scsi_all.c revision 311438
1/*-
2 * Implementation of Utility functions for all SCSI device types.
3 *
4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions, and the following disclaimer,
13 *    without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 *    derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: stable/10/sys/cam/scsi/scsi_all.c 311438 2017-01-05 11:53:43Z mav $");
32
33#include <sys/param.h>
34#include <sys/types.h>
35#include <sys/stdint.h>
36
37#ifdef _KERNEL
38#include <opt_scsi.h>
39
40#include <sys/systm.h>
41#include <sys/libkern.h>
42#include <sys/kernel.h>
43#include <sys/lock.h>
44#include <sys/malloc.h>
45#include <sys/mutex.h>
46#include <sys/sysctl.h>
47#include <sys/ctype.h>
48#else
49#include <errno.h>
50#include <stdio.h>
51#include <stdlib.h>
52#include <string.h>
53#include <ctype.h>
54#endif
55
56#include <cam/cam.h>
57#include <cam/cam_ccb.h>
58#include <cam/cam_queue.h>
59#include <cam/cam_xpt.h>
60#include <cam/scsi/scsi_all.h>
61#include <sys/ata.h>
62#include <sys/sbuf.h>
63
64#ifdef _KERNEL
65#include <cam/cam_periph.h>
66#include <cam/cam_xpt_sim.h>
67#include <cam/cam_xpt_periph.h>
68#include <cam/cam_xpt_internal.h>
69#else
70#include <camlib.h>
71#include <stddef.h>
72
73#ifndef FALSE
74#define FALSE   0
75#endif /* FALSE */
76#ifndef TRUE
77#define TRUE    1
78#endif /* TRUE */
79#define ERESTART        -1              /* restart syscall */
80#define EJUSTRETURN     -2              /* don't modify regs, just return */
81#endif /* !_KERNEL */
82
83/*
84 * This is the default number of milliseconds we wait for devices to settle
85 * after a SCSI bus reset.
86 */
87#ifndef SCSI_DELAY
88#define SCSI_DELAY 2000
89#endif
90/*
91 * All devices need _some_ sort of bus settle delay, so we'll set it to
92 * a minimum value of 100ms. Note that this is pertinent only for SPI-
93 * not transport like Fibre Channel or iSCSI where 'delay' is completely
94 * meaningless.
95 */
96#ifndef SCSI_MIN_DELAY
97#define SCSI_MIN_DELAY 100
98#endif
99/*
100 * Make sure the user isn't using seconds instead of milliseconds.
101 */
102#if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0)
103#error "SCSI_DELAY is in milliseconds, not seconds!  Please use a larger value"
104#endif
105
106int scsi_delay;
107
108static int	ascentrycomp(const void *key, const void *member);
109static int	senseentrycomp(const void *key, const void *member);
110static void	fetchtableentries(int sense_key, int asc, int ascq,
111				  struct scsi_inquiry_data *,
112				  const struct sense_key_table_entry **,
113				  const struct asc_table_entry **);
114#ifdef _KERNEL
115static void	init_scsi_delay(void);
116static int	sysctl_scsi_delay(SYSCTL_HANDLER_ARGS);
117static int	set_scsi_delay(int delay);
118#endif
119
120#if !defined(SCSI_NO_OP_STRINGS)
121
122#define	D	(1 << T_DIRECT)
123#define	T	(1 << T_SEQUENTIAL)
124#define	L	(1 << T_PRINTER)
125#define	P	(1 << T_PROCESSOR)
126#define	W	(1 << T_WORM)
127#define	R	(1 << T_CDROM)
128#define	O	(1 << T_OPTICAL)
129#define	M	(1 << T_CHANGER)
130#define	A	(1 << T_STORARRAY)
131#define	E	(1 << T_ENCLOSURE)
132#define	B	(1 << T_RBC)
133#define	K	(1 << T_OCRW)
134#define	V	(1 << T_ADC)
135#define	F	(1 << T_OSD)
136#define	S	(1 << T_SCANNER)
137#define	C	(1 << T_COMM)
138
139#define ALL	(D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C)
140
141static struct op_table_entry plextor_cd_ops[] = {
142	{ 0xD8, R, "CD-DA READ" }
143};
144
145static struct scsi_op_quirk_entry scsi_op_quirk_table[] = {
146	{
147		/*
148		 * I believe that 0xD8 is the Plextor proprietary command
149		 * to read CD-DA data.  I'm not sure which Plextor CDROM
150		 * models support the command, though.  I know for sure
151		 * that the 4X, 8X, and 12X models do, and presumably the
152		 * 12-20X does.  I don't know about any earlier models,
153		 * though.  If anyone has any more complete information,
154		 * feel free to change this quirk entry.
155		 */
156		{T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"},
157		sizeof(plextor_cd_ops)/sizeof(struct op_table_entry),
158		plextor_cd_ops
159	}
160};
161
162static struct op_table_entry scsi_op_codes[] = {
163	/*
164	 * From: http://www.t10.org/lists/op-num.txt
165	 * Modifications by Kenneth Merry (ken@FreeBSD.ORG)
166	 *              and Jung-uk Kim (jkim@FreeBSD.org)
167	 *
168	 * Note:  order is important in this table, scsi_op_desc() currently
169	 * depends on the opcodes in the table being in order to save
170	 * search time.
171	 * Note:  scanner and comm. devices are carried over from the previous
172	 * version because they were removed in the latest spec.
173	 */
174	/* File: OP-NUM.TXT
175	 *
176	 * SCSI Operation Codes
177	 * Numeric Sorted Listing
178	 * as of  5/26/15
179	 *
180	 *     D - DIRECT ACCESS DEVICE (SBC-2)                device column key
181	 *     .T - SEQUENTIAL ACCESS DEVICE (SSC-2)           -----------------
182	 *     . L - PRINTER DEVICE (SSC)                      M = Mandatory
183	 *     .  P - PROCESSOR DEVICE (SPC)                   O = Optional
184	 *     .  .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec.
185	 *     .  . R - CD/DVE DEVICE (MMC-3)                  Z = Obsolete
186	 *     .  .  O - OPTICAL MEMORY DEVICE (SBC-2)
187	 *     .  .  .M - MEDIA CHANGER DEVICE (SMC-2)
188	 *     .  .  . A - STORAGE ARRAY DEVICE (SCC-2)
189	 *     .  .  . .E - ENCLOSURE SERVICES DEVICE (SES)
190	 *     .  .  .  .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
191	 *     .  .  .  . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
192	 *     .  .  .  .  V - AUTOMATION/DRIVE INTERFACE (ADC)
193	 *     .  .  .  .  .F - OBJECT-BASED STORAGE (OSD)
194	 * OP  DTLPWROMAEBKVF  Description
195	 * --  --------------  ---------------------------------------------- */
196	/* 00  MMMMMMMMMMMMMM  TEST UNIT READY */
197	{ 0x00,	ALL, "TEST UNIT READY" },
198	/* 01   M              REWIND */
199	{ 0x01,	T, "REWIND" },
200	/* 01  Z V ZZZZ        REZERO UNIT */
201	{ 0x01,	D | W | R | O | M, "REZERO UNIT" },
202	/* 02  VVVVVV V */
203	/* 03  MMMMMMMMMMOMMM  REQUEST SENSE */
204	{ 0x03,	ALL, "REQUEST SENSE" },
205	/* 04  M    OO         FORMAT UNIT */
206	{ 0x04,	D | R | O, "FORMAT UNIT" },
207	/* 04   O              FORMAT MEDIUM */
208	{ 0x04,	T, "FORMAT MEDIUM" },
209	/* 04    O             FORMAT */
210	{ 0x04,	L, "FORMAT" },
211	/* 05  VMVVVV V        READ BLOCK LIMITS */
212	{ 0x05,	T, "READ BLOCK LIMITS" },
213	/* 06  VVVVVV V */
214	/* 07  OVV O OV        REASSIGN BLOCKS */
215	{ 0x07,	D | W | O, "REASSIGN BLOCKS" },
216	/* 07         O        INITIALIZE ELEMENT STATUS */
217	{ 0x07,	M, "INITIALIZE ELEMENT STATUS" },
218	/* 08  MOV O OV        READ(6) */
219	{ 0x08,	D | T | W | O, "READ(6)" },
220	/* 08     O            RECEIVE */
221	{ 0x08,	P, "RECEIVE" },
222	/* 08                  GET MESSAGE(6) */
223	{ 0x08, C, "GET MESSAGE(6)" },
224	/* 09  VVVVVV V */
225	/* 0A  OO  O OV        WRITE(6) */
226	{ 0x0A,	D | T | W | O, "WRITE(6)" },
227	/* 0A     M            SEND(6) */
228	{ 0x0A,	P, "SEND(6)" },
229	/* 0A                  SEND MESSAGE(6) */
230	{ 0x0A, C, "SEND MESSAGE(6)" },
231	/* 0A    M             PRINT */
232	{ 0x0A,	L, "PRINT" },
233	/* 0B  Z   ZOZV        SEEK(6) */
234	{ 0x0B,	D | W | R | O, "SEEK(6)" },
235	/* 0B   O              SET CAPACITY */
236	{ 0x0B,	T, "SET CAPACITY" },
237	/* 0B    O             SLEW AND PRINT */
238	{ 0x0B,	L, "SLEW AND PRINT" },
239	/* 0C  VVVVVV V */
240	/* 0D  VVVVVV V */
241	/* 0E  VVVVVV V */
242	/* 0F  VOVVVV V        READ REVERSE(6) */
243	{ 0x0F,	T, "READ REVERSE(6)" },
244	/* 10  VM VVV          WRITE FILEMARKS(6) */
245	{ 0x10,	T, "WRITE FILEMARKS(6)" },
246	/* 10    O             SYNCHRONIZE BUFFER */
247	{ 0x10,	L, "SYNCHRONIZE BUFFER" },
248	/* 11  VMVVVV          SPACE(6) */
249	{ 0x11,	T, "SPACE(6)" },
250	/* 12  MMMMMMMMMMMMMM  INQUIRY */
251	{ 0x12,	ALL, "INQUIRY" },
252	/* 13  V VVVV */
253	/* 13   O              VERIFY(6) */
254	{ 0x13,	T, "VERIFY(6)" },
255	/* 14  VOOVVV          RECOVER BUFFERED DATA */
256	{ 0x14,	T | L, "RECOVER BUFFERED DATA" },
257	/* 15  OMO O OOOO OO   MODE SELECT(6) */
258	{ 0x15,	ALL & ~(P | R | B | F), "MODE SELECT(6)" },
259	/* 16  ZZMZO OOOZ O    RESERVE(6) */
260	{ 0x16,	ALL & ~(R | B | V | F | C), "RESERVE(6)" },
261	/* 16         Z        RESERVE ELEMENT(6) */
262	{ 0x16,	M, "RESERVE ELEMENT(6)" },
263	/* 17  ZZMZO OOOZ O    RELEASE(6) */
264	{ 0x17,	ALL & ~(R | B | V | F | C), "RELEASE(6)" },
265	/* 17         Z        RELEASE ELEMENT(6) */
266	{ 0x17,	M, "RELEASE ELEMENT(6)" },
267	/* 18  ZZZZOZO    Z    COPY */
268	{ 0x18,	D | T | L | P | W | R | O | K | S, "COPY" },
269	/* 19  VMVVVV          ERASE(6) */
270	{ 0x19,	T, "ERASE(6)" },
271	/* 1A  OMO O OOOO OO   MODE SENSE(6) */
272	{ 0x1A,	ALL & ~(P | R | B | F), "MODE SENSE(6)" },
273	/* 1B  O   OOO O MO O  START STOP UNIT */
274	{ 0x1B,	D | W | R | O | A | B | K | F, "START STOP UNIT" },
275	/* 1B   O          M   LOAD UNLOAD */
276	{ 0x1B,	T | V, "LOAD UNLOAD" },
277	/* 1B                  SCAN */
278	{ 0x1B, S, "SCAN" },
279	/* 1B    O             STOP PRINT */
280	{ 0x1B,	L, "STOP PRINT" },
281	/* 1B         O        OPEN/CLOSE IMPORT/EXPORT ELEMENT */
282	{ 0x1B,	M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" },
283	/* 1C  OOOOO OOOM OOO  RECEIVE DIAGNOSTIC RESULTS */
284	{ 0x1C,	ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" },
285	/* 1D  MMMMM MMOM MMM  SEND DIAGNOSTIC */
286	{ 0x1D,	ALL & ~(R | B), "SEND DIAGNOSTIC" },
287	/* 1E  OO  OOOO   O O  PREVENT ALLOW MEDIUM REMOVAL */
288	{ 0x1E,	D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" },
289	/* 1F */
290	/* 20  V   VVV    V */
291	/* 21  V   VVV    V */
292	/* 22  V   VVV    V */
293	/* 23  V   V V    V */
294	/* 23       O          READ FORMAT CAPACITIES */
295	{ 0x23,	R, "READ FORMAT CAPACITIES" },
296	/* 24  V   VV          SET WINDOW */
297	{ 0x24, S, "SET WINDOW" },
298	/* 25  M   M M   M     READ CAPACITY(10) */
299	{ 0x25,	D | W | O | B, "READ CAPACITY(10)" },
300	/* 25       O          READ CAPACITY */
301	{ 0x25,	R, "READ CAPACITY" },
302	/* 25             M    READ CARD CAPACITY */
303	{ 0x25,	K, "READ CARD CAPACITY" },
304	/* 25                  GET WINDOW */
305	{ 0x25, S, "GET WINDOW" },
306	/* 26  V   VV */
307	/* 27  V   VV */
308	/* 28  M   MOM   MM    READ(10) */
309	{ 0x28,	D | W | R | O | B | K | S, "READ(10)" },
310	/* 28                  GET MESSAGE(10) */
311	{ 0x28, C, "GET MESSAGE(10)" },
312	/* 29  V   VVO         READ GENERATION */
313	{ 0x29,	O, "READ GENERATION" },
314	/* 2A  O   MOM   MO    WRITE(10) */
315	{ 0x2A,	D | W | R | O | B | K, "WRITE(10)" },
316	/* 2A                  SEND(10) */
317	{ 0x2A, S, "SEND(10)" },
318	/* 2A                  SEND MESSAGE(10) */
319	{ 0x2A, C, "SEND MESSAGE(10)" },
320	/* 2B  Z   OOO    O    SEEK(10) */
321	{ 0x2B,	D | W | R | O | K, "SEEK(10)" },
322	/* 2B   O              LOCATE(10) */
323	{ 0x2B,	T, "LOCATE(10)" },
324	/* 2B         O        POSITION TO ELEMENT */
325	{ 0x2B,	M, "POSITION TO ELEMENT" },
326	/* 2C  V    OO         ERASE(10) */
327	{ 0x2C,	R | O, "ERASE(10)" },
328	/* 2D        O         READ UPDATED BLOCK */
329	{ 0x2D,	O, "READ UPDATED BLOCK" },
330	/* 2D  V */
331	/* 2E  O   OOO   MO    WRITE AND VERIFY(10) */
332	{ 0x2E,	D | W | R | O | B | K, "WRITE AND VERIFY(10)" },
333	/* 2F  O   OOO         VERIFY(10) */
334	{ 0x2F,	D | W | R | O, "VERIFY(10)" },
335	/* 30  Z   ZZZ         SEARCH DATA HIGH(10) */
336	{ 0x30,	D | W | R | O, "SEARCH DATA HIGH(10)" },
337	/* 31  Z   ZZZ         SEARCH DATA EQUAL(10) */
338	{ 0x31,	D | W | R | O, "SEARCH DATA EQUAL(10)" },
339	/* 31                  OBJECT POSITION */
340	{ 0x31, S, "OBJECT POSITION" },
341	/* 32  Z   ZZZ         SEARCH DATA LOW(10) */
342	{ 0x32,	D | W | R | O, "SEARCH DATA LOW(10)" },
343	/* 33  Z   OZO         SET LIMITS(10) */
344	{ 0x33,	D | W | R | O, "SET LIMITS(10)" },
345	/* 34  O   O O    O    PRE-FETCH(10) */
346	{ 0x34,	D | W | O | K, "PRE-FETCH(10)" },
347	/* 34   M              READ POSITION */
348	{ 0x34,	T, "READ POSITION" },
349	/* 34                  GET DATA BUFFER STATUS */
350	{ 0x34, S, "GET DATA BUFFER STATUS" },
351	/* 35  O   OOO   MO    SYNCHRONIZE CACHE(10) */
352	{ 0x35,	D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" },
353	/* 36  Z   O O    O    LOCK UNLOCK CACHE(10) */
354	{ 0x36,	D | W | O | K, "LOCK UNLOCK CACHE(10)" },
355	/* 37  O     O         READ DEFECT DATA(10) */
356	{ 0x37,	D | O, "READ DEFECT DATA(10)" },
357	/* 37         O        INITIALIZE ELEMENT STATUS WITH RANGE */
358	{ 0x37,	M, "INITIALIZE ELEMENT STATUS WITH RANGE" },
359	/* 38      O O    O    MEDIUM SCAN */
360	{ 0x38,	W | O | K, "MEDIUM SCAN" },
361	/* 39  ZZZZOZO    Z    COMPARE */
362	{ 0x39,	D | T | L | P | W | R | O | K | S, "COMPARE" },
363	/* 3A  ZZZZOZO    Z    COPY AND VERIFY */
364	{ 0x3A,	D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" },
365	/* 3B  OOOOOOOOOOMOOO  WRITE BUFFER */
366	{ 0x3B,	ALL, "WRITE BUFFER" },
367	/* 3C  OOOOOOOOOO OOO  READ BUFFER */
368	{ 0x3C,	ALL & ~(B), "READ BUFFER" },
369	/* 3D        O         UPDATE BLOCK */
370	{ 0x3D,	O, "UPDATE BLOCK" },
371	/* 3E  O   O O         READ LONG(10) */
372	{ 0x3E,	D | W | O, "READ LONG(10)" },
373	/* 3F  O   O O         WRITE LONG(10) */
374	{ 0x3F,	D | W | O, "WRITE LONG(10)" },
375	/* 40  ZZZZOZOZ        CHANGE DEFINITION */
376	{ 0x40,	D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" },
377	/* 41  O               WRITE SAME(10) */
378	{ 0x41,	D, "WRITE SAME(10)" },
379	/* 42       O          UNMAP */
380	{ 0x42,	D, "UNMAP" },
381	/* 42       O          READ SUB-CHANNEL */
382	{ 0x42,	R, "READ SUB-CHANNEL" },
383	/* 43       O          READ TOC/PMA/ATIP */
384	{ 0x43,	R, "READ TOC/PMA/ATIP" },
385	/* 44   M          M   REPORT DENSITY SUPPORT */
386	{ 0x44,	T | V, "REPORT DENSITY SUPPORT" },
387	/* 44                  READ HEADER */
388	/* 45       O          PLAY AUDIO(10) */
389	{ 0x45,	R, "PLAY AUDIO(10)" },
390	/* 46       M          GET CONFIGURATION */
391	{ 0x46,	R, "GET CONFIGURATION" },
392	/* 47       O          PLAY AUDIO MSF */
393	{ 0x47,	R, "PLAY AUDIO MSF" },
394	/* 48 */
395	/* 49 */
396	/* 4A       M          GET EVENT STATUS NOTIFICATION */
397	{ 0x4A,	R, "GET EVENT STATUS NOTIFICATION" },
398	/* 4B       O          PAUSE/RESUME */
399	{ 0x4B,	R, "PAUSE/RESUME" },
400	/* 4C  OOOOO OOOO OOO  LOG SELECT */
401	{ 0x4C,	ALL & ~(R | B), "LOG SELECT" },
402	/* 4D  OOOOO OOOO OMO  LOG SENSE */
403	{ 0x4D,	ALL & ~(R | B), "LOG SENSE" },
404	/* 4E       O          STOP PLAY/SCAN */
405	{ 0x4E,	R, "STOP PLAY/SCAN" },
406	/* 4F */
407	/* 50  O               XDWRITE(10) */
408	{ 0x50,	D, "XDWRITE(10)" },
409	/* 51  O               XPWRITE(10) */
410	{ 0x51,	D, "XPWRITE(10)" },
411	/* 51       O          READ DISC INFORMATION */
412	{ 0x51,	R, "READ DISC INFORMATION" },
413	/* 52  O               XDREAD(10) */
414	{ 0x52,	D, "XDREAD(10)" },
415	/* 52       O          READ TRACK INFORMATION */
416	{ 0x52,	R, "READ TRACK INFORMATION" },
417	/* 53       O          RESERVE TRACK */
418	{ 0x53,	R, "RESERVE TRACK" },
419	/* 54       O          SEND OPC INFORMATION */
420	{ 0x54,	R, "SEND OPC INFORMATION" },
421	/* 55  OOO OMOOOOMOMO  MODE SELECT(10) */
422	{ 0x55,	ALL & ~(P), "MODE SELECT(10)" },
423	/* 56  ZZMZO OOOZ      RESERVE(10) */
424	{ 0x56,	ALL & ~(R | B | K | V | F | C), "RESERVE(10)" },
425	/* 56         Z        RESERVE ELEMENT(10) */
426	{ 0x56,	M, "RESERVE ELEMENT(10)" },
427	/* 57  ZZMZO OOOZ      RELEASE(10) */
428	{ 0x57,	ALL & ~(R | B | K | V | F | C), "RELEASE(10)" },
429	/* 57         Z        RELEASE ELEMENT(10) */
430	{ 0x57,	M, "RELEASE ELEMENT(10)" },
431	/* 58       O          REPAIR TRACK */
432	{ 0x58,	R, "REPAIR TRACK" },
433	/* 59 */
434	/* 5A  OOO OMOOOOMOMO  MODE SENSE(10) */
435	{ 0x5A,	ALL & ~(P), "MODE SENSE(10)" },
436	/* 5B       O          CLOSE TRACK/SESSION */
437	{ 0x5B,	R, "CLOSE TRACK/SESSION" },
438	/* 5C       O          READ BUFFER CAPACITY */
439	{ 0x5C,	R, "READ BUFFER CAPACITY" },
440	/* 5D       O          SEND CUE SHEET */
441	{ 0x5D,	R, "SEND CUE SHEET" },
442	/* 5E  OOOOO OOOO   M  PERSISTENT RESERVE IN */
443	{ 0x5E,	ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" },
444	/* 5F  OOOOO OOOO   M  PERSISTENT RESERVE OUT */
445	{ 0x5F,	ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" },
446	/* 7E  OO   O OOOO O   extended CDB */
447	{ 0x7E,	D | T | R | M | A | E | B | V, "extended CDB" },
448	/* 7F  O            M  variable length CDB (more than 16 bytes) */
449	{ 0x7F,	D | F, "variable length CDB (more than 16 bytes)" },
450	/* 80  Z               XDWRITE EXTENDED(16) */
451	{ 0x80,	D, "XDWRITE EXTENDED(16)" },
452	/* 80   M              WRITE FILEMARKS(16) */
453	{ 0x80,	T, "WRITE FILEMARKS(16)" },
454	/* 81  Z               REBUILD(16) */
455	{ 0x81,	D, "REBUILD(16)" },
456	/* 81   O              READ REVERSE(16) */
457	{ 0x81,	T, "READ REVERSE(16)" },
458	/* 82  Z               REGENERATE(16) */
459	{ 0x82,	D, "REGENERATE(16)" },
460	/* 83  OOOOO O    OO   EXTENDED COPY */
461	{ 0x83,	D | T | L | P | W | O | K | V, "EXTENDED COPY" },
462	/* 84  OOOOO O    OO   RECEIVE COPY RESULTS */
463	{ 0x84,	D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" },
464	/* 85  O    O    O     ATA COMMAND PASS THROUGH(16) */
465	{ 0x85,	D | R | B, "ATA COMMAND PASS THROUGH(16)" },
466	/* 86  OO OO OOOOOOO   ACCESS CONTROL IN */
467	{ 0x86,	ALL & ~(L | R | F), "ACCESS CONTROL IN" },
468	/* 87  OO OO OOOOOOO   ACCESS CONTROL OUT */
469	{ 0x87,	ALL & ~(L | R | F), "ACCESS CONTROL OUT" },
470	/*
471	 * XXX READ(16)/WRITE(16) were not listed for CD/DVE in op-num.txt
472	 * but we had it since r1.40.  Do we really want them?
