zfsimpl.h revision 268649
1/*-
2 * Copyright (c) 2002 McAfee, Inc.
3 * All rights reserved.
4 *
5 * This software was developed for the FreeBSD Project by Marshall
6 * Kirk McKusick and McAfee Research,, the Security Research Division of
7 * McAfee, Inc. under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as
8 * part of the DARPA CHATS research program
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31/*
32 * CDDL HEADER START
33 *
34 * The contents of this file are subject to the terms of the
35 * Common Development and Distribution License (the "License").
36 * You may not use this file except in compliance with the License.
37 *
38 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
39 * or http://www.opensolaris.org/os/licensing.
40 * See the License for the specific language governing permissions
41 * and limitations under the License.
42 *
43 * When distributing Covered Code, include this CDDL HEADER in each
44 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
45 * If applicable, add the following below this CDDL HEADER, with the
46 * fields enclosed by brackets "[]" replaced with your own identifying
47 * information: Portions Copyright [yyyy] [name of copyright owner]
48 *
49 * CDDL HEADER END
50 */
51/*
52 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
53 * Use is subject to license terms.
54 */
55/*
56 * Copyright 2013 by Saso Kiselkov. All rights reserved.
57 */
58/*
59 * Copyright (c) 2013 by Delphix. All rights reserved.
60 */
61
62#define	MAXNAMELEN	256
63
64#define _NOTE(s)
65
66/* CRC64 table */
67#define	ZFS_CRC64_POLY	0xC96C5795D7870F42ULL	/* ECMA-182, reflected form */
68
69/*
70 * Macros for various sorts of alignment and rounding when the alignment
71 * is known to be a power of 2.
72 */
73#define	P2ALIGN(x, align)		((x) & -(align))
74#define	P2PHASE(x, align)		((x) & ((align) - 1))
75#define	P2NPHASE(x, align)		(-(x) & ((align) - 1))
76#define	P2ROUNDUP(x, align)		(-(-(x) & -(align)))
77#define	P2END(x, align)			(-(~(x) & -(align)))
78#define	P2PHASEUP(x, align, phase)	((phase) - (((phase) - (x)) & -(align)))
79#define	P2BOUNDARY(off, len, align)	(((off) ^ ((off) + (len) - 1)) > (align) - 1)
80
81/*
82 * General-purpose 32-bit and 64-bit bitfield encodings.
83 */
84#define	BF32_DECODE(x, low, len)	P2PHASE((x) >> (low), 1U << (len))
85#define	BF64_DECODE(x, low, len)	P2PHASE((x) >> (low), 1ULL << (len))
86#define	BF32_ENCODE(x, low, len)	(P2PHASE((x), 1U << (len)) << (low))
87#define	BF64_ENCODE(x, low, len)	(P2PHASE((x), 1ULL << (len)) << (low))
88
89#define	BF32_GET(x, low, len)		BF32_DECODE(x, low, len)
90#define	BF64_GET(x, low, len)		BF64_DECODE(x, low, len)
91
92#define	BF32_SET(x, low, len, val)	\
93	((x) ^= BF32_ENCODE((x >> low) ^ (val), low, len))
94#define	BF64_SET(x, low, len, val)	\
95	((x) ^= BF64_ENCODE((x >> low) ^ (val), low, len))
96
97#define	BF32_GET_SB(x, low, len, shift, bias)	\
98	((BF32_GET(x, low, len) + (bias)) << (shift))
99#define	BF64_GET_SB(x, low, len, shift, bias)	\
100	((BF64_GET(x, low, len) + (bias)) << (shift))
101
102#define	BF32_SET_SB(x, low, len, shift, bias, val)	\
103	BF32_SET(x, low, len, ((val) >> (shift)) - (bias))
104#define	BF64_SET_SB(x, low, len, shift, bias, val)	\
105	BF64_SET(x, low, len, ((val) >> (shift)) - (bias))
106
107/*
108 * Macros to reverse byte order
109 */
110#define	BSWAP_8(x)	((x) & 0xff)
111#define	BSWAP_16(x)	((BSWAP_8(x) << 8) | BSWAP_8((x) >> 8))
112#define	BSWAP_32(x)	((BSWAP_16(x) << 16) | BSWAP_16((x) >> 16))
113#define	BSWAP_64(x)	((BSWAP_32(x) << 32) | BSWAP_32((x) >> 32))
114
115/*
116 * We currently support nine block sizes, from 512 bytes to 128K.
117 * We could go higher, but the benefits are near-zero and the cost
118 * of COWing a giant block to modify one byte would become excessive.
119 */
120#define	SPA_MINBLOCKSHIFT	9
121#define	SPA_MAXBLOCKSHIFT	17
122#define	SPA_MINBLOCKSIZE	(1ULL << SPA_MINBLOCKSHIFT)
123#define	SPA_MAXBLOCKSIZE	(1ULL << SPA_MAXBLOCKSHIFT)
124
125#define	SPA_BLOCKSIZES		(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1)
126
127/*
128 * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB.
129 * The ASIZE encoding should be at least 64 times larger (6 more bits)
130 * to support up to 4-way RAID-Z mirror mode with worst-case gang block
131 * overhead, three DVAs per bp, plus one more bit in case we do anything
132 * else that expands the ASIZE.
133 */
134#define	SPA_LSIZEBITS		16	/* LSIZE up to 32M (2^16 * 512)	*/
135#define	SPA_PSIZEBITS		16	/* PSIZE up to 32M (2^16 * 512)	*/
136#define	SPA_ASIZEBITS		24	/* ASIZE up to 64 times larger	*/
137
138/*
139 * All SPA data is represented by 128-bit data virtual addresses (DVAs).
140 * The members of the dva_t should be considered opaque outside the SPA.
141 */
142typedef struct dva {
143	uint64_t	dva_word[2];
144} dva_t;
145
146/*
147 * Each block has a 256-bit checksum -- strong enough for cryptographic hashes.
148 */
149typedef struct zio_cksum {
150	uint64_t	zc_word[4];
151} zio_cksum_t;
152
153/*
154 * Each block is described by its DVAs, time of birth, checksum, etc.
155 * The word-by-word, bit-by-bit layout of the blkptr is as follows:
156 *
157 *	64	56	48	40	32	24	16	8	0
158 *	+-------+-------+-------+-------+-------+-------+-------+-------+
159 * 0	|		vdev1		| GRID  |	  ASIZE		|
160 *	+-------+-------+-------+-------+-------+-------+-------+-------+
161 * 1	|G|			 offset1				|
162 *	+-------+-------+-------+-------+-------+-------+-------+-------+
163 * 2	|		vdev2		| GRID  |	  ASIZE		|
164 *	+-------+-------+-------+-------+-------+-------+-------+-------+
165 * 3	|G|			 offset2				|
166 *	+-------+-------+-------+-------+-------+-------+-------+-------+
167 * 4	|		vdev3		| GRID  |	  ASIZE		|
168 *	+-------+-------+-------+-------+-------+-------+-------+-------+
169 * 5	|G|			 offset3				|
170 *	+-------+-------+-------+-------+-------+-------+-------+-------+
171 * 6	|BDX|lvl| type	| cksum |E| comp|    PSIZE	|     LSIZE	|
172 *	+-------+-------+-------+-------+-------+-------+-------+-------+
173 * 7	|			padding					|
174 *	+-------+-------+-------+-------+-------+-------+-------+-------+
175 * 8	|			padding					|
176 *	+-------+-------+-------+-------+-------+-------+-------+-------+
177 * 9	|			physical birth txg			|
178 *	+-------+-------+-------+-------+-------+-------+-------+-------+
179 * a	|			logical birth txg			|
180 *	+-------+-------+-------+-------+-------+-------+-------+-------+
181 * b	|			fill count				|
182 *	+-------+-------+-------+-------+-------+-------+-------+-------+
183 * c	|			checksum[0]				|
184 *	+-------+-------+-------+-------+-------+-------+-------+-------+
185 * d	|			checksum[1]				|
186 *	+-------+-------+-------+-------+-------+-------+-------+-------+
187 * e	|			checksum[2]				|
188 *	+-------+-------+-------+-------+-------+-------+-------+-------+
189 * f	|			checksum[3]				|
190 *	+-------+-------+-------+-------+-------+-------+-------+-------+
191 *
192 * Legend:
193 *
194 * vdev		virtual device ID
195 * offset	offset into virtual device
196 * LSIZE	logical size
197 * PSIZE	physical size (after compression)
198 * ASIZE	allocated size (including RAID-Z parity and gang block headers)
199 * GRID		RAID-Z layout information (reserved for future use)
200 * cksum	checksum function
201 * comp		compression function
202 * G		gang block indicator
203 * B		byteorder (endianness)
204 * D		dedup
205 * X		encryption (on version 30, which is not supported)
206 * E		blkptr_t contains embedded data (see below)
207 * lvl		level of indirection
208 * type		DMU object type
209 * phys birth	txg of block allocation; zero if same as logical birth txg
210 * log. birth	transaction group in which the block was logically born
211 * fill count	number of non-zero blocks under this bp
212 * checksum[4]	256-bit checksum of the data this bp describes
213 */
214
215/*
216 * "Embedded" blkptr_t's don't actually point to a block, instead they
217 * have a data payload embedded in the blkptr_t itself.  See the comment
218 * in blkptr.c for more details.
