) {
13175		cr = dev->si_cred;
13176		m = dev2unit(dev);
13177		}
13178
13179	/* Allocate memory for the state. */
13180	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
13181#endif
13182
13183	state->dts_epid = DTRACE_EPIDNONE + 1;
13184
13185	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
13186#if defined(sun)
13187	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
13188	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13189
13190	if (devp != NULL) {
13191		major = getemajor(*devp);
13192	} else {
13193		major = ddi_driver_major(dtrace_devi);
13194	}
13195
13196	state->dts_dev = makedevice(major, minor);
13197
13198	if (devp != NULL)
13199		*devp = state->dts_dev;
13200#else
13201	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
13202	state->dts_dev = dev;
13203#endif
13204
13205	/*
13206	 * We allocate NCPU buffers.  On the one hand, this can be quite
13207	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
13208	 * other hand, it saves an additional memory reference in the probe
13209	 * path.
13210	 */
13211	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
13212	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
13213
13214#if defined(sun)
13215	state->dts_cleaner = CYCLIC_NONE;
13216	state->dts_deadman = CYCLIC_NONE;
13217#else
13218	callout_init(&state->dts_cleaner, CALLOUT_MPSAFE);
13219	callout_init(&state->dts_deadman, CALLOUT_MPSAFE);
13220#endif
13221	state->dts_vstate.dtvs_state = state;
13222
13223	for (i = 0; i < DTRACEOPT_MAX; i++)
13224		state->dts_options[i] = DTRACEOPT_UNSET;
13225
13226	/*
13227	 * Set the default options.
13228	 */
13229	opt = state->dts_options;
13230	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
13231	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
13232	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
13233	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
13234	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
13235	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
13236	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
13237	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
13238	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
13239	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
13240	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
13241	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
13242	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
13243	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
13244
13245	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
13246
13247	/*
13248	 * Depending on the user credentials, we set flag bits which alter probe
13249	 * visibility or the amount of destructiveness allowed.  In the case of
13250	 * actual anonymous tracing, or the possession of all privileges, all of
13251	 * the normal checks are bypassed.
13252	 */
13253	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13254		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13255		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13256	} else {
13257		/*
13258		 * Set up the credentials for this instantiation.  We take a
13259		 * hold on the credential to prevent it from disappearing on
13260		 * us; this in turn prevents the zone_t referenced by this
13261		 * credential from disappearing.  This means that we can
13262		 * examine the credential and the zone from probe context.
13263		 */
13264		crhold(cr);
13265		state->dts_cred.dcr_cred = cr;
13266
13267		/*
13268		 * CRA_PROC means "we have *some* privilege for dtrace" and
13269		 * unlocks the use of variables like pid, zonename, etc.
13270		 */
13271		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13272		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13273			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13274		}
13275
13276		/*
13277		 * dtrace_user allows use of syscall and profile providers.
13278		 * If the user also has proc_owner and/or proc_zone, we
13279		 * extend the scope to include additional visibility and
13280		 * destructive power.
13281		 */
13282		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13283			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13284				state->dts_cred.dcr_visible |=
13285				    DTRACE_CRV_ALLPROC;
13286
13287				state->dts_cred.dcr_action |=
13288				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13289			}
13290
13291			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13292				state->dts_cred.dcr_visible |=
13293				    DTRACE_CRV_ALLZONE;
13294
13295				state->dts_cred.dcr_action |=
13296				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13297			}
13298
13299			/*
13300			 * If we have all privs in whatever zone this is,
13301			 * we can do destructive things to processes which
13302			 * have altered credentials.
13303			 */
13304#if defined(sun)
13305			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13306			    cr->cr_zone->zone_privset)) {
13307				state->dts_cred.dcr_action |=
13308				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13309			}
13310#endif
13311		}
13312
13313		/*
13314		 * Holding the dtrace_kernel privilege also implies that
13315		 * the user has the dtrace_user privilege from a visibility
13316		 * perspective.  But without further privileges, some
13317		 * destructive actions are not available.
13318		 */
13319		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13320			/*
13321			 * Make all probes in all zones visible.  However,
13322			 * this doesn't mean that all actions become available
13323			 * to all zones.
13324			 */
13325			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13326			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13327
13328			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13329			    DTRACE_CRA_PROC;
13330			/*
13331			 * Holding proc_owner means that destructive actions
13332			 * for *this* zone are allowed.
13333			 */
13334			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13335				state->dts_cred.dcr_action |=
13336				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13337
13338			/*
13339			 * Holding proc_zone means that destructive actions
13340			 * for this user/group ID in all zones is allowed.
13341			 */
13342			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13343				state->dts_cred.dcr_action |=
13344				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13345
13346#if defined(sun)
13347			/*
13348			 * If we have all privs in whatever zone this is,
13349			 * we can do destructive things to processes which
13350			 * have altered credentials.
13351			 */
13352			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13353			    cr->cr_zone->zone_privset)) {
13354				state->dts_cred.dcr_action |=
13355				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13356			}
13357#endif
13358		}
13359
13360		/*
13361		 * Holding the dtrace_proc privilege gives control over fasttrap
13362		 * and pid providers.  We need to grant wider destructive
13363		 * privileges in the event that the user has proc_owner and/or
13364		 * proc_zone.
13365		 */
13366		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13367			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13368				state->dts_cred.dcr_action |=
13369				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13370
13371			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13372				state->dts_cred.dcr_action |=
13373				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13374		}
13375	}
13376
13377	return (state);
13378}
13379
13380static int
13381dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13382{
13383	dtrace_optval_t *opt = state->dts_options, size;
13384	processorid_t cpu = 0;;
13385	int flags = 0, rval, factor, divisor = 1;
13386
13387	ASSERT(MUTEX_HELD(&dtrace_lock));
13388	ASSERT(MUTEX_HELD(&cpu_lock));
13389	ASSERT(which < DTRACEOPT_MAX);
13390	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13391	    (state == dtrace_anon.dta_state &&
13392	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13393
13394	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13395		return (0);
13396
13397	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13398		cpu = opt[DTRACEOPT_CPU];
13399
13400	if (which == DTRACEOPT_SPECSIZE)
13401		flags |= DTRACEBUF_NOSWITCH;
13402
13403	if (which == DTRACEOPT_BUFSIZE) {
13404		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13405			flags |= DTRACEBUF_RING;
13406
13407		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13408			flags |= DTRACEBUF_FILL;
13409
13410		if (state != dtrace_anon.dta_state ||
13411		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13412			flags |= DTRACEBUF_INACTIVE;
13413	}
13414
13415	for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
13416		/*
13417		 * The size must be 8-byte aligned.  If the size is not 8-byte
13418		 * aligned, drop it down by the difference.
13419		 */
13420		if (size & (sizeof (uint64_t) - 1))
13421			size -= size & (sizeof (uint64_t) - 1);
13422
13423		if (size < state->dts_reserve) {
13424			/*
13425			 * Buffers always must be large enough to accommodate
13426			 * their prereserved space.  We return E2BIG instead
13427			 * of ENOMEM in this case to allow for user-level
13428			 * software to differentiate the cases.
13429			 */
13430			return (E2BIG);
13431		}
13432
13433		rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
13434
13435		if (rval != ENOMEM) {
13436			opt[which] = size;
13437			return (rval);
13438		}
13439
13440		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13441			return (rval);
13442
13443		for (divisor = 2; divisor < factor; divisor <<= 1)
13444			continue;
13445	}
13446
13447	return (ENOMEM);
13448}
13449
13450static int
13451dtrace_state_buffers(dtrace_state_t *state)
13452{
13453	dtrace_speculation_t *spec = state->dts_speculations;
13454	int rval, i;
13455
13456	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13457	    DTRACEOPT_BUFSIZE)) != 0)
13458		return (rval);
13459
13460	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13461	    DTRACEOPT_AGGSIZE)) != 0)
13462		return (rval);
13463
13464	for (i = 0; i < state->dts_nspeculations; i++) {
13465		if ((rval = dtrace_state_buffer(state,
13466		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13467			return (rval);
13468	}
13469
13470	return (0);
13471}
13472
13473static void
13474dtrace_state_prereserve(dtrace_state_t *state)
13475{
13476	dtrace_ecb_t *ecb;
13477	dtrace_probe_t *probe;
13478
13479	state->dts_reserve = 0;
13480
13481	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13482		return;
13483
13484	/*
13485	 * If our buffer policy is a "fill" buffer policy, we need to set the
13486	 * prereserved space to be the space required by the END probes.
13487	 */
13488	probe = dtrace_probes[dtrace_probeid_end - 1];
13489	ASSERT(probe != NULL);
13490
13491	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13492		if (ecb->dte_state != state)
13493			continue;
13494
13495		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13496	}
13497}
13498
13499static int
13500dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13501{
13502	dtrace_optval_t *opt = state->dts_options, sz, nspec;
13503	dtrace_speculation_t *spec;
13504	dtrace_buffer_t *buf;
13505#if defined(sun)
13506	cyc_handler_t hdlr;
13507	cyc_time_t when;
13508#endif
13509	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13510	dtrace_icookie_t cookie;
13511
13512	mutex_enter(&cpu_lock);
13513	mutex_enter(&dtrace_lock);
13514
13515	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13516		rval = EBUSY;
13517		goto out;
13518	}
13519
13520	/*
13521	 * Before we can perform any checks, we must prime all of the
13522	 * retained enablings that correspond to this state.
13523	 */
13524	dtrace_enabling_prime(state);
13525
13526	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13527		rval = EACCES;
13528		goto out;
13529	}
13530
13531	dtrace_state_prereserve(state);
13532
13533	/*
13534	 * Now we want to do is try to allocate our speculations.
13535	 * We do not automatically resize the number of speculations; if
13536	 * this fails, we will fail the operation.
13537	 */
13538	nspec = opt[DTRACEOPT_NSPEC];
13539	ASSERT(nspec != DTRACEOPT_UNSET);
13540
13541	if (nspec > INT_MAX) {
13542		rval = ENOMEM;
13543		goto out;
13544	}
13545
13546	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
13547	    KM_NOSLEEP | KM_NORMALPRI);
13548
13549	if (spec == NULL) {
13550		rval = ENOMEM;
13551		goto out;
13552	}
13553
13554	state->dts_speculations = spec;
13555	state->dts_nspeculations = (int)nspec;
13556
13557	for (i = 0; i < nspec; i++) {
13558		if ((buf = kmem_zalloc(bufsize,
13559		    KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
13560			rval = ENOMEM;
13561			goto err;
13562		}
13563
13564		spec[i].dtsp_buffer = buf;
13565	}
13566
13567	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13568		if (dtrace_anon.dta_state == NULL) {
13569			rval = ENOENT;
13570			goto out;
13571		}
13572
13573		if (state->dts_necbs != 0) {
13574			rval = EALREADY;
13575			goto out;
13576		}
13577
13578		state->dts_anon = dtrace_anon_grab();
13579		ASSERT(state->dts_anon != NULL);
13580		state = state->dts_anon;
13581
13582		/*
13583		 * We want "grabanon" to be set in the grabbed state, so we'll
13584		 * copy that option value from the grabbing state into the
13585		 * grabbed state.
13586		 */
13587		state->dts_options[DTRACEOPT_GRABANON] =
13588		    opt[DTRACEOPT_GRABANON];
13589
13590		*cpu = dtrace_anon.dta_beganon;
13591
13592		/*
13593		 * If the anonymous state is active (as it almost certainly
13594		 * is if the anonymous enabling ultimately matched anything),
13595		 * we don't allow any further option processing -- but we
13596		 * don't return failure.
13597		 */
13598		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13599			goto out;
13600	}
13601
13602	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13603	    opt[DTRACEOPT_AGGSIZE] != 0) {
13604		if (state->dts_aggregations == NULL) {
13605			/*
13606			 * We're not going to create an aggregation buffer
13607			 * because we don't have any ECBs that contain
13608			 * aggregations -- set this option to 0.
13609			 */
13610			opt[DTRACEOPT_AGGSIZE] = 0;
13611		} else {
13612			/*
13613			 * If we have an aggregation buffer, we must also have
13614			 * a buffer to use as scratch.
13615			 */
13616			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13617			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13618				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13619			}
13620		}
13621	}
13622
13623	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13624	    opt[DTRACEOPT_SPECSIZE] != 0) {
13625		if (!state->dts_speculates) {
13626			/*
13627			 * We're not going to create speculation buffers
13628			 * because we don't have any ECBs that actually
13629			 * speculate -- set the speculation size to 0.
13630			 */
13631			opt[DTRACEOPT_SPECSIZE] = 0;
13632		}
13633	}
13634
13635	/*
13636	 * The bare minimum size for any buffer that we're actually going to
13637	 * do anything to is sizeof (uint64_t).
13638	 */
13639	sz = sizeof (uint64_t);
13640
13641	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13642	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13643	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13644		/*
13645		 * A buffer size has been explicitly set to 0 (or to a size
13646		 * that will be adjusted to 0) and we need the space -- we
13647		 * need to return failure.  We return ENOSPC to differentiate
13648		 * it from failing to allocate a buffer due to failure to meet
13649		 * the reserve (for which we return E2BIG).
13650		 */
13651		rval = ENOSPC;
13652		goto out;
13653	}
13654
13655	if ((rval = dtrace_state_buffers(state)) != 0)
13656		goto err;
13657
13658	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13659		sz = dtrace_dstate_defsize;
13660
13661	do {
13662		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13663
13664		if (rval == 0)
13665			break;
13666
13667		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13668			goto err;
13669	} while (sz >>= 1);
13670
13671	opt[DTRACEOPT_DYNVARSIZE] = sz;
13672
13673	if (rval != 0)
13674		goto err;
13675
13676	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13677		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13678
13679	if (opt[DTRACEOPT_CLEANRATE] == 0)
13680		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13681
13682	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13683		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13684
13685	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13686		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13687
13688	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13689#if defined(sun)
13690	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13691	hdlr.cyh_arg = state;
13692	hdlr.cyh_level = CY_LOW_LEVEL;
13693
13694	when.cyt_when = 0;
13695	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13696
13697	state->dts_cleaner = cyclic_add(&hdlr, &when);
13698
13699	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13700	hdlr.cyh_arg = state;
13701	hdlr.cyh_level = CY_LOW_LEVEL;
13702
13703	when.cyt_when = 0;
13704	when.cyt_interval = dtrace_deadman_interval;
13705
13706	state->dts_deadman = cyclic_add(&hdlr, &when);
13707#else
13708	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13709	    dtrace_state_clean, state);
13710	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13711	    dtrace_state_deadman, state);
13712#endif
13713
13714	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13715
13716	/*
13717	 * Now it's time to actually fire the BEGIN probe.  We need to disable
13718	 * interrupts here both to record the CPU on which we fired the BEGIN
13719	 * probe (the data from this CPU will be processed first at user
13720	 * level) and to manually activate the buffer for this CPU.