473	 */
474	/* 88  MM  O O   O     READ(16) */
475	{ 0x88,	D | T | W | O | B, "READ(16)" },
476	/* 89  O               COMPARE AND WRITE*/
477	{ 0x89,	D, "COMPARE AND WRITE" },
478	/* 8A  OM  O O   O     WRITE(16) */
479	{ 0x8A,	D | T | W | O | B, "WRITE(16)" },
480	/* 8B  O               ORWRITE */
481	{ 0x8B,	D, "ORWRITE" },
482	/* 8C  OO  O OO  O M   READ ATTRIBUTE */
483	{ 0x8C,	D | T | W | O | M | B | V, "READ ATTRIBUTE" },
484	/* 8D  OO  O OO  O O   WRITE ATTRIBUTE */
485	{ 0x8D,	D | T | W | O | M | B | V, "WRITE ATTRIBUTE" },
486	/* 8E  O   O O   O     WRITE AND VERIFY(16) */
487	{ 0x8E,	D | W | O | B, "WRITE AND VERIFY(16)" },
488	/* 8F  OO  O O   O     VERIFY(16) */
489	{ 0x8F,	D | T | W | O | B, "VERIFY(16)" },
490	/* 90  O   O O   O     PRE-FETCH(16) */
491	{ 0x90,	D | W | O | B, "PRE-FETCH(16)" },
492	/* 91  O   O O   O     SYNCHRONIZE CACHE(16) */
493	{ 0x91,	D | W | O | B, "SYNCHRONIZE CACHE(16)" },
494	/* 91   O              SPACE(16) */
495	{ 0x91,	T, "SPACE(16)" },
496	/* 92  Z   O O         LOCK UNLOCK CACHE(16) */
497	{ 0x92,	D | W | O, "LOCK UNLOCK CACHE(16)" },
498	/* 92   O              LOCATE(16) */
499	{ 0x92,	T, "LOCATE(16)" },
500	/* 93  O               WRITE SAME(16) */
501	{ 0x93,	D, "WRITE SAME(16)" },
502	/* 93   M              ERASE(16) */
503	{ 0x93,	T, "ERASE(16)" },
504	/* 94  O               ZBC OUT */
505	{ 0x94,	D, "ZBC OUT" },
506	/* 95  O               ZBC OUT */
507	{ 0x95,	D, "ZBC OUT" },
508	/* 96 */
509	/* 97 */
510	/* 98 */
511	/* 99 */
512	/* 9A  O               WRITE STREAM(16) */
513	{ 0x9A,	D, "WRITE STREAM(16)" },
514	/* 9B  OOOOOOOOOO OOO  READ BUFFER(16) */
515	{ 0x9B,	ALL & ~(B) , "READ BUFFER(16)" },
516	/* 9C  O              WRITE ATOMIC(16) */
517	{ 0x9C, D, "WRITE ATOMIC(16)" },
518	/* 9D                  SERVICE ACTION BIDIRECTIONAL */
519	{ 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" },
520	/* XXX KDM ALL for this?  op-num.txt defines it for none.. */
521	/* 9E                  SERVICE ACTION IN(16) */
522	{ 0x9E, ALL, "SERVICE ACTION IN(16)" },
523	/* XXX KDM ALL for this?  op-num.txt defines it for ADC.. */
524	/* 9F              M   SERVICE ACTION OUT(16) */
525	{ 0x9F,	ALL, "SERVICE ACTION OUT(16)" },
526	/* A0  MMOOO OMMM OMO  REPORT LUNS */
527	{ 0xA0,	ALL & ~(R | B), "REPORT LUNS" },
528	/* A1       O          BLANK */
529	{ 0xA1,	R, "BLANK" },
530	/* A1  O         O     ATA COMMAND PASS THROUGH(12) */
531	{ 0xA1,	D | B, "ATA COMMAND PASS THROUGH(12)" },
532	/* A2  OO   O      O   SECURITY PROTOCOL IN */
533	{ 0xA2,	D | T | R | V, "SECURITY PROTOCOL IN" },
534	/* A3  OOO O OOMOOOM   MAINTENANCE (IN) */
535	{ 0xA3,	ALL & ~(P | R | F), "MAINTENANCE (IN)" },
536	/* A3       O          SEND KEY */
537	{ 0xA3,	R, "SEND KEY" },
538	/* A4  OOO O OOOOOOO   MAINTENANCE (OUT) */
539	{ 0xA4,	ALL & ~(P | R | F), "MAINTENANCE (OUT)" },
540	/* A4       O          REPORT KEY */
541	{ 0xA4,	R, "REPORT KEY" },
542	/* A5   O  O OM        MOVE MEDIUM */
543	{ 0xA5,	T | W | O | M, "MOVE MEDIUM" },
544	/* A5       O          PLAY AUDIO(12) */
545	{ 0xA5,	R, "PLAY AUDIO(12)" },
546	/* A6         O        EXCHANGE MEDIUM */
547	{ 0xA6,	M, "EXCHANGE MEDIUM" },
548	/* A6       O          LOAD/UNLOAD C/DVD */
549	{ 0xA6,	R, "LOAD/UNLOAD C/DVD" },
550	/* A7  ZZ  O O         MOVE MEDIUM ATTACHED */
551	{ 0xA7,	D | T | W | O, "MOVE MEDIUM ATTACHED" },
552	/* A7       O          SET READ AHEAD */
553	{ 0xA7,	R, "SET READ AHEAD" },
554	/* A8  O   OOO         READ(12) */
555	{ 0xA8,	D | W | R | O, "READ(12)" },
556	/* A8                  GET MESSAGE(12) */
557	{ 0xA8, C, "GET MESSAGE(12)" },
558	/* A9              O   SERVICE ACTION OUT(12) */
559	{ 0xA9,	V, "SERVICE ACTION OUT(12)" },
560	/* AA  O   OOO         WRITE(12) */
561	{ 0xAA,	D | W | R | O, "WRITE(12)" },
562	/* AA                  SEND MESSAGE(12) */
563	{ 0xAA, C, "SEND MESSAGE(12)" },
564	/* AB       O      O   SERVICE ACTION IN(12) */
565	{ 0xAB,	R | V, "SERVICE ACTION IN(12)" },
566	/* AC        O         ERASE(12) */
567	{ 0xAC,	O, "ERASE(12)" },
568	/* AC       O          GET PERFORMANCE */
569	{ 0xAC,	R, "GET PERFORMANCE" },
570	/* AD       O          READ DVD STRUCTURE */
571	{ 0xAD,	R, "READ DVD STRUCTURE" },
572	/* AE  O   O O         WRITE AND VERIFY(12) */
573	{ 0xAE,	D | W | O, "WRITE AND VERIFY(12)" },
574	/* AF  O   OZO         VERIFY(12) */
575	{ 0xAF,	D | W | R | O, "VERIFY(12)" },
576	/* B0      ZZZ         SEARCH DATA HIGH(12) */
577	{ 0xB0,	W | R | O, "SEARCH DATA HIGH(12)" },
578	/* B1      ZZZ         SEARCH DATA EQUAL(12) */
579	{ 0xB1,	W | R | O, "SEARCH DATA EQUAL(12)" },
580	/* B2      ZZZ         SEARCH DATA LOW(12) */
581	{ 0xB2,	W | R | O, "SEARCH DATA LOW(12)" },
582	/* B3  Z   OZO         SET LIMITS(12) */
583	{ 0xB3,	D | W | R | O, "SET LIMITS(12)" },
584	/* B4  ZZ  OZO         READ ELEMENT STATUS ATTACHED */
585	{ 0xB4,	D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" },
586	/* B5  OO   O      O   SECURITY PROTOCOL OUT */
587	{ 0xB5,	D | T | R | V, "SECURITY PROTOCOL OUT" },
588	/* B5         O        REQUEST VOLUME ELEMENT ADDRESS */
589	{ 0xB5,	M, "REQUEST VOLUME ELEMENT ADDRESS" },
590	/* B6         O        SEND VOLUME TAG */
591	{ 0xB6,	M, "SEND VOLUME TAG" },
592	/* B6       O          SET STREAMING */
593	{ 0xB6,	R, "SET STREAMING" },
594	/* B7  O     O         READ DEFECT DATA(12) */
595	{ 0xB7,	D | O, "READ DEFECT DATA(12)" },
596	/* B8   O  OZOM        READ ELEMENT STATUS */
597	{ 0xB8,	T | W | R | O | M, "READ ELEMENT STATUS" },
598	/* B9       O          READ CD MSF */
599	{ 0xB9,	R, "READ CD MSF" },
600	/* BA  O   O OOMO      REDUNDANCY GROUP (IN) */
601	{ 0xBA,	D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" },
602	/* BA       O          SCAN */
603	{ 0xBA,	R, "SCAN" },
604	/* BB  O   O OOOO      REDUNDANCY GROUP (OUT) */
605	{ 0xBB,	D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" },
606	/* BB       O          SET CD SPEED */
607	{ 0xBB,	R, "SET CD SPEED" },
608	/* BC  O   O OOMO      SPARE (IN) */
609	{ 0xBC,	D | W | O | M | A | E, "SPARE (IN)" },
610	/* BD  O   O OOOO      SPARE (OUT) */
611	{ 0xBD,	D | W | O | M | A | E, "SPARE (OUT)" },
612	/* BD       O          MECHANISM STATUS */
613	{ 0xBD,	R, "MECHANISM STATUS" },
614	/* BE  O   O OOMO      VOLUME SET (IN) */
615	{ 0xBE,	D | W | O | M | A | E, "VOLUME SET (IN)" },
616	/* BE       O          READ CD */
617	{ 0xBE,	R, "READ CD" },
618	/* BF  O   O OOOO      VOLUME SET (OUT) */
619	{ 0xBF,	D | W | O | M | A | E, "VOLUME SET (OUT)" },
620	/* BF       O          SEND DVD STRUCTURE */
621	{ 0xBF,	R, "SEND DVD STRUCTURE" }
622};
623
624const char *
625scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data)
626{
627	caddr_t match;
628	int i, j;
629	u_int32_t opmask;
630	u_int16_t pd_type;
631	int       num_ops[2];
632	struct op_table_entry *table[2];
633	int num_tables;
634
635	/*
636	 * If we've got inquiry data, use it to determine what type of
637	 * device we're dealing with here.  Otherwise, assume direct
638	 * access.
639	 */
640	if (inq_data == NULL) {
641		pd_type = T_DIRECT;
642		match = NULL;
643	} else {
644		pd_type = SID_TYPE(inq_data);
645
646		match = cam_quirkmatch((caddr_t)inq_data,
647				       (caddr_t)scsi_op_quirk_table,
648				       sizeof(scsi_op_quirk_table)/
649				       sizeof(*scsi_op_quirk_table),
650				       sizeof(*scsi_op_quirk_table),
651				       scsi_inquiry_match);
652	}
653
654	if (match != NULL) {
655		table[0] = ((struct scsi_op_quirk_entry *)match)->op_table;
656		num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops;
657		table[1] = scsi_op_codes;
658		num_ops[1] = sizeof(scsi_op_codes)/sizeof(scsi_op_codes[0]);
659		num_tables = 2;
660	} else {
661		/*
662		 * If this is true, we have a vendor specific opcode that
663		 * wasn't covered in the quirk table.
664		 */
665		if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80)))
666			return("Vendor Specific Command");
667
668		table[0] = scsi_op_codes;
669		num_ops[0] = sizeof(scsi_op_codes)/sizeof(scsi_op_codes[0]);
670		num_tables = 1;
671	}
672
673	/* RBC is 'Simplified' Direct Access Device */
674	if (pd_type == T_RBC)
675		pd_type = T_DIRECT;
676
677	/* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */
678	if (pd_type == T_NODEVICE)
679		pd_type = T_DIRECT;
680
681	opmask = 1 << pd_type;
682
683	for (j = 0; j < num_tables; j++) {
684		for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){
685			if ((table[j][i].opcode == opcode)
686			 && ((table[j][i].opmask & opmask) != 0))
687				return(table[j][i].desc);
688		}
689	}
690
691	/*
692	 * If we can't find a match for the command in the table, we just
693	 * assume it's a vendor specifc command.
694	 */
695	return("Vendor Specific Command");
696
697}
698
699#else /* SCSI_NO_OP_STRINGS */
700
701const char *
702scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data)
703{
704	return("");
705}
706
707#endif
708
709
710#if !defined(SCSI_NO_SENSE_STRINGS)
711#define SST(asc, ascq, action, desc) \
712	asc, ascq, action, desc
713#else
714const char empty_string[] = "";
715
716#define SST(asc, ascq, action, desc) \
717	asc, ascq, action, empty_string
718#endif
719
720const struct sense_key_table_entry sense_key_table[] =
721{
722	{ SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" },
723	{ SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" },
724	{ SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" },
725	{ SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" },
726	{ SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" },
727	{ SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" },
728	{ SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" },
729	{ SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" },
730	{ SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" },
731	{ SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" },
732	{ SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" },
733	{ SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" },
734	{ SSD_KEY_EQUAL, SS_NOP, "EQUAL" },
735	{ SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" },
736	{ SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" },
737	{ SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" }
738};
739
740const int sense_key_table_size =
741    sizeof(sense_key_table)/sizeof(sense_key_table[0]);
742
743static struct asc_table_entry quantum_fireball_entries[] = {
744	{ SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
745	     "Logical unit not ready, initializing cmd. required") }
746};
747
748static struct asc_table_entry sony_mo_entries[] = {
749	{ SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
750	     "Logical unit not ready, cause not reportable") }
751};
752
753static struct asc_table_entry hgst_entries[] = {
754	{ SST(0x04, 0xF0, SS_RDEF,
755	    "Vendor Unique - Logical Unit Not Ready") },
756	{ SST(0x0A, 0x01, SS_RDEF,
757	    "Unrecovered Super Certification Log Write Error") },
758	{ SST(0x0A, 0x02, SS_RDEF,
759	    "Unrecovered Super Certification Log Read Error") },
760	{ SST(0x15, 0x03, SS_RDEF,
761	    "Unrecovered Sector Error") },
762	{ SST(0x3E, 0x04, SS_RDEF,
763	    "Unrecovered Self-Test Hard-Cache Test Fail") },
764	{ SST(0x3E, 0x05, SS_RDEF,
765	    "Unrecovered Self-Test OTF-Cache Fail") },
766	{ SST(0x40, 0x00, SS_RDEF,
767	    "Unrecovered SAT No Buffer Overflow Error") },
768	{ SST(0x40, 0x01, SS_RDEF,
769	    "Unrecovered SAT Buffer Overflow Error") },
770	{ SST(0x40, 0x02, SS_RDEF,
771	    "Unrecovered SAT No Buffer Overflow With ECS Fault") },
772	{ SST(0x40, 0x03, SS_RDEF,
773	    "Unrecovered SAT Buffer Overflow With ECS Fault") },
774	{ SST(0x40, 0x81, SS_RDEF,
775	    "DRAM Failure") },
776	{ SST(0x44, 0x0B, SS_RDEF,
777	    "Vendor Unique - Internal Target Failure") },
778	{ SST(0x44, 0xF2, SS_RDEF,
779	    "Vendor Unique - Internal Target Failure") },
780	{ SST(0x44, 0xF6, SS_RDEF,
781	    "Vendor Unique - Internal Target Failure") },
782	{ SST(0x44, 0xF9, SS_RDEF,
783	    "Vendor Unique - Internal Target Failure") },
784	{ SST(0x44, 0xFA, SS_RDEF,
785	    "Vendor Unique - Internal Target Failure") },
786	{ SST(0x5D, 0x22, SS_RDEF,
787	    "Extreme Over-Temperature Warning") },
788	{ SST(0x5D, 0x50, SS_RDEF,
789	    "Load/Unload cycle Count Warning") },
790	{ SST(0x81, 0x00, SS_RDEF,
791	    "Vendor Unique - Internal Logic Error") },
792	{ SST(0x85, 0x00, SS_RDEF,
793	    "Vendor Unique - Internal Key Seed Error") },
794};
795
796static struct asc_table_entry seagate_entries[] = {
797	{ SST(0x04, 0xF0, SS_RDEF,
798	    "Logical Unit Not Ready, super certify in Progress") },
799	{ SST(0x08, 0x86, SS_RDEF,
800	    "Write Fault Data Corruption") },
801	{ SST(0x09, 0x0D, SS_RDEF,
802	    "Tracking Failure") },
803	{ SST(0x09, 0x0E, SS_RDEF,
804	    "ETF Failure") },
805	{ SST(0x0B, 0x5D, SS_RDEF,
806	    "Pre-SMART Warning") },
807	{ SST(0x0B, 0x85, SS_RDEF,
808	    "5V Voltage Warning") },
809	{ SST(0x0B, 0x8C, SS_RDEF,
810	    "12V Voltage Warning") },
811	{ SST(0x0C, 0xFF, SS_RDEF,
812	    "Write Error - Too many error recovery revs") },
813	{ SST(0x11, 0xFF, SS_RDEF,
814	    "Unrecovered Read Error - Too many error recovery revs") },
815	{ SST(0x19, 0x0E, SS_RDEF,
816	    "Fewer than 1/2 defect list copies") },
817	{ SST(0x20, 0xF3, SS_RDEF,
818	    "Illegal CDB linked to skip mask cmd") },
819	{ SST(0x24, 0xF0, SS_RDEF,
820	    "Illegal byte in CDB, LBA not matching") },
821	{ SST(0x24, 0xF1, SS_RDEF,
822	    "Illegal byte in CDB, LEN not matching") },
823	{ SST(0x24, 0xF2, SS_RDEF,
824	    "Mask not matching transfer length") },
825	{ SST(0x24, 0xF3, SS_RDEF,
826	    "Drive formatted without plist") },
827	{ SST(0x26, 0x95, SS_RDEF,
828	    "Invalid Field Parameter - CAP File") },
829	{ SST(0x26, 0x96, SS_RDEF,
830	    "Invalid Field Parameter - RAP File") },
831	{ SST(0x26, 0x97, SS_RDEF,
832	    "Invalid Field Parameter - TMS Firmware Tag") },
833	{ SST(0x26, 0x98, SS_RDEF,
834	    "Invalid Field Parameter - Check Sum") },
835	{ SST(0x26, 0x99, SS_RDEF,
836	    "Invalid Field Parameter - Firmware Tag") },
837	{ SST(0x29, 0x08, SS_RDEF,
838	    "Write Log Dump data") },
839	{ SST(0x29, 0x09, SS_RDEF,
840	    "Write Log Dump data") },
841	{ SST(0x29, 0x0A, SS_RDEF,
842	    "Reserved disk space") },
843	{ SST(0x29, 0x0B, SS_RDEF,
844	    "SDBP") },
845	{ SST(0x29, 0x0C, SS_RDEF,
846	    "SDBP") },
847	{ SST(0x31, 0x91, SS_RDEF,
848	    "Format Corrupted World Wide Name (WWN) is Invalid") },
849	{ SST(0x32, 0x03, SS_RDEF,
850	    "Defect List - Length exceeds Command Allocated Length") },
851	{ SST(0x33, 0x00, SS_RDEF,
852	    "Flash not ready for access") },
853	{ SST(0x3F, 0x70, SS_RDEF,
854	    "Invalid RAP block") },
855	{ SST(0x3F, 0x71, SS_RDEF,
856	    "RAP/ETF mismatch") },
857	{ SST(0x3F, 0x90, SS_RDEF,
858	    "Invalid CAP block") },
859	{ SST(0x3F, 0x91, SS_RDEF,
860	    "World Wide Name (WWN) Mismatch") },
861	{ SST(0x40, 0x01, SS_RDEF,
862	    "DRAM Parity Error") },
863	{ SST(0x40, 0x02, SS_RDEF,
864	    "DRAM Parity Error") },
865	{ SST(0x42, 0x0A, SS_RDEF,
866	    "Loopback Test") },
867	{ SST(0x42, 0x0B, SS_RDEF,
868	    "Loopback Test") },
869	{ SST(0x44, 0xF2, SS_RDEF,
870	    "Compare error during data integrity check") },
871	{ SST(0x44, 0xF6, SS_RDEF,
872	    "Unrecoverable error during data integrity check") },
873	{ SST(0x47, 0x80, SS_RDEF,
874	    "Fibre Channel Sequence Error") },
875	{ SST(0x4E, 0x01, SS_RDEF,
876	    "Information Unit Too Short") },
877	{ SST(0x80, 0x00, SS_RDEF,
878	    "General Firmware Error / Command Timeout") },
879	{ SST(0x80, 0x01, SS_RDEF,
880	    "Command Timeout") },
881	{ SST(0x80, 0x02, SS_RDEF,
882	    "Command Timeout") },
883	{ SST(0x80, 0x80, SS_RDEF,
884	    "FC FIFO Error During Read Transfer") },
885	{ SST(0x80, 0x81, SS_RDEF,
886	    "FC FIFO Error During Write Transfer") },
887	{ SST(0x80, 0x82, SS_RDEF,
888	    "DISC FIFO Error During Read Transfer") },
889	{ SST(0x80, 0x83, SS_RDEF,
890	    "DISC FIFO Error During Write Transfer") },
891	{ SST(0x80, 0x84, SS_RDEF,
892	    "LBA Seeded LRC Error on Read") },
893	{ SST(0x80, 0x85, SS_RDEF,
894	    "LBA Seeded LRC Error on Write") },
895	{ SST(0x80, 0x86, SS_RDEF,
896	    "IOEDC Error on Read") },
897	{ SST(0x80, 0x87, SS_RDEF,
898	    "IOEDC Error on Write") },
899	{ SST(0x80, 0x88, SS_RDEF,
900	    "Host Parity Check Failed") },
901	{ SST(0x80, 0x89, SS_RDEF,
902	    "IOEDC error on read detected by formatter") },
903	{ SST(0x80, 0x8A, SS_RDEF,
904	    "Host Parity Errors / Host FIFO Initialization Failed") },
905	{ SST(0x80, 0x8B, SS_RDEF,
906	    "Host Parity Errors") },
907	{ SST(0x80, 0x8C, SS_RDEF,
908	    "Host Parity Errors") },
909	{ SST(0x80, 0x8D, SS_RDEF,
910	    "Host Parity Errors") },
911	{ SST(0x81, 0x00, SS_RDEF,
912	    "LA Check Failed") },
913	{ SST(0x82, 0x00, SS_RDEF,
914	    "Internal client detected insufficient buffer") },
915	{ SST(0x84, 0x00, SS_RDEF,
916	    "Scheduled Diagnostic And Repair") },
917};
918
919static struct scsi_sense_quirk_entry sense_quirk_table[] = {
920	{
921		/*
922		 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b
923		 * when they really should return 0x04 0x02.
924		 */
925		{T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"},
926		/*num_sense_keys*/0,
927		sizeof(quantum_fireball_entries)/sizeof(struct asc_table_entry),
928		/*sense key entries*/NULL,
929		quantum_fireball_entries
930	},
931	{
932		/*
933		 * This Sony MO drive likes to return 0x04, 0x00 when it
934		 * isn't spun up.
