zfsimpl.h revision 263397
1/*-
2 * Copyright (c) 2002 McAfee, Inc.
3 * All rights reserved.
4 *
5 * This software was developed for the FreeBSD Project by Marshall
6 * Kirk McKusick and McAfee Research,, the Security Research Division of
7 * McAfee, Inc. under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as
8 * part of the DARPA CHATS research program
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31/*
32 * CDDL HEADER START
33 *
34 * The contents of this file are subject to the terms of the
35 * Common Development and Distribution License (the "License").
36 * You may not use this file except in compliance with the License.
37 *
38 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
39 * or http://www.opensolaris.org/os/licensing.
40 * See the License for the specific language governing permissions
41 * and limitations under the License.
42 *
43 * When distributing Covered Code, include this CDDL HEADER in each
44 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
45 * If applicable, add the following below this CDDL HEADER, with the
46 * fields enclosed by brackets "[]" replaced with your own identifying
47 * information: Portions Copyright [yyyy] [name of copyright owner]
48 *
49 * CDDL HEADER END
50 */
51/*
52 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
53 * Use is subject to license terms.
54 */
55/*
56 * Copyright 2013 by Saso Kiselkov. All rights reserved.
57 */
58
59#define	MAXNAMELEN	256
60
61/* CRC64 table */
62#define	ZFS_CRC64_POLY	0xC96C5795D7870F42ULL	/* ECMA-182, reflected form */
63
64/*
65 * Macros for various sorts of alignment and rounding when the alignment
66 * is known to be a power of 2.
67 */
68#define	P2ALIGN(x, align)		((x) & -(align))
69#define	P2PHASE(x, align)		((x) & ((align) - 1))
70#define	P2NPHASE(x, align)		(-(x) & ((align) - 1))
71#define	P2ROUNDUP(x, align)		(-(-(x) & -(align)))
72#define	P2END(x, align)			(-(~(x) & -(align)))
73#define	P2PHASEUP(x, align, phase)	((phase) - (((phase) - (x)) & -(align)))
74#define	P2BOUNDARY(off, len, align)	(((off) ^ ((off) + (len) - 1)) > (align) - 1)
75
76/*
77 * General-purpose 32-bit and 64-bit bitfield encodings.
78 */
79#define	BF32_DECODE(x, low, len)	P2PHASE((x) >> (low), 1U << (len))
80#define	BF64_DECODE(x, low, len)	P2PHASE((x) >> (low), 1ULL << (len))
81#define	BF32_ENCODE(x, low, len)	(P2PHASE((x), 1U << (len)) << (low))
82#define	BF64_ENCODE(x, low, len)	(P2PHASE((x), 1ULL << (len)) << (low))
83
84#define	BF32_GET(x, low, len)		BF32_DECODE(x, low, len)
85#define	BF64_GET(x, low, len)		BF64_DECODE(x, low, len)
86
87#define	BF32_SET(x, low, len, val)	\
88	((x) ^= BF32_ENCODE((x >> low) ^ (val), low, len))
89#define	BF64_SET(x, low, len, val)	\
90	((x) ^= BF64_ENCODE((x >> low) ^ (val), low, len))
91
92#define	BF32_GET_SB(x, low, len, shift, bias)	\
93	((BF32_GET(x, low, len) + (bias)) << (shift))
94#define	BF64_GET_SB(x, low, len, shift, bias)	\
95	((BF64_GET(x, low, len) + (bias)) << (shift))
96
97#define	BF32_SET_SB(x, low, len, shift, bias, val)	\
98	BF32_SET(x, low, len, ((val) >> (shift)) - (bias))
99#define	BF64_SET_SB(x, low, len, shift, bias, val)	\
100	BF64_SET(x, low, len, ((val) >> (shift)) - (bias))
101
102/*
103 * Macros to reverse byte order
104 */
105#define	BSWAP_8(x)	((x) & 0xff)
106#define	BSWAP_16(x)	((BSWAP_8(x) << 8) | BSWAP_8((x) >> 8))
107#define	BSWAP_32(x)	((BSWAP_16(x) << 16) | BSWAP_16((x) >> 16))
108#define	BSWAP_64(x)	((BSWAP_32(x) << 32) | BSWAP_32((x) >> 32))
109
110/*
111 * We currently support nine block sizes, from 512 bytes to 128K.
112 * We could go higher, but the benefits are near-zero and the cost
113 * of COWing a giant block to modify one byte would become excessive.
114 */
115#define	SPA_MINBLOCKSHIFT	9
116#define	SPA_MAXBLOCKSHIFT	17
117#define	SPA_MINBLOCKSIZE	(1ULL << SPA_MINBLOCKSHIFT)
118#define	SPA_MAXBLOCKSIZE	(1ULL << SPA_MAXBLOCKSHIFT)
119
120#define	SPA_BLOCKSIZES		(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1)
121
122/*
123 * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB.
124 * The ASIZE encoding should be at least 64 times larger (6 more bits)
125 * to support up to 4-way RAID-Z mirror mode with worst-case gang block
126 * overhead, three DVAs per bp, plus one more bit in case we do anything
127 * else that expands the ASIZE.
128 */
129#define	SPA_LSIZEBITS		16	/* LSIZE up to 32M (2^16 * 512)	*/
130#define	SPA_PSIZEBITS		16	/* PSIZE up to 32M (2^16 * 512)	*/
131#define	SPA_ASIZEBITS		24	/* ASIZE up to 64 times larger	*/
132
133/*
134 * All SPA data is represented by 128-bit data virtual addresses (DVAs).
135 * The members of the dva_t should be considered opaque outside the SPA.
136 */
137typedef struct dva {
138	uint64_t	dva_word[2];
139} dva_t;
140
141/*
142 * Each block has a 256-bit checksum -- strong enough for cryptographic hashes.
143 */
144typedef struct zio_cksum {
145	uint64_t	zc_word[4];
146} zio_cksum_t;
147
148/*
149 * Each block is described by its DVAs, time of birth, checksum, etc.
150 * The word-by-word, bit-by-bit layout of the blkptr is as follows:
151 *
152 *	64	56	48	40	32	24	16	8	0
153 *	+-------+-------+-------+-------+-------+-------+-------+-------+
154 * 0	|		vdev1		| GRID  |	  ASIZE		|
155 *	+-------+-------+-------+-------+-------+-------+-------+-------+
156 * 1	|G|			 offset1				|
157 *	+-------+-------+-------+-------+-------+-------+-------+-------+
158 * 2	|		vdev2		| GRID  |	  ASIZE		|
159 *	+-------+-------+-------+-------+-------+-------+-------+-------+
160 * 3	|G|			 offset2				|
161 *	+-------+-------+-------+-------+-------+-------+-------+-------+
162 * 4	|		vdev3		| GRID  |	  ASIZE		|
163 *	+-------+-------+-------+-------+-------+-------+-------+-------+
164 * 5	|G|			 offset3				|
165 *	+-------+-------+-------+-------+-------+-------+-------+-------+
166 * 6	|BDX|lvl| type	| cksum | comp	|     PSIZE	|     LSIZE	|
167 *	+-------+-------+-------+-------+-------+-------+-------+-------+
168 * 7	|			padding					|
169 *	+-------+-------+-------+-------+-------+-------+-------+-------+
170 * 8	|			padding					|
171 *	+-------+-------+-------+-------+-------+-------+-------+-------+
172 * 9	|			physical birth txg			|
173 *	+-------+-------+-------+-------+-------+-------+-------+-------+
174 * a	|			logical birth txg			|
175 *	+-------+-------+-------+-------+-------+-------+-------+-------+
176 * b	|			fill count				|
177 *	+-------+-------+-------+-------+-------+-------+-------+-------+
178 * c	|			checksum[0]				|
179 *	+-------+-------+-------+-------+-------+-------+-------+-------+
180 * d	|			checksum[1]				|
181 *	+-------+-------+-------+-------+-------+-------+-------+-------+
182 * e	|			checksum[2]				|
183 *	+-------+-------+-------+-------+-------+-------+-------+-------+
184 * f	|			checksum[3]				|
185 *	+-------+-------+-------+-------+-------+-------+-------+-------+
186 *
187 * Legend:
188 *
189 * vdev		virtual device ID
190 * offset	offset into virtual device
191 * LSIZE	logical size
192 * PSIZE	physical size (after compression)
193 * ASIZE	allocated size (including RAID-Z parity and gang block headers)
194 * GRID		RAID-Z layout information (reserved for future use)
195 * cksum	checksum function
196 * comp		compression function
197 * G		gang block indicator
198 * B		byteorder (endianness)
199 * D		dedup
200 * X		unused
201 * lvl		level of indirection
202 * type		DMU object type
203 * phys birth	txg of block allocation; zero if same as logical birth txg
204 * log. birth	transaction group in which the block was logically born
205 * fill count	number of non-zero blocks under this bp
206 * checksum[4]	256-bit checksum of the data this bp describes
207 */
208#define	SPA_BLKPTRSHIFT	7		/* blkptr_t is 128 bytes	*/
209#define	SPA_DVAS_PER_BP	3		/* Number of DVAs in a bp	*/
210
211typedef struct blkptr {
212	dva_t		blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */
213	uint64_t	blk_prop;	/* size, compression, type, etc	    */
214	uint64_t	blk_pad[2];	/* Extra space for the future	    */
215	uint64_t	blk_phys_birth;	/* txg when block was allocated	    */
216	uint64_t	blk_birth;	/* transaction group at birth	    */
217	uint64_t	blk_fill;	/* fill count			    */
218	zio_cksum_t	blk_cksum;	/* 256-bit checksum		    */
219} blkptr_t;
220
221/*
222 * Macros to get and set fields in a bp or DVA.
