scsi_pass.c revision 312357
1/*-
2 * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs.
3 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions, and the following disclaimer,
11 *    without modification, immediately at the beginning of the file.
12 * 2. The name of the author may not be used to endorse or promote products
13 *    derived from this software without specific prior written permission.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
19 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: stable/10/sys/cam/scsi/scsi_pass.c 312357 2017-01-17 23:55:10Z ngie $");
30
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/kernel.h>
34#include <sys/conf.h>
35#include <sys/types.h>
36#include <sys/bio.h>
37#include <sys/bus.h>
38#include <sys/devicestat.h>
39#include <sys/errno.h>
40#include <sys/fcntl.h>
41#include <sys/malloc.h>
42#include <sys/proc.h>
43#include <sys/poll.h>
44#include <sys/selinfo.h>
45#include <sys/sdt.h>
46#include <sys/taskqueue.h>
47#include <vm/uma.h>
48#include <vm/vm.h>
49#include <vm/vm_extern.h>
50
51#include <machine/bus.h>
52
53#include <cam/cam.h>
54#include <cam/cam_ccb.h>
55#include <cam/cam_periph.h>
56#include <cam/cam_queue.h>
57#include <cam/cam_xpt.h>
58#include <cam/cam_xpt_periph.h>
59#include <cam/cam_debug.h>
60#include <cam/cam_compat.h>
61#include <cam/cam_xpt_periph.h>
62
63#include <cam/scsi/scsi_all.h>
64#include <cam/scsi/scsi_pass.h>
65
66typedef enum {
67	PASS_FLAG_OPEN			= 0x01,
68	PASS_FLAG_LOCKED		= 0x02,
69	PASS_FLAG_INVALID		= 0x04,
70	PASS_FLAG_INITIAL_PHYSPATH	= 0x08,
71	PASS_FLAG_ZONE_INPROG		= 0x10,
72	PASS_FLAG_ZONE_VALID		= 0x20,
73	PASS_FLAG_UNMAPPED_CAPABLE	= 0x40,
74	PASS_FLAG_ABANDONED_REF_SET	= 0x80
75} pass_flags;
76
77typedef enum {
78	PASS_STATE_NORMAL
79} pass_state;
80
81typedef enum {
82	PASS_CCB_BUFFER_IO,
83	PASS_CCB_QUEUED_IO
84} pass_ccb_types;
85
86#define ccb_type	ppriv_field0
87#define ccb_ioreq	ppriv_ptr1
88
89/*
90 * The maximum number of memory segments we preallocate.
91 */
92#define	PASS_MAX_SEGS	16
93
94typedef enum {
95	PASS_IO_NONE		= 0x00,
96	PASS_IO_USER_SEG_MALLOC	= 0x01,
97	PASS_IO_KERN_SEG_MALLOC	= 0x02,
98	PASS_IO_ABANDONED	= 0x04
99} pass_io_flags;
100
101struct pass_io_req {
102	union ccb			 ccb;
103	union ccb			*alloced_ccb;
104	union ccb			*user_ccb_ptr;
105	camq_entry			 user_periph_links;
106	ccb_ppriv_area			 user_periph_priv;
107	struct cam_periph_map_info	 mapinfo;
108	pass_io_flags			 flags;
109	ccb_flags			 data_flags;
110	int				 num_user_segs;
111	bus_dma_segment_t		 user_segs[PASS_MAX_SEGS];
112	int				 num_kern_segs;
113	bus_dma_segment_t		 kern_segs[PASS_MAX_SEGS];
114	bus_dma_segment_t		*user_segptr;
115	bus_dma_segment_t		*kern_segptr;
116	int				 num_bufs;
117	uint32_t			 dirs[CAM_PERIPH_MAXMAPS];
118	uint32_t			 lengths[CAM_PERIPH_MAXMAPS];
119	uint8_t				*user_bufs[CAM_PERIPH_MAXMAPS];
120	uint8_t				*kern_bufs[CAM_PERIPH_MAXMAPS];
121	struct bintime			 start_time;
122	TAILQ_ENTRY(pass_io_req)	 links;
123};
124
125struct pass_softc {
126	pass_state		  state;
127	pass_flags		  flags;
128	u_int8_t		  pd_type;
129	union ccb		  saved_ccb;
130	int			  open_count;
131	u_int		 	  maxio;
132	struct devstat		 *device_stats;
133	struct cdev		 *dev;
134	struct cdev		 *alias_dev;
135	struct task		  add_physpath_task;
136	struct task		  shutdown_kqueue_task;
137	struct selinfo		  read_select;
138	TAILQ_HEAD(, pass_io_req) incoming_queue;
139	TAILQ_HEAD(, pass_io_req) active_queue;
140	TAILQ_HEAD(, pass_io_req) abandoned_queue;
141	TAILQ_HEAD(, pass_io_req) done_queue;
142	struct cam_periph	 *periph;
143	char			  zone_name[12];
144	char			  io_zone_name[12];
145	uma_zone_t		  pass_zone;
146	uma_zone_t		  pass_io_zone;
147	size_t			  io_zone_size;
148};
149
150static	d_open_t	passopen;
151static	d_close_t	passclose;
152static	d_ioctl_t	passioctl;
153static	d_ioctl_t	passdoioctl;
154static	d_poll_t	passpoll;
155static	d_kqfilter_t	passkqfilter;
156static	void		passreadfiltdetach(struct knote *kn);
157static	int		passreadfilt(struct knote *kn, long hint);
158
159static	periph_init_t	passinit;
160static	periph_ctor_t	passregister;
161static	periph_oninv_t	passoninvalidate;
162static	periph_dtor_t	passcleanup;
163static	periph_start_t	passstart;
164static	void		pass_shutdown_kqueue(void *context, int pending);
165static	void		pass_add_physpath(void *context, int pending);
166static	void		passasync(void *callback_arg, u_int32_t code,
167				  struct cam_path *path, void *arg);
168static	void		passdone(struct cam_periph *periph,
169				 union ccb *done_ccb);
170static	int		passcreatezone(struct cam_periph *periph);
171static	void		passiocleanup(struct pass_softc *softc,
172				      struct pass_io_req *io_req);
173static	int		passcopysglist(struct cam_periph *periph,
174				       struct pass_io_req *io_req,
175				       ccb_flags direction);
176static	int		passmemsetup(struct cam_periph *periph,
177				     struct pass_io_req *io_req);
178static	int		passmemdone(struct cam_periph *periph,
179				    struct pass_io_req *io_req);
180static	int		passerror(union ccb *ccb, u_int32_t cam_flags,
181				  u_int32_t sense_flags);
182static 	int		passsendccb(struct cam_periph *periph, union ccb *ccb,
183				    union ccb *inccb);
184
185static struct periph_driver passdriver =
186{
187	passinit, "pass",
188	TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0
189};
190
191PERIPHDRIVER_DECLARE(pass, passdriver);
192
193static struct cdevsw pass_cdevsw = {
194	.d_version =	D_VERSION,
195	.d_flags =	D_TRACKCLOSE,
196	.d_open =	passopen,
197	.d_close =	passclose,
198	.d_ioctl =	passioctl,
199	.d_poll = 	passpoll,
200	.d_kqfilter = 	passkqfilter,
201	.d_name =	"pass",
202};
203
204static struct filterops passread_filtops = {
205	.f_isfd	=	1,
206	.f_detach =	passreadfiltdetach,
207	.f_event =	passreadfilt
208};
209
210static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers");
211
212static void
213passinit(void)
214{
215	cam_status status;
216
217	/*
218	 * Install a global async callback.  This callback will
219	 * receive async callbacks like "new device found".
220	 */
221	status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL);
222
223	if (status != CAM_REQ_CMP) {
224		printf("pass: Failed to attach master async callback "
225		       "due to status 0x%x!\n", status);
226	}
227
228}
229
230static void
231passrejectios(struct cam_periph *periph)
232{
233	struct pass_io_req *io_req, *io_req2;
234	struct pass_softc *softc;
235
236	softc = (struct pass_softc *)periph->softc;
237
238	/*
239	 * The user can no longer get status for I/O on the done queue, so
240	 * clean up all outstanding I/O on the done queue.
241	 */
242	TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
243		TAILQ_REMOVE(&softc->done_queue, io_req, links);
244		passiocleanup(softc, io_req);
245		uma_zfree(softc->pass_zone, io_req);
246	}
247
248	/*
249	 * The underlying device is gone, so we can't issue these I/Os.
250	 * The devfs node has been shut down, so we can't return status to
251	 * the user.  Free any I/O left on the incoming queue.
252	 */
253	TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) {
254		TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
255		passiocleanup(softc, io_req);
256		uma_zfree(softc->pass_zone, io_req);
257	}
258
259	/*
260	 * Normally we would put I/Os on the abandoned queue and acquire a
261	 * reference when we saw the final close.  But, the device went
262	 * away and devfs may have moved everything off to deadfs by the
263	 * time the I/O done callback is called; as a result, we won't see
264	 * any more closes.  So, if we have any active I/Os, we need to put
265	 * them on the abandoned queue.  When the abandoned queue is empty,
266	 * we'll release the remaining reference (see below) to the peripheral.