219 *
220 * The blkptr_t is laid out as follows:
221 *
222 *	64	56	48	40	32	24	16	8	0
223 *	+-------+-------+-------+-------+-------+-------+-------+-------+
224 * 0	|      payload                                                  |
225 * 1	|      payload                                                  |
226 * 2	|      payload                                                  |
227 * 3	|      payload                                                  |
228 * 4	|      payload                                                  |
229 * 5	|      payload                                                  |
230 *	+-------+-------+-------+-------+-------+-------+-------+-------+
231 * 6	|BDX|lvl| type	| etype |E| comp| PSIZE|              LSIZE	|
232 *	+-------+-------+-------+-------+-------+-------+-------+-------+
233 * 7	|      payload                                                  |
234 * 8	|      payload                                                  |
235 * 9	|      payload                                                  |
236 *	+-------+-------+-------+-------+-------+-------+-------+-------+
237 * a	|			logical birth txg			|
238 *	+-------+-------+-------+-------+-------+-------+-------+-------+
239 * b	|      payload                                                  |
240 * c	|      payload                                                  |
241 * d	|      payload                                                  |
242 * e	|      payload                                                  |
243 * f	|      payload                                                  |
244 *	+-------+-------+-------+-------+-------+-------+-------+-------+
245 *
246 * Legend:
247 *
248 * payload		contains the embedded data
249 * B (byteorder)	byteorder (endianness)
250 * D (dedup)		padding (set to zero)
251 * X			encryption (set to zero; see above)
252 * E (embedded)		set to one
253 * lvl			indirection level
254 * type			DMU object type
255 * etype		how to interpret embedded data (BP_EMBEDDED_TYPE_*)
256 * comp			compression function of payload
257 * PSIZE		size of payload after compression, in bytes
258 * LSIZE		logical size of payload, in bytes
259 *			note that 25 bits is enough to store the largest
260 *			"normal" BP's LSIZE (2^16 * 2^9) in bytes
261 * log. birth		transaction group in which the block was logically born
262 *
263 * Note that LSIZE and PSIZE are stored in bytes, whereas for non-embedded
264 * bp's they are stored in units of SPA_MINBLOCKSHIFT.
265 * Generally, the generic BP_GET_*() macros can be used on embedded BP's.
266 * The B, D, X, lvl, type, and comp fields are stored the same as with normal
267 * BP's so the BP_SET_* macros can be used with them.  etype, PSIZE, LSIZE must
268 * be set with the BPE_SET_* macros.  BP_SET_EMBEDDED() should be called before
269 * other macros, as they assert that they are only used on BP's of the correct
270 * "embedded-ness".
271 */
272
273#define	BPE_GET_ETYPE(bp)	\
274	(ASSERT(BP_IS_EMBEDDED(bp)), \
275	BF64_GET((bp)->blk_prop, 40, 8))
276#define	BPE_SET_ETYPE(bp, t)	do { \
277	ASSERT(BP_IS_EMBEDDED(bp)); \
278	BF64_SET((bp)->blk_prop, 40, 8, t); \
279_NOTE(CONSTCOND) } while (0)
280
281#define	BPE_GET_LSIZE(bp)	\
282	(ASSERT(BP_IS_EMBEDDED(bp)), \
283	BF64_GET_SB((bp)->blk_prop, 0, 25, 0, 1))
284#define	BPE_SET_LSIZE(bp, x)	do { \
285	ASSERT(BP_IS_EMBEDDED(bp)); \
286	BF64_SET_SB((bp)->blk_prop, 0, 25, 0, 1, x); \
287_NOTE(CONSTCOND) } while (0)
288
289#define	BPE_GET_PSIZE(bp)	\
290	(ASSERT(BP_IS_EMBEDDED(bp)), \
291	BF64_GET_SB((bp)->blk_prop, 25, 7, 0, 1))
292#define	BPE_SET_PSIZE(bp, x)	do { \
293	ASSERT(BP_IS_EMBEDDED(bp)); \
294	BF64_SET_SB((bp)->blk_prop, 25, 7, 0, 1, x); \
295_NOTE(CONSTCOND) } while (0)
296
297typedef enum bp_embedded_type {
298	BP_EMBEDDED_TYPE_DATA,
299	BP_EMBEDDED_TYPE_RESERVED, /* Reserved for an unintegrated feature. */
300	NUM_BP_EMBEDDED_TYPES = BP_EMBEDDED_TYPE_RESERVED
301} bp_embedded_type_t;
302
303#define	BPE_NUM_WORDS 14
304#define	BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t))
305#define	BPE_IS_PAYLOADWORD(bp, wp) \
306	((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth)
307
308#define	SPA_BLKPTRSHIFT	7		/* blkptr_t is 128 bytes	*/
309#define	SPA_DVAS_PER_BP	3		/* Number of DVAs in a bp	*/
310
311typedef struct blkptr {
312	dva_t		blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */
313	uint64_t	blk_prop;	/* size, compression, type, etc	    */
314	uint64_t	blk_pad[2];	/* Extra space for the future	    */
315	uint64_t	blk_phys_birth;	/* txg when block was allocated	    */
316	uint64_t	blk_birth;	/* transaction group at birth	    */
317	uint64_t	blk_fill;	/* fill count			    */
318	zio_cksum_t	blk_cksum;	/* 256-bit checksum		    */
319} blkptr_t;
320
321/*
322 * Macros to get and set fields in a bp or DVA.
323 */
324#define	DVA_GET_ASIZE(dva)	\
325	BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0)
326#define	DVA_SET_ASIZE(dva, x)	\
327	BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \
328	SPA_MINBLOCKSHIFT, 0, x)
329
330#define	DVA_GET_GRID(dva)	BF64_GET((dva)->dva_word[0], 24, 8)
331#define	DVA_SET_GRID(dva, x)	BF64_SET((dva)->dva_word[0], 24, 8, x)
332
333#define	DVA_GET_VDEV(dva)	BF64_GET((dva)->dva_word[0], 32, 32)
334#define	DVA_SET_VDEV(dva, x)	BF64_SET((dva)->dva_word[0], 32, 32, x)
335
336#define	DVA_GET_OFFSET(dva)	\
337	BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0)
338#define	DVA_SET_OFFSET(dva, x)	\
339	BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x)
340
341#define	DVA_GET_GANG(dva)	BF64_GET((dva)->dva_word[1], 63, 1)
342#define	DVA_SET_GANG(dva, x)	BF64_SET((dva)->dva_word[1], 63, 1, x)
343
344#define	BP_GET_LSIZE(bp)	\
345	(BP_IS_EMBEDDED(bp) ?	\
346	(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA ? BPE_GET_LSIZE(bp) : 0): \
347	BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1))
348#define	BP_SET_LSIZE(bp, x)	do { \
349	ASSERT(!BP_IS_EMBEDDED(bp)); \
350	BF64_SET_SB((bp)->blk_prop, \
351	    0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
352_NOTE(CONSTCOND) } while (0)
353
354#define	BP_GET_PSIZE(bp)	\
355	BF64_GET_SB((bp)->blk_prop, 16, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1)
356#define	BP_SET_PSIZE(bp, x)	\
357	BF64_SET_SB((bp)->blk_prop, 16, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x)
358
359#define	BP_GET_COMPRESS(bp)	BF64_GET((bp)->blk_prop, 32, 7)
360#define	BP_SET_COMPRESS(bp, x)	BF64_SET((bp)->blk_prop, 32, 7, x)
361
362#define	BP_GET_CHECKSUM(bp)	BF64_GET((bp)->blk_prop, 40, 8)
363#define	BP_SET_CHECKSUM(bp, x)	BF64_SET((bp)->blk_prop, 40, 8, x)
364
365#define	BP_GET_TYPE(bp)		BF64_GET((bp)->blk_prop, 48, 8)
366#define	BP_SET_TYPE(bp, x)	BF64_SET((bp)->blk_prop, 48, 8, x)
367
368#define	BP_GET_LEVEL(bp)	BF64_GET((bp)->blk_prop, 56, 5)
369#define	BP_SET_LEVEL(bp, x)	BF64_SET((bp)->blk_prop, 56, 5, x)
370
371#define	BP_IS_EMBEDDED(bp)	BF64_GET((bp)->blk_prop, 39, 1)