935		 */
936		{T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"},
937		/*num_sense_keys*/0,
938		sizeof(sony_mo_entries)/sizeof(struct asc_table_entry),
939		/*sense key entries*/NULL,
940		sony_mo_entries
941	},
942	{
943		/*
944		 * HGST vendor-specific error codes
945		 */
946		{T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"},
947		/*num_sense_keys*/0,
948		sizeof(hgst_entries)/sizeof(struct asc_table_entry),
949		/*sense key entries*/NULL,
950		hgst_entries
951	},
952	{
953		/*
954		 * SEAGATE vendor-specific error codes
955		 */
956		{T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"},
957		/*num_sense_keys*/0,
958		sizeof(seagate_entries)/sizeof(struct asc_table_entry),
959		/*sense key entries*/NULL,
960		seagate_entries
961	}
962};
963
964const int sense_quirk_table_size =
965    sizeof(sense_quirk_table)/sizeof(sense_quirk_table[0]);
966
967static struct asc_table_entry asc_table[] = {
968	/*
969	 * From: http://www.t10.org/lists/asc-num.txt
970	 * Modifications by Jung-uk Kim (jkim@FreeBSD.org)
971	 */
972	/*
973	 * File: ASC-NUM.TXT
974	 *
975	 * SCSI ASC/ASCQ Assignments
976	 * Numeric Sorted Listing
977	 * as of  8/12/15
978	 *
979	 * D - DIRECT ACCESS DEVICE (SBC-2)                   device column key
980	 * .T - SEQUENTIAL ACCESS DEVICE (SSC)               -------------------
981	 * . L - PRINTER DEVICE (SSC)                           blank = reserved
982	 * .  P - PROCESSOR DEVICE (SPC)                     not blank = allowed
983	 * .  .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2)
984	 * .  . R - CD DEVICE (MMC)
985	 * .  .  O - OPTICAL MEMORY DEVICE (SBC-2)
986	 * .  .  .M - MEDIA CHANGER DEVICE (SMC)
987	 * .  .  . A - STORAGE ARRAY DEVICE (SCC)
988	 * .  .  .  E - ENCLOSURE SERVICES DEVICE (SES)
989	 * .  .  .  .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
990	 * .  .  .  . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
991	 * .  .  .  .  V - AUTOMATION/DRIVE INTERFACE (ADC)
992	 * .  .  .  .  .F - OBJECT-BASED STORAGE (OSD)
993	 * DTLPWROMAEBKVF
994	 * ASC      ASCQ  Action
995	 * Description
996	 */
997	/* DTLPWROMAEBKVF */
998	{ SST(0x00, 0x00, SS_NOP,
999	    "No additional sense information") },
1000	/*  T             */
1001	{ SST(0x00, 0x01, SS_RDEF,
1002	    "Filemark detected") },
1003	/*  T             */
1004	{ SST(0x00, 0x02, SS_RDEF,
1005	    "End-of-partition/medium detected") },
1006	/*  T             */
1007	{ SST(0x00, 0x03, SS_RDEF,
1008	    "Setmark detected") },
1009	/*  T             */
1010	{ SST(0x00, 0x04, SS_RDEF,
1011	    "Beginning-of-partition/medium detected") },
1012	/*  TL            */
1013	{ SST(0x00, 0x05, SS_RDEF,
1014	    "End-of-data detected") },
1015	/* DTLPWROMAEBKVF */
1016	{ SST(0x00, 0x06, SS_RDEF,
1017	    "I/O process terminated") },
1018	/*  T             */
1019	{ SST(0x00, 0x07, SS_RDEF,	/* XXX TBD */
1020	    "Programmable early warning detected") },
1021	/*      R         */
1022	{ SST(0x00, 0x11, SS_FATAL | EBUSY,
1023	    "Audio play operation in progress") },
1024	/*      R         */
1025	{ SST(0x00, 0x12, SS_NOP,
1026	    "Audio play operation paused") },
1027	/*      R         */
1028	{ SST(0x00, 0x13, SS_NOP,
1029	    "Audio play operation successfully completed") },
1030	/*      R         */
1031	{ SST(0x00, 0x14, SS_RDEF,
1032	    "Audio play operation stopped due to error") },
1033	/*      R         */
1034	{ SST(0x00, 0x15, SS_NOP,
1035	    "No current audio status to return") },
1036	/* DTLPWROMAEBKVF */
1037	{ SST(0x00, 0x16, SS_FATAL | EBUSY,
1038	    "Operation in progress") },
1039	/* DTL WROMAEBKVF */
1040	{ SST(0x00, 0x17, SS_RDEF,
1041	    "Cleaning requested") },
1042	/*  T             */
1043	{ SST(0x00, 0x18, SS_RDEF,	/* XXX TBD */
1044	    "Erase operation in progress") },
1045	/*  T             */
1046	{ SST(0x00, 0x19, SS_RDEF,	/* XXX TBD */
1047	    "Locate operation in progress") },
1048	/*  T             */
1049	{ SST(0x00, 0x1A, SS_RDEF,	/* XXX TBD */
1050	    "Rewind operation in progress") },
1051	/*  T             */
1052	{ SST(0x00, 0x1B, SS_RDEF,	/* XXX TBD */
1053	    "Set capacity operation in progress") },
1054	/*  T             */
1055	{ SST(0x00, 0x1C, SS_RDEF,	/* XXX TBD */
1056	    "Verify operation in progress") },
1057	/* DT        B    */
1058	{ SST(0x00, 0x1D, SS_NOP,
1059	    "ATA pass through information available") },
1060	/* DT   R MAEBKV  */
1061	{ SST(0x00, 0x1E, SS_RDEF,	/* XXX TBD */
1062	    "Conflicting SA creation request") },
1063	/* DT        B    */
1064	{ SST(0x00, 0x1F, SS_RDEF,	/* XXX TBD */
1065	    "Logical unit transitioning to another power condition") },
1066	/* DT P      B    */
1067	{ SST(0x00, 0x20, SS_NOP,
1068	    "Extended copy information available") },
1069	/* D              */
1070	{ SST(0x00, 0x21, SS_RDEF,	/* XXX TBD */
1071	    "Atomic command aborted due to ACA") },
1072	/* D   W O   BK   */
1073	{ SST(0x01, 0x00, SS_RDEF,
1074	    "No index/sector signal") },
1075	/* D   WRO   BK   */
1076	{ SST(0x02, 0x00, SS_RDEF,
1077	    "No seek complete") },
1078	/* DTL W O   BK   */
1079	{ SST(0x03, 0x00, SS_RDEF,
1080	    "Peripheral device write fault") },
1081	/*  T             */
1082	{ SST(0x03, 0x01, SS_RDEF,
1083	    "No write current") },
1084	/*  T             */
1085	{ SST(0x03, 0x02, SS_RDEF,
1086	    "Excessive write errors") },
1087	/* DTLPWROMAEBKVF */
1088	{ SST(0x04, 0x00, SS_RDEF,
1089	    "Logical unit not ready, cause not reportable") },
1090	/* DTLPWROMAEBKVF */
1091	{ SST(0x04, 0x01, SS_WAIT | EBUSY,
1092	    "Logical unit is in process of becoming ready") },
1093	/* DTLPWROMAEBKVF */
1094	{ SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
1095	    "Logical unit not ready, initializing command required") },
1096	/* DTLPWROMAEBKVF */
1097	{ SST(0x04, 0x03, SS_FATAL | ENXIO,
1098	    "Logical unit not ready, manual intervention required") },
1099	/* DTL  RO   B    */
1100	{ SST(0x04, 0x04, SS_FATAL | EBUSY,
1101	    "Logical unit not ready, format in progress") },
1102	/* DT  W O A BK F */
1103	{ SST(0x04, 0x05, SS_FATAL | EBUSY,
1104	    "Logical unit not ready, rebuild in progress") },
1105	/* DT  W O A BK   */
1106	{ SST(0x04, 0x06, SS_FATAL | EBUSY,
1107	    "Logical unit not ready, recalculation in progress") },
1108	/* DTLPWROMAEBKVF */
1109	{ SST(0x04, 0x07, SS_FATAL | EBUSY,
1110	    "Logical unit not ready, operation in progress") },
1111	/*      R         */
1112	{ SST(0x04, 0x08, SS_FATAL | EBUSY,
1113	    "Logical unit not ready, long write in progress") },
1114	/* DTLPWROMAEBKVF */
1115	{ SST(0x04, 0x09, SS_RDEF,	/* XXX TBD */
1116	    "Logical unit not ready, self-test in progress") },
1117	/* DTLPWROMAEBKVF */
1118	{ SST(0x04, 0x0A, SS_WAIT | ENXIO,
1119	    "Logical unit not accessible, asymmetric access state transition")},
1120	/* DTLPWROMAEBKVF */
1121	{ SST(0x04, 0x0B, SS_FATAL | ENXIO,
1122	    "Logical unit not accessible, target port in standby state") },
1123	/* DTLPWROMAEBKVF */
1124	{ SST(0x04, 0x0C, SS_FATAL | ENXIO,
1125	    "Logical unit not accessible, target port in unavailable state") },
1126	/*              F */
1127	{ SST(0x04, 0x0D, SS_RDEF,	/* XXX TBD */
1128	    "Logical unit not ready, structure check required") },
1129	/* DTL WR MAEBKVF */
1130	{ SST(0x04, 0x0E, SS_RDEF,	/* XXX TBD */
1131	    "Logical unit not ready, security session in progress") },
1132	/* DT  WROM  B    */
1133	{ SST(0x04, 0x10, SS_RDEF,	/* XXX TBD */
1134	    "Logical unit not ready, auxiliary memory not accessible") },
1135	/* DT  WRO AEB VF */
1136	{ SST(0x04, 0x11, SS_WAIT | EBUSY,
1137	    "Logical unit not ready, notify (enable spinup) required") },
1138	/*        M    V  */
1139	{ SST(0x04, 0x12, SS_RDEF,	/* XXX TBD */
1140	    "Logical unit not ready, offline") },
1141	/* DT   R MAEBKV  */
1142	{ SST(0x04, 0x13, SS_RDEF,	/* XXX TBD */
1143	    "Logical unit not ready, SA creation in progress") },
1144	/* D         B    */
1145	{ SST(0x04, 0x14, SS_RDEF,	/* XXX TBD */
1146	    "Logical unit not ready, space allocation in progress") },
1147	/*        M       */
1148	{ SST(0x04, 0x15, SS_RDEF,	/* XXX TBD */
1149	    "Logical unit not ready, robotics disabled") },
1150	/*        M       */
1151	{ SST(0x04, 0x16, SS_RDEF,	/* XXX TBD */
1152	    "Logical unit not ready, configuration required") },
1153	/*        M       */
1154	{ SST(0x04, 0x17, SS_RDEF,	/* XXX TBD */
1155	    "Logical unit not ready, calibration required") },
1156	/*        M       */
1157	{ SST(0x04, 0x18, SS_RDEF,	/* XXX TBD */
1158	    "Logical unit not ready, a door is open") },
1159	/*        M       */
1160	{ SST(0x04, 0x19, SS_RDEF,	/* XXX TBD */
1161	    "Logical unit not ready, operating in sequential mode") },
1162	/* DT        B    */
1163	{ SST(0x04, 0x1A, SS_RDEF,	/* XXX TBD */
1164	    "Logical unit not ready, START/STOP UNIT command in progress") },
1165	/* D         B    */
1166	{ SST(0x04, 0x1B, SS_RDEF,	/* XXX TBD */
1167	    "Logical unit not ready, sanitize in progress") },
1168	/* DT     MAEB    */
1169	{ SST(0x04, 0x1C, SS_RDEF,	/* XXX TBD */
1170	    "Logical unit not ready, additional power use not yet granted") },
1171	/* D              */
1172	{ SST(0x04, 0x1D, SS_RDEF,	/* XXX TBD */
1173	    "Logical unit not ready, configuration in progress") },
1174	/* D              */
1175	{ SST(0x04, 0x1E, SS_FATAL | ENXIO,
1176	    "Logical unit not ready, microcode activation required") },
1177	/* DTLPWROMAEBKVF */
1178	{ SST(0x04, 0x1F, SS_FATAL | ENXIO,
1179	    "Logical unit not ready, microcode download required") },
1180	/* DTLPWROMAEBKVF */
1181	{ SST(0x04, 0x20, SS_RDEF,	/* XXX TBD */
1182	    "Logical unit not ready, logical unit reset required") },
1183	/* DTLPWROMAEBKVF */
1184	{ SST(0x04, 0x21, SS_RDEF,	/* XXX TBD */
1185	    "Logical unit not ready, hard reset required") },
1186	/* DTLPWROMAEBKVF */
1187	{ SST(0x04, 0x22, SS_RDEF,	/* XXX TBD */
1188	    "Logical unit not ready, power cycle required") },
1189	/* DTL WROMAEBKVF */
1190	{ SST(0x05, 0x00, SS_RDEF,
1191	    "Logical unit does not respond to selection") },
1192	/* D   WROM  BK   */
1193	{ SST(0x06, 0x00, SS_RDEF,
1194	    "No reference position found") },
1195	/* DTL WROM  BK   */
1196	{ SST(0x07, 0x00, SS_RDEF,
1197	    "Multiple peripheral devices selected") },
1198	/* DTL WROMAEBKVF */
1199	{ SST(0x08, 0x00, SS_RDEF,
1200	    "Logical unit communication failure") },
1201	/* DTL WROMAEBKVF */
1202	{ SST(0x08, 0x01, SS_RDEF,
1203	    "Logical unit communication time-out") },
1204	/* DTL WROMAEBKVF */
1205	{ SST(0x08, 0x02, SS_RDEF,
1206	    "Logical unit communication parity error") },
1207	/* DT   ROM  BK   */
1208	{ SST(0x08, 0x03, SS_RDEF,
1209	    "Logical unit communication CRC error (Ultra-DMA/32)") },
1210	/* DTLPWRO    K   */
1211	{ SST(0x08, 0x04, SS_RDEF,	/* XXX TBD */
1212	    "Unreachable copy target") },
1213	/* DT  WRO   B    */
1214	{ SST(0x09, 0x00, SS_RDEF,
1215	    "Track following error") },
1216	/*     WRO    K   */
1217	{ SST(0x09, 0x01, SS_RDEF,
1218	    "Tracking servo failure") },
1219	/*     WRO    K   */
1220	{ SST(0x09, 0x02, SS_RDEF,
1221	    "Focus servo failure") },
1222	/*     WRO        */
1223	{ SST(0x09, 0x03, SS_RDEF,
1224	    "Spindle servo failure") },
1225	/* DT  WRO   B    */
1226	{ SST(0x09, 0x04, SS_RDEF,
1227	    "Head select fault") },
1228	/* DT   RO   B    */
1229	{ SST(0x09, 0x05, SS_RDEF,
1230	    "Vibration induced tracking error") },
1231	/* DTLPWROMAEBKVF */
1232	{ SST(0x0A, 0x00, SS_FATAL | ENOSPC,
1233	    "Error log overflow") },
1234	/* DTLPWROMAEBKVF */
1235	{ SST(0x0B, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1236	    "Warning") },
1237	/* DTLPWROMAEBKVF */
1238	{ SST(0x0B, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1239	    "Warning - specified temperature exceeded") },
1240	/* DTLPWROMAEBKVF */
1241	{ SST(0x0B, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1242	    "Warning - enclosure degraded") },
1243	/* DTLPWROMAEBKVF */
1244	{ SST(0x0B, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1245	    "Warning - background self-test failed") },
1246	/* DTLPWRO AEBKVF */
1247	{ SST(0x0B, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1248	    "Warning - background pre-scan detected medium error") },
1249	/* DTLPWRO AEBKVF */
1250	{ SST(0x0B, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1251	    "Warning - background medium scan detected medium error") },
1252	/* DTLPWROMAEBKVF */
1253	{ SST(0x0B, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1254	    "Warning - non-volatile cache now volatile") },
1255	/* DTLPWROMAEBKVF */
1256	{ SST(0x0B, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1257	    "Warning - degraded power to non-volatile cache") },
1258	/* DTLPWROMAEBKVF */
1259	{ SST(0x0B, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1260	    "Warning - power loss expected") },
1261	/* D              */
1262	{ SST(0x0B, 0x09, SS_NOP | SSQ_PRINT_SENSE,
1263	    "Warning - device statistics notification available") },
1264	/* DTLPWROMAEBKVF */
1265	{ SST(0x0B, 0x0A, SS_NOP | SSQ_PRINT_SENSE,
1266	    "Warning - High critical temperature limit exceeded") },
1267	/* DTLPWROMAEBKVF */
1268	{ SST(0x0B, 0x0B, SS_NOP | SSQ_PRINT_SENSE,
1269	    "Warning - Low critical temperature limit exceeded") },
1270	/* DTLPWROMAEBKVF */
1271	{ SST(0x0B, 0x0C, SS_NOP | SSQ_PRINT_SENSE,
1272	    "Warning - High operating temperature limit exceeded") },
1273	/* DTLPWROMAEBKVF */
1274	{ SST(0x0B, 0x0D, SS_NOP | SSQ_PRINT_SENSE,
1275	    "Warning - Low operating temperature limit exceeded") },
1276	/* DTLPWROMAEBKVF */
1277	{ SST(0x0B, 0x0E, SS_NOP | SSQ_PRINT_SENSE,
1278	    "Warning - High citical humidity limit exceeded") },
1279	/* DTLPWROMAEBKVF */
1280	{ SST(0x0B, 0x0F, SS_NOP | SSQ_PRINT_SENSE,
1281	    "Warning - Low citical humidity limit exceeded") },
1282	/* DTLPWROMAEBKVF */
1283	{ SST(0x0B, 0x10, SS_NOP | SSQ_PRINT_SENSE,
1284	    "Warning - High operating humidity limit exceeded") },
1285	/* DTLPWROMAEBKVF */
1286	{ SST(0x0B, 0x11, SS_NOP | SSQ_PRINT_SENSE,
1287	    "Warning - Low operating humidity limit exceeded") },
1288	/*  T   R         */
1289	{ SST(0x0C, 0x00, SS_RDEF,
1290	    "Write error") },
1291	/*            K   */
1292	{ SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1293	    "Write error - recovered with auto reallocation") },
1294	/* D   W O   BK   */
1295	{ SST(0x0C, 0x02, SS_RDEF,
1296	    "Write error - auto reallocation failed") },
1297	/* D   W O   BK   */
1298	{ SST(0x0C, 0x03, SS_RDEF,
1299	    "Write error - recommend reassignment") },
1300	/* DT  W O   B    */
1301	{ SST(0x0C, 0x04, SS_RDEF,
1302	    "Compression check miscompare error") },
1303	/* DT  W O   B    */
1304	{ SST(0x0C, 0x05, SS_RDEF,
1305	    "Data expansion occurred during compression") },
1306	/* DT  W O   B    */
1307	{ SST(0x0C, 0x06, SS_RDEF,
1308	    "Block not compressible") },
1309	/*      R         */
1310	{ SST(0x0C, 0x07, SS_RDEF,
1311	    "Write error - recovery needed") },
1312	/*      R         */
1313	{ SST(0x0C, 0x08, SS_RDEF,
1314	    "Write error - recovery failed") },
1315	/*      R         */
1316	{ SST(0x0C, 0x09, SS_RDEF,
1317	    "Write error - loss of streaming") },
1318	/*      R         */
1319	{ SST(0x0C, 0x0A, SS_RDEF,
1320	    "Write error - padding blocks added") },
1321	/* DT  WROM  B    */
1322	{ SST(0x0C, 0x0B, SS_RDEF,	/* XXX TBD */
1323	    "Auxiliary memory write error") },
1324	/* DTLPWRO AEBKVF */
1325	{ SST(0x0C, 0x0C, SS_RDEF,	/* XXX TBD */
1326	    "Write error - unexpected unsolicited data") },
1327	/* DTLPWRO AEBKVF */
1328	{ SST(0x0C, 0x0D, SS_RDEF,	/* XXX TBD */
1329	    "Write error - not enough unsolicited data") },
1330	/* DT  W O   BK   */
1331	{ SST(0x0C, 0x0E, SS_RDEF,	/* XXX TBD */
1332	    "Multiple write errors") },
1333	/*      R         */
1334	{ SST(0x0C, 0x0F, SS_RDEF,	/* XXX TBD */
1335	    "Defects in error window") },
1336	/* D              */
1337	{ SST(0x0C, 0x10, SS_RDEF,	/* XXX TBD */
1338	    "Incomplete multiple atomic write operations") },
1339	/* D              */
1340	{ SST(0x0C, 0x11, SS_RDEF,	/* XXX TBD */
1341	    "Write error - recovery scan needed") },
1342	/* D              */
1343	{ SST(0x0C, 0x12, SS_RDEF,	/* XXX TBD */
1344	    "Write error - insufficient zone resources") },
1345	/* DTLPWRO A  K   */
1346	{ SST(0x0D, 0x00, SS_RDEF,	/* XXX TBD */
1347	    "Error detected by third party temporary initiator") },
1348	/* DTLPWRO A  K   */
1349	{ SST(0x0D, 0x01, SS_RDEF,	/* XXX TBD */
1350	    "Third party device failure") },
1351	/* DTLPWRO A  K   */
1352	{ SST(0x0D, 0x02, SS_RDEF,	/* XXX TBD */
1353	    "Copy target device not reachable") },
1354	/* DTLPWRO A  K   */
1355	{ SST(0x0D, 0x03, SS_RDEF,	/* XXX TBD */
1356	    "Incorrect copy target device type") },
1357	/* DTLPWRO A  K   */
1358	{ SST(0x0D, 0x04, SS_RDEF,	/* XXX TBD */
1359	    "Copy target device data underrun") },
1360	/* DTLPWRO A  K   */
1361	{ SST(0x0D, 0x05, SS_RDEF,	/* XXX TBD */
1362	    "Copy target device data overrun") },
1363	/* DT PWROMAEBK F */
1364	{ SST(0x0E, 0x00, SS_RDEF,	/* XXX TBD */
1365	    "Invalid information unit") },
1366	/* DT PWROMAEBK F */
1367	{ SST(0x0E, 0x01, SS_RDEF,	/* XXX TBD */
1368	    "Information unit too short") },
1369	/* DT PWROMAEBK F */
1370	{ SST(0x0E, 0x02, SS_RDEF,	/* XXX TBD */
1371	    "Information unit too long") },
1372	/* DT P R MAEBK F */
1373	{ SST(0x0E, 0x03, SS_RDEF,	/* XXX TBD */
1374	    "Invalid field in command information unit") },
1375	/* D   W O   BK   */
1376	{ SST(0x10, 0x00, SS_RDEF,
1377	    "ID CRC or ECC error") },
1378	/* DT  W O        */
1379	{ SST(0x10, 0x01, SS_RDEF,	/* XXX TBD */
1380	    "Logical block guard check failed") },
1381	/* DT  W O        */
1382	{ SST(0x10, 0x02, SS_RDEF,	/* XXX TBD */
1383	    "Logical block application tag check failed") },
1384	/* DT  W O        */
1385	{ SST(0x10, 0x03, SS_RDEF,	/* XXX TBD */
1386	    "Logical block reference tag check failed") },
1387	/*  T             */
1388	{ SST(0x10, 0x04, SS_RDEF,	/* XXX TBD */
1389	    "Logical block protection error on recovered buffer data") },
1390	/*  T             */
1391	{ SST(0x10, 0x05, SS_RDEF,	/* XXX TBD */
1392	    "Logical block protection method error") },
1393	/* DT  WRO   BK   */
1394	{ SST(0x11, 0x00, SS_FATAL|EIO,
1395	    "Unrecovered read error") },
1396	/* DT  WRO   BK   */
1397	{ SST(0x11, 0x01, SS_FATAL|EIO,
1398	    "Read retries exhausted") },
1399	/* DT  WRO   BK   */
1400	{ SST(0x11, 0x02, SS_FATAL|EIO,
1401	    "Error too long to correct") },
1402	/* DT  W O   BK   */
1403	{ SST(0x11, 0x03, SS_FATAL|EIO,
1404	    "Multiple read errors") },
1405	/* D   W O   BK   */
1406	{ SST(0x11, 0x04, SS_FATAL|EIO,
1407	    "Unrecovered read error - auto reallocate failed") },
1408	/*     WRO   B    */
1409	{ SST(0x11, 0x05, SS_FATAL|EIO,
1410	    "L-EC uncorrectable error") },
1411	/*     WRO   B    */
1412	{ SST(0x11, 0x06, SS_FATAL|EIO,
1413	    "CIRC unrecovered error") },
1414	/*     W O   B    */
1415	{ SST(0x11, 0x07, SS_RDEF,
1416	    "Data re-synchronization error") },
1417	/*  T             */
1418	{ SST(0x11, 0x08, SS_RDEF,
1419	    "Incomplete block read") },
1420	/*  T             */
1421	{ SST(0x11, 0x09, SS_RDEF,
1422	    "No gap found") },
1423	/* DT    O   BK   */
1424	{ SST(0x11, 0x0A, SS_RDEF,
1425	    "Miscorrected error") },
1426	/* D   W O   BK   */
1427	{ SST(0x11, 0x0B, SS_FATAL|EIO,
1428	    "Unrecovered read error - recommend reassignment") },
1429	/* D   W O   BK   */
1430	{ SST(0x11, 0x0C, SS_FATAL|EIO,
1431	    "Unrecovered read error - recommend rewrite the data") },
1432	/* DT  WRO   B    */
1433	{ SST(0x11, 0x0D, SS_RDEF,
1434	    "De-compression CRC error") },
1435	/* DT  WRO   B    */
1436	{ SST(0x11, 0x0E, SS_RDEF,
1437	    "Cannot decompress using declared algorithm") },
1438	/*      R         */
1439	{ SST(0x11, 0x0F, SS_RDEF,
1440	    "Error reading UPC/EAN number") },
1441	/*      R         */
1442	{ SST(0x11, 0x10, SS_RDEF,
1443	    "Error reading ISRC number") },
1444	/*      R         */
1445	{ SST(0x11, 0x11, SS_RDEF,
1446	    "Read error - loss of streaming") },
1447	/* DT  WROM  B    */
1448	{ SST(0x11, 0x12, SS_RDEF,	/* XXX TBD */
1449	    "Auxiliary memory read error") },
1450	/* DTLPWRO AEBKVF */
1451	{ SST(0x11, 0x13, SS_RDEF,	/* XXX TBD */
1452	    "Read error - failed retransmission request") },
1453	/* D              */
1454	{ SST(0x11, 0x14, SS_RDEF,	/* XXX TBD */
1455	    "Read error - LBA marked bad by application client") },
1456	/* D              */
1457	{ SST(0x11, 0x15, SS_RDEF,	/* XXX TBD */
1458	    "Write after sanitize required") },
1459	/* D   W O   BK   */
1460	{ SST(0x12, 0x00, SS_RDEF,
1461	    "Address mark not found for ID field") },
1462	/* D   W O   BK   */
1463	{ SST(0x13, 0x00, SS_RDEF,
1464	    "Address mark not found for data field") },
1465	/* DTL WRO   BK   */
1466	{ SST(0x14, 0x00, SS_RDEF,
1467	    "Recorded entity not found") },
1468	/* DT  WRO   BK   */
1469	{ SST(0x14, 0x01, SS_RDEF,
