scsi_pass.c revision 292348
1/*-
2 * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs.
3 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions, and the following disclaimer,
11 *    without modification, immediately at the beginning of the file.
12 * 2. The name of the author may not be used to endorse or promote products
13 *    derived from this software without specific prior written permission.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
19 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: stable/10/sys/cam/scsi/scsi_pass.c 292348 2015-12-16 19:01:14Z ken $");
30
31#include "opt_kdtrace.h"
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/kernel.h>
36#include <sys/conf.h>
37#include <sys/types.h>
38#include <sys/bio.h>
39#include <sys/bus.h>
40#include <sys/devicestat.h>
41#include <sys/errno.h>
42#include <sys/fcntl.h>
43#include <sys/malloc.h>
44#include <sys/proc.h>
45#include <sys/poll.h>
46#include <sys/selinfo.h>
47#include <sys/sdt.h>
48#include <sys/taskqueue.h>
49#include <vm/uma.h>
50#include <vm/vm.h>
51#include <vm/vm_extern.h>
52
53#include <machine/bus.h>
54
55#include <cam/cam.h>
56#include <cam/cam_ccb.h>
57#include <cam/cam_periph.h>
58#include <cam/cam_queue.h>
59#include <cam/cam_xpt.h>
60#include <cam/cam_xpt_periph.h>
61#include <cam/cam_debug.h>
62#include <cam/cam_compat.h>
63#include <cam/cam_xpt_periph.h>
64
65#include <cam/scsi/scsi_all.h>
66#include <cam/scsi/scsi_pass.h>
67
68typedef enum {
69	PASS_FLAG_OPEN			= 0x01,
70	PASS_FLAG_LOCKED		= 0x02,
71	PASS_FLAG_INVALID		= 0x04,
72	PASS_FLAG_INITIAL_PHYSPATH	= 0x08,
73	PASS_FLAG_ZONE_INPROG		= 0x10,
74	PASS_FLAG_ZONE_VALID		= 0x20,
75	PASS_FLAG_UNMAPPED_CAPABLE	= 0x40,
76	PASS_FLAG_ABANDONED_REF_SET	= 0x80
77} pass_flags;
78
79typedef enum {
80	PASS_STATE_NORMAL
81} pass_state;
82
83typedef enum {
84	PASS_CCB_BUFFER_IO,
85	PASS_CCB_QUEUED_IO
86} pass_ccb_types;
87
88#define ccb_type	ppriv_field0
89#define ccb_ioreq	ppriv_ptr1
90
91/*
92 * The maximum number of memory segments we preallocate.
93 */
94#define	PASS_MAX_SEGS	16
95
96typedef enum {
97	PASS_IO_NONE		= 0x00,
98	PASS_IO_USER_SEG_MALLOC	= 0x01,
99	PASS_IO_KERN_SEG_MALLOC	= 0x02,
100	PASS_IO_ABANDONED	= 0x04
101} pass_io_flags;
102
103struct pass_io_req {
104	union ccb			 ccb;
105	union ccb			*alloced_ccb;
106	union ccb			*user_ccb_ptr;
107	camq_entry			 user_periph_links;
108	ccb_ppriv_area			 user_periph_priv;
109	struct cam_periph_map_info	 mapinfo;
110	pass_io_flags			 flags;
111	ccb_flags			 data_flags;
112	int				 num_user_segs;
113	bus_dma_segment_t		 user_segs[PASS_MAX_SEGS];
114	int				 num_kern_segs;
115	bus_dma_segment_t		 kern_segs[PASS_MAX_SEGS];
116	bus_dma_segment_t		*user_segptr;
117	bus_dma_segment_t		*kern_segptr;
118	int				 num_bufs;
119	uint32_t			 dirs[CAM_PERIPH_MAXMAPS];
120	uint32_t			 lengths[CAM_PERIPH_MAXMAPS];
121	uint8_t				*user_bufs[CAM_PERIPH_MAXMAPS];
122	uint8_t				*kern_bufs[CAM_PERIPH_MAXMAPS];
123	struct bintime			 start_time;
124	TAILQ_ENTRY(pass_io_req)	 links;
125};
126
127struct pass_softc {
128	pass_state		  state;
129	pass_flags		  flags;
130	u_int8_t		  pd_type;
131	union ccb		  saved_ccb;
132	int			  open_count;
133	u_int		 	  maxio;
134	struct devstat		 *device_stats;
135	struct cdev		 *dev;
136	struct cdev		 *alias_dev;
137	struct task		  add_physpath_task;
138	struct task		  shutdown_kqueue_task;
139	struct selinfo		  read_select;
140	TAILQ_HEAD(, pass_io_req) incoming_queue;
141	TAILQ_HEAD(, pass_io_req) active_queue;
142	TAILQ_HEAD(, pass_io_req) abandoned_queue;
143	TAILQ_HEAD(, pass_io_req) done_queue;
144	struct cam_periph	 *periph;
145	char			  zone_name[12];
146	char			  io_zone_name[12];
147	uma_zone_t		  pass_zone;
148	uma_zone_t		  pass_io_zone;
149	size_t			  io_zone_size;
150};
151
152static	d_open_t	passopen;
153static	d_close_t	passclose;
154static	d_ioctl_t	passioctl;
155static	d_ioctl_t	passdoioctl;
156static	d_poll_t	passpoll;
157static	d_kqfilter_t	passkqfilter;
158static	void		passreadfiltdetach(struct knote *kn);
159static	int		passreadfilt(struct knote *kn, long hint);
160
161static	periph_init_t	passinit;
162static	periph_ctor_t	passregister;
163static	periph_oninv_t	passoninvalidate;
164static	periph_dtor_t	passcleanup;
165static	periph_start_t	passstart;
166static	void		pass_shutdown_kqueue(void *context, int pending);
167static	void		pass_add_physpath(void *context, int pending);
168static	void		passasync(void *callback_arg, u_int32_t code,
169				  struct cam_path *path, void *arg);
170static	void		passdone(struct cam_periph *periph,
171				 union ccb *done_ccb);
172static	int		passcreatezone(struct cam_periph *periph);
173static	void		passiocleanup(struct pass_softc *softc,
174				      struct pass_io_req *io_req);
175static	int		passcopysglist(struct cam_periph *periph,
176				       struct pass_io_req *io_req,
177				       ccb_flags direction);
178static	int		passmemsetup(struct cam_periph *periph,
179				     struct pass_io_req *io_req);
180static	int		passmemdone(struct cam_periph *periph,
181				    struct pass_io_req *io_req);
182static	int		passerror(union ccb *ccb, u_int32_t cam_flags,
183				  u_int32_t sense_flags);
184static 	int		passsendccb(struct cam_periph *periph, union ccb *ccb,
185				    union ccb *inccb);
186
187static struct periph_driver passdriver =
188{
189	passinit, "pass",
190	TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0
191};
192
193PERIPHDRIVER_DECLARE(pass, passdriver);
194
195static struct cdevsw pass_cdevsw = {
196	.d_version =	D_VERSION,
197	.d_flags =	D_TRACKCLOSE,
198	.d_open =	passopen,
199	.d_close =	passclose,
200	.d_ioctl =	passioctl,
201	.d_poll = 	passpoll,
202	.d_kqfilter = 	passkqfilter,
203	.d_name =	"pass",
204};
205
206static struct filterops passread_filtops = {
207	.f_isfd	=	1,
208	.f_detach =	passreadfiltdetach,
209	.f_event =	passreadfilt
210};
211
212static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers");
213
214static void
215passinit(void)
216{
217	cam_status status;
218
219	/*
220	 * Install a global async callback.  This callback will
221	 * receive async callbacks like "new device found".
222	 */
223	status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL);
224
225	if (status != CAM_REQ_CMP) {
226		printf("pass: Failed to attach master async callback "
227		       "due to status 0x%x!\n", status);
228	}
229
230}
231
232static void
233passrejectios(struct cam_periph *periph)
234{
235	struct pass_io_req *io_req, *io_req2;
236	struct pass_softc *softc;
237
238	softc = (struct pass_softc *)periph->softc;
239
240	/*
241	 * The user can no longer get status for I/O on the done queue, so
242	 * clean up all outstanding I/O on the done queue.
243	 */
244	TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
245		TAILQ_REMOVE(&softc->done_queue, io_req, links);
246		passiocleanup(softc, io_req);
247		uma_zfree(softc->pass_zone, io_req);
248	}
249
250	/*
251	 * The underlying device is gone, so we can't issue these I/Os.
252	 * The devfs node has been shut down, so we can't return status to
253	 * the user.  Free any I/O left on the incoming queue.
254	 */
255	TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) {
256		TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
257		passiocleanup(softc, io_req);
258		uma_zfree(softc->pass_zone, io_req);
259	}
260
261	/*
262	 * Normally we would put I/Os on the abandoned queue and acquire a
263	 * reference when we saw the final close.  But, the device went
264	 * away and devfs may have moved everything off to deadfs by the
265	 * time the I/O done callback is called; as a result, we won't see
266	 * any more closes.  So, if we have any active I/Os, we need to put
267	 * them on the abandoned queue.  When the abandoned queue is empty,
268	 * we'll release the remaining reference (see below) to the peripheral.