372
373#define	BP_GET_DEDUP(bp)	BF64_GET((bp)->blk_prop, 62, 1)
374#define	BP_SET_DEDUP(bp, x)	BF64_SET((bp)->blk_prop, 62, 1, x)
375
376#define	BP_GET_BYTEORDER(bp)	BF64_GET((bp)->blk_prop, 63, 1)
377#define	BP_SET_BYTEORDER(bp, x)	BF64_SET((bp)->blk_prop, 63, 1, x)
378
379#define	BP_PHYSICAL_BIRTH(bp)		\
380	((bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth)
381
382#define	BP_GET_ASIZE(bp)	\
383	(DVA_GET_ASIZE(&(bp)->blk_dva[0]) + DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
384		DVA_GET_ASIZE(&(bp)->blk_dva[2]))
385
386#define	BP_GET_UCSIZE(bp) \
387	((BP_GET_LEVEL(bp) > 0 || dmu_ot[BP_GET_TYPE(bp)].ot_metadata) ? \
388	BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp));
389
390#define	BP_GET_NDVAS(bp)	\
391	(!!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
392	!!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
393	!!DVA_GET_ASIZE(&(bp)->blk_dva[2]))
394
395#define	DVA_EQUAL(dva1, dva2)	\
396	((dva1)->dva_word[1] == (dva2)->dva_word[1] && \
397	(dva1)->dva_word[0] == (dva2)->dva_word[0])
398
399#define	ZIO_CHECKSUM_EQUAL(zc1, zc2) \
400	(0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) | \
401	((zc1).zc_word[1] - (zc2).zc_word[1]) | \
402	((zc1).zc_word[2] - (zc2).zc_word[2]) | \
403	((zc1).zc_word[3] - (zc2).zc_word[3])))
404
405
406#define	DVA_IS_VALID(dva)	(DVA_GET_ASIZE(dva) != 0)
407
408#define	ZIO_SET_CHECKSUM(zcp, w0, w1, w2, w3)	\
409{						\
410	(zcp)->zc_word[0] = w0;			\
411	(zcp)->zc_word[1] = w1;			\
412	(zcp)->zc_word[2] = w2;			\
413	(zcp)->zc_word[3] = w3;			\
414}
415
416#define	BP_IDENTITY(bp)		(&(bp)->blk_dva[0])
417#define	BP_IS_GANG(bp)		DVA_GET_GANG(BP_IDENTITY(bp))
418#define	DVA_IS_EMPTY(dva)	((dva)->dva_word[0] == 0ULL &&  \
419	(dva)->dva_word[1] == 0ULL)
420#define	BP_IS_HOLE(bp)		DVA_IS_EMPTY(BP_IDENTITY(bp))
421#define	BP_IS_OLDER(bp, txg)	(!BP_IS_HOLE(bp) && (bp)->blk_birth < (txg))
422
423#define	BP_ZERO(bp)				\
424{						\
425	(bp)->blk_dva[0].dva_word[0] = 0;	\
426	(bp)->blk_dva[0].dva_word[1] = 0;	\
427	(bp)->blk_dva[1].dva_word[0] = 0;	\
428	(bp)->blk_dva[1].dva_word[1] = 0;	\
429	(bp)->blk_dva[2].dva_word[0] = 0;	\
430	(bp)->blk_dva[2].dva_word[1] = 0;	\
431	(bp)->blk_prop = 0;			\
432	(bp)->blk_pad[0] = 0;			\
433	(bp)->blk_pad[1] = 0;			\
434	(bp)->blk_phys_birth = 0;		\
435	(bp)->blk_birth = 0;			\
436	(bp)->blk_fill = 0;			\
437	ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0);	\
438}
439
440#define	BPE_NUM_WORDS 14
441#define	BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t))
442#define	BPE_IS_PAYLOADWORD(bp, wp) \
443	((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth)
444
445/*
446 * Embedded checksum
447 */
448#define	ZEC_MAGIC	0x210da7ab10c7a11ULL
449
450typedef struct zio_eck {
451	uint64_t	zec_magic;	/* for validation, endianness	*/
452	zio_cksum_t	zec_cksum;	/* 256-bit checksum		*/
453} zio_eck_t;
454
455/*
456 * Gang block headers are self-checksumming and contain an array
457 * of block pointers.
458 */
459#define	SPA_GANGBLOCKSIZE	SPA_MINBLOCKSIZE
460#define	SPA_GBH_NBLKPTRS	((SPA_GANGBLOCKSIZE - \
461	sizeof (zio_eck_t)) / sizeof (blkptr_t))
462#define	SPA_GBH_FILLER		((SPA_GANGBLOCKSIZE - \
463	sizeof (zio_eck_t) - \
464	(SPA_GBH_NBLKPTRS * sizeof (blkptr_t))) /\
465	sizeof (uint64_t))
466
467typedef struct zio_gbh {
468	blkptr_t		zg_blkptr[SPA_GBH_NBLKPTRS];
469	uint64_t		zg_filler[SPA_GBH_FILLER];
470	zio_eck_t		zg_tail;
471} zio_gbh_phys_t;
472
473#define	VDEV_RAIDZ_MAXPARITY	3
474
475#define	VDEV_PAD_SIZE		(8 << 10)
476/* 2 padding areas (vl_pad1 and vl_pad2) to skip */
477#define	VDEV_SKIP_SIZE		VDEV_PAD_SIZE * 2
478#define	VDEV_PHYS_SIZE		(112 << 10)
479#define	VDEV_UBERBLOCK_RING	(128 << 10)
480
481#define	VDEV_UBERBLOCK_SHIFT(vd)	\
482	MAX((vd)->v_top->v_ashift, UBERBLOCK_SHIFT)
483#define	VDEV_UBERBLOCK_COUNT(vd)	\
484	(VDEV_UBERBLOCK_RING >> VDEV_UBERBLOCK_SHIFT(vd))
485#define	VDEV_UBERBLOCK_OFFSET(vd, n)	\
486	offsetof(vdev_label_t, vl_uberblock[(n) << VDEV_UBERBLOCK_SHIFT(vd)])
487#define	VDEV_UBERBLOCK_SIZE(vd)		(1ULL << VDEV_UBERBLOCK_SHIFT(vd))
488
489typedef struct vdev_phys {
490	char		vp_nvlist[VDEV_PHYS_SIZE - sizeof (zio_eck_t)];
491	zio_eck_t	vp_zbt;
492} vdev_phys_t;
493
494typedef struct vdev_label {
495	char		vl_pad1[VDEV_PAD_SIZE];			/*  8K  */
496	char		vl_pad2[VDEV_PAD_SIZE];			/*  8K  */
497	vdev_phys_t	vl_vdev_phys;				/* 112K	*/
498	char		vl_uberblock[VDEV_UBERBLOCK_RING];	/* 128K	*/
499} vdev_label_t;							/* 256K total */
500
501/*
502 * vdev_dirty() flags
503 */
504#define	VDD_METASLAB	0x01
505#define	VDD_DTL		0x02
506
507/*
508 * Size and offset of embedded boot loader region on each label.
509 * The total size of the first two labels plus the boot area is 4MB.
510 */
511#define	VDEV_BOOT_OFFSET	(2 * sizeof (vdev_label_t))
512#define	VDEV_BOOT_SIZE		(7ULL << 19)			/* 3.5M	*/
513
514/*
515 * Size of label regions at the start and end of each leaf device.
516 */
517#define	VDEV_LABEL_START_SIZE	(2 * sizeof (vdev_label_t) + VDEV_BOOT_SIZE)
518#define	VDEV_LABEL_END_SIZE	(2 * sizeof (vdev_label_t))
519#define	VDEV_LABELS		4
520
521enum zio_checksum {
522	ZIO_CHECKSUM_INHERIT = 0,
523	ZIO_CHECKSUM_ON,
524	ZIO_CHECKSUM_OFF,
525	ZIO_CHECKSUM_LABEL,
526	ZIO_CHECKSUM_GANG_HEADER,
527	ZIO_CHECKSUM_ZILOG,
528	ZIO_CHECKSUM_FLETCHER_2,
529	ZIO_CHECKSUM_FLETCHER_4,
530	ZIO_CHECKSUM_SHA256,
531	ZIO_CHECKSUM_ZILOG2,
532	ZIO_CHECKSUM_FUNCTIONS
533};
534
535#define	ZIO_CHECKSUM_ON_VALUE	ZIO_CHECKSUM_FLETCHER_4
536#define	ZIO_CHECKSUM_DEFAULT	ZIO_CHECKSUM_ON
537
538enum zio_compress {
539	ZIO_COMPRESS_INHERIT = 0,
540	ZIO_COMPRESS_ON,
541	ZIO_COMPRESS_OFF,
542	ZIO_COMPRESS_LZJB,
543	ZIO_COMPRESS_EMPTY,
544	ZIO_COMPRESS_GZIP_1,
545	ZIO_COMPRESS_GZIP_2,
546	ZIO_COMPRESS_GZIP_3,
547	ZIO_COMPRESS_GZIP_4,
548	ZIO_COMPRESS_GZIP_5,
549	ZIO_COMPRESS_GZIP_6,
550	ZIO_COMPRESS_GZIP_7,
551	ZIO_COMPRESS_GZIP_8,
552	ZIO_COMPRESS_GZIP_9,
553	ZIO_COMPRESS_ZLE,
554	ZIO_COMPRESS_LZ4,
555	ZIO_COMPRESS_FUNCTIONS
556};
557
558#define	ZIO_COMPRESS_ON_VALUE	ZIO_COMPRESS_LZJB
559#define	ZIO_COMPRESS_DEFAULT	ZIO_COMPRESS_OFF
560
561/* nvlist pack encoding */
562#define	NV_ENCODE_NATIVE	0
563#define	NV_ENCODE_XDR		1
564
565typedef enum {
566	DATA_TYPE_UNKNOWN = 0,
567	DATA_TYPE_BOOLEAN,
568	DATA_TYPE_BYTE,
569	DATA_TYPE_INT16,
570	DATA_TYPE_UINT16,
571	DATA_TYPE_INT32,
572	DATA_TYPE_UINT32,
573	DATA_TYPE_INT64,
574	DATA_TYPE_UINT64,
575	DATA_TYPE_STRING,
576	DATA_TYPE_BYTE_ARRAY,
577	DATA_TYPE_INT16_ARRAY,
578	DATA_TYPE_UINT16_ARRAY,
579	DATA_TYPE_INT32_ARRAY,
580	DATA_TYPE_UINT32_ARRAY,
581	DATA_TYPE_INT64_ARRAY,
582	DATA_TYPE_UINT64_ARRAY,
583	DATA_TYPE_STRING_ARRAY,
584	DATA_TYPE_HRTIME,
585	DATA_TYPE_NVLIST,
586	DATA_TYPE_NVLIST_ARRAY,
587	DATA_TYPE_BOOLEAN_VALUE,
588	DATA_TYPE_INT8,
589	DATA_TYPE_UINT8,
590	DATA_TYPE_BOOLEAN_ARRAY,
591	DATA_TYPE_INT8_ARRAY,
592	DATA_TYPE_UINT8_ARRAY
593} data_type_t;
594
595/*
596 * On-disk version number.