267	 */
268	TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) {
269		TAILQ_REMOVE(&softc->active_queue, io_req, links);
270		io_req->flags |= PASS_IO_ABANDONED;
271		TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links);
272	}
273
274	/*
275	 * If we put any I/O on the abandoned queue, acquire a reference.
276	 */
277	if ((!TAILQ_EMPTY(&softc->abandoned_queue))
278	 && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) {
279		cam_periph_doacquire(periph);
280		softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
281	}
282}
283
284static void
285passdevgonecb(void *arg)
286{
287	struct cam_periph *periph;
288	struct mtx *mtx;
289	struct pass_softc *softc;
290	int i;
291
292	periph = (struct cam_periph *)arg;
293	mtx = cam_periph_mtx(periph);
294	mtx_lock(mtx);
295
296	softc = (struct pass_softc *)periph->softc;
297	KASSERT(softc->open_count >= 0, ("Negative open count %d",
298		softc->open_count));
299
300	/*
301	 * When we get this callback, we will get no more close calls from
302	 * devfs.  So if we have any dangling opens, we need to release the
303	 * reference held for that particular context.
304	 */
305	for (i = 0; i < softc->open_count; i++)
306		cam_periph_release_locked(periph);
307
308	softc->open_count = 0;
309
310	/*
311	 * Release the reference held for the device node, it is gone now.
312	 * Accordingly, inform all queued I/Os of their fate.
313	 */
314	cam_periph_release_locked(periph);
315	passrejectios(periph);
316
317	/*
318	 * We reference the SIM lock directly here, instead of using
319	 * cam_periph_unlock().  The reason is that the final call to
320	 * cam_periph_release_locked() above could result in the periph
321	 * getting freed.  If that is the case, dereferencing the periph
322	 * with a cam_periph_unlock() call would cause a page fault.
323	 */
324	mtx_unlock(mtx);
325
326	/*
327	 * We have to remove our kqueue context from a thread because it
328	 * may sleep.  It would be nice if we could get a callback from
329	 * kqueue when it is done cleaning up resources.
330	 */
331	taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task);
332}
333
334static void
335passoninvalidate(struct cam_periph *periph)
336{
337	struct pass_softc *softc;
338
339	softc = (struct pass_softc *)periph->softc;
340
341	/*
342	 * De-register any async callbacks.
343	 */
344	xpt_register_async(0, passasync, periph, periph->path);
345
346	softc->flags |= PASS_FLAG_INVALID;
347
348	/*
349	 * Tell devfs this device has gone away, and ask for a callback
350	 * when it has cleaned up its state.
351	 */
352	destroy_dev_sched_cb(softc->dev, passdevgonecb, periph);
353}
354
355static void
356passcleanup(struct cam_periph *periph)
357{
358	struct pass_softc *softc;
359
360	softc = (struct pass_softc *)periph->softc;
361
362	cam_periph_assert(periph, MA_OWNED);
363	KASSERT(TAILQ_EMPTY(&softc->active_queue),
364		("%s called when there are commands on the active queue!\n",
365		__func__));
366	KASSERT(TAILQ_EMPTY(&softc->abandoned_queue),
367		("%s called when there are commands on the abandoned queue!\n",
368		__func__));
369	KASSERT(TAILQ_EMPTY(&softc->incoming_queue),
370		("%s called when there are commands on the incoming queue!\n",
371		__func__));
372	KASSERT(TAILQ_EMPTY(&softc->done_queue),
373		("%s called when there are commands on the done queue!\n",
374		__func__));
375
376	devstat_remove_entry(softc->device_stats);
377
378	cam_periph_unlock(periph);
379
380	/*
381	 * We call taskqueue_drain() for the physpath task to make sure it
382	 * is complete.  We drop the lock because this can potentially
383	 * sleep.  XXX KDM that is bad.  Need a way to get a callback when
384	 * a taskqueue is drained.
385	 *
386 	 * Note that we don't drain the kqueue shutdown task queue.  This
387	 * is because we hold a reference on the periph for kqueue, and
388	 * release that reference from the kqueue shutdown task queue.  So
389	 * we cannot come into this routine unless we've released that
390	 * reference.  Also, because that could be the last reference, we
391	 * could be called from the cam_periph_release() call in
392	 * pass_shutdown_kqueue().  In that case, the taskqueue_drain()
393	 * would deadlock.  It would be preferable if we had a way to
394	 * get a callback when a taskqueue is done.
395	 */
396	taskqueue_drain(taskqueue_thread, &softc->add_physpath_task);
397
398	cam_periph_lock(periph);
399
400	free(softc, M_DEVBUF);
401}
402
403static void
404pass_shutdown_kqueue(void *context, int pending)
405{
406	struct cam_periph *periph;
407	struct pass_softc *softc;
408
409	periph = context;
410	softc = periph->softc;
411
412	knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0);
413	knlist_destroy(&softc->read_select.si_note);
414
415	/*
416	 * Release the reference we held for kqueue.
417	 */
418	cam_periph_release(periph);
419}
420
421static void
422pass_add_physpath(void *context, int pending)
423{
424	struct cam_periph *periph;
425	struct pass_softc *softc;
426	struct mtx *mtx;
427	char *physpath;
428
429	/*
430	 * If we have one, create a devfs alias for our
431	 * physical path.
432	 */
433	periph = context;
434	softc = periph->softc;
435	physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK);
436	mtx = cam_periph_mtx(periph);
437	mtx_lock(mtx);
438
439	if (periph->flags & CAM_PERIPH_INVALID)
440		goto out;
441
442	if (xpt_getattr(physpath, MAXPATHLEN,
443			"GEOM::physpath", periph->path) == 0
444	 && strlen(physpath) != 0) {
445
446		mtx_unlock(mtx);
447		make_dev_physpath_alias(MAKEDEV_WAITOK, &softc->alias_dev,
448					softc->dev, softc->alias_dev, physpath);
449		mtx_lock(mtx);
450	}
451
452out:
453	/*
454	 * Now that we've made our alias, we no longer have to have a
455	 * reference to the device.
456	 */
457	if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0)
458		softc->flags |= PASS_FLAG_INITIAL_PHYSPATH;
459
460	/*
461	 * We always acquire a reference to the periph before queueing this
462	 * task queue function, so it won't go away before we run.
463	 */
464	while (pending-- > 0)
465		cam_periph_release_locked(periph);
466	mtx_unlock(mtx);
467
468	free(physpath, M_DEVBUF);
469}
470
471static void
472passasync(void *callback_arg, u_int32_t code,
473	  struct cam_path *path, void *arg)
474{
475	struct cam_periph *periph;
476
477	periph = (struct cam_periph *)callback_arg;
478
479	switch (code) {
480	case AC_FOUND_DEVICE:
481	{
482		struct ccb_getdev *cgd;
483		cam_status status;
484
485		cgd = (struct ccb_getdev *)arg;
486		if (cgd == NULL)
487			break;
488
489		/*
490		 * Allocate a peripheral instance for
491		 * this device and start the probe
492		 * process.
493		 */
494		status = cam_periph_alloc(passregister, passoninvalidate,
495					  passcleanup, passstart, "pass",
496					  CAM_PERIPH_BIO, path,
497					  passasync, AC_FOUND_DEVICE, cgd);
498
499		if (status != CAM_REQ_CMP
500		 && status != CAM_REQ_INPROG) {
501			const struct cam_status_entry *entry;
502
503			entry = cam_fetch_status_entry(status);
504
505			printf("passasync: Unable to attach new device "
506			       "due to status %#x: %s\n", status, entry ?
507			       entry->status_text : "Unknown");
508		}
509
510		break;
511	}
512	case AC_ADVINFO_CHANGED:
513	{
514		uintptr_t buftype;
515
516		buftype = (uintptr_t)arg;
517		if (buftype == CDAI_TYPE_PHYS_PATH) {
518			struct pass_softc *softc;
519			cam_status status;
520
521			softc = (struct pass_softc *)periph->softc;
522			/*
523			 * Acquire a reference to the periph before we
524			 * start the taskqueue, so that we don't run into
525			 * a situation where the periph goes away before
526			 * the task queue has a chance to run.