269	 */
270	TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) {
271		TAILQ_REMOVE(&softc->active_queue, io_req, links);
272		io_req->flags |= PASS_IO_ABANDONED;
273		TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links);
274	}
275
276	/*
277	 * If we put any I/O on the abandoned queue, acquire a reference.
278	 */
279	if ((!TAILQ_EMPTY(&softc->abandoned_queue))
280	 && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) {
281		cam_periph_doacquire(periph);
282		softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
283	}
284}
285
286static void
287passdevgonecb(void *arg)
288{
289	struct cam_periph *periph;
290	struct mtx *mtx;
291	struct pass_softc *softc;
292	int i;
293
294	periph = (struct cam_periph *)arg;
295	mtx = cam_periph_mtx(periph);
296	mtx_lock(mtx);
297
298	softc = (struct pass_softc *)periph->softc;
299	KASSERT(softc->open_count >= 0, ("Negative open count %d",
300		softc->open_count));
301
302	/*
303	 * When we get this callback, we will get no more close calls from
304	 * devfs.  So if we have any dangling opens, we need to release the
305	 * reference held for that particular context.
306	 */
307	for (i = 0; i < softc->open_count; i++)
308		cam_periph_release_locked(periph);
309
310	softc->open_count = 0;
311
312	/*
313	 * Release the reference held for the device node, it is gone now.
314	 * Accordingly, inform all queued I/Os of their fate.
315	 */
316	cam_periph_release_locked(periph);
317	passrejectios(periph);
318
319	/*
320	 * We reference the SIM lock directly here, instead of using
321	 * cam_periph_unlock().  The reason is that the final call to
322	 * cam_periph_release_locked() above could result in the periph
323	 * getting freed.  If that is the case, dereferencing the periph
324	 * with a cam_periph_unlock() call would cause a page fault.
325	 */
326	mtx_unlock(mtx);
327
328	/*
329	 * We have to remove our kqueue context from a thread because it
330	 * may sleep.  It would be nice if we could get a callback from
331	 * kqueue when it is done cleaning up resources.
332	 */
333	taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task);
334}
335
336static void
337passoninvalidate(struct cam_periph *periph)
338{
339	struct pass_softc *softc;
340
341	softc = (struct pass_softc *)periph->softc;
342
343	/*
344	 * De-register any async callbacks.
345	 */
346	xpt_register_async(0, passasync, periph, periph->path);
347
348	softc->flags |= PASS_FLAG_INVALID;
349
350	/*
351	 * Tell devfs this device has gone away, and ask for a callback
352	 * when it has cleaned up its state.
353	 */
354	destroy_dev_sched_cb(softc->dev, passdevgonecb, periph);
355}
356
357static void
358passcleanup(struct cam_periph *periph)
359{
360	struct pass_softc *softc;
361
362	softc = (struct pass_softc *)periph->softc;
363
364	cam_periph_assert(periph, MA_OWNED);
365	KASSERT(TAILQ_EMPTY(&softc->active_queue),
366		("%s called when there are commands on the active queue!\n",
367		__func__));
368	KASSERT(TAILQ_EMPTY(&softc->abandoned_queue),
369		("%s called when there are commands on the abandoned queue!\n",
370		__func__));
371	KASSERT(TAILQ_EMPTY(&softc->incoming_queue),
372		("%s called when there are commands on the incoming queue!\n",
373		__func__));
374	KASSERT(TAILQ_EMPTY(&softc->done_queue),
375		("%s called when there are commands on the done queue!\n",
376		__func__));
377
378	devstat_remove_entry(softc->device_stats);
379
380	cam_periph_unlock(periph);
381
382	/*
383	 * We call taskqueue_drain() for the physpath task to make sure it
384	 * is complete.  We drop the lock because this can potentially
385	 * sleep.  XXX KDM that is bad.  Need a way to get a callback when
386	 * a taskqueue is drained.
387	 *
388 	 * Note that we don't drain the kqueue shutdown task queue.  This
389	 * is because we hold a reference on the periph for kqueue, and
390	 * release that reference from the kqueue shutdown task queue.  So
391	 * we cannot come into this routine unless we've released that
392	 * reference.  Also, because that could be the last reference, we
393	 * could be called from the cam_periph_release() call in
394	 * pass_shutdown_kqueue().  In that case, the taskqueue_drain()
395	 * would deadlock.  It would be preferable if we had a way to
396	 * get a callback when a taskqueue is done.
397	 */
398	taskqueue_drain(taskqueue_thread, &softc->add_physpath_task);
399
400	cam_periph_lock(periph);
401
402	free(softc, M_DEVBUF);
403}
404
405static void
406pass_shutdown_kqueue(void *context, int pending)
407{
408	struct cam_periph *periph;
409	struct pass_softc *softc;
410
411	periph = context;
412	softc = periph->softc;
413
414	knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0);
415	knlist_destroy(&softc->read_select.si_note);
416
417	/*
418	 * Release the reference we held for kqueue.
419	 */
420	cam_periph_release(periph);
421}
422
423static void
424pass_add_physpath(void *context, int pending)
425{
426	struct cam_periph *periph;
427	struct pass_softc *softc;
428	struct mtx *mtx;
429	char *physpath;
430
431	/*
432	 * If we have one, create a devfs alias for our
433	 * physical path.
434	 */
435	periph = context;
436	softc = periph->softc;
437	physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK);
438	mtx = cam_periph_mtx(periph);
439	mtx_lock(mtx);
440
441	if (periph->flags & CAM_PERIPH_INVALID)
442		goto out;
443
444	if (xpt_getattr(physpath, MAXPATHLEN,
445			"GEOM::physpath", periph->path) == 0
446	 && strlen(physpath) != 0) {
447
448		mtx_unlock(mtx);
449		make_dev_physpath_alias(MAKEDEV_WAITOK, &softc->alias_dev,
450					softc->dev, softc->alias_dev, physpath);
451		mtx_lock(mtx);
452	}
453
454out:
455	/*
456	 * Now that we've made our alias, we no longer have to have a
457	 * reference to the device.
458	 */
459	if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0)
460		softc->flags |= PASS_FLAG_INITIAL_PHYSPATH;
461
462	/*
463	 * We always acquire a reference to the periph before queueing this
464	 * task queue function, so it won't go away before we run.
465	 */
466	while (pending-- > 0)
467		cam_periph_release_locked(periph);
468	mtx_unlock(mtx);
469
470	free(physpath, M_DEVBUF);
471}
472
473static void
474passasync(void *callback_arg, u_int32_t code,
475	  struct cam_path *path, void *arg)
476{
477	struct cam_periph *periph;
478
479	periph = (struct cam_periph *)callback_arg;
480
481	switch (code) {
482	case AC_FOUND_DEVICE:
483	{
484		struct ccb_getdev *cgd;
485		cam_status status;
486
487		cgd = (struct ccb_getdev *)arg;
488		if (cgd == NULL)
489			break;
490
491		/*
492		 * Allocate a peripheral instance for
493		 * this device and start the probe
494		 * process.
495		 */
496		status = cam_periph_alloc(passregister, passoninvalidate,
497					  passcleanup, passstart, "pass",
498					  CAM_PERIPH_BIO, path,
499					  passasync, AC_FOUND_DEVICE, cgd);
500
501		if (status != CAM_REQ_CMP
502		 && status != CAM_REQ_INPROG) {
503			const struct cam_status_entry *entry;
504
505			entry = cam_fetch_status_entry(status);
506
507			printf("passasync: Unable to attach new device "
508			       "due to status %#x: %s\n", status, entry ?
509			       entry->status_text : "Unknown");
510		}
511
512		break;
513	}
514	case AC_ADVINFO_CHANGED:
515	{
516		uintptr_t buftype;
517
518		buftype = (uintptr_t)arg;
519		if (buftype == CDAI_TYPE_PHYS_PATH) {
520			struct pass_softc *softc;
521			cam_status status;
522
523			softc = (struct pass_softc *)periph->softc;
524			/*
525			 * Acquire a reference to the periph before we
526			 * start the taskqueue, so that we don't run into
527			 * a situation where the periph goes away before
528			 * the task queue has a chance to run.