223 */
224#define	DVA_GET_ASIZE(dva)	\
225	BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0)
226#define	DVA_SET_ASIZE(dva, x)	\
227	BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \
228	SPA_MINBLOCKSHIFT, 0, x)
229
230#define	DVA_GET_GRID(dva)	BF64_GET((dva)->dva_word[0], 24, 8)
231#define	DVA_SET_GRID(dva, x)	BF64_SET((dva)->dva_word[0], 24, 8, x)
232
233#define	DVA_GET_VDEV(dva)	BF64_GET((dva)->dva_word[0], 32, 32)
234#define	DVA_SET_VDEV(dva, x)	BF64_SET((dva)->dva_word[0], 32, 32, x)
235
236#define	DVA_GET_OFFSET(dva)	\
237	BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0)
238#define	DVA_SET_OFFSET(dva, x)	\
239	BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x)
240
241#define	DVA_GET_GANG(dva)	BF64_GET((dva)->dva_word[1], 63, 1)
242#define	DVA_SET_GANG(dva, x)	BF64_SET((dva)->dva_word[1], 63, 1, x)
243
244#define	BP_GET_LSIZE(bp)	\
245	(BP_IS_HOLE(bp) ? 0 : \
246	BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1))
247#define	BP_SET_LSIZE(bp, x)	\
248	BF64_SET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x)
249
250#define	BP_GET_PSIZE(bp)	\
251	BF64_GET_SB((bp)->blk_prop, 16, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1)
252#define	BP_SET_PSIZE(bp, x)	\
253	BF64_SET_SB((bp)->blk_prop, 16, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x)
254
255#define	BP_GET_COMPRESS(bp)	BF64_GET((bp)->blk_prop, 32, 8)
256#define	BP_SET_COMPRESS(bp, x)	BF64_SET((bp)->blk_prop, 32, 8, x)
257
258#define	BP_GET_CHECKSUM(bp)	BF64_GET((bp)->blk_prop, 40, 8)
259#define	BP_SET_CHECKSUM(bp, x)	BF64_SET((bp)->blk_prop, 40, 8, x)
260
261#define	BP_GET_TYPE(bp)		BF64_GET((bp)->blk_prop, 48, 8)
262#define	BP_SET_TYPE(bp, x)	BF64_SET((bp)->blk_prop, 48, 8, x)
263
264#define	BP_GET_LEVEL(bp)	BF64_GET((bp)->blk_prop, 56, 5)
265#define	BP_SET_LEVEL(bp, x)	BF64_SET((bp)->blk_prop, 56, 5, x)
266
267#define	BP_GET_DEDUP(bp)	BF64_GET((bp)->blk_prop, 62, 1)
268#define	BP_SET_DEDUP(bp, x)	BF64_SET((bp)->blk_prop, 62, 1, x)
269
270#define	BP_GET_BYTEORDER(bp)	BF64_GET((bp)->blk_prop, 63, 1)
271#define	BP_SET_BYTEORDER(bp, x)	BF64_SET((bp)->blk_prop, 63, 1, x)
272
273#define	BP_PHYSICAL_BIRTH(bp)		\
274	((bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth)
275
276#define	BP_GET_ASIZE(bp)	\
277	(DVA_GET_ASIZE(&(bp)->blk_dva[0]) + DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
278		DVA_GET_ASIZE(&(bp)->blk_dva[2]))
279
280#define	BP_GET_UCSIZE(bp) \
281	((BP_GET_LEVEL(bp) > 0 || dmu_ot[BP_GET_TYPE(bp)].ot_metadata) ? \
282	BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp));
283
284#define	BP_GET_NDVAS(bp)	\
285	(!!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
286	!!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
287	!!DVA_GET_ASIZE(&(bp)->blk_dva[2]))
288
289#define	DVA_EQUAL(dva1, dva2)	\
290	((dva1)->dva_word[1] == (dva2)->dva_word[1] && \
291	(dva1)->dva_word[0] == (dva2)->dva_word[0])
292
293#define	ZIO_CHECKSUM_EQUAL(zc1, zc2) \
294	(0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) | \
295	((zc1).zc_word[1] - (zc2).zc_word[1]) | \
296	((zc1).zc_word[2] - (zc2).zc_word[2]) | \
297	((zc1).zc_word[3] - (zc2).zc_word[3])))
298
299
300#define	DVA_IS_VALID(dva)	(DVA_GET_ASIZE(dva) != 0)
301
302#define	ZIO_SET_CHECKSUM(zcp, w0, w1, w2, w3)	\
303{						\
304	(zcp)->zc_word[0] = w0;			\
305	(zcp)->zc_word[1] = w1;			\
306	(zcp)->zc_word[2] = w2;			\
307	(zcp)->zc_word[3] = w3;			\
308}
309
310#define	BP_IDENTITY(bp)		(&(bp)->blk_dva[0])
311#define	BP_IS_GANG(bp)		DVA_GET_GANG(BP_IDENTITY(bp))
312#define	DVA_IS_EMPTY(dva)	((dva)->dva_word[0] == 0ULL &&  \
313	(dva)->dva_word[1] == 0ULL)
314#define	BP_IS_HOLE(bp)		DVA_IS_EMPTY(BP_IDENTITY(bp))
315#define	BP_IS_OLDER(bp, txg)	(!BP_IS_HOLE(bp) && (bp)->blk_birth < (txg))
316
317#define	BP_ZERO(bp)				\
318{						\
319	(bp)->blk_dva[0].dva_word[0] = 0;	\
320	(bp)->blk_dva[0].dva_word[1] = 0;	\
321	(bp)->blk_dva[1].dva_word[0] = 0;	\
322	(bp)->blk_dva[1].dva_word[1] = 0;	\
323	(bp)->blk_dva[2].dva_word[0] = 0;	\
324	(bp)->blk_dva[2].dva_word[1] = 0;	\
325	(bp)->blk_prop = 0;			\
326	(bp)->blk_pad[0] = 0;			\
327	(bp)->blk_pad[1] = 0;			\
328	(bp)->blk_phys_birth = 0;		\
329	(bp)->blk_birth = 0;			\
330	(bp)->blk_fill = 0;			\
331	ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0);	\
332}
333
334/*
335 * Embedded checksum
336 */
337#define	ZEC_MAGIC	0x210da7ab10c7a11ULL
338
339typedef struct zio_eck {
340	uint64_t	zec_magic;	/* for validation, endianness	*/
341	zio_cksum_t	zec_cksum;	/* 256-bit checksum		*/
342} zio_eck_t;
343
344/*
345 * Gang block headers are self-checksumming and contain an array
346 * of block pointers.