13721	 */
13722	cookie = dtrace_interrupt_disable();
13723	*cpu = curcpu;
13724	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13725	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13726
13727	dtrace_probe(dtrace_probeid_begin,
13728	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13729	dtrace_interrupt_enable(cookie);
13730	/*
13731	 * We may have had an exit action from a BEGIN probe; only change our
13732	 * state to ACTIVE if we're still in WARMUP.
13733	 */
13734	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13735	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13736
13737	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13738		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13739
13740	/*
13741	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13742	 * want each CPU to transition its principal buffer out of the
13743	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13744	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13745	 * atomically transition from processing none of a state's ECBs to
13746	 * processing all of them.
13747	 */
13748	dtrace_xcall(DTRACE_CPUALL,
13749	    (dtrace_xcall_t)dtrace_buffer_activate, state);
13750	goto out;
13751
13752err:
13753	dtrace_buffer_free(state->dts_buffer);
13754	dtrace_buffer_free(state->dts_aggbuffer);
13755
13756	if ((nspec = state->dts_nspeculations) == 0) {
13757		ASSERT(state->dts_speculations == NULL);
13758		goto out;
13759	}
13760
13761	spec = state->dts_speculations;
13762	ASSERT(spec != NULL);
13763
13764	for (i = 0; i < state->dts_nspeculations; i++) {
13765		if ((buf = spec[i].dtsp_buffer) == NULL)
13766			break;
13767
13768		dtrace_buffer_free(buf);
13769		kmem_free(buf, bufsize);
13770	}
13771
13772	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13773	state->dts_nspeculations = 0;
13774	state->dts_speculations = NULL;
13775
13776out:
13777	mutex_exit(&dtrace_lock);
13778	mutex_exit(&cpu_lock);
13779
13780	return (rval);
13781}
13782
13783static int
13784dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13785{
13786	dtrace_icookie_t cookie;
13787
13788	ASSERT(MUTEX_HELD(&dtrace_lock));
13789
13790	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13791	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13792		return (EINVAL);
13793
13794	/*
13795	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13796	 * to be sure that every CPU has seen it.  See below for the details
13797	 * on why this is done.
13798	 */
13799	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13800	dtrace_sync();
13801
13802	/*
13803	 * By this point, it is impossible for any CPU to be still processing
13804	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13805	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13806	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13807	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13808	 * iff we're in the END probe.
13809	 */
13810	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13811	dtrace_sync();
13812	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13813
13814	/*
13815	 * Finally, we can release the reserve and call the END probe.  We
13816	 * disable interrupts across calling the END probe to allow us to
13817	 * return the CPU on which we actually called the END probe.  This
13818	 * allows user-land to be sure that this CPU's principal buffer is
13819	 * processed last.
13820	 */
13821	state->dts_reserve = 0;
13822
13823	cookie = dtrace_interrupt_disable();
13824	*cpu = curcpu;
13825	dtrace_probe(dtrace_probeid_end,
13826	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13827	dtrace_interrupt_enable(cookie);
13828
13829	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13830	dtrace_sync();
13831
13832	return (0);
13833}
13834
13835static int
13836dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13837    dtrace_optval_t val)
13838{
13839	ASSERT(MUTEX_HELD(&dtrace_lock));
13840
13841	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13842		return (EBUSY);
13843
13844	if (option >= DTRACEOPT_MAX)
13845		return (EINVAL);
13846
13847	if (option != DTRACEOPT_CPU && val < 0)
13848		return (EINVAL);
13849
13850	switch (option) {
13851	case DTRACEOPT_DESTRUCTIVE:
13852		if (dtrace_destructive_disallow)
13853			return (EACCES);
13854
13855		state->dts_cred.dcr_destructive = 1;
13856		break;
13857
13858	case DTRACEOPT_BUFSIZE:
13859	case DTRACEOPT_DYNVARSIZE:
13860	case DTRACEOPT_AGGSIZE:
13861	case DTRACEOPT_SPECSIZE:
13862	case DTRACEOPT_STRSIZE:
13863		if (val < 0)
13864			return (EINVAL);
13865
13866		if (val >= LONG_MAX) {
13867			/*
13868			 * If this is an otherwise negative value, set it to
13869			 * the highest multiple of 128m less than LONG_MAX.
13870			 * Technically, we're adjusting the size without
13871			 * regard to the buffer resizing policy, but in fact,
13872			 * this has no effect -- if we set the buffer size to
13873			 * ~LONG_MAX and the buffer policy is ultimately set to
13874			 * be "manual", the buffer allocation is guaranteed to
13875			 * fail, if only because the allocation requires two
13876			 * buffers.  (We set the the size to the highest
13877			 * multiple of 128m because it ensures that the size
13878			 * will remain a multiple of a megabyte when
13879			 * repeatedly halved -- all the way down to 15m.)
13880			 */
13881			val = LONG_MAX - (1 << 27) + 1;
13882		}
13883	}
13884
13885	state->dts_options[option] = val;
13886
13887	return (0);
13888}
13889
13890static void
13891dtrace_state_destroy(dtrace_state_t *state)
13892{
13893	dtrace_ecb_t *ecb;
13894	dtrace_vstate_t *vstate = &state->dts_vstate;
13895#if defined(sun)
13896	minor_t minor = getminor(state->dts_dev);
13897#endif
13898	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13899	dtrace_speculation_t *spec = state->dts_speculations;
13900	int nspec = state->dts_nspeculations;
13901	uint32_t match;
13902
13903	ASSERT(MUTEX_HELD(&dtrace_lock));
13904	ASSERT(MUTEX_HELD(&cpu_lock));
13905
13906	/*
13907	 * First, retract any retained enablings for this state.
13908	 */
13909	dtrace_enabling_retract(state);
13910	ASSERT(state->dts_nretained == 0);
13911
13912	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13913	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13914		/*
13915		 * We have managed to come into dtrace_state_destroy() on a
13916		 * hot enabling -- almost certainly because of a disorderly
13917		 * shutdown of a consumer.  (That is, a consumer that is
13918		 * exiting without having called dtrace_stop().) In this case,
13919		 * we're going to set our activity to be KILLED, and then
13920		 * issue a sync to be sure that everyone is out of probe
13921		 * context before we start blowing away ECBs.
13922		 */
13923		state->dts_activity = DTRACE_ACTIVITY_KILLED;
13924		dtrace_sync();
13925	}
13926
13927	/*
13928	 * Release the credential hold we took in dtrace_state_create().
13929	 */
13930	if (state->dts_cred.dcr_cred != NULL)
13931		crfree(state->dts_cred.dcr_cred);
13932
13933	/*
13934	 * Now we can safely disable and destroy any enabled probes.  Because
13935	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13936	 * (especially if they're all enabled), we take two passes through the
13937	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13938	 * in the second we disable whatever is left over.
13939	 */
13940	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13941		for (i = 0; i < state->dts_necbs; i++) {
13942			if ((ecb = state->dts_ecbs[i]) == NULL)
13943				continue;
13944
13945			if (match && ecb->dte_probe != NULL) {
13946				dtrace_probe_t *probe = ecb->dte_probe;
13947				dtrace_provider_t *prov = probe->dtpr_provider;
13948
13949				if (!(prov->dtpv_priv.dtpp_flags & match))
13950					continue;
13951			}
13952
13953			dtrace_ecb_disable(ecb);
13954			dtrace_ecb_destroy(ecb);
13955		}
13956
13957		if (!match)
13958			break;
13959	}
13960
13961	/*
13962	 * Before we free the buffers, perform one more sync to assure that
13963	 * every CPU is out of probe context.
13964	 */
13965	dtrace_sync();
13966
13967	dtrace_buffer_free(state->dts_buffer);
13968	dtrace_buffer_free(state->dts_aggbuffer);
13969
13970	for (i = 0; i < nspec; i++)
13971		dtrace_buffer_free(spec[i].dtsp_buffer);
13972
13973#if defined(sun)
13974	if (state->dts_cleaner != CYCLIC_NONE)
13975		cyclic_remove(state->dts_cleaner);
13976
13977	if (state->dts_deadman != CYCLIC_NONE)
13978		cyclic_remove(state->dts_deadman);
13979#else
13980	callout_stop(&state->dts_cleaner);
13981	callout_drain(&state->dts_cleaner);
13982	callout_stop(&state->dts_deadman);
13983	callout_drain(&state->dts_deadman);
13984#endif
13985
13986	dtrace_dstate_fini(&vstate->dtvs_dynvars);
13987	dtrace_vstate_fini(vstate);
13988	if (state->dts_ecbs != NULL)
13989		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13990
13991	if (state->dts_aggregations != NULL) {
13992#ifdef DEBUG
13993		for (i = 0; i < state->dts_naggregations; i++)
13994			ASSERT(state->dts_aggregations[i] == NULL);
13995#endif
13996		ASSERT(state->dts_naggregations > 0);
13997		kmem_free(state->dts_aggregations,
13998		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13999	}
14000
14001	kmem_free(state->dts_buffer, bufsize);
14002	kmem_free(state->dts_aggbuffer, bufsize);
14003
14004	for (i = 0; i < nspec; i++)
14005		kmem_free(spec[i].dtsp_buffer, bufsize);
14006
14007	if (spec != NULL)
14008		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14009
14010	dtrace_format_destroy(state);
14011
14012	if (state->dts_aggid_arena != NULL) {
14013#if defined(sun)
14014		vmem_destroy(state->dts_aggid_arena);
14015#else
14016		delete_unrhdr(state->dts_aggid_arena);
14017#endif
14018		state->dts_aggid_arena = NULL;
14019	}
14020#if defined(sun)
14021	ddi_soft_state_free(dtrace_softstate, minor);
14022	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14023#endif
14024}
14025
14026/*
14027 * DTrace Anonymous Enabling Functions
14028 */
14029static dtrace_state_t *
14030dtrace_anon_grab(void)
14031{
14032	dtrace_state_t *state;
14033
14034	ASSERT(MUTEX_HELD(&dtrace_lock));
14035
14036	if ((state = dtrace_anon.dta_state) == NULL) {
14037		ASSERT(dtrace_anon.dta_enabling == NULL);
14038		return (NULL);
14039	}
14040
14041	ASSERT(dtrace_anon.dta_enabling != NULL);
14042	ASSERT(dtrace_retained != NULL);
14043
14044	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
14045	dtrace_anon.dta_enabling = NULL;
14046	dtrace_anon.dta_state = NULL;
14047
14048	return (state);
14049}
14050
14051static void
14052dtrace_anon_property(void)
14053{
14054	int i, rv;
14055	dtrace_state_t *state;
14056	dof_hdr_t *dof;
14057	char c[32];		/* enough for "dof-data-" + digits */
14058
14059	ASSERT(MUTEX_HELD(&dtrace_lock));
14060	ASSERT(MUTEX_HELD(&cpu_lock));
14061
14062	for (i = 0; ; i++) {
14063		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
14064
14065		dtrace_err_verbose = 1;
14066
14067		if ((dof = dtrace_dof_property(c)) == NULL) {
14068			dtrace_err_verbose = 0;
14069			break;
14070		}
14071
14072#if defined(sun)
14073		/*
14074		 * We want to create anonymous state, so we need to transition
14075		 * the kernel debugger to indicate that DTrace is active.  If
14076		 * this fails (e.g. because the debugger has modified text in
14077		 * some way), we won't continue with the processing.
14078		 */
14079		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14080			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
14081			    "enabling ignored.");
14082			dtrace_dof_destroy(dof);
14083			break;
14084		}
14085#endif
14086
14087		/*
14088		 * If we haven't allocated an anonymous state, we'll do so now.
14089		 */
14090		if ((state = dtrace_anon.dta_state) == NULL) {
14091#if defined(sun)
14092			state = dtrace_state_create(NULL, NULL);
14093#else
14094			state = dtrace_state_create(NULL);
14095#endif
14096			dtrace_anon.dta_state = state;
14097
14098			if (state == NULL) {
14099				/*
14100				 * This basically shouldn't happen:  the only
14101				 * failure mode from dtrace_state_create() is a
14102				 * failure of ddi_soft_state_zalloc() that
14103				 * itself should never happen.  Still, the
14104				 * interface allows for a failure mode, and
14105				 * we want to fail as gracefully as possible:
14106				 * we'll emit an error message and cease
14107				 * processing anonymous state in this case.
14108				 */
14109				cmn_err(CE_WARN, "failed to create "
14110				    "anonymous state");
14111				dtrace_dof_destroy(dof);
14112				break;
14113			}
14114		}
14115
14116		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
14117		    &dtrace_anon.dta_enabling, 0, B_TRUE);
14118
14119		if (rv == 0)
14120			rv = dtrace_dof_options(dof, state);
14121
14122		dtrace_err_verbose = 0;
14123		dtrace_dof_destroy(dof);
14124
14125		if (rv != 0) {
14126			/*
14127			 * This is malformed DOF; chuck any anonymous state
14128			 * that we created.