529			 */
530			status = cam_periph_acquire(periph);
531			if (status != CAM_REQ_CMP)
532				break;
533
534			taskqueue_enqueue(taskqueue_thread,
535					  &softc->add_physpath_task);
536		}
537		break;
538	}
539	default:
540		cam_periph_async(periph, code, path, arg);
541		break;
542	}
543}
544
545static cam_status
546passregister(struct cam_periph *periph, void *arg)
547{
548	struct pass_softc *softc;
549	struct ccb_getdev *cgd;
550	struct ccb_pathinq cpi;
551	int    no_tags;
552
553	cgd = (struct ccb_getdev *)arg;
554	if (cgd == NULL) {
555		printf("%s: no getdev CCB, can't register device\n", __func__);
556		return(CAM_REQ_CMP_ERR);
557	}
558
559	softc = (struct pass_softc *)malloc(sizeof(*softc),
560					    M_DEVBUF, M_NOWAIT);
561
562	if (softc == NULL) {
563		printf("%s: Unable to probe new device. "
564		       "Unable to allocate softc\n", __func__);
565		return(CAM_REQ_CMP_ERR);
566	}
567
568	bzero(softc, sizeof(*softc));
569	softc->state = PASS_STATE_NORMAL;
570	if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI)
571		softc->pd_type = SID_TYPE(&cgd->inq_data);
572	else if (cgd->protocol == PROTO_SATAPM)
573		softc->pd_type = T_ENCLOSURE;
574	else
575		softc->pd_type = T_DIRECT;
576
577	periph->softc = softc;
578	softc->periph = periph;
579	TAILQ_INIT(&softc->incoming_queue);
580	TAILQ_INIT(&softc->active_queue);
581	TAILQ_INIT(&softc->abandoned_queue);
582	TAILQ_INIT(&softc->done_queue);
583	snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d",
584		 periph->periph_name, periph->unit_number);
585	snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO",
586		 periph->periph_name, periph->unit_number);
587	softc->io_zone_size = MAXPHYS;
588	knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph));
589
590	bzero(&cpi, sizeof(cpi));
591	xpt_setup_ccb(&cpi.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
592	cpi.ccb_h.func_code = XPT_PATH_INQ;
593	xpt_action((union ccb *)&cpi);
594
595	if (cpi.maxio == 0)
596		softc->maxio = DFLTPHYS;	/* traditional default */
597	else if (cpi.maxio > MAXPHYS)
598		softc->maxio = MAXPHYS;		/* for safety */
599	else
600		softc->maxio = cpi.maxio;	/* real value */
601
602	if (cpi.hba_misc & PIM_UNMAPPED)
603		softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE;
604
605	/*
606	 * We pass in 0 for a blocksize, since we don't
607	 * know what the blocksize of this device is, if
608	 * it even has a blocksize.
609	 */
610	cam_periph_unlock(periph);
611	no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0;
612	softc->device_stats = devstat_new_entry("pass",
613			  periph->unit_number, 0,
614			  DEVSTAT_NO_BLOCKSIZE
615			  | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0),
616			  softc->pd_type |
617			  XPORT_DEVSTAT_TYPE(cpi.transport) |
618			  DEVSTAT_TYPE_PASS,
619			  DEVSTAT_PRIORITY_PASS);
620
621	/*
622	 * Initialize the taskqueue handler for shutting down kqueue.
623	 */
624	TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0,
625		  pass_shutdown_kqueue, periph);
626
627	/*
628	 * Acquire a reference to the periph that we can release once we've
629	 * cleaned up the kqueue.
630	 */
631	if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
632		xpt_print(periph->path, "%s: lost periph during "
633			  "registration!\n", __func__);
634		cam_periph_lock(periph);
635		return (CAM_REQ_CMP_ERR);
636	}
637
638	/*
639	 * Acquire a reference to the periph before we create the devfs
640	 * instance for it.  We'll release this reference once the devfs
641	 * instance has been freed.
642	 */
643	if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
644		xpt_print(periph->path, "%s: lost periph during "
645			  "registration!\n", __func__);
646		cam_periph_lock(periph);
647		return (CAM_REQ_CMP_ERR);
648	}
649
650	/* Register the device */
651	softc->dev = make_dev(&pass_cdevsw, periph->unit_number,
652			      UID_ROOT, GID_OPERATOR, 0600, "%s%d",
653			      periph->periph_name, periph->unit_number);
654
655	/*
656	 * Hold a reference to the periph before we create the physical
657	 * path alias so it can't go away.
658	 */
659	if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
660		xpt_print(periph->path, "%s: lost periph during "
661			  "registration!\n", __func__);
662		cam_periph_lock(periph);
663		return (CAM_REQ_CMP_ERR);
664	}
665
666	cam_periph_lock(periph);
667	softc->dev->si_drv1 = periph;
668
669	TASK_INIT(&softc->add_physpath_task, /*priority*/0,
670		  pass_add_physpath, periph);
671
672	/*
673	 * See if physical path information is already available.
674	 */
675	taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task);
676
677	/*
678	 * Add an async callback so that we get notified if
679	 * this device goes away or its physical path
680	 * (stored in the advanced info data of the EDT) has
681	 * changed.
682	 */
683	xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED,
684			   passasync, periph, periph->path);
685
686	if (bootverbose)
687		xpt_announce_periph(periph, NULL);
688
689	return(CAM_REQ_CMP);
690}
691
692static int
693passopen(struct cdev *dev, int flags, int fmt, struct thread *td)
694{
695	struct cam_periph *periph;
696	struct pass_softc *softc;
697	int error;
698
699	periph = (struct cam_periph *)dev->si_drv1;
700	if (cam_periph_acquire(periph) != CAM_REQ_CMP)
701		return (ENXIO);
702
703	cam_periph_lock(periph);
704
705	softc = (struct pass_softc *)periph->softc;
706
707	if (softc->flags & PASS_FLAG_INVALID) {
708		cam_periph_release_locked(periph);
709		cam_periph_unlock(periph);
710		return(ENXIO);
711	}
712
713	/*
714	 * Don't allow access when we're running at a high securelevel.
715	 */
716	error = securelevel_gt(td->td_ucred, 1);
717	if (error) {
718		cam_periph_release_locked(periph);
719		cam_periph_unlock(periph);
720		return(error);
721	}
722
723	/*
724	 * Only allow read-write access.
725	 */
726	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) {
727		cam_periph_release_locked(periph);
728		cam_periph_unlock(periph);
729		return(EPERM);
730	}
731
732	/*
733	 * We don't allow nonblocking access.
734	 */
735	if ((flags & O_NONBLOCK) != 0) {
736		xpt_print(periph->path, "can't do nonblocking access\n");
737		cam_periph_release_locked(periph);
738		cam_periph_unlock(periph);
739		return(EINVAL);
740	}
741
742	softc->open_count++;
743
744	cam_periph_unlock(periph);
745
746	return (error);
747}
748
749static int
750passclose(struct cdev *dev, int flag, int fmt, struct thread *td)
751{
752	struct 	cam_periph *periph;
753	struct  pass_softc *softc;
754	struct mtx *mtx;
755
756	periph = (struct cam_periph *)dev->si_drv1;
757	if (periph == NULL)
758		return (ENXIO);
759	mtx = cam_periph_mtx(periph);
760	mtx_lock(mtx);
761
762	softc = periph->softc;
763	softc->open_count--;
764
765	if (softc->open_count == 0) {
766		struct pass_io_req *io_req, *io_req2;
767		int need_unlock;
768
769		need_unlock = 0;
770
771		TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
772			TAILQ_REMOVE(&softc->done_queue, io_req, links);
773			passiocleanup(softc, io_req);
774			uma_zfree(softc->pass_zone, io_req);
775		}
776
777		TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links,
778				   io_req2) {
779			TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
780			passiocleanup(softc, io_req);
781			uma_zfree(softc->pass_zone, io_req);
782		}
783
784		/*
785		 * If there are any active I/Os, we need to forcibly acquire a
786		 * reference to the peripheral so that we don't go away
787		 * before they complete.  We'll release the reference when
788		 * the abandoned queue is empty.
789		 */
790		io_req = TAILQ_FIRST(&softc->active_queue);
791		if ((io_req != NULL)
792		 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) {
793			cam_periph_doacquire(periph);
794			softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
795		}
796
797		/*
798		 * Since the I/O in the active queue is not under our
799		 * control, just set a flag so that we can clean it up when
800		 * it completes and put it on the abandoned queue.  This
801		 * will prevent our sending spurious completions in the
802		 * event that the device is opened again before these I/Os
803		 * complete.
804		 */
805		TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links,
806				   io_req2) {
807			TAILQ_REMOVE(&softc->active_queue, io_req, links);
808			io_req->flags |= PASS_IO_ABANDONED;
809			TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req,
810					  links);
811		}
812	}
813
814	cam_periph_release_locked(periph);
815
816	/*
817	 * We reference the lock directly here, instead of using
818	 * cam_periph_unlock().  The reason is that the call to
819	 * cam_periph_release_locked() above could result in the periph
820	 * getting freed.  If that is the case, dereferencing the periph
821	 * with a cam_periph_unlock() call would cause a page fault.
822	 *
823	 * cam_periph_release() avoids this problem using the same method,
824	 * but we're manually acquiring and dropping the lock here to
825	 * protect the open count and avoid another lock acquisition and
826	 * release.
827	 */
828	mtx_unlock(mtx);
829
830	return (0);
831}
832
833
834static void
835passstart(struct cam_periph *periph, union ccb *start_ccb)
836{
837	struct pass_softc *softc;
838
839	softc = (struct pass_softc *)periph->softc;
840
841	switch (softc->state) {
842	case PASS_STATE_NORMAL: {
843		struct pass_io_req *io_req;
844
845		/*
846		 * Check for any queued I/O requests that require an
847		 * allocated slot.
848		 */
849		io_req = TAILQ_FIRST(&softc->incoming_queue);
850		if (io_req == NULL) {
851			xpt_release_ccb(start_ccb);
852			break;
853		}
854		TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
855		TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
856		/*
857		 * Merge the user's CCB into the allocated CCB.