597 */
598#define	SPA_VERSION_1			1ULL
599#define	SPA_VERSION_2			2ULL
600#define	SPA_VERSION_3			3ULL
601#define	SPA_VERSION_4			4ULL
602#define	SPA_VERSION_5			5ULL
603#define	SPA_VERSION_6			6ULL
604#define	SPA_VERSION_7			7ULL
605#define	SPA_VERSION_8			8ULL
606#define	SPA_VERSION_9			9ULL
607#define	SPA_VERSION_10			10ULL
608#define	SPA_VERSION_11			11ULL
609#define	SPA_VERSION_12			12ULL
610#define	SPA_VERSION_13			13ULL
611#define	SPA_VERSION_14			14ULL
612#define	SPA_VERSION_15			15ULL
613#define	SPA_VERSION_16			16ULL
614#define	SPA_VERSION_17			17ULL
615#define	SPA_VERSION_18			18ULL
616#define	SPA_VERSION_19			19ULL
617#define	SPA_VERSION_20			20ULL
618#define	SPA_VERSION_21			21ULL
619#define	SPA_VERSION_22			22ULL
620#define	SPA_VERSION_23			23ULL
621#define	SPA_VERSION_24			24ULL
622#define	SPA_VERSION_25			25ULL
623#define	SPA_VERSION_26			26ULL
624#define	SPA_VERSION_27			27ULL
625#define	SPA_VERSION_28			28ULL
626#define	SPA_VERSION_5000		5000ULL
627
628/*
629 * When bumping up SPA_VERSION, make sure GRUB ZFS understands the on-disk
630 * format change. Go to usr/src/grub/grub-0.97/stage2/{zfs-include/, fsys_zfs*},
631 * and do the appropriate changes.  Also bump the version number in
632 * usr/src/grub/capability.
633 */
634#define	SPA_VERSION			SPA_VERSION_5000
635#define	SPA_VERSION_STRING		"5000"
636
637/*
638 * Symbolic names for the changes that caused a SPA_VERSION switch.
639 * Used in the code when checking for presence or absence of a feature.
640 * Feel free to define multiple symbolic names for each version if there
641 * were multiple changes to on-disk structures during that version.
642 *
643 * NOTE: When checking the current SPA_VERSION in your code, be sure
644 *       to use spa_version() since it reports the version of the
645 *       last synced uberblock.  Checking the in-flight version can
646 *       be dangerous in some cases.
647 */
648#define	SPA_VERSION_INITIAL		SPA_VERSION_1
649#define	SPA_VERSION_DITTO_BLOCKS	SPA_VERSION_2
650#define	SPA_VERSION_SPARES		SPA_VERSION_3
651#define	SPA_VERSION_RAID6		SPA_VERSION_3
652#define	SPA_VERSION_BPLIST_ACCOUNT	SPA_VERSION_3
653#define	SPA_VERSION_RAIDZ_DEFLATE	SPA_VERSION_3
654#define	SPA_VERSION_DNODE_BYTES		SPA_VERSION_3
655#define	SPA_VERSION_ZPOOL_HISTORY	SPA_VERSION_4
656#define	SPA_VERSION_GZIP_COMPRESSION	SPA_VERSION_5
657#define	SPA_VERSION_BOOTFS		SPA_VERSION_6
658#define	SPA_VERSION_SLOGS		SPA_VERSION_7
659#define	SPA_VERSION_DELEGATED_PERMS	SPA_VERSION_8
660#define	SPA_VERSION_FUID		SPA_VERSION_9
661#define	SPA_VERSION_REFRESERVATION	SPA_VERSION_9
662#define	SPA_VERSION_REFQUOTA		SPA_VERSION_9
663#define	SPA_VERSION_UNIQUE_ACCURATE	SPA_VERSION_9
664#define	SPA_VERSION_L2CACHE		SPA_VERSION_10
665#define	SPA_VERSION_NEXT_CLONES		SPA_VERSION_11
666#define	SPA_VERSION_ORIGIN		SPA_VERSION_11
667#define	SPA_VERSION_DSL_SCRUB		SPA_VERSION_11
668#define	SPA_VERSION_SNAP_PROPS		SPA_VERSION_12
669#define	SPA_VERSION_USED_BREAKDOWN	SPA_VERSION_13
670#define	SPA_VERSION_PASSTHROUGH_X	SPA_VERSION_14
671#define SPA_VERSION_USERSPACE		SPA_VERSION_15
672#define	SPA_VERSION_STMF_PROP		SPA_VERSION_16
673#define	SPA_VERSION_RAIDZ3		SPA_VERSION_17
674#define	SPA_VERSION_USERREFS		SPA_VERSION_18
675#define	SPA_VERSION_HOLES		SPA_VERSION_19
676#define	SPA_VERSION_ZLE_COMPRESSION	SPA_VERSION_20
677#define	SPA_VERSION_DEDUP		SPA_VERSION_21
678#define	SPA_VERSION_RECVD_PROPS		SPA_VERSION_22
679#define	SPA_VERSION_SLIM_ZIL		SPA_VERSION_23
680#define	SPA_VERSION_SA			SPA_VERSION_24
681#define	SPA_VERSION_SCAN		SPA_VERSION_25
682#define	SPA_VERSION_DIR_CLONES		SPA_VERSION_26
683#define	SPA_VERSION_DEADLISTS		SPA_VERSION_26
684#define	SPA_VERSION_FAST_SNAP		SPA_VERSION_27
685#define	SPA_VERSION_MULTI_REPLACE	SPA_VERSION_28
686#define	SPA_VERSION_BEFORE_FEATURES	SPA_VERSION_28
687#define	SPA_VERSION_FEATURES		SPA_VERSION_5000
688
689#define	SPA_VERSION_IS_SUPPORTED(v) \
690	(((v) >= SPA_VERSION_INITIAL && (v) <= SPA_VERSION_BEFORE_FEATURES) || \
691	((v) >= SPA_VERSION_FEATURES && (v) <= SPA_VERSION))
692
693/*
694 * The following are configuration names used in the nvlist describing a pool's
695 * configuration.
696 */
697#define	ZPOOL_CONFIG_VERSION		"version"
698#define	ZPOOL_CONFIG_POOL_NAME		"name"
699#define	ZPOOL_CONFIG_POOL_STATE		"state"
700#define	ZPOOL_CONFIG_POOL_TXG		"txg"
701#define	ZPOOL_CONFIG_POOL_GUID		"pool_guid"
702#define	ZPOOL_CONFIG_CREATE_TXG		"create_txg"
703#define	ZPOOL_CONFIG_TOP_GUID		"top_guid"
704#define	ZPOOL_CONFIG_VDEV_TREE		"vdev_tree"
705#define	ZPOOL_CONFIG_TYPE		"type"
706#define	ZPOOL_CONFIG_CHILDREN		"children"
707#define	ZPOOL_CONFIG_ID			"id"
708#define	ZPOOL_CONFIG_GUID		"guid"
709#define	ZPOOL_CONFIG_PATH		"path"
710#define	ZPOOL_CONFIG_DEVID		"devid"
711#define	ZPOOL_CONFIG_METASLAB_ARRAY	"metaslab_array"
712#define	ZPOOL_CONFIG_METASLAB_SHIFT	"metaslab_shift"
713#define	ZPOOL_CONFIG_ASHIFT		"ashift"
714#define	ZPOOL_CONFIG_ASIZE		"asize"
715#define	ZPOOL_CONFIG_DTL		"DTL"
716#define	ZPOOL_CONFIG_STATS		"stats"
717#define	ZPOOL_CONFIG_WHOLE_DISK		"whole_disk"
718#define	ZPOOL_CONFIG_ERRCOUNT		"error_count"
719#define	ZPOOL_CONFIG_NOT_PRESENT	"not_present"
720#define	ZPOOL_CONFIG_SPARES		"spares"
721#define	ZPOOL_CONFIG_IS_SPARE		"is_spare"
722#define	ZPOOL_CONFIG_NPARITY		"nparity"
723#define	ZPOOL_CONFIG_HOSTID		"hostid"
724#define	ZPOOL_CONFIG_HOSTNAME		"hostname"
725#define	ZPOOL_CONFIG_IS_LOG		"is_log"
726#define	ZPOOL_CONFIG_TIMESTAMP		"timestamp" /* not stored on disk */
727#define	ZPOOL_CONFIG_FEATURES_FOR_READ	"features_for_read"
728
729/*
730 * The persistent vdev state is stored as separate values rather than a single
731 * 'vdev_state' entry.  This is because a device can be in multiple states, such
732 * as offline and degraded.
