avl.c revision 269845
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Copyright (c) 2014 by Delphix. All rights reserved.
28 */
29
30/*
31 * AVL - generic AVL tree implementation for kernel use
32 *
33 * A complete description of AVL trees can be found in many CS textbooks.
34 *
35 * Here is a very brief overview. An AVL tree is a binary search tree that is
36 * almost perfectly balanced. By "almost" perfectly balanced, we mean that at
37 * any given node, the left and right subtrees are allowed to differ in height
38 * by at most 1 level.
39 *
40 * This relaxation from a perfectly balanced binary tree allows doing
41 * insertion and deletion relatively efficiently. Searching the tree is
42 * still a fast operation, roughly O(log(N)).
43 *
44 * The key to insertion and deletion is a set of tree manipulations called
45 * rotations, which bring unbalanced subtrees back into the semi-balanced state.
46 *
47 * This implementation of AVL trees has the following peculiarities:
48 *
49 *	- The AVL specific data structures are physically embedded as fields
50 *	  in the "using" data structures.  To maintain generality the code
51 *	  must constantly translate between "avl_node_t *" and containing
52 *	  data structure "void *"s by adding/subtracting the avl_offset.
53 *
54 *	- Since the AVL data is always embedded in other structures, there is
55 *	  no locking or memory allocation in the AVL routines. This must be
56 *	  provided for by the enclosing data structure's semantics. Typically,
57 *	  avl_insert()/_add()/_remove()/avl_insert_here() require some kind of
58 *	  exclusive write lock. Other operations require a read lock.
59 *
60 *      - The implementation uses iteration instead of explicit recursion,
61 *	  since it is intended to run on limited size kernel stacks. Since
62 *	  there is no recursion stack present to move "up" in the tree,
63 *	  there is an explicit "parent" link in the avl_node_t.
64 *
65 *      - The left/right children pointers of a node are in an array.
66 *	  In the code, variables (instead of constants) are used to represent
67 *	  left and right indices.  The implementation is written as if it only
68 *	  dealt with left handed manipulations.  By changing the value assigned
69 *	  to "left", the code also works for right handed trees.  The
70 *	  following variables/terms are frequently used:
71 *
72 *		int left;	// 0 when dealing with left children,
73 *				// 1 for dealing with right children
74 *
75 *		int left_heavy;	// -1 when left subtree is taller at some node,
76 *				// +1 when right subtree is taller
77 *
78 *		int right;	// will be the opposite of left (0 or 1)
79 *		int right_heavy;// will be the opposite of left_heavy (-1 or 1)
80 *
81 *		int direction;  // 0 for "<" (ie. left child); 1 for ">" (right)
82 *
83 *	  Though it is a little more confusing to read the code, the approach
84 *	  allows using half as much code (and hence cache footprint) for tree
85 *	  manipulations and eliminates many conditional branches.
86 *
87 *	- The avl_index_t is an opaque "cookie" used to find nodes at or
88 *	  adjacent to where a new value would be inserted in the tree. The value
89 *	  is a modified "avl_node_t *".  The bottom bit (normally 0 for a
90 *	  pointer) is set to indicate if that the new node has a value greater
91 *	  than the value of the indicated "avl_node_t *".
92 *
93 * Note - in addition to userland (e.g. libavl and libutil) and the kernel
94 * (e.g. genunix), avl.c is compiled into ld.so and kmdb's genunix module,
95 * which each have their own compilation environments and subsequent
96 * requirements. Each of these environments must be considered when adding
97 * dependencies from avl.c.
98 */
99
100#include <sys/types.h>
101#include <sys/param.h>
102#include <sys/stdint.h>
103#include <sys/debug.h>
104#include <sys/avl.h>
105
106/*
107 * Small arrays to translate between balance (or diff) values and child indices.
108 *
109 * Code that deals with binary tree data structures will randomly use
110 * left and right children when examining a tree.  C "if()" statements
111 * which evaluate randomly suffer from very poor hardware branch prediction.
112 * In this code we avoid some of the branch mispredictions by using the
113 * following translation arrays. They replace random branches with an
114 * additional memory reference. Since the translation arrays are both very
115 * small the data should remain efficiently in cache.