1470	    "Record not found") },
1471	/*  T             */
1472	{ SST(0x14, 0x02, SS_RDEF,
1473	    "Filemark or setmark not found") },
1474	/*  T             */
1475	{ SST(0x14, 0x03, SS_RDEF,
1476	    "End-of-data not found") },
1477	/*  T             */
1478	{ SST(0x14, 0x04, SS_RDEF,
1479	    "Block sequence error") },
1480	/* DT  W O   BK   */
1481	{ SST(0x14, 0x05, SS_RDEF,
1482	    "Record not found - recommend reassignment") },
1483	/* DT  W O   BK   */
1484	{ SST(0x14, 0x06, SS_RDEF,
1485	    "Record not found - data auto-reallocated") },
1486	/*  T             */
1487	{ SST(0x14, 0x07, SS_RDEF,	/* XXX TBD */
1488	    "Locate operation failure") },
1489	/* DTL WROM  BK   */
1490	{ SST(0x15, 0x00, SS_RDEF,
1491	    "Random positioning error") },
1492	/* DTL WROM  BK   */
1493	{ SST(0x15, 0x01, SS_RDEF,
1494	    "Mechanical positioning error") },
1495	/* DT  WRO   BK   */
1496	{ SST(0x15, 0x02, SS_RDEF,
1497	    "Positioning error detected by read of medium") },
1498	/* D   W O   BK   */
1499	{ SST(0x16, 0x00, SS_RDEF,
1500	    "Data synchronization mark error") },
1501	/* D   W O   BK   */
1502	{ SST(0x16, 0x01, SS_RDEF,
1503	    "Data sync error - data rewritten") },
1504	/* D   W O   BK   */
1505	{ SST(0x16, 0x02, SS_RDEF,
1506	    "Data sync error - recommend rewrite") },
1507	/* D   W O   BK   */
1508	{ SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1509	    "Data sync error - data auto-reallocated") },
1510	/* D   W O   BK   */
1511	{ SST(0x16, 0x04, SS_RDEF,
1512	    "Data sync error - recommend reassignment") },
1513	/* DT  WRO   BK   */
1514	{ SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1515	    "Recovered data with no error correction applied") },
1516	/* DT  WRO   BK   */
1517	{ SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1518	    "Recovered data with retries") },
1519	/* DT  WRO   BK   */
1520	{ SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1521	    "Recovered data with positive head offset") },
1522	/* DT  WRO   BK   */
1523	{ SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1524	    "Recovered data with negative head offset") },
1525	/*     WRO   B    */
1526	{ SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1527	    "Recovered data with retries and/or CIRC applied") },
1528	/* D   WRO   BK   */
1529	{ SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1530	    "Recovered data using previous sector ID") },
1531	/* D   W O   BK   */
1532	{ SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1533	    "Recovered data without ECC - data auto-reallocated") },
1534	/* D   WRO   BK   */
1535	{ SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1536	    "Recovered data without ECC - recommend reassignment") },
1537	/* D   WRO   BK   */
1538	{ SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1539	    "Recovered data without ECC - recommend rewrite") },
1540	/* D   WRO   BK   */
1541	{ SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE,
1542	    "Recovered data without ECC - data rewritten") },
1543	/* DT  WRO   BK   */
1544	{ SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1545	    "Recovered data with error correction applied") },
1546	/* D   WRO   BK   */
1547	{ SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1548	    "Recovered data with error corr. & retries applied") },
1549	/* D   WRO   BK   */
1550	{ SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1551	    "Recovered data - data auto-reallocated") },
1552	/*      R         */
1553	{ SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1554	    "Recovered data with CIRC") },
1555	/*      R         */
1556	{ SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1557	    "Recovered data with L-EC") },
1558	/* D   WRO   BK   */
1559	{ SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1560	    "Recovered data - recommend reassignment") },
1561	/* D   WRO   BK   */
1562	{ SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1563	    "Recovered data - recommend rewrite") },
1564	/* D   W O   BK   */
1565	{ SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1566	    "Recovered data with ECC - data rewritten") },
1567	/*      R         */
1568	{ SST(0x18, 0x08, SS_RDEF,	/* XXX TBD */
1569	    "Recovered data with linking") },
1570	/* D     O    K   */
1571	{ SST(0x19, 0x00, SS_RDEF,
1572	    "Defect list error") },
1573	/* D     O    K   */
1574	{ SST(0x19, 0x01, SS_RDEF,
1575	    "Defect list not available") },
1576	/* D     O    K   */
1577	{ SST(0x19, 0x02, SS_RDEF,
1578	    "Defect list error in primary list") },
1579	/* D     O    K   */
1580	{ SST(0x19, 0x03, SS_RDEF,
1581	    "Defect list error in grown list") },
1582	/* DTLPWROMAEBKVF */
1583	{ SST(0x1A, 0x00, SS_RDEF,
1584	    "Parameter list length error") },
1585	/* DTLPWROMAEBKVF */
1586	{ SST(0x1B, 0x00, SS_RDEF,
1587	    "Synchronous data transfer error") },
1588	/* D     O   BK   */
1589	{ SST(0x1C, 0x00, SS_RDEF,
1590	    "Defect list not found") },
1591	/* D     O   BK   */
1592	{ SST(0x1C, 0x01, SS_RDEF,
1593	    "Primary defect list not found") },
1594	/* D     O   BK   */
1595	{ SST(0x1C, 0x02, SS_RDEF,
1596	    "Grown defect list not found") },
1597	/* DT  WRO   BK   */
1598	{ SST(0x1D, 0x00, SS_FATAL,
1599	    "Miscompare during verify operation") },
1600	/* D         B    */
1601	{ SST(0x1D, 0x01, SS_RDEF,	/* XXX TBD */
1602	    "Miscomparable verify of unmapped LBA") },
1603	/* D   W O   BK   */
1604	{ SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1605	    "Recovered ID with ECC correction") },
1606	/* D     O    K   */
1607	{ SST(0x1F, 0x00, SS_RDEF,
1608	    "Partial defect list transfer") },
1609	/* DTLPWROMAEBKVF */
1610	{ SST(0x20, 0x00, SS_FATAL | EINVAL,
1611	    "Invalid command operation code") },
1612	/* DT PWROMAEBK   */
1613	{ SST(0x20, 0x01, SS_RDEF,	/* XXX TBD */
1614	    "Access denied - initiator pending-enrolled") },
1615	/* DT PWROMAEBK   */
1616	{ SST(0x20, 0x02, SS_RDEF,	/* XXX TBD */
1617	    "Access denied - no access rights") },
1618	/* DT PWROMAEBK   */
1619	{ SST(0x20, 0x03, SS_RDEF,	/* XXX TBD */
1620	    "Access denied - invalid mgmt ID key") },
1621	/*  T             */
1622	{ SST(0x20, 0x04, SS_RDEF,	/* XXX TBD */
1623	    "Illegal command while in write capable state") },
1624	/*  T             */
1625	{ SST(0x20, 0x05, SS_RDEF,	/* XXX TBD */
1626	    "Obsolete") },
1627	/*  T             */
1628	{ SST(0x20, 0x06, SS_RDEF,	/* XXX TBD */
1629	    "Illegal command while in explicit address mode") },
1630	/*  T             */
1631	{ SST(0x20, 0x07, SS_RDEF,	/* XXX TBD */
1632	    "Illegal command while in implicit address mode") },
1633	/* DT PWROMAEBK   */
1634	{ SST(0x20, 0x08, SS_RDEF,	/* XXX TBD */
1635	    "Access denied - enrollment conflict") },
1636	/* DT PWROMAEBK   */
1637	{ SST(0x20, 0x09, SS_RDEF,	/* XXX TBD */
1638	    "Access denied - invalid LU identifier") },
1639	/* DT PWROMAEBK   */
1640	{ SST(0x20, 0x0A, SS_RDEF,	/* XXX TBD */
1641	    "Access denied - invalid proxy token") },
1642	/* DT PWROMAEBK   */
1643	{ SST(0x20, 0x0B, SS_RDEF,	/* XXX TBD */
1644	    "Access denied - ACL LUN conflict") },
1645	/*  T             */
1646	{ SST(0x20, 0x0C, SS_FATAL | EINVAL,
1647	    "Illegal command when not in append-only mode") },
1648	/* DT  WRO   BK   */
1649	{ SST(0x21, 0x00, SS_FATAL | EINVAL,
1650	    "Logical block address out of range") },
1651	/* DT  WROM  BK   */
1652	{ SST(0x21, 0x01, SS_FATAL | EINVAL,
1653	    "Invalid element address") },
1654	/*      R         */
1655	{ SST(0x21, 0x02, SS_RDEF,	/* XXX TBD */
1656	    "Invalid address for write") },
1657	/*      R         */
1658	{ SST(0x21, 0x03, SS_RDEF,	/* XXX TBD */
1659	    "Invalid write crossing layer jump") },
1660	/* D              */
1661	{ SST(0x21, 0x04, SS_RDEF,	/* XXX TBD */
1662	    "Unaligned write command") },
1663	/* D              */
1664	{ SST(0x21, 0x05, SS_RDEF,	/* XXX TBD */
1665	    "Write boundary violation") },
1666	/* D              */
1667	{ SST(0x21, 0x06, SS_RDEF,	/* XXX TBD */
1668	    "Attempt to read invalid data") },
1669	/* D              */
1670	{ SST(0x21, 0x07, SS_RDEF,	/* XXX TBD */
1671	    "Read boundary violation") },
1672	/* D              */
1673	{ SST(0x22, 0x00, SS_FATAL | EINVAL,
1674	    "Illegal function (use 20 00, 24 00, or 26 00)") },
1675	/* DT P      B    */
1676	{ SST(0x23, 0x00, SS_FATAL | EINVAL,
1677	    "Invalid token operation, cause not reportable") },
1678	/* DT P      B    */
1679	{ SST(0x23, 0x01, SS_FATAL | EINVAL,
1680	    "Invalid token operation, unsupported token type") },
1681	/* DT P      B    */
1682	{ SST(0x23, 0x02, SS_FATAL | EINVAL,
1683	    "Invalid token operation, remote token usage not supported") },
1684	/* DT P      B    */
1685	{ SST(0x23, 0x03, SS_FATAL | EINVAL,
1686	    "Invalid token operation, remote ROD token creation not supported") },
1687	/* DT P      B    */
1688	{ SST(0x23, 0x04, SS_FATAL | EINVAL,
1689	    "Invalid token operation, token unknown") },
1690	/* DT P      B    */
1691	{ SST(0x23, 0x05, SS_FATAL | EINVAL,
1692	    "Invalid token operation, token corrupt") },
1693	/* DT P      B    */
1694	{ SST(0x23, 0x06, SS_FATAL | EINVAL,
1695	    "Invalid token operation, token revoked") },
1696	/* DT P      B    */
1697	{ SST(0x23, 0x07, SS_FATAL | EINVAL,
1698	    "Invalid token operation, token expired") },
1699	/* DT P      B    */
1700	{ SST(0x23, 0x08, SS_FATAL | EINVAL,
1701	    "Invalid token operation, token cancelled") },
1702	/* DT P      B    */
1703	{ SST(0x23, 0x09, SS_FATAL | EINVAL,
1704	    "Invalid token operation, token deleted") },
1705	/* DT P      B    */
1706	{ SST(0x23, 0x0A, SS_FATAL | EINVAL,
1707	    "Invalid token operation, invalid token length") },
1708	/* DTLPWROMAEBKVF */
1709	{ SST(0x24, 0x00, SS_FATAL | EINVAL,
1710	    "Invalid field in CDB") },
1711	/* DTLPWRO AEBKVF */
1712	{ SST(0x24, 0x01, SS_RDEF,	/* XXX TBD */
1713	    "CDB decryption error") },
1714	/*  T             */
1715	{ SST(0x24, 0x02, SS_RDEF,	/* XXX TBD */
1716	    "Obsolete") },
1717	/*  T             */
1718	{ SST(0x24, 0x03, SS_RDEF,	/* XXX TBD */
1719	    "Obsolete") },
1720	/*              F */
1721	{ SST(0x24, 0x04, SS_RDEF,	/* XXX TBD */
1722	    "Security audit value frozen") },
1723	/*              F */
1724	{ SST(0x24, 0x05, SS_RDEF,	/* XXX TBD */
1725	    "Security working key frozen") },
1726	/*              F */
1727	{ SST(0x24, 0x06, SS_RDEF,	/* XXX TBD */
1728	    "NONCE not unique") },
1729	/*              F */
1730	{ SST(0x24, 0x07, SS_RDEF,	/* XXX TBD */
1731	    "NONCE timestamp out of range") },
1732	/* DT   R MAEBKV  */
1733	{ SST(0x24, 0x08, SS_RDEF,	/* XXX TBD */
1734	    "Invalid XCDB") },
1735	/* DTLPWROMAEBKVF */
1736	{ SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST,
1737	    "Logical unit not supported") },
1738	/* DTLPWROMAEBKVF */
1739	{ SST(0x26, 0x00, SS_FATAL | EINVAL,
1740	    "Invalid field in parameter list") },
1741	/* DTLPWROMAEBKVF */
1742	{ SST(0x26, 0x01, SS_FATAL | EINVAL,
1743	    "Parameter not supported") },
1744	/* DTLPWROMAEBKVF */
1745	{ SST(0x26, 0x02, SS_FATAL | EINVAL,
1746	    "Parameter value invalid") },
1747	/* DTLPWROMAE K   */
1748	{ SST(0x26, 0x03, SS_FATAL | EINVAL,
1749	    "Threshold parameters not supported") },
1750	/* DTLPWROMAEBKVF */
1751	{ SST(0x26, 0x04, SS_FATAL | EINVAL,
1752	    "Invalid release of persistent reservation") },
1753	/* DTLPWRO A BK   */
1754	{ SST(0x26, 0x05, SS_RDEF,	/* XXX TBD */
1755	    "Data decryption error") },
1756	/* DTLPWRO    K   */
1757	{ SST(0x26, 0x06, SS_FATAL | EINVAL,
1758	    "Too many target descriptors") },
1759	/* DTLPWRO    K   */
1760	{ SST(0x26, 0x07, SS_FATAL | EINVAL,
1761	    "Unsupported target descriptor type code") },
1762	/* DTLPWRO    K   */
1763	{ SST(0x26, 0x08, SS_FATAL | EINVAL,
1764	    "Too many segment descriptors") },
1765	/* DTLPWRO    K   */
1766	{ SST(0x26, 0x09, SS_FATAL | EINVAL,
1767	    "Unsupported segment descriptor type code") },
1768	/* DTLPWRO    K   */
1769	{ SST(0x26, 0x0A, SS_FATAL | EINVAL,
1770	    "Unexpected inexact segment") },
1771	/* DTLPWRO    K   */
1772	{ SST(0x26, 0x0B, SS_FATAL | EINVAL,
1773	    "Inline data length exceeded") },
1774	/* DTLPWRO    K   */
1775	{ SST(0x26, 0x0C, SS_FATAL | EINVAL,
1776	    "Invalid operation for copy source or destination") },
1777	/* DTLPWRO    K   */
1778	{ SST(0x26, 0x0D, SS_FATAL | EINVAL,
1779	    "Copy segment granularity violation") },
1780	/* DT PWROMAEBK   */
1781	{ SST(0x26, 0x0E, SS_RDEF,	/* XXX TBD */
1782	    "Invalid parameter while port is enabled") },
1783	/*              F */
1784	{ SST(0x26, 0x0F, SS_RDEF,	/* XXX TBD */
1785	    "Invalid data-out buffer integrity check value") },
1786	/*  T             */
1787	{ SST(0x26, 0x10, SS_RDEF,	/* XXX TBD */
1788	    "Data decryption key fail limit reached") },
1789	/*  T             */
1790	{ SST(0x26, 0x11, SS_RDEF,	/* XXX TBD */
1791	    "Incomplete key-associated data set") },
1792	/*  T             */
1793	{ SST(0x26, 0x12, SS_RDEF,	/* XXX TBD */
1794	    "Vendor specific key reference not found") },
1795	/* D              */
1796	{ SST(0x26, 0x13, SS_RDEF,	/* XXX TBD */
1797	    "Application tag mode page is invalid") },
1798	/* DT  WRO   BK   */
1799	{ SST(0x27, 0x00, SS_FATAL | EACCES,
1800	    "Write protected") },
1801	/* DT  WRO   BK   */
1802	{ SST(0x27, 0x01, SS_FATAL | EACCES,
1803	    "Hardware write protected") },
1804	/* DT  WRO   BK   */
1805	{ SST(0x27, 0x02, SS_FATAL | EACCES,
1806	    "Logical unit software write protected") },
1807	/*  T   R         */
1808	{ SST(0x27, 0x03, SS_FATAL | EACCES,
1809	    "Associated write protect") },
1810	/*  T   R         */
1811	{ SST(0x27, 0x04, SS_FATAL | EACCES,
1812	    "Persistent write protect") },
1813	/*  T   R         */
1814	{ SST(0x27, 0x05, SS_FATAL | EACCES,
1815	    "Permanent write protect") },
1816	/*      R       F */
1817	{ SST(0x27, 0x06, SS_RDEF,	/* XXX TBD */
1818	    "Conditional write protect") },
1819	/* D         B    */
1820	{ SST(0x27, 0x07, SS_FATAL | ENOSPC,
1821	    "Space allocation failed write protect") },
1822	/* D              */
1823	{ SST(0x27, 0x08, SS_FATAL | EACCES,
1824	    "Zone is read only") },
1825	/* DTLPWROMAEBKVF */
1826	{ SST(0x28, 0x00, SS_FATAL | ENXIO,
1827	    "Not ready to ready change, medium may have changed") },
1828	/* DT  WROM  B    */
1829	{ SST(0x28, 0x01, SS_FATAL | ENXIO,
1830	    "Import or export element accessed") },
1831	/*      R         */
1832	{ SST(0x28, 0x02, SS_RDEF,	/* XXX TBD */
1833	    "Format-layer may have changed") },
1834	/*        M       */
1835	{ SST(0x28, 0x03, SS_RDEF,	/* XXX TBD */
1836	    "Import/export element accessed, medium changed") },
1837	/*
1838	 * XXX JGibbs - All of these should use the same errno, but I don't
1839	 * think ENXIO is the correct choice.  Should we borrow from
1840	 * the networking errnos?  ECONNRESET anyone?
1841	 */
1842	/* DTLPWROMAEBKVF */
1843	{ SST(0x29, 0x00, SS_FATAL | ENXIO,
1844	    "Power on, reset, or bus device reset occurred") },
1845	/* DTLPWROMAEBKVF */
1846	{ SST(0x29, 0x01, SS_RDEF,
1847	    "Power on occurred") },
1848	/* DTLPWROMAEBKVF */
1849	{ SST(0x29, 0x02, SS_RDEF,
1850	    "SCSI bus reset occurred") },
1851	/* DTLPWROMAEBKVF */
1852	{ SST(0x29, 0x03, SS_RDEF,
1853	    "Bus device reset function occurred") },
1854	/* DTLPWROMAEBKVF */
1855	{ SST(0x29, 0x04, SS_RDEF,
1856	    "Device internal reset") },
1857	/* DTLPWROMAEBKVF */
1858	{ SST(0x29, 0x05, SS_RDEF,
1859	    "Transceiver mode changed to single-ended") },
1860	/* DTLPWROMAEBKVF */
1861	{ SST(0x29, 0x06, SS_RDEF,
1862	    "Transceiver mode changed to LVD") },
1863	/* DTLPWROMAEBKVF */
1864	{ SST(0x29, 0x07, SS_RDEF,	/* XXX TBD */
1865	    "I_T nexus loss occurred") },
1866	/* DTL WROMAEBKVF */
1867	{ SST(0x2A, 0x00, SS_RDEF,
1868	    "Parameters changed") },
1869	/* DTL WROMAEBKVF */
1870	{ SST(0x2A, 0x01, SS_RDEF,
1871	    "Mode parameters changed") },
1872	/* DTL WROMAE K   */
1873	{ SST(0x2A, 0x02, SS_RDEF,
1874	    "Log parameters changed") },
1875	/* DTLPWROMAE K   */
1876	{ SST(0x2A, 0x03, SS_RDEF,
1877	    "Reservations preempted") },
1878	/* DTLPWROMAE     */
1879	{ SST(0x2A, 0x04, SS_RDEF,	/* XXX TBD */
1880	    "Reservations released") },
1881	/* DTLPWROMAE     */
1882	{ SST(0x2A, 0x05, SS_RDEF,	/* XXX TBD */
1883	    "Registrations preempted") },
1884	/* DTLPWROMAEBKVF */
1885	{ SST(0x2A, 0x06, SS_RDEF,	/* XXX TBD */
1886	    "Asymmetric access state changed") },
1887	/* DTLPWROMAEBKVF */
1888	{ SST(0x2A, 0x07, SS_RDEF,	/* XXX TBD */
1889	    "Implicit asymmetric access state transition failed") },
1890	/* DT  WROMAEBKVF */
1891	{ SST(0x2A, 0x08, SS_RDEF,	/* XXX TBD */
1892	    "Priority changed") },
1893	/* D              */
1894	{ SST(0x2A, 0x09, SS_RDEF,	/* XXX TBD */
1895	    "Capacity data has changed") },
1896	/* DT             */
1897	{ SST(0x2A, 0x0A, SS_RDEF,	/* XXX TBD */
1898	    "Error history I_T nexus cleared") },
1899	/* DT             */
1900	{ SST(0x2A, 0x0B, SS_RDEF,	/* XXX TBD */
1901	    "Error history snapshot released") },
1902	/*              F */
1903	{ SST(0x2A, 0x0C, SS_RDEF,	/* XXX TBD */
1904	    "Error recovery attributes have changed") },
1905	/*  T             */
1906	{ SST(0x2A, 0x0D, SS_RDEF,	/* XXX TBD */
1907	    "Data encryption capabilities changed") },
1908	/* DT     M E  V  */
1909	{ SST(0x2A, 0x10, SS_RDEF,	/* XXX TBD */
1910	    "Timestamp changed") },
1911	/*  T             */
1912	{ SST(0x2A, 0x11, SS_RDEF,	/* XXX TBD */
1913	    "Data encryption parameters changed by another I_T nexus") },
1914	/*  T             */
1915	{ SST(0x2A, 0x12, SS_RDEF,	/* XXX TBD */
1916	    "Data encryption parameters changed by vendor specific event") },
1917	/*  T             */
1918	{ SST(0x2A, 0x13, SS_RDEF,	/* XXX TBD */
1919	    "Data encryption key instance counter has changed") },
1920	/* DT   R MAEBKV  */
1921	{ SST(0x2A, 0x14, SS_RDEF,	/* XXX TBD */
1922	    "SA creation capabilities data has changed") },
1923	/*  T     M    V  */
1924	{ SST(0x2A, 0x15, SS_RDEF,	/* XXX TBD */
1925	    "Medium removal prevention preempted") },
1926	/* DTLPWRO    K   */
1927	{ SST(0x2B, 0x00, SS_RDEF,
1928	    "Copy cannot execute since host cannot disconnect") },
1929	/* DTLPWROMAEBKVF */
1930	{ SST(0x2C, 0x00, SS_RDEF,
1931	    "Command sequence error") },
1932	/*                */
1933	{ SST(0x2C, 0x01, SS_RDEF,
1934	    "Too many windows specified") },
1935	/*                */
1936	{ SST(0x2C, 0x02, SS_RDEF,
1937	    "Invalid combination of windows specified") },
1938	/*      R         */
1939	{ SST(0x2C, 0x03, SS_RDEF,
1940	    "Current program area is not empty") },
1941	/*      R         */
1942	{ SST(0x2C, 0x04, SS_RDEF,
1943	    "Current program area is empty") },
1944	/*           B    */
1945	{ SST(0x2C, 0x05, SS_RDEF,	/* XXX TBD */
1946	    "Illegal power condition request") },
1947	/*      R         */
1948	{ SST(0x2C, 0x06, SS_RDEF,	/* XXX TBD */
1949	    "Persistent prevent conflict") },
1950	/* DTLPWROMAEBKVF */
1951	{ SST(0x2C, 0x07, SS_RDEF,	/* XXX TBD */
1952	    "Previous busy status") },
1953	/* DTLPWROMAEBKVF */
1954	{ SST(0x2C, 0x08, SS_RDEF,	/* XXX TBD */
1955	    "Previous task set full status") },
1956	/* DTLPWROM EBKVF */
1957	{ SST(0x2C, 0x09, SS_RDEF,	/* XXX TBD */
1958	    "Previous reservation conflict status") },
1959	/*              F */
1960	{ SST(0x2C, 0x0A, SS_RDEF,	/* XXX TBD */
1961	    "Partition or collection contains user objects") },
1962	/*  T             */
1963	{ SST(0x2C, 0x0B, SS_RDEF,	/* XXX TBD */
1964	    "Not reserved") },
1965	/* D              */
1966	{ SST(0x2C, 0x0C, SS_RDEF,	/* XXX TBD */
1967	    "ORWRITE generation does not match") },
1968	/* D              */
1969	{ SST(0x2C, 0x0D, SS_RDEF,	/* XXX TBD */
1970	    "Reset write pointer not allowed") },
1971	/* D              */
1972	{ SST(0x2C, 0x0E, SS_RDEF,	/* XXX TBD */
1973	    "Zone is offline") },
1974	/* D              */
1975	{ SST(0x2C, 0x0F, SS_RDEF,	/* XXX TBD */
1976	    "Stream not open") },
1977	/* D              */
1978	{ SST(0x2C, 0x10, SS_RDEF,	/* XXX TBD */
1979	    "Unwritten data in zone") },
1980	/*  T             */
1981	{ SST(0x2D, 0x00, SS_RDEF,
1982	    "Overwrite error on update in place") },
1983	/*      R         */
1984	{ SST(0x2E, 0x00, SS_RDEF,	/* XXX TBD */
1985	    "Insufficient time for operation") },
1986	/* D              */
1987	{ SST(0x2E, 0x01, SS_RDEF,	/* XXX TBD */
1988	    "Command timeout before processing") },
1989	/* D              */
1990	{ SST(0x2E, 0x02, SS_RDEF,	/* XXX TBD */
1991	    "Command timeout during processing") },
1992	/* D              */
1993	{ SST(0x2E, 0x03, SS_RDEF,	/* XXX TBD */
1994	    "Command timeout during processing due to error recovery") },
1995	/* DTLPWROMAEBKVF */
1996	{ SST(0x2F, 0x00, SS_RDEF,
1997	    "Commands cleared by another initiator") },
1998	/* D              */
1999	{ SST(0x2F, 0x01, SS_RDEF,	/* XXX TBD */
2000	    "Commands cleared by power loss notification") },
2001	/* DTLPWROMAEBKVF */