347 */
348#define	SPA_GANGBLOCKSIZE	SPA_MINBLOCKSIZE
349#define	SPA_GBH_NBLKPTRS	((SPA_GANGBLOCKSIZE - \
350	sizeof (zio_eck_t)) / sizeof (blkptr_t))
351#define	SPA_GBH_FILLER		((SPA_GANGBLOCKSIZE - \
352	sizeof (zio_eck_t) - \
353	(SPA_GBH_NBLKPTRS * sizeof (blkptr_t))) /\
354	sizeof (uint64_t))
355
356typedef struct zio_gbh {
357	blkptr_t		zg_blkptr[SPA_GBH_NBLKPTRS];
358	uint64_t		zg_filler[SPA_GBH_FILLER];
359	zio_eck_t		zg_tail;
360} zio_gbh_phys_t;
361
362#define	VDEV_RAIDZ_MAXPARITY	3
363
364#define	VDEV_PAD_SIZE		(8 << 10)
365/* 2 padding areas (vl_pad1 and vl_pad2) to skip */
366#define	VDEV_SKIP_SIZE		VDEV_PAD_SIZE * 2
367#define	VDEV_PHYS_SIZE		(112 << 10)
368#define	VDEV_UBERBLOCK_RING	(128 << 10)
369
370#define	VDEV_UBERBLOCK_SHIFT(vd)	\
371	MAX((vd)->v_top->v_ashift, UBERBLOCK_SHIFT)
372#define	VDEV_UBERBLOCK_COUNT(vd)	\
373	(VDEV_UBERBLOCK_RING >> VDEV_UBERBLOCK_SHIFT(vd))
374#define	VDEV_UBERBLOCK_OFFSET(vd, n)	\
375	offsetof(vdev_label_t, vl_uberblock[(n) << VDEV_UBERBLOCK_SHIFT(vd)])
376#define	VDEV_UBERBLOCK_SIZE(vd)		(1ULL << VDEV_UBERBLOCK_SHIFT(vd))
377
378typedef struct vdev_phys {
379	char		vp_nvlist[VDEV_PHYS_SIZE - sizeof (zio_eck_t)];
380	zio_eck_t	vp_zbt;
381} vdev_phys_t;
382
383typedef struct vdev_label {
384	char		vl_pad1[VDEV_PAD_SIZE];			/*  8K  */
385	char		vl_pad2[VDEV_PAD_SIZE];			/*  8K  */
386	vdev_phys_t	vl_vdev_phys;				/* 112K	*/
387	char		vl_uberblock[VDEV_UBERBLOCK_RING];	/* 128K	*/
388} vdev_label_t;							/* 256K total */
389
390/*
391 * vdev_dirty() flags
392 */
393#define	VDD_METASLAB	0x01
394#define	VDD_DTL		0x02
395
396/*
397 * Size and offset of embedded boot loader region on each label.
398 * The total size of the first two labels plus the boot area is 4MB.
399 */
400#define	VDEV_BOOT_OFFSET	(2 * sizeof (vdev_label_t))
401#define	VDEV_BOOT_SIZE		(7ULL << 19)			/* 3.5M	*/
402
403/*
404 * Size of label regions at the start and end of each leaf device.
405 */
406#define	VDEV_LABEL_START_SIZE	(2 * sizeof (vdev_label_t) + VDEV_BOOT_SIZE)
407#define	VDEV_LABEL_END_SIZE	(2 * sizeof (vdev_label_t))
408#define	VDEV_LABELS		4
409
410enum zio_checksum {
411	ZIO_CHECKSUM_INHERIT = 0,
412	ZIO_CHECKSUM_ON,
413	ZIO_CHECKSUM_OFF,
414	ZIO_CHECKSUM_LABEL,
415	ZIO_CHECKSUM_GANG_HEADER,
416	ZIO_CHECKSUM_ZILOG,
417	ZIO_CHECKSUM_FLETCHER_2,
418	ZIO_CHECKSUM_FLETCHER_4,
419	ZIO_CHECKSUM_SHA256,
420	ZIO_CHECKSUM_ZILOG2,
421	ZIO_CHECKSUM_FUNCTIONS
422};
423
424#define	ZIO_CHECKSUM_ON_VALUE	ZIO_CHECKSUM_FLETCHER_4
425#define	ZIO_CHECKSUM_DEFAULT	ZIO_CHECKSUM_ON
426
427enum zio_compress {
428	ZIO_COMPRESS_INHERIT = 0,
429	ZIO_COMPRESS_ON,
430	ZIO_COMPRESS_OFF,
431	ZIO_COMPRESS_LZJB,
432	ZIO_COMPRESS_EMPTY,
433	ZIO_COMPRESS_GZIP_1,
434	ZIO_COMPRESS_GZIP_2,
435	ZIO_COMPRESS_GZIP_3,
436	ZIO_COMPRESS_GZIP_4,
437	ZIO_COMPRESS_GZIP_5,
438	ZIO_COMPRESS_GZIP_6,
439	ZIO_COMPRESS_GZIP_7,
440	ZIO_COMPRESS_GZIP_8,
441	ZIO_COMPRESS_GZIP_9,
442	ZIO_COMPRESS_ZLE,
443	ZIO_COMPRESS_LZ4,
444	ZIO_COMPRESS_FUNCTIONS
445};
446
447#define	ZIO_COMPRESS_ON_VALUE	ZIO_COMPRESS_LZJB
448#define	ZIO_COMPRESS_DEFAULT	ZIO_COMPRESS_OFF
449
450/* nvlist pack encoding */
451#define	NV_ENCODE_NATIVE	0
452#define	NV_ENCODE_XDR		1
453
454typedef enum {
455	DATA_TYPE_UNKNOWN = 0,
456	DATA_TYPE_BOOLEAN,
457	DATA_TYPE_BYTE,
458	DATA_TYPE_INT16,
459	DATA_TYPE_UINT16,
460	DATA_TYPE_INT32,
461	DATA_TYPE_UINT32,
462	DATA_TYPE_INT64,
463	DATA_TYPE_UINT64,
464	DATA_TYPE_STRING,
465	DATA_TYPE_BYTE_ARRAY,
466	DATA_TYPE_INT16_ARRAY,
467	DATA_TYPE_UINT16_ARRAY,
468	DATA_TYPE_INT32_ARRAY,
469	DATA_TYPE_UINT32_ARRAY,
470	DATA_TYPE_INT64_ARRAY,
471	DATA_TYPE_UINT64_ARRAY,
472	DATA_TYPE_STRING_ARRAY,
473	DATA_TYPE_HRTIME,
474	DATA_TYPE_NVLIST,
475	DATA_TYPE_NVLIST_ARRAY,
476	DATA_TYPE_BOOLEAN_VALUE,
477	DATA_TYPE_INT8,
478	DATA_TYPE_UINT8,
479	DATA_TYPE_BOOLEAN_ARRAY,
480	DATA_TYPE_INT8_ARRAY,
481	DATA_TYPE_UINT8_ARRAY
482} data_type_t;
483
484/*
485 * On-disk version number.
486 */
487#define	SPA_VERSION_1			1ULL
488#define	SPA_VERSION_2			2ULL
489#define	SPA_VERSION_3			3ULL
490#define	SPA_VERSION_4			4ULL
491#define	SPA_VERSION_5			5ULL
492#define	SPA_VERSION_6			6ULL
493#define	SPA_VERSION_7			7ULL
494#define	SPA_VERSION_8			8ULL
495#define	SPA_VERSION_9			9ULL
496#define	SPA_VERSION_10			10ULL
497#define	SPA_VERSION_11			11ULL
498#define	SPA_VERSION_12			12ULL
499#define	SPA_VERSION_13			13ULL
500#define	SPA_VERSION_14			14ULL
501#define	SPA_VERSION_15			15ULL
502#define	SPA_VERSION_16			16ULL
503#define	SPA_VERSION_17			17ULL
504#define	SPA_VERSION_18			18ULL
505#define	SPA_VERSION_19			19ULL
506#define	SPA_VERSION_20			20ULL
507#define	SPA_VERSION_21			21ULL
508#define	SPA_VERSION_22			22ULL
509#define	SPA_VERSION_23			23ULL
510#define	SPA_VERSION_24			24ULL
511#define	SPA_VERSION_25			25ULL
512#define	SPA_VERSION_26			26ULL
513#define	SPA_VERSION_27			27ULL
514#define	SPA_VERSION_28			28ULL
515#define	SPA_VERSION_5000		5000ULL
516
517/*
518 * When bumping up SPA_VERSION, make sure GRUB ZFS understands the on-disk
519 * format change. Go to usr/src/grub/grub-0.97/stage2/{zfs-include/, fsys_zfs*},
520 * and do the appropriate changes.  Also bump the version number in
521 * usr/src/grub/capability.
522 */
523#define	SPA_VERSION			SPA_VERSION_5000
524#define	SPA_VERSION_STRING		"5000"
525
526/*
527 * Symbolic names for the changes that caused a SPA_VERSION switch.
528 * Used in the code when checking for presence or absence of a feature.
529 * Feel free to define multiple symbolic names for each version if there
530 * were multiple changes to on-disk structures during that version.
531 *
532 * NOTE: When checking the current SPA_VERSION in your code, be sure
533 *       to use spa_version() since it reports the version of the
534 *       last synced uberblock.  Checking the in-flight version can
535 *       be dangerous in some cases.