116 */
117static const int  avl_child2balance[2]	= {-1, 1};
118static const int  avl_balance2child[]	= {0, 0, 1};
119
120
121/*
122 * Walk from one node to the previous valued node (ie. an infix walk
123 * towards the left). At any given node we do one of 2 things:
124 *
125 * - If there is a left child, go to it, then to it's rightmost descendant.
126 *
127 * - otherwise we return through parent nodes until we've come from a right
128 *   child.
129 *
130 * Return Value:
131 * NULL - if at the end of the nodes
132 * otherwise next node
133 */
134void *
135avl_walk(avl_tree_t *tree, void	*oldnode, int left)
136{
137	size_t off = tree->avl_offset;
138	avl_node_t *node = AVL_DATA2NODE(oldnode, off);
139	int right = 1 - left;
140	int was_child;
141
142
143	/*
144	 * nowhere to walk to if tree is empty
145	 */
146	if (node == NULL)
147		return (NULL);
148
149	/*
150	 * Visit the previous valued node. There are two possibilities:
151	 *
152	 * If this node has a left child, go down one left, then all
153	 * the way right.
154	 */
155	if (node->avl_child[left] != NULL) {
156		for (node = node->avl_child[left];
157		    node->avl_child[right] != NULL;
158		    node = node->avl_child[right])
159			;
160	/*
161	 * Otherwise, return thru left children as far as we can.
162	 */
163	} else {
164		for (;;) {
165			was_child = AVL_XCHILD(node);
166			node = AVL_XPARENT(node);
167			if (node == NULL)
168				return (NULL);
169			if (was_child == right)
170				break;
171		}
172	}
173
174	return (AVL_NODE2DATA(node, off));
175}
176
177/*
178 * Return the lowest valued node in a tree or NULL.
179 * (leftmost child from root of tree)
180 */
181void *
182avl_first(avl_tree_t *tree)
183{
184	avl_node_t *node;
185	avl_node_t *prev = NULL;
186	size_t off = tree->avl_offset;
187
188	for (node = tree->avl_root; node != NULL; node = node->avl_child[0])
189		prev = node;
190
191	if (prev != NULL)
192		return (AVL_NODE2DATA(prev, off));
193	return (NULL);
194}
195
196/*
197 * Return the highest valued node in a tree or NULL.
198 * (rightmost child from root of tree)
199 */
200void *
201avl_last(avl_tree_t *tree)
202{
203	avl_node_t *node;
204	avl_node_t *prev = NULL;
205	size_t off = tree->avl_offset;
206
207	for (node = tree->avl_root; node != NULL; node = node->avl_child[1])
208		prev = node;
209
210	if (prev != NULL)
211		return (AVL_NODE2DATA(prev, off));
212	return (NULL);
213}
214
215/*
216 * Access the node immediately before or after an insertion point.
217 *
218 * "avl_index_t" is a (avl_node_t *) with the bottom bit indicating a child
219 *
220 * Return value:
221 *	NULL: no node in the given direction
222 *	"void *"  of the found tree node
223 */
224void *
225avl_nearest(avl_tree_t *tree, avl_index_t where, int direction)
226{
227	int child = AVL_INDEX2CHILD(where);
228	avl_node_t *node = AVL_INDEX2NODE(where);
229	void *data;
230	size_t off = tree->avl_offset;
231
232	if (node == NULL) {
233		ASSERT(tree->avl_root == NULL);
234		return (NULL);
235	}
236	data = AVL_NODE2DATA(node, off);
237	if (child != direction)
238		return (data);
239
240	return (avl_walk(tree, data, direction));
241}
242
243
244/*
245 * Search for the node which contains "value".  The algorithm is a
246 * simple binary tree search.