14129			 */
14130			ASSERT(dtrace_anon.dta_enabling == NULL);
14131			dtrace_state_destroy(state);
14132			dtrace_anon.dta_state = NULL;
14133			break;
14134		}
14135
14136		ASSERT(dtrace_anon.dta_enabling != NULL);
14137	}
14138
14139	if (dtrace_anon.dta_enabling != NULL) {
14140		int rval;
14141
14142		/*
14143		 * dtrace_enabling_retain() can only fail because we are
14144		 * trying to retain more enablings than are allowed -- but
14145		 * we only have one anonymous enabling, and we are guaranteed
14146		 * to be allowed at least one retained enabling; we assert
14147		 * that dtrace_enabling_retain() returns success.
14148		 */
14149		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
14150		ASSERT(rval == 0);
14151
14152		dtrace_enabling_dump(dtrace_anon.dta_enabling);
14153	}
14154}
14155
14156/*
14157 * DTrace Helper Functions
14158 */
14159static void
14160dtrace_helper_trace(dtrace_helper_action_t *helper,
14161    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
14162{
14163	uint32_t size, next, nnext, i;
14164	dtrace_helptrace_t *ent;
14165	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
14166
14167	if (!dtrace_helptrace_enabled)
14168		return;
14169
14170	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
14171
14172	/*
14173	 * What would a tracing framework be without its own tracing
14174	 * framework?  (Well, a hell of a lot simpler, for starters...)
14175	 */
14176	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
14177	    sizeof (uint64_t) - sizeof (uint64_t);
14178
14179	/*
14180	 * Iterate until we can allocate a slot in the trace buffer.
14181	 */
14182	do {
14183		next = dtrace_helptrace_next;
14184
14185		if (next + size < dtrace_helptrace_bufsize) {
14186			nnext = next + size;
14187		} else {
14188			nnext = size;
14189		}
14190	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
14191
14192	/*
14193	 * We have our slot; fill it in.
14194	 */
14195	if (nnext == size)
14196		next = 0;
14197
14198	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
14199	ent->dtht_helper = helper;
14200	ent->dtht_where = where;
14201	ent->dtht_nlocals = vstate->dtvs_nlocals;
14202
14203	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
14204	    mstate->dtms_fltoffs : -1;
14205	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
14206	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
14207
14208	for (i = 0; i < vstate->dtvs_nlocals; i++) {
14209		dtrace_statvar_t *svar;
14210
14211		if ((svar = vstate->dtvs_locals[i]) == NULL)
14212			continue;
14213
14214		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
14215		ent->dtht_locals[i] =
14216		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
14217	}
14218}
14219
14220static uint64_t
14221dtrace_helper(int which, dtrace_mstate_t *mstate,
14222    dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
14223{
14224	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
14225	uint64_t sarg0 = mstate->dtms_arg[0];
14226	uint64_t sarg1 = mstate->dtms_arg[1];
14227	uint64_t rval = 0;
14228	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
14229	dtrace_helper_action_t *helper;
14230	dtrace_vstate_t *vstate;
14231	dtrace_difo_t *pred;
14232	int i, trace = dtrace_helptrace_enabled;
14233
14234	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
14235
14236	if (helpers == NULL)
14237		return (0);
14238
14239	if ((helper = helpers->dthps_actions[which]) == NULL)
14240		return (0);
14241
14242	vstate = &helpers->dthps_vstate;
14243	mstate->dtms_arg[0] = arg0;
14244	mstate->dtms_arg[1] = arg1;
14245
14246	/*
14247	 * Now iterate over each helper.  If its predicate evaluates to 'true',
14248	 * we'll call the corresponding actions.  Note that the below calls
14249	 * to dtrace_dif_emulate() may set faults in machine state.  This is
14250	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
14251	 * the stored DIF offset with its own (which is the desired behavior).
14252	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14253	 * from machine state; this is okay, too.
14254	 */
14255	for (; helper != NULL; helper = helper->dtha_next) {
14256		if ((pred = helper->dtha_predicate) != NULL) {
14257			if (trace)
14258				dtrace_helper_trace(helper, mstate, vstate, 0);
14259
14260			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14261				goto next;
14262
14263			if (*flags & CPU_DTRACE_FAULT)
14264				goto err;
14265		}
14266
14267		for (i = 0; i < helper->dtha_nactions; i++) {
14268			if (trace)
14269				dtrace_helper_trace(helper,
14270				    mstate, vstate, i + 1);
14271
14272			rval = dtrace_dif_emulate(helper->dtha_actions[i],
14273			    mstate, vstate, state);
14274
14275			if (*flags & CPU_DTRACE_FAULT)
14276				goto err;
14277		}
14278
14279next:
14280		if (trace)
14281			dtrace_helper_trace(helper, mstate, vstate,
14282			    DTRACE_HELPTRACE_NEXT);
14283	}
14284
14285	if (trace)
14286		dtrace_helper_trace(helper, mstate, vstate,
14287		    DTRACE_HELPTRACE_DONE);
14288
14289	/*
14290	 * Restore the arg0 that we saved upon entry.
14291	 */
14292	mstate->dtms_arg[0] = sarg0;
14293	mstate->dtms_arg[1] = sarg1;
14294
14295	return (rval);
14296
14297err:
14298	if (trace)
14299		dtrace_helper_trace(helper, mstate, vstate,
14300		    DTRACE_HELPTRACE_ERR);
14301
14302	/*
14303	 * Restore the arg0 that we saved upon entry.
14304	 */
14305	mstate->dtms_arg[0] = sarg0;
14306	mstate->dtms_arg[1] = sarg1;
14307
14308	return (0);
14309}
14310
14311static void
14312dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14313    dtrace_vstate_t *vstate)
14314{
14315	int i;
14316
14317	if (helper->dtha_predicate != NULL)
14318		dtrace_difo_release(helper->dtha_predicate, vstate);
14319
14320	for (i = 0; i < helper->dtha_nactions; i++) {
14321		ASSERT(helper->dtha_actions[i] != NULL);
14322		dtrace_difo_release(helper->dtha_actions[i], vstate);
14323	}
14324
14325	kmem_free(helper->dtha_actions,
14326	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
14327	kmem_free(helper, sizeof (dtrace_helper_action_t));
14328}
14329
14330static int
14331dtrace_helper_destroygen(int gen)
14332{
14333	proc_t *p = curproc;
14334	dtrace_helpers_t *help = p->p_dtrace_helpers;
14335	dtrace_vstate_t *vstate;
14336	int i;
14337
14338	ASSERT(MUTEX_HELD(&dtrace_lock));
14339
14340	if (help == NULL || gen > help->dthps_generation)
14341		return (EINVAL);
14342
14343	vstate = &help->dthps_vstate;
14344
14345	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14346		dtrace_helper_action_t *last = NULL, *h, *next;
14347
14348		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14349			next = h->dtha_next;
14350
14351			if (h->dtha_generation == gen) {
14352				if (last != NULL) {
14353					last->dtha_next = next;
14354				} else {
14355					help->dthps_actions[i] = next;
14356				}
14357
14358				dtrace_helper_action_destroy(h, vstate);
14359			} else {
14360				last = h;
14361			}
14362		}
14363	}
14364
14365	/*
14366	 * Interate until we've cleared out all helper providers with the
14367	 * given generation number.
14368	 */
14369	for (;;) {
14370		dtrace_helper_provider_t *prov;
14371
14372		/*
14373		 * Look for a helper provider with the right generation. We
14374		 * have to start back at the beginning of the list each time
14375		 * because we drop dtrace_lock. It's unlikely that we'll make
14376		 * more than two passes.
14377		 */
14378		for (i = 0; i < help->dthps_nprovs; i++) {
14379			prov = help->dthps_provs[i];
14380
14381			if (prov->dthp_generation == gen)
14382				break;
14383		}
14384
14385		/*
14386		 * If there were no matches, we're done.
14387		 */
14388		if (i == help->dthps_nprovs)
14389			break;
14390
14391		/*
14392		 * Move the last helper provider into this slot.
14393		 */
14394		help->dthps_nprovs--;
14395		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14396		help->dthps_provs[help->dthps_nprovs] = NULL;
14397
14398		mutex_exit(&dtrace_lock);
14399
14400		/*
14401		 * If we have a meta provider, remove this helper provider.
14402		 */
14403		mutex_enter(&dtrace_meta_lock);
14404		if (dtrace_meta_pid != NULL) {
14405			ASSERT(dtrace_deferred_pid == NULL);
14406			dtrace_helper_provider_remove(&prov->dthp_prov,
14407			    p->p_pid);
14408		}
14409		mutex_exit(&dtrace_meta_lock);
14410
14411		dtrace_helper_provider_destroy(prov);
14412
14413		mutex_enter(&dtrace_lock);
14414	}
14415
14416	return (0);
14417}
14418
14419static int
14420dtrace_helper_validate(dtrace_helper_action_t *helper)
14421{
14422	int err = 0, i;
14423	dtrace_difo_t *dp;
14424
14425	if ((dp = helper->dtha_predicate) != NULL)
14426		err += dtrace_difo_validate_helper(dp);
14427
14428	for (i = 0; i < helper->dtha_nactions; i++)
14429		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14430
14431	return (err == 0);
14432}
14433
14434static int
14435dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14436{
14437	dtrace_helpers_t *help;
14438	dtrace_helper_action_t *helper, *last;
14439	dtrace_actdesc_t *act;
14440	dtrace_vstate_t *vstate;
14441	dtrace_predicate_t *pred;
14442	int count = 0, nactions = 0, i;
14443
14444	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14445		return (EINVAL);
14446
14447	help = curproc->p_dtrace_helpers;
14448	last = help->dthps_actions[which];
14449	vstate = &help->dthps_vstate;
14450
14451	for (count = 0; last != NULL; last = last->dtha_next) {
14452		count++;
14453		if (last->dtha_next == NULL)
14454			break;
14455	}
14456
14457	/*
14458	 * If we already have dtrace_helper_actions_max helper actions for this
14459	 * helper action type, we'll refuse to add a new one.
14460	 */
14461	if (count >= dtrace_helper_actions_max)
14462		return (ENOSPC);
14463
14464	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14465	helper->dtha_generation = help->dthps_generation;
14466
14467	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14468		ASSERT(pred->dtp_difo != NULL);
14469		dtrace_difo_hold(pred->dtp_difo);
14470		helper->dtha_predicate = pred->dtp_difo;
14471	}
14472
14473	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14474		if (act->dtad_kind != DTRACEACT_DIFEXPR)
14475			goto err;
14476
14477		if (act->dtad_difo == NULL)
14478			goto err;
14479
14480		nactions++;
14481	}
14482
14483	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14484	    (helper->dtha_nactions = nactions), KM_SLEEP);
14485
14486	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14487		dtrace_difo_hold(act->dtad_difo);
14488		helper->dtha_actions[i++] = act->dtad_difo;
14489	}
14490
14491	if (!dtrace_helper_validate(helper))
14492		goto err;
14493
14494	if (last == NULL) {
14495		help->dthps_actions[which] = helper;
14496	} else {
14497		last->dtha_next = helper;
14498	}
14499
14500	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14501		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14502		dtrace_helptrace_next = 0;
14503	}
14504
14505	return (0);
14506err:
14507	dtrace_helper_action_destroy(helper, vstate);
14508	return (EINVAL);
14509}
14510
14511static void
14512dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14513    dof_helper_t *dofhp)
14514{
14515	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14516
14517	mutex_enter(&dtrace_meta_lock);
14518	mutex_enter(&dtrace_lock);
14519
14520	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14521		/*
14522		 * If the dtrace module is loaded but not attached, or if
14523		 * there aren't isn't a meta provider registered to deal with
14524		 * these provider descriptions, we need to postpone creating
14525		 * the actual providers until later.
14526		 */
14527
14528		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14529		    dtrace_deferred_pid != help) {
14530			help->dthps_deferred = 1;
14531			help->dthps_pid = p->p_pid;
14532			help->dthps_next = dtrace_deferred_pid;
14533			help->dthps_prev = NULL;
14534			if (dtrace_deferred_pid != NULL)
14535				dtrace_deferred_pid->dthps_prev = help;
14536			dtrace_deferred_pid = help;
14537		}
14538
14539		mutex_exit(&dtrace_lock);
14540
14541	} else if (dofhp != NULL) {
14542		/*
14543		 * If the dtrace module is loaded and we have a particular
14544		 * helper provider description, pass that off to the
14545		 * meta provider.
14546		 */
14547
14548		mutex_exit(&dtrace_lock);
14549
14550		dtrace_helper_provide(dofhp, p->p_pid);
14551
14552	} else {
14553		/*
14554		 * Otherwise, just pass all the helper provider descriptions
14555		 * off to the meta provider.
14556		 */
14557
14558		int i;
14559		mutex_exit(&dtrace_lock);
14560
14561		for (i = 0; i < help->dthps_nprovs; i++) {
14562			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14563			    p->p_pid);
14564		}
14565	}
14566
14567	mutex_exit(&dtrace_meta_lock);
14568}
14569
14570static int
14571dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14572{
14573	dtrace_helpers_t *help;
14574	dtrace_helper_provider_t *hprov, **tmp_provs;
14575	uint_t tmp_maxprovs, i;
14576
14577	ASSERT(MUTEX_HELD(&dtrace_lock));
14578
14579	help = curproc->p_dtrace_helpers;
14580	ASSERT(help != NULL);
14581
14582	/*
14583	 * If we already have dtrace_helper_providers_max helper providers,
14584	 * we're refuse to add a new one.
14585	 */
14586	if (help->dthps_nprovs >= dtrace_helper_providers_max)
14587		return (ENOSPC);
14588
14589	/*
14590	 * Check to make sure this isn't a duplicate.
14591	 */
14592	for (i = 0; i < help->dthps_nprovs; i++) {
14593		if (dofhp->dofhp_dof ==
14594		    help->dthps_provs[i]->dthp_prov.dofhp_dof)
14595			return (EALREADY);
14596	}
14597
14598	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14599	hprov->dthp_prov = *dofhp;
14600	hprov->dthp_ref = 1;
14601	hprov->dthp_generation = gen;
14602
14603	/*
14604	 * Allocate a bigger table for helper providers if it's already full.