733 */
734#define	ZPOOL_CONFIG_OFFLINE            "offline"
735#define	ZPOOL_CONFIG_FAULTED            "faulted"
736#define	ZPOOL_CONFIG_DEGRADED           "degraded"
737#define	ZPOOL_CONFIG_REMOVED            "removed"
738#define	ZPOOL_CONFIG_FRU		"fru"
739#define	ZPOOL_CONFIG_AUX_STATE		"aux_state"
740
741#define	VDEV_TYPE_ROOT			"root"
742#define	VDEV_TYPE_MIRROR		"mirror"
743#define	VDEV_TYPE_REPLACING		"replacing"
744#define	VDEV_TYPE_RAIDZ			"raidz"
745#define	VDEV_TYPE_DISK			"disk"
746#define	VDEV_TYPE_FILE			"file"
747#define	VDEV_TYPE_MISSING		"missing"
748#define	VDEV_TYPE_HOLE			"hole"
749#define	VDEV_TYPE_SPARE			"spare"
750#define	VDEV_TYPE_LOG			"log"
751#define	VDEV_TYPE_L2CACHE		"l2cache"
752
753/*
754 * This is needed in userland to report the minimum necessary device size.
755 */
756#define	SPA_MINDEVSIZE		(64ULL << 20)
757
758/*
759 * The location of the pool configuration repository, shared between kernel and
760 * userland.
761 */
762#define	ZPOOL_CACHE		"/boot/zfs/zpool.cache"
763
764/*
765 * vdev states are ordered from least to most healthy.
766 * A vdev that's CANT_OPEN or below is considered unusable.
767 */
768typedef enum vdev_state {
769	VDEV_STATE_UNKNOWN = 0,	/* Uninitialized vdev			*/
770	VDEV_STATE_CLOSED,	/* Not currently open			*/
771	VDEV_STATE_OFFLINE,	/* Not allowed to open			*/
772	VDEV_STATE_REMOVED,	/* Explicitly removed from system	*/
773	VDEV_STATE_CANT_OPEN,	/* Tried to open, but failed		*/
774	VDEV_STATE_FAULTED,	/* External request to fault device	*/
775	VDEV_STATE_DEGRADED,	/* Replicated vdev with unhealthy kids	*/
776	VDEV_STATE_HEALTHY	/* Presumed good			*/
777} vdev_state_t;
778
779/*
780 * vdev aux states.  When a vdev is in the CANT_OPEN state, the aux field
781 * of the vdev stats structure uses these constants to distinguish why.
782 */
783typedef enum vdev_aux {
784	VDEV_AUX_NONE,		/* no error				*/
785	VDEV_AUX_OPEN_FAILED,	/* ldi_open_*() or vn_open() failed	*/
786	VDEV_AUX_CORRUPT_DATA,	/* bad label or disk contents		*/
787	VDEV_AUX_NO_REPLICAS,	/* insufficient number of replicas	*/
788	VDEV_AUX_BAD_GUID_SUM,	/* vdev guid sum doesn't match		*/
789	VDEV_AUX_TOO_SMALL,	/* vdev size is too small		*/
790	VDEV_AUX_BAD_LABEL,	/* the label is OK but invalid		*/
791	VDEV_AUX_VERSION_NEWER,	/* on-disk version is too new		*/
792	VDEV_AUX_VERSION_OLDER,	/* on-disk version is too old		*/
793	VDEV_AUX_SPARED		/* hot spare used in another pool	*/
794} vdev_aux_t;
795
796/*
797 * pool state.  The following states are written to disk as part of the normal
798 * SPA lifecycle: ACTIVE, EXPORTED, DESTROYED, SPARE.  The remaining states are
799 * software abstractions used at various levels to communicate pool state.
800 */
801typedef enum pool_state {
802	POOL_STATE_ACTIVE = 0,		/* In active use		*/
803	POOL_STATE_EXPORTED,		/* Explicitly exported		*/
804	POOL_STATE_DESTROYED,		/* Explicitly destroyed		*/
805	POOL_STATE_SPARE,		/* Reserved for hot spare use	*/
806	POOL_STATE_UNINITIALIZED,	/* Internal spa_t state		*/
807	POOL_STATE_UNAVAIL,		/* Internal libzfs state	*/
808	POOL_STATE_POTENTIALLY_ACTIVE	/* Internal libzfs state	*/
809} pool_state_t;
810
811/*
812 * The uberblock version is incremented whenever an incompatible on-disk
813 * format change is made to the SPA, DMU, or ZAP.
814 *
815 * Note: the first two fields should never be moved.  When a storage pool
816 * is opened, the uberblock must be read off the disk before the version
817 * can be checked.  If the ub_version field is moved, we may not detect
818 * version mismatch.  If the ub_magic field is moved, applications that
819 * expect the magic number in the first word won't work.
820 */
821#define	UBERBLOCK_MAGIC		0x00bab10c		/* oo-ba-bloc!	*/
822#define	UBERBLOCK_SHIFT		10			/* up to 1K	*/
823
824struct uberblock {
825	uint64_t	ub_magic;	/* UBERBLOCK_MAGIC		*/
826	uint64_t	ub_version;	/* SPA_VERSION			*/
827	uint64_t	ub_txg;		/* txg of last sync		*/
828	uint64_t	ub_guid_sum;	/* sum of all vdev guids	*/
829	uint64_t	ub_timestamp;	/* UTC time of last sync	*/
830	blkptr_t	ub_rootbp;	/* MOS objset_phys_t		*/
831};
832
833/*
834 * Flags.
835 */
836#define	DNODE_MUST_BE_ALLOCATED	1
837#define	DNODE_MUST_BE_FREE	2
838
839/*
840 * Fixed constants.
841 */
842#define	DNODE_SHIFT		9	/* 512 bytes */
843#define	DN_MIN_INDBLKSHIFT	10	/* 1k */
844#define	DN_MAX_INDBLKSHIFT	14	/* 16k */
845#define	DNODE_BLOCK_SHIFT	14	/* 16k */
846#define	DNODE_CORE_SIZE		64	/* 64 bytes for dnode sans blkptrs */
847#define	DN_MAX_OBJECT_SHIFT	48	/* 256 trillion (zfs_fid_t limit) */
848#define	DN_MAX_OFFSET_SHIFT	64	/* 2^64 bytes in a dnode */
849
850/*
851 * Derived constants.