247 *
248 * return value:
249 *	NULL: the value is not in the AVL tree
250 *		*where (if not NULL)  is set to indicate the insertion point
251 *	"void *"  of the found tree node
252 */
253void *
254avl_find(avl_tree_t *tree, const void *value, avl_index_t *where)
255{
256	avl_node_t *node;
257	avl_node_t *prev = NULL;
258	int child = 0;
259	int diff;
260	size_t off = tree->avl_offset;
261
262	for (node = tree->avl_root; node != NULL;
263	    node = node->avl_child[child]) {
264
265		prev = node;
266
267		diff = tree->avl_compar(value, AVL_NODE2DATA(node, off));
268		ASSERT(-1 <= diff && diff <= 1);
269		if (diff == 0) {
270#ifdef DEBUG
271			if (where != NULL)
272				*where = 0;
273#endif
274			return (AVL_NODE2DATA(node, off));
275		}
276		child = avl_balance2child[1 + diff];
277
278	}
279
280	if (where != NULL)
281		*where = AVL_MKINDEX(prev, child);
282
283	return (NULL);
284}
285
286
287/*
288 * Perform a rotation to restore balance at the subtree given by depth.
289 *
290 * This routine is used by both insertion and deletion. The return value
291 * indicates:
292 *	 0 : subtree did not change height
293 *	!0 : subtree was reduced in height
294 *
295 * The code is written as if handling left rotations, right rotations are
296 * symmetric and handled by swapping values of variables right/left[_heavy]
297 *
298 * On input balance is the "new" balance at "node". This value is either
299 * -2 or +2.
300 */
301static int
302avl_rotation(avl_tree_t *tree, avl_node_t *node, int balance)
303{
304	int left = !(balance < 0);	/* when balance = -2, left will be 0 */
305	int right = 1 - left;
306	int left_heavy = balance >> 1;
307	int right_heavy = -left_heavy;
308	avl_node_t *parent = AVL_XPARENT(node);
309	avl_node_t *child = node->avl_child[left];
310	avl_node_t *cright;
311	avl_node_t *gchild;
312	avl_node_t *gright;
313	avl_node_t *gleft;
314	int which_child = AVL_XCHILD(node);
315	int child_bal = AVL_XBALANCE(child);
316
317	/* BEGIN CSTYLED */
318	/*
319	 * case 1 : node is overly left heavy, the left child is balanced or
320	 * also left heavy. This requires the following rotation.
321	 *
322	 *                   (node bal:-2)
323	 *                    /           \
324	 *                   /             \
325	 *              (child bal:0 or -1)
326	 *              /    \
327	 *             /      \
328	 *                     cright
329	 *
330	 * becomes:
331	 *
332	 *              (child bal:1 or 0)
333	 *              /        \
334	 *             /          \
335	 *                        (node bal:-1 or 0)
336	 *                         /     \
337	 *                        /       \
338	 *                     cright
339	 *
340	 * we detect this situation by noting that child's balance is not
341	 * right_heavy.
342	 */
343	/* END CSTYLED */
344	if (child_bal != right_heavy) {
345
346		/*
347		 * compute new balance of nodes
348		 *
349		 * If child used to be left heavy (now balanced) we reduced
350		 * the height of this sub-tree -- used in "return...;" below
351		 */
352		child_bal += right_heavy; /* adjust towards right */
353
354		/*
355		 * move "cright" to be node's left child
356		 */
357		cright = child->avl_child[right];
358		node->avl_child[left] = cright;
359		if (cright != NULL) {
360			AVL_SETPARENT(cright, node);
361			AVL_SETCHILD(cright, left);
362		}
363
364		/*
365		 * move node to be child's right child
366		 */
367		child->avl_child[right] = node;
368		AVL_SETBALANCE(node, -child_bal);
369		AVL_SETCHILD(node, right);
370		AVL_SETPARENT(node, child);
371
372		/*
373		 * update the pointer into this subtree
374		 */
375		AVL_SETBALANCE(child, child_bal);
376		AVL_SETCHILD(child, which_child);
377		AVL_SETPARENT(child, parent);
378		if (parent != NULL)
379			parent->avl_child[which_child] = child;
380		else
381			tree->avl_root = child;
382
383		return (child_bal == 0);
384	}
385
386	/* BEGIN CSTYLED */
387	/*
388	 * case 2 : When node is left heavy, but child is right heavy we use
389	 * a different rotation.
390	 *
391	 *                   (node b:-2)
392	 *                    /   \
393	 *                   /     \
394	 *                  /       \
395	 *             (child b:+1)
396	 *              /     \
397	 *             /       \
398	 *                   (gchild b: != 0)
399	 *                     /  \
400	 *                    /    \
401	 *                 gleft   gright
402	 *
403	 * becomes:
404	 *
405	 *              (gchild b:0)
406	 *              /       \
407	 *             /         \
408	 *            /           \
409	 *        (child b:?)   (node b:?)