527			 */
528			status = cam_periph_acquire(periph);
529			if (status != CAM_REQ_CMP)
530				break;
531
532			taskqueue_enqueue(taskqueue_thread,
533					  &softc->add_physpath_task);
534		}
535		break;
536	}
537	default:
538		cam_periph_async(periph, code, path, arg);
539		break;
540	}
541}
542
543static cam_status
544passregister(struct cam_periph *periph, void *arg)
545{
546	struct pass_softc *softc;
547	struct ccb_getdev *cgd;
548	struct ccb_pathinq cpi;
549	struct make_dev_args args;
550	int error, no_tags;
551
552	cgd = (struct ccb_getdev *)arg;
553	if (cgd == NULL) {
554		printf("%s: no getdev CCB, can't register device\n", __func__);
555		return(CAM_REQ_CMP_ERR);
556	}
557
558	softc = (struct pass_softc *)malloc(sizeof(*softc),
559					    M_DEVBUF, M_NOWAIT);
560
561	if (softc == NULL) {
562		printf("%s: Unable to probe new device. "
563		       "Unable to allocate softc\n", __func__);
564		return(CAM_REQ_CMP_ERR);
565	}
566
567	bzero(softc, sizeof(*softc));
568	softc->state = PASS_STATE_NORMAL;
569	if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI)
570		softc->pd_type = SID_TYPE(&cgd->inq_data);
571	else if (cgd->protocol == PROTO_SATAPM)
572		softc->pd_type = T_ENCLOSURE;
573	else
574		softc->pd_type = T_DIRECT;
575
576	periph->softc = softc;
577	softc->periph = periph;
578	TAILQ_INIT(&softc->incoming_queue);
579	TAILQ_INIT(&softc->active_queue);
580	TAILQ_INIT(&softc->abandoned_queue);
581	TAILQ_INIT(&softc->done_queue);
582	snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d",
583		 periph->periph_name, periph->unit_number);
584	snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO",
585		 periph->periph_name, periph->unit_number);
586	softc->io_zone_size = MAXPHYS;
587	knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph));
588
589	bzero(&cpi, sizeof(cpi));
590	xpt_setup_ccb(&cpi.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
591	cpi.ccb_h.func_code = XPT_PATH_INQ;
592	xpt_action((union ccb *)&cpi);
593
594	if (cpi.maxio == 0)
595		softc->maxio = DFLTPHYS;	/* traditional default */
596	else if (cpi.maxio > MAXPHYS)
597		softc->maxio = MAXPHYS;		/* for safety */
598	else
599		softc->maxio = cpi.maxio;	/* real value */
600
601	if (cpi.hba_misc & PIM_UNMAPPED)
602		softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE;
603
604	/*
605	 * We pass in 0 for a blocksize, since we don't
606	 * know what the blocksize of this device is, if
607	 * it even has a blocksize.
608	 */
609	cam_periph_unlock(periph);
610	no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0;
611	softc->device_stats = devstat_new_entry("pass",
612			  periph->unit_number, 0,
613			  DEVSTAT_NO_BLOCKSIZE
614			  | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0),
615			  softc->pd_type |
616			  XPORT_DEVSTAT_TYPE(cpi.transport) |
617			  DEVSTAT_TYPE_PASS,
618			  DEVSTAT_PRIORITY_PASS);
619
620	/*
621	 * Initialize the taskqueue handler for shutting down kqueue.
622	 */
623	TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0,
624		  pass_shutdown_kqueue, periph);
625
626	/*
627	 * Acquire a reference to the periph that we can release once we've
628	 * cleaned up the kqueue.
629	 */
630	if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
631		xpt_print(periph->path, "%s: lost periph during "
632			  "registration!\n", __func__);
633		cam_periph_lock(periph);
634		return (CAM_REQ_CMP_ERR);
635	}
636
637	/*
638	 * Acquire a reference to the periph before we create the devfs
639	 * instance for it.  We'll release this reference once the devfs
640	 * instance has been freed.
641	 */
642	if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
643		xpt_print(periph->path, "%s: lost periph during "
644			  "registration!\n", __func__);
645		cam_periph_lock(periph);
646		return (CAM_REQ_CMP_ERR);
647	}
648
649	/* Register the device */
650	make_dev_args_init(&args);
651	args.mda_devsw = &pass_cdevsw;
652	args.mda_unit = periph->unit_number;
653	args.mda_uid = UID_ROOT;
654	args.mda_gid = GID_OPERATOR;
655	args.mda_mode = 0600;
656	args.mda_si_drv1 = periph;
657	error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name,
658	    periph->unit_number);
659	if (error != 0) {
660		cam_periph_lock(periph);
661		cam_periph_release_locked(periph);
662		return (CAM_REQ_CMP_ERR);
663	}
664
665	/*
666	 * Hold a reference to the periph before we create the physical
667	 * path alias so it can't go away.
668	 */
669	if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
670		xpt_print(periph->path, "%s: lost periph during "
671			  "registration!\n", __func__);
672		cam_periph_lock(periph);
673		return (CAM_REQ_CMP_ERR);
674	}
675
676	cam_periph_lock(periph);
677
678	TASK_INIT(&softc->add_physpath_task, /*priority*/0,
679		  pass_add_physpath, periph);
680
681	/*
682	 * See if physical path information is already available.
683	 */
684	taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task);
685
686	/*
687	 * Add an async callback so that we get notified if
688	 * this device goes away or its physical path
689	 * (stored in the advanced info data of the EDT) has
690	 * changed.
691	 */
692	xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED,
693			   passasync, periph, periph->path);
694
695	if (bootverbose)
696		xpt_announce_periph(periph, NULL);
697
698	return(CAM_REQ_CMP);
699}
700
701static int
702passopen(struct cdev *dev, int flags, int fmt, struct thread *td)
703{
704	struct cam_periph *periph;
705	struct pass_softc *softc;
706	int error;
707
708	periph = (struct cam_periph *)dev->si_drv1;
709	if (cam_periph_acquire(periph) != CAM_REQ_CMP)
710		return (ENXIO);
711
712	cam_periph_lock(periph);
713
714	softc = (struct pass_softc *)periph->softc;
715
716	if (softc->flags & PASS_FLAG_INVALID) {
717		cam_periph_release_locked(periph);
718		cam_periph_unlock(periph);
719		return(ENXIO);
720	}
721
722	/*
723	 * Don't allow access when we're running at a high securelevel.
724	 */
725	error = securelevel_gt(td->td_ucred, 1);
726	if (error) {
727		cam_periph_release_locked(periph);
728		cam_periph_unlock(periph);
729		return(error);
730	}
731
732	/*
733	 * Only allow read-write access.
734	 */
735	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) {
736		cam_periph_release_locked(periph);
737		cam_periph_unlock(periph);
738		return(EPERM);
739	}
740
741	/*
742	 * We don't allow nonblocking access.
743	 */
744	if ((flags & O_NONBLOCK) != 0) {
745		xpt_print(periph->path, "can't do nonblocking access\n");
746		cam_periph_release_locked(periph);
747		cam_periph_unlock(periph);
748		return(EINVAL);
749	}
750
751	softc->open_count++;
752
753	cam_periph_unlock(periph);
754
755	return (error);
756}
757
758static int
759passclose(struct cdev *dev, int flag, int fmt, struct thread *td)
760{
761	struct 	cam_periph *periph;
762	struct  pass_softc *softc;
763	struct mtx *mtx;
764
765	periph = (struct cam_periph *)dev->si_drv1;
766	mtx = cam_periph_mtx(periph);
767	mtx_lock(mtx);
768
769	softc = periph->softc;
770	softc->open_count--;
771
772	if (softc->open_count == 0) {
773		struct pass_io_req *io_req, *io_req2;
774		int need_unlock;
775
776		need_unlock = 0;
777
778		TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
779			TAILQ_REMOVE(&softc->done_queue, io_req, links);
780			passiocleanup(softc, io_req);
781			uma_zfree(softc->pass_zone, io_req);
782		}
783
784		TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links,
785				   io_req2) {
786			TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
787			passiocleanup(softc, io_req);
788			uma_zfree(softc->pass_zone, io_req);
789		}
790
791		/*
792		 * If there are any active I/Os, we need to forcibly acquire a
793		 * reference to the peripheral so that we don't go away
794		 * before they complete.  We'll release the reference when
795		 * the abandoned queue is empty.
796		 */
797		io_req = TAILQ_FIRST(&softc->active_queue);
798		if ((io_req != NULL)
799		 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) {
800			cam_periph_doacquire(periph);
801			softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
802		}
803
804		/*
805		 * Since the I/O in the active queue is not under our
806		 * control, just set a flag so that we can clean it up when
807		 * it completes and put it on the abandoned queue.  This
808		 * will prevent our sending spurious completions in the
809		 * event that the device is opened again before these I/Os
810		 * complete.
811		 */
812		TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links,
813				   io_req2) {
814			TAILQ_REMOVE(&softc->active_queue, io_req, links);
815			io_req->flags |= PASS_IO_ABANDONED;
816			TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req,
817					  links);
818		}
819	}
820
821	cam_periph_release_locked(periph);
822
823	/*
824	 * We reference the lock directly here, instead of using
825	 * cam_periph_unlock().  The reason is that the call to
826	 * cam_periph_release_locked() above could result in the periph
827	 * getting freed.  If that is the case, dereferencing the periph
828	 * with a cam_periph_unlock() call would cause a page fault.
829	 *
830	 * cam_periph_release() avoids this problem using the same method,
831	 * but we're manually acquiring and dropping the lock here to
832	 * protect the open count and avoid another lock acquisition and
833	 * release.
834	 */
835	mtx_unlock(mtx);
836
837	return (0);
838}
839
840
841static void
842passstart(struct cam_periph *periph, union ccb *start_ccb)
843{
844	struct pass_softc *softc;
845
846	softc = (struct pass_softc *)periph->softc;
847
848	switch (softc->state) {
849	case PASS_STATE_NORMAL: {
850		struct pass_io_req *io_req;
851
852		/*
853		 * Check for any queued I/O requests that require an
854		 * allocated slot.
855		 */
856		io_req = TAILQ_FIRST(&softc->incoming_queue);
857		if (io_req == NULL) {
858			xpt_release_ccb(start_ccb);
859			break;
860		}
861		TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
862		TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
863		/*
864		 * Merge the user's CCB into the allocated CCB.