536 */
537#define	SPA_VERSION_INITIAL		SPA_VERSION_1
538#define	SPA_VERSION_DITTO_BLOCKS	SPA_VERSION_2
539#define	SPA_VERSION_SPARES		SPA_VERSION_3
540#define	SPA_VERSION_RAID6		SPA_VERSION_3
541#define	SPA_VERSION_BPLIST_ACCOUNT	SPA_VERSION_3
542#define	SPA_VERSION_RAIDZ_DEFLATE	SPA_VERSION_3
543#define	SPA_VERSION_DNODE_BYTES		SPA_VERSION_3
544#define	SPA_VERSION_ZPOOL_HISTORY	SPA_VERSION_4
545#define	SPA_VERSION_GZIP_COMPRESSION	SPA_VERSION_5
546#define	SPA_VERSION_BOOTFS		SPA_VERSION_6
547#define	SPA_VERSION_SLOGS		SPA_VERSION_7
548#define	SPA_VERSION_DELEGATED_PERMS	SPA_VERSION_8
549#define	SPA_VERSION_FUID		SPA_VERSION_9
550#define	SPA_VERSION_REFRESERVATION	SPA_VERSION_9
551#define	SPA_VERSION_REFQUOTA		SPA_VERSION_9
552#define	SPA_VERSION_UNIQUE_ACCURATE	SPA_VERSION_9
553#define	SPA_VERSION_L2CACHE		SPA_VERSION_10
554#define	SPA_VERSION_NEXT_CLONES		SPA_VERSION_11
555#define	SPA_VERSION_ORIGIN		SPA_VERSION_11
556#define	SPA_VERSION_DSL_SCRUB		SPA_VERSION_11
557#define	SPA_VERSION_SNAP_PROPS		SPA_VERSION_12
558#define	SPA_VERSION_USED_BREAKDOWN	SPA_VERSION_13
559#define	SPA_VERSION_PASSTHROUGH_X	SPA_VERSION_14
560#define SPA_VERSION_USERSPACE		SPA_VERSION_15
561#define	SPA_VERSION_STMF_PROP		SPA_VERSION_16
562#define	SPA_VERSION_RAIDZ3		SPA_VERSION_17
563#define	SPA_VERSION_USERREFS		SPA_VERSION_18
564#define	SPA_VERSION_HOLES		SPA_VERSION_19
565#define	SPA_VERSION_ZLE_COMPRESSION	SPA_VERSION_20
566#define	SPA_VERSION_DEDUP		SPA_VERSION_21
567#define	SPA_VERSION_RECVD_PROPS		SPA_VERSION_22
568#define	SPA_VERSION_SLIM_ZIL		SPA_VERSION_23
569#define	SPA_VERSION_SA			SPA_VERSION_24
570#define	SPA_VERSION_SCAN		SPA_VERSION_25
571#define	SPA_VERSION_DIR_CLONES		SPA_VERSION_26
572#define	SPA_VERSION_DEADLISTS		SPA_VERSION_26
573#define	SPA_VERSION_FAST_SNAP		SPA_VERSION_27
574#define	SPA_VERSION_MULTI_REPLACE	SPA_VERSION_28
575#define	SPA_VERSION_BEFORE_FEATURES	SPA_VERSION_28
576#define	SPA_VERSION_FEATURES		SPA_VERSION_5000
577
578#define	SPA_VERSION_IS_SUPPORTED(v) \
579	(((v) >= SPA_VERSION_INITIAL && (v) <= SPA_VERSION_BEFORE_FEATURES) || \
580	((v) >= SPA_VERSION_FEATURES && (v) <= SPA_VERSION))
581
582/*
583 * The following are configuration names used in the nvlist describing a pool's
584 * configuration.
585 */
586#define	ZPOOL_CONFIG_VERSION		"version"
587#define	ZPOOL_CONFIG_POOL_NAME		"name"
588#define	ZPOOL_CONFIG_POOL_STATE		"state"
589#define	ZPOOL_CONFIG_POOL_TXG		"txg"
590#define	ZPOOL_CONFIG_POOL_GUID		"pool_guid"
591#define	ZPOOL_CONFIG_CREATE_TXG		"create_txg"
592#define	ZPOOL_CONFIG_TOP_GUID		"top_guid"
593#define	ZPOOL_CONFIG_VDEV_TREE		"vdev_tree"
594#define	ZPOOL_CONFIG_TYPE		"type"
595#define	ZPOOL_CONFIG_CHILDREN		"children"
596#define	ZPOOL_CONFIG_ID			"id"
597#define	ZPOOL_CONFIG_GUID		"guid"
598#define	ZPOOL_CONFIG_PATH		"path"
599#define	ZPOOL_CONFIG_DEVID		"devid"
600#define	ZPOOL_CONFIG_METASLAB_ARRAY	"metaslab_array"
601#define	ZPOOL_CONFIG_METASLAB_SHIFT	"metaslab_shift"
602#define	ZPOOL_CONFIG_ASHIFT		"ashift"
603#define	ZPOOL_CONFIG_ASIZE		"asize"
604#define	ZPOOL_CONFIG_DTL		"DTL"
605#define	ZPOOL_CONFIG_STATS		"stats"
606#define	ZPOOL_CONFIG_WHOLE_DISK		"whole_disk"
607#define	ZPOOL_CONFIG_ERRCOUNT		"error_count"
608#define	ZPOOL_CONFIG_NOT_PRESENT	"not_present"
609#define	ZPOOL_CONFIG_SPARES		"spares"
610#define	ZPOOL_CONFIG_IS_SPARE		"is_spare"
611#define	ZPOOL_CONFIG_NPARITY		"nparity"
612#define	ZPOOL_CONFIG_HOSTID		"hostid"
613#define	ZPOOL_CONFIG_HOSTNAME		"hostname"
614#define	ZPOOL_CONFIG_IS_LOG		"is_log"
615#define	ZPOOL_CONFIG_TIMESTAMP		"timestamp" /* not stored on disk */
616#define	ZPOOL_CONFIG_FEATURES_FOR_READ	"features_for_read"
617
618/*
619 * The persistent vdev state is stored as separate values rather than a single
620 * 'vdev_state' entry.  This is because a device can be in multiple states, such
621 * as offline and degraded.
622 */
623#define	ZPOOL_CONFIG_OFFLINE            "offline"
624#define	ZPOOL_CONFIG_FAULTED            "faulted"
625#define	ZPOOL_CONFIG_DEGRADED           "degraded"
626#define	ZPOOL_CONFIG_REMOVED            "removed"
627#define	ZPOOL_CONFIG_FRU		"fru"
628#define	ZPOOL_CONFIG_AUX_STATE		"aux_state"
629
630#define	VDEV_TYPE_ROOT			"root"
631#define	VDEV_TYPE_MIRROR		"mirror"
632#define	VDEV_TYPE_REPLACING		"replacing"
633#define	VDEV_TYPE_RAIDZ			"raidz"
634#define	VDEV_TYPE_DISK			"disk"
635#define	VDEV_TYPE_FILE			"file"
636#define	VDEV_TYPE_MISSING		"missing"
637#define	VDEV_TYPE_HOLE			"hole"
638#define	VDEV_TYPE_SPARE			"spare"
639#define	VDEV_TYPE_LOG			"log"
640#define	VDEV_TYPE_L2CACHE		"l2cache"
641
642/*
643 * This is needed in userland to report the minimum necessary device size.
644 */
645#define	SPA_MINDEVSIZE		(64ULL << 20)
646
647/*
648 * The location of the pool configuration repository, shared between kernel and
649 * userland.
650 */
651#define	ZPOOL_CACHE		"/boot/zfs/zpool.cache"
652
653/*
654 * vdev states are ordered from least to most healthy.
655 * A vdev that's CANT_OPEN or below is considered unusable.
656 */
657typedef enum vdev_state {
658	VDEV_STATE_UNKNOWN = 0,	/* Uninitialized vdev			*/
659	VDEV_STATE_CLOSED,	/* Not currently open			*/
660	VDEV_STATE_OFFLINE,	/* Not allowed to open			*/
661	VDEV_STATE_REMOVED,	/* Explicitly removed from system	*/
662	VDEV_STATE_CANT_OPEN,	/* Tried to open, but failed		*/
663	VDEV_STATE_FAULTED,	/* External request to fault device	*/
664	VDEV_STATE_DEGRADED,	/* Replicated vdev with unhealthy kids	*/
665	VDEV_STATE_HEALTHY	/* Presumed good			*/
666} vdev_state_t;
667
668/*
669 * vdev aux states.  When a vdev is in the CANT_OPEN state, the aux field
670 * of the vdev stats structure uses these constants to distinguish why.