852 */
853#define	DNODE_SIZE	(1 << DNODE_SHIFT)
854#define	DN_MAX_NBLKPTR	((DNODE_SIZE - DNODE_CORE_SIZE) >> SPA_BLKPTRSHIFT)
855#define	DN_MAX_BONUSLEN	(DNODE_SIZE - DNODE_CORE_SIZE - (1 << SPA_BLKPTRSHIFT))
856#define	DN_MAX_OBJECT	(1ULL << DN_MAX_OBJECT_SHIFT)
857
858#define	DNODES_PER_BLOCK_SHIFT	(DNODE_BLOCK_SHIFT - DNODE_SHIFT)
859#define	DNODES_PER_BLOCK	(1ULL << DNODES_PER_BLOCK_SHIFT)
860#define	DNODES_PER_LEVEL_SHIFT	(DN_MAX_INDBLKSHIFT - SPA_BLKPTRSHIFT)
861
862/* The +2 here is a cheesy way to round up */
863#define	DN_MAX_LEVELS	(2 + ((DN_MAX_OFFSET_SHIFT - SPA_MINBLOCKSHIFT) / \
864	(DN_MIN_INDBLKSHIFT - SPA_BLKPTRSHIFT)))
865
866#define	DN_BONUS(dnp)	((void*)((dnp)->dn_bonus + \
867	(((dnp)->dn_nblkptr - 1) * sizeof (blkptr_t))))
868
869#define	DN_USED_BYTES(dnp) (((dnp)->dn_flags & DNODE_FLAG_USED_BYTES) ? \
870	(dnp)->dn_used : (dnp)->dn_used << SPA_MINBLOCKSHIFT)
871
872#define	EPB(blkshift, typeshift)	(1 << (blkshift - typeshift))
873
874/* Is dn_used in bytes?  if not, it's in multiples of SPA_MINBLOCKSIZE */
875#define	DNODE_FLAG_USED_BYTES		(1<<0)
876#define	DNODE_FLAG_USERUSED_ACCOUNTED	(1<<1)
877
878/* Does dnode have a SA spill blkptr in bonus? */
879#define	DNODE_FLAG_SPILL_BLKPTR	(1<<2)
880
881typedef struct dnode_phys {
882	uint8_t dn_type;		/* dmu_object_type_t */
883	uint8_t dn_indblkshift;		/* ln2(indirect block size) */
884	uint8_t dn_nlevels;		/* 1=dn_blkptr->data blocks */
885	uint8_t dn_nblkptr;		/* length of dn_blkptr */
886	uint8_t dn_bonustype;		/* type of data in bonus buffer */
887	uint8_t	dn_checksum;		/* ZIO_CHECKSUM type */
888	uint8_t	dn_compress;		/* ZIO_COMPRESS type */
889	uint8_t dn_flags;		/* DNODE_FLAG_* */
890	uint16_t dn_datablkszsec;	/* data block size in 512b sectors */
891	uint16_t dn_bonuslen;		/* length of dn_bonus */
892	uint8_t dn_pad2[4];
893
894	/* accounting is protected by dn_dirty_mtx */
895	uint64_t dn_maxblkid;		/* largest allocated block ID */
896	uint64_t dn_used;		/* bytes (or sectors) of disk space */
897
898	uint64_t dn_pad3[4];
899
900	blkptr_t dn_blkptr[1];
901	uint8_t dn_bonus[DN_MAX_BONUSLEN - sizeof (blkptr_t)];
902	blkptr_t dn_spill;
903} dnode_phys_t;
904
905typedef enum dmu_object_type {
906	DMU_OT_NONE,
907	/* general: */
908	DMU_OT_OBJECT_DIRECTORY,	/* ZAP */
909	DMU_OT_OBJECT_ARRAY,		/* UINT64 */
910	DMU_OT_PACKED_NVLIST,		/* UINT8 (XDR by nvlist_pack/unpack) */
911	DMU_OT_PACKED_NVLIST_SIZE,	/* UINT64 */
912	DMU_OT_BPLIST,			/* UINT64 */
913	DMU_OT_BPLIST_HDR,		/* UINT64 */
914	/* spa: */
915	DMU_OT_SPACE_MAP_HEADER,	/* UINT64 */
916	DMU_OT_SPACE_MAP,		/* UINT64 */
917	/* zil: */
918	DMU_OT_INTENT_LOG,		/* UINT64 */
919	/* dmu: */
920	DMU_OT_DNODE,			/* DNODE */
921	DMU_OT_OBJSET,			/* OBJSET */
922	/* dsl: */
923	DMU_OT_DSL_DIR,			/* UINT64 */
924	DMU_OT_DSL_DIR_CHILD_MAP,	/* ZAP */
925	DMU_OT_DSL_DS_SNAP_MAP,		/* ZAP */
926	DMU_OT_DSL_PROPS,		/* ZAP */
927	DMU_OT_DSL_DATASET,		/* UINT64 */
928	/* zpl: */
929	DMU_OT_ZNODE,			/* ZNODE */
930	DMU_OT_OLDACL,			/* Old ACL */
931	DMU_OT_PLAIN_FILE_CONTENTS,	/* UINT8 */
932	DMU_OT_DIRECTORY_CONTENTS,	/* ZAP */
933	DMU_OT_MASTER_NODE,		/* ZAP */
934	DMU_OT_UNLINKED_SET,		/* ZAP */
935	/* zvol: */
936	DMU_OT_ZVOL,			/* UINT8 */
937	DMU_OT_ZVOL_PROP,		/* ZAP */
938	/* other; for testing only! */
939	DMU_OT_PLAIN_OTHER,		/* UINT8 */
940	DMU_OT_UINT64_OTHER,		/* UINT64 */
941	DMU_OT_ZAP_OTHER,		/* ZAP */
942	/* new object types: */
943	DMU_OT_ERROR_LOG,		/* ZAP */
944	DMU_OT_SPA_HISTORY,		/* UINT8 */
945	DMU_OT_SPA_HISTORY_OFFSETS,	/* spa_his_phys_t */
946	DMU_OT_POOL_PROPS,		/* ZAP */
947	DMU_OT_DSL_PERMS,		/* ZAP */
948	DMU_OT_ACL,			/* ACL */
949	DMU_OT_SYSACL,			/* SYSACL */
950	DMU_OT_FUID,			/* FUID table (Packed NVLIST UINT8) */
951	DMU_OT_FUID_SIZE,		/* FUID table size UINT64 */
952	DMU_OT_NEXT_CLONES,		/* ZAP */
953	DMU_OT_SCAN_QUEUE,		/* ZAP */
954	DMU_OT_USERGROUP_USED,		/* ZAP */
955	DMU_OT_USERGROUP_QUOTA,		/* ZAP */
956	DMU_OT_USERREFS,		/* ZAP */
957	DMU_OT_DDT_ZAP,			/* ZAP */
958	DMU_OT_DDT_STATS,		/* ZAP */
959	DMU_OT_SA,			/* System attr */
960	DMU_OT_SA_MASTER_NODE,		/* ZAP */
961	DMU_OT_SA_ATTR_REGISTRATION,	/* ZAP */
962	DMU_OT_SA_ATTR_LAYOUTS,		/* ZAP */
963	DMU_OT_SCAN_XLATE,		/* ZAP */
964	DMU_OT_DEDUP,			/* fake dedup BP from ddt_bp_create() */
965	DMU_OT_NUMTYPES
966} dmu_object_type_t;
967
968typedef enum dmu_objset_type {
969	DMU_OST_NONE,
970	DMU_OST_META,
971	DMU_OST_ZFS,
972	DMU_OST_ZVOL,
973	DMU_OST_OTHER,			/* For testing only! */
974	DMU_OST_ANY,			/* Be careful! */
975	DMU_OST_NUMTYPES
976} dmu_objset_type_t;
977
978/*
979 * header for all bonus and spill buffers.
980 * The header has a fixed portion with a variable number
981 * of "lengths" depending on the number of variable sized
982 * attribues which are determined by the "layout number"
983 */
984
985#define	SA_MAGIC	0x2F505A  /* ZFS SA */
986typedef struct sa_hdr_phys {
987	uint32_t sa_magic;
988	uint16_t sa_layout_info;  /* Encoded with hdrsize and layout number */
989	uint16_t sa_lengths[1];	/* optional sizes for variable length attrs */
990	/* ... Data follows the lengths.  */
991} sa_hdr_phys_t;
992
993/*
994 * sa_hdr_phys -> sa_layout_info
995 *
996 * 16      10       0
997 * +--------+-------+
998 * | hdrsz  |layout |
999 * +--------+-------+
1000 *
1001 * Bits 0-10 are the layout number
1002 * Bits 11-16 are the size of the header.
1003 * The hdrsize is the number * 8
1004 *
1005 * For example.
1006 * hdrsz of 1 ==> 8 byte header
1007 *          2 ==> 16 byte header
1008 *
1009 */
1010
1011#define	SA_HDR_LAYOUT_NUM(hdr) BF32_GET(hdr->sa_layout_info, 0, 10)
1012#define	SA_HDR_SIZE(hdr) BF32_GET_SB(hdr->sa_layout_info, 10, 16, 3, 0)
1013#define	SA_HDR_LAYOUT_INFO_ENCODE(x, num, size) \
1014{ \
1015	BF32_SET_SB(x, 10, 6, 3, 0, size); \
1016	BF32_SET(x, 0, 10, num); \
1017}
1018
1019#define	SA_MODE_OFFSET		0
1020#define	SA_SIZE_OFFSET		8
1021#define	SA_GEN_OFFSET		16
1022#define	SA_UID_OFFSET		24
1023#define	SA_GID_OFFSET		32
1024#define	SA_PARENT_OFFSET	40
1025
1026/*
1027 * Intent log header - this on disk structure holds fields to manage
1028 * the log.  All fields are 64 bit to easily handle cross architectures.
1029 */
1030typedef struct zil_header {
1031	uint64_t zh_claim_txg;	/* txg in which log blocks were claimed */
1032	uint64_t zh_replay_seq;	/* highest replayed sequence number */
1033	blkptr_t zh_log;	/* log chain */
1034	uint64_t zh_claim_seq;	/* highest claimed sequence number */
1035	uint64_t zh_pad[5];
1036} zil_header_t;
1037
1038#define	OBJSET_PHYS_SIZE 2048
1039
1040typedef struct objset_phys {
1041	dnode_phys_t os_meta_dnode;
1042	zil_header_t os_zil_header;
1043	uint64_t os_type;
1044	uint64_t os_flags;
1045	char os_pad[OBJSET_PHYS_SIZE - sizeof (dnode_phys_t)*3 -
1046	    sizeof (zil_header_t) - sizeof (uint64_t)*2];
1047	dnode_phys_t os_userused_dnode;
1048	dnode_phys_t os_groupused_dnode;
1049} objset_phys_t;
1050
1051typedef struct dsl_dir_phys {
1052	uint64_t dd_creation_time; /* not actually used */
1053	uint64_t dd_head_dataset_obj;
1054	uint64_t dd_parent_obj;
1055	uint64_t dd_clone_parent_obj;
1056	uint64_t dd_child_dir_zapobj;
1057	/*
1058	 * how much space our children are accounting for; for leaf
1059	 * datasets, == physical space used by fs + snaps
1060	 */
1061	uint64_t dd_used_bytes;
1062	uint64_t dd_compressed_bytes;
1063	uint64_t dd_uncompressed_bytes;
1064	/* Administrative quota setting */
1065	uint64_t dd_quota;
1066	/* Administrative reservation setting */
1067	uint64_t dd_reserved;
1068	uint64_t dd_props_zapobj;
1069	uint64_t dd_pad[21]; /* pad out to 256 bytes for good measure */
1070} dsl_dir_phys_t;
1071
1072typedef struct dsl_dataset_phys {
1073	uint64_t ds_dir_obj;
1074	uint64_t ds_prev_snap_obj;
1075	uint64_t ds_prev_snap_txg;
1076	uint64_t ds_next_snap_obj;
1077	uint64_t ds_snapnames_zapobj;	/* zap obj of snaps; ==0 for snaps */
1078	uint64_t ds_num_children;	/* clone/snap children; ==0 for head */
1079	uint64_t ds_creation_time;	/* seconds since 1970 */
1080	uint64_t ds_creation_txg;
1081	uint64_t ds_deadlist_obj;
1082	uint64_t ds_used_bytes;
1083	uint64_t ds_compressed_bytes;
1084	uint64_t ds_uncompressed_bytes;
1085	uint64_t ds_unique_bytes;	/* only relevant to snapshots */
1086	/*
1087	 * The ds_fsid_guid is a 56-bit ID that can change to avoid
1088	 * collisions.  The ds_guid is a 64-bit ID that will never
1089	 * change, so there is a small probability that it will collide.