14605	 */
14606	if (help->dthps_maxprovs == help->dthps_nprovs) {
14607		tmp_maxprovs = help->dthps_maxprovs;
14608		tmp_provs = help->dthps_provs;
14609
14610		if (help->dthps_maxprovs == 0)
14611			help->dthps_maxprovs = 2;
14612		else
14613			help->dthps_maxprovs *= 2;
14614		if (help->dthps_maxprovs > dtrace_helper_providers_max)
14615			help->dthps_maxprovs = dtrace_helper_providers_max;
14616
14617		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14618
14619		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14620		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14621
14622		if (tmp_provs != NULL) {
14623			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14624			    sizeof (dtrace_helper_provider_t *));
14625			kmem_free(tmp_provs, tmp_maxprovs *
14626			    sizeof (dtrace_helper_provider_t *));
14627		}
14628	}
14629
14630	help->dthps_provs[help->dthps_nprovs] = hprov;
14631	help->dthps_nprovs++;
14632
14633	return (0);
14634}
14635
14636static void
14637dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14638{
14639	mutex_enter(&dtrace_lock);
14640
14641	if (--hprov->dthp_ref == 0) {
14642		dof_hdr_t *dof;
14643		mutex_exit(&dtrace_lock);
14644		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14645		dtrace_dof_destroy(dof);
14646		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14647	} else {
14648		mutex_exit(&dtrace_lock);
14649	}
14650}
14651
14652static int
14653dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14654{
14655	uintptr_t daddr = (uintptr_t)dof;
14656	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14657	dof_provider_t *provider;
14658	dof_probe_t *probe;
14659	uint8_t *arg;
14660	char *strtab, *typestr;
14661	dof_stridx_t typeidx;
14662	size_t typesz;
14663	uint_t nprobes, j, k;
14664
14665	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14666
14667	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14668		dtrace_dof_error(dof, "misaligned section offset");
14669		return (-1);
14670	}
14671
14672	/*
14673	 * The section needs to be large enough to contain the DOF provider
14674	 * structure appropriate for the given version.
14675	 */
14676	if (sec->dofs_size <
14677	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14678	    offsetof(dof_provider_t, dofpv_prenoffs) :
14679	    sizeof (dof_provider_t))) {
14680		dtrace_dof_error(dof, "provider section too small");
14681		return (-1);
14682	}
14683
14684	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14685	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14686	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14687	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14688	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14689
14690	if (str_sec == NULL || prb_sec == NULL ||
14691	    arg_sec == NULL || off_sec == NULL)
14692		return (-1);
14693
14694	enoff_sec = NULL;
14695
14696	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14697	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
14698	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14699	    provider->dofpv_prenoffs)) == NULL)
14700		return (-1);
14701
14702	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14703
14704	if (provider->dofpv_name >= str_sec->dofs_size ||
14705	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14706		dtrace_dof_error(dof, "invalid provider name");
14707		return (-1);
14708	}
14709
14710	if (prb_sec->dofs_entsize == 0 ||
14711	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
14712		dtrace_dof_error(dof, "invalid entry size");
14713		return (-1);
14714	}
14715
14716	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14717		dtrace_dof_error(dof, "misaligned entry size");
14718		return (-1);
14719	}
14720
14721	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14722		dtrace_dof_error(dof, "invalid entry size");
14723		return (-1);
14724	}
14725
14726	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14727		dtrace_dof_error(dof, "misaligned section offset");
14728		return (-1);
14729	}
14730
14731	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14732		dtrace_dof_error(dof, "invalid entry size");
14733		return (-1);
14734	}
14735
14736	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14737
14738	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14739
14740	/*
14741	 * Take a pass through the probes to check for errors.
14742	 */
14743	for (j = 0; j < nprobes; j++) {
14744		probe = (dof_probe_t *)(uintptr_t)(daddr +
14745		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14746
14747		if (probe->dofpr_func >= str_sec->dofs_size) {
14748			dtrace_dof_error(dof, "invalid function name");
14749			return (-1);
14750		}
14751
14752		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14753			dtrace_dof_error(dof, "function name too long");
14754			return (-1);
14755		}
14756
14757		if (probe->dofpr_name >= str_sec->dofs_size ||
14758		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14759			dtrace_dof_error(dof, "invalid probe name");
14760			return (-1);
14761		}
14762
14763		/*
14764		 * The offset count must not wrap the index, and the offsets
14765		 * must also not overflow the section's data.
14766		 */
14767		if (probe->dofpr_offidx + probe->dofpr_noffs <
14768		    probe->dofpr_offidx ||
14769		    (probe->dofpr_offidx + probe->dofpr_noffs) *
14770		    off_sec->dofs_entsize > off_sec->dofs_size) {
14771			dtrace_dof_error(dof, "invalid probe offset");
14772			return (-1);
14773		}
14774
14775		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14776			/*
14777			 * If there's no is-enabled offset section, make sure
14778			 * there aren't any is-enabled offsets. Otherwise
14779			 * perform the same checks as for probe offsets
14780			 * (immediately above).
14781			 */
14782			if (enoff_sec == NULL) {
14783				if (probe->dofpr_enoffidx != 0 ||
14784				    probe->dofpr_nenoffs != 0) {
14785					dtrace_dof_error(dof, "is-enabled "
14786					    "offsets with null section");
14787					return (-1);
14788				}
14789			} else if (probe->dofpr_enoffidx +
14790			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14791			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14792			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14793				dtrace_dof_error(dof, "invalid is-enabled "
14794				    "offset");
14795				return (-1);
14796			}
14797
14798			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14799				dtrace_dof_error(dof, "zero probe and "
14800				    "is-enabled offsets");
14801				return (-1);
14802			}
14803		} else if (probe->dofpr_noffs == 0) {
14804			dtrace_dof_error(dof, "zero probe offsets");
14805			return (-1);
14806		}
14807
14808		if (probe->dofpr_argidx + probe->dofpr_xargc <
14809		    probe->dofpr_argidx ||
14810		    (probe->dofpr_argidx + probe->dofpr_xargc) *
14811		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
14812			dtrace_dof_error(dof, "invalid args");
14813			return (-1);
14814		}
14815
14816		typeidx = probe->dofpr_nargv;
14817		typestr = strtab + probe->dofpr_nargv;
14818		for (k = 0; k < probe->dofpr_nargc; k++) {
14819			if (typeidx >= str_sec->dofs_size) {
14820				dtrace_dof_error(dof, "bad "
14821				    "native argument type");
14822				return (-1);
14823			}
14824
14825			typesz = strlen(typestr) + 1;
14826			if (typesz > DTRACE_ARGTYPELEN) {
14827				dtrace_dof_error(dof, "native "
14828				    "argument type too long");
14829				return (-1);
14830			}
14831			typeidx += typesz;
14832			typestr += typesz;
14833		}
14834
14835		typeidx = probe->dofpr_xargv;
14836		typestr = strtab + probe->dofpr_xargv;
14837		for (k = 0; k < probe->dofpr_xargc; k++) {
14838			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14839				dtrace_dof_error(dof, "bad "
14840				    "native argument index");
14841				return (-1);
14842			}
14843
14844			if (typeidx >= str_sec->dofs_size) {
14845				dtrace_dof_error(dof, "bad "
14846				    "translated argument type");
14847				return (-1);
14848			}
14849
14850			typesz = strlen(typestr) + 1;
14851			if (typesz > DTRACE_ARGTYPELEN) {
14852				dtrace_dof_error(dof, "translated argument "
14853				    "type too long");
14854				return (-1);
14855			}
14856
14857			typeidx += typesz;
14858			typestr += typesz;
14859		}
14860	}
14861
14862	return (0);
14863}
14864
14865static int
14866dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14867{
14868	dtrace_helpers_t *help;
14869	dtrace_vstate_t *vstate;
14870	dtrace_enabling_t *enab = NULL;
14871	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14872	uintptr_t daddr = (uintptr_t)dof;
14873
14874	ASSERT(MUTEX_HELD(&dtrace_lock));
14875
14876	if ((help = curproc->p_dtrace_helpers) == NULL)
14877		help = dtrace_helpers_create(curproc);
14878
14879	vstate = &help->dthps_vstate;
14880
14881	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14882	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14883		dtrace_dof_destroy(dof);
14884		return (rv);
14885	}
14886
14887	/*
14888	 * Look for helper providers and validate their descriptions.
14889	 */
14890	if (dhp != NULL) {
14891		for (i = 0; i < dof->dofh_secnum; i++) {
14892			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14893			    dof->dofh_secoff + i * dof->dofh_secsize);
14894
14895			if (sec->dofs_type != DOF_SECT_PROVIDER)
14896				continue;
14897
14898			if (dtrace_helper_provider_validate(dof, sec) != 0) {
14899				dtrace_enabling_destroy(enab);
14900				dtrace_dof_destroy(dof);
14901				return (-1);
14902			}
14903
14904			nprovs++;
14905		}
14906	}
14907
14908	/*
14909	 * Now we need to walk through the ECB descriptions in the enabling.
14910	 */
14911	for (i = 0; i < enab->dten_ndesc; i++) {
14912		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14913		dtrace_probedesc_t *desc = &ep->dted_probe;
14914
14915		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14916			continue;
14917
14918		if (strcmp(desc->dtpd_mod, "helper") != 0)
14919			continue;
14920
14921		if (strcmp(desc->dtpd_func, "ustack") != 0)
14922			continue;
14923
14924		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14925		    ep)) != 0) {
14926			/*
14927			 * Adding this helper action failed -- we are now going
14928			 * to rip out the entire generation and return failure.
14929			 */
14930			(void) dtrace_helper_destroygen(help->dthps_generation);
14931			dtrace_enabling_destroy(enab);
14932			dtrace_dof_destroy(dof);
14933			return (-1);
14934		}
14935
14936		nhelpers++;
14937	}
14938
14939	if (nhelpers < enab->dten_ndesc)
14940		dtrace_dof_error(dof, "unmatched helpers");
14941
14942	gen = help->dthps_generation++;
14943	dtrace_enabling_destroy(enab);
14944
14945	if (dhp != NULL && nprovs > 0) {
14946		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14947		if (dtrace_helper_provider_add(dhp, gen) == 0) {
14948			mutex_exit(&dtrace_lock);
14949			dtrace_helper_provider_register(curproc, help, dhp);
14950			mutex_enter(&dtrace_lock);
14951
14952			destroy = 0;
14953		}
14954	}
14955
14956	if (destroy)
14957		dtrace_dof_destroy(dof);
14958
14959	return (gen);
14960}
14961
14962static dtrace_helpers_t *
14963dtrace_helpers_create(proc_t *p)
14964{
14965	dtrace_helpers_t *help;
14966
14967	ASSERT(MUTEX_HELD(&dtrace_lock));
14968	ASSERT(p->p_dtrace_helpers == NULL);
14969
14970	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14971	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14972	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14973
14974	p->p_dtrace_helpers = help;
14975	dtrace_helpers++;
14976
14977	return (help);
14978}
14979
14980#if defined(sun)
14981static
14982#endif
14983void
14984dtrace_helpers_destroy(proc_t *p)
14985{
14986	dtrace_helpers_t *help;
14987	dtrace_vstate_t *vstate;
14988#if defined(sun)
14989	proc_t *p = curproc;
14990#endif
14991	int i;
14992
14993	mutex_enter(&dtrace_lock);
14994
14995	ASSERT(p->p_dtrace_helpers != NULL);
14996	ASSERT(dtrace_helpers > 0);
14997
14998	help = p->p_dtrace_helpers;
14999	vstate = &help->dthps_vstate;
15000
15001	/*
15002	 * We're now going to lose the help from this process.
15003	 */
15004	p->p_dtrace_helpers = NULL;
15005	dtrace_sync();
15006
15007	/*
15008	 * Destory the helper actions.
15009	 */
15010	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15011		dtrace_helper_action_t *h, *next;
15012
15013		for (h = help->dthps_actions[i]; h != NULL; h = next) {
15014			next = h->dtha_next;
15015			dtrace_helper_action_destroy(h, vstate);
15016			h = next;
15017		}
15018	}
15019
15020	mutex_exit(&dtrace_lock);
15021
15022	/*
15023	 * Destroy the helper providers.
15024	 */
15025	if (help->dthps_maxprovs > 0) {
15026		mutex_enter(&dtrace_meta_lock);
15027		if (dtrace_meta_pid != NULL) {
15028			ASSERT(dtrace_deferred_pid == NULL);
15029
15030			for (i = 0; i < help->dthps_nprovs; i++) {
15031				dtrace_helper_provider_remove(
15032				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
15033			}
15034		} else {
15035			mutex_enter(&dtrace_lock);
15036			ASSERT(help->dthps_deferred == 0 ||
15037			    help->dthps_next != NULL ||
15038			    help->dthps_prev != NULL ||
15039			    help == dtrace_deferred_pid);
15040
15041			/*
15042			 * Remove the helper from the deferred list.
15043			 */
15044			if (help->dthps_next != NULL)
15045				help->dthps_next->dthps_prev = help->dthps_prev;
15046			if (help->dthps_prev != NULL)
15047				help->dthps_prev->dthps_next = help->dthps_next;
15048			if (dtrace_deferred_pid == help) {
15049				dtrace_deferred_pid = help->dthps_next;
15050				ASSERT(help->dthps_prev == NULL);
15051			}
15052
15053			mutex_exit(&dtrace_lock);
15054		}
15055
15056		mutex_exit(&dtrace_meta_lock);
15057
15058		for (i = 0; i < help->dthps_nprovs; i++) {
15059			dtrace_helper_provider_destroy(help->dthps_provs[i]);
15060		}
15061
15062		kmem_free(help->dthps_provs, help->dthps_maxprovs *
15063		    sizeof (dtrace_helper_provider_t *));
15064	}
15065
15066	mutex_enter(&dtrace_lock);
15067
15068	dtrace_vstate_fini(&help->dthps_vstate);
15069	kmem_free(help->dthps_actions,
15070	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
15071	kmem_free(help, sizeof (dtrace_helpers_t));
15072
15073	--dtrace_helpers;
15074	mutex_exit(&dtrace_lock);
15075}
15076
15077#if defined(sun)
15078static
15079#endif
15080void
15081dtrace_helpers_duplicate(proc_t *from, proc_t *to)
15082{
15083	dtrace_helpers_t *help, *newhelp;
15084	dtrace_helper_action_t *helper, *new, *last;
15085	dtrace_difo_t *dp;
15086	dtrace_vstate_t *vstate;
15087	int i, j, sz, hasprovs = 0;
15088
15089	mutex_enter(&dtrace_lock);
15090	ASSERT(from->p_dtrace_helpers != NULL);
15091	ASSERT(dtrace_helpers > 0);
15092
15093	help = from->p_dtrace_helpers;
15094	newhelp = dtrace_helpers_create(to);
15095	ASSERT(to->p_dtrace_helpers != NULL);
15096
15097	newhelp->dthps_generation = help->dthps_generation;
15098	vstate = &newhelp->dthps_vstate;
15099
15100	/*
15101	 * Duplicate the helper actions.