671 */
672typedef enum vdev_aux {
673	VDEV_AUX_NONE,		/* no error				*/
674	VDEV_AUX_OPEN_FAILED,	/* ldi_open_*() or vn_open() failed	*/
675	VDEV_AUX_CORRUPT_DATA,	/* bad label or disk contents		*/
676	VDEV_AUX_NO_REPLICAS,	/* insufficient number of replicas	*/
677	VDEV_AUX_BAD_GUID_SUM,	/* vdev guid sum doesn't match		*/
678	VDEV_AUX_TOO_SMALL,	/* vdev size is too small		*/
679	VDEV_AUX_BAD_LABEL,	/* the label is OK but invalid		*/
680	VDEV_AUX_VERSION_NEWER,	/* on-disk version is too new		*/
681	VDEV_AUX_VERSION_OLDER,	/* on-disk version is too old		*/
682	VDEV_AUX_SPARED		/* hot spare used in another pool	*/
683} vdev_aux_t;
684
685/*
686 * pool state.  The following states are written to disk as part of the normal
687 * SPA lifecycle: ACTIVE, EXPORTED, DESTROYED, SPARE.  The remaining states are
688 * software abstractions used at various levels to communicate pool state.
689 */
690typedef enum pool_state {
691	POOL_STATE_ACTIVE = 0,		/* In active use		*/
692	POOL_STATE_EXPORTED,		/* Explicitly exported		*/
693	POOL_STATE_DESTROYED,		/* Explicitly destroyed		*/
694	POOL_STATE_SPARE,		/* Reserved for hot spare use	*/
695	POOL_STATE_UNINITIALIZED,	/* Internal spa_t state		*/
696	POOL_STATE_UNAVAIL,		/* Internal libzfs state	*/
697	POOL_STATE_POTENTIALLY_ACTIVE	/* Internal libzfs state	*/
698} pool_state_t;
699
700/*
701 * The uberblock version is incremented whenever an incompatible on-disk
702 * format change is made to the SPA, DMU, or ZAP.
703 *
704 * Note: the first two fields should never be moved.  When a storage pool
705 * is opened, the uberblock must be read off the disk before the version
706 * can be checked.  If the ub_version field is moved, we may not detect
707 * version mismatch.  If the ub_magic field is moved, applications that
708 * expect the magic number in the first word won't work.
709 */
710#define	UBERBLOCK_MAGIC		0x00bab10c		/* oo-ba-bloc!	*/
711#define	UBERBLOCK_SHIFT		10			/* up to 1K	*/
712
713struct uberblock {
714	uint64_t	ub_magic;	/* UBERBLOCK_MAGIC		*/
715	uint64_t	ub_version;	/* SPA_VERSION			*/
716	uint64_t	ub_txg;		/* txg of last sync		*/
717	uint64_t	ub_guid_sum;	/* sum of all vdev guids	*/
718	uint64_t	ub_timestamp;	/* UTC time of last sync	*/
719	blkptr_t	ub_rootbp;	/* MOS objset_phys_t		*/
720};
721
722/*
723 * Flags.
724 */
725#define	DNODE_MUST_BE_ALLOCATED	1
726#define	DNODE_MUST_BE_FREE	2
727
728/*
729 * Fixed constants.
730 */
731#define	DNODE_SHIFT		9	/* 512 bytes */
732#define	DN_MIN_INDBLKSHIFT	10	/* 1k */
733#define	DN_MAX_INDBLKSHIFT	14	/* 16k */
734#define	DNODE_BLOCK_SHIFT	14	/* 16k */
735#define	DNODE_CORE_SIZE		64	/* 64 bytes for dnode sans blkptrs */
736#define	DN_MAX_OBJECT_SHIFT	48	/* 256 trillion (zfs_fid_t limit) */
737#define	DN_MAX_OFFSET_SHIFT	64	/* 2^64 bytes in a dnode */
738
739/*
740 * Derived constants.
741 */
742#define	DNODE_SIZE	(1 << DNODE_SHIFT)
743#define	DN_MAX_NBLKPTR	((DNODE_SIZE - DNODE_CORE_SIZE) >> SPA_BLKPTRSHIFT)
744#define	DN_MAX_BONUSLEN	(DNODE_SIZE - DNODE_CORE_SIZE - (1 << SPA_BLKPTRSHIFT))
745#define	DN_MAX_OBJECT	(1ULL << DN_MAX_OBJECT_SHIFT)
746
747#define	DNODES_PER_BLOCK_SHIFT	(DNODE_BLOCK_SHIFT - DNODE_SHIFT)
748#define	DNODES_PER_BLOCK	(1ULL << DNODES_PER_BLOCK_SHIFT)
749#define	DNODES_PER_LEVEL_SHIFT	(DN_MAX_INDBLKSHIFT - SPA_BLKPTRSHIFT)
750
751/* The +2 here is a cheesy way to round up */
752#define	DN_MAX_LEVELS	(2 + ((DN_MAX_OFFSET_SHIFT - SPA_MINBLOCKSHIFT) / \
753	(DN_MIN_INDBLKSHIFT - SPA_BLKPTRSHIFT)))
754
755#define	DN_BONUS(dnp)	((void*)((dnp)->dn_bonus + \
756	(((dnp)->dn_nblkptr - 1) * sizeof (blkptr_t))))
757
758#define	DN_USED_BYTES(dnp) (((dnp)->dn_flags & DNODE_FLAG_USED_BYTES) ? \
759	(dnp)->dn_used : (dnp)->dn_used << SPA_MINBLOCKSHIFT)
760
761#define	EPB(blkshift, typeshift)	(1 << (blkshift - typeshift))
762
763/* Is dn_used in bytes?  if not, it's in multiples of SPA_MINBLOCKSIZE */
764#define	DNODE_FLAG_USED_BYTES		(1<<0)
765#define	DNODE_FLAG_USERUSED_ACCOUNTED	(1<<1)
766
767/* Does dnode have a SA spill blkptr in bonus? */
768#define	DNODE_FLAG_SPILL_BLKPTR	(1<<2)
769
770typedef struct dnode_phys {
771	uint8_t dn_type;		/* dmu_object_type_t */
772	uint8_t dn_indblkshift;		/* ln2(indirect block size) */
773	uint8_t dn_nlevels;		/* 1=dn_blkptr->data blocks */
774	uint8_t dn_nblkptr;		/* length of dn_blkptr */
775	uint8_t dn_bonustype;		/* type of data in bonus buffer */
776	uint8_t	dn_checksum;		/* ZIO_CHECKSUM type */
777	uint8_t	dn_compress;		/* ZIO_COMPRESS type */
778	uint8_t dn_flags;		/* DNODE_FLAG_* */
779	uint16_t dn_datablkszsec;	/* data block size in 512b sectors */
780	uint16_t dn_bonuslen;		/* length of dn_bonus */
781	uint8_t dn_pad2[4];
782
783	/* accounting is protected by dn_dirty_mtx */
784	uint64_t dn_maxblkid;		/* largest allocated block ID */
785	uint64_t dn_used;		/* bytes (or sectors) of disk space */
786
787	uint64_t dn_pad3[4];
788
789	blkptr_t dn_blkptr[1];
790	uint8_t dn_bonus[DN_MAX_BONUSLEN - sizeof (blkptr_t)];
791	blkptr_t dn_spill;
792} dnode_phys_t;
793
794typedef enum dmu_object_type {
795	DMU_OT_NONE,
796	/* general: */
797	DMU_OT_OBJECT_DIRECTORY,	/* ZAP */
798	DMU_OT_OBJECT_ARRAY,		/* UINT64 */
799	DMU_OT_PACKED_NVLIST,		/* UINT8 (XDR by nvlist_pack/unpack) */
800	DMU_OT_PACKED_NVLIST_SIZE,	/* UINT64 */
801	DMU_OT_BPLIST,			/* UINT64 */
802	DMU_OT_BPLIST_HDR,		/* UINT64 */
803	/* spa: */
804	DMU_OT_SPACE_MAP_HEADER,	/* UINT64 */
805	DMU_OT_SPACE_MAP,		/* UINT64 */
806	/* zil: */
807	DMU_OT_INTENT_LOG,		/* UINT64 */
808	/* dmu: */
809	DMU_OT_DNODE,			/* DNODE */
810	DMU_OT_OBJSET,			/* OBJSET */
811	/* dsl: */