865		 */
866		xpt_merge_ccb(start_ccb, &io_req->ccb);
867		start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO;
868		start_ccb->ccb_h.ccb_ioreq = io_req;
869		start_ccb->ccb_h.cbfcnp = passdone;
870		io_req->alloced_ccb = start_ccb;
871		binuptime(&io_req->start_time);
872		devstat_start_transaction(softc->device_stats,
873					  &io_req->start_time);
874
875		xpt_action(start_ccb);
876
877		/*
878		 * If we have any more I/O waiting, schedule ourselves again.
879		 */
880		if (!TAILQ_EMPTY(&softc->incoming_queue))
881			xpt_schedule(periph, CAM_PRIORITY_NORMAL);
882		break;
883	}
884	default:
885		break;
886	}
887}
888
889static void
890passdone(struct cam_periph *periph, union ccb *done_ccb)
891{
892	struct pass_softc *softc;
893	struct ccb_scsiio *csio;
894
895	softc = (struct pass_softc *)periph->softc;
896
897	cam_periph_assert(periph, MA_OWNED);
898
899	csio = &done_ccb->csio;
900	switch (csio->ccb_h.ccb_type) {
901	case PASS_CCB_QUEUED_IO: {
902		struct pass_io_req *io_req;
903
904		io_req = done_ccb->ccb_h.ccb_ioreq;
905#if 0
906		xpt_print(periph->path, "%s: called for user CCB %p\n",
907			  __func__, io_req->user_ccb_ptr);
908#endif
909		if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)
910		 && (done_ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER)
911		 && ((io_req->flags & PASS_IO_ABANDONED) == 0)) {
912			int error;
913
914			error = passerror(done_ccb, CAM_RETRY_SELTO,
915					  SF_RETRY_UA | SF_NO_PRINT);
916
917			if (error == ERESTART) {
918				/*
919				 * A retry was scheduled, so
920 				 * just return.
921				 */
922				return;
923			}
924		}
925
926		/*
927		 * Copy the allocated CCB contents back to the malloced CCB
928		 * so we can give status back to the user when he requests it.
929		 */
930		bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb));
931
932		/*
933		 * Log data/transaction completion with devstat(9).
934		 */
935		switch (done_ccb->ccb_h.func_code) {
936		case XPT_SCSI_IO:
937			devstat_end_transaction(softc->device_stats,
938			    done_ccb->csio.dxfer_len - done_ccb->csio.resid,
939			    done_ccb->csio.tag_action & 0x3,
940			    ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
941			    CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
942			    (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
943			    DEVSTAT_WRITE : DEVSTAT_READ, NULL,
944			    &io_req->start_time);
945			break;
946		case XPT_ATA_IO:
947			devstat_end_transaction(softc->device_stats,
948			    done_ccb->ataio.dxfer_len - done_ccb->ataio.resid,
949			    done_ccb->ataio.tag_action & 0x3,
950			    ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
951			    CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
952			    (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
953			    DEVSTAT_WRITE : DEVSTAT_READ, NULL,
954			    &io_req->start_time);
955			break;
956		case XPT_SMP_IO:
957			/*
958			 * XXX KDM this isn't quite right, but there isn't
959			 * currently an easy way to represent a bidirectional
960			 * transfer in devstat.  The only way to do it
961			 * and have the byte counts come out right would
962			 * mean that we would have to record two
963			 * transactions, one for the request and one for the
964			 * response.  For now, so that we report something,
965			 * just treat the entire thing as a read.
966			 */
967			devstat_end_transaction(softc->device_stats,
968			    done_ccb->smpio.smp_request_len +
969			    done_ccb->smpio.smp_response_len,
970			    DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL,
971			    &io_req->start_time);
972			break;
973		default:
974			devstat_end_transaction(softc->device_stats, 0,
975			    DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL,
976			    &io_req->start_time);
977			break;
978		}
979
980		/*
981		 * In the normal case, take the completed I/O off of the
982		 * active queue and put it on the done queue.  Notitfy the
983		 * user that we have a completed I/O.
984		 */
985		if ((io_req->flags & PASS_IO_ABANDONED) == 0) {
986			TAILQ_REMOVE(&softc->active_queue, io_req, links);
987			TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
988			selwakeuppri(&softc->read_select, PRIBIO);
989			KNOTE_LOCKED(&softc->read_select.si_note, 0);
990		} else {
991			/*
992			 * In the case of an abandoned I/O (final close
993			 * without fetching the I/O), take it off of the
994			 * abandoned queue and free it.
995			 */
996			TAILQ_REMOVE(&softc->abandoned_queue, io_req, links);
997			passiocleanup(softc, io_req);
998			uma_zfree(softc->pass_zone, io_req);
999
1000			/*
1001			 * Release the done_ccb here, since we may wind up
1002			 * freeing the peripheral when we decrement the
1003			 * reference count below.
1004			 */
1005			xpt_release_ccb(done_ccb);
1006
1007			/*
1008			 * If the abandoned queue is empty, we can release
1009			 * our reference to the periph since we won't have
1010			 * any more completions coming.
1011			 */
1012			if ((TAILQ_EMPTY(&softc->abandoned_queue))
1013			 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) {
1014				softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET;
1015				cam_periph_release_locked(periph);
1016			}
1017
1018			/*
1019			 * We have already released the CCB, so we can
1020			 * return.
1021			 */
1022			return;
1023		}
1024		break;
1025	}
1026	}
1027	xpt_release_ccb(done_ccb);
1028}
1029
1030static int
1031passcreatezone(struct cam_periph *periph)
1032{
1033	struct pass_softc *softc;
1034	int error;
1035
1036	error = 0;
1037	softc = (struct pass_softc *)periph->softc;
1038
1039	cam_periph_assert(periph, MA_OWNED);
1040	KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0),
1041		("%s called when the pass(4) zone is valid!\n", __func__));
1042	KASSERT((softc->pass_zone == NULL),
1043		("%s called when the pass(4) zone is allocated!\n", __func__));
1044
1045	if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) {
1046
1047		/*
1048		 * We're the first context through, so we need to create
1049		 * the pass(4) UMA zone for I/O requests.
1050		 */
1051		softc->flags |= PASS_FLAG_ZONE_INPROG;
1052
1053		/*
1054		 * uma_zcreate() does a blocking (M_WAITOK) allocation,
1055		 * so we cannot hold a mutex while we call it.
1056		 */
1057		cam_periph_unlock(periph);
1058
1059		softc->pass_zone = uma_zcreate(softc->zone_name,
1060		    sizeof(struct pass_io_req), NULL, NULL, NULL, NULL,
1061		    /*align*/ 0, /*flags*/ 0);
1062
1063		softc->pass_io_zone = uma_zcreate(softc->io_zone_name,
1064		    softc->io_zone_size, NULL, NULL, NULL, NULL,
1065		    /*align*/ 0, /*flags*/ 0);
1066
1067		cam_periph_lock(periph);
1068
1069		if ((softc->pass_zone == NULL)
1070		 || (softc->pass_io_zone == NULL)) {
1071			if (softc->pass_zone == NULL)
1072				xpt_print(periph->path, "unable to allocate "
1073				    "IO Req UMA zone\n");
1074			else
1075				xpt_print(periph->path, "unable to allocate "
1076				    "IO UMA zone\n");
1077			softc->flags &= ~PASS_FLAG_ZONE_INPROG;
1078			goto bailout;
1079		}
1080
1081		/*
1082		 * Set the flags appropriately and notify any other waiters.
1083		 */
1084		softc->flags &= PASS_FLAG_ZONE_INPROG;
1085		softc->flags |= PASS_FLAG_ZONE_VALID;
1086		wakeup(&softc->pass_zone);
1087	} else {
1088		/*
1089		 * In this case, the UMA zone has not yet been created, but
1090		 * another context is in the process of creating it.  We
1091		 * need to sleep until the creation is either done or has
1092		 * failed.
1093		 */
1094		while ((softc->flags & PASS_FLAG_ZONE_INPROG)
1095		    && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) {
1096			error = msleep(&softc->pass_zone,
1097				       cam_periph_mtx(periph), PRIBIO,
1098				       "paszon", 0);
1099			if (error != 0)
1100				goto bailout;
1101		}
1102		/*
1103		 * If the zone creation failed, no luck for the user.
1104		 */
1105		if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){
1106			error = ENOMEM;
1107			goto bailout;
1108		}
1109	}
1110bailout:
1111	return (error);
1112}
1113
1114static void
1115passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req)
1116{
1117	union ccb *ccb;
1118	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1119	int i, numbufs;
1120
1121	ccb = &io_req->ccb;
1122
1123	switch (ccb->ccb_h.func_code) {
1124	case XPT_DEV_MATCH:
1125		numbufs = min(io_req->num_bufs, 2);
1126
1127		if (numbufs == 1) {
1128			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
1129		} else {
1130			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
1131			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
1132		}
1133		break;
1134	case XPT_SCSI_IO:
1135	case XPT_CONT_TARGET_IO:
1136		data_ptrs[0] = &ccb->csio.data_ptr;
1137		numbufs = min(io_req->num_bufs, 1);
1138		break;
1139	case XPT_ATA_IO:
1140		data_ptrs[0] = &ccb->ataio.data_ptr;
1141		numbufs = min(io_req->num_bufs, 1);
1142		break;
1143	case XPT_SMP_IO:
1144		numbufs = min(io_req->num_bufs, 2);
1145		data_ptrs[0] = &ccb->smpio.smp_request;
1146		data_ptrs[1] = &ccb->smpio.smp_response;
1147		break;
1148	case XPT_DEV_ADVINFO:
1149		numbufs = min(io_req->num_bufs, 1);
1150		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1151		break;
1152	default:
1153		/* allow ourselves to be swapped once again */
1154		return;
1155		break; /* NOTREACHED */
1156	}
1157
1158	if (io_req->flags & PASS_IO_USER_SEG_MALLOC) {
1159		free(io_req->user_segptr, M_SCSIPASS);
1160		io_req->user_segptr = NULL;
1161	}
1162
1163	/*
1164	 * We only want to free memory we malloced.