1090	 */
1091	uint64_t ds_fsid_guid;
1092	uint64_t ds_guid;
1093	uint64_t ds_flags;
1094	blkptr_t ds_bp;
1095	uint64_t ds_pad[8]; /* pad out to 320 bytes for good measure */
1096} dsl_dataset_phys_t;
1097
1098/*
1099 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
1100 */
1101#define	DMU_POOL_DIRECTORY_OBJECT	1
1102#define	DMU_POOL_CONFIG			"config"
1103#define	DMU_POOL_ROOT_DATASET		"root_dataset"
1104#define	DMU_POOL_SYNC_BPLIST		"sync_bplist"
1105#define	DMU_POOL_ERRLOG_SCRUB		"errlog_scrub"
1106#define	DMU_POOL_ERRLOG_LAST		"errlog_last"
1107#define	DMU_POOL_SPARES			"spares"
1108#define	DMU_POOL_DEFLATE		"deflate"
1109#define	DMU_POOL_HISTORY		"history"
1110#define	DMU_POOL_PROPS			"pool_props"
1111
1112#define	ZAP_MAGIC 0x2F52AB2ABULL
1113
1114#define	FZAP_BLOCK_SHIFT(zap)	((zap)->zap_block_shift)
1115
1116#define	ZAP_MAXCD		(uint32_t)(-1)
1117#define	ZAP_HASHBITS		28
1118#define	MZAP_ENT_LEN		64
1119#define	MZAP_NAME_LEN		(MZAP_ENT_LEN - 8 - 4 - 2)
1120#define	MZAP_MAX_BLKSHIFT	SPA_MAXBLOCKSHIFT
1121#define	MZAP_MAX_BLKSZ		(1 << MZAP_MAX_BLKSHIFT)
1122
1123typedef struct mzap_ent_phys {
1124	uint64_t mze_value;
1125	uint32_t mze_cd;
1126	uint16_t mze_pad;	/* in case we want to chain them someday */
1127	char mze_name[MZAP_NAME_LEN];
1128} mzap_ent_phys_t;
1129
1130typedef struct mzap_phys {
1131	uint64_t mz_block_type;	/* ZBT_MICRO */
1132	uint64_t mz_salt;
1133	uint64_t mz_pad[6];
1134	mzap_ent_phys_t mz_chunk[1];
1135	/* actually variable size depending on block size */
1136} mzap_phys_t;
1137
1138/*
1139 * The (fat) zap is stored in one object. It is an array of
1140 * 1<<FZAP_BLOCK_SHIFT byte blocks. The layout looks like one of:
1141 *
1142 * ptrtbl fits in first block:
1143 * 	[zap_phys_t zap_ptrtbl_shift < 6] [zap_leaf_t] ...
1144 *
1145 * ptrtbl too big for first block:
1146 * 	[zap_phys_t zap_ptrtbl_shift >= 6] [zap_leaf_t] [ptrtbl] ...
1147 *
1148 */
1149
1150#define	ZBT_LEAF		((1ULL << 63) + 0)
1151#define	ZBT_HEADER		((1ULL << 63) + 1)
1152#define	ZBT_MICRO		((1ULL << 63) + 3)
1153/* any other values are ptrtbl blocks */
1154
1155/*
1156 * the embedded pointer table takes up half a block:
1157 * block size / entry size (2^3) / 2
1158 */
1159#define	ZAP_EMBEDDED_PTRTBL_SHIFT(zap) (FZAP_BLOCK_SHIFT(zap) - 3 - 1)
1160
1161/*
1162 * The embedded pointer table starts half-way through the block.  Since
1163 * the pointer table itself is half the block, it starts at (64-bit)
1164 * word number (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)).
1165 */
1166#define	ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) \
1167	((uint64_t *)(zap)->zap_phys) \
1168	[(idx) + (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap))]
1169
1170/*
1171 * TAKE NOTE:
1172 * If zap_phys_t is modified, zap_byteswap() must be modified.
1173 */
1174typedef struct zap_phys {
1175	uint64_t zap_block_type;	/* ZBT_HEADER */
1176	uint64_t zap_magic;		/* ZAP_MAGIC */
1177
1178	struct zap_table_phys {
1179		uint64_t zt_blk;	/* starting block number */
1180		uint64_t zt_numblks;	/* number of blocks */
1181		uint64_t zt_shift;	/* bits to index it */
1182		uint64_t zt_nextblk;	/* next (larger) copy start block */
1183		uint64_t zt_blks_copied; /* number source blocks copied */
1184	} zap_ptrtbl;
1185
1186	uint64_t zap_freeblk;		/* the next free block */
1187	uint64_t zap_num_leafs;		/* number of leafs */
1188	uint64_t zap_num_entries;	/* number of entries */
1189	uint64_t zap_salt;		/* salt to stir into hash function */
1190	/*
1191	 * This structure is followed by padding, and then the embedded
1192	 * pointer table.  The embedded pointer table takes up second
1193	 * half of the block.  It is accessed using the
1194	 * ZAP_EMBEDDED_PTRTBL_ENT() macro.
1195	 */
1196} zap_phys_t;
1197
1198typedef struct zap_table_phys zap_table_phys_t;
1199
1200typedef struct fat_zap {
1201	int zap_block_shift;			/* block size shift */
1202	zap_phys_t *zap_phys;
1203} fat_zap_t;
1204
1205#define	ZAP_LEAF_MAGIC 0x2AB1EAF
1206
1207/* chunk size = 24 bytes */
1208#define	ZAP_LEAF_CHUNKSIZE 24
1209
1210/*
1211 * The amount of space available for chunks is:
1212 * block size (1<<l->l_bs) - hash entry size (2) * number of hash
1213 * entries - header space (2*chunksize)
1214 */
1215#define	ZAP_LEAF_NUMCHUNKS(l) \
1216	(((1<<(l)->l_bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(l)) / \
1217	ZAP_LEAF_CHUNKSIZE - 2)
1218
1219/*
1220 * The amount of space within the chunk available for the array is:
1221 * chunk size - space for type (1) - space for next pointer (2)
1222 */
1223#define	ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3)
1224
1225#define	ZAP_LEAF_ARRAY_NCHUNKS(bytes) \
1226	(((bytes)+ZAP_LEAF_ARRAY_BYTES-1)/ZAP_LEAF_ARRAY_BYTES)
1227
1228/*
1229 * Low water mark:  when there are only this many chunks free, start
1230 * growing the ptrtbl.  Ideally, this should be larger than a
1231 * "reasonably-sized" entry.  20 chunks is more than enough for the
1232 * largest directory entry (MAXNAMELEN (256) byte name, 8-byte value),
1233 * while still being only around 3% for 16k blocks.
1234 */
1235#define	ZAP_LEAF_LOW_WATER (20)
1236
1237/*
1238 * The leaf hash table has block size / 2^5 (32) number of entries,
1239 * which should be more than enough for the maximum number of entries,
1240 * which is less than block size / CHUNKSIZE (24) / minimum number of
1241 * chunks per entry (3).
1242 */
1243#define	ZAP_LEAF_HASH_SHIFT(l) ((l)->l_bs - 5)
1244#define	ZAP_LEAF_HASH_NUMENTRIES(l) (1 << ZAP_LEAF_HASH_SHIFT(l))
1245
1246/*
1247 * The chunks start immediately after the hash table.  The end of the
1248 * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a
1249 * chunk_t.
1250 */
1251#define	ZAP_LEAF_CHUNK(l, idx) \
1252	((zap_leaf_chunk_t *) \
1253	((l)->l_phys->l_hash + ZAP_LEAF_HASH_NUMENTRIES(l)))[idx]
1254#define	ZAP_LEAF_ENTRY(l, idx) (&ZAP_LEAF_CHUNK(l, idx).l_entry)
1255
1256typedef enum zap_chunk_type {
1257	ZAP_CHUNK_FREE = 253,
1258	ZAP_CHUNK_ENTRY = 252,
1259	ZAP_CHUNK_ARRAY = 251,
1260	ZAP_CHUNK_TYPE_MAX = 250
1261} zap_chunk_type_t;
1262
1263/*
1264 * TAKE NOTE:
1265 * If zap_leaf_phys_t is modified, zap_leaf_byteswap() must be modified.