2002	{ SST(0x2F, 0x02, SS_RDEF,	/* XXX TBD */
2003	    "Commands cleared by device server") },
2004	/* DTLPWROMAEBKVF */
2005	{ SST(0x2F, 0x03, SS_RDEF,	/* XXX TBD */
2006	    "Some commands cleared by queuing layer event") },
2007	/* DT  WROM  BK   */
2008	{ SST(0x30, 0x00, SS_RDEF,
2009	    "Incompatible medium installed") },
2010	/* DT  WRO   BK   */
2011	{ SST(0x30, 0x01, SS_RDEF,
2012	    "Cannot read medium - unknown format") },
2013	/* DT  WRO   BK   */
2014	{ SST(0x30, 0x02, SS_RDEF,
2015	    "Cannot read medium - incompatible format") },
2016	/* DT   R     K   */
2017	{ SST(0x30, 0x03, SS_RDEF,
2018	    "Cleaning cartridge installed") },
2019	/* DT  WRO   BK   */
2020	{ SST(0x30, 0x04, SS_RDEF,
2021	    "Cannot write medium - unknown format") },
2022	/* DT  WRO   BK   */
2023	{ SST(0x30, 0x05, SS_RDEF,
2024	    "Cannot write medium - incompatible format") },
2025	/* DT  WRO   B    */
2026	{ SST(0x30, 0x06, SS_RDEF,
2027	    "Cannot format medium - incompatible medium") },
2028	/* DTL WROMAEBKVF */
2029	{ SST(0x30, 0x07, SS_RDEF,
2030	    "Cleaning failure") },
2031	/*      R         */
2032	{ SST(0x30, 0x08, SS_RDEF,
2033	    "Cannot write - application code mismatch") },
2034	/*      R         */
2035	{ SST(0x30, 0x09, SS_RDEF,
2036	    "Current session not fixated for append") },
2037	/* DT  WRO AEBK   */
2038	{ SST(0x30, 0x0A, SS_RDEF,	/* XXX TBD */
2039	    "Cleaning request rejected") },
2040	/*  T             */
2041	{ SST(0x30, 0x0C, SS_RDEF,	/* XXX TBD */
2042	    "WORM medium - overwrite attempted") },
2043	/*  T             */
2044	{ SST(0x30, 0x0D, SS_RDEF,	/* XXX TBD */
2045	    "WORM medium - integrity check") },
2046	/*      R         */
2047	{ SST(0x30, 0x10, SS_RDEF,	/* XXX TBD */
2048	    "Medium not formatted") },
2049	/*        M       */
2050	{ SST(0x30, 0x11, SS_RDEF,	/* XXX TBD */
2051	    "Incompatible volume type") },
2052	/*        M       */
2053	{ SST(0x30, 0x12, SS_RDEF,	/* XXX TBD */
2054	    "Incompatible volume qualifier") },
2055	/*        M       */
2056	{ SST(0x30, 0x13, SS_RDEF,	/* XXX TBD */
2057	    "Cleaning volume expired") },
2058	/* DT  WRO   BK   */
2059	{ SST(0x31, 0x00, SS_RDEF,
2060	    "Medium format corrupted") },
2061	/* D L  RO   B    */
2062	{ SST(0x31, 0x01, SS_RDEF,
2063	    "Format command failed") },
2064	/*      R         */
2065	{ SST(0x31, 0x02, SS_RDEF,	/* XXX TBD */
2066	    "Zoned formatting failed due to spare linking") },
2067	/* D         B    */
2068	{ SST(0x31, 0x03, SS_RDEF,	/* XXX TBD */
2069	    "SANITIZE command failed") },
2070	/* D   W O   BK   */
2071	{ SST(0x32, 0x00, SS_RDEF,
2072	    "No defect spare location available") },
2073	/* D   W O   BK   */
2074	{ SST(0x32, 0x01, SS_RDEF,
2075	    "Defect list update failure") },
2076	/*  T             */
2077	{ SST(0x33, 0x00, SS_RDEF,
2078	    "Tape length error") },
2079	/* DTLPWROMAEBKVF */
2080	{ SST(0x34, 0x00, SS_RDEF,
2081	    "Enclosure failure") },
2082	/* DTLPWROMAEBKVF */
2083	{ SST(0x35, 0x00, SS_RDEF,
2084	    "Enclosure services failure") },
2085	/* DTLPWROMAEBKVF */
2086	{ SST(0x35, 0x01, SS_RDEF,
2087	    "Unsupported enclosure function") },
2088	/* DTLPWROMAEBKVF */
2089	{ SST(0x35, 0x02, SS_RDEF,
2090	    "Enclosure services unavailable") },
2091	/* DTLPWROMAEBKVF */
2092	{ SST(0x35, 0x03, SS_RDEF,
2093	    "Enclosure services transfer failure") },
2094	/* DTLPWROMAEBKVF */
2095	{ SST(0x35, 0x04, SS_RDEF,
2096	    "Enclosure services transfer refused") },
2097	/* DTL WROMAEBKVF */
2098	{ SST(0x35, 0x05, SS_RDEF,	/* XXX TBD */
2099	    "Enclosure services checksum error") },
2100	/*   L            */
2101	{ SST(0x36, 0x00, SS_RDEF,
2102	    "Ribbon, ink, or toner failure") },
2103	/* DTL WROMAEBKVF */
2104	{ SST(0x37, 0x00, SS_RDEF,
2105	    "Rounded parameter") },
2106	/*           B    */
2107	{ SST(0x38, 0x00, SS_RDEF,	/* XXX TBD */
2108	    "Event status notification") },
2109	/*           B    */
2110	{ SST(0x38, 0x02, SS_RDEF,	/* XXX TBD */
2111	    "ESN - power management class event") },
2112	/*           B    */
2113	{ SST(0x38, 0x04, SS_RDEF,	/* XXX TBD */
2114	    "ESN - media class event") },
2115	/*           B    */
2116	{ SST(0x38, 0x06, SS_RDEF,	/* XXX TBD */
2117	    "ESN - device busy class event") },
2118	/* D              */
2119	{ SST(0x38, 0x07, SS_RDEF,	/* XXX TBD */
2120	    "Thin provisioning soft threshold reached") },
2121	/* DTL WROMAE K   */
2122	{ SST(0x39, 0x00, SS_RDEF,
2123	    "Saving parameters not supported") },
2124	/* DTL WROM  BK   */
2125	{ SST(0x3A, 0x00, SS_FATAL | ENXIO,
2126	    "Medium not present") },
2127	/* DT  WROM  BK   */
2128	{ SST(0x3A, 0x01, SS_FATAL | ENXIO,
2129	    "Medium not present - tray closed") },
2130	/* DT  WROM  BK   */
2131	{ SST(0x3A, 0x02, SS_FATAL | ENXIO,
2132	    "Medium not present - tray open") },
2133	/* DT  WROM  B    */
2134	{ SST(0x3A, 0x03, SS_RDEF,	/* XXX TBD */
2135	    "Medium not present - loadable") },
2136	/* DT  WRO   B    */
2137	{ SST(0x3A, 0x04, SS_RDEF,	/* XXX TBD */
2138	    "Medium not present - medium auxiliary memory accessible") },
2139	/*  TL            */
2140	{ SST(0x3B, 0x00, SS_RDEF,
2141	    "Sequential positioning error") },
2142	/*  T             */
2143	{ SST(0x3B, 0x01, SS_RDEF,
2144	    "Tape position error at beginning-of-medium") },
2145	/*  T             */
2146	{ SST(0x3B, 0x02, SS_RDEF,
2147	    "Tape position error at end-of-medium") },
2148	/*   L            */
2149	{ SST(0x3B, 0x03, SS_RDEF,
2150	    "Tape or electronic vertical forms unit not ready") },
2151	/*   L            */
2152	{ SST(0x3B, 0x04, SS_RDEF,
2153	    "Slew failure") },
2154	/*   L            */
2155	{ SST(0x3B, 0x05, SS_RDEF,
2156	    "Paper jam") },
2157	/*   L            */
2158	{ SST(0x3B, 0x06, SS_RDEF,
2159	    "Failed to sense top-of-form") },
2160	/*   L            */
2161	{ SST(0x3B, 0x07, SS_RDEF,
2162	    "Failed to sense bottom-of-form") },
2163	/*  T             */
2164	{ SST(0x3B, 0x08, SS_RDEF,
2165	    "Reposition error") },
2166	/*                */
2167	{ SST(0x3B, 0x09, SS_RDEF,
2168	    "Read past end of medium") },
2169	/*                */
2170	{ SST(0x3B, 0x0A, SS_RDEF,
2171	    "Read past beginning of medium") },
2172	/*                */
2173	{ SST(0x3B, 0x0B, SS_RDEF,
2174	    "Position past end of medium") },
2175	/*  T             */
2176	{ SST(0x3B, 0x0C, SS_RDEF,
2177	    "Position past beginning of medium") },
2178	/* DT  WROM  BK   */
2179	{ SST(0x3B, 0x0D, SS_FATAL | ENOSPC,
2180	    "Medium destination element full") },
2181	/* DT  WROM  BK   */
2182	{ SST(0x3B, 0x0E, SS_RDEF,
2183	    "Medium source element empty") },
2184	/*      R         */
2185	{ SST(0x3B, 0x0F, SS_RDEF,
2186	    "End of medium reached") },
2187	/* DT  WROM  BK   */
2188	{ SST(0x3B, 0x11, SS_RDEF,
2189	    "Medium magazine not accessible") },
2190	/* DT  WROM  BK   */
2191	{ SST(0x3B, 0x12, SS_RDEF,
2192	    "Medium magazine removed") },
2193	/* DT  WROM  BK   */
2194	{ SST(0x3B, 0x13, SS_RDEF,
2195	    "Medium magazine inserted") },
2196	/* DT  WROM  BK   */
2197	{ SST(0x3B, 0x14, SS_RDEF,
2198	    "Medium magazine locked") },
2199	/* DT  WROM  BK   */
2200	{ SST(0x3B, 0x15, SS_RDEF,
2201	    "Medium magazine unlocked") },
2202	/*      R         */
2203	{ SST(0x3B, 0x16, SS_RDEF,	/* XXX TBD */
2204	    "Mechanical positioning or changer error") },
2205	/*              F */
2206	{ SST(0x3B, 0x17, SS_RDEF,	/* XXX TBD */
2207	    "Read past end of user object") },
2208	/*        M       */
2209	{ SST(0x3B, 0x18, SS_RDEF,	/* XXX TBD */
2210	    "Element disabled") },
2211	/*        M       */
2212	{ SST(0x3B, 0x19, SS_RDEF,	/* XXX TBD */
2213	    "Element enabled") },
2214	/*        M       */
2215	{ SST(0x3B, 0x1A, SS_RDEF,	/* XXX TBD */
2216	    "Data transfer device removed") },
2217	/*        M       */
2218	{ SST(0x3B, 0x1B, SS_RDEF,	/* XXX TBD */
2219	    "Data transfer device inserted") },
2220	/*  T             */
2221	{ SST(0x3B, 0x1C, SS_RDEF,	/* XXX TBD */
2222	    "Too many logical objects on partition to support operation") },
2223	/* DTLPWROMAE K   */
2224	{ SST(0x3D, 0x00, SS_RDEF,
2225	    "Invalid bits in IDENTIFY message") },
2226	/* DTLPWROMAEBKVF */
2227	{ SST(0x3E, 0x00, SS_RDEF,
2228	    "Logical unit has not self-configured yet") },
2229	/* DTLPWROMAEBKVF */
2230	{ SST(0x3E, 0x01, SS_RDEF,
2231	    "Logical unit failure") },
2232	/* DTLPWROMAEBKVF */
2233	{ SST(0x3E, 0x02, SS_RDEF,
2234	    "Timeout on logical unit") },
2235	/* DTLPWROMAEBKVF */
2236	{ SST(0x3E, 0x03, SS_RDEF,	/* XXX TBD */
2237	    "Logical unit failed self-test") },
2238	/* DTLPWROMAEBKVF */
2239	{ SST(0x3E, 0x04, SS_RDEF,	/* XXX TBD */
2240	    "Logical unit unable to update self-test log") },
2241	/* DTLPWROMAEBKVF */
2242	{ SST(0x3F, 0x00, SS_RDEF,
2243	    "Target operating conditions have changed") },
2244	/* DTLPWROMAEBKVF */
2245	{ SST(0x3F, 0x01, SS_RDEF,
2246	    "Microcode has been changed") },
2247	/* DTLPWROM  BK   */
2248	{ SST(0x3F, 0x02, SS_RDEF,
2249	    "Changed operating definition") },
2250	/* DTLPWROMAEBKVF */
2251	{ SST(0x3F, 0x03, SS_RDEF,
2252	    "INQUIRY data has changed") },
2253	/* DT  WROMAEBK   */
2254	{ SST(0x3F, 0x04, SS_RDEF,
2255	    "Component device attached") },
2256	/* DT  WROMAEBK   */
2257	{ SST(0x3F, 0x05, SS_RDEF,
2258	    "Device identifier changed") },
2259	/* DT  WROMAEB    */
2260	{ SST(0x3F, 0x06, SS_RDEF,
2261	    "Redundancy group created or modified") },
2262	/* DT  WROMAEB    */
2263	{ SST(0x3F, 0x07, SS_RDEF,
2264	    "Redundancy group deleted") },
2265	/* DT  WROMAEB    */
2266	{ SST(0x3F, 0x08, SS_RDEF,
2267	    "Spare created or modified") },
2268	/* DT  WROMAEB    */
2269	{ SST(0x3F, 0x09, SS_RDEF,
2270	    "Spare deleted") },
2271	/* DT  WROMAEBK   */
2272	{ SST(0x3F, 0x0A, SS_RDEF,
2273	    "Volume set created or modified") },
2274	/* DT  WROMAEBK   */
2275	{ SST(0x3F, 0x0B, SS_RDEF,
2276	    "Volume set deleted") },
2277	/* DT  WROMAEBK   */
2278	{ SST(0x3F, 0x0C, SS_RDEF,
2279	    "Volume set deassigned") },
2280	/* DT  WROMAEBK   */
2281	{ SST(0x3F, 0x0D, SS_RDEF,
2282	    "Volume set reassigned") },
2283	/* DTLPWROMAE     */
2284	{ SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN ,
2285	    "Reported LUNs data has changed") },
2286	/* DTLPWROMAEBKVF */
2287	{ SST(0x3F, 0x0F, SS_RDEF,	/* XXX TBD */
2288	    "Echo buffer overwritten") },
2289	/* DT  WROM  B    */
2290	{ SST(0x3F, 0x10, SS_RDEF,	/* XXX TBD */
2291	    "Medium loadable") },
2292	/* DT  WROM  B    */
2293	{ SST(0x3F, 0x11, SS_RDEF,	/* XXX TBD */
2294	    "Medium auxiliary memory accessible") },
2295	/* DTLPWR MAEBK F */
2296	{ SST(0x3F, 0x12, SS_RDEF,	/* XXX TBD */
2297	    "iSCSI IP address added") },
2298	/* DTLPWR MAEBK F */
2299	{ SST(0x3F, 0x13, SS_RDEF,	/* XXX TBD */
2300	    "iSCSI IP address removed") },
2301	/* DTLPWR MAEBK F */
2302	{ SST(0x3F, 0x14, SS_RDEF,	/* XXX TBD */
2303	    "iSCSI IP address changed") },
2304	/* DTLPWR MAEBK   */
2305	{ SST(0x3F, 0x15, SS_RDEF,	/* XXX TBD */
2306	    "Inspect referrals sense descriptors") },
2307	/* DTLPWROMAEBKVF */
2308	{ SST(0x3F, 0x16, SS_RDEF,	/* XXX TBD */
2309	    "Microcode has been changed without reset") },
2310	/* D              */
2311	{ SST(0x3F, 0x17, SS_RDEF,	/* XXX TBD */
2312	    "Zone transition to full") },
2313	/* D              */
2314	{ SST(0x40, 0x00, SS_RDEF,
2315	    "RAM failure") },		/* deprecated - use 40 NN instead */
2316	/* DTLPWROMAEBKVF */
2317	{ SST(0x40, 0x80, SS_RDEF,
2318	    "Diagnostic failure: ASCQ = Component ID") },
2319	/* DTLPWROMAEBKVF */
2320	{ SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE,
2321	    NULL) },			/* Range 0x80->0xFF */
2322	/* D              */
2323	{ SST(0x41, 0x00, SS_RDEF,
2324	    "Data path failure") },	/* deprecated - use 40 NN instead */
2325	/* D              */
2326	{ SST(0x42, 0x00, SS_RDEF,
2327	    "Power-on or self-test failure") },
2328					/* deprecated - use 40 NN instead */
2329	/* DTLPWROMAEBKVF */
2330	{ SST(0x43, 0x00, SS_RDEF,
2331	    "Message error") },
2332	/* DTLPWROMAEBKVF */
2333	{ SST(0x44, 0x00, SS_RDEF,
2334	    "Internal target failure") },
2335	/* DT P   MAEBKVF */
2336	{ SST(0x44, 0x01, SS_RDEF,	/* XXX TBD */
2337	    "Persistent reservation information lost") },
2338	/* DT        B    */
2339	{ SST(0x44, 0x71, SS_RDEF,	/* XXX TBD */
2340	    "ATA device failed set features") },
2341	/* DTLPWROMAEBKVF */
2342	{ SST(0x45, 0x00, SS_RDEF,
2343	    "Select or reselect failure") },
2344	/* DTLPWROM  BK   */
2345	{ SST(0x46, 0x00, SS_RDEF,
2346	    "Unsuccessful soft reset") },
2347	/* DTLPWROMAEBKVF */
2348	{ SST(0x47, 0x00, SS_RDEF,
2349	    "SCSI parity error") },
2350	/* DTLPWROMAEBKVF */
2351	{ SST(0x47, 0x01, SS_RDEF,	/* XXX TBD */
2352	    "Data phase CRC error detected") },
2353	/* DTLPWROMAEBKVF */
2354	{ SST(0x47, 0x02, SS_RDEF,	/* XXX TBD */
2355	    "SCSI parity error detected during ST data phase") },
2356	/* DTLPWROMAEBKVF */
2357	{ SST(0x47, 0x03, SS_RDEF,	/* XXX TBD */
2358	    "Information unit iuCRC error detected") },
2359	/* DTLPWROMAEBKVF */
2360	{ SST(0x47, 0x04, SS_RDEF,	/* XXX TBD */
2361	    "Asynchronous information protection error detected") },
2362	/* DTLPWROMAEBKVF */
2363	{ SST(0x47, 0x05, SS_RDEF,	/* XXX TBD */
2364	    "Protocol service CRC error") },
2365	/* DT     MAEBKVF */
2366	{ SST(0x47, 0x06, SS_RDEF,	/* XXX TBD */
2367	    "PHY test function in progress") },
2368	/* DT PWROMAEBK   */
2369	{ SST(0x47, 0x7F, SS_RDEF,	/* XXX TBD */
2370	    "Some commands cleared by iSCSI protocol event") },
2371	/* DTLPWROMAEBKVF */
2372	{ SST(0x48, 0x00, SS_RDEF,
2373	    "Initiator detected error message received") },
2374	/* DTLPWROMAEBKVF */
2375	{ SST(0x49, 0x00, SS_RDEF,
2376	    "Invalid message error") },
2377	/* DTLPWROMAEBKVF */
2378	{ SST(0x4A, 0x00, SS_RDEF,
2379	    "Command phase error") },
2380	/* DTLPWROMAEBKVF */
2381	{ SST(0x4B, 0x00, SS_RDEF,
2382	    "Data phase error") },
2383	/* DT PWROMAEBK   */
2384	{ SST(0x4B, 0x01, SS_RDEF,	/* XXX TBD */
2385	    "Invalid target port transfer tag received") },
2386	/* DT PWROMAEBK   */
2387	{ SST(0x4B, 0x02, SS_RDEF,	/* XXX TBD */
2388	    "Too much write data") },
2389	/* DT PWROMAEBK   */
2390	{ SST(0x4B, 0x03, SS_RDEF,	/* XXX TBD */
2391	    "ACK/NAK timeout") },
2392	/* DT PWROMAEBK   */
2393	{ SST(0x4B, 0x04, SS_RDEF,	/* XXX TBD */
2394	    "NAK received") },
2395	/* DT PWROMAEBK   */
2396	{ SST(0x4B, 0x05, SS_RDEF,	/* XXX TBD */
2397	    "Data offset error") },
2398	/* DT PWROMAEBK   */
2399	{ SST(0x4B, 0x06, SS_RDEF,	/* XXX TBD */
2400	    "Initiator response timeout") },
2401	/* DT PWROMAEBK F */
2402	{ SST(0x4B, 0x07, SS_RDEF,	/* XXX TBD */
2403	    "Connection lost") },
2404	/* DT PWROMAEBK F */
2405	{ SST(0x4B, 0x08, SS_RDEF,	/* XXX TBD */
2406	    "Data-in buffer overflow - data buffer size") },
2407	/* DT PWROMAEBK F */
2408	{ SST(0x4B, 0x09, SS_RDEF,	/* XXX TBD */
2409	    "Data-in buffer overflow - data buffer descriptor area") },
2410	/* DT PWROMAEBK F */
2411	{ SST(0x4B, 0x0A, SS_RDEF,	/* XXX TBD */
2412	    "Data-in buffer error") },
2413	/* DT PWROMAEBK F */
2414	{ SST(0x4B, 0x0B, SS_RDEF,	/* XXX TBD */
2415	    "Data-out buffer overflow - data buffer size") },
2416	/* DT PWROMAEBK F */
2417	{ SST(0x4B, 0x0C, SS_RDEF,	/* XXX TBD */
2418	    "Data-out buffer overflow - data buffer descriptor area") },
2419	/* DT PWROMAEBK F */
2420	{ SST(0x4B, 0x0D, SS_RDEF,	/* XXX TBD */
2421	    "Data-out buffer error") },
2422	/* DT PWROMAEBK F */
2423	{ SST(0x4B, 0x0E, SS_RDEF,	/* XXX TBD */
2424	    "PCIe fabric error") },
2425	/* DT PWROMAEBK F */
2426	{ SST(0x4B, 0x0F, SS_RDEF,	/* XXX TBD */
2427	    "PCIe completion timeout") },
2428	/* DT PWROMAEBK F */
2429	{ SST(0x4B, 0x10, SS_RDEF,	/* XXX TBD */
2430	    "PCIe completer abort") },
2431	/* DT PWROMAEBK F */
2432	{ SST(0x4B, 0x11, SS_RDEF,	/* XXX TBD */
2433	    "PCIe poisoned TLP received") },
2434	/* DT PWROMAEBK F */
2435	{ SST(0x4B, 0x12, SS_RDEF,	/* XXX TBD */
2436	    "PCIe ECRC check failed") },
2437	/* DT PWROMAEBK F */
2438	{ SST(0x4B, 0x13, SS_RDEF,	/* XXX TBD */
2439	    "PCIe unsupported request") },
2440	/* DT PWROMAEBK F */
2441	{ SST(0x4B, 0x14, SS_RDEF,	/* XXX TBD */
2442	    "PCIe ACS violation") },
2443	/* DT PWROMAEBK F */
2444	{ SST(0x4B, 0x15, SS_RDEF,	/* XXX TBD */
2445	    "PCIe TLP prefix blocket") },
2446	/* DTLPWROMAEBKVF */
2447	{ SST(0x4C, 0x00, SS_RDEF,
2448	    "Logical unit failed self-configuration") },
2449	/* DTLPWROMAEBKVF */
2450	{ SST(0x4D, 0x00, SS_RDEF,
2451	    "Tagged overlapped commands: ASCQ = Queue tag ID") },
2452	/* DTLPWROMAEBKVF */
2453	{ SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE,
2454	    NULL) },			/* Range 0x00->0xFF */
2455	/* DTLPWROMAEBKVF */
2456	{ SST(0x4E, 0x00, SS_RDEF,
2457	    "Overlapped commands attempted") },
2458	/*  T             */
2459	{ SST(0x50, 0x00, SS_RDEF,
2460	    "Write append error") },
2461	/*  T             */
2462	{ SST(0x50, 0x01, SS_RDEF,
2463	    "Write append position error") },
2464	/*  T             */
2465	{ SST(0x50, 0x02, SS_RDEF,
2466	    "Position error related to timing") },
2467	/*  T   RO        */
2468	{ SST(0x51, 0x00, SS_RDEF,
2469	    "Erase failure") },
2470	/*      R         */
2471	{ SST(0x51, 0x01, SS_RDEF,	/* XXX TBD */
2472	    "Erase failure - incomplete erase operation detected") },
2473	/*  T             */
2474	{ SST(0x52, 0x00, SS_RDEF,
2475	    "Cartridge fault") },
2476	/* DTL WROM  BK   */
2477	{ SST(0x53, 0x00, SS_RDEF,
2478	    "Media load or eject failed") },
2479	/*  T             */
2480	{ SST(0x53, 0x01, SS_RDEF,
2481	    "Unload tape failure") },
2482	/* DT  WROM  BK   */
2483	{ SST(0x53, 0x02, SS_RDEF,
2484	    "Medium removal prevented") },
2485	/*        M       */
2486	{ SST(0x53, 0x03, SS_RDEF,	/* XXX TBD */
2487	    "Medium removal prevented by data transfer element") },
2488	/*  T             */
2489	{ SST(0x53, 0x04, SS_RDEF,	/* XXX TBD */
2490	    "Medium thread or unthread failure") },
2491	/*        M       */
2492	{ SST(0x53, 0x05, SS_RDEF,	/* XXX TBD */
2493	    "Volume identifier invalid") },
2494	/*  T             */
2495	{ SST(0x53, 0x06, SS_RDEF,	/* XXX TBD */
2496	    "Volume identifier missing") },
2497	/*        M       */
2498	{ SST(0x53, 0x07, SS_RDEF,	/* XXX TBD */
2499	    "Duplicate volume identifier") },
2500	/*        M       */
2501	{ SST(0x53, 0x08, SS_RDEF,	/* XXX TBD */
2502	    "Element status unknown") },
2503	/*        M       */
2504	{ SST(0x53, 0x09, SS_RDEF,	/* XXX TBD */
2505	    "Data transfer device error - load failed") },
2506	/*        M       */
2507	{ SST(0x53, 0x0A, SS_RDEF,	/* XXX TBD */
2508	    "Data transfer device error - unload failed") },
2509	/*        M       */
2510	{ SST(0x53, 0x0B, SS_RDEF,	/* XXX TBD */
2511	    "Data transfer device error - unload missing") },
2512	/*        M       */
2513	{ SST(0x53, 0x0C, SS_RDEF,	/* XXX TBD */
2514	    "Data transfer device error - eject failed") },
2515	/*        M       */
2516	{ SST(0x53, 0x0D, SS_RDEF,	/* XXX TBD */
2517	    "Data transfer device error - library communication failed") },
2518	/*    P           */
2519	{ SST(0x54, 0x00, SS_RDEF,
2520	    "SCSI to host system interface failure") },
2521	/*    P           */
2522	{ SST(0x55, 0x00, SS_RDEF,
2523	    "System resource failure") },
2524	/* D     O   BK   */
2525	{ SST(0x55, 0x01, SS_FATAL | ENOSPC,
2526	    "System buffer full") },
2527	/* DTLPWROMAE K   */
2528	{ SST(0x55, 0x02, SS_RDEF,	/* XXX TBD */
2529	    "Insufficient reservation resources") },
2530	/* DTLPWROMAE K   */
2531	{ SST(0x55, 0x03, SS_RDEF,	/* XXX TBD */
2532	    "Insufficient resources") },
2533	/* DTLPWROMAE K   */
2534	{ SST(0x55, 0x04, SS_RDEF,	/* XXX TBD */
2535	    "Insufficient registration resources") },
2536	/* DT PWROMAEBK   */
2537	{ SST(0x55, 0x05, SS_RDEF,	/* XXX TBD */
2538	    "Insufficient access control resources") },
2539	/* DT  WROM  B    */
2540	{ SST(0x55, 0x06, SS_RDEF,	/* XXX TBD */
2541	    "Auxiliary memory out of space") },
2542	/*              F */
2543	{ SST(0x55, 0x07, SS_RDEF,	/* XXX TBD */
2544	    "Quota error") },
2545	/*  T             */
2546	{ SST(0x55, 0x08, SS_RDEF,	/* XXX TBD */
2547	    "Maximum number of supplemental decryption keys exceeded") },
2548	/*        M       */
2549	{ SST(0x55, 0x09, SS_RDEF,	/* XXX TBD */
2550	    "Medium auxiliary memory not accessible") },
2551	/*        M       */
2552	{ SST(0x55, 0x0A, SS_RDEF,	/* XXX TBD */
2553	    "Data currently unavailable") },
2554	/* DTLPWROMAEBKVF */
2555	{ SST(0x55, 0x0B, SS_RDEF,	/* XXX TBD */
2556	    "Insufficient power for operation") },
2557	/* DT P      B    */
2558	{ SST(0x55, 0x0C, SS_RDEF,	/* XXX TBD */
2559	    "Insufficient resources to create ROD") },
2560	/* DT P      B    */
2561	{ SST(0x55, 0x0D, SS_RDEF,	/* XXX TBD */
2562	    "Insufficient resources to create ROD token") },
2563	/* D              */
2564	{ SST(0x55, 0x0E, SS_RDEF,	/* XXX TBD */
2565	    "Insufficient zone resources") },
2566	/* D              */