1165	 */
1166	if (io_req->data_flags == CAM_DATA_VADDR) {
1167		for (i = 0; i < io_req->num_bufs; i++) {
1168			if (io_req->kern_bufs[i] == NULL)
1169				continue;
1170
1171			free(io_req->kern_bufs[i], M_SCSIPASS);
1172			io_req->kern_bufs[i] = NULL;
1173		}
1174	} else if (io_req->data_flags == CAM_DATA_SG) {
1175		for (i = 0; i < io_req->num_kern_segs; i++) {
1176			if ((uint8_t *)(uintptr_t)
1177			    io_req->kern_segptr[i].ds_addr == NULL)
1178				continue;
1179
1180			uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t)
1181			    io_req->kern_segptr[i].ds_addr);
1182			io_req->kern_segptr[i].ds_addr = 0;
1183		}
1184	}
1185
1186	if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) {
1187		free(io_req->kern_segptr, M_SCSIPASS);
1188		io_req->kern_segptr = NULL;
1189	}
1190
1191	if (io_req->data_flags != CAM_DATA_PADDR) {
1192		for (i = 0; i < numbufs; i++) {
1193			/*
1194			 * Restore the user's buffer pointers to their
1195			 * previous values.
1196			 */
1197			if (io_req->user_bufs[i] != NULL)
1198				*data_ptrs[i] = io_req->user_bufs[i];
1199		}
1200	}
1201
1202}
1203
1204static int
1205passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req,
1206	       ccb_flags direction)
1207{
1208	bus_size_t kern_watermark, user_watermark, len_copied, len_to_copy;
1209	bus_dma_segment_t *user_sglist, *kern_sglist;
1210	int i, j, error;
1211
1212	error = 0;
1213	kern_watermark = 0;
1214	user_watermark = 0;
1215	len_to_copy = 0;
1216	len_copied = 0;
1217	user_sglist = io_req->user_segptr;
1218	kern_sglist = io_req->kern_segptr;
1219
1220	for (i = 0, j = 0; i < io_req->num_user_segs &&
1221	     j < io_req->num_kern_segs;) {
1222		uint8_t *user_ptr, *kern_ptr;
1223
1224		len_to_copy = min(user_sglist[i].ds_len -user_watermark,
1225		    kern_sglist[j].ds_len - kern_watermark);
1226
1227		user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr;
1228		user_ptr = user_ptr + user_watermark;
1229		kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr;
1230		kern_ptr = kern_ptr + kern_watermark;
1231
1232		user_watermark += len_to_copy;
1233		kern_watermark += len_to_copy;
1234
1235		if (!useracc(user_ptr, len_to_copy,
1236		    (direction == CAM_DIR_IN) ? VM_PROT_WRITE : VM_PROT_READ)) {
1237			xpt_print(periph->path, "%s: unable to access user "
1238				  "S/G list element %p len %zu\n", __func__,
1239				  user_ptr, len_to_copy);
1240			error = EFAULT;
1241			goto bailout;
1242		}
1243
1244		if (direction == CAM_DIR_IN) {
1245			error = copyout(kern_ptr, user_ptr, len_to_copy);
1246			if (error != 0) {
1247				xpt_print(periph->path, "%s: copyout of %u "
1248					  "bytes from %p to %p failed with "
1249					  "error %d\n", __func__, len_to_copy,
1250					  kern_ptr, user_ptr, error);
1251				goto bailout;
1252			}
1253		} else {
1254			error = copyin(user_ptr, kern_ptr, len_to_copy);
1255			if (error != 0) {
1256				xpt_print(periph->path, "%s: copyin of %u "
1257					  "bytes from %p to %p failed with "
1258					  "error %d\n", __func__, len_to_copy,
1259					  user_ptr, kern_ptr, error);
1260				goto bailout;
1261			}
1262		}
1263
1264		len_copied += len_to_copy;
1265
1266		if (user_sglist[i].ds_len == user_watermark) {
1267			i++;
1268			user_watermark = 0;
1269		}
1270
1271		if (kern_sglist[j].ds_len == kern_watermark) {
1272			j++;
1273			kern_watermark = 0;
1274		}
1275	}
1276
1277bailout:
1278
1279	return (error);
1280}
1281
1282static int
1283passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req)
1284{
1285	union ccb *ccb;
1286	struct pass_softc *softc;
1287	int numbufs, i;
1288	uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1289	uint32_t lengths[CAM_PERIPH_MAXMAPS];
1290	uint32_t dirs[CAM_PERIPH_MAXMAPS];
1291	uint32_t num_segs;
1292	uint16_t *seg_cnt_ptr;
1293	size_t maxmap;
1294	int error;
1295
1296	cam_periph_assert(periph, MA_NOTOWNED);
1297
1298	softc = periph->softc;
1299
1300	error = 0;
1301	ccb = &io_req->ccb;
1302	maxmap = 0;
1303	num_segs = 0;
1304	seg_cnt_ptr = NULL;
1305
1306	switch(ccb->ccb_h.func_code) {
1307	case XPT_DEV_MATCH:
1308		if (ccb->cdm.match_buf_len == 0) {
1309			printf("%s: invalid match buffer length 0\n", __func__);
1310			return(EINVAL);
1311		}
1312		if (ccb->cdm.pattern_buf_len > 0) {
1313			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
1314			lengths[0] = ccb->cdm.pattern_buf_len;
1315			dirs[0] = CAM_DIR_OUT;
1316			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
1317			lengths[1] = ccb->cdm.match_buf_len;
1318			dirs[1] = CAM_DIR_IN;
1319			numbufs = 2;
1320		} else {
1321			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
1322			lengths[0] = ccb->cdm.match_buf_len;
1323			dirs[0] = CAM_DIR_IN;
1324			numbufs = 1;
1325		}
1326		io_req->data_flags = CAM_DATA_VADDR;
1327		break;
1328	case XPT_SCSI_IO:
1329	case XPT_CONT_TARGET_IO:
1330		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1331			return(0);
1332
1333		/*
1334		 * The user shouldn't be able to supply a bio.
1335		 */
1336		if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO)
1337			return (EINVAL);
1338
1339		io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
1340
1341		data_ptrs[0] = &ccb->csio.data_ptr;
1342		lengths[0] = ccb->csio.dxfer_len;
1343		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1344		num_segs = ccb->csio.sglist_cnt;
1345		seg_cnt_ptr = &ccb->csio.sglist_cnt;
1346		numbufs = 1;
1347		maxmap = softc->maxio;
1348		break;
1349	case XPT_ATA_IO:
1350		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1351			return(0);
1352
1353		/*
1354		 * We only support a single virtual address for ATA I/O.
1355		 */
1356		if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
1357			return (EINVAL);
1358
1359		io_req->data_flags = CAM_DATA_VADDR;
1360
1361		data_ptrs[0] = &ccb->ataio.data_ptr;
1362		lengths[0] = ccb->ataio.dxfer_len;
1363		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1364		numbufs = 1;
1365		maxmap = softc->maxio;
1366		break;
1367	case XPT_SMP_IO:
1368		io_req->data_flags = CAM_DATA_VADDR;
1369
1370		data_ptrs[0] = &ccb->smpio.smp_request;
1371		lengths[0] = ccb->smpio.smp_request_len;
1372		dirs[0] = CAM_DIR_OUT;
1373		data_ptrs[1] = &ccb->smpio.smp_response;
1374		lengths[1] = ccb->smpio.smp_response_len;
1375		dirs[1] = CAM_DIR_IN;
1376		numbufs = 2;
1377		maxmap = softc->maxio;
1378		break;
1379	case XPT_DEV_ADVINFO:
1380		if (ccb->cdai.bufsiz == 0)
1381			return (0);
1382
1383		io_req->data_flags = CAM_DATA_VADDR;
1384
1385		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1386		lengths[0] = ccb->cdai.bufsiz;
1387		dirs[0] = CAM_DIR_IN;
1388		numbufs = 1;
1389		break;
1390	default:
1391		return(EINVAL);
1392		break; /* NOTREACHED */
1393	}
1394
1395	io_req->num_bufs = numbufs;
1396
1397	/*
1398	 * If there is a maximum, check to make sure that the user's
1399	 * request fits within the limit.  In general, we should only have
1400	 * a maximum length for requests that go to hardware.  Otherwise it
1401	 * is whatever we're able to malloc.