858		 */
859		xpt_merge_ccb(start_ccb, &io_req->ccb);
860		start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO;
861		start_ccb->ccb_h.ccb_ioreq = io_req;
862		start_ccb->ccb_h.cbfcnp = passdone;
863		io_req->alloced_ccb = start_ccb;
864		binuptime(&io_req->start_time);
865		devstat_start_transaction(softc->device_stats,
866					  &io_req->start_time);
867
868		xpt_action(start_ccb);
869
870		/*
871		 * If we have any more I/O waiting, schedule ourselves again.
872		 */
873		if (!TAILQ_EMPTY(&softc->incoming_queue))
874			xpt_schedule(periph, CAM_PRIORITY_NORMAL);
875		break;
876	}
877	default:
878		break;
879	}
880}
881
882static void
883passdone(struct cam_periph *periph, union ccb *done_ccb)
884{
885	struct pass_softc *softc;
886	struct ccb_scsiio *csio;
887
888	softc = (struct pass_softc *)periph->softc;
889
890	cam_periph_assert(periph, MA_OWNED);
891
892	csio = &done_ccb->csio;
893	switch (csio->ccb_h.ccb_type) {
894	case PASS_CCB_QUEUED_IO: {
895		struct pass_io_req *io_req;
896
897		io_req = done_ccb->ccb_h.ccb_ioreq;
898#if 0
899		xpt_print(periph->path, "%s: called for user CCB %p\n",
900			  __func__, io_req->user_ccb_ptr);
901#endif
902		if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)
903		 && (done_ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER)
904		 && ((io_req->flags & PASS_IO_ABANDONED) == 0)) {
905			int error;
906
907			error = passerror(done_ccb, CAM_RETRY_SELTO,
908					  SF_RETRY_UA | SF_NO_PRINT);
909
910			if (error == ERESTART) {
911				/*
912				 * A retry was scheduled, so
913 				 * just return.
914				 */
915				return;
916			}
917		}
918
919		/*
920		 * Copy the allocated CCB contents back to the malloced CCB
921		 * so we can give status back to the user when he requests it.
922		 */
923		bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb));
924
925		/*
926		 * Log data/transaction completion with devstat(9).
927		 */
928		switch (done_ccb->ccb_h.func_code) {
929		case XPT_SCSI_IO:
930			devstat_end_transaction(softc->device_stats,
931			    done_ccb->csio.dxfer_len - done_ccb->csio.resid,
932			    done_ccb->csio.tag_action & 0x3,
933			    ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
934			    CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
935			    (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
936			    DEVSTAT_WRITE : DEVSTAT_READ, NULL,
937			    &io_req->start_time);
938			break;
939		case XPT_ATA_IO:
940			devstat_end_transaction(softc->device_stats,
941			    done_ccb->ataio.dxfer_len - done_ccb->ataio.resid,
942			    done_ccb->ataio.tag_action & 0x3,
943			    ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
944			    CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
945			    (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
946			    DEVSTAT_WRITE : DEVSTAT_READ, NULL,
947			    &io_req->start_time);
948			break;
949		case XPT_SMP_IO:
950			/*
951			 * XXX KDM this isn't quite right, but there isn't
952			 * currently an easy way to represent a bidirectional
953			 * transfer in devstat.  The only way to do it
954			 * and have the byte counts come out right would
955			 * mean that we would have to record two
956			 * transactions, one for the request and one for the
957			 * response.  For now, so that we report something,
958			 * just treat the entire thing as a read.
959			 */
960			devstat_end_transaction(softc->device_stats,
961			    done_ccb->smpio.smp_request_len +
962			    done_ccb->smpio.smp_response_len,
963			    DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL,
964			    &io_req->start_time);
965			break;
966		default:
967			devstat_end_transaction(softc->device_stats, 0,
968			    DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL,
969			    &io_req->start_time);
970			break;
971		}
972
973		/*
974		 * In the normal case, take the completed I/O off of the
975		 * active queue and put it on the done queue.  Notitfy the
976		 * user that we have a completed I/O.
977		 */
978		if ((io_req->flags & PASS_IO_ABANDONED) == 0) {
979			TAILQ_REMOVE(&softc->active_queue, io_req, links);
980			TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
981			selwakeuppri(&softc->read_select, PRIBIO);
982			KNOTE_LOCKED(&softc->read_select.si_note, 0);
983		} else {
984			/*
985			 * In the case of an abandoned I/O (final close
986			 * without fetching the I/O), take it off of the
987			 * abandoned queue and free it.
988			 */
989			TAILQ_REMOVE(&softc->abandoned_queue, io_req, links);
990			passiocleanup(softc, io_req);
991			uma_zfree(softc->pass_zone, io_req);
992
993			/*
994			 * Release the done_ccb here, since we may wind up
995			 * freeing the peripheral when we decrement the
996			 * reference count below.
997			 */
998			xpt_release_ccb(done_ccb);
999
1000			/*
1001			 * If the abandoned queue is empty, we can release
1002			 * our reference to the periph since we won't have
1003			 * any more completions coming.
1004			 */
1005			if ((TAILQ_EMPTY(&softc->abandoned_queue))
1006			 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) {
1007				softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET;
1008				cam_periph_release_locked(periph);
1009			}
1010
1011			/*
1012			 * We have already released the CCB, so we can
1013			 * return.
1014			 */
1015			return;
1016		}
1017		break;
1018	}
1019	}
1020	xpt_release_ccb(done_ccb);
1021}
1022
1023static int
1024passcreatezone(struct cam_periph *periph)
1025{
1026	struct pass_softc *softc;
1027	int error;
1028
1029	error = 0;
1030	softc = (struct pass_softc *)periph->softc;
1031
1032	cam_periph_assert(periph, MA_OWNED);
1033	KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0),
1034		("%s called when the pass(4) zone is valid!\n", __func__));
1035	KASSERT((softc->pass_zone == NULL),
1036		("%s called when the pass(4) zone is allocated!\n", __func__));
1037
1038	if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) {
1039
1040		/*
1041		 * We're the first context through, so we need to create
1042		 * the pass(4) UMA zone for I/O requests.
1043		 */
1044		softc->flags |= PASS_FLAG_ZONE_INPROG;
1045
1046		/*
1047		 * uma_zcreate() does a blocking (M_WAITOK) allocation,
1048		 * so we cannot hold a mutex while we call it.
1049		 */
1050		cam_periph_unlock(periph);
1051
1052		softc->pass_zone = uma_zcreate(softc->zone_name,
1053		    sizeof(struct pass_io_req), NULL, NULL, NULL, NULL,
1054		    /*align*/ 0, /*flags*/ 0);
1055
1056		softc->pass_io_zone = uma_zcreate(softc->io_zone_name,
1057		    softc->io_zone_size, NULL, NULL, NULL, NULL,
1058		    /*align*/ 0, /*flags*/ 0);
1059
1060		cam_periph_lock(periph);
1061
1062		if ((softc->pass_zone == NULL)
1063		 || (softc->pass_io_zone == NULL)) {
1064			if (softc->pass_zone == NULL)
1065				xpt_print(periph->path, "unable to allocate "
1066				    "IO Req UMA zone\n");
1067			else
1068				xpt_print(periph->path, "unable to allocate "
1069				    "IO UMA zone\n");
1070			softc->flags &= ~PASS_FLAG_ZONE_INPROG;
1071			goto bailout;
1072		}
1073
1074		/*
1075		 * Set the flags appropriately and notify any other waiters.
1076		 */
1077		softc->flags &= PASS_FLAG_ZONE_INPROG;
1078		softc->flags |= PASS_FLAG_ZONE_VALID;
1079		wakeup(&softc->pass_zone);
1080	} else {
1081		/*
1082		 * In this case, the UMA zone has not yet been created, but
1083		 * another context is in the process of creating it.  We
1084		 * need to sleep until the creation is either done or has
1085		 * failed.
1086		 */
1087		while ((softc->flags & PASS_FLAG_ZONE_INPROG)
1088		    && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) {
1089			error = msleep(&softc->pass_zone,
1090				       cam_periph_mtx(periph), PRIBIO,
1091				       "paszon", 0);
1092			if (error != 0)
1093				goto bailout;
1094		}
1095		/*
1096		 * If the zone creation failed, no luck for the user.
1097		 */
1098		if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){
1099			error = ENOMEM;
1100			goto bailout;
1101		}
1102	}
1103bailout:
1104	return (error);
1105}
1106
1107static void
1108passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req)
1109{
1110	union ccb *ccb;
1111	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1112	int i, numbufs;
1113
1114	ccb = &io_req->ccb;
1115
1116	switch (ccb->ccb_h.func_code) {
1117	case XPT_DEV_MATCH:
1118		numbufs = min(io_req->num_bufs, 2);
1119
1120		if (numbufs == 1) {
1121			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
1122		} else {
1123			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
1124			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
1125		}
1126		break;
1127	case XPT_SCSI_IO:
1128	case XPT_CONT_TARGET_IO:
1129		data_ptrs[0] = &ccb->csio.data_ptr;
1130		numbufs = min(io_req->num_bufs, 1);
1131		break;
1132	case XPT_ATA_IO:
1133		data_ptrs[0] = &ccb->ataio.data_ptr;
1134		numbufs = min(io_req->num_bufs, 1);
1135		break;
1136	case XPT_SMP_IO:
1137		numbufs = min(io_req->num_bufs, 2);
1138		data_ptrs[0] = &ccb->smpio.smp_request;
1139		data_ptrs[1] = &ccb->smpio.smp_response;
1140		break;
1141	case XPT_DEV_ADVINFO:
1142		numbufs = min(io_req->num_bufs, 1);
1143		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1144		break;
1145	default:
1146		/* allow ourselves to be swapped once again */
1147		return;
1148		break; /* NOTREACHED */
1149	}
1150
1151	if (io_req->flags & PASS_IO_USER_SEG_MALLOC) {
1152		free(io_req->user_segptr, M_SCSIPASS);
1153		io_req->user_segptr = NULL;
1154	}
1155
1156	/*
1157	 * We only want to free memory we malloced.