410	 *         /  \          /   \
411	 *        /    \        /     \
412	 *            gleft   gright
413	 *
414	 * computing the new balances is more complicated. As an example:
415	 *	 if gchild was right_heavy, then child is now left heavy
416	 *		else it is balanced
417	 */
418	/* END CSTYLED */
419	gchild = child->avl_child[right];
420	gleft = gchild->avl_child[left];
421	gright = gchild->avl_child[right];
422
423	/*
424	 * move gright to left child of node and
425	 *
426	 * move gleft to right child of node
427	 */
428	node->avl_child[left] = gright;
429	if (gright != NULL) {
430		AVL_SETPARENT(gright, node);
431		AVL_SETCHILD(gright, left);
432	}
433
434	child->avl_child[right] = gleft;
435	if (gleft != NULL) {
436		AVL_SETPARENT(gleft, child);
437		AVL_SETCHILD(gleft, right);
438	}
439
440	/*
441	 * move child to left child of gchild and
442	 *
443	 * move node to right child of gchild and
444	 *
445	 * fixup parent of all this to point to gchild
446	 */
447	balance = AVL_XBALANCE(gchild);
448	gchild->avl_child[left] = child;
449	AVL_SETBALANCE(child, (balance == right_heavy ? left_heavy : 0));
450	AVL_SETPARENT(child, gchild);
451	AVL_SETCHILD(child, left);
452
453	gchild->avl_child[right] = node;
454	AVL_SETBALANCE(node, (balance == left_heavy ? right_heavy : 0));
455	AVL_SETPARENT(node, gchild);
456	AVL_SETCHILD(node, right);
457
458	AVL_SETBALANCE(gchild, 0);
459	AVL_SETPARENT(gchild, parent);
460	AVL_SETCHILD(gchild, which_child);
461	if (parent != NULL)
462		parent->avl_child[which_child] = gchild;
463	else
464		tree->avl_root = gchild;
465
466	return (1);	/* the new tree is always shorter */
467}
468
469
470/*
471 * Insert a new node into an AVL tree at the specified (from avl_find()) place.
472 *
473 * Newly inserted nodes are always leaf nodes in the tree, since avl_find()
474 * searches out to the leaf positions.  The avl_index_t indicates the node
475 * which will be the parent of the new node.
476 *
477 * After the node is inserted, a single rotation further up the tree may
478 * be necessary to maintain an acceptable AVL balance.
479 */
480void
481avl_insert(avl_tree_t *tree, void *new_data, avl_index_t where)
482{
483	avl_node_t *node;
484	avl_node_t *parent = AVL_INDEX2NODE(where);
485	int old_balance;
486	int new_balance;
487	int which_child = AVL_INDEX2CHILD(where);
488	size_t off = tree->avl_offset;
489
490	ASSERT(tree);
491#ifdef _LP64
492	ASSERT(((uintptr_t)new_data & 0x7) == 0);
493#endif
494
495	node = AVL_DATA2NODE(new_data, off);
496
497	/*
498	 * First, add the node to the tree at the indicated position.
499	 */
500	++tree->avl_numnodes;
501
502	node->avl_child[0] = NULL;
503	node->avl_child[1] = NULL;
504
505	AVL_SETCHILD(node, which_child);
506	AVL_SETBALANCE(node, 0);
507	AVL_SETPARENT(node, parent);
508	if (parent != NULL) {
509		ASSERT(parent->avl_child[which_child] == NULL);
510		parent->avl_child[which_child] = node;
511	} else {
512		ASSERT(tree->avl_root == NULL);
513		tree->avl_root = node;
514	}
515	/*
516	 * Now, back up the tree modifying the balance of all nodes above the
517	 * insertion point. If we get to a highly unbalanced ancestor, we
518	 * need to do a rotation.  If we back out of the tree we are done.
519	 * If we brought any subtree into perfect balance (0), we are also done.