1402	 */
1403	for (i = 0; i < numbufs; i++) {
1404		io_req->user_bufs[i] = *data_ptrs[i];
1405		io_req->dirs[i] = dirs[i];
1406		io_req->lengths[i] = lengths[i];
1407
1408		if (maxmap == 0)
1409			continue;
1410
1411		if (lengths[i] <= maxmap)
1412			continue;
1413
1414		xpt_print(periph->path, "%s: data length %u > max allowed %u "
1415			  "bytes\n", __func__, lengths[i], maxmap);
1416		error = EINVAL;
1417		goto bailout;
1418	}
1419
1420	switch (io_req->data_flags) {
1421	case CAM_DATA_VADDR:
1422		/* Map or copy the buffer into kernel address space */
1423		for (i = 0; i < numbufs; i++) {
1424			uint8_t *tmp_buf;
1425
1426			/*
1427			 * If for some reason no length is specified, we
1428			 * don't need to allocate anything.
1429			 */
1430			if (io_req->lengths[i] == 0)
1431				continue;
1432
1433			/*
1434			 * Make sure that the user's buffer is accessible
1435			 * to that process.
1436			 */
1437			if (!useracc(io_req->user_bufs[i], io_req->lengths[i],
1438			    (io_req->dirs[i] == CAM_DIR_IN) ? VM_PROT_WRITE :
1439			     VM_PROT_READ)) {
1440				xpt_print(periph->path, "%s: user address %p "
1441				    "length %u is not accessible\n", __func__,
1442				    io_req->user_bufs[i], io_req->lengths[i]);
1443				error = EFAULT;
1444				goto bailout;
1445			}
1446
1447			tmp_buf = malloc(lengths[i], M_SCSIPASS,
1448					 M_WAITOK | M_ZERO);
1449			io_req->kern_bufs[i] = tmp_buf;
1450			*data_ptrs[i] = tmp_buf;
1451
1452#if 0
1453			xpt_print(periph->path, "%s: malloced %p len %u, user "
1454				  "buffer %p, operation: %s\n", __func__,
1455				  tmp_buf, lengths[i], io_req->user_bufs[i],
1456				  (dirs[i] == CAM_DIR_IN) ? "read" : "write");
1457#endif
1458			/*
1459			 * We only need to copy in if the user is writing.
1460			 */
1461			if (dirs[i] != CAM_DIR_OUT)
1462				continue;
1463
1464			error = copyin(io_req->user_bufs[i],
1465				       io_req->kern_bufs[i], lengths[i]);
1466			if (error != 0) {
1467				xpt_print(periph->path, "%s: copy of user "
1468					  "buffer from %p to %p failed with "
1469					  "error %d\n", __func__,
1470					  io_req->user_bufs[i],
1471					  io_req->kern_bufs[i], error);
1472				goto bailout;
1473			}
1474		}
1475		break;
1476	case CAM_DATA_PADDR:
1477		/* Pass down the pointer as-is */
1478		break;
1479	case CAM_DATA_SG: {
1480		size_t sg_length, size_to_go, alloc_size;
1481		uint32_t num_segs_needed;
1482
1483		/*
1484		 * Copy the user S/G list in, and then copy in the
1485		 * individual segments.
1486		 */
1487		/*
1488		 * We shouldn't see this, but check just in case.
1489		 */
1490		if (numbufs != 1) {
1491			xpt_print(periph->path, "%s: cannot currently handle "
1492				  "more than one S/G list per CCB\n", __func__);
1493			error = EINVAL;
1494			goto bailout;
1495		}
1496
1497		/*
1498		 * We have to have at least one segment.
1499		 */
1500		if (num_segs == 0) {
1501			xpt_print(periph->path, "%s: CAM_DATA_SG flag set, "
1502				  "but sglist_cnt=0!\n", __func__);
1503			error = EINVAL;
1504			goto bailout;
1505		}
1506
1507		/*
1508		 * Make sure the user specified the total length and didn't
1509		 * just leave it to us to decode the S/G list.
1510		 */
1511		if (lengths[0] == 0) {
1512			xpt_print(periph->path, "%s: no dxfer_len specified, "
1513				  "but CAM_DATA_SG flag is set!\n", __func__);
1514			error = EINVAL;
1515			goto bailout;
1516		}
1517
1518		/*
1519		 * We allocate buffers in io_zone_size increments for an
1520		 * S/G list.  This will generally be MAXPHYS.
1521		 */
1522		if (lengths[0] <= softc->io_zone_size)
1523			num_segs_needed = 1;
1524		else {
1525			num_segs_needed = lengths[0] / softc->io_zone_size;
1526			if ((lengths[0] % softc->io_zone_size) != 0)
1527				num_segs_needed++;
1528		}
1529
1530		/* Figure out the size of the S/G list */
1531		sg_length = num_segs * sizeof(bus_dma_segment_t);
1532		io_req->num_user_segs = num_segs;
1533		io_req->num_kern_segs = num_segs_needed;
1534
1535		/* Save the user's S/G list pointer for later restoration */
1536		io_req->user_bufs[0] = *data_ptrs[0];
1537
1538		/*
1539		 * If we have enough segments allocated by default to handle
1540		 * the length of the user's S/G list,
1541		 */
1542		if (num_segs > PASS_MAX_SEGS) {
1543			io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1544			    num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1545			io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1546		} else
1547			io_req->user_segptr = io_req->user_segs;
1548
1549		if (!useracc(*data_ptrs[0], sg_length, VM_PROT_READ)) {
1550			xpt_print(periph->path, "%s: unable to access user "
1551				  "S/G list at %p\n", __func__, *data_ptrs[0]);
1552			error = EFAULT;
1553			goto bailout;
1554		}
1555
1556		error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1557		if (error != 0) {
1558			xpt_print(periph->path, "%s: copy of user S/G list "
1559				  "from %p to %p failed with error %d\n",
1560				  __func__, *data_ptrs[0], io_req->user_segptr,
1561				  error);
1562			goto bailout;
1563		}
1564
1565		if (num_segs_needed > PASS_MAX_SEGS) {
1566			io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) *
1567			    num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO);
1568			io_req->flags |= PASS_IO_KERN_SEG_MALLOC;
1569		} else {
1570			io_req->kern_segptr = io_req->kern_segs;
1571		}
1572
1573		/*
1574		 * Allocate the kernel S/G list.
1575		 */
1576		for (size_to_go = lengths[0], i = 0;
1577		     size_to_go > 0 && i < num_segs_needed;
1578		     i++, size_to_go -= alloc_size) {
1579			uint8_t *kern_ptr;
1580
1581			alloc_size = min(size_to_go, softc->io_zone_size);
1582			kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK);
1583			io_req->kern_segptr[i].ds_addr =
1584			    (bus_addr_t)(uintptr_t)kern_ptr;
1585			io_req->kern_segptr[i].ds_len = alloc_size;
1586		}
1587		if (size_to_go > 0) {
1588			printf("%s: size_to_go = %zu, software error!\n",
1589			       __func__, size_to_go);
1590			error = EINVAL;
1591			goto bailout;
1592		}
1593
1594		*data_ptrs[0] = (uint8_t *)io_req->kern_segptr;
1595		*seg_cnt_ptr = io_req->num_kern_segs;
1596
1597		/*
1598		 * We only need to copy data here if the user is writing.
1599		 */
1600		if (dirs[0] == CAM_DIR_OUT)
1601			error = passcopysglist(periph, io_req, dirs[0]);
1602		break;
1603	}
1604	case CAM_DATA_SG_PADDR: {
1605		size_t sg_length;
1606
1607		/*
1608		 * We shouldn't see this, but check just in case.
1609		 */
1610		if (numbufs != 1) {
1611			printf("%s: cannot currently handle more than one "
1612			       "S/G list per CCB\n", __func__);
1613			error = EINVAL;
1614			goto bailout;
1615		}
1616
1617		/*
1618		 * We have to have at least one segment.
1619		 */
1620		if (num_segs == 0) {
1621			xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag "
1622				  "set, but sglist_cnt=0!\n", __func__);
1623			error = EINVAL;
1624			goto bailout;
1625		}
1626
1627		/*
1628		 * Make sure the user specified the total length and didn't
1629		 * just leave it to us to decode the S/G list.
1630		 */
1631		if (lengths[0] == 0) {
1632			xpt_print(periph->path, "%s: no dxfer_len specified, "
1633				  "but CAM_DATA_SG flag is set!\n", __func__);
1634			error = EINVAL;
1635			goto bailout;
1636		}
1637
1638		/* Figure out the size of the S/G list */
1639		sg_length = num_segs * sizeof(bus_dma_segment_t);
1640		io_req->num_user_segs = num_segs;
1641		io_req->num_kern_segs = io_req->num_user_segs;
1642
1643		/* Save the user's S/G list pointer for later restoration */
1644		io_req->user_bufs[0] = *data_ptrs[0];
1645
1646		if (num_segs > PASS_MAX_SEGS) {
1647			io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1648			    num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1649			io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1650		} else
1651			io_req->user_segptr = io_req->user_segs;
1652
1653		io_req->kern_segptr = io_req->user_segptr;
1654
1655		error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1656		if (error != 0) {
1657			xpt_print(periph->path, "%s: copy of user S/G list "
1658				  "from %p to %p failed with error %d\n",
1659				  __func__, *data_ptrs[0], io_req->user_segptr,
1660				  error);
1661			goto bailout;
1662		}
1663		break;
1664	}
1665	default:
1666	case CAM_DATA_BIO:
1667		/*
1668		 * A user shouldn't be attaching a bio to the CCB.  It
1669		 * isn't a user-accessible structure.