2567	{ SST(0x55, 0x0F, SS_RDEF,	/* XXX TBD */
2568	    "Insufficient zone resources to complete write") },
2569	/* D              */
2570	{ SST(0x55, 0x10, SS_RDEF,	/* XXX TBD */
2571	    "Maximum number of streams open") },
2572	/*      R         */
2573	{ SST(0x57, 0x00, SS_RDEF,
2574	    "Unable to recover table-of-contents") },
2575	/*       O        */
2576	{ SST(0x58, 0x00, SS_RDEF,
2577	    "Generation does not exist") },
2578	/*       O        */
2579	{ SST(0x59, 0x00, SS_RDEF,
2580	    "Updated block read") },
2581	/* DTLPWRO   BK   */
2582	{ SST(0x5A, 0x00, SS_RDEF,
2583	    "Operator request or state change input") },
2584	/* DT  WROM  BK   */
2585	{ SST(0x5A, 0x01, SS_RDEF,
2586	    "Operator medium removal request") },
2587	/* DT  WRO A BK   */
2588	{ SST(0x5A, 0x02, SS_RDEF,
2589	    "Operator selected write protect") },
2590	/* DT  WRO A BK   */
2591	{ SST(0x5A, 0x03, SS_RDEF,
2592	    "Operator selected write permit") },
2593	/* DTLPWROM   K   */
2594	{ SST(0x5B, 0x00, SS_RDEF,
2595	    "Log exception") },
2596	/* DTLPWROM   K   */
2597	{ SST(0x5B, 0x01, SS_RDEF,
2598	    "Threshold condition met") },
2599	/* DTLPWROM   K   */
2600	{ SST(0x5B, 0x02, SS_RDEF,
2601	    "Log counter at maximum") },
2602	/* DTLPWROM   K   */
2603	{ SST(0x5B, 0x03, SS_RDEF,
2604	    "Log list codes exhausted") },
2605	/* D     O        */
2606	{ SST(0x5C, 0x00, SS_RDEF,
2607	    "RPL status change") },
2608	/* D     O        */
2609	{ SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
2610	    "Spindles synchronized") },
2611	/* D     O        */
2612	{ SST(0x5C, 0x02, SS_RDEF,
2613	    "Spindles not synchronized") },
2614	/* DTLPWROMAEBKVF */
2615	{ SST(0x5D, 0x00, SS_NOP | SSQ_PRINT_SENSE,
2616	    "Failure prediction threshold exceeded") },
2617	/*      R    B    */
2618	{ SST(0x5D, 0x01, SS_NOP | SSQ_PRINT_SENSE,
2619	    "Media failure prediction threshold exceeded") },
2620	/*      R         */
2621	{ SST(0x5D, 0x02, SS_NOP | SSQ_PRINT_SENSE,
2622	    "Logical unit failure prediction threshold exceeded") },
2623	/*      R         */
2624	{ SST(0x5D, 0x03, SS_NOP | SSQ_PRINT_SENSE,
2625	    "Spare area exhaustion prediction threshold exceeded") },
2626	/* D         B    */
2627	{ SST(0x5D, 0x10, SS_NOP | SSQ_PRINT_SENSE,
2628	    "Hardware impending failure general hard drive failure") },
2629	/* D         B    */
2630	{ SST(0x5D, 0x11, SS_NOP | SSQ_PRINT_SENSE,
2631	    "Hardware impending failure drive error rate too high") },
2632	/* D         B    */
2633	{ SST(0x5D, 0x12, SS_NOP | SSQ_PRINT_SENSE,
2634	    "Hardware impending failure data error rate too high") },
2635	/* D         B    */
2636	{ SST(0x5D, 0x13, SS_NOP | SSQ_PRINT_SENSE,
2637	    "Hardware impending failure seek error rate too high") },
2638	/* D         B    */
2639	{ SST(0x5D, 0x14, SS_NOP | SSQ_PRINT_SENSE,
2640	    "Hardware impending failure too many block reassigns") },
2641	/* D         B    */
2642	{ SST(0x5D, 0x15, SS_NOP | SSQ_PRINT_SENSE,
2643	    "Hardware impending failure access times too high") },
2644	/* D         B    */
2645	{ SST(0x5D, 0x16, SS_NOP | SSQ_PRINT_SENSE,
2646	    "Hardware impending failure start unit times too high") },
2647	/* D         B    */
2648	{ SST(0x5D, 0x17, SS_NOP | SSQ_PRINT_SENSE,
2649	    "Hardware impending failure channel parametrics") },
2650	/* D         B    */
2651	{ SST(0x5D, 0x18, SS_NOP | SSQ_PRINT_SENSE,
2652	    "Hardware impending failure controller detected") },
2653	/* D         B    */
2654	{ SST(0x5D, 0x19, SS_NOP | SSQ_PRINT_SENSE,
2655	    "Hardware impending failure throughput performance") },
2656	/* D         B    */
2657	{ SST(0x5D, 0x1A, SS_NOP | SSQ_PRINT_SENSE,
2658	    "Hardware impending failure seek time performance") },
2659	/* D         B    */
2660	{ SST(0x5D, 0x1B, SS_NOP | SSQ_PRINT_SENSE,
2661	    "Hardware impending failure spin-up retry count") },
2662	/* D         B    */
2663	{ SST(0x5D, 0x1C, SS_NOP | SSQ_PRINT_SENSE,
2664	    "Hardware impending failure drive calibration retry count") },
2665	/* D         B    */
2666	{ SST(0x5D, 0x1D, SS_NOP | SSQ_PRINT_SENSE,
2667	    "Hardware impending failure power loss protection circuit") },
2668	/* D         B    */
2669	{ SST(0x5D, 0x20, SS_NOP | SSQ_PRINT_SENSE,
2670	    "Controller impending failure general hard drive failure") },
2671	/* D         B    */
2672	{ SST(0x5D, 0x21, SS_NOP | SSQ_PRINT_SENSE,
2673	    "Controller impending failure drive error rate too high") },
2674	/* D         B    */
2675	{ SST(0x5D, 0x22, SS_NOP | SSQ_PRINT_SENSE,
2676	    "Controller impending failure data error rate too high") },
2677	/* D         B    */
2678	{ SST(0x5D, 0x23, SS_NOP | SSQ_PRINT_SENSE,
2679	    "Controller impending failure seek error rate too high") },
2680	/* D         B    */
2681	{ SST(0x5D, 0x24, SS_NOP | SSQ_PRINT_SENSE,
2682	    "Controller impending failure too many block reassigns") },
2683	/* D         B    */
2684	{ SST(0x5D, 0x25, SS_NOP | SSQ_PRINT_SENSE,
2685	    "Controller impending failure access times too high") },
2686	/* D         B    */
2687	{ SST(0x5D, 0x26, SS_NOP | SSQ_PRINT_SENSE,
2688	    "Controller impending failure start unit times too high") },
2689	/* D         B    */
2690	{ SST(0x5D, 0x27, SS_NOP | SSQ_PRINT_SENSE,
2691	    "Controller impending failure channel parametrics") },
2692	/* D         B    */
2693	{ SST(0x5D, 0x28, SS_NOP | SSQ_PRINT_SENSE,
2694	    "Controller impending failure controller detected") },
2695	/* D         B    */
2696	{ SST(0x5D, 0x29, SS_NOP | SSQ_PRINT_SENSE,
2697	    "Controller impending failure throughput performance") },
2698	/* D         B    */
2699	{ SST(0x5D, 0x2A, SS_NOP | SSQ_PRINT_SENSE,
2700	    "Controller impending failure seek time performance") },
2701	/* D         B    */
2702	{ SST(0x5D, 0x2B, SS_NOP | SSQ_PRINT_SENSE,
2703	    "Controller impending failure spin-up retry count") },
2704	/* D         B    */
2705	{ SST(0x5D, 0x2C, SS_NOP | SSQ_PRINT_SENSE,
2706	    "Controller impending failure drive calibration retry count") },
2707	/* D         B    */
2708	{ SST(0x5D, 0x30, SS_NOP | SSQ_PRINT_SENSE,
2709	    "Data channel impending failure general hard drive failure") },
2710	/* D         B    */
2711	{ SST(0x5D, 0x31, SS_NOP | SSQ_PRINT_SENSE,
2712	    "Data channel impending failure drive error rate too high") },
2713	/* D         B    */
2714	{ SST(0x5D, 0x32, SS_NOP | SSQ_PRINT_SENSE,
2715	    "Data channel impending failure data error rate too high") },
2716	/* D         B    */
2717	{ SST(0x5D, 0x33, SS_NOP | SSQ_PRINT_SENSE,
2718	    "Data channel impending failure seek error rate too high") },
2719	/* D         B    */
2720	{ SST(0x5D, 0x34, SS_NOP | SSQ_PRINT_SENSE,
2721	    "Data channel impending failure too many block reassigns") },
2722	/* D         B    */
2723	{ SST(0x5D, 0x35, SS_NOP | SSQ_PRINT_SENSE,
2724	    "Data channel impending failure access times too high") },
2725	/* D         B    */
2726	{ SST(0x5D, 0x36, SS_NOP | SSQ_PRINT_SENSE,
2727	    "Data channel impending failure start unit times too high") },
2728	/* D         B    */
2729	{ SST(0x5D, 0x37, SS_NOP | SSQ_PRINT_SENSE,
2730	    "Data channel impending failure channel parametrics") },
2731	/* D         B    */
2732	{ SST(0x5D, 0x38, SS_NOP | SSQ_PRINT_SENSE,
2733	    "Data channel impending failure controller detected") },
2734	/* D         B    */
2735	{ SST(0x5D, 0x39, SS_NOP | SSQ_PRINT_SENSE,
2736	    "Data channel impending failure throughput performance") },
2737	/* D         B    */
2738	{ SST(0x5D, 0x3A, SS_NOP | SSQ_PRINT_SENSE,
2739	    "Data channel impending failure seek time performance") },
2740	/* D         B    */
2741	{ SST(0x5D, 0x3B, SS_NOP | SSQ_PRINT_SENSE,
2742	    "Data channel impending failure spin-up retry count") },
2743	/* D         B    */
2744	{ SST(0x5D, 0x3C, SS_NOP | SSQ_PRINT_SENSE,
2745	    "Data channel impending failure drive calibration retry count") },
2746	/* D         B    */
2747	{ SST(0x5D, 0x40, SS_NOP | SSQ_PRINT_SENSE,
2748	    "Servo impending failure general hard drive failure") },
2749	/* D         B    */
2750	{ SST(0x5D, 0x41, SS_NOP | SSQ_PRINT_SENSE,
2751	    "Servo impending failure drive error rate too high") },
2752	/* D         B    */
2753	{ SST(0x5D, 0x42, SS_NOP | SSQ_PRINT_SENSE,
2754	    "Servo impending failure data error rate too high") },
2755	/* D         B    */
2756	{ SST(0x5D, 0x43, SS_NOP | SSQ_PRINT_SENSE,
2757	    "Servo impending failure seek error rate too high") },
2758	/* D         B    */
2759	{ SST(0x5D, 0x44, SS_NOP | SSQ_PRINT_SENSE,
2760	    "Servo impending failure too many block reassigns") },
2761	/* D         B    */
2762	{ SST(0x5D, 0x45, SS_NOP | SSQ_PRINT_SENSE,
2763	    "Servo impending failure access times too high") },
2764	/* D         B    */
2765	{ SST(0x5D, 0x46, SS_NOP | SSQ_PRINT_SENSE,
2766	    "Servo impending failure start unit times too high") },
2767	/* D         B    */
2768	{ SST(0x5D, 0x47, SS_NOP | SSQ_PRINT_SENSE,
2769	    "Servo impending failure channel parametrics") },
2770	/* D         B    */
2771	{ SST(0x5D, 0x48, SS_NOP | SSQ_PRINT_SENSE,
2772	    "Servo impending failure controller detected") },
2773	/* D         B    */
2774	{ SST(0x5D, 0x49, SS_NOP | SSQ_PRINT_SENSE,
2775	    "Servo impending failure throughput performance") },
2776	/* D         B    */
2777	{ SST(0x5D, 0x4A, SS_NOP | SSQ_PRINT_SENSE,
2778	    "Servo impending failure seek time performance") },
2779	/* D         B    */
2780	{ SST(0x5D, 0x4B, SS_NOP | SSQ_PRINT_SENSE,
2781	    "Servo impending failure spin-up retry count") },
2782	/* D         B    */
2783	{ SST(0x5D, 0x4C, SS_NOP | SSQ_PRINT_SENSE,
2784	    "Servo impending failure drive calibration retry count") },
2785	/* D         B    */
2786	{ SST(0x5D, 0x50, SS_NOP | SSQ_PRINT_SENSE,
2787	    "Spindle impending failure general hard drive failure") },
2788	/* D         B    */
2789	{ SST(0x5D, 0x51, SS_NOP | SSQ_PRINT_SENSE,
2790	    "Spindle impending failure drive error rate too high") },
2791	/* D         B    */
2792	{ SST(0x5D, 0x52, SS_NOP | SSQ_PRINT_SENSE,
2793	    "Spindle impending failure data error rate too high") },
2794	/* D         B    */
2795	{ SST(0x5D, 0x53, SS_NOP | SSQ_PRINT_SENSE,
2796	    "Spindle impending failure seek error rate too high") },
2797	/* D         B    */
2798	{ SST(0x5D, 0x54, SS_NOP | SSQ_PRINT_SENSE,
2799	    "Spindle impending failure too many block reassigns") },
2800	/* D         B    */
2801	{ SST(0x5D, 0x55, SS_NOP | SSQ_PRINT_SENSE,
2802	    "Spindle impending failure access times too high") },
2803	/* D         B    */
2804	{ SST(0x5D, 0x56, SS_NOP | SSQ_PRINT_SENSE,
2805	    "Spindle impending failure start unit times too high") },
2806	/* D         B    */
2807	{ SST(0x5D, 0x57, SS_NOP | SSQ_PRINT_SENSE,
2808	    "Spindle impending failure channel parametrics") },
2809	/* D         B    */
2810	{ SST(0x5D, 0x58, SS_NOP | SSQ_PRINT_SENSE,
2811	    "Spindle impending failure controller detected") },
2812	/* D         B    */
2813	{ SST(0x5D, 0x59, SS_NOP | SSQ_PRINT_SENSE,
2814	    "Spindle impending failure throughput performance") },
2815	/* D         B    */
2816	{ SST(0x5D, 0x5A, SS_NOP | SSQ_PRINT_SENSE,
2817	    "Spindle impending failure seek time performance") },
2818	/* D         B    */
2819	{ SST(0x5D, 0x5B, SS_NOP | SSQ_PRINT_SENSE,
2820	    "Spindle impending failure spin-up retry count") },
2821	/* D         B    */
2822	{ SST(0x5D, 0x5C, SS_NOP | SSQ_PRINT_SENSE,
2823	    "Spindle impending failure drive calibration retry count") },
2824	/* D         B    */
2825	{ SST(0x5D, 0x60, SS_NOP | SSQ_PRINT_SENSE,
2826	    "Firmware impending failure general hard drive failure") },
2827	/* D         B    */
2828	{ SST(0x5D, 0x61, SS_NOP | SSQ_PRINT_SENSE,
2829	    "Firmware impending failure drive error rate too high") },
2830	/* D         B    */
2831	{ SST(0x5D, 0x62, SS_NOP | SSQ_PRINT_SENSE,
2832	    "Firmware impending failure data error rate too high") },
2833	/* D         B    */
2834	{ SST(0x5D, 0x63, SS_NOP | SSQ_PRINT_SENSE,
2835	    "Firmware impending failure seek error rate too high") },
2836	/* D         B    */
2837	{ SST(0x5D, 0x64, SS_NOP | SSQ_PRINT_SENSE,
2838	    "Firmware impending failure too many block reassigns") },
2839	/* D         B    */
2840	{ SST(0x5D, 0x65, SS_NOP | SSQ_PRINT_SENSE,
2841	    "Firmware impending failure access times too high") },
2842	/* D         B    */
2843	{ SST(0x5D, 0x66, SS_NOP | SSQ_PRINT_SENSE,
2844	    "Firmware impending failure start unit times too high") },
2845	/* D         B    */
2846	{ SST(0x5D, 0x67, SS_NOP | SSQ_PRINT_SENSE,
2847	    "Firmware impending failure channel parametrics") },
2848	/* D         B    */
2849	{ SST(0x5D, 0x68, SS_NOP | SSQ_PRINT_SENSE,
2850	    "Firmware impending failure controller detected") },
2851	/* D         B    */
2852	{ SST(0x5D, 0x69, SS_NOP | SSQ_PRINT_SENSE,
2853	    "Firmware impending failure throughput performance") },
2854	/* D         B    */
2855	{ SST(0x5D, 0x6A, SS_NOP | SSQ_PRINT_SENSE,
2856	    "Firmware impending failure seek time performance") },
2857	/* D         B    */
2858	{ SST(0x5D, 0x6B, SS_NOP | SSQ_PRINT_SENSE,
2859	    "Firmware impending failure spin-up retry count") },
2860	/* D         B    */
2861	{ SST(0x5D, 0x6C, SS_NOP | SSQ_PRINT_SENSE,
2862	    "Firmware impending failure drive calibration retry count") },
2863	/* D         B    */
2864	{ SST(0x5D, 0x73, SS_NOP | SSQ_PRINT_SENSE,
2865	    "Media impending failure endurance limit met") },
2866	/* DTLPWROMAEBKVF */
2867	{ SST(0x5D, 0xFF, SS_NOP | SSQ_PRINT_SENSE,
2868	    "Failure prediction threshold exceeded (false)") },
2869	/* DTLPWRO A  K   */
2870	{ SST(0x5E, 0x00, SS_RDEF,
2871	    "Low power condition on") },
2872	/* DTLPWRO A  K   */
2873	{ SST(0x5E, 0x01, SS_RDEF,
2874	    "Idle condition activated by timer") },
2875	/* DTLPWRO A  K   */
2876	{ SST(0x5E, 0x02, SS_RDEF,
2877	    "Standby condition activated by timer") },
2878	/* DTLPWRO A  K   */
2879	{ SST(0x5E, 0x03, SS_RDEF,
2880	    "Idle condition activated by command") },
2881	/* DTLPWRO A  K   */
2882	{ SST(0x5E, 0x04, SS_RDEF,
2883	    "Standby condition activated by command") },
2884	/* DTLPWRO A  K   */
2885	{ SST(0x5E, 0x05, SS_RDEF,
2886	    "Idle-B condition activated by timer") },
2887	/* DTLPWRO A  K   */
2888	{ SST(0x5E, 0x06, SS_RDEF,
2889	    "Idle-B condition activated by command") },
2890	/* DTLPWRO A  K   */
2891	{ SST(0x5E, 0x07, SS_RDEF,
2892	    "Idle-C condition activated by timer") },
2893	/* DTLPWRO A  K   */
2894	{ SST(0x5E, 0x08, SS_RDEF,
2895	    "Idle-C condition activated by command") },
2896	/* DTLPWRO A  K   */
2897	{ SST(0x5E, 0x09, SS_RDEF,
2898	    "Standby-Y condition activated by timer") },
2899	/* DTLPWRO A  K   */
2900	{ SST(0x5E, 0x0A, SS_RDEF,
2901	    "Standby-Y condition activated by command") },
2902	/*           B    */
2903	{ SST(0x5E, 0x41, SS_RDEF,	/* XXX TBD */
2904	    "Power state change to active") },
2905	/*           B    */
2906	{ SST(0x5E, 0x42, SS_RDEF,	/* XXX TBD */
2907	    "Power state change to idle") },
2908	/*           B    */
2909	{ SST(0x5E, 0x43, SS_RDEF,	/* XXX TBD */
2910	    "Power state change to standby") },
2911	/*           B    */
2912	{ SST(0x5E, 0x45, SS_RDEF,	/* XXX TBD */
2913	    "Power state change to sleep") },
2914	/*           BK   */
2915	{ SST(0x5E, 0x47, SS_RDEF,	/* XXX TBD */
2916	    "Power state change to device control") },
2917	/*                */
2918	{ SST(0x60, 0x00, SS_RDEF,
2919	    "Lamp failure") },
2920	/*                */
2921	{ SST(0x61, 0x00, SS_RDEF,
2922	    "Video acquisition error") },
2923	/*                */
2924	{ SST(0x61, 0x01, SS_RDEF,
2925	    "Unable to acquire video") },
2926	/*                */
2927	{ SST(0x61, 0x02, SS_RDEF,
2928	    "Out of focus") },
2929	/*                */
2930	{ SST(0x62, 0x00, SS_RDEF,
2931	    "Scan head positioning error") },
2932	/*      R         */
2933	{ SST(0x63, 0x00, SS_RDEF,
2934	    "End of user area encountered on this track") },
2935	/*      R         */
2936	{ SST(0x63, 0x01, SS_FATAL | ENOSPC,
2937	    "Packet does not fit in available space") },
2938	/*      R         */
2939	{ SST(0x64, 0x00, SS_FATAL | ENXIO,
2940	    "Illegal mode for this track") },
2941	/*      R         */
2942	{ SST(0x64, 0x01, SS_RDEF,
2943	    "Invalid packet size") },
2944	/* DTLPWROMAEBKVF */
2945	{ SST(0x65, 0x00, SS_RDEF,
2946	    "Voltage fault") },
2947	/*                */
2948	{ SST(0x66, 0x00, SS_RDEF,
2949	    "Automatic document feeder cover up") },
2950	/*                */
2951	{ SST(0x66, 0x01, SS_RDEF,
2952	    "Automatic document feeder lift up") },
2953	/*                */
2954	{ SST(0x66, 0x02, SS_RDEF,
2955	    "Document jam in automatic document feeder") },
2956	/*                */
2957	{ SST(0x66, 0x03, SS_RDEF,
2958	    "Document miss feed automatic in document feeder") },
2959	/*         A      */
2960	{ SST(0x67, 0x00, SS_RDEF,
2961	    "Configuration failure") },
2962	/*         A      */
2963	{ SST(0x67, 0x01, SS_RDEF,
2964	    "Configuration of incapable logical units failed") },
2965	/*         A      */
2966	{ SST(0x67, 0x02, SS_RDEF,
2967	    "Add logical unit failed") },
2968	/*         A      */
2969	{ SST(0x67, 0x03, SS_RDEF,
2970	    "Modification of logical unit failed") },
2971	/*         A      */
2972	{ SST(0x67, 0x04, SS_RDEF,
2973	    "Exchange of logical unit failed") },
2974	/*         A      */
2975	{ SST(0x67, 0x05, SS_RDEF,
2976	    "Remove of logical unit failed") },
2977	/*         A      */
2978	{ SST(0x67, 0x06, SS_RDEF,
2979	    "Attachment of logical unit failed") },
2980	/*         A      */
2981	{ SST(0x67, 0x07, SS_RDEF,
2982	    "Creation of logical unit failed") },
2983	/*         A      */
2984	{ SST(0x67, 0x08, SS_RDEF,	/* XXX TBD */
2985	    "Assign failure occurred") },
2986	/*         A      */
2987	{ SST(0x67, 0x09, SS_RDEF,	/* XXX TBD */
2988	    "Multiply assigned logical unit") },
2989	/* DTLPWROMAEBKVF */
2990	{ SST(0x67, 0x0A, SS_RDEF,	/* XXX TBD */
2991	    "Set target port groups command failed") },
2992	/* DT        B    */
2993	{ SST(0x67, 0x0B, SS_RDEF,	/* XXX TBD */
2994	    "ATA device feature not enabled") },
2995	/*         A      */
2996	{ SST(0x68, 0x00, SS_RDEF,
2997	    "Logical unit not configured") },
2998	/* D              */
2999	{ SST(0x68, 0x01, SS_RDEF,
3000	    "Subsidiary logical unit not configured") },
3001	/*         A      */
3002	{ SST(0x69, 0x00, SS_RDEF,
3003	    "Data loss on logical unit") },
3004	/*         A      */
3005	{ SST(0x69, 0x01, SS_RDEF,
3006	    "Multiple logical unit failures") },
3007	/*         A      */
3008	{ SST(0x69, 0x02, SS_RDEF,
3009	    "Parity/data mismatch") },
3010	/*         A      */
3011	{ SST(0x6A, 0x00, SS_RDEF,
3012	    "Informational, refer to log") },
3013	/*         A      */
3014	{ SST(0x6B, 0x00, SS_RDEF,
3015	    "State change has occurred") },
3016	/*         A      */
3017	{ SST(0x6B, 0x01, SS_RDEF,
3018	    "Redundancy level got better") },
3019	/*         A      */
3020	{ SST(0x6B, 0x02, SS_RDEF,
3021	    "Redundancy level got worse") },
3022	/*         A      */
3023	{ SST(0x6C, 0x00, SS_RDEF,
3024	    "Rebuild failure occurred") },
3025	/*         A      */
3026	{ SST(0x6D, 0x00, SS_RDEF,
3027	    "Recalculate failure occurred") },
3028	/*         A      */
3029	{ SST(0x6E, 0x00, SS_RDEF,
3030	    "Command to logical unit failed") },
3031	/*      R         */
3032	{ SST(0x6F, 0x00, SS_RDEF,	/* XXX TBD */
3033	    "Copy protection key exchange failure - authentication failure") },
3034	/*      R         */
3035	{ SST(0x6F, 0x01, SS_RDEF,	/* XXX TBD */
3036	    "Copy protection key exchange failure - key not present") },
3037	/*      R         */
3038	{ SST(0x6F, 0x02, SS_RDEF,	/* XXX TBD */
3039	    "Copy protection key exchange failure - key not established") },
3040	/*      R         */
3041	{ SST(0x6F, 0x03, SS_RDEF,	/* XXX TBD */
3042	    "Read of scrambled sector without authentication") },
3043	/*      R         */
3044	{ SST(0x6F, 0x04, SS_RDEF,	/* XXX TBD */
3045	    "Media region code is mismatched to logical unit region") },
3046	/*      R         */
3047	{ SST(0x6F, 0x05, SS_RDEF,	/* XXX TBD */
3048	    "Drive region must be permanent/region reset count error") },
3049	/*      R         */
3050	{ SST(0x6F, 0x06, SS_RDEF,	/* XXX TBD */
3051	    "Insufficient block count for binding NONCE recording") },
3052	/*      R         */
3053	{ SST(0x6F, 0x07, SS_RDEF,	/* XXX TBD */
3054	    "Conflict in binding NONCE recording") },
3055	/*  T             */
3056	{ SST(0x70, 0x00, SS_RDEF,
3057	    "Decompression exception short: ASCQ = Algorithm ID") },
3058	/*  T             */
3059	{ SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE,
3060	    NULL) },			/* Range 0x00 -> 0xFF */
3061	/*  T             */
3062	{ SST(0x71, 0x00, SS_RDEF,
3063	    "Decompression exception long: ASCQ = Algorithm ID") },
3064	/*  T             */