812	DMU_OT_DSL_DIR,			/* UINT64 */
813	DMU_OT_DSL_DIR_CHILD_MAP,	/* ZAP */
814	DMU_OT_DSL_DS_SNAP_MAP,		/* ZAP */
815	DMU_OT_DSL_PROPS,		/* ZAP */
816	DMU_OT_DSL_DATASET,		/* UINT64 */
817	/* zpl: */
818	DMU_OT_ZNODE,			/* ZNODE */
819	DMU_OT_OLDACL,			/* Old ACL */
820	DMU_OT_PLAIN_FILE_CONTENTS,	/* UINT8 */
821	DMU_OT_DIRECTORY_CONTENTS,	/* ZAP */
822	DMU_OT_MASTER_NODE,		/* ZAP */
823	DMU_OT_UNLINKED_SET,		/* ZAP */
824	/* zvol: */
825	DMU_OT_ZVOL,			/* UINT8 */
826	DMU_OT_ZVOL_PROP,		/* ZAP */
827	/* other; for testing only! */
828	DMU_OT_PLAIN_OTHER,		/* UINT8 */
829	DMU_OT_UINT64_OTHER,		/* UINT64 */
830	DMU_OT_ZAP_OTHER,		/* ZAP */
831	/* new object types: */
832	DMU_OT_ERROR_LOG,		/* ZAP */
833	DMU_OT_SPA_HISTORY,		/* UINT8 */
834	DMU_OT_SPA_HISTORY_OFFSETS,	/* spa_his_phys_t */
835	DMU_OT_POOL_PROPS,		/* ZAP */
836	DMU_OT_DSL_PERMS,		/* ZAP */
837	DMU_OT_ACL,			/* ACL */
838	DMU_OT_SYSACL,			/* SYSACL */
839	DMU_OT_FUID,			/* FUID table (Packed NVLIST UINT8) */
840	DMU_OT_FUID_SIZE,		/* FUID table size UINT64 */
841	DMU_OT_NEXT_CLONES,		/* ZAP */
842	DMU_OT_SCAN_QUEUE,		/* ZAP */
843	DMU_OT_USERGROUP_USED,		/* ZAP */
844	DMU_OT_USERGROUP_QUOTA,		/* ZAP */
845	DMU_OT_USERREFS,		/* ZAP */
846	DMU_OT_DDT_ZAP,			/* ZAP */
847	DMU_OT_DDT_STATS,		/* ZAP */
848	DMU_OT_SA,			/* System attr */
849	DMU_OT_SA_MASTER_NODE,		/* ZAP */
850	DMU_OT_SA_ATTR_REGISTRATION,	/* ZAP */
851	DMU_OT_SA_ATTR_LAYOUTS,		/* ZAP */
852	DMU_OT_SCAN_XLATE,		/* ZAP */
853	DMU_OT_DEDUP,			/* fake dedup BP from ddt_bp_create() */
854	DMU_OT_NUMTYPES
855} dmu_object_type_t;
856
857typedef enum dmu_objset_type {
858	DMU_OST_NONE,
859	DMU_OST_META,
860	DMU_OST_ZFS,
861	DMU_OST_ZVOL,
862	DMU_OST_OTHER,			/* For testing only! */
863	DMU_OST_ANY,			/* Be careful! */
864	DMU_OST_NUMTYPES
865} dmu_objset_type_t;
866
867/*
868 * header for all bonus and spill buffers.
869 * The header has a fixed portion with a variable number
870 * of "lengths" depending on the number of variable sized
871 * attribues which are determined by the "layout number"
872 */
873
874#define	SA_MAGIC	0x2F505A  /* ZFS SA */
875typedef struct sa_hdr_phys {
876	uint32_t sa_magic;
877	uint16_t sa_layout_info;  /* Encoded with hdrsize and layout number */
878	uint16_t sa_lengths[1];	/* optional sizes for variable length attrs */
879	/* ... Data follows the lengths.  */
880} sa_hdr_phys_t;
881
882/*
883 * sa_hdr_phys -> sa_layout_info
884 *
885 * 16      10       0
886 * +--------+-------+
887 * | hdrsz  |layout |
888 * +--------+-------+
889 *
890 * Bits 0-10 are the layout number
891 * Bits 11-16 are the size of the header.
892 * The hdrsize is the number * 8
893 *
894 * For example.
895 * hdrsz of 1 ==> 8 byte header
896 *          2 ==> 16 byte header
897 *
898 */
899
900#define	SA_HDR_LAYOUT_NUM(hdr) BF32_GET(hdr->sa_layout_info, 0, 10)
901#define	SA_HDR_SIZE(hdr) BF32_GET_SB(hdr->sa_layout_info, 10, 16, 3, 0)
902#define	SA_HDR_LAYOUT_INFO_ENCODE(x, num, size) \
903{ \
904	BF32_SET_SB(x, 10, 6, 3, 0, size); \
905	BF32_SET(x, 0, 10, num); \
906}
907
908#define	SA_MODE_OFFSET		0
909#define	SA_SIZE_OFFSET		8
910#define	SA_GEN_OFFSET		16
911#define	SA_UID_OFFSET		24
912#define	SA_GID_OFFSET		32
913#define	SA_PARENT_OFFSET	40
914
915/*
916 * Intent log header - this on disk structure holds fields to manage
917 * the log.  All fields are 64 bit to easily handle cross architectures.
918 */
919typedef struct zil_header {
920	uint64_t zh_claim_txg;	/* txg in which log blocks were claimed */
921	uint64_t zh_replay_seq;	/* highest replayed sequence number */
922	blkptr_t zh_log;	/* log chain */
923	uint64_t zh_claim_seq;	/* highest claimed sequence number */
924	uint64_t zh_pad[5];
925} zil_header_t;
926
927#define	OBJSET_PHYS_SIZE 2048
928
929typedef struct objset_phys {
930	dnode_phys_t os_meta_dnode;
931	zil_header_t os_zil_header;
932	uint64_t os_type;
933	uint64_t os_flags;
934	char os_pad[OBJSET_PHYS_SIZE - sizeof (dnode_phys_t)*3 -
935	    sizeof (zil_header_t) - sizeof (uint64_t)*2];
936	dnode_phys_t os_userused_dnode;
937	dnode_phys_t os_groupused_dnode;
938} objset_phys_t;
939
940typedef struct dsl_dir_phys {
941	uint64_t dd_creation_time; /* not actually used */
942	uint64_t dd_head_dataset_obj;
943	uint64_t dd_parent_obj;
944	uint64_t dd_clone_parent_obj;
945	uint64_t dd_child_dir_zapobj;
946	/*
947	 * how much space our children are accounting for; for leaf
948	 * datasets, == physical space used by fs + snaps
949	 */
950	uint64_t dd_used_bytes;
951	uint64_t dd_compressed_bytes;
952	uint64_t dd_uncompressed_bytes;
953	/* Administrative quota setting */
954	uint64_t dd_quota;
955	/* Administrative reservation setting */
956	uint64_t dd_reserved;
957	uint64_t dd_props_zapobj;
958	uint64_t dd_pad[21]; /* pad out to 256 bytes for good measure */
959} dsl_dir_phys_t;
960
961typedef struct dsl_dataset_phys {
962	uint64_t ds_dir_obj;
963	uint64_t ds_prev_snap_obj;
964	uint64_t ds_prev_snap_txg;
965	uint64_t ds_next_snap_obj;
966	uint64_t ds_snapnames_zapobj;	/* zap obj of snaps; ==0 for snaps */
967	uint64_t ds_num_children;	/* clone/snap children; ==0 for head */
968	uint64_t ds_creation_time;	/* seconds since 1970 */
969	uint64_t ds_creation_txg;
970	uint64_t ds_deadlist_obj;
971	uint64_t ds_used_bytes;
972	uint64_t ds_compressed_bytes;
973	uint64_t ds_uncompressed_bytes;
974	uint64_t ds_unique_bytes;	/* only relevant to snapshots */
975	/*
976	 * The ds_fsid_guid is a 56-bit ID that can change to avoid
977	 * collisions.  The ds_guid is a 64-bit ID that will never
978	 * change, so there is a small probability that it will collide.