1670		 */
1671		error = EINVAL;
1672		break;
1673	}
1674
1675bailout:
1676	if (error != 0)
1677		passiocleanup(softc, io_req);
1678
1679	return (error);
1680}
1681
1682static int
1683passmemdone(struct cam_periph *periph, struct pass_io_req *io_req)
1684{
1685	struct pass_softc *softc;
1686	union ccb *ccb;
1687	int error;
1688	int i;
1689
1690	error = 0;
1691	softc = (struct pass_softc *)periph->softc;
1692	ccb = &io_req->ccb;
1693
1694	switch (io_req->data_flags) {
1695	case CAM_DATA_VADDR:
1696		/*
1697		 * Copy back to the user buffer if this was a read.
1698		 */
1699		for (i = 0; i < io_req->num_bufs; i++) {
1700			if (io_req->dirs[i] != CAM_DIR_IN)
1701				continue;
1702
1703			error = copyout(io_req->kern_bufs[i],
1704			    io_req->user_bufs[i], io_req->lengths[i]);
1705			if (error != 0) {
1706				xpt_print(periph->path, "Unable to copy %u "
1707					  "bytes from %p to user address %p\n",
1708					  io_req->lengths[i],
1709					  io_req->kern_bufs[i],
1710					  io_req->user_bufs[i]);
1711				goto bailout;
1712			}
1713
1714		}
1715		break;
1716	case CAM_DATA_PADDR:
1717		/* Do nothing.  The pointer is a physical address already */
1718		break;
1719	case CAM_DATA_SG:
1720		/*
1721		 * Copy back to the user buffer if this was a read.
1722		 * Restore the user's S/G list buffer pointer.
1723		 */
1724		if (io_req->dirs[0] == CAM_DIR_IN)
1725			error = passcopysglist(periph, io_req, io_req->dirs[0]);
1726		break;
1727	case CAM_DATA_SG_PADDR:
1728		/*
1729		 * Restore the user's S/G list buffer pointer.  No need to
1730		 * copy.
1731		 */
1732		break;
1733	default:
1734	case CAM_DATA_BIO:
1735		error = EINVAL;
1736		break;
1737	}
1738
1739bailout:
1740	/*
1741	 * Reset the user's pointers to their original values and free
1742	 * allocated memory.
1743	 */
1744	passiocleanup(softc, io_req);
1745
1746	return (error);
1747}
1748
1749static int
1750passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1751{
1752	int error;
1753
1754	if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
1755		error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl);
1756	}
1757	return (error);
1758}
1759
1760static int
1761passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1762{
1763	struct	cam_periph *periph;
1764	struct	pass_softc *softc;
1765	int	error;
1766	uint32_t priority;
1767
1768	periph = (struct cam_periph *)dev->si_drv1;
1769	cam_periph_lock(periph);
1770	softc = (struct pass_softc *)periph->softc;
1771
1772	error = 0;
1773
1774	switch (cmd) {
1775
1776	case CAMIOCOMMAND:
1777	{
1778		union ccb *inccb;
1779		union ccb *ccb;
1780		int ccb_malloced;
1781
1782		inccb = (union ccb *)addr;
1783
1784		/*
1785		 * Some CCB types, like scan bus and scan lun can only go
1786		 * through the transport layer device.
1787		 */
1788		if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1789			xpt_print(periph->path, "CCB function code %#x is "
1790			    "restricted to the XPT device\n",
1791			    inccb->ccb_h.func_code);
1792			error = ENODEV;
1793			break;
1794		}
1795
1796		/* Compatibility for RL/priority-unaware code. */
1797		priority = inccb->ccb_h.pinfo.priority;
1798		if (priority <= CAM_PRIORITY_OOB)
1799		    priority += CAM_PRIORITY_OOB + 1;
1800
1801		/*
1802		 * Non-immediate CCBs need a CCB from the per-device pool
1803		 * of CCBs, which is scheduled by the transport layer.
1804		 * Immediate CCBs and user-supplied CCBs should just be
1805		 * malloced.
1806		 */
1807		if ((inccb->ccb_h.func_code & XPT_FC_QUEUED)
1808		 && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) {
1809			ccb = cam_periph_getccb(periph, priority);
1810			ccb_malloced = 0;
1811		} else {
1812			ccb = xpt_alloc_ccb_nowait();
1813
1814			if (ccb != NULL)
1815				xpt_setup_ccb(&ccb->ccb_h, periph->path,
1816					      priority);
1817			ccb_malloced = 1;
1818		}
1819
1820		if (ccb == NULL) {
1821			xpt_print(periph->path, "unable to allocate CCB\n");
1822			error = ENOMEM;
1823			break;
1824		}
1825
1826		error = passsendccb(periph, ccb, inccb);
1827
1828		if (ccb_malloced)
1829			xpt_free_ccb(ccb);
1830		else
1831			xpt_release_ccb(ccb);
1832
1833		break;
1834	}
1835	case CAMIOQUEUE:
1836	{
1837		struct pass_io_req *io_req;
1838		union ccb **user_ccb, *ccb;
1839		xpt_opcode fc;
1840
1841		if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) {
1842			error = passcreatezone(periph);
1843			if (error != 0)
1844				goto bailout;
1845		}
1846
1847		/*
1848		 * We're going to do a blocking allocation for this I/O
1849		 * request, so we have to drop the lock.
1850		 */
1851		cam_periph_unlock(periph);
1852
1853		io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO);
1854		ccb = &io_req->ccb;
1855		user_ccb = (union ccb **)addr;
1856
1857		/*
1858		 * Unlike the CAMIOCOMMAND ioctl above, we only have a
1859		 * pointer to the user's CCB, so we have to copy the whole
1860		 * thing in to a buffer we have allocated (above) instead
1861		 * of allowing the ioctl code to malloc a buffer and copy
1862		 * it in.
1863		 *
1864		 * This is an advantage for this asynchronous interface,
1865		 * since we don't want the memory to get freed while the
1866		 * CCB is outstanding.
1867		 */
1868#if 0
1869		xpt_print(periph->path, "Copying user CCB %p to "
1870			  "kernel address %p\n", *user_ccb, ccb);
1871#endif
1872		error = copyin(*user_ccb, ccb, sizeof(*ccb));
1873		if (error != 0) {
1874			xpt_print(periph->path, "Copy of user CCB %p to "
1875				  "kernel address %p failed with error %d\n",
1876				  *user_ccb, ccb, error);
1877			uma_zfree(softc->pass_zone, io_req);
1878			cam_periph_lock(periph);
1879			break;
1880		}
1881
1882		if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
1883			if (ccb->csio.cdb_len > IOCDBLEN) {
1884				error = EINVAL;
1885				break;
1886			}
1887			error = copyin(ccb->csio.cdb_io.cdb_ptr,
1888			    ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len);
1889			if (error)
1890				break;
1891			ccb->ccb_h.flags &= ~CAM_CDB_POINTER;
1892		}
1893
1894		/*
1895		 * Some CCB types, like scan bus and scan lun can only go
1896		 * through the transport layer device.
1897		 */
1898		if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1899			xpt_print(periph->path, "CCB function code %#x is "
1900			    "restricted to the XPT device\n",
1901			    ccb->ccb_h.func_code);
1902			uma_zfree(softc->pass_zone, io_req);
1903			cam_periph_lock(periph);
1904			error = ENODEV;
1905			break;
1906		}
1907
1908		/*
1909		 * Save the user's CCB pointer as well as his linked list
1910		 * pointers and peripheral private area so that we can
1911		 * restore these later.
1912		 */
1913		io_req->user_ccb_ptr = *user_ccb;
1914		io_req->user_periph_links = ccb->ccb_h.periph_links;
1915		io_req->user_periph_priv = ccb->ccb_h.periph_priv;
1916
1917		/*
1918		 * Now that we've saved the user's values, we can set our
1919		 * own peripheral private entry.
1920		 */
1921		ccb->ccb_h.ccb_ioreq = io_req;
1922
1923		/* Compatibility for RL/priority-unaware code. */
1924		priority = ccb->ccb_h.pinfo.priority;
1925		if (priority <= CAM_PRIORITY_OOB)
1926		    priority += CAM_PRIORITY_OOB + 1;
1927
1928		/*
1929		 * Setup fields in the CCB like the path and the priority.
1930		 * The path in particular cannot be done in userland, since
1931		 * it is a pointer to a kernel data structure.
1932		 */
1933		xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority,
1934				    ccb->ccb_h.flags);
1935
1936		/*
1937		 * Setup our done routine.  There is no way for the user to
1938		 * have a valid pointer here.
1939		 */
1940		ccb->ccb_h.cbfcnp = passdone;
1941
1942		fc = ccb->ccb_h.func_code;
1943		/*
1944		 * If this function code has memory that can be mapped in
1945		 * or out, we need to call passmemsetup().