15102	 */
15103	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15104		if ((helper = help->dthps_actions[i]) == NULL)
15105			continue;
15106
15107		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
15108			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
15109			    KM_SLEEP);
15110			new->dtha_generation = helper->dtha_generation;
15111
15112			if ((dp = helper->dtha_predicate) != NULL) {
15113				dp = dtrace_difo_duplicate(dp, vstate);
15114				new->dtha_predicate = dp;
15115			}
15116
15117			new->dtha_nactions = helper->dtha_nactions;
15118			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
15119			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
15120
15121			for (j = 0; j < new->dtha_nactions; j++) {
15122				dtrace_difo_t *dp = helper->dtha_actions[j];
15123
15124				ASSERT(dp != NULL);
15125				dp = dtrace_difo_duplicate(dp, vstate);
15126				new->dtha_actions[j] = dp;
15127			}
15128
15129			if (last != NULL) {
15130				last->dtha_next = new;
15131			} else {
15132				newhelp->dthps_actions[i] = new;
15133			}
15134
15135			last = new;
15136		}
15137	}
15138
15139	/*
15140	 * Duplicate the helper providers and register them with the
15141	 * DTrace framework.
15142	 */
15143	if (help->dthps_nprovs > 0) {
15144		newhelp->dthps_nprovs = help->dthps_nprovs;
15145		newhelp->dthps_maxprovs = help->dthps_nprovs;
15146		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
15147		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15148		for (i = 0; i < newhelp->dthps_nprovs; i++) {
15149			newhelp->dthps_provs[i] = help->dthps_provs[i];
15150			newhelp->dthps_provs[i]->dthp_ref++;
15151		}
15152
15153		hasprovs = 1;
15154	}
15155
15156	mutex_exit(&dtrace_lock);
15157
15158	if (hasprovs)
15159		dtrace_helper_provider_register(to, newhelp, NULL);
15160}
15161
15162/*
15163 * DTrace Hook Functions
15164 */
15165static void
15166dtrace_module_loaded(modctl_t *ctl)
15167{
15168	dtrace_provider_t *prv;
15169
15170	mutex_enter(&dtrace_provider_lock);
15171#if defined(sun)
15172	mutex_enter(&mod_lock);
15173#endif
15174
15175#if defined(sun)
15176	ASSERT(ctl->mod_busy);
15177#endif
15178
15179	/*
15180	 * We're going to call each providers per-module provide operation
15181	 * specifying only this module.
15182	 */
15183	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15184		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
15185
15186#if defined(sun)
15187	mutex_exit(&mod_lock);
15188#endif
15189	mutex_exit(&dtrace_provider_lock);
15190
15191	/*
15192	 * If we have any retained enablings, we need to match against them.
15193	 * Enabling probes requires that cpu_lock be held, and we cannot hold
15194	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15195	 * module.  (In particular, this happens when loading scheduling
15196	 * classes.)  So if we have any retained enablings, we need to dispatch
15197	 * our task queue to do the match for us.
15198	 */
15199	mutex_enter(&dtrace_lock);
15200
15201	if (dtrace_retained == NULL) {
15202		mutex_exit(&dtrace_lock);
15203		return;
15204	}
15205
15206	(void) taskq_dispatch(dtrace_taskq,
15207	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
15208
15209	mutex_exit(&dtrace_lock);
15210
15211	/*
15212	 * And now, for a little heuristic sleaze:  in general, we want to
15213	 * match modules as soon as they load.  However, we cannot guarantee
15214	 * this, because it would lead us to the lock ordering violation
15215	 * outlined above.  The common case, of course, is that cpu_lock is
15216	 * _not_ held -- so we delay here for a clock tick, hoping that that's
15217	 * long enough for the task queue to do its work.  If it's not, it's
15218	 * not a serious problem -- it just means that the module that we
15219	 * just loaded may not be immediately instrumentable.
15220	 */
15221	delay(1);
15222}
15223
15224static void
15225#if defined(sun)
15226dtrace_module_unloaded(modctl_t *ctl)
15227#else
15228dtrace_module_unloaded(modctl_t *ctl, int *error)
15229#endif
15230{
15231	dtrace_probe_t template, *probe, *first, *next;
15232	dtrace_provider_t *prov;
15233#if !defined(sun)
15234	char modname[DTRACE_MODNAMELEN];
15235	size_t len;
15236#endif
15237
15238#if defined(sun)
15239	template.dtpr_mod = ctl->mod_modname;
15240#else
15241	/* Handle the fact that ctl->filename may end in ".ko". */
15242	strlcpy(modname, ctl->filename, sizeof(modname));
15243	len = strlen(ctl->filename);
15244	if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
15245		modname[len - 3] = '\0';
15246	template.dtpr_mod = modname;
15247#endif
15248
15249	mutex_enter(&dtrace_provider_lock);
15250#if defined(sun)
15251	mutex_enter(&mod_lock);
15252#endif
15253	mutex_enter(&dtrace_lock);
15254
15255#if !defined(sun)
15256	if (ctl->nenabled > 0) {
15257		/* Don't allow unloads if a probe is enabled. */
15258		mutex_exit(&dtrace_provider_lock);
15259		mutex_exit(&dtrace_lock);
15260		*error = -1;
15261		printf(
15262	"kldunload: attempt to unload module that has DTrace probes enabled\n");
15263		return;
15264	}
15265#endif
15266
15267	if (dtrace_bymod == NULL) {
15268		/*
15269		 * The DTrace module is loaded (obviously) but not attached;
15270		 * we don't have any work to do.
15271		 */
15272		mutex_exit(&dtrace_provider_lock);
15273#if defined(sun)
15274		mutex_exit(&mod_lock);
15275#endif
15276		mutex_exit(&dtrace_lock);
15277		return;
15278	}
15279
15280	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15281	    probe != NULL; probe = probe->dtpr_nextmod) {
15282		if (probe->dtpr_ecb != NULL) {
15283			mutex_exit(&dtrace_provider_lock);
15284#if defined(sun)
15285			mutex_exit(&mod_lock);
15286#endif
15287			mutex_exit(&dtrace_lock);
15288
15289			/*
15290			 * This shouldn't _actually_ be possible -- we're
15291			 * unloading a module that has an enabled probe in it.
15292			 * (It's normally up to the provider to make sure that
15293			 * this can't happen.)  However, because dtps_enable()
15294			 * doesn't have a failure mode, there can be an
15295			 * enable/unload race.  Upshot:  we don't want to
15296			 * assert, but we're not going to disable the
15297			 * probe, either.
15298			 */
15299			if (dtrace_err_verbose) {
15300#if defined(sun)
15301				cmn_err(CE_WARN, "unloaded module '%s' had "
15302				    "enabled probes", ctl->mod_modname);
15303#else
15304				cmn_err(CE_WARN, "unloaded module '%s' had "
15305				    "enabled probes", modname);
15306#endif
15307			}
15308
15309			return;
15310		}
15311	}
15312
15313	probe = first;
15314
15315	for (first = NULL; probe != NULL; probe = next) {
15316		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15317
15318		dtrace_probes[probe->dtpr_id - 1] = NULL;
15319
15320		next = probe->dtpr_nextmod;
15321		dtrace_hash_remove(dtrace_bymod, probe);
15322		dtrace_hash_remove(dtrace_byfunc, probe);
15323		dtrace_hash_remove(dtrace_byname, probe);
15324
15325		if (first == NULL) {
15326			first = probe;
15327			probe->dtpr_nextmod = NULL;
15328		} else {
15329			probe->dtpr_nextmod = first;
15330			first = probe;
15331		}
15332	}
15333
15334	/*
15335	 * We've removed all of the module's probes from the hash chains and
15336	 * from the probe array.  Now issue a dtrace_sync() to be sure that
15337	 * everyone has cleared out from any probe array processing.
15338	 */
15339	dtrace_sync();
15340
15341	for (probe = first; probe != NULL; probe = first) {
15342		first = probe->dtpr_nextmod;
15343		prov = probe->dtpr_provider;
15344		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15345		    probe->dtpr_arg);
15346		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15347		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15348		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15349#if defined(sun)
15350		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15351#else
15352		free_unr(dtrace_arena, probe->dtpr_id);
15353#endif
15354		kmem_free(probe, sizeof (dtrace_probe_t));
15355	}
15356
15357	mutex_exit(&dtrace_lock);
15358#if defined(sun)
15359	mutex_exit(&mod_lock);
15360#endif
15361	mutex_exit(&dtrace_provider_lock);
15362}
15363
15364#if !defined(sun)
15365static void
15366dtrace_kld_load(void *arg __unused, linker_file_t lf)
15367{
15368
15369	dtrace_module_loaded(lf);
15370}
15371
15372static void
15373dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error)
15374{
15375
15376	if (*error != 0)
15377		/* We already have an error, so don't do anything. */
15378		return;
15379	dtrace_module_unloaded(lf, error);
15380}
15381#endif
15382
15383#if defined(sun)
15384static void
15385dtrace_suspend(void)
15386{
15387	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15388}
15389
15390static void
15391dtrace_resume(void)
15392{
15393	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15394}
15395#endif
15396
15397static int
15398dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15399{
15400	ASSERT(MUTEX_HELD(&cpu_lock));
15401	mutex_enter(&dtrace_lock);
15402
15403	switch (what) {
15404	case CPU_CONFIG: {
15405		dtrace_state_t *state;
15406		dtrace_optval_t *opt, rs, c;
15407
15408		/*
15409		 * For now, we only allocate a new buffer for anonymous state.
15410		 */
15411		if ((state = dtrace_anon.dta_state) == NULL)
15412			break;
15413
15414		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15415			break;
15416
15417		opt = state->dts_options;
15418		c = opt[DTRACEOPT_CPU];
15419
15420		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15421			break;
15422
15423		/*
15424		 * Regardless of what the actual policy is, we're going to
15425		 * temporarily set our resize policy to be manual.  We're
15426		 * also going to temporarily set our CPU option to denote
15427		 * the newly configured CPU.
15428		 */
15429		rs = opt[DTRACEOPT_BUFRESIZE];
15430		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15431		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15432
15433		(void) dtrace_state_buffers(state);
15434
15435		opt[DTRACEOPT_BUFRESIZE] = rs;
15436		opt[DTRACEOPT_CPU] = c;
15437
15438		break;
15439	}
15440
15441	case CPU_UNCONFIG:
15442		/*
15443		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
15444		 * buffer will be freed when the consumer exits.)
15445		 */
15446		break;
15447
15448	default:
15449		break;
15450	}
15451
15452	mutex_exit(&dtrace_lock);
15453	return (0);
15454}
15455
15456#if defined(sun)
15457static void
15458dtrace_cpu_setup_initial(processorid_t cpu)
15459{
15460	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15461}
15462#endif
15463
15464static void
15465dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15466{
15467	if (dtrace_toxranges >= dtrace_toxranges_max) {
15468		int osize, nsize;
15469		dtrace_toxrange_t *range;
15470
15471		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15472
15473		if (osize == 0) {
15474			ASSERT(dtrace_toxrange == NULL);
15475			ASSERT(dtrace_toxranges_max == 0);
15476			dtrace_toxranges_max = 1;
15477		} else {
15478			dtrace_toxranges_max <<= 1;
15479		}
15480
15481		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15482		range = kmem_zalloc(nsize, KM_SLEEP);
15483
15484		if (dtrace_toxrange != NULL) {
15485			ASSERT(osize != 0);
15486			bcopy(dtrace_toxrange, range, osize);
15487			kmem_free(dtrace_toxrange, osize);
15488		}
15489
15490		dtrace_toxrange = range;
15491	}
15492
15493	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15494	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15495
15496	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15497	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15498	dtrace_toxranges++;
15499}
15500
15501/*
15502 * DTrace Driver Cookbook Functions
15503 */
15504#if defined(sun)
15505/*ARGSUSED*/
15506static int
15507dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15508{
15509	dtrace_provider_id_t id;
15510	dtrace_state_t *state = NULL;
15511	dtrace_enabling_t *enab;
15512
15513	mutex_enter(&cpu_lock);
15514	mutex_enter(&dtrace_provider_lock);
15515	mutex_enter(&dtrace_lock);
15516
15517	if (ddi_soft_state_init(&dtrace_softstate,
15518	    sizeof (dtrace_state_t), 0) != 0) {
15519		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15520		mutex_exit(&cpu_lock);
15521		mutex_exit(&dtrace_provider_lock);
15522		mutex_exit(&dtrace_lock);
15523		return (DDI_FAILURE);
15524	}
15525
15526	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15527	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15528	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15529	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15530		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15531		ddi_remove_minor_node(devi, NULL);
15532		ddi_soft_state_fini(&dtrace_softstate);
15533		mutex_exit(&cpu_lock);
15534		mutex_exit(&dtrace_provider_lock);
15535		mutex_exit(&dtrace_lock);
15536		return (DDI_FAILURE);
15537	}
15538
15539	ddi_report_dev(devi);
15540	dtrace_devi = devi;
15541
15542	dtrace_modload = dtrace_module_loaded;
15543	dtrace_modunload = dtrace_module_unloaded;
15544	dtrace_cpu_init = dtrace_cpu_setup_initial;
15545	dtrace_helpers_cleanup = dtrace_helpers_destroy;
15546	dtrace_helpers_fork = dtrace_helpers_duplicate;
15547	dtrace_cpustart_init = dtrace_suspend;
15548	dtrace_cpustart_fini = dtrace_resume;
15549	dtrace_debugger_init = dtrace_suspend;
15550	dtrace_debugger_fini = dtrace_resume;
15551
15552	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15553
15554	ASSERT(MUTEX_HELD(&cpu_lock));
15555
15556	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15557	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15558	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15559	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15560	    VM_SLEEP | VMC_IDENTIFIER);
15561	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15562	    1, INT_MAX, 0);
15563
15564	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15565	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15566	    NULL, NULL, NULL, NULL, NULL, 0);
15567
15568	ASSERT(MUTEX_HELD(&cpu_lock));
15569	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15570	    offsetof(dtrace_probe_t, dtpr_nextmod),
15571	    offsetof(dtrace_probe_t, dtpr_prevmod));
15572
15573	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15574	    offsetof(dtrace_probe_t, dtpr_nextfunc),
15575	    offsetof(dtrace_probe_t, dtpr_prevfunc));
15576
15577	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15578	    offsetof(dtrace_probe_t, dtpr_nextname),
15579	    offsetof(dtrace_probe_t, dtpr_prevname));
15580
15581	if (dtrace_retain_max < 1) {
15582		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15583		    "setting to 1", dtrace_retain_max);
15584		dtrace_retain_max = 1;
15585	}
15586
15587	/*
15588	 * Now discover our toxic ranges.