1158	 */
1159	if (io_req->data_flags == CAM_DATA_VADDR) {
1160		for (i = 0; i < io_req->num_bufs; i++) {
1161			if (io_req->kern_bufs[i] == NULL)
1162				continue;
1163
1164			free(io_req->kern_bufs[i], M_SCSIPASS);
1165			io_req->kern_bufs[i] = NULL;
1166		}
1167	} else if (io_req->data_flags == CAM_DATA_SG) {
1168		for (i = 0; i < io_req->num_kern_segs; i++) {
1169			if ((uint8_t *)(uintptr_t)
1170			    io_req->kern_segptr[i].ds_addr == NULL)
1171				continue;
1172
1173			uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t)
1174			    io_req->kern_segptr[i].ds_addr);
1175			io_req->kern_segptr[i].ds_addr = 0;
1176		}
1177	}
1178
1179	if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) {
1180		free(io_req->kern_segptr, M_SCSIPASS);
1181		io_req->kern_segptr = NULL;
1182	}
1183
1184	if (io_req->data_flags != CAM_DATA_PADDR) {
1185		for (i = 0; i < numbufs; i++) {
1186			/*
1187			 * Restore the user's buffer pointers to their
1188			 * previous values.
1189			 */
1190			if (io_req->user_bufs[i] != NULL)
1191				*data_ptrs[i] = io_req->user_bufs[i];
1192		}
1193	}
1194
1195}
1196
1197static int
1198passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req,
1199	       ccb_flags direction)
1200{
1201	bus_size_t kern_watermark, user_watermark, len_copied, len_to_copy;
1202	bus_dma_segment_t *user_sglist, *kern_sglist;
1203	int i, j, error;
1204
1205	error = 0;
1206	kern_watermark = 0;
1207	user_watermark = 0;
1208	len_to_copy = 0;
1209	len_copied = 0;
1210	user_sglist = io_req->user_segptr;
1211	kern_sglist = io_req->kern_segptr;
1212
1213	for (i = 0, j = 0; i < io_req->num_user_segs &&
1214	     j < io_req->num_kern_segs;) {
1215		uint8_t *user_ptr, *kern_ptr;
1216
1217		len_to_copy = min(user_sglist[i].ds_len -user_watermark,
1218		    kern_sglist[j].ds_len - kern_watermark);
1219
1220		user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr;
1221		user_ptr = user_ptr + user_watermark;
1222		kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr;
1223		kern_ptr = kern_ptr + kern_watermark;
1224
1225		user_watermark += len_to_copy;
1226		kern_watermark += len_to_copy;
1227
1228		if (!useracc(user_ptr, len_to_copy,
1229		    (direction == CAM_DIR_IN) ? VM_PROT_WRITE : VM_PROT_READ)) {
1230			xpt_print(periph->path, "%s: unable to access user "
1231				  "S/G list element %p len %zu\n", __func__,
1232				  user_ptr, len_to_copy);
1233			error = EFAULT;
1234			goto bailout;
1235		}
1236
1237		if (direction == CAM_DIR_IN) {
1238			error = copyout(kern_ptr, user_ptr, len_to_copy);
1239			if (error != 0) {
1240				xpt_print(periph->path, "%s: copyout of %u "
1241					  "bytes from %p to %p failed with "
1242					  "error %d\n", __func__, len_to_copy,
1243					  kern_ptr, user_ptr, error);
1244				goto bailout;
1245			}
1246		} else {
1247			error = copyin(user_ptr, kern_ptr, len_to_copy);
1248			if (error != 0) {
1249				xpt_print(periph->path, "%s: copyin of %u "
1250					  "bytes from %p to %p failed with "
1251					  "error %d\n", __func__, len_to_copy,
1252					  user_ptr, kern_ptr, error);
1253				goto bailout;
1254			}
1255		}
1256
1257		len_copied += len_to_copy;
1258
1259		if (user_sglist[i].ds_len == user_watermark) {
1260			i++;
1261			user_watermark = 0;
1262		}
1263
1264		if (kern_sglist[j].ds_len == kern_watermark) {
1265			j++;
1266			kern_watermark = 0;
1267		}
1268	}
1269
1270bailout:
1271
1272	return (error);
1273}
1274
1275static int
1276passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req)
1277{
1278	union ccb *ccb;
1279	struct pass_softc *softc;
1280	int numbufs, i;
1281	uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1282	uint32_t lengths[CAM_PERIPH_MAXMAPS];
1283	uint32_t dirs[CAM_PERIPH_MAXMAPS];
1284	uint32_t num_segs;
1285	uint16_t *seg_cnt_ptr;
1286	size_t maxmap;
1287	int error;
1288
1289	cam_periph_assert(periph, MA_NOTOWNED);
1290
1291	softc = periph->softc;
1292
1293	error = 0;
1294	ccb = &io_req->ccb;
1295	maxmap = 0;
1296	num_segs = 0;
1297	seg_cnt_ptr = NULL;
1298
1299	switch(ccb->ccb_h.func_code) {
1300	case XPT_DEV_MATCH:
1301		if (ccb->cdm.match_buf_len == 0) {
1302			printf("%s: invalid match buffer length 0\n", __func__);
1303			return(EINVAL);
1304		}
1305		if (ccb->cdm.pattern_buf_len > 0) {
1306			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
1307			lengths[0] = ccb->cdm.pattern_buf_len;
1308			dirs[0] = CAM_DIR_OUT;
1309			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
1310			lengths[1] = ccb->cdm.match_buf_len;
1311			dirs[1] = CAM_DIR_IN;
1312			numbufs = 2;
1313		} else {
1314			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
1315			lengths[0] = ccb->cdm.match_buf_len;
1316			dirs[0] = CAM_DIR_IN;
1317			numbufs = 1;
1318		}
1319		io_req->data_flags = CAM_DATA_VADDR;
1320		break;
1321	case XPT_SCSI_IO:
1322	case XPT_CONT_TARGET_IO:
1323		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1324			return(0);
1325
1326		/*
1327		 * The user shouldn't be able to supply a bio.
1328		 */
1329		if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO)
1330			return (EINVAL);
1331
1332		io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
1333
1334		data_ptrs[0] = &ccb->csio.data_ptr;
1335		lengths[0] = ccb->csio.dxfer_len;
1336		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1337		num_segs = ccb->csio.sglist_cnt;
1338		seg_cnt_ptr = &ccb->csio.sglist_cnt;
1339		numbufs = 1;
1340		maxmap = softc->maxio;
1341		break;
1342	case XPT_ATA_IO:
1343		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1344			return(0);
1345
1346		/*
1347		 * We only support a single virtual address for ATA I/O.
1348		 */
1349		if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
1350			return (EINVAL);
1351
1352		io_req->data_flags = CAM_DATA_VADDR;
1353
1354		data_ptrs[0] = &ccb->ataio.data_ptr;
1355		lengths[0] = ccb->ataio.dxfer_len;
1356		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1357		numbufs = 1;
1358		maxmap = softc->maxio;
1359		break;
1360	case XPT_SMP_IO:
1361		io_req->data_flags = CAM_DATA_VADDR;
1362
1363		data_ptrs[0] = &ccb->smpio.smp_request;
1364		lengths[0] = ccb->smpio.smp_request_len;
1365		dirs[0] = CAM_DIR_OUT;
1366		data_ptrs[1] = &ccb->smpio.smp_response;
1367		lengths[1] = ccb->smpio.smp_response_len;
1368		dirs[1] = CAM_DIR_IN;
1369		numbufs = 2;
1370		maxmap = softc->maxio;
1371		break;
1372	case XPT_DEV_ADVINFO:
1373		if (ccb->cdai.bufsiz == 0)
1374			return (0);
1375
1376		io_req->data_flags = CAM_DATA_VADDR;
1377
1378		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1379		lengths[0] = ccb->cdai.bufsiz;
1380		dirs[0] = CAM_DIR_IN;
1381		numbufs = 1;
1382		break;
1383	default:
1384		return(EINVAL);
1385		break; /* NOTREACHED */
1386	}
1387
1388	io_req->num_bufs = numbufs;
1389
1390	/*
1391	 * If there is a maximum, check to make sure that the user's
1392	 * request fits within the limit.  In general, we should only have
1393	 * a maximum length for requests that go to hardware.  Otherwise it
1394	 * is whatever we're able to malloc.