520	 */
521	for (;;) {
522		node = parent;
523		if (node == NULL)
524			return;
525
526		/*
527		 * Compute the new balance
528		 */
529		old_balance = AVL_XBALANCE(node);
530		new_balance = old_balance + avl_child2balance[which_child];
531
532		/*
533		 * If we introduced equal balance, then we are done immediately
534		 */
535		if (new_balance == 0) {
536			AVL_SETBALANCE(node, 0);
537			return;
538		}
539
540		/*
541		 * If both old and new are not zero we went
542		 * from -1 to -2 balance, do a rotation.
543		 */
544		if (old_balance != 0)
545			break;
546
547		AVL_SETBALANCE(node, new_balance);
548		parent = AVL_XPARENT(node);
549		which_child = AVL_XCHILD(node);
550	}
551
552	/*
553	 * perform a rotation to fix the tree and return
554	 */
555	(void) avl_rotation(tree, node, new_balance);
556}
557
558/*
559 * Insert "new_data" in "tree" in the given "direction" either after or
560 * before (AVL_AFTER, AVL_BEFORE) the data "here".
561 *
562 * Insertions can only be done at empty leaf points in the tree, therefore
563 * if the given child of the node is already present we move to either
564 * the AVL_PREV or AVL_NEXT and reverse the insertion direction. Since
565 * every other node in the tree is a leaf, this always works.
566 *
567 * To help developers using this interface, we assert that the new node
568 * is correctly ordered at every step of the way in DEBUG kernels.
569 */
570void
571avl_insert_here(
572	avl_tree_t *tree,
573	void *new_data,
574	void *here,
575	int direction)
576{
577	avl_node_t *node;
578	int child = direction;	/* rely on AVL_BEFORE == 0, AVL_AFTER == 1 */
579#ifdef DEBUG
580	int diff;
581#endif
582
583	ASSERT(tree != NULL);
584	ASSERT(new_data != NULL);
585	ASSERT(here != NULL);
586	ASSERT(direction == AVL_BEFORE || direction == AVL_AFTER);
587
588	/*
589	 * If corresponding child of node is not NULL, go to the neighboring
590	 * node and reverse the insertion direction.
591	 */
592	node = AVL_DATA2NODE(here, tree->avl_offset);
593
594#ifdef DEBUG
595	diff = tree->avl_compar(new_data, here);
596	ASSERT(-1 <= diff && diff <= 1);
597	ASSERT(diff != 0);
598	ASSERT(diff > 0 ? child == 1 : child == 0);
599#endif
600
601	if (node->avl_child[child] != NULL) {
602		node = node->avl_child[child];
603		child = 1 - child;
604		while (node->avl_child[child] != NULL) {
605#ifdef DEBUG
606			diff = tree->avl_compar(new_data,
607			    AVL_NODE2DATA(node, tree->avl_offset));
608			ASSERT(-1 <= diff && diff <= 1);
609			ASSERT(diff != 0);
610			ASSERT(diff > 0 ? child == 1 : child == 0);
611#endif
612			node = node->avl_child[child];
613		}
614#ifdef DEBUG
615		diff = tree->avl_compar(new_data,
616		    AVL_NODE2DATA(node, tree->avl_offset));
617		ASSERT(-1 <= diff && diff <= 1);
618		ASSERT(diff != 0);
619		ASSERT(diff > 0 ? child == 1 : child == 0);
620#endif
621	}
622	ASSERT(node->avl_child[child] == NULL);
623
624	avl_insert(tree, new_data, AVL_MKINDEX(node, child));
625}
626
627/*
628 * Add a new node to an AVL tree.
629 */
630void
631avl_add(avl_tree_t *tree, void *new_node)
632{
633	avl_index_t where;
634
635	/*
636	 * This is unfortunate.  We want to call panic() here, even for
637	 * non-DEBUG kernels.  In userland, however, we can't depend on anything
638	 * in libc or else the rtld build process gets confused.  So, all we can
639	 * do in userland is resort to a normal ASSERT().
640	 */
641	if (avl_find(tree, new_node, &where) != NULL)
642#ifdef _KERNEL
643		panic("avl_find() succeeded inside avl_add()");
644#else
645		ASSERT(0);
646#endif
647	avl_insert(tree, new_node, where);
648}
649
650/*
651 * Delete a node from the AVL tree.  Deletion is similar to insertion, but
652 * with 2 complications.