15589	 */
15590	dtrace_toxic_ranges(dtrace_toxrange_add);
15591
15592	/*
15593	 * Before we register ourselves as a provider to our own framework,
15594	 * we would like to assert that dtrace_provider is NULL -- but that's
15595	 * not true if we were loaded as a dependency of a DTrace provider.
15596	 * Once we've registered, we can assert that dtrace_provider is our
15597	 * pseudo provider.
15598	 */
15599	(void) dtrace_register("dtrace", &dtrace_provider_attr,
15600	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15601
15602	ASSERT(dtrace_provider != NULL);
15603	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15604
15605	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15606	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15607	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15608	    dtrace_provider, NULL, NULL, "END", 0, NULL);
15609	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15610	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15611
15612	dtrace_anon_property();
15613	mutex_exit(&cpu_lock);
15614
15615	/*
15616	 * If DTrace helper tracing is enabled, we need to allocate the
15617	 * trace buffer and initialize the values.
15618	 */
15619	if (dtrace_helptrace_enabled) {
15620		ASSERT(dtrace_helptrace_buffer == NULL);
15621		dtrace_helptrace_buffer =
15622		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15623		dtrace_helptrace_next = 0;
15624	}
15625
15626	/*
15627	 * If there are already providers, we must ask them to provide their
15628	 * probes, and then match any anonymous enabling against them.  Note
15629	 * that there should be no other retained enablings at this time:
15630	 * the only retained enablings at this time should be the anonymous
15631	 * enabling.
15632	 */
15633	if (dtrace_anon.dta_enabling != NULL) {
15634		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15635
15636		dtrace_enabling_provide(NULL);
15637		state = dtrace_anon.dta_state;
15638
15639		/*
15640		 * We couldn't hold cpu_lock across the above call to
15641		 * dtrace_enabling_provide(), but we must hold it to actually
15642		 * enable the probes.  We have to drop all of our locks, pick
15643		 * up cpu_lock, and regain our locks before matching the
15644		 * retained anonymous enabling.
15645		 */
15646		mutex_exit(&dtrace_lock);
15647		mutex_exit(&dtrace_provider_lock);
15648
15649		mutex_enter(&cpu_lock);
15650		mutex_enter(&dtrace_provider_lock);
15651		mutex_enter(&dtrace_lock);
15652
15653		if ((enab = dtrace_anon.dta_enabling) != NULL)
15654			(void) dtrace_enabling_match(enab, NULL);
15655
15656		mutex_exit(&cpu_lock);
15657	}
15658
15659	mutex_exit(&dtrace_lock);
15660	mutex_exit(&dtrace_provider_lock);
15661
15662	if (state != NULL) {
15663		/*
15664		 * If we created any anonymous state, set it going now.
15665		 */
15666		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15667	}
15668
15669	return (DDI_SUCCESS);
15670}
15671#endif
15672
15673#if !defined(sun)
15674#if __FreeBSD_version >= 800039
15675static void dtrace_dtr(void *);
15676#endif
15677#endif
15678
15679/*ARGSUSED*/
15680static int
15681#if defined(sun)
15682dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15683#else
15684dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
15685#endif
15686{
15687	dtrace_state_t *state;
15688	uint32_t priv;
15689	uid_t uid;
15690	zoneid_t zoneid;
15691
15692#if defined(sun)
15693	if (getminor(*devp) == DTRACEMNRN_HELPER)
15694		return (0);
15695
15696	/*
15697	 * If this wasn't an open with the "helper" minor, then it must be
15698	 * the "dtrace" minor.
15699	 */
15700	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
15701#else
15702	cred_t *cred_p = NULL;
15703
15704#if __FreeBSD_version < 800039
15705	/*
15706	 * The first minor device is the one that is cloned so there is
15707	 * nothing more to do here.
15708	 */
15709	if (dev2unit(dev) == 0)
15710		return 0;
15711
15712	/*
15713	 * Devices are cloned, so if the DTrace state has already
15714	 * been allocated, that means this device belongs to a
15715	 * different client. Each client should open '/dev/dtrace'
15716	 * to get a cloned device.
15717	 */
15718	if (dev->si_drv1 != NULL)
15719		return (EBUSY);
15720#endif
15721
15722	cred_p = dev->si_cred;
15723#endif
15724
15725	/*
15726	 * If no DTRACE_PRIV_* bits are set in the credential, then the
15727	 * caller lacks sufficient permission to do anything with DTrace.
15728	 */
15729	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15730	if (priv == DTRACE_PRIV_NONE) {
15731#if !defined(sun)
15732#if __FreeBSD_version < 800039
15733		/* Destroy the cloned device. */
15734                destroy_dev(dev);
15735#endif
15736#endif
15737
15738		return (EACCES);
15739	}
15740
15741	/*
15742	 * Ask all providers to provide all their probes.
15743	 */
15744	mutex_enter(&dtrace_provider_lock);
15745	dtrace_probe_provide(NULL, NULL);
15746	mutex_exit(&dtrace_provider_lock);
15747
15748	mutex_enter(&cpu_lock);
15749	mutex_enter(&dtrace_lock);
15750	dtrace_opens++;
15751	dtrace_membar_producer();
15752
15753#if defined(sun)
15754	/*
15755	 * If the kernel debugger is active (that is, if the kernel debugger
15756	 * modified text in some way), we won't allow the open.
15757	 */
15758	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15759		dtrace_opens--;
15760		mutex_exit(&cpu_lock);
15761		mutex_exit(&dtrace_lock);
15762		return (EBUSY);
15763	}
15764
15765	state = dtrace_state_create(devp, cred_p);
15766#else
15767	state = dtrace_state_create(dev);
15768#if __FreeBSD_version < 800039
15769	dev->si_drv1 = state;
15770#else
15771	devfs_set_cdevpriv(state, dtrace_dtr);
15772#endif
15773#endif
15774
15775	mutex_exit(&cpu_lock);
15776
15777	if (state == NULL) {
15778#if defined(sun)
15779		if (--dtrace_opens == 0)
15780			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15781#else
15782		--dtrace_opens;
15783#endif
15784		mutex_exit(&dtrace_lock);
15785#if !defined(sun)
15786#if __FreeBSD_version < 800039
15787		/* Destroy the cloned device. */
15788                destroy_dev(dev);
15789#endif
15790#endif
15791		return (EAGAIN);
15792	}
15793
15794	mutex_exit(&dtrace_lock);
15795
15796	return (0);
15797}
15798
15799/*ARGSUSED*/
15800#if defined(sun)
15801static int
15802dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15803#elif __FreeBSD_version < 800039
15804static int
15805dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td)
15806#else
15807static void
15808dtrace_dtr(void *data)
15809#endif
15810{
15811#if defined(sun)
15812	minor_t minor = getminor(dev);
15813	dtrace_state_t *state;
15814
15815	if (minor == DTRACEMNRN_HELPER)
15816		return (0);
15817
15818	state = ddi_get_soft_state(dtrace_softstate, minor);
15819#else
15820#if __FreeBSD_version < 800039
15821	dtrace_state_t *state = dev->si_drv1;
15822
15823	/* Check if this is not a cloned device. */
15824	if (dev2unit(dev) == 0)
15825		return (0);
15826#else
15827	dtrace_state_t *state = data;
15828#endif
15829
15830#endif
15831
15832	mutex_enter(&cpu_lock);
15833	mutex_enter(&dtrace_lock);
15834
15835	if (state != NULL) {
15836		if (state->dts_anon) {
15837			/*
15838			 * There is anonymous state. Destroy that first.
15839			 */
15840			ASSERT(dtrace_anon.dta_state == NULL);
15841			dtrace_state_destroy(state->dts_anon);
15842		}
15843
15844		dtrace_state_destroy(state);
15845
15846#if !defined(sun)
15847		kmem_free(state, 0);
15848#if __FreeBSD_version < 800039
15849		dev->si_drv1 = NULL;
15850#endif
15851#endif
15852	}
15853
15854	ASSERT(dtrace_opens > 0);
15855#if defined(sun)
15856	if (--dtrace_opens == 0)
15857		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15858#else
15859	--dtrace_opens;
15860#endif
15861
15862	mutex_exit(&dtrace_lock);
15863	mutex_exit(&cpu_lock);
15864
15865#if __FreeBSD_version < 800039
15866	/* Schedule this cloned device to be destroyed. */
15867	destroy_dev_sched(dev);
15868#endif
15869
15870#if defined(sun) || __FreeBSD_version < 800039
15871	return (0);
15872#endif
15873}
15874
15875#if defined(sun)
15876/*ARGSUSED*/
15877static int
15878dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15879{
15880	int rval;
15881	dof_helper_t help, *dhp = NULL;
15882
15883	switch (cmd) {
15884	case DTRACEHIOC_ADDDOF:
15885		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15886			dtrace_dof_error(NULL, "failed to copyin DOF helper");
15887			return (EFAULT);
15888		}
15889
15890		dhp = &help;
15891		arg = (intptr_t)help.dofhp_dof;
15892		/*FALLTHROUGH*/
15893
15894	case DTRACEHIOC_ADD: {
15895		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15896
15897		if (dof == NULL)
15898			return (rval);
15899
15900		mutex_enter(&dtrace_lock);
15901
15902		/*
15903		 * dtrace_helper_slurp() takes responsibility for the dof --
15904		 * it may free it now or it may save it and free it later.
15905		 */
15906		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15907			*rv = rval;
15908			rval = 0;
15909		} else {
15910			rval = EINVAL;
15911		}
15912
15913		mutex_exit(&dtrace_lock);
15914		return (rval);
15915	}
15916
15917	case DTRACEHIOC_REMOVE: {
15918		mutex_enter(&dtrace_lock);
15919		rval = dtrace_helper_destroygen(arg);
15920		mutex_exit(&dtrace_lock);
15921
15922		return (rval);
15923	}
15924
15925	default:
15926		break;
15927	}
15928
15929	return (ENOTTY);
15930}
15931
15932/*ARGSUSED*/
15933static int
15934dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15935{
15936	minor_t minor = getminor(dev);
15937	dtrace_state_t *state;
15938	int rval;
15939
15940	if (minor == DTRACEMNRN_HELPER)
15941		return (dtrace_ioctl_helper(cmd, arg, rv));
15942
15943	state = ddi_get_soft_state(dtrace_softstate, minor);
15944
15945	if (state->dts_anon) {
15946		ASSERT(dtrace_anon.dta_state == NULL);
15947		state = state->dts_anon;
15948	}
15949
15950	switch (cmd) {
15951	case DTRACEIOC_PROVIDER: {
15952		dtrace_providerdesc_t pvd;
15953		dtrace_provider_t *pvp;
15954
15955		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15956			return (EFAULT);
15957
15958		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15959		mutex_enter(&dtrace_provider_lock);
15960
15961		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15962			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15963				break;
15964		}
15965
15966		mutex_exit(&dtrace_provider_lock);
15967
15968		if (pvp == NULL)
15969			return (ESRCH);
15970
15971		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15972		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15973
15974		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15975			return (EFAULT);
15976
15977		return (0);
15978	}
15979
15980	case DTRACEIOC_EPROBE: {
15981		dtrace_eprobedesc_t epdesc;
15982		dtrace_ecb_t *ecb;
15983		dtrace_action_t *act;
15984		void *buf;
15985		size_t size;
15986		uintptr_t dest;
15987		int nrecs;
15988
15989		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15990			return (EFAULT);
15991
15992		mutex_enter(&dtrace_lock);
15993
15994		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15995			mutex_exit(&dtrace_lock);
15996			return (EINVAL);
15997		}
15998
15999		if (ecb->dte_probe == NULL) {
16000			mutex_exit(&dtrace_lock);
16001			return (EINVAL);
16002		}
16003
16004		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
16005		epdesc.dtepd_uarg = ecb->dte_uarg;
16006		epdesc.dtepd_size = ecb->dte_size;
16007
16008		nrecs = epdesc.dtepd_nrecs;
16009		epdesc.dtepd_nrecs = 0;
16010		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16011			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16012				continue;
16013
16014			epdesc.dtepd_nrecs++;
16015		}
16016
16017		/*
16018		 * Now that we have the size, we need to allocate a temporary
16019		 * buffer in which to store the complete description.  We need
16020		 * the temporary buffer to be able to drop dtrace_lock()
16021		 * across the copyout(), below.