3065	{ SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE,
3066	    NULL) },			/* Range 0x00 -> 0xFF */
3067	/*      R         */
3068	{ SST(0x72, 0x00, SS_RDEF,
3069	    "Session fixation error") },
3070	/*      R         */
3071	{ SST(0x72, 0x01, SS_RDEF,
3072	    "Session fixation error writing lead-in") },
3073	/*      R         */
3074	{ SST(0x72, 0x02, SS_RDEF,
3075	    "Session fixation error writing lead-out") },
3076	/*      R         */
3077	{ SST(0x72, 0x03, SS_RDEF,
3078	    "Session fixation error - incomplete track in session") },
3079	/*      R         */
3080	{ SST(0x72, 0x04, SS_RDEF,
3081	    "Empty or partially written reserved track") },
3082	/*      R         */
3083	{ SST(0x72, 0x05, SS_RDEF,	/* XXX TBD */
3084	    "No more track reservations allowed") },
3085	/*      R         */
3086	{ SST(0x72, 0x06, SS_RDEF,	/* XXX TBD */
3087	    "RMZ extension is not allowed") },
3088	/*      R         */
3089	{ SST(0x72, 0x07, SS_RDEF,	/* XXX TBD */
3090	    "No more test zone extensions are allowed") },
3091	/*      R         */
3092	{ SST(0x73, 0x00, SS_RDEF,
3093	    "CD control error") },
3094	/*      R         */
3095	{ SST(0x73, 0x01, SS_RDEF,
3096	    "Power calibration area almost full") },
3097	/*      R         */
3098	{ SST(0x73, 0x02, SS_FATAL | ENOSPC,
3099	    "Power calibration area is full") },
3100	/*      R         */
3101	{ SST(0x73, 0x03, SS_RDEF,
3102	    "Power calibration area error") },
3103	/*      R         */
3104	{ SST(0x73, 0x04, SS_RDEF,
3105	    "Program memory area update failure") },
3106	/*      R         */
3107	{ SST(0x73, 0x05, SS_RDEF,
3108	    "Program memory area is full") },
3109	/*      R         */
3110	{ SST(0x73, 0x06, SS_RDEF,	/* XXX TBD */
3111	    "RMA/PMA is almost full") },
3112	/*      R         */
3113	{ SST(0x73, 0x10, SS_RDEF,	/* XXX TBD */
3114	    "Current power calibration area almost full") },
3115	/*      R         */
3116	{ SST(0x73, 0x11, SS_RDEF,	/* XXX TBD */
3117	    "Current power calibration area is full") },
3118	/*      R         */
3119	{ SST(0x73, 0x17, SS_RDEF,	/* XXX TBD */
3120	    "RDZ is full") },
3121	/*  T             */
3122	{ SST(0x74, 0x00, SS_RDEF,	/* XXX TBD */
3123	    "Security error") },
3124	/*  T             */
3125	{ SST(0x74, 0x01, SS_RDEF,	/* XXX TBD */
3126	    "Unable to decrypt data") },
3127	/*  T             */
3128	{ SST(0x74, 0x02, SS_RDEF,	/* XXX TBD */
3129	    "Unencrypted data encountered while decrypting") },
3130	/*  T             */
3131	{ SST(0x74, 0x03, SS_RDEF,	/* XXX TBD */
3132	    "Incorrect data encryption key") },
3133	/*  T             */
3134	{ SST(0x74, 0x04, SS_RDEF,	/* XXX TBD */
3135	    "Cryptographic integrity validation failed") },
3136	/*  T             */
3137	{ SST(0x74, 0x05, SS_RDEF,	/* XXX TBD */
3138	    "Error decrypting data") },
3139	/*  T             */
3140	{ SST(0x74, 0x06, SS_RDEF,	/* XXX TBD */
3141	    "Unknown signature verification key") },
3142	/*  T             */
3143	{ SST(0x74, 0x07, SS_RDEF,	/* XXX TBD */
3144	    "Encryption parameters not useable") },
3145	/* DT   R M E  VF */
3146	{ SST(0x74, 0x08, SS_RDEF,	/* XXX TBD */
3147	    "Digital signature validation failure") },
3148	/*  T             */
3149	{ SST(0x74, 0x09, SS_RDEF,	/* XXX TBD */
3150	    "Encryption mode mismatch on read") },
3151	/*  T             */
3152	{ SST(0x74, 0x0A, SS_RDEF,	/* XXX TBD */
3153	    "Encrypted block not raw read enabled") },
3154	/*  T             */
3155	{ SST(0x74, 0x0B, SS_RDEF,	/* XXX TBD */
3156	    "Incorrect encryption parameters") },
3157	/* DT   R MAEBKV  */
3158	{ SST(0x74, 0x0C, SS_RDEF,	/* XXX TBD */
3159	    "Unable to decrypt parameter list") },
3160	/*  T             */
3161	{ SST(0x74, 0x0D, SS_RDEF,	/* XXX TBD */
3162	    "Encryption algorithm disabled") },
3163	/* DT   R MAEBKV  */
3164	{ SST(0x74, 0x10, SS_RDEF,	/* XXX TBD */
3165	    "SA creation parameter value invalid") },
3166	/* DT   R MAEBKV  */
3167	{ SST(0x74, 0x11, SS_RDEF,	/* XXX TBD */
3168	    "SA creation parameter value rejected") },
3169	/* DT   R MAEBKV  */
3170	{ SST(0x74, 0x12, SS_RDEF,	/* XXX TBD */
3171	    "Invalid SA usage") },
3172	/*  T             */
3173	{ SST(0x74, 0x21, SS_RDEF,	/* XXX TBD */
3174	    "Data encryption configuration prevented") },
3175	/* DT   R MAEBKV  */
3176	{ SST(0x74, 0x30, SS_RDEF,	/* XXX TBD */
3177	    "SA creation parameter not supported") },
3178	/* DT   R MAEBKV  */
3179	{ SST(0x74, 0x40, SS_RDEF,	/* XXX TBD */
3180	    "Authentication failed") },
3181	/*             V  */
3182	{ SST(0x74, 0x61, SS_RDEF,	/* XXX TBD */
3183	    "External data encryption key manager access error") },
3184	/*             V  */
3185	{ SST(0x74, 0x62, SS_RDEF,	/* XXX TBD */
3186	    "External data encryption key manager error") },
3187	/*             V  */
3188	{ SST(0x74, 0x63, SS_RDEF,	/* XXX TBD */
3189	    "External data encryption key not found") },
3190	/*             V  */
3191	{ SST(0x74, 0x64, SS_RDEF,	/* XXX TBD */
3192	    "External data encryption request not authorized") },
3193	/*  T             */
3194	{ SST(0x74, 0x6E, SS_RDEF,	/* XXX TBD */
3195	    "External data encryption control timeout") },
3196	/*  T             */
3197	{ SST(0x74, 0x6F, SS_RDEF,	/* XXX TBD */
3198	    "External data encryption control error") },
3199	/* DT   R M E  V  */
3200	{ SST(0x74, 0x71, SS_FATAL | EACCES,
3201	    "Logical unit access not authorized") },
3202	/* D              */
3203	{ SST(0x74, 0x79, SS_FATAL | EACCES,
3204	    "Security conflict in translated device") }
3205};
3206
3207const int asc_table_size = sizeof(asc_table)/sizeof(asc_table[0]);
3208
3209struct asc_key
3210{
3211	int asc;
3212	int ascq;
3213};
3214
3215static int
3216ascentrycomp(const void *key, const void *member)
3217{
3218	int asc;
3219	int ascq;
3220	const struct asc_table_entry *table_entry;
3221
3222	asc = ((const struct asc_key *)key)->asc;
3223	ascq = ((const struct asc_key *)key)->ascq;
3224	table_entry = (const struct asc_table_entry *)member;
3225
3226	if (asc >= table_entry->asc) {
3227
3228		if (asc > table_entry->asc)
3229			return (1);
3230
3231		if (ascq <= table_entry->ascq) {
3232			/* Check for ranges */
3233			if (ascq == table_entry->ascq
3234		 	 || ((table_entry->action & SSQ_RANGE) != 0
3235		  	   && ascq >= (table_entry - 1)->ascq))
3236				return (0);
3237			return (-1);
3238		}
3239		return (1);
3240	}
3241	return (-1);
3242}
3243
3244static int
3245senseentrycomp(const void *key, const void *member)
3246{
3247	int sense_key;
3248	const struct sense_key_table_entry *table_entry;
3249
3250	sense_key = *((const int *)key);
3251	table_entry = (const struct sense_key_table_entry *)member;
3252
3253	if (sense_key >= table_entry->sense_key) {
3254		if (sense_key == table_entry->sense_key)
3255			return (0);
3256		return (1);
3257	}
3258	return (-1);
3259}
3260
3261static void
3262fetchtableentries(int sense_key, int asc, int ascq,
3263		  struct scsi_inquiry_data *inq_data,
3264		  const struct sense_key_table_entry **sense_entry,
3265		  const struct asc_table_entry **asc_entry)
3266{
3267	caddr_t match;
3268	const struct asc_table_entry *asc_tables[2];
3269	const struct sense_key_table_entry *sense_tables[2];
3270	struct asc_key asc_ascq;
3271	size_t asc_tables_size[2];
3272	size_t sense_tables_size[2];
3273	int num_asc_tables;
3274	int num_sense_tables;
3275	int i;
3276
3277	/* Default to failure */
3278	*sense_entry = NULL;
3279	*asc_entry = NULL;
3280	match = NULL;
3281	if (inq_data != NULL)
3282		match = cam_quirkmatch((caddr_t)inq_data,
3283				       (caddr_t)sense_quirk_table,
3284				       sense_quirk_table_size,
3285				       sizeof(*sense_quirk_table),
3286				       scsi_inquiry_match);
3287
3288	if (match != NULL) {
3289		struct scsi_sense_quirk_entry *quirk;
3290
3291		quirk = (struct scsi_sense_quirk_entry *)match;
3292		asc_tables[0] = quirk->asc_info;
3293		asc_tables_size[0] = quirk->num_ascs;
3294		asc_tables[1] = asc_table;
3295		asc_tables_size[1] = asc_table_size;
3296		num_asc_tables = 2;
3297		sense_tables[0] = quirk->sense_key_info;
3298		sense_tables_size[0] = quirk->num_sense_keys;
3299		sense_tables[1] = sense_key_table;
3300		sense_tables_size[1] = sense_key_table_size;
3301		num_sense_tables = 2;
3302	} else {
3303		asc_tables[0] = asc_table;
3304		asc_tables_size[0] = asc_table_size;
3305		num_asc_tables = 1;
3306		sense_tables[0] = sense_key_table;
3307		sense_tables_size[0] = sense_key_table_size;
3308		num_sense_tables = 1;
3309	}
3310
3311	asc_ascq.asc = asc;
3312	asc_ascq.ascq = ascq;
3313	for (i = 0; i < num_asc_tables; i++) {
3314		void *found_entry;
3315
3316		found_entry = bsearch(&asc_ascq, asc_tables[i],
3317				      asc_tables_size[i],
3318				      sizeof(**asc_tables),
3319				      ascentrycomp);
3320
3321		if (found_entry) {
3322			*asc_entry = (struct asc_table_entry *)found_entry;
3323			break;
3324		}
3325	}
3326
3327	for (i = 0; i < num_sense_tables; i++) {
3328		void *found_entry;
3329
3330		found_entry = bsearch(&sense_key, sense_tables[i],
3331				      sense_tables_size[i],
3332				      sizeof(**sense_tables),
3333				      senseentrycomp);
3334
3335		if (found_entry) {
3336			*sense_entry =
3337			    (struct sense_key_table_entry *)found_entry;
3338			break;
3339		}
3340	}
3341}
3342
3343void
3344scsi_sense_desc(int sense_key, int asc, int ascq,
3345		struct scsi_inquiry_data *inq_data,
3346		const char **sense_key_desc, const char **asc_desc)
3347{
3348	const struct asc_table_entry *asc_entry;
3349	const struct sense_key_table_entry *sense_entry;
3350
3351	fetchtableentries(sense_key, asc, ascq,
3352			  inq_data,
3353			  &sense_entry,
3354			  &asc_entry);
3355
3356	if (sense_entry != NULL)
3357		*sense_key_desc = sense_entry->desc;
3358	else
3359		*sense_key_desc = "Invalid Sense Key";
3360
3361	if (asc_entry != NULL)
3362		*asc_desc = asc_entry->desc;
3363	else if (asc >= 0x80 && asc <= 0xff)
3364		*asc_desc = "Vendor Specific ASC";
3365	else if (ascq >= 0x80 && ascq <= 0xff)
3366		*asc_desc = "Vendor Specific ASCQ";
3367	else
3368		*asc_desc = "Reserved ASC/ASCQ pair";
3369}
3370
3371/*
3372 * Given sense and device type information, return the appropriate action.
3373 * If we do not understand the specific error as identified by the ASC/ASCQ
3374 * pair, fall back on the more generic actions derived from the sense key.
3375 */
3376scsi_sense_action
3377scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data,
3378		  u_int32_t sense_flags)
3379{
3380	const struct asc_table_entry *asc_entry;
3381	const struct sense_key_table_entry *sense_entry;
3382	int error_code, sense_key, asc, ascq;
3383	scsi_sense_action action;
3384
3385	if (!scsi_extract_sense_ccb((union ccb *)csio,
3386	    &error_code, &sense_key, &asc, &ascq)) {
3387		action = SS_RETRY | SSQ_DECREMENT_COUNT | SSQ_PRINT_SENSE | EIO;
3388	} else if ((error_code == SSD_DEFERRED_ERROR)
3389	 || (error_code == SSD_DESC_DEFERRED_ERROR)) {
3390		/*
3391		 * XXX dufault@FreeBSD.org
3392		 * This error doesn't relate to the command associated
3393		 * with this request sense.  A deferred error is an error
3394		 * for a command that has already returned GOOD status
3395		 * (see SCSI2 8.2.14.2).
3396		 *
3397		 * By my reading of that section, it looks like the current
3398		 * command has been cancelled, we should now clean things up
3399		 * (hopefully recovering any lost data) and then retry the
3400		 * current command.  There are two easy choices, both wrong:
3401		 *
3402		 * 1. Drop through (like we had been doing), thus treating
3403		 *    this as if the error were for the current command and
3404		 *    return and stop the current command.
3405		 *
3406		 * 2. Issue a retry (like I made it do) thus hopefully
3407		 *    recovering the current transfer, and ignoring the
3408		 *    fact that we've dropped a command.
3409		 *
3410		 * These should probably be handled in a device specific
3411		 * sense handler or punted back up to a user mode daemon
3412		 */
3413		action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3414	} else {
3415		fetchtableentries(sense_key, asc, ascq,
3416				  inq_data,
3417				  &sense_entry,
3418				  &asc_entry);
3419
3420		/*
3421		 * Override the 'No additional Sense' entry (0,0)
3422		 * with the error action of the sense key.
3423		 */
3424		if (asc_entry != NULL
3425		 && (asc != 0 || ascq != 0))
3426			action = asc_entry->action;
3427		else if (sense_entry != NULL)
3428			action = sense_entry->action;
3429		else
3430			action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3431
3432		if (sense_key == SSD_KEY_RECOVERED_ERROR) {
3433			/*
3434			 * The action succeeded but the device wants
3435			 * the user to know that some recovery action
3436			 * was required.
3437			 */
3438			action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK);
3439			action |= SS_NOP|SSQ_PRINT_SENSE;
3440		} else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) {
3441			if ((sense_flags & SF_QUIET_IR) != 0)
3442				action &= ~SSQ_PRINT_SENSE;
3443		} else if (sense_key == SSD_KEY_UNIT_ATTENTION) {
3444			if ((sense_flags & SF_RETRY_UA) != 0
3445			 && (action & SS_MASK) == SS_FAIL) {
3446				action &= ~(SS_MASK|SSQ_MASK);
3447				action |= SS_RETRY|SSQ_DECREMENT_COUNT|
3448					  SSQ_PRINT_SENSE;
3449			}
3450			action |= SSQ_UA;
3451		}
3452	}
3453	if ((action & SS_MASK) >= SS_START &&
3454	    (sense_flags & SF_NO_RECOVERY)) {
3455		action &= ~SS_MASK;
3456		action |= SS_FAIL;
3457	} else if ((action & SS_MASK) == SS_RETRY &&
3458	    (sense_flags & SF_NO_RETRY)) {
3459		action &= ~SS_MASK;
3460		action |= SS_FAIL;
3461	}
3462	if ((sense_flags & SF_PRINT_ALWAYS) != 0)
3463		action |= SSQ_PRINT_SENSE;
3464	else if ((sense_flags & SF_NO_PRINT) != 0)
3465		action &= ~SSQ_PRINT_SENSE;
3466
3467	return (action);
3468}
3469
3470char *
3471scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string, size_t len)
3472{
3473	struct sbuf sb;
3474	int error;
3475
3476	if (len == 0)
3477		return ("");
3478
3479	sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN);
3480
3481	scsi_cdb_sbuf(cdb_ptr, &sb);
3482
3483	/* ENOMEM just means that the fixed buffer is full, OK to ignore */
3484	error = sbuf_finish(&sb);
3485	if (error != 0 && error != ENOMEM)
3486		return ("");
3487
3488	return(sbuf_data(&sb));
3489}
3490
3491void
3492scsi_cdb_sbuf(u_int8_t *cdb_ptr, struct sbuf *sb)
3493{
3494	u_int8_t cdb_len;
3495	int i;
3496
3497	if (cdb_ptr == NULL)
3498		return;
3499
3500	/*
3501	 * This is taken from the SCSI-3 draft spec.
3502	 * (T10/1157D revision 0.3)
3503	 * The top 3 bits of an opcode are the group code.  The next 5 bits
3504	 * are the command code.
3505	 * Group 0:  six byte commands
3506	 * Group 1:  ten byte commands
3507	 * Group 2:  ten byte commands
3508	 * Group 3:  reserved
3509	 * Group 4:  sixteen byte commands
3510	 * Group 5:  twelve byte commands
3511	 * Group 6:  vendor specific
3512	 * Group 7:  vendor specific
3513	 */
3514	switch((*cdb_ptr >> 5) & 0x7) {
3515		case 0:
3516			cdb_len = 6;
3517			break;
3518		case 1:
3519		case 2:
3520			cdb_len = 10;
3521			break;
3522		case 3:
3523		case 6:
3524		case 7:
3525			/* in this case, just print out the opcode */
3526			cdb_len = 1;
3527			break;
3528		case 4:
3529			cdb_len = 16;
3530			break;
3531		case 5:
3532			cdb_len = 12;
3533			break;
3534	}
3535
3536	for (i = 0; i < cdb_len; i++)
3537		sbuf_printf(sb, "%02hhx ", cdb_ptr[i]);
3538
3539	return;
3540}
3541
3542const char *
3543scsi_status_string(struct ccb_scsiio *csio)
3544{
3545	switch(csio->scsi_status) {
3546	case SCSI_STATUS_OK:
3547		return("OK");
3548	case SCSI_STATUS_CHECK_COND:
3549		return("Check Condition");
3550	case SCSI_STATUS_BUSY:
3551		return("Busy");
3552	case SCSI_STATUS_INTERMED:
3553		return("Intermediate");
3554	case SCSI_STATUS_INTERMED_COND_MET:
3555		return("Intermediate-Condition Met");
3556	case SCSI_STATUS_RESERV_CONFLICT:
3557		return("Reservation Conflict");
3558	case SCSI_STATUS_CMD_TERMINATED:
3559		return("Command Terminated");
3560	case SCSI_STATUS_QUEUE_FULL:
3561		return("Queue Full");
3562	case SCSI_STATUS_ACA_ACTIVE:
3563		return("ACA Active");
3564	case SCSI_STATUS_TASK_ABORTED:
3565		return("Task Aborted");
3566	default: {
3567		static char unkstr[64];
3568		snprintf(unkstr, sizeof(unkstr), "Unknown %#x",
3569			 csio->scsi_status);
3570		return(unkstr);
3571	}
3572	}
3573}
3574
3575/*
3576 * scsi_command_string() returns 0 for success and -1 for failure.
3577 */
3578#ifdef _KERNEL
3579int
3580scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb)
3581#else /* !_KERNEL */
3582int
3583scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio,
3584		    struct sbuf *sb)
3585#endif /* _KERNEL/!_KERNEL */
3586{
3587	struct scsi_inquiry_data *inq_data;
3588#ifdef _KERNEL
3589	struct	  ccb_getdev *cgd;
3590#endif /* _KERNEL */
3591
3592#ifdef _KERNEL
3593	if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
3594		return(-1);
3595	/*
3596	 * Get the device information.
3597	 */
3598	xpt_setup_ccb(&cgd->ccb_h,
3599		      csio->ccb_h.path,
3600		      CAM_PRIORITY_NORMAL);
3601	cgd->ccb_h.func_code = XPT_GDEV_TYPE;
3602	xpt_action((union ccb *)cgd);
3603
3604	/*
3605	 * If the device is unconfigured, just pretend that it is a hard
3606	 * drive.  scsi_op_desc() needs this.
3607	 */
3608	if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
3609		cgd->inq_data.device = T_DIRECT;
3610
3611	inq_data = &cgd->inq_data;
3612
3613#else /* !_KERNEL */
3614
3615	inq_data = &device->inq_data;
3616
3617#endif /* _KERNEL/!_KERNEL */
3618
3619	if ((csio->ccb_h.flags & CAM_CDB_POINTER) != 0) {
3620		sbuf_printf(sb, "%s. CDB: ",
3621			    scsi_op_desc(csio->cdb_io.cdb_ptr[0], inq_data));
3622		scsi_cdb_sbuf(csio->cdb_io.cdb_ptr, sb);
3623	} else {
3624		sbuf_printf(sb, "%s. CDB: ",
3625			    scsi_op_desc(csio->cdb_io.cdb_bytes[0], inq_data));
3626		scsi_cdb_sbuf(csio->cdb_io.cdb_bytes, sb);
3627	}
3628
3629#ifdef _KERNEL
3630	xpt_free_ccb((union ccb *)cgd);
3631#endif
3632
3633	return(0);
3634}
3635
3636/*
3637 * Iterate over sense descriptors.  Each descriptor is passed into iter_func().
3638 * If iter_func() returns 0, list traversal continues.  If iter_func()
3639 * returns non-zero, list traversal is stopped.
3640 */
3641void
3642scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len,
3643		  int (*iter_func)(struct scsi_sense_data_desc *sense,
3644				   u_int, struct scsi_sense_desc_header *,
3645				   void *), void *arg)
3646{
3647	int cur_pos;
3648	int desc_len;
3649
3650	/*
3651	 * First make sure the extra length field is present.
3652	 */
3653	if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0)
3654		return;
3655
3656	/*
3657	 * The length of data actually returned may be different than the
3658	 * extra_len recorded in the structure.
3659	 */
3660	desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc);
3661
3662	/*
3663	 * Limit this further by the extra length reported, and the maximum
3664	 * allowed extra length.
3665	 */
3666	desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX));
3667
3668	/*
3669	 * Subtract the size of the header from the descriptor length.
3670	 * This is to ensure that we have at least the header left, so we
3671	 * don't have to check that inside the loop.  This can wind up
3672	 * being a negative value.
3673	 */
3674	desc_len -= sizeof(struct scsi_sense_desc_header);
3675
3676	for (cur_pos = 0; cur_pos < desc_len;) {
3677		struct scsi_sense_desc_header *header;
3678
3679		header = (struct scsi_sense_desc_header *)
3680			&sense->sense_desc[cur_pos];
3681
3682		/*
3683		 * Check to make sure we have the entire descriptor.  We
3684		 * don't call iter_func() unless we do.
3685		 *
3686		 * Note that although cur_pos is at the beginning of the
3687		 * descriptor, desc_len already has the header length
3688		 * subtracted.  So the comparison of the length in the
3689		 * header (which does not include the header itself) to
3690		 * desc_len - cur_pos is correct.
3691		 */
3692		if (header->length > (desc_len - cur_pos))
3693			break;
3694
3695		if (iter_func(sense, sense_len, header, arg) != 0)
3696			break;
3697
3698		cur_pos += sizeof(*header) + header->length;
3699	}
3700}
3701
3702struct scsi_find_desc_info {
3703	uint8_t desc_type;
3704	struct scsi_sense_desc_header *header;
3705};
3706
3707static int
3708scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
3709		    struct scsi_sense_desc_header *header, void *arg)
3710{
3711	struct scsi_find_desc_info *desc_info;
3712
3713	desc_info = (struct scsi_find_desc_info *)arg;
3714
3715	if (header->desc_type == desc_info->desc_type) {
3716		desc_info->header = header;
3717
3718		/* We found the descriptor, tell the iterator to stop. */
3719		return (1);
3720	} else
3721		return (0);
3722}
3723
3724/*
3725 * Given a descriptor type, return a pointer to it if it is in the sense
3726 * data and not truncated.  Avoiding truncating sense data will simplify
3727 * things significantly for the caller.