653 *
654 * First, we may be deleting an interior node. Consider the following subtree:
655 *
656 *     d           c            c
657 *    / \         / \          / \
658 *   b   e       b   e        b   e
659 *  / \	        / \          /
660 * a   c       a            a
661 *
662 * When we are deleting node (d), we find and bring up an adjacent valued leaf
663 * node, say (c), to take the interior node's place. In the code this is
664 * handled by temporarily swapping (d) and (c) in the tree and then using
665 * common code to delete (d) from the leaf position.
666 *
667 * Secondly, an interior deletion from a deep tree may require more than one
668 * rotation to fix the balance. This is handled by moving up the tree through
669 * parents and applying rotations as needed. The return value from
670 * avl_rotation() is used to detect when a subtree did not change overall
671 * height due to a rotation.
672 */
673void
674avl_remove(avl_tree_t *tree, void *data)
675{
676	avl_node_t *delete;
677	avl_node_t *parent;
678	avl_node_t *node;
679	avl_node_t tmp;
680	int old_balance;
681	int new_balance;
682	int left;
683	int right;
684	int which_child;
685	size_t off = tree->avl_offset;
686
687	ASSERT(tree);
688
689	delete = AVL_DATA2NODE(data, off);
690
691	/*
692	 * Deletion is easiest with a node that has at most 1 child.
693	 * We swap a node with 2 children with a sequentially valued
694	 * neighbor node. That node will have at most 1 child. Note this
695	 * has no effect on the ordering of the remaining nodes.
696	 *
697	 * As an optimization, we choose the greater neighbor if the tree
698	 * is right heavy, otherwise the left neighbor. This reduces the
699	 * number of rotations needed.
700	 */
701	if (delete->avl_child[0] != NULL && delete->avl_child[1] != NULL) {
702
703		/*
704		 * choose node to swap from whichever side is taller
705		 */
706		old_balance = AVL_XBALANCE(delete);
707		left = avl_balance2child[old_balance + 1];
708		right = 1 - left;
709
710		/*
711		 * get to the previous value'd node
712		 * (down 1 left, as far as possible right)
713		 */
714		for (node = delete->avl_child[left];
715		    node->avl_child[right] != NULL;
716		    node = node->avl_child[right])
717			;
718
719		/*
720		 * create a temp placeholder for 'node'
721		 * move 'node' to delete's spot in the tree
722		 */
723		tmp = *node;
724
725		*node = *delete;
726		if (node->avl_child[left] == node)
727			node->avl_child[left] = &tmp;
728
729		parent = AVL_XPARENT(node);
730		if (parent != NULL)
731			parent->avl_child[AVL_XCHILD(node)] = node;
732		else
733			tree->avl_root = node;
734		AVL_SETPARENT(node->avl_child[left], node);
735		AVL_SETPARENT(node->avl_child[right], node);
736
737		/*
738		 * Put tmp where node used to be (just temporary).
739		 * It always has a parent and at most 1 child.
740		 */
741		delete = &tmp;
742		parent = AVL_XPARENT(delete);
743		parent->avl_child[AVL_XCHILD(delete)] = delete;
744		which_child = (delete->avl_child[1] != 0);
745		if (delete->avl_child[which_child] != NULL)
746			AVL_SETPARENT(delete->avl_child[which_child], delete);
747	}
748
749
750	/*
751	 * Here we know "delete" is at least partially a leaf node. It can
752	 * be easily removed from the tree.
753	 */
754	ASSERT(tree->avl_numnodes > 0);
755	--tree->avl_numnodes;
756	parent = AVL_XPARENT(delete);
757	which_child = AVL_XCHILD(delete);
758	if (delete->avl_child[0] != NULL)
759		node = delete->avl_child[0];
760	else
761		node = delete->avl_child[1];
762
763	/*
764	 * Connect parent directly to node (leaving out delete).
765	 */
766	if (node != NULL) {
767		AVL_SETPARENT(node, parent);
768		AVL_SETCHILD(node, which_child);
769	}
770	if (parent == NULL) {
771		tree->avl_root = node;
772		return;
773	}
774	parent->avl_child[which_child] = node;
775
776
777	/*
778	 * Since the subtree is now shorter, begin adjusting parent balances
779	 * and performing any needed rotations.