16022		 */
16023		size = sizeof (dtrace_eprobedesc_t) +
16024		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
16025
16026		buf = kmem_alloc(size, KM_SLEEP);
16027		dest = (uintptr_t)buf;
16028
16029		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
16030		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
16031
16032		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16033			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16034				continue;
16035
16036			if (nrecs-- == 0)
16037				break;
16038
16039			bcopy(&act->dta_rec, (void *)dest,
16040			    sizeof (dtrace_recdesc_t));
16041			dest += sizeof (dtrace_recdesc_t);
16042		}
16043
16044		mutex_exit(&dtrace_lock);
16045
16046		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16047			kmem_free(buf, size);
16048			return (EFAULT);
16049		}
16050
16051		kmem_free(buf, size);
16052		return (0);
16053	}
16054
16055	case DTRACEIOC_AGGDESC: {
16056		dtrace_aggdesc_t aggdesc;
16057		dtrace_action_t *act;
16058		dtrace_aggregation_t *agg;
16059		int nrecs;
16060		uint32_t offs;
16061		dtrace_recdesc_t *lrec;
16062		void *buf;
16063		size_t size;
16064		uintptr_t dest;
16065
16066		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
16067			return (EFAULT);
16068
16069		mutex_enter(&dtrace_lock);
16070
16071		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
16072			mutex_exit(&dtrace_lock);
16073			return (EINVAL);
16074		}
16075
16076		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
16077
16078		nrecs = aggdesc.dtagd_nrecs;
16079		aggdesc.dtagd_nrecs = 0;
16080
16081		offs = agg->dtag_base;
16082		lrec = &agg->dtag_action.dta_rec;
16083		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
16084
16085		for (act = agg->dtag_first; ; act = act->dta_next) {
16086			ASSERT(act->dta_intuple ||
16087			    DTRACEACT_ISAGG(act->dta_kind));
16088
16089			/*
16090			 * If this action has a record size of zero, it
16091			 * denotes an argument to the aggregating action.
16092			 * Because the presence of this record doesn't (or
16093			 * shouldn't) affect the way the data is interpreted,
16094			 * we don't copy it out to save user-level the
16095			 * confusion of dealing with a zero-length record.
16096			 */
16097			if (act->dta_rec.dtrd_size == 0) {
16098				ASSERT(agg->dtag_hasarg);
16099				continue;
16100			}
16101
16102			aggdesc.dtagd_nrecs++;
16103
16104			if (act == &agg->dtag_action)
16105				break;
16106		}
16107
16108		/*
16109		 * Now that we have the size, we need to allocate a temporary
16110		 * buffer in which to store the complete description.  We need
16111		 * the temporary buffer to be able to drop dtrace_lock()
16112		 * across the copyout(), below.
16113		 */
16114		size = sizeof (dtrace_aggdesc_t) +
16115		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
16116
16117		buf = kmem_alloc(size, KM_SLEEP);
16118		dest = (uintptr_t)buf;
16119
16120		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
16121		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
16122
16123		for (act = agg->dtag_first; ; act = act->dta_next) {
16124			dtrace_recdesc_t rec = act->dta_rec;
16125
16126			/*
16127			 * See the comment in the above loop for why we pass
16128			 * over zero-length records.
16129			 */
16130			if (rec.dtrd_size == 0) {
16131				ASSERT(agg->dtag_hasarg);
16132				continue;
16133			}
16134
16135			if (nrecs-- == 0)
16136				break;
16137
16138			rec.dtrd_offset -= offs;
16139			bcopy(&rec, (void *)dest, sizeof (rec));
16140			dest += sizeof (dtrace_recdesc_t);
16141
16142			if (act == &agg->dtag_action)
16143				break;
16144		}
16145
16146		mutex_exit(&dtrace_lock);
16147
16148		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16149			kmem_free(buf, size);
16150			return (EFAULT);
16151		}
16152
16153		kmem_free(buf, size);
16154		return (0);
16155	}
16156
16157	case DTRACEIOC_ENABLE: {
16158		dof_hdr_t *dof;
16159		dtrace_enabling_t *enab = NULL;
16160		dtrace_vstate_t *vstate;
16161		int err = 0;
16162
16163		*rv = 0;
16164
16165		/*
16166		 * If a NULL argument has been passed, we take this as our
16167		 * cue to reevaluate our enablings.
16168		 */
16169		if (arg == NULL) {
16170			dtrace_enabling_matchall();
16171
16172			return (0);
16173		}
16174
16175		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
16176			return (rval);
16177
16178		mutex_enter(&cpu_lock);
16179		mutex_enter(&dtrace_lock);
16180		vstate = &state->dts_vstate;
16181
16182		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
16183			mutex_exit(&dtrace_lock);
16184			mutex_exit(&cpu_lock);
16185			dtrace_dof_destroy(dof);
16186			return (EBUSY);
16187		}
16188
16189		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
16190			mutex_exit(&dtrace_lock);
16191			mutex_exit(&cpu_lock);
16192			dtrace_dof_destroy(dof);
16193			return (EINVAL);
16194		}
16195
16196		if ((rval = dtrace_dof_options(dof, state)) != 0) {
16197			dtrace_enabling_destroy(enab);
16198			mutex_exit(&dtrace_lock);
16199			mutex_exit(&cpu_lock);
16200			dtrace_dof_destroy(dof);
16201			return (rval);
16202		}
16203
16204		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
16205			err = dtrace_enabling_retain(enab);
16206		} else {
16207			dtrace_enabling_destroy(enab);
16208		}
16209
16210		mutex_exit(&cpu_lock);
16211		mutex_exit(&dtrace_lock);
16212		dtrace_dof_destroy(dof);
16213
16214		return (err);
16215	}
16216
16217	case DTRACEIOC_REPLICATE: {
16218		dtrace_repldesc_t desc;
16219		dtrace_probedesc_t *match = &desc.dtrpd_match;
16220		dtrace_probedesc_t *create = &desc.dtrpd_create;
16221		int err;
16222
16223		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16224			return (EFAULT);
16225
16226		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16227		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16228		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16229		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16230
16231		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16232		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16233		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16234		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16235
16236		mutex_enter(&dtrace_lock);
16237		err = dtrace_enabling_replicate(state, match, create);
16238		mutex_exit(&dtrace_lock);
16239
16240		return (err);
16241	}
16242
16243	case DTRACEIOC_PROBEMATCH:
16244	case DTRACEIOC_PROBES: {
16245		dtrace_probe_t *probe = NULL;
16246		dtrace_probedesc_t desc;
16247		dtrace_probekey_t pkey;
16248		dtrace_id_t i;
16249		int m = 0;
16250		uint32_t priv;
16251		uid_t uid;
16252		zoneid_t zoneid;
16253
16254		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16255			return (EFAULT);
16256
16257		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16258		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16259		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16260		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16261
16262		/*
16263		 * Before we attempt to match this probe, we want to give
16264		 * all providers the opportunity to provide it.
16265		 */
16266		if (desc.dtpd_id == DTRACE_IDNONE) {
16267			mutex_enter(&dtrace_provider_lock);
16268			dtrace_probe_provide(&desc, NULL);
16269			mutex_exit(&dtrace_provider_lock);
16270			desc.dtpd_id++;
16271		}
16272
16273		if (cmd == DTRACEIOC_PROBEMATCH)  {
16274			dtrace_probekey(&desc, &pkey);
16275			pkey.dtpk_id = DTRACE_IDNONE;
16276		}
16277
16278		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
16279
16280		mutex_enter(&dtrace_lock);
16281
16282		if (cmd == DTRACEIOC_PROBEMATCH) {
16283			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16284				if ((probe = dtrace_probes[i - 1]) != NULL &&
16285				    (m = dtrace_match_probe(probe, &pkey,
16286				    priv, uid, zoneid)) != 0)
16287					break;
16288			}
16289
16290			if (m < 0) {
16291				mutex_exit(&dtrace_lock);
16292				return (EINVAL);
16293			}
16294
16295		} else {
16296			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16297				if ((probe = dtrace_probes[i - 1]) != NULL &&
16298				    dtrace_match_priv(probe, priv, uid, zoneid))
16299					break;
16300			}
16301		}
16302
16303		if (probe == NULL) {
16304			mutex_exit(&dtrace_lock);
16305			return (ESRCH);
16306		}
16307
16308		dtrace_probe_description(probe, &desc);
16309		mutex_exit(&dtrace_lock);
16310
16311		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16312			return (EFAULT);
16313
16314		return (0);
16315	}
16316
16317	case DTRACEIOC_PROBEARG: {
16318		dtrace_argdesc_t desc;
16319		dtrace_probe_t *probe;
16320		dtrace_provider_t *prov;
16321
16322		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16323			return (EFAULT);
16324
16325		if (desc.dtargd_id == DTRACE_IDNONE)
16326			return (EINVAL);
16327
16328		if (desc.dtargd_ndx == DTRACE_ARGNONE)
16329			return (EINVAL);
16330
16331		mutex_enter(&dtrace_provider_lock);
16332		mutex_enter(&mod_lock);
16333		mutex_enter(&dtrace_lock);
16334
16335		if (desc.dtargd_id > dtrace_nprobes) {
16336			mutex_exit(&dtrace_lock);
16337			mutex_exit(&mod_lock);
16338			mutex_exit(&dtrace_provider_lock);
16339			return (EINVAL);
16340		}
16341
16342		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16343			mutex_exit(&dtrace_lock);
16344			mutex_exit(&mod_lock);
16345			mutex_exit(&dtrace_provider_lock);
16346			return (EINVAL);
16347		}
16348
16349		mutex_exit(&dtrace_lock);
16350
16351		prov = probe->dtpr_provider;
16352
16353		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16354			/*
16355			 * There isn't any typed information for this probe.
16356			 * Set the argument number to DTRACE_ARGNONE.
16357			 */
16358			desc.dtargd_ndx = DTRACE_ARGNONE;
16359		} else {
16360			desc.dtargd_native[0] = '\0';
16361			desc.dtargd_xlate[0] = '\0';
16362			desc.dtargd_mapping = desc.dtargd_ndx;
16363
16364			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16365			    probe->dtpr_id, probe->dtpr_arg, &desc);
16366		}
16367
16368		mutex_exit(&mod_lock);
16369		mutex_exit(&dtrace_provider_lock);
16370
16371		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16372			return (EFAULT);
16373
16374		return (0);
16375	}
16376
16377	case DTRACEIOC_GO: {
16378		processorid_t cpuid;
16379		rval = dtrace_state_go(state, &cpuid);
16380
16381		if (rval != 0)
16382			return (rval);
16383
16384		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16385			return (EFAULT);
16386
16387		return (0);
16388	}
16389
16390	case DTRACEIOC_STOP: {
16391		processorid_t cpuid;
16392
16393		mutex_enter(&dtrace_lock);
16394		rval = dtrace_state_stop(state, &cpuid);
16395		mutex_exit(&dtrace_lock);
16396
16397		if (rval != 0)
16398			return (rval);
16399
16400		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16401			return (EFAULT);
16402
16403		return (0);
16404	}
16405
16406	case DTRACEIOC_DOFGET: {
16407		dof_hdr_t hdr, *dof;
16408		uint64_t len;
16409
16410		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16411			return (EFAULT);
16412
16413		mutex_enter(&dtrace_lock);
16414		dof = dtrace_dof_create(state);
16415		mutex_exit(&dtrace_lock);
16416
16417		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16418		rval = copyout(dof, (void *)arg, len);
16419		dtrace_dof_destroy(dof);
16420
16421		return (rval == 0 ? 0 : EFAULT);
16422	}
16423
16424	case DTRACEIOC_AGGSNAP:
16425	case DTRACEIOC_BUFSNAP: {
16426		dtrace_bufdesc_t desc;
16427		caddr_t cached;
16428		dtrace_buffer_t *buf;
16429
16430		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16431			return (EFAULT);
16432
16433		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16434			return (EINVAL);
16435
16436		mutex_enter(&dtrace_lock);
16437
16438		if (cmd == DTRACEIOC_BUFSNAP) {
16439			buf = &state->dts_buffer[desc.dtbd_cpu];
16440		} else {
16441			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16442		}
16443
16444		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16445			size_t sz = buf->dtb_offset;
16446
16447			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16448				mutex_exit(&dtrace_lock);
16449				return (EBUSY);
16450			}
16451
16452			/*
16453			 * If this buffer has already been consumed, we're
16454			 * going to indicate that there's nothing left here
16455			 * to consume.
16456			 */
16457			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16458				mutex_exit(&dtrace_lock);
16459
16460				desc.dtbd_size = 0;
16461				desc.dtbd_drops = 0;
16462				desc.dtbd_errors = 0;
16463				desc.dtbd_oldest = 0;
16464				sz = sizeof (desc);
16465
16466				if (copyout(&desc, (void *)arg, sz) != 0)
16467					return (EFAULT);
16468
16469				return (0);
16470			}
16471
16472			/*
16473			 * If this is a ring buffer that has wrapped, we want
16474			 * to copy the whole thing out.
16475			 */
16476			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16477				dtrace_buffer_polish(buf);
16478				sz = buf->dtb_size;
16479			}
16480
16481			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16482				mutex_exit(&dtrace_lock);
16483				return (EFAULT);
16484			}
16485
16486			desc.dtbd_size = sz;
16487			desc.dtbd_drops = buf->dtb_drops;
16488			desc.dtbd_errors = buf->dtb_errors;
16489			desc.dtbd_oldest = buf->dtb_xamot_offset;
16490			desc.dtbd_timestamp = dtrace_gethrtime();
16491
16492			mutex_exit(&dtrace_lock);
16493
16494			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16495				return (EFAULT);
16496
16497			buf->dtb_flags |= DTRACEBUF_CONSUMED;
16498
16499			return (0);
16500		}
16501
16502		if (buf->dtb_tomax == NULL) {
16503			ASSERT(buf->dtb_xamot == NULL);
16504			mutex_exit(&dtrace_lock);
16505			return (ENOENT);
16506		}
16507
16508		cached = buf->dtb_tomax;
16509		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16510
16511		dtrace_xcall(desc.dtbd_cpu,
16512		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
16513
16514		state->dts_errors += buf->dtb_xamot_errors;
16515
16516		/*
16517		 * If the buffers did not actually switch, then the cross call
16518		 * did not take place -- presumably because the given CPU is
16519		 * not in the ready set.  If this is the case, we'll return
16520		 * ENOENT.