1266 */
1267typedef struct zap_leaf_phys {
1268	struct zap_leaf_header {
1269		uint64_t lh_block_type;		/* ZBT_LEAF */
1270		uint64_t lh_pad1;
1271		uint64_t lh_prefix;		/* hash prefix of this leaf */
1272		uint32_t lh_magic;		/* ZAP_LEAF_MAGIC */
1273		uint16_t lh_nfree;		/* number free chunks */
1274		uint16_t lh_nentries;		/* number of entries */
1275		uint16_t lh_prefix_len;		/* num bits used to id this */
1276
1277/* above is accessable to zap, below is zap_leaf private */
1278
1279		uint16_t lh_freelist;		/* chunk head of free list */
1280		uint8_t lh_pad2[12];
1281	} l_hdr; /* 2 24-byte chunks */
1282
1283	/*
1284	 * The header is followed by a hash table with
1285	 * ZAP_LEAF_HASH_NUMENTRIES(zap) entries.  The hash table is
1286	 * followed by an array of ZAP_LEAF_NUMCHUNKS(zap)
1287	 * zap_leaf_chunk structures.  These structures are accessed
1288	 * with the ZAP_LEAF_CHUNK() macro.
1289	 */
1290
1291	uint16_t l_hash[1];
1292} zap_leaf_phys_t;
1293
1294typedef union zap_leaf_chunk {
1295	struct zap_leaf_entry {
1296		uint8_t le_type; 		/* always ZAP_CHUNK_ENTRY */
1297		uint8_t le_value_intlen;	/* size of ints */
1298		uint16_t le_next;		/* next entry in hash chain */
1299		uint16_t le_name_chunk;		/* first chunk of the name */
1300		uint16_t le_name_numints;	/* bytes in name, incl null */
1301		uint16_t le_value_chunk;	/* first chunk of the value */
1302		uint16_t le_value_numints;	/* value length in ints */
1303		uint32_t le_cd;			/* collision differentiator */
1304		uint64_t le_hash;		/* hash value of the name */
1305	} l_entry;
1306	struct zap_leaf_array {
1307		uint8_t la_type;		/* always ZAP_CHUNK_ARRAY */
1308		uint8_t la_array[ZAP_LEAF_ARRAY_BYTES];
1309		uint16_t la_next;		/* next blk or CHAIN_END */
1310	} l_array;
1311	struct zap_leaf_free {
1312		uint8_t lf_type;		/* always ZAP_CHUNK_FREE */
1313		uint8_t lf_pad[ZAP_LEAF_ARRAY_BYTES];
1314		uint16_t lf_next;	/* next in free list, or CHAIN_END */
1315	} l_free;
1316} zap_leaf_chunk_t;
1317
1318typedef struct zap_leaf {
1319	int l_bs;			/* block size shift */
1320	zap_leaf_phys_t *l_phys;
1321} zap_leaf_t;
1322
1323/*
1324 * Define special zfs pflags
1325 */
1326#define	ZFS_XATTR	0x1		/* is an extended attribute */
1327#define	ZFS_INHERIT_ACE	0x2		/* ace has inheritable ACEs */
1328#define	ZFS_ACL_TRIVIAL 0x4		/* files ACL is trivial */
1329
1330#define	MASTER_NODE_OBJ	1
1331
1332/*
1333 * special attributes for master node.
1334 */
1335
1336#define	ZFS_FSID		"FSID"
1337#define	ZFS_UNLINKED_SET	"DELETE_QUEUE"
1338#define	ZFS_ROOT_OBJ		"ROOT"
1339#define	ZPL_VERSION_OBJ		"VERSION"
1340#define	ZFS_PROP_BLOCKPERPAGE	"BLOCKPERPAGE"
1341#define	ZFS_PROP_NOGROWBLOCKS	"NOGROWBLOCKS"
1342
1343#define	ZFS_FLAG_BLOCKPERPAGE	0x1
1344#define	ZFS_FLAG_NOGROWBLOCKS	0x2
1345
1346/*
1347 * ZPL version - rev'd whenever an incompatible on-disk format change
1348 * occurs.  Independent of SPA/DMU/ZAP versioning.
1349 */
1350
1351#define	ZPL_VERSION		1ULL
1352
1353/*
1354 * The directory entry has the type (currently unused on Solaris) in the
1355 * top 4 bits, and the object number in the low 48 bits.  The "middle"
1356 * 12 bits are unused.
1357 */
1358#define	ZFS_DIRENT_TYPE(de) BF64_GET(de, 60, 4)
1359#define	ZFS_DIRENT_OBJ(de) BF64_GET(de, 0, 48)
1360#define	ZFS_DIRENT_MAKE(type, obj) (((uint64_t)type << 60) | obj)
1361
1362typedef struct ace {
1363	uid_t		a_who;		/* uid or gid */
1364	uint32_t	a_access_mask;	/* read,write,... */
1365	uint16_t	a_flags;	/* see below */
1366	uint16_t	a_type;		/* allow or deny */
1367} ace_t;
1368
1369#define ACE_SLOT_CNT	6
1370
1371typedef struct zfs_znode_acl {
1372	uint64_t	z_acl_extern_obj;	  /* ext acl pieces */
1373	uint32_t	z_acl_count;		  /* Number of ACEs */
1374	uint16_t	z_acl_version;		  /* acl version */
1375	uint16_t	z_acl_pad;		  /* pad */
1376	ace_t		z_ace_data[ACE_SLOT_CNT]; /* 6 standard ACEs */
1377} zfs_znode_acl_t;
1378
1379/*
1380 * This is the persistent portion of the znode.  It is stored
1381 * in the "bonus buffer" of the file.  Short symbolic links
1382 * are also stored in the bonus buffer.
1383 */
1384typedef struct znode_phys {
1385	uint64_t zp_atime[2];		/*  0 - last file access time */
1386	uint64_t zp_mtime[2];		/* 16 - last file modification time */
1387	uint64_t zp_ctime[2];		/* 32 - last file change time */
1388	uint64_t zp_crtime[2];		/* 48 - creation time */
1389	uint64_t zp_gen;		/* 64 - generation (txg of creation) */
1390	uint64_t zp_mode;		/* 72 - file mode bits */
1391	uint64_t zp_size;		/* 80 - size of file */
1392	uint64_t zp_parent;		/* 88 - directory parent (`..') */
1393	uint64_t zp_links;		/* 96 - number of links to file */
1394	uint64_t zp_xattr;		/* 104 - DMU object for xattrs */
1395	uint64_t zp_rdev;		/* 112 - dev_t for VBLK & VCHR files */
1396	uint64_t zp_flags;		/* 120 - persistent flags */
1397	uint64_t zp_uid;		/* 128 - file owner */
1398	uint64_t zp_gid;		/* 136 - owning group */
1399	uint64_t zp_pad[4];		/* 144 - future */
1400	zfs_znode_acl_t zp_acl;		/* 176 - 263 ACL */
1401	/*
1402	 * Data may pad out any remaining bytes in the znode buffer, eg:
1403	 *
1404	 * |<---------------------- dnode_phys (512) ------------------------>|
1405	 * |<-- dnode (192) --->|<----------- "bonus" buffer (320) ---------->|
1406	 *			|<---- znode (264) ---->|<---- data (56) ---->|
1407	 *
1408	 * At present, we only use this space to store symbolic links.
1409	 */
1410} znode_phys_t;
1411
1412/*
1413 * In-core vdev representation.
1414 */
1415struct vdev;
1416typedef int vdev_phys_read_t(struct vdev *vdev, void *priv,
1417    off_t offset, void *buf, size_t bytes);
1418typedef int vdev_read_t(struct vdev *vdev, const blkptr_t *bp,
1419    void *buf, off_t offset, size_t bytes);
1420
1421typedef STAILQ_HEAD(vdev_list, vdev) vdev_list_t;
1422
1423typedef struct vdev {
1424	STAILQ_ENTRY(vdev) v_childlink;	/* link in parent's child list */
1425	STAILQ_ENTRY(vdev) v_alllink;	/* link in global vdev list */
1426	vdev_list_t	v_children;	/* children of this vdev */
1427	const char	*v_name;	/* vdev name */
1428	uint64_t	v_guid;		/* vdev guid */
1429	int		v_id;		/* index in parent */
1430	int		v_ashift;	/* offset to block shift */
1431	int		v_nparity;	/* # parity for raidz */
1432	struct vdev	*v_top;		/* parent vdev */
1433	int		v_nchildren;	/* # children */
1434	vdev_state_t	v_state;	/* current state */
1435	vdev_phys_read_t *v_phys_read;	/* read from raw leaf vdev */
1436	vdev_read_t	*v_read;	/* read from vdev */
1437	void		*v_read_priv;	/* private data for read function */
1438} vdev_t;
1439
1440/*
1441 * In-core pool representation.
1442 */
1443typedef STAILQ_HEAD(spa_list, spa) spa_list_t;
1444
1445typedef struct spa {
1446	STAILQ_ENTRY(spa) spa_link;	/* link in global pool list */
1447	char		*spa_name;	/* pool name */
1448	uint64_t	spa_guid;	/* pool guid */
1449	uint64_t	spa_txg;	/* most recent transaction */
1450	struct uberblock spa_uberblock;	/* best uberblock so far */
1451	vdev_list_t	spa_vdevs;	/* list of all toplevel vdevs */
1452	objset_phys_t	spa_mos;	/* MOS for this pool */
1453	int		spa_inited;	/* initialized */
1454} spa_t;
1455
1456static void decode_embedded_bp_compressed(const blkptr_t *, void *);
1457