780	 */
781	do {
782
783		/*
784		 * Move up the tree and adjust the balance
785		 *
786		 * Capture the parent and which_child values for the next
787		 * iteration before any rotations occur.
788		 */
789		node = parent;
790		old_balance = AVL_XBALANCE(node);
791		new_balance = old_balance - avl_child2balance[which_child];
792		parent = AVL_XPARENT(node);
793		which_child = AVL_XCHILD(node);
794
795		/*
796		 * If a node was in perfect balance but isn't anymore then
797		 * we can stop, since the height didn't change above this point
798		 * due to a deletion.
799		 */
800		if (old_balance == 0) {
801			AVL_SETBALANCE(node, new_balance);
802			break;
803		}
804
805		/*
806		 * If the new balance is zero, we don't need to rotate
807		 * else
808		 * need a rotation to fix the balance.
809		 * If the rotation doesn't change the height
810		 * of the sub-tree we have finished adjusting.
811		 */
812		if (new_balance == 0)
813			AVL_SETBALANCE(node, new_balance);
814		else if (!avl_rotation(tree, node, new_balance))
815			break;
816	} while (parent != NULL);
817}
818
819#define	AVL_REINSERT(tree, obj)		\
820	avl_remove((tree), (obj));	\
821	avl_add((tree), (obj))
822
823boolean_t
824avl_update_lt(avl_tree_t *t, void *obj)
825{
826	void *neighbor;
827
828	ASSERT(((neighbor = AVL_NEXT(t, obj)) == NULL) ||
829	    (t->avl_compar(obj, neighbor) <= 0));
830
831	neighbor = AVL_PREV(t, obj);
832	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) {
833		AVL_REINSERT(t, obj);
834		return (B_TRUE);
835	}
836
837	return (B_FALSE);
838}
839
840boolean_t
841avl_update_gt(avl_tree_t *t, void *obj)
842{
843	void *neighbor;
844
845	ASSERT(((neighbor = AVL_PREV(t, obj)) == NULL) ||
846	    (t->avl_compar(obj, neighbor) >= 0));
847
848	neighbor = AVL_NEXT(t, obj);
849	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) {
850		AVL_REINSERT(t, obj);
851		return (B_TRUE);
852	}
853
854	return (B_FALSE);
855}
856
857boolean_t
858avl_update(avl_tree_t *t, void *obj)
859{
860	void *neighbor;
861
862	neighbor = AVL_PREV(t, obj);
863	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) {
864		AVL_REINSERT(t, obj);
865		return (B_TRUE);
866	}
867
868	neighbor = AVL_NEXT(t, obj);
869	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) {
870		AVL_REINSERT(t, obj);
871		return (B_TRUE);
872	}
873
874	return (B_FALSE);
875}
876
877void
878avl_swap(avl_tree_t *tree1, avl_tree_t *tree2)
879{
880	avl_node_t *temp_node;
881	ulong_t temp_numnodes;
882
883	ASSERT3P(tree1->avl_compar, ==, tree2->avl_compar);
884	ASSERT3U(tree1->avl_offset, ==, tree2->avl_offset);
885	ASSERT3U(tree1->avl_size, ==, tree2->avl_size);
886
887	temp_node = tree1->avl_root;
888	temp_numnodes = tree1->avl_numnodes;
889	tree1->avl_root = tree2->avl_root;
890	tree1->avl_numnodes = tree2->avl_numnodes;
891	tree2->avl_root = temp_node;
892	tree2->avl_numnodes = temp_numnodes;
893}
894
895/*
896 * initialize a new AVL tree
897 */
898void
899avl_create(avl_tree_t *tree, int (*compar) (const void *, const void *),
900    size_t size, size_t offset)
901{
902	ASSERT(tree);
903	ASSERT(compar);
904	ASSERT(size > 0);
905	ASSERT(size >= offset + sizeof (avl_node_t));
906#ifdef _LP64
907	ASSERT((offset & 0x7) == 0);
908#endif
909
910	tree->avl_compar = compar;
911	tree->avl_root = NULL;
912	tree->avl_numnodes = 0;
913	tree->avl_size = size;
914	tree->avl_offset = offset;
915}
916
917/*
918 * Delete a tree.