16521		 */
16522		if (buf->dtb_tomax == cached) {
16523			ASSERT(buf->dtb_xamot != cached);
16524			mutex_exit(&dtrace_lock);
16525			return (ENOENT);
16526		}
16527
16528		ASSERT(cached == buf->dtb_xamot);
16529
16530		/*
16531		 * We have our snapshot; now copy it out.
16532		 */
16533		if (copyout(buf->dtb_xamot, desc.dtbd_data,
16534		    buf->dtb_xamot_offset) != 0) {
16535			mutex_exit(&dtrace_lock);
16536			return (EFAULT);
16537		}
16538
16539		desc.dtbd_size = buf->dtb_xamot_offset;
16540		desc.dtbd_drops = buf->dtb_xamot_drops;
16541		desc.dtbd_errors = buf->dtb_xamot_errors;
16542		desc.dtbd_oldest = 0;
16543		desc.dtbd_timestamp = buf->dtb_switched;
16544
16545		mutex_exit(&dtrace_lock);
16546
16547		/*
16548		 * Finally, copy out the buffer description.
16549		 */
16550		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16551			return (EFAULT);
16552
16553		return (0);
16554	}
16555
16556	case DTRACEIOC_CONF: {
16557		dtrace_conf_t conf;
16558
16559		bzero(&conf, sizeof (conf));
16560		conf.dtc_difversion = DIF_VERSION;
16561		conf.dtc_difintregs = DIF_DIR_NREGS;
16562		conf.dtc_diftupregs = DIF_DTR_NREGS;
16563		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16564
16565		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16566			return (EFAULT);
16567
16568		return (0);
16569	}
16570
16571	case DTRACEIOC_STATUS: {
16572		dtrace_status_t stat;
16573		dtrace_dstate_t *dstate;
16574		int i, j;
16575		uint64_t nerrs;
16576
16577		/*
16578		 * See the comment in dtrace_state_deadman() for the reason
16579		 * for setting dts_laststatus to INT64_MAX before setting
16580		 * it to the correct value.
16581		 */
16582		state->dts_laststatus = INT64_MAX;
16583		dtrace_membar_producer();
16584		state->dts_laststatus = dtrace_gethrtime();
16585
16586		bzero(&stat, sizeof (stat));
16587
16588		mutex_enter(&dtrace_lock);
16589
16590		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16591			mutex_exit(&dtrace_lock);
16592			return (ENOENT);
16593		}
16594
16595		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16596			stat.dtst_exiting = 1;
16597
16598		nerrs = state->dts_errors;
16599		dstate = &state->dts_vstate.dtvs_dynvars;
16600
16601		for (i = 0; i < NCPU; i++) {
16602			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16603
16604			stat.dtst_dyndrops += dcpu->dtdsc_drops;
16605			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16606			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16607
16608			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16609				stat.dtst_filled++;
16610
16611			nerrs += state->dts_buffer[i].dtb_errors;
16612
16613			for (j = 0; j < state->dts_nspeculations; j++) {
16614				dtrace_speculation_t *spec;
16615				dtrace_buffer_t *buf;
16616
16617				spec = &state->dts_speculations[j];
16618				buf = &spec->dtsp_buffer[i];
16619				stat.dtst_specdrops += buf->dtb_xamot_drops;
16620			}
16621		}
16622
16623		stat.dtst_specdrops_busy = state->dts_speculations_busy;
16624		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16625		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16626		stat.dtst_dblerrors = state->dts_dblerrors;
16627		stat.dtst_killed =
16628		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16629		stat.dtst_errors = nerrs;
16630
16631		mutex_exit(&dtrace_lock);
16632
16633		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16634			return (EFAULT);
16635
16636		return (0);
16637	}
16638
16639	case DTRACEIOC_FORMAT: {
16640		dtrace_fmtdesc_t fmt;
16641		char *str;
16642		int len;
16643
16644		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16645			return (EFAULT);
16646
16647		mutex_enter(&dtrace_lock);
16648
16649		if (fmt.dtfd_format == 0 ||
16650		    fmt.dtfd_format > state->dts_nformats) {
16651			mutex_exit(&dtrace_lock);
16652			return (EINVAL);
16653		}
16654
16655		/*
16656		 * Format strings are allocated contiguously and they are
16657		 * never freed; if a format index is less than the number
16658		 * of formats, we can assert that the format map is non-NULL
16659		 * and that the format for the specified index is non-NULL.
16660		 */
16661		ASSERT(state->dts_formats != NULL);
16662		str = state->dts_formats[fmt.dtfd_format - 1];
16663		ASSERT(str != NULL);
16664
16665		len = strlen(str) + 1;
16666
16667		if (len > fmt.dtfd_length) {
16668			fmt.dtfd_length = len;
16669
16670			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16671				mutex_exit(&dtrace_lock);
16672				return (EINVAL);
16673			}
16674		} else {
16675			if (copyout(str, fmt.dtfd_string, len) != 0) {
16676				mutex_exit(&dtrace_lock);
16677				return (EINVAL);
16678			}
16679		}
16680
16681		mutex_exit(&dtrace_lock);
16682		return (0);
16683	}
16684
16685	default:
16686		break;
16687	}
16688
16689	return (ENOTTY);
16690}
16691
16692/*ARGSUSED*/
16693static int
16694dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16695{
16696	dtrace_state_t *state;
16697
16698	switch (cmd) {
16699	case DDI_DETACH:
16700		break;
16701
16702	case DDI_SUSPEND:
16703		return (DDI_SUCCESS);
16704
16705	default:
16706		return (DDI_FAILURE);
16707	}
16708
16709	mutex_enter(&cpu_lock);
16710	mutex_enter(&dtrace_provider_lock);
16711	mutex_enter(&dtrace_lock);
16712
16713	ASSERT(dtrace_opens == 0);
16714
16715	if (dtrace_helpers > 0) {
16716		mutex_exit(&dtrace_provider_lock);
16717		mutex_exit(&dtrace_lock);
16718		mutex_exit(&cpu_lock);
16719		return (DDI_FAILURE);
16720	}
16721
16722	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16723		mutex_exit(&dtrace_provider_lock);
16724		mutex_exit(&dtrace_lock);
16725		mutex_exit(&cpu_lock);
16726		return (DDI_FAILURE);
16727	}
16728
16729	dtrace_provider = NULL;
16730
16731	if ((state = dtrace_anon_grab()) != NULL) {
16732		/*
16733		 * If there were ECBs on this state, the provider should
16734		 * have not been allowed to detach; assert that there is
16735		 * none.
16736		 */
16737		ASSERT(state->dts_necbs == 0);
16738		dtrace_state_destroy(state);
16739
16740		/*
16741		 * If we're being detached with anonymous state, we need to
16742		 * indicate to the kernel debugger that DTrace is now inactive.
16743		 */
16744		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16745	}
16746
16747	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16748	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16749	dtrace_cpu_init = NULL;
16750	dtrace_helpers_cleanup = NULL;
16751	dtrace_helpers_fork = NULL;
16752	dtrace_cpustart_init = NULL;
16753	dtrace_cpustart_fini = NULL;
16754	dtrace_debugger_init = NULL;
16755	dtrace_debugger_fini = NULL;
16756	dtrace_modload = NULL;
16757	dtrace_modunload = NULL;
16758
16759	mutex_exit(&cpu_lock);
16760
16761	if (dtrace_helptrace_enabled) {
16762		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16763		dtrace_helptrace_buffer = NULL;
16764	}
16765
16766	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16767	dtrace_probes = NULL;
16768	dtrace_nprobes = 0;
16769
16770	dtrace_hash_destroy(dtrace_bymod);
16771	dtrace_hash_destroy(dtrace_byfunc);
16772	dtrace_hash_destroy(dtrace_byname);
16773	dtrace_bymod = NULL;
16774	dtrace_byfunc = NULL;
16775	dtrace_byname = NULL;
16776
16777	kmem_cache_destroy(dtrace_state_cache);
16778	vmem_destroy(dtrace_minor);
16779	vmem_destroy(dtrace_arena);
16780
16781	if (dtrace_toxrange != NULL) {
16782		kmem_free(dtrace_toxrange,
16783		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16784		dtrace_toxrange = NULL;
16785		dtrace_toxranges = 0;
16786		dtrace_toxranges_max = 0;
16787	}
16788
16789	ddi_remove_minor_node(dtrace_devi, NULL);
16790	dtrace_devi = NULL;
16791
16792	ddi_soft_state_fini(&dtrace_softstate);
16793
16794	ASSERT(dtrace_vtime_references == 0);
16795	ASSERT(dtrace_opens == 0);
16796	ASSERT(dtrace_retained == NULL);
16797
16798	mutex_exit(&dtrace_lock);
16799	mutex_exit(&dtrace_provider_lock);
16800
16801	/*
16802	 * We don't destroy the task queue until after we have dropped our
16803	 * locks (taskq_destroy() may block on running tasks).  To prevent
16804	 * attempting to do work after we have effectively detached but before
16805	 * the task queue has been destroyed, all tasks dispatched via the
16806	 * task queue must check that DTrace is still attached before
16807	 * performing any operation.
16808	 */
16809	taskq_destroy(dtrace_taskq);
16810	dtrace_taskq = NULL;
16811
16812	return (DDI_SUCCESS);
16813}
16814#endif
16815
16816#if defined(sun)
16817/*ARGSUSED*/
16818static int
16819dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16820{
16821	int error;
16822
16823	switch (infocmd) {
16824	case DDI_INFO_DEVT2DEVINFO:
16825		*result = (void *)dtrace_devi;
16826		error = DDI_SUCCESS;
16827		break;
16828	case DDI_INFO_DEVT2INSTANCE:
16829		*result = (void *)0;
16830		error = DDI_SUCCESS;
16831		break;
16832	default:
16833		error = DDI_FAILURE;
16834	}
16835	return (error);
16836}
16837#endif
16838
16839#if defined(sun)
16840static struct cb_ops dtrace_cb_ops = {
16841	dtrace_open,		/* open */
16842	dtrace_close,		/* close */
16843	nulldev,		/* strategy */
16844	nulldev,		/* print */
16845	nodev,			/* dump */
16846	nodev,			/* read */
16847	nodev,			/* write */
16848	dtrace_ioctl,		/* ioctl */
16849	nodev,			/* devmap */
16850	nodev,			/* mmap */
16851	nodev,			/* segmap */
16852	nochpoll,		/* poll */
16853	ddi_prop_op,		/* cb_prop_op */
16854	0,			/* streamtab  */
16855	D_NEW | D_MP		/* Driver compatibility flag */
16856};
16857
16858static struct dev_ops dtrace_ops = {
16859	DEVO_REV,		/* devo_rev */
16860	0,			/* refcnt */
16861	dtrace_info,		/* get_dev_info */
16862	nulldev,		/* identify */
16863	nulldev,		/* probe */
16864	dtrace_attach,		/* attach */
16865	dtrace_detach,		/* detach */
16866	nodev,			/* reset */
16867	&dtrace_cb_ops,		/* driver operations */
16868	NULL,			/* bus operations */
16869	nodev			/* dev power */
16870};
16871
16872static struct modldrv modldrv = {
16873	&mod_driverops,		/* module type (this is a pseudo driver) */
16874	"Dynamic Tracing",	/* name of module */
16875	&dtrace_ops,		/* driver ops */
16876};
16877
16878static struct modlinkage modlinkage = {
16879	MODREV_1,
16880	(void *)&modldrv,
16881	NULL
16882};
16883
16884int
16885_init(void)
16886{
16887	return (mod_install(&modlinkage));
16888}
16889
16890int
16891_info(struct modinfo *modinfop)
16892{
16893	return (mod_info(&modlinkage, modinfop));
16894}
16895
16896int
16897_fini(void)
16898{
16899	return (mod_remove(&modlinkage));
16900}
16901#else
16902
16903static d_ioctl_t	dtrace_ioctl;
16904static d_ioctl_t	dtrace_ioctl_helper;
16905static void		dtrace_load(void *);
16906static int		dtrace_unload(void);
16907#if __FreeBSD_version < 800039
16908static void		dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16909static struct clonedevs	*dtrace_clones;		/* Ptr to the array of cloned devices. */
16910static eventhandler_tag	eh_tag;			/* Event handler tag. */
16911#else
16912static struct cdev	*dtrace_dev;
16913static struct cdev	*helper_dev;
16914#endif
16915
16916void dtrace_invop_init(void);
16917void dtrace_invop_uninit(void);
16918
16919static struct cdevsw dtrace_cdevsw = {
16920	.d_version	= D_VERSION,
16921#if __FreeBSD_version < 800039
16922	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
16923	.d_close	= dtrace_close,
16924#endif
16925	.d_ioctl	= dtrace_ioctl,
16926	.d_open		= dtrace_open,
16927	.d_name		= "dtrace",
16928};
16929
16930static struct cdevsw helper_cdevsw = {
16931	.d_version	= D_VERSION,
16932	.d_ioctl	= dtrace_ioctl_helper,
16933	.d_name		= "helper",
16934};
16935
16936#include <dtrace_anon.c>
16937#if __FreeBSD_version < 800039
16938#include <dtrace_clone.c>
16939#endif
16940#include <dtrace_ioctl.c>
16941#include <dtrace_load.c>
16942#include <dtrace_modevent.c>
16943#include <dtrace_sysctl.c>
16944#include <dtrace_unload.c>
16945#include <dtrace_vtime.c>
16946#include <dtrace_hacks.c>
16947#include <dtrace_isa.c>
16948
16949SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
16950SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
16951SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
16952
16953DEV_MODULE(dtrace, dtrace_modevent, NULL);
16954MODULE_VERSION(dtrace, 1);
16955MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
16956MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
16957#endif
16958