1946		 */
1947		if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO)
1948		 || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH)
1949		 || (fc == XPT_DEV_ADVINFO)) {
1950			error = passmemsetup(periph, io_req);
1951			if (error != 0) {
1952				uma_zfree(softc->pass_zone, io_req);
1953				cam_periph_lock(periph);
1954				break;
1955			}
1956		} else
1957			io_req->mapinfo.num_bufs_used = 0;
1958
1959		cam_periph_lock(periph);
1960
1961		/*
1962		 * Everything goes on the incoming queue initially.
1963		 */
1964		TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links);
1965
1966		/*
1967		 * If the CCB is queued, and is not a user CCB, then
1968		 * we need to allocate a slot for it.  Call xpt_schedule()
1969		 * so that our start routine will get called when a CCB is
1970		 * available.
1971		 */
1972		if ((fc & XPT_FC_QUEUED)
1973		 && ((fc & XPT_FC_USER_CCB) == 0)) {
1974			xpt_schedule(periph, priority);
1975			break;
1976		}
1977
1978		/*
1979		 * At this point, the CCB in question is either an
1980		 * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB
1981		 * and therefore should be malloced, not allocated via a slot.
1982		 * Remove the CCB from the incoming queue and add it to the
1983		 * active queue.
1984		 */
1985		TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
1986		TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
1987
1988		xpt_action(ccb);
1989
1990		/*
1991		 * If this is not a queued CCB (i.e. it is an immediate CCB),
1992		 * then it is already done.  We need to put it on the done
1993		 * queue for the user to fetch.
1994		 */
1995		if ((fc & XPT_FC_QUEUED) == 0) {
1996			TAILQ_REMOVE(&softc->active_queue, io_req, links);
1997			TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
1998		}
1999		break;
2000	}
2001	case CAMIOGET:
2002	{
2003		union ccb **user_ccb;
2004		struct pass_io_req *io_req;
2005		int old_error;
2006
2007		user_ccb = (union ccb **)addr;
2008		old_error = 0;
2009
2010		io_req = TAILQ_FIRST(&softc->done_queue);
2011		if (io_req == NULL) {
2012			error = ENOENT;
2013			break;
2014		}
2015
2016		/*
2017		 * Remove the I/O from the done queue.
2018		 */
2019		TAILQ_REMOVE(&softc->done_queue, io_req, links);
2020
2021		/*
2022		 * We have to drop the lock during the copyout because the
2023		 * copyout can result in VM faults that require sleeping.
2024		 */
2025		cam_periph_unlock(periph);
2026
2027		/*
2028		 * Do any needed copies (e.g. for reads) and revert the
2029		 * pointers in the CCB back to the user's pointers.
2030		 */
2031		error = passmemdone(periph, io_req);
2032
2033		old_error = error;
2034
2035		io_req->ccb.ccb_h.periph_links = io_req->user_periph_links;
2036		io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv;
2037
2038#if 0
2039		xpt_print(periph->path, "Copying to user CCB %p from "
2040			  "kernel address %p\n", *user_ccb, &io_req->ccb);
2041#endif
2042
2043		error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb));
2044		if (error != 0) {
2045			xpt_print(periph->path, "Copy to user CCB %p from "
2046				  "kernel address %p failed with error %d\n",
2047				  *user_ccb, &io_req->ccb, error);
2048		}
2049
2050		/*
2051		 * Prefer the first error we got back, and make sure we
2052		 * don't overwrite bad status with good.
2053		 */
2054		if (old_error != 0)
2055			error = old_error;
2056
2057		cam_periph_lock(periph);
2058
2059		/*
2060		 * At this point, if there was an error, we could potentially
2061		 * re-queue the I/O and try again.  But why?  The error
2062		 * would almost certainly happen again.  We might as well
2063		 * not leak memory.
2064		 */
2065		uma_zfree(softc->pass_zone, io_req);
2066		break;
2067	}
2068	default:
2069		error = cam_periph_ioctl(periph, cmd, addr, passerror);
2070		break;
2071	}
2072
2073bailout:
2074	cam_periph_unlock(periph);
2075
2076	return(error);
2077}
2078
2079static int
2080passpoll(struct cdev *dev, int poll_events, struct thread *td)
2081{
2082	struct cam_periph *periph;
2083	struct pass_softc *softc;
2084	int revents;
2085
2086	periph = (struct cam_periph *)dev->si_drv1;
2087	softc = (struct pass_softc *)periph->softc;
2088
2089	revents = poll_events & (POLLOUT | POLLWRNORM);
2090	if ((poll_events & (POLLIN | POLLRDNORM)) != 0) {
2091		cam_periph_lock(periph);
2092
2093		if (!TAILQ_EMPTY(&softc->done_queue)) {
2094			revents |= poll_events & (POLLIN | POLLRDNORM);
2095		}
2096		cam_periph_unlock(periph);
2097		if (revents == 0)
2098			selrecord(td, &softc->read_select);
2099	}
2100
2101	return (revents);
2102}
2103
2104static int
2105passkqfilter(struct cdev *dev, struct knote *kn)
2106{
2107	struct cam_periph *periph;
2108	struct pass_softc *softc;
2109
2110	periph = (struct cam_periph *)dev->si_drv1;
2111	softc = (struct pass_softc *)periph->softc;
2112
2113	kn->kn_hook = (caddr_t)periph;
2114	kn->kn_fop = &passread_filtops;
2115	knlist_add(&softc->read_select.si_note, kn, 0);
2116
2117	return (0);
2118}
2119
2120static void
2121passreadfiltdetach(struct knote *kn)
2122{
2123	struct cam_periph *periph;
2124	struct pass_softc *softc;
2125
2126	periph = (struct cam_periph *)kn->kn_hook;
2127	softc = (struct pass_softc *)periph->softc;
2128
2129	knlist_remove(&softc->read_select.si_note, kn, 0);
2130}
2131
2132static int
2133passreadfilt(struct knote *kn, long hint)
2134{
2135	struct cam_periph *periph;
2136	struct pass_softc *softc;
2137	int retval;
2138
2139	periph = (struct cam_periph *)kn->kn_hook;
2140	softc = (struct pass_softc *)periph->softc;
2141
2142	cam_periph_assert(periph, MA_OWNED);
2143
2144	if (TAILQ_EMPTY(&softc->done_queue))
2145		retval = 0;
2146	else
2147		retval = 1;
2148
2149	return (retval);
2150}
2151
2152/*
2153 * Generally, "ccb" should be the CCB supplied by the kernel.  "inccb"
2154 * should be the CCB that is copied in from the user.
2155 */
2156static int
2157passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb)
2158{
2159	struct pass_softc *softc;
2160	struct cam_periph_map_info mapinfo;
2161	uint8_t *cmd;
2162	xpt_opcode fc;
2163	int error;
2164
2165	softc = (struct pass_softc *)periph->softc;
2166
2167	/*
2168	 * There are some fields in the CCB header that need to be
2169	 * preserved, the rest we get from the user.
2170	 */
2171	xpt_merge_ccb(ccb, inccb);
2172
2173	if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
2174		cmd = __builtin_alloca(ccb->csio.cdb_len);
2175		error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len);
2176		if (error)
2177			return (error);
2178		ccb->csio.cdb_io.cdb_ptr = cmd;
2179	}
2180
2181	/*
2182	 */
2183	ccb->ccb_h.cbfcnp = passdone;
2184
2185	/*
2186	 * Let cam_periph_mapmem do a sanity check on the data pointer format.
2187	 * Even if no data transfer is needed, it's a cheap check and it
2188	 * simplifies the code.
2189	 */
2190	fc = ccb->ccb_h.func_code;
2191	if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO)
2192	 || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO)) {
2193		bzero(&mapinfo, sizeof(mapinfo));
2194
2195		/*
2196		 * cam_periph_mapmem calls into proc and vm functions that can
2197		 * sleep as well as trigger I/O, so we can't hold the lock.
2198		 * Dropping it here is reasonably safe.
2199		 */
2200		cam_periph_unlock(periph);
2201		error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio);
2202		cam_periph_lock(periph);
2203
2204		/*
2205		 * cam_periph_mapmem returned an error, we can't continue.
2206		 * Return the error to the user.
2207		 */
2208		if (error)
2209			return(error);
2210	} else
2211		/* Ensure that the unmap call later on is a no-op. */
2212		mapinfo.num_bufs_used = 0;
2213
2214	/*
2215	 * If the user wants us to perform any error recovery, then honor
2216	 * that request.  Otherwise, it's up to the user to perform any
2217	 * error recovery.
2218	 */
2219	cam_periph_runccb(ccb, passerror, /* cam_flags */ CAM_RETRY_SELTO,
2220	    /* sense_flags */ ((ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) ?
2221	     SF_RETRY_UA : SF_NO_RECOVERY) | SF_NO_PRINT,
2222	    softc->device_stats);
2223
2224	cam_periph_unmapmem(ccb, &mapinfo);
2225
2226	ccb->ccb_h.cbfcnp = NULL;
2227	ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv;
2228	bcopy(ccb, inccb, sizeof(union ccb));
2229
2230	return(0);
2231}
2232
2233static int
2234passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags)
2235{
2236	struct cam_periph *periph;
2237	struct pass_softc *softc;
2238
2239	periph = xpt_path_periph(ccb->ccb_h.path);
2240	softc = (struct pass_softc *)periph->softc;
2241
2242	return(cam_periph_error(ccb, cam_flags, sense_flags,
2243				 &softc->saved_ccb));
2244}
2245