1395	 */
1396	for (i = 0; i < numbufs; i++) {
1397		io_req->user_bufs[i] = *data_ptrs[i];
1398		io_req->dirs[i] = dirs[i];
1399		io_req->lengths[i] = lengths[i];
1400
1401		if (maxmap == 0)
1402			continue;
1403
1404		if (lengths[i] <= maxmap)
1405			continue;
1406
1407		xpt_print(periph->path, "%s: data length %u > max allowed %u "
1408			  "bytes\n", __func__, lengths[i], maxmap);
1409		error = EINVAL;
1410		goto bailout;
1411	}
1412
1413	switch (io_req->data_flags) {
1414	case CAM_DATA_VADDR:
1415		/* Map or copy the buffer into kernel address space */
1416		for (i = 0; i < numbufs; i++) {
1417			uint8_t *tmp_buf;
1418
1419			/*
1420			 * If for some reason no length is specified, we
1421			 * don't need to allocate anything.
1422			 */
1423			if (io_req->lengths[i] == 0)
1424				continue;
1425
1426			/*
1427			 * Make sure that the user's buffer is accessible
1428			 * to that process.
1429			 */
1430			if (!useracc(io_req->user_bufs[i], io_req->lengths[i],
1431			    (io_req->dirs[i] == CAM_DIR_IN) ? VM_PROT_WRITE :
1432			     VM_PROT_READ)) {
1433				xpt_print(periph->path, "%s: user address %p "
1434				    "length %u is not accessible\n", __func__,
1435				    io_req->user_bufs[i], io_req->lengths[i]);
1436				error = EFAULT;
1437				goto bailout;
1438			}
1439
1440			tmp_buf = malloc(lengths[i], M_SCSIPASS,
1441					 M_WAITOK | M_ZERO);
1442			io_req->kern_bufs[i] = tmp_buf;
1443			*data_ptrs[i] = tmp_buf;
1444
1445#if 0
1446			xpt_print(periph->path, "%s: malloced %p len %u, user "
1447				  "buffer %p, operation: %s\n", __func__,
1448				  tmp_buf, lengths[i], io_req->user_bufs[i],
1449				  (dirs[i] == CAM_DIR_IN) ? "read" : "write");
1450#endif
1451			/*
1452			 * We only need to copy in if the user is writing.
1453			 */
1454			if (dirs[i] != CAM_DIR_OUT)
1455				continue;
1456
1457			error = copyin(io_req->user_bufs[i],
1458				       io_req->kern_bufs[i], lengths[i]);
1459			if (error != 0) {
1460				xpt_print(periph->path, "%s: copy of user "
1461					  "buffer from %p to %p failed with "
1462					  "error %d\n", __func__,
1463					  io_req->user_bufs[i],
1464					  io_req->kern_bufs[i], error);
1465				goto bailout;
1466			}
1467		}
1468		break;
1469	case CAM_DATA_PADDR:
1470		/* Pass down the pointer as-is */
1471		break;
1472	case CAM_DATA_SG: {
1473		size_t sg_length, size_to_go, alloc_size;
1474		uint32_t num_segs_needed;
1475
1476		/*
1477		 * Copy the user S/G list in, and then copy in the
1478		 * individual segments.
1479		 */
1480		/*
1481		 * We shouldn't see this, but check just in case.
1482		 */
1483		if (numbufs != 1) {
1484			xpt_print(periph->path, "%s: cannot currently handle "
1485				  "more than one S/G list per CCB\n", __func__);
1486			error = EINVAL;
1487			goto bailout;
1488		}
1489
1490		/*
1491		 * We have to have at least one segment.
1492		 */
1493		if (num_segs == 0) {
1494			xpt_print(periph->path, "%s: CAM_DATA_SG flag set, "
1495				  "but sglist_cnt=0!\n", __func__);
1496			error = EINVAL;
1497			goto bailout;
1498		}
1499
1500		/*
1501		 * Make sure the user specified the total length and didn't
1502		 * just leave it to us to decode the S/G list.
1503		 */
1504		if (lengths[0] == 0) {
1505			xpt_print(periph->path, "%s: no dxfer_len specified, "
1506				  "but CAM_DATA_SG flag is set!\n", __func__);
1507			error = EINVAL;
1508			goto bailout;
1509		}
1510
1511		/*
1512		 * We allocate buffers in io_zone_size increments for an
1513		 * S/G list.  This will generally be MAXPHYS.
1514		 */
1515		if (lengths[0] <= softc->io_zone_size)
1516			num_segs_needed = 1;
1517		else {
1518			num_segs_needed = lengths[0] / softc->io_zone_size;
1519			if ((lengths[0] % softc->io_zone_size) != 0)
1520				num_segs_needed++;
1521		}
1522
1523		/* Figure out the size of the S/G list */
1524		sg_length = num_segs * sizeof(bus_dma_segment_t);
1525		io_req->num_user_segs = num_segs;
1526		io_req->num_kern_segs = num_segs_needed;
1527
1528		/* Save the user's S/G list pointer for later restoration */
1529		io_req->user_bufs[0] = *data_ptrs[0];
1530
1531		/*
1532		 * If we have enough segments allocated by default to handle
1533		 * the length of the user's S/G list,
1534		 */
1535		if (num_segs > PASS_MAX_SEGS) {
1536			io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1537			    num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1538			io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1539		} else
1540			io_req->user_segptr = io_req->user_segs;
1541
1542		if (!useracc(*data_ptrs[0], sg_length, VM_PROT_READ)) {
1543			xpt_print(periph->path, "%s: unable to access user "
1544				  "S/G list at %p\n", __func__, *data_ptrs[0]);
1545			error = EFAULT;
1546			goto bailout;
1547		}
1548
1549		error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1550		if (error != 0) {
1551			xpt_print(periph->path, "%s: copy of user S/G list "
1552				  "from %p to %p failed with error %d\n",
1553				  __func__, *data_ptrs[0], io_req->user_segptr,
1554				  error);
1555			goto bailout;
1556		}
1557
1558		if (num_segs_needed > PASS_MAX_SEGS) {
1559			io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) *
1560			    num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO);
1561			io_req->flags |= PASS_IO_KERN_SEG_MALLOC;
1562		} else {
1563			io_req->kern_segptr = io_req->kern_segs;
1564		}
1565
1566		/*
1567		 * Allocate the kernel S/G list.
1568		 */
1569		for (size_to_go = lengths[0], i = 0;
1570		     size_to_go > 0 && i < num_segs_needed;
1571		     i++, size_to_go -= alloc_size) {
1572			uint8_t *kern_ptr;
1573
1574			alloc_size = min(size_to_go, softc->io_zone_size);
1575			kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK);
1576			io_req->kern_segptr[i].ds_addr =
1577			    (bus_addr_t)(uintptr_t)kern_ptr;
1578			io_req->kern_segptr[i].ds_len = alloc_size;
1579		}
1580		if (size_to_go > 0) {
1581			printf("%s: size_to_go = %zu, software error!\n",
1582			       __func__, size_to_go);
1583			error = EINVAL;
1584			goto bailout;
1585		}
1586
1587		*data_ptrs[0] = (uint8_t *)io_req->kern_segptr;
1588		*seg_cnt_ptr = io_req->num_kern_segs;
1589
1590		/*
1591		 * We only need to copy data here if the user is writing.
1592		 */
1593		if (dirs[0] == CAM_DIR_OUT)
1594			error = passcopysglist(periph, io_req, dirs[0]);
1595		break;
1596	}
1597	case CAM_DATA_SG_PADDR: {
1598		size_t sg_length;
1599
1600		/*
1601		 * We shouldn't see this, but check just in case.
1602		 */
1603		if (numbufs != 1) {
1604			printf("%s: cannot currently handle more than one "
1605			       "S/G list per CCB\n", __func__);
1606			error = EINVAL;
1607			goto bailout;
1608		}
1609
1610		/*
1611		 * We have to have at least one segment.
1612		 */
1613		if (num_segs == 0) {
1614			xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag "
1615				  "set, but sglist_cnt=0!\n", __func__);
1616			error = EINVAL;
1617			goto bailout;
1618		}
1619
1620		/*
1621		 * Make sure the user specified the total length and didn't
1622		 * just leave it to us to decode the S/G list.
1623		 */
1624		if (lengths[0] == 0) {
1625			xpt_print(periph->path, "%s: no dxfer_len specified, "
1626				  "but CAM_DATA_SG flag is set!\n", __func__);
1627			error = EINVAL;
1628			goto bailout;
1629		}
1630
1631		/* Figure out the size of the S/G list */
1632		sg_length = num_segs * sizeof(bus_dma_segment_t);
1633		io_req->num_user_segs = num_segs;
1634		io_req->num_kern_segs = io_req->num_user_segs;
1635
1636		/* Save the user's S/G list pointer for later restoration */
1637		io_req->user_bufs[0] = *data_ptrs[0];
1638
1639		if (num_segs > PASS_MAX_SEGS) {
1640			io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1641			    num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1642			io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1643		} else
1644			io_req->user_segptr = io_req->user_segs;
1645
1646		io_req->kern_segptr = io_req->user_segptr;
1647
1648		error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1649		if (error != 0) {
1650			xpt_print(periph->path, "%s: copy of user S/G list "
1651				  "from %p to %p failed with error %d\n",
1652				  __func__, *data_ptrs[0], io_req->user_segptr,
1653				  error);
1654			goto bailout;
1655		}
1656		break;
1657	}
1658	default:
1659	case CAM_DATA_BIO:
1660		/*
1661		 * A user shouldn't be attaching a bio to the CCB.  It
1662		 * isn't a user-accessible structure.