919 */
920/* ARGSUSED */
921void
922avl_destroy(avl_tree_t *tree)
923{
924	ASSERT(tree);
925	ASSERT(tree->avl_numnodes == 0);
926	ASSERT(tree->avl_root == NULL);
927}
928
929
930/*
931 * Return the number of nodes in an AVL tree.
932 */
933ulong_t
934avl_numnodes(avl_tree_t *tree)
935{
936	ASSERT(tree);
937	return (tree->avl_numnodes);
938}
939
940boolean_t
941avl_is_empty(avl_tree_t *tree)
942{
943	ASSERT(tree);
944	return (tree->avl_numnodes == 0);
945}
946
947#define	CHILDBIT	(1L)
948
949/*
950 * Post-order tree walk used to visit all tree nodes and destroy the tree
951 * in post order. This is used for destroying a tree without paying any cost
952 * for rebalancing it.
953 *
954 * example:
955 *
956 *	void *cookie = NULL;
957 *	my_data_t *node;
958 *
959 *	while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
960 *		free(node);
961 *	avl_destroy(tree);
962 *
963 * The cookie is really an avl_node_t to the current node's parent and
964 * an indication of which child you looked at last.
965 *
966 * On input, a cookie value of CHILDBIT indicates the tree is done.
967 */
968void *
969avl_destroy_nodes(avl_tree_t *tree, void **cookie)
970{
971	avl_node_t	*node;
972	avl_node_t	*parent;
973	int		child;
974	void		*first;
975	size_t		off = tree->avl_offset;
976
977	/*
978	 * Initial calls go to the first node or it's right descendant.
979	 */
980	if (*cookie == NULL) {
981		first = avl_first(tree);
982
983		/*
984		 * deal with an empty tree
985		 */
986		if (first == NULL) {
987			*cookie = (void *)CHILDBIT;
988			return (NULL);
989		}
990
991		node = AVL_DATA2NODE(first, off);
992		parent = AVL_XPARENT(node);
993		goto check_right_side;
994	}
995
996	/*
997	 * If there is no parent to return to we are done.
998	 */
999	parent = (avl_node_t *)((uintptr_t)(*cookie) & ~CHILDBIT);
1000	if (parent == NULL) {
1001		if (tree->avl_root != NULL) {
1002			ASSERT(tree->avl_numnodes == 1);
1003			tree->avl_root = NULL;
1004			tree->avl_numnodes = 0;
1005		}
1006		return (NULL);
1007	}
1008
1009	/*
1010	 * Remove the child pointer we just visited from the parent and tree.
1011	 */
1012	child = (uintptr_t)(*cookie) & CHILDBIT;
1013	parent->avl_child[child] = NULL;
1014	ASSERT(tree->avl_numnodes > 1);
1015	--tree->avl_numnodes;
1016
1017	/*
1018	 * If we just did a right child or there isn't one, go up to parent.
1019	 */
1020	if (child == 1 || parent->avl_child[1] == NULL) {
1021		node = parent;
1022		parent = AVL_XPARENT(parent);
1023		goto done;
1024	}
1025
1026	/*
1027	 * Do parent's right child, then leftmost descendent.
1028	 */
1029	node = parent->avl_child[1];
1030	while (node->avl_child[0] != NULL) {
1031		parent = node;
1032		node = node->avl_child[0];
1033	}
1034
1035	/*
1036	 * If here, we moved to a left child. It may have one
1037	 * child on the right (when balance == +1).
1038	 */
1039check_right_side:
1040	if (node->avl_child[1] != NULL) {
1041		ASSERT(AVL_XBALANCE(node) == 1);
1042		parent = node;
1043		node = node->avl_child[1];
1044		ASSERT(node->avl_child[0] == NULL &&
1045		    node->avl_child[1] == NULL);
1046	} else {
1047		ASSERT(AVL_XBALANCE(node) <= 0);
1048	}
1049
1050done:
1051	if (parent == NULL) {
1052		*cookie = (void *)CHILDBIT;
1053		ASSERT(node == tree->avl_root);
1054	} else {
1055		*cookie = (void *)((uintptr_t)parent | AVL_XCHILD(node));
1056	}
1057
1058	return (AVL_NODE2DATA(node, off));
1059}
1060