979	 */
980	uint64_t ds_fsid_guid;
981	uint64_t ds_guid;
982	uint64_t ds_flags;
983	blkptr_t ds_bp;
984	uint64_t ds_pad[8]; /* pad out to 320 bytes for good measure */
985} dsl_dataset_phys_t;
986
987/*
988 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
989 */
990#define	DMU_POOL_DIRECTORY_OBJECT	1
991#define	DMU_POOL_CONFIG			"config"
992#define	DMU_POOL_ROOT_DATASET		"root_dataset"
993#define	DMU_POOL_SYNC_BPLIST		"sync_bplist"
994#define	DMU_POOL_ERRLOG_SCRUB		"errlog_scrub"
995#define	DMU_POOL_ERRLOG_LAST		"errlog_last"
996#define	DMU_POOL_SPARES			"spares"
997#define	DMU_POOL_DEFLATE		"deflate"
998#define	DMU_POOL_HISTORY		"history"
999#define	DMU_POOL_PROPS			"pool_props"
1000
1001#define	ZAP_MAGIC 0x2F52AB2ABULL
1002
1003#define	FZAP_BLOCK_SHIFT(zap)	((zap)->zap_block_shift)
1004
1005#define	ZAP_MAXCD		(uint32_t)(-1)
1006#define	ZAP_HASHBITS		28
1007#define	MZAP_ENT_LEN		64
1008#define	MZAP_NAME_LEN		(MZAP_ENT_LEN - 8 - 4 - 2)
1009#define	MZAP_MAX_BLKSHIFT	SPA_MAXBLOCKSHIFT
1010#define	MZAP_MAX_BLKSZ		(1 << MZAP_MAX_BLKSHIFT)
1011
1012typedef struct mzap_ent_phys {
1013	uint64_t mze_value;
1014	uint32_t mze_cd;
1015	uint16_t mze_pad;	/* in case we want to chain them someday */
1016	char mze_name[MZAP_NAME_LEN];
1017} mzap_ent_phys_t;
1018
1019typedef struct mzap_phys {
1020	uint64_t mz_block_type;	/* ZBT_MICRO */
1021	uint64_t mz_salt;
1022	uint64_t mz_pad[6];
1023	mzap_ent_phys_t mz_chunk[1];
1024	/* actually variable size depending on block size */
1025} mzap_phys_t;
1026
1027/*
1028 * The (fat) zap is stored in one object. It is an array of
1029 * 1<<FZAP_BLOCK_SHIFT byte blocks. The layout looks like one of:
1030 *
1031 * ptrtbl fits in first block:
1032 * 	[zap_phys_t zap_ptrtbl_shift < 6] [zap_leaf_t] ...
1033 *
1034 * ptrtbl too big for first block:
1035 * 	[zap_phys_t zap_ptrtbl_shift >= 6] [zap_leaf_t] [ptrtbl] ...
1036 *
1037 */
1038
1039#define	ZBT_LEAF		((1ULL << 63) + 0)
1040#define	ZBT_HEADER		((1ULL << 63) + 1)
1041#define	ZBT_MICRO		((1ULL << 63) + 3)
1042/* any other values are ptrtbl blocks */
1043
1044/*
1045 * the embedded pointer table takes up half a block:
1046 * block size / entry size (2^3) / 2
1047 */
1048#define	ZAP_EMBEDDED_PTRTBL_SHIFT(zap) (FZAP_BLOCK_SHIFT(zap) - 3 - 1)
1049
1050/*
1051 * The embedded pointer table starts half-way through the block.  Since
1052 * the pointer table itself is half the block, it starts at (64-bit)
1053 * word number (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)).
1054 */
1055#define	ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) \
1056	((uint64_t *)(zap)->zap_phys) \
1057	[(idx) + (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap))]
1058
1059/*
1060 * TAKE NOTE:
1061 * If zap_phys_t is modified, zap_byteswap() must be modified.
1062 */
1063typedef struct zap_phys {
1064	uint64_t zap_block_type;	/* ZBT_HEADER */
1065	uint64_t zap_magic;		/* ZAP_MAGIC */
1066
1067	struct zap_table_phys {
1068		uint64_t zt_blk;	/* starting block number */
1069		uint64_t zt_numblks;	/* number of blocks */
1070		uint64_t zt_shift;	/* bits to index it */
1071		uint64_t zt_nextblk;	/* next (larger) copy start block */
1072		uint64_t zt_blks_copied; /* number source blocks copied */
1073	} zap_ptrtbl;
1074
1075	uint64_t zap_freeblk;		/* the next free block */
1076	uint64_t zap_num_leafs;		/* number of leafs */
1077	uint64_t zap_num_entries;	/* number of entries */
1078	uint64_t zap_salt;		/* salt to stir into hash function */
1079	/*
1080	 * This structure is followed by padding, and then the embedded
1081	 * pointer table.  The embedded pointer table takes up second
1082	 * half of the block.  It is accessed using the
1083	 * ZAP_EMBEDDED_PTRTBL_ENT() macro.
1084	 */
1085} zap_phys_t;
1086
1087typedef struct zap_table_phys zap_table_phys_t;
1088
1089typedef struct fat_zap {
1090	int zap_block_shift;			/* block size shift */
1091	zap_phys_t *zap_phys;
1092} fat_zap_t;
1093
1094#define	ZAP_LEAF_MAGIC 0x2AB1EAF
1095
1096/* chunk size = 24 bytes */
1097#define	ZAP_LEAF_CHUNKSIZE 24
1098
1099/*
1100 * The amount of space available for chunks is:
1101 * block size (1<<l->l_bs) - hash entry size (2) * number of hash
1102 * entries - header space (2*chunksize)
1103 */
1104#define	ZAP_LEAF_NUMCHUNKS(l) \
1105	(((1<<(l)->l_bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(l)) / \
1106	ZAP_LEAF_CHUNKSIZE - 2)
1107
1108/*
1109 * The amount of space within the chunk available for the array is:
1110 * chunk size - space for type (1) - space for next pointer (2)
1111 */
1112#define	ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3)
1113
1114#define	ZAP_LEAF_ARRAY_NCHUNKS(bytes) \
1115	(((bytes)+ZAP_LEAF_ARRAY_BYTES-1)/ZAP_LEAF_ARRAY_BYTES)
1116
1117/*
1118 * Low water mark:  when there are only this many chunks free, start
1119 * growing the ptrtbl.  Ideally, this should be larger than a
1120 * "reasonably-sized" entry.  20 chunks is more than enough for the
1121 * largest directory entry (MAXNAMELEN (256) byte name, 8-byte value),
1122 * while still being only around 3% for 16k blocks.
1123 */
1124#define	ZAP_LEAF_LOW_WATER (20)
1125
1126/*
1127 * The leaf hash table has block size / 2^5 (32) number of entries,
1128 * which should be more than enough for the maximum number of entries,
1129 * which is less than block size / CHUNKSIZE (24) / minimum number of
1130 * chunks per entry (3).
1131 */
1132#define	ZAP_LEAF_HASH_SHIFT(l) ((l)->l_bs - 5)
1133#define	ZAP_LEAF_HASH_NUMENTRIES(l) (1 << ZAP_LEAF_HASH_SHIFT(l))
1134
1135/*
1136 * The chunks start immediately after the hash table.  The end of the
1137 * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a
1138 * chunk_t.
1139 */
1140#define	ZAP_LEAF_CHUNK(l, idx) \
1141	((zap_leaf_chunk_t *) \
1142	((l)->l_phys->l_hash + ZAP_LEAF_HASH_NUMENTRIES(l)))[idx]
1143#define	ZAP_LEAF_ENTRY(l, idx) (&ZAP_LEAF_CHUNK(l, idx).l_entry)
1144
1145typedef enum zap_chunk_type {
1146	ZAP_CHUNK_FREE = 253,
1147	ZAP_CHUNK_ENTRY = 252,
1148	ZAP_CHUNK_ARRAY = 251,
1149	ZAP_CHUNK_TYPE_MAX = 250
1150} zap_chunk_type_t;
1151
1152/*
1153 * TAKE NOTE:
1154 * If zap_leaf_phys_t is modified, zap_leaf_byteswap() must be modified.
1155 */
1156typedef struct zap_leaf_phys {
1157	struct zap_leaf_header {
1158		uint64_t lh_block_type;		/* ZBT_LEAF */
1159		uint64_t lh_pad1;
1160		uint64_t lh_prefix;		/* hash prefix of this leaf */
1161		uint32_t lh_magic;		/* ZAP_LEAF_MAGIC */
1162		uint16_t lh_nfree;		/* number free chunks */
1163		uint16_t lh_nentries;		/* number of entries */
1164		uint16_t lh_prefix_len;		/* num bits used to id this */
1165
1166/* above is accessable to zap, below is zap_leaf private */
1167
1168		uint16_t lh_freelist;		/* chunk head of free list */
1169		uint8_t lh_pad2[12];
1170	} l_hdr; /* 2 24-byte chunks */
1171
1172	/*
1173	 * The header is followed by a hash table with
1174	 * ZAP_LEAF_HASH_NUMENTRIES(zap) entries.  The hash table is
1175	 * followed by an array of ZAP_LEAF_NUMCHUNKS(zap)
1176	 * zap_leaf_chunk structures.  These structures are accessed
1177	 * with the ZAP_LEAF_CHUNK() macro.