1663		 */
1664		error = EINVAL;
1665		break;
1666	}
1667
1668bailout:
1669	if (error != 0)
1670		passiocleanup(softc, io_req);
1671
1672	return (error);
1673}
1674
1675static int
1676passmemdone(struct cam_periph *periph, struct pass_io_req *io_req)
1677{
1678	struct pass_softc *softc;
1679	union ccb *ccb;
1680	int error;
1681	int i;
1682
1683	error = 0;
1684	softc = (struct pass_softc *)periph->softc;
1685	ccb = &io_req->ccb;
1686
1687	switch (io_req->data_flags) {
1688	case CAM_DATA_VADDR:
1689		/*
1690		 * Copy back to the user buffer if this was a read.
1691		 */
1692		for (i = 0; i < io_req->num_bufs; i++) {
1693			if (io_req->dirs[i] != CAM_DIR_IN)
1694				continue;
1695
1696			error = copyout(io_req->kern_bufs[i],
1697			    io_req->user_bufs[i], io_req->lengths[i]);
1698			if (error != 0) {
1699				xpt_print(periph->path, "Unable to copy %u "
1700					  "bytes from %p to user address %p\n",
1701					  io_req->lengths[i],
1702					  io_req->kern_bufs[i],
1703					  io_req->user_bufs[i]);
1704				goto bailout;
1705			}
1706
1707		}
1708		break;
1709	case CAM_DATA_PADDR:
1710		/* Do nothing.  The pointer is a physical address already */
1711		break;
1712	case CAM_DATA_SG:
1713		/*
1714		 * Copy back to the user buffer if this was a read.
1715		 * Restore the user's S/G list buffer pointer.
1716		 */
1717		if (io_req->dirs[0] == CAM_DIR_IN)
1718			error = passcopysglist(periph, io_req, io_req->dirs[0]);
1719		break;
1720	case CAM_DATA_SG_PADDR:
1721		/*
1722		 * Restore the user's S/G list buffer pointer.  No need to
1723		 * copy.
1724		 */
1725		break;
1726	default:
1727	case CAM_DATA_BIO:
1728		error = EINVAL;
1729		break;
1730	}
1731
1732bailout:
1733	/*
1734	 * Reset the user's pointers to their original values and free
1735	 * allocated memory.
1736	 */
1737	passiocleanup(softc, io_req);
1738
1739	return (error);
1740}
1741
1742static int
1743passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1744{
1745	int error;
1746
1747	if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
1748		error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl);
1749	}
1750	return (error);
1751}
1752
1753static int
1754passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1755{
1756	struct	cam_periph *periph;
1757	struct	pass_softc *softc;
1758	int	error;
1759	uint32_t priority;
1760
1761	periph = (struct cam_periph *)dev->si_drv1;
1762	if (periph == NULL)
1763		return(ENXIO);
1764
1765	cam_periph_lock(periph);
1766	softc = (struct pass_softc *)periph->softc;
1767
1768	error = 0;
1769
1770	switch (cmd) {
1771
1772	case CAMIOCOMMAND:
1773	{
1774		union ccb *inccb;
1775		union ccb *ccb;
1776		int ccb_malloced;
1777
1778		inccb = (union ccb *)addr;
1779
1780		/*
1781		 * Some CCB types, like scan bus and scan lun can only go
1782		 * through the transport layer device.
1783		 */
1784		if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1785			xpt_print(periph->path, "CCB function code %#x is "
1786			    "restricted to the XPT device\n",
1787			    inccb->ccb_h.func_code);
1788			error = ENODEV;
1789			break;
1790		}
1791
1792		/* Compatibility for RL/priority-unaware code. */
1793		priority = inccb->ccb_h.pinfo.priority;
1794		if (priority <= CAM_PRIORITY_OOB)
1795		    priority += CAM_PRIORITY_OOB + 1;
1796
1797		/*
1798		 * Non-immediate CCBs need a CCB from the per-device pool
1799		 * of CCBs, which is scheduled by the transport layer.
1800		 * Immediate CCBs and user-supplied CCBs should just be
1801		 * malloced.
1802		 */
1803		if ((inccb->ccb_h.func_code & XPT_FC_QUEUED)
1804		 && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) {
1805			ccb = cam_periph_getccb(periph, priority);
1806			ccb_malloced = 0;
1807		} else {
1808			ccb = xpt_alloc_ccb_nowait();
1809
1810			if (ccb != NULL)
1811				xpt_setup_ccb(&ccb->ccb_h, periph->path,
1812					      priority);
1813			ccb_malloced = 1;
1814		}
1815
1816		if (ccb == NULL) {
1817			xpt_print(periph->path, "unable to allocate CCB\n");
1818			error = ENOMEM;
1819			break;
1820		}
1821
1822		error = passsendccb(periph, ccb, inccb);
1823
1824		if (ccb_malloced)
1825			xpt_free_ccb(ccb);
1826		else
1827			xpt_release_ccb(ccb);
1828
1829		break;
1830	}
1831	case CAMIOQUEUE:
1832	{
1833		struct pass_io_req *io_req;
1834		union ccb **user_ccb, *ccb;
1835		xpt_opcode fc;
1836
1837		if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) {
1838			error = passcreatezone(periph);
1839			if (error != 0)
1840				goto bailout;
1841		}
1842
1843		/*
1844		 * We're going to do a blocking allocation for this I/O
1845		 * request, so we have to drop the lock.
1846		 */
1847		cam_periph_unlock(periph);
1848
1849		io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO);
1850		ccb = &io_req->ccb;
1851		user_ccb = (union ccb **)addr;
1852
1853		/*
1854		 * Unlike the CAMIOCOMMAND ioctl above, we only have a
1855		 * pointer to the user's CCB, so we have to copy the whole
1856		 * thing in to a buffer we have allocated (above) instead
1857		 * of allowing the ioctl code to malloc a buffer and copy
1858		 * it in.
1859		 *
1860		 * This is an advantage for this asynchronous interface,
1861		 * since we don't want the memory to get freed while the
1862		 * CCB is outstanding.
1863		 */
1864#if 0
1865		xpt_print(periph->path, "Copying user CCB %p to "
1866			  "kernel address %p\n", *user_ccb, ccb);
1867#endif
1868		error = copyin(*user_ccb, ccb, sizeof(*ccb));
1869		if (error != 0) {
1870			xpt_print(periph->path, "Copy of user CCB %p to "
1871				  "kernel address %p failed with error %d\n",
1872				  *user_ccb, ccb, error);
1873			uma_zfree(softc->pass_zone, io_req);
1874			cam_periph_lock(periph);
1875			break;
1876		}
1877
1878		/*
1879		 * Some CCB types, like scan bus and scan lun can only go
1880		 * through the transport layer device.
1881		 */
1882		if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1883			xpt_print(periph->path, "CCB function code %#x is "
1884			    "restricted to the XPT device\n",
1885			    ccb->ccb_h.func_code);
1886			uma_zfree(softc->pass_zone, io_req);
1887			cam_periph_lock(periph);
1888			error = ENODEV;
1889			break;
1890		}
1891
1892		/*
1893		 * Save the user's CCB pointer as well as his linked list
1894		 * pointers and peripheral private area so that we can
1895		 * restore these later.
1896		 */
1897		io_req->user_ccb_ptr = *user_ccb;
1898		io_req->user_periph_links = ccb->ccb_h.periph_links;
1899		io_req->user_periph_priv = ccb->ccb_h.periph_priv;
1900
1901		/*
1902		 * Now that we've saved the user's values, we can set our
1903		 * own peripheral private entry.
1904		 */
1905		ccb->ccb_h.ccb_ioreq = io_req;
1906
1907		/* Compatibility for RL/priority-unaware code. */
1908		priority = ccb->ccb_h.pinfo.priority;
1909		if (priority <= CAM_PRIORITY_OOB)
1910		    priority += CAM_PRIORITY_OOB + 1;
1911
1912		/*
1913		 * Setup fields in the CCB like the path and the priority.
1914		 * The path in particular cannot be done in userland, since
1915		 * it is a pointer to a kernel data structure.
1916		 */
1917		xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority,
1918				    ccb->ccb_h.flags);
1919
1920		/*
1921		 * Setup our done routine.  There is no way for the user to
1922		 * have a valid pointer here.
1923		 */
1924		ccb->ccb_h.cbfcnp = passdone;
1925
1926		fc = ccb->ccb_h.func_code;
1927		/*
1928		 * If this function code has memory that can be mapped in
1929		 * or out, we need to call passmemsetup().