1178	 */
1179
1180	uint16_t l_hash[1];
1181} zap_leaf_phys_t;
1182
1183typedef union zap_leaf_chunk {
1184	struct zap_leaf_entry {
1185		uint8_t le_type; 		/* always ZAP_CHUNK_ENTRY */
1186		uint8_t le_value_intlen;	/* size of ints */
1187		uint16_t le_next;		/* next entry in hash chain */
1188		uint16_t le_name_chunk;		/* first chunk of the name */
1189		uint16_t le_name_numints;	/* bytes in name, incl null */
1190		uint16_t le_value_chunk;	/* first chunk of the value */
1191		uint16_t le_value_numints;	/* value length in ints */
1192		uint32_t le_cd;			/* collision differentiator */
1193		uint64_t le_hash;		/* hash value of the name */
1194	} l_entry;
1195	struct zap_leaf_array {
1196		uint8_t la_type;		/* always ZAP_CHUNK_ARRAY */
1197		uint8_t la_array[ZAP_LEAF_ARRAY_BYTES];
1198		uint16_t la_next;		/* next blk or CHAIN_END */
1199	} l_array;
1200	struct zap_leaf_free {
1201		uint8_t lf_type;		/* always ZAP_CHUNK_FREE */
1202		uint8_t lf_pad[ZAP_LEAF_ARRAY_BYTES];
1203		uint16_t lf_next;	/* next in free list, or CHAIN_END */
1204	} l_free;
1205} zap_leaf_chunk_t;
1206
1207typedef struct zap_leaf {
1208	int l_bs;			/* block size shift */
1209	zap_leaf_phys_t *l_phys;
1210} zap_leaf_t;
1211
1212/*
1213 * Define special zfs pflags
1214 */
1215#define	ZFS_XATTR	0x1		/* is an extended attribute */
1216#define	ZFS_INHERIT_ACE	0x2		/* ace has inheritable ACEs */
1217#define	ZFS_ACL_TRIVIAL 0x4		/* files ACL is trivial */
1218
1219#define	MASTER_NODE_OBJ	1
1220
1221/*
1222 * special attributes for master node.
1223 */
1224
1225#define	ZFS_FSID		"FSID"
1226#define	ZFS_UNLINKED_SET	"DELETE_QUEUE"
1227#define	ZFS_ROOT_OBJ		"ROOT"
1228#define	ZPL_VERSION_OBJ		"VERSION"
1229#define	ZFS_PROP_BLOCKPERPAGE	"BLOCKPERPAGE"
1230#define	ZFS_PROP_NOGROWBLOCKS	"NOGROWBLOCKS"
1231
1232#define	ZFS_FLAG_BLOCKPERPAGE	0x1
1233#define	ZFS_FLAG_NOGROWBLOCKS	0x2
1234
1235/*
1236 * ZPL version - rev'd whenever an incompatible on-disk format change
1237 * occurs.  Independent of SPA/DMU/ZAP versioning.
1238 */
1239
1240#define	ZPL_VERSION		1ULL
1241
1242/*
1243 * The directory entry has the type (currently unused on Solaris) in the
1244 * top 4 bits, and the object number in the low 48 bits.  The "middle"
1245 * 12 bits are unused.
1246 */
1247#define	ZFS_DIRENT_TYPE(de) BF64_GET(de, 60, 4)
1248#define	ZFS_DIRENT_OBJ(de) BF64_GET(de, 0, 48)
1249#define	ZFS_DIRENT_MAKE(type, obj) (((uint64_t)type << 60) | obj)
1250
1251typedef struct ace {
1252	uid_t		a_who;		/* uid or gid */
1253	uint32_t	a_access_mask;	/* read,write,... */
1254	uint16_t	a_flags;	/* see below */
1255	uint16_t	a_type;		/* allow or deny */
1256} ace_t;
1257
1258#define ACE_SLOT_CNT	6
1259
1260typedef struct zfs_znode_acl {
1261	uint64_t	z_acl_extern_obj;	  /* ext acl pieces */
1262	uint32_t	z_acl_count;		  /* Number of ACEs */
1263	uint16_t	z_acl_version;		  /* acl version */
1264	uint16_t	z_acl_pad;		  /* pad */
1265	ace_t		z_ace_data[ACE_SLOT_CNT]; /* 6 standard ACEs */
1266} zfs_znode_acl_t;
1267
1268/*
1269 * This is the persistent portion of the znode.  It is stored
1270 * in the "bonus buffer" of the file.  Short symbolic links
1271 * are also stored in the bonus buffer.
1272 */
1273typedef struct znode_phys {
1274	uint64_t zp_atime[2];		/*  0 - last file access time */
1275	uint64_t zp_mtime[2];		/* 16 - last file modification time */
1276	uint64_t zp_ctime[2];		/* 32 - last file change time */
1277	uint64_t zp_crtime[2];		/* 48 - creation time */
1278	uint64_t zp_gen;		/* 64 - generation (txg of creation) */
1279	uint64_t zp_mode;		/* 72 - file mode bits */
1280	uint64_t zp_size;		/* 80 - size of file */
1281	uint64_t zp_parent;		/* 88 - directory parent (`..') */
1282	uint64_t zp_links;		/* 96 - number of links to file */
1283	uint64_t zp_xattr;		/* 104 - DMU object for xattrs */
1284	uint64_t zp_rdev;		/* 112 - dev_t for VBLK & VCHR files */
1285	uint64_t zp_flags;		/* 120 - persistent flags */
1286	uint64_t zp_uid;		/* 128 - file owner */
1287	uint64_t zp_gid;		/* 136 - owning group */
1288	uint64_t zp_pad[4];		/* 144 - future */
1289	zfs_znode_acl_t zp_acl;		/* 176 - 263 ACL */
1290	/*
1291	 * Data may pad out any remaining bytes in the znode buffer, eg:
1292	 *
1293	 * |<---------------------- dnode_phys (512) ------------------------>|
1294	 * |<-- dnode (192) --->|<----------- "bonus" buffer (320) ---------->|
1295	 *			|<---- znode (264) ---->|<---- data (56) ---->|
1296	 *
1297	 * At present, we only use this space to store symbolic links.
1298	 */
1299} znode_phys_t;
1300
1301/*
1302 * In-core vdev representation.
1303 */
1304struct vdev;
1305typedef int vdev_phys_read_t(struct vdev *vdev, void *priv,
1306    off_t offset, void *buf, size_t bytes);
1307typedef int vdev_read_t(struct vdev *vdev, const blkptr_t *bp,
1308    void *buf, off_t offset, size_t bytes);
1309
1310typedef STAILQ_HEAD(vdev_list, vdev) vdev_list_t;
1311
1312typedef struct vdev {
1313	STAILQ_ENTRY(vdev) v_childlink;	/* link in parent's child list */
1314	STAILQ_ENTRY(vdev) v_alllink;	/* link in global vdev list */
1315	vdev_list_t	v_children;	/* children of this vdev */
1316	const char	*v_name;	/* vdev name */
1317	uint64_t	v_guid;		/* vdev guid */
1318	int		v_id;		/* index in parent */
1319	int		v_ashift;	/* offset to block shift */
1320	int		v_nparity;	/* # parity for raidz */
1321	struct vdev	*v_top;		/* parent vdev */
1322	int		v_nchildren;	/* # children */
1323	vdev_state_t	v_state;	/* current state */
1324	vdev_phys_read_t *v_phys_read;	/* read from raw leaf vdev */
1325	vdev_read_t	*v_read;	/* read from vdev */
1326	void		*v_read_priv;	/* private data for read function */
1327} vdev_t;
1328
1329/*
1330 * In-core pool representation.
1331 */
1332typedef STAILQ_HEAD(spa_list, spa) spa_list_t;
1333
1334typedef struct spa {
1335	STAILQ_ENTRY(spa) spa_link;	/* link in global pool list */
1336	char		*spa_name;	/* pool name */
1337	uint64_t	spa_guid;	/* pool guid */
1338	uint64_t	spa_txg;	/* most recent transaction */
1339	struct uberblock spa_uberblock;	/* best uberblock so far */
1340	vdev_list_t	spa_vdevs;	/* list of all toplevel vdevs */
1341	objset_phys_t	spa_mos;	/* MOS for this pool */
1342	int		spa_inited;	/* initialized */
1343} spa_t;
1344