1930		 */
1931		if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO)
1932		 || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH)
1933		 || (fc == XPT_DEV_ADVINFO)) {
1934			error = passmemsetup(periph, io_req);
1935			if (error != 0) {
1936				uma_zfree(softc->pass_zone, io_req);
1937				cam_periph_lock(periph);
1938				break;
1939			}
1940		} else
1941			io_req->mapinfo.num_bufs_used = 0;
1942
1943		cam_periph_lock(periph);
1944
1945		/*
1946		 * Everything goes on the incoming queue initially.
1947		 */
1948		TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links);
1949
1950		/*
1951		 * If the CCB is queued, and is not a user CCB, then
1952		 * we need to allocate a slot for it.  Call xpt_schedule()
1953		 * so that our start routine will get called when a CCB is
1954		 * available.
1955		 */
1956		if ((fc & XPT_FC_QUEUED)
1957		 && ((fc & XPT_FC_USER_CCB) == 0)) {
1958			xpt_schedule(periph, priority);
1959			break;
1960		}
1961
1962		/*
1963		 * At this point, the CCB in question is either an
1964		 * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB
1965		 * and therefore should be malloced, not allocated via a slot.
1966		 * Remove the CCB from the incoming queue and add it to the
1967		 * active queue.
1968		 */
1969		TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
1970		TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
1971
1972		xpt_action(ccb);
1973
1974		/*
1975		 * If this is not a queued CCB (i.e. it is an immediate CCB),
1976		 * then it is already done.  We need to put it on the done
1977		 * queue for the user to fetch.
1978		 */
1979		if ((fc & XPT_FC_QUEUED) == 0) {
1980			TAILQ_REMOVE(&softc->active_queue, io_req, links);
1981			TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
1982		}
1983		break;
1984	}
1985	case CAMIOGET:
1986	{
1987		union ccb **user_ccb;
1988		struct pass_io_req *io_req;
1989		int old_error;
1990
1991		user_ccb = (union ccb **)addr;
1992		old_error = 0;
1993
1994		io_req = TAILQ_FIRST(&softc->done_queue);
1995		if (io_req == NULL) {
1996			error = ENOENT;
1997			break;
1998		}
1999
2000		/*
2001		 * Remove the I/O from the done queue.
2002		 */
2003		TAILQ_REMOVE(&softc->done_queue, io_req, links);
2004
2005		/*
2006		 * We have to drop the lock during the copyout because the
2007		 * copyout can result in VM faults that require sleeping.
2008		 */
2009		cam_periph_unlock(periph);
2010
2011		/*
2012		 * Do any needed copies (e.g. for reads) and revert the
2013		 * pointers in the CCB back to the user's pointers.
2014		 */
2015		error = passmemdone(periph, io_req);
2016
2017		old_error = error;
2018
2019		io_req->ccb.ccb_h.periph_links = io_req->user_periph_links;
2020		io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv;
2021
2022#if 0
2023		xpt_print(periph->path, "Copying to user CCB %p from "
2024			  "kernel address %p\n", *user_ccb, &io_req->ccb);
2025#endif
2026
2027		error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb));
2028		if (error != 0) {
2029			xpt_print(periph->path, "Copy to user CCB %p from "
2030				  "kernel address %p failed with error %d\n",
2031				  *user_ccb, &io_req->ccb, error);
2032		}
2033
2034		/*
2035		 * Prefer the first error we got back, and make sure we
2036		 * don't overwrite bad status with good.
2037		 */
2038		if (old_error != 0)
2039			error = old_error;
2040
2041		cam_periph_lock(periph);
2042
2043		/*
2044		 * At this point, if there was an error, we could potentially
2045		 * re-queue the I/O and try again.  But why?  The error
2046		 * would almost certainly happen again.  We might as well
2047		 * not leak memory.
2048		 */
2049		uma_zfree(softc->pass_zone, io_req);
2050		break;
2051	}
2052	default:
2053		error = cam_periph_ioctl(periph, cmd, addr, passerror);
2054		break;
2055	}
2056
2057bailout:
2058	cam_periph_unlock(periph);
2059
2060	return(error);
2061}
2062
2063static int
2064passpoll(struct cdev *dev, int poll_events, struct thread *td)
2065{
2066	struct cam_periph *periph;
2067	struct pass_softc *softc;
2068	int revents;
2069
2070	periph = (struct cam_periph *)dev->si_drv1;
2071	if (periph == NULL)
2072		return (ENXIO);
2073
2074	softc = (struct pass_softc *)periph->softc;
2075
2076	revents = poll_events & (POLLOUT | POLLWRNORM);
2077	if ((poll_events & (POLLIN | POLLRDNORM)) != 0) {
2078		cam_periph_lock(periph);
2079
2080		if (!TAILQ_EMPTY(&softc->done_queue)) {
2081			revents |= poll_events & (POLLIN | POLLRDNORM);
2082		}
2083		cam_periph_unlock(periph);
2084		if (revents == 0)
2085			selrecord(td, &softc->read_select);
2086	}
2087
2088	return (revents);
2089}
2090
2091static int
2092passkqfilter(struct cdev *dev, struct knote *kn)
2093{
2094	struct cam_periph *periph;
2095	struct pass_softc *softc;
2096
2097	periph = (struct cam_periph *)dev->si_drv1;
2098	if (periph == NULL)
2099		return (ENXIO);
2100
2101	softc = (struct pass_softc *)periph->softc;
2102
2103	kn->kn_hook = (caddr_t)periph;
2104	kn->kn_fop = &passread_filtops;
2105	knlist_add(&softc->read_select.si_note, kn, 0);
2106
2107	return (0);
2108}
2109
2110static void
2111passreadfiltdetach(struct knote *kn)
2112{
2113	struct cam_periph *periph;
2114	struct pass_softc *softc;
2115
2116	periph = (struct cam_periph *)kn->kn_hook;
2117	softc = (struct pass_softc *)periph->softc;
2118
2119	knlist_remove(&softc->read_select.si_note, kn, 0);
2120}
2121
2122static int
2123passreadfilt(struct knote *kn, long hint)
2124{
2125	struct cam_periph *periph;
2126	struct pass_softc *softc;
2127	int retval;
2128
2129	periph = (struct cam_periph *)kn->kn_hook;
2130	softc = (struct pass_softc *)periph->softc;
2131
2132	cam_periph_assert(periph, MA_OWNED);
2133
2134	if (TAILQ_EMPTY(&softc->done_queue))
2135		retval = 0;
2136	else
2137		retval = 1;
2138
2139	return (retval);
2140}
2141
2142/*
2143 * Generally, "ccb" should be the CCB supplied by the kernel.  "inccb"
2144 * should be the CCB that is copied in from the user.
2145 */
2146static int
2147passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb)
2148{
2149	struct pass_softc *softc;
2150	struct cam_periph_map_info mapinfo;
2151	xpt_opcode fc;
2152	int error;
2153
2154	softc = (struct pass_softc *)periph->softc;
2155
2156	/*
2157	 * There are some fields in the CCB header that need to be
2158	 * preserved, the rest we get from the user.
2159	 */
2160	xpt_merge_ccb(ccb, inccb);
2161
2162	/*
2163	 */
2164	ccb->ccb_h.cbfcnp = passdone;
2165
2166	/*
2167	 * Let cam_periph_mapmem do a sanity check on the data pointer format.
2168	 * Even if no data transfer is needed, it's a cheap check and it
2169	 * simplifies the code.
2170	 */
2171	fc = ccb->ccb_h.func_code;
2172	if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO)
2173	 || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO)) {
2174		bzero(&mapinfo, sizeof(mapinfo));
2175
2176		/*
2177		 * cam_periph_mapmem calls into proc and vm functions that can
2178		 * sleep as well as trigger I/O, so we can't hold the lock.
2179		 * Dropping it here is reasonably safe.
2180		 */
2181		cam_periph_unlock(periph);
2182		error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio);
2183		cam_periph_lock(periph);
2184
2185		/*
2186		 * cam_periph_mapmem returned an error, we can't continue.
2187		 * Return the error to the user.
2188		 */
2189		if (error)
2190			return(error);
2191	} else
2192		/* Ensure that the unmap call later on is a no-op. */
2193		mapinfo.num_bufs_used = 0;
2194
2195	/*
2196	 * If the user wants us to perform any error recovery, then honor
2197	 * that request.  Otherwise, it's up to the user to perform any
2198	 * error recovery.
2199	 */
2200	cam_periph_runccb(ccb, passerror, /* cam_flags */ CAM_RETRY_SELTO,
2201	    /* sense_flags */ ((ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) ?
2202	     SF_RETRY_UA : SF_NO_RECOVERY) | SF_NO_PRINT,
2203	    softc->device_stats);
2204
2205	cam_periph_unmapmem(ccb, &mapinfo);
2206
2207	ccb->ccb_h.cbfcnp = NULL;
2208	ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv;
2209	bcopy(ccb, inccb, sizeof(union ccb));
2210
2211	return(0);
2212}
2213
2214static int
2215passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags)
2216{
2217	struct cam_periph *periph;
2218	struct pass_softc *softc;
2219
2220	periph = xpt_path_periph(ccb->ccb_h.path);
2221	softc = (struct pass_softc *)periph->softc;
2222
2223	return(cam_periph_error(ccb, cam_flags, sense_flags,
2224				 &softc->saved_ccb));
2225}
2226