3728 */
3729uint8_t *
3730scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len,
3731	       uint8_t desc_type)
3732{
3733	struct scsi_find_desc_info desc_info;
3734
3735	desc_info.desc_type = desc_type;
3736	desc_info.header = NULL;
3737
3738	scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info);
3739
3740	return ((uint8_t *)desc_info.header);
3741}
3742
3743/*
3744 * Fill in SCSI sense data with the specified parameters.  This routine can
3745 * fill in either fixed or descriptor type sense data.
3746 */
3747void
3748scsi_set_sense_data_va(struct scsi_sense_data *sense_data,
3749		      scsi_sense_data_type sense_format, int current_error,
3750		      int sense_key, int asc, int ascq, va_list ap)
3751{
3752	int descriptor_sense;
3753	scsi_sense_elem_type elem_type;
3754
3755	/*
3756	 * Determine whether to return fixed or descriptor format sense
3757	 * data.  If the user specifies SSD_TYPE_NONE for some reason,
3758	 * they'll just get fixed sense data.
3759	 */
3760	if (sense_format == SSD_TYPE_DESC)
3761		descriptor_sense = 1;
3762	else
3763		descriptor_sense = 0;
3764
3765	/*
3766	 * Zero the sense data, so that we don't pass back any garbage data
3767	 * to the user.
3768	 */
3769	memset(sense_data, 0, sizeof(*sense_data));
3770
3771	if (descriptor_sense != 0) {
3772		struct scsi_sense_data_desc *sense;
3773
3774		sense = (struct scsi_sense_data_desc *)sense_data;
3775		/*
3776		 * The descriptor sense format eliminates the use of the
3777		 * valid bit.
3778		 */
3779		if (current_error != 0)
3780			sense->error_code = SSD_DESC_CURRENT_ERROR;
3781		else
3782			sense->error_code = SSD_DESC_DEFERRED_ERROR;
3783		sense->sense_key = sense_key;
3784		sense->add_sense_code = asc;
3785		sense->add_sense_code_qual = ascq;
3786		/*
3787		 * Start off with no extra length, since the above data
3788		 * fits in the standard descriptor sense information.
3789		 */
3790		sense->extra_len = 0;
3791		while ((elem_type = (scsi_sense_elem_type)va_arg(ap,
3792			scsi_sense_elem_type)) != SSD_ELEM_NONE) {
3793			int sense_len, len_to_copy;
3794			uint8_t *data;
3795
3796			if (elem_type >= SSD_ELEM_MAX) {
3797				printf("%s: invalid sense type %d\n", __func__,
3798				       elem_type);
3799				break;
3800			}
3801
3802			sense_len = (int)va_arg(ap, int);
3803			len_to_copy = MIN(sense_len, SSD_EXTRA_MAX -
3804					  sense->extra_len);
3805			data = (uint8_t *)va_arg(ap, uint8_t *);
3806
3807			/*
3808			 * We've already consumed the arguments for this one.
3809			 */
3810			if (elem_type == SSD_ELEM_SKIP)
3811				continue;
3812
3813			switch (elem_type) {
3814			case SSD_ELEM_DESC: {
3815
3816				/*
3817				 * This is a straight descriptor.  All we
3818				 * need to do is copy the data in.
3819				 */
3820				bcopy(data, &sense->sense_desc[
3821				      sense->extra_len], len_to_copy);
3822				sense->extra_len += len_to_copy;
3823				break;
3824			}
3825			case SSD_ELEM_SKS: {
3826				struct scsi_sense_sks sks;
3827
3828				bzero(&sks, sizeof(sks));
3829
3830				/*
3831				 * This is already-formatted sense key
3832				 * specific data.  We just need to fill out
3833				 * the header and copy everything in.
3834				 */
3835				bcopy(data, &sks.sense_key_spec,
3836				      MIN(len_to_copy,
3837				          sizeof(sks.sense_key_spec)));
3838
3839				sks.desc_type = SSD_DESC_SKS;
3840				sks.length = sizeof(sks) -
3841				    offsetof(struct scsi_sense_sks, reserved1);
3842				bcopy(&sks,&sense->sense_desc[sense->extra_len],
3843				      sizeof(sks));
3844				sense->extra_len += sizeof(sks);
3845				break;
3846			}
3847			case SSD_ELEM_INFO:
3848			case SSD_ELEM_COMMAND: {
3849				struct scsi_sense_command cmd;
3850				struct scsi_sense_info info;
3851				uint8_t *data_dest;
3852				uint8_t *descriptor;
3853				int descriptor_size, i, copy_len;
3854
3855				bzero(&cmd, sizeof(cmd));
3856				bzero(&info, sizeof(info));
3857
3858				/*
3859				 * Command or information data.  The
3860				 * operate in pretty much the same way.
3861				 */
3862				if (elem_type == SSD_ELEM_COMMAND) {
3863					len_to_copy = MIN(len_to_copy,
3864					    sizeof(cmd.command_info));
3865					descriptor = (uint8_t *)&cmd;
3866					descriptor_size  = sizeof(cmd);
3867					data_dest =(uint8_t *)&cmd.command_info;
3868					cmd.desc_type = SSD_DESC_COMMAND;
3869					cmd.length = sizeof(cmd) -
3870					    offsetof(struct scsi_sense_command,
3871						     reserved);
3872				} else {
3873					len_to_copy = MIN(len_to_copy,
3874					    sizeof(info.info));
3875					descriptor = (uint8_t *)&info;
3876					descriptor_size = sizeof(cmd);
3877					data_dest = (uint8_t *)&info.info;
3878					info.desc_type = SSD_DESC_INFO;
3879					info.byte2 = SSD_INFO_VALID;
3880					info.length = sizeof(info) -
3881					    offsetof(struct scsi_sense_info,
3882						     byte2);
3883				}
3884
3885				/*
3886				 * Copy this in reverse because the spec
3887				 * (SPC-4) says that when 4 byte quantities
3888				 * are stored in this 8 byte field, the
3889				 * first four bytes shall be 0.
3890				 *
3891				 * So we fill the bytes in from the end, and
3892				 * if we have less than 8 bytes to copy,
3893				 * the initial, most significant bytes will
3894				 * be 0.
3895				 */
3896				for (i = sense_len - 1; i >= 0 &&
3897				     len_to_copy > 0; i--, len_to_copy--)
3898					data_dest[len_to_copy - 1] = data[i];
3899
3900				/*
3901				 * This calculation looks much like the
3902				 * initial len_to_copy calculation, but
3903				 * we have to do it again here, because
3904				 * we're looking at a larger amount that
3905				 * may or may not fit.  It's not only the
3906				 * data the user passed in, but also the
3907				 * rest of the descriptor.
3908				 */
3909				copy_len = MIN(descriptor_size,
3910				    SSD_EXTRA_MAX - sense->extra_len);
3911				bcopy(descriptor, &sense->sense_desc[
3912				      sense->extra_len], copy_len);
3913				sense->extra_len += copy_len;
3914				break;
3915			}
3916			case SSD_ELEM_FRU: {
3917				struct scsi_sense_fru fru;
3918				int copy_len;
3919
3920				bzero(&fru, sizeof(fru));
3921
3922				fru.desc_type = SSD_DESC_FRU;
3923				fru.length = sizeof(fru) -
3924				    offsetof(struct scsi_sense_fru, reserved);
3925				fru.fru = *data;
3926
3927				copy_len = MIN(sizeof(fru), SSD_EXTRA_MAX -
3928					       sense->extra_len);
3929				bcopy(&fru, &sense->sense_desc[
3930				      sense->extra_len], copy_len);
3931				sense->extra_len += copy_len;
3932				break;
3933			}
3934			case SSD_ELEM_STREAM: {
3935				struct scsi_sense_stream stream_sense;
3936				int copy_len;
3937
3938				bzero(&stream_sense, sizeof(stream_sense));
3939				stream_sense.desc_type = SSD_DESC_STREAM;
3940				stream_sense.length = sizeof(stream_sense) -
3941				   offsetof(struct scsi_sense_stream, reserved);
3942				stream_sense.byte3 = *data;
3943
3944				copy_len = MIN(sizeof(stream_sense),
3945				    SSD_EXTRA_MAX - sense->extra_len);
3946				bcopy(&stream_sense, &sense->sense_desc[
3947				      sense->extra_len], copy_len);
3948				sense->extra_len += copy_len;
3949				break;
3950			}
3951			default:
3952				/*
3953				 * We shouldn't get here, but if we do, do
3954				 * nothing.  We've already consumed the
3955				 * arguments above.
3956				 */
3957				break;
3958			}
3959		}
3960	} else {
3961		struct scsi_sense_data_fixed *sense;
3962
3963		sense = (struct scsi_sense_data_fixed *)sense_data;
3964
3965		if (current_error != 0)
3966			sense->error_code = SSD_CURRENT_ERROR;
3967		else
3968			sense->error_code = SSD_DEFERRED_ERROR;
3969
3970		sense->flags = sense_key;
3971		sense->add_sense_code = asc;
3972		sense->add_sense_code_qual = ascq;
3973		/*
3974		 * We've set the ASC and ASCQ, so we have 6 more bytes of
3975		 * valid data.  If we wind up setting any of the other
3976		 * fields, we'll bump this to 10 extra bytes.
3977		 */
3978		sense->extra_len = 6;
3979
3980		while ((elem_type = (scsi_sense_elem_type)va_arg(ap,
3981			scsi_sense_elem_type)) != SSD_ELEM_NONE) {
3982			int sense_len, len_to_copy;
3983			uint8_t *data;
3984
3985			if (elem_type >= SSD_ELEM_MAX) {
3986				printf("%s: invalid sense type %d\n", __func__,
3987				       elem_type);
3988				break;
3989			}
3990			/*
3991			 * If we get in here, just bump the extra length to
3992			 * 10 bytes.  That will encompass anything we're
3993			 * going to set here.
3994			 */
3995			sense->extra_len = 10;
3996			sense_len = (int)va_arg(ap, int);
3997			data = (uint8_t *)va_arg(ap, uint8_t *);
3998
3999			switch (elem_type) {
4000			case SSD_ELEM_SKS:
4001				/*
4002				 * The user passed in pre-formatted sense
4003				 * key specific data.
4004				 */
4005				bcopy(data, &sense->sense_key_spec[0],
4006				      MIN(sizeof(sense->sense_key_spec),
4007				      sense_len));
4008				break;
4009			case SSD_ELEM_INFO:
4010			case SSD_ELEM_COMMAND: {
4011				uint8_t *data_dest;
4012				int i;
4013
4014				if (elem_type == SSD_ELEM_COMMAND) {
4015					data_dest = &sense->cmd_spec_info[0];
4016					len_to_copy = MIN(sense_len,
4017					    sizeof(sense->cmd_spec_info));
4018				} else {
4019					data_dest = &sense->info[0];
4020					len_to_copy = MIN(sense_len,
4021					    sizeof(sense->info));
4022
4023					/* Set VALID bit only if no overflow. */
4024					for (i = 0; i < sense_len - len_to_copy;
4025					    i++) {
4026						if (data[i] != 0)
4027							break;
4028					}
4029					if (i >= sense_len - len_to_copy) {
4030						sense->error_code |=
4031						    SSD_ERRCODE_VALID;
4032					}
4033				}
4034
4035				/*
4036			 	 * Copy this in reverse so that if we have
4037				 * less than 4 bytes to fill, the least
4038				 * significant bytes will be at the end.
4039				 * If we have more than 4 bytes, only the
4040				 * least significant bytes will be included.
4041				 */
4042				for (i = sense_len - 1; i >= 0 &&
4043				     len_to_copy > 0; i--, len_to_copy--)
4044					data_dest[len_to_copy - 1] = data[i];
4045
4046				break;
4047			}
4048			case SSD_ELEM_FRU:
4049				sense->fru = *data;
4050				break;
4051			case SSD_ELEM_STREAM:
4052				sense->flags |= *data;
4053				break;
4054			case SSD_ELEM_DESC:
4055			default:
4056
4057				/*
4058				 * If the user passes in descriptor sense,
4059				 * we can't handle that in fixed format.
4060				 * So just skip it, and any unknown argument
4061				 * types.
4062				 */
4063				break;
4064			}
4065		}
4066	}
4067}
4068
4069void
4070scsi_set_sense_data(struct scsi_sense_data *sense_data,
4071		    scsi_sense_data_type sense_format, int current_error,
4072		    int sense_key, int asc, int ascq, ...)
4073{
4074	va_list ap;
4075
4076	va_start(ap, ascq);
4077	scsi_set_sense_data_va(sense_data, sense_format, current_error,
4078			       sense_key, asc, ascq, ap);
4079	va_end(ap);
4080}
4081
4082/*
4083 * Get sense information for three similar sense data types.
4084 */
4085int
4086scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len,
4087		    uint8_t info_type, uint64_t *info, int64_t *signed_info)
4088{
4089	scsi_sense_data_type sense_type;
4090
4091	if (sense_len == 0)
4092		goto bailout;
4093
4094	sense_type = scsi_sense_type(sense_data);
4095
4096	switch (sense_type) {
4097	case SSD_TYPE_DESC: {
4098		struct scsi_sense_data_desc *sense;
4099		uint8_t *desc;
4100
4101		sense = (struct scsi_sense_data_desc *)sense_data;
4102
4103		desc = scsi_find_desc(sense, sense_len, info_type);
4104		if (desc == NULL)
4105			goto bailout;
4106
4107		switch (info_type) {
4108		case SSD_DESC_INFO: {
4109			struct scsi_sense_info *info_desc;
4110
4111			info_desc = (struct scsi_sense_info *)desc;
4112			*info = scsi_8btou64(info_desc->info);
4113			if (signed_info != NULL)
4114				*signed_info = *info;
4115			break;
4116		}
4117		case SSD_DESC_COMMAND: {
4118			struct scsi_sense_command *cmd_desc;
4119
4120			cmd_desc = (struct scsi_sense_command *)desc;
4121
4122			*info = scsi_8btou64(cmd_desc->command_info);
4123			if (signed_info != NULL)
4124				*signed_info = *info;
4125			break;
4126		}
4127		case SSD_DESC_FRU: {
4128			struct scsi_sense_fru *fru_desc;
4129
4130			fru_desc = (struct scsi_sense_fru *)desc;
4131
4132			*info = fru_desc->fru;
4133			if (signed_info != NULL)
4134				*signed_info = (int8_t)fru_desc->fru;
4135			break;
4136		}
4137		default:
4138			goto bailout;
4139			break;
4140		}
4141		break;
4142	}
4143	case SSD_TYPE_FIXED: {
4144		struct scsi_sense_data_fixed *sense;
4145
4146		sense = (struct scsi_sense_data_fixed *)sense_data;
4147
4148		switch (info_type) {
4149		case SSD_DESC_INFO: {
4150			uint32_t info_val;
4151
4152			if ((sense->error_code & SSD_ERRCODE_VALID) == 0)
4153				goto bailout;
4154
4155			if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0)
4156				goto bailout;
4157
4158			info_val = scsi_4btoul(sense->info);
4159
4160			*info = info_val;
4161			if (signed_info != NULL)
4162				*signed_info = (int32_t)info_val;
4163			break;
4164		}
4165		case SSD_DESC_COMMAND: {
4166			uint32_t cmd_val;
4167
4168			if ((SSD_FIXED_IS_PRESENT(sense, sense_len,
4169			     cmd_spec_info) == 0)
4170			 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0))
4171				goto bailout;
4172
4173			cmd_val = scsi_4btoul(sense->cmd_spec_info);
4174			if (cmd_val == 0)
4175				goto bailout;
4176
4177			*info = cmd_val;
4178			if (signed_info != NULL)
4179				*signed_info = (int32_t)cmd_val;
4180			break;
4181		}
4182		case SSD_DESC_FRU:
4183			if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0)
4184			 || (SSD_FIXED_IS_FILLED(sense, fru) == 0))
4185				goto bailout;
4186
4187			if (sense->fru == 0)
4188				goto bailout;
4189
4190			*info = sense->fru;
4191			if (signed_info != NULL)
4192				*signed_info = (int8_t)sense->fru;
4193			break;
4194		default:
4195			goto bailout;
4196			break;
4197		}
4198		break;
4199	}
4200	default:
4201		goto bailout;
4202		break;
4203	}
4204
4205	return (0);
4206bailout:
4207	return (1);
4208}
4209
4210int
4211scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks)
4212{
4213	scsi_sense_data_type sense_type;
4214
4215	if (sense_len == 0)
4216		goto bailout;
4217
4218	sense_type = scsi_sense_type(sense_data);
4219
4220	switch (sense_type) {
4221	case SSD_TYPE_DESC: {
4222		struct scsi_sense_data_desc *sense;
4223		struct scsi_sense_sks *desc;
4224
4225		sense = (struct scsi_sense_data_desc *)sense_data;
4226
4227		desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len,
4228							       SSD_DESC_SKS);
4229		if (desc == NULL)
4230			goto bailout;
4231
4232		/*
4233		 * No need to check the SKS valid bit for descriptor sense.
4234		 * If the descriptor is present, it is valid.
4235		 */
4236		bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec));
4237		break;
4238	}
4239	case SSD_TYPE_FIXED: {
4240		struct scsi_sense_data_fixed *sense;
4241
4242		sense = (struct scsi_sense_data_fixed *)sense_data;
4243
4244		if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0)
4245		 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0))
4246			goto bailout;
4247
4248		if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0)
4249			goto bailout;
4250
4251		bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec));
4252		break;
4253	}
4254	default:
4255		goto bailout;
4256		break;
4257	}
4258	return (0);
4259bailout:
4260	return (1);
4261}
4262
4263/*
4264 * Provide a common interface for fixed and descriptor sense to detect
4265 * whether we have block-specific sense information.  It is clear by the
4266 * presence of the block descriptor in descriptor mode, but we have to
4267 * infer from the inquiry data and ILI bit in fixed mode.
4268 */
4269int
4270scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len,
4271		    struct scsi_inquiry_data *inq_data, uint8_t *block_bits)
4272{
4273	scsi_sense_data_type sense_type;
4274
4275	if (inq_data != NULL) {
4276		switch (SID_TYPE(inq_data)) {
4277		case T_DIRECT:
4278		case T_RBC:
4279			break;
4280		default:
4281			goto bailout;
4282			break;
4283		}
4284	}
4285
4286	sense_type = scsi_sense_type(sense_data);
4287
4288	switch (sense_type) {
4289	case SSD_TYPE_DESC: {
4290		struct scsi_sense_data_desc *sense;
4291		struct scsi_sense_block *block;
4292
4293		sense = (struct scsi_sense_data_desc *)sense_data;
4294
4295		block = (struct scsi_sense_block *)scsi_find_desc(sense,
4296		    sense_len, SSD_DESC_BLOCK);
4297		if (block == NULL)
4298			goto bailout;
4299
4300		*block_bits = block->byte3;
4301		break;
4302	}
4303	case SSD_TYPE_FIXED: {
4304		struct scsi_sense_data_fixed *sense;
4305
4306		sense = (struct scsi_sense_data_fixed *)sense_data;
4307
4308		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4309			goto bailout;
4310
4311		if ((sense->flags & SSD_ILI) == 0)
4312			goto bailout;
4313
4314		*block_bits = sense->flags & SSD_ILI;
4315		break;
4316	}
4317	default:
4318		goto bailout;
4319		break;
4320	}
4321	return (0);
4322bailout:
4323	return (1);
4324}
4325
4326int
4327scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len,
4328		     struct scsi_inquiry_data *inq_data, uint8_t *stream_bits)
4329{
4330	scsi_sense_data_type sense_type;
4331
4332	if (inq_data != NULL) {
4333		switch (SID_TYPE(inq_data)) {
4334		case T_SEQUENTIAL:
4335			break;
4336		default:
4337			goto bailout;
4338			break;
4339		}
4340	}
4341
4342	sense_type = scsi_sense_type(sense_data);
4343
4344	switch (sense_type) {
4345	case SSD_TYPE_DESC: {
4346		struct scsi_sense_data_desc *sense;
4347		struct scsi_sense_stream *stream;
4348
4349		sense = (struct scsi_sense_data_desc *)sense_data;
4350
4351		stream = (struct scsi_sense_stream *)scsi_find_desc(sense,
4352		    sense_len, SSD_DESC_STREAM);
4353		if (stream == NULL)
4354			goto bailout;
4355
4356		*stream_bits = stream->byte3;
4357		break;
4358	}
4359	case SSD_TYPE_FIXED: {
4360		struct scsi_sense_data_fixed *sense;
4361
4362		sense = (struct scsi_sense_data_fixed *)sense_data;
4363
4364		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4365			goto bailout;
4366
4367		if ((sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK)) == 0)
4368			goto bailout;
4369
4370		*stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK);
4371		break;
4372	}
4373	default:
4374		goto bailout;
4375		break;
4376	}
4377	return (0);
4378bailout:
4379	return (1);
4380}
4381
4382void
4383scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4384	       struct scsi_inquiry_data *inq_data, uint64_t info)
4385{
4386	sbuf_printf(sb, "Info: %#jx", info);
4387}
4388
4389void
4390scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4391		  struct scsi_inquiry_data *inq_data, uint64_t csi)
4392{
4393	sbuf_printf(sb, "Command Specific Info: %#jx", csi);
4394}
4395
4396
4397void
4398scsi_progress_sbuf(struct sbuf *sb, uint16_t progress)
4399{
4400	sbuf_printf(sb, "Progress: %d%% (%d/%d) complete",
4401		    (progress * 100) / SSD_SKS_PROGRESS_DENOM,
4402		    progress, SSD_SKS_PROGRESS_DENOM);
4403}
4404
4405/*
4406 * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success.
4407 */
4408int
4409scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks)
4410{
4411	if ((sks[0] & SSD_SKS_VALID) == 0)
4412		return (1);
4413
4414	switch (sense_key) {
4415	case SSD_KEY_ILLEGAL_REQUEST: {
4416		struct scsi_sense_sks_field *field;
4417		int bad_command;
4418		char tmpstr[40];
4419
4420		/*Field Pointer*/
4421		field = (struct scsi_sense_sks_field *)sks;
4422
4423		if (field->byte0 & SSD_SKS_FIELD_CMD)
4424			bad_command = 1;
4425		else
4426			bad_command = 0;
4427
4428		tmpstr[0] = '\0';
4429
4430		/* Bit pointer is valid */
4431		if (field->byte0 & SSD_SKS_BPV)
4432			snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4433				 field->byte0 & SSD_SKS_BIT_VALUE);
4434
4435		sbuf_printf(sb, "%s byte %d %sis invalid",
4436			    bad_command ? "Command" : "Data",
4437			    scsi_2btoul(field->field), tmpstr);
4438		break;
4439	}
4440	case SSD_KEY_UNIT_ATTENTION: {
4441		struct scsi_sense_sks_overflow *overflow;
4442
4443		overflow = (struct scsi_sense_sks_overflow *)sks;
4444
4445		/*UA Condition Queue Overflow*/
4446		sbuf_printf(sb, "Unit Attention Condition Queue %s",
4447			    (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ?
4448			    "Overflowed" : "Did Not Overflow??");
4449		break;
4450	}
4451	case SSD_KEY_RECOVERED_ERROR:
4452	case SSD_KEY_HARDWARE_ERROR:
4453	case SSD_KEY_MEDIUM_ERROR: {
4454		struct scsi_sense_sks_retry *retry;
4455
4456		/*Actual Retry Count*/
4457		retry = (struct scsi_sense_sks_retry *)sks;
4458
4459		sbuf_printf(sb, "Actual Retry Count: %d",
4460			    scsi_2btoul(retry->actual_retry_count));
4461		break;
4462	}
4463	case SSD_KEY_NO_SENSE:
4464	case SSD_KEY_NOT_READY: {
4465		struct scsi_sense_sks_progress *progress;
4466		int progress_val;
4467
4468		/*Progress Indication*/
4469		progress = (struct scsi_sense_sks_progress *)sks;
4470		progress_val = scsi_2btoul(progress->progress);
4471
4472		scsi_progress_sbuf(sb, progress_val);
4473		break;
4474	}
4475	case SSD_KEY_COPY_ABORTED: {
4476		struct scsi_sense_sks_segment *segment;
4477		char tmpstr[40];
4478
4479		/*Segment Pointer*/
4480		segment = (struct scsi_sense_sks_segment *)sks;
4481
4482		tmpstr[0] = '\0';
4483
4484		if (segment->byte0 & SSD_SKS_SEGMENT_BPV)
4485			snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4486				 segment->byte0 & SSD_SKS_SEGMENT_BITPTR);
4487
4488		sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 &
4489			    SSD_SKS_SEGMENT_SD) ? "Segment" : "Data",
4490			    scsi_2btoul(segment->field), tmpstr);
4491		break;
4492	}
4493	default:
4494		sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0],
4495			    scsi_2btoul(&sks[1]));
4496		break;
4497	}
4498
4499	return (0);
4500}
4501
4502void
4503scsi_fru_sbuf(struct sbuf *sb, uint64_t fru)
4504{
4505	sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru);
4506}
4507
4508void
4509scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits, uint64_t info)
4510{
4511	int need_comma;
4512
4513	need_comma = 0;
4514	/*
4515	 * XXX KDM this needs more descriptive decoding.
4516	 */
4517	if (stream_bits & SSD_DESC_STREAM_FM) {
4518		sbuf_printf(sb, "Filemark");
4519		need_comma = 1;
4520	}
4521
4522	if (stream_bits & SSD_DESC_STREAM_EOM) {
4523		sbuf_printf(sb, "%sEOM", (need_comma) ? "," : "");
4524		need_comma = 1;
4525	}
4526
4527	if (stream_bits & SSD_DESC_STREAM_ILI)
4528		sbuf_printf(sb, "%sILI", (need_comma) ? "," : "");
4529
4530	sbuf_printf(sb, ": Info: %#jx", (uintmax_t) info);
4531}
4532
4533void
4534scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits, uint64_t info)
4535{
4536	if (block_bits & SSD_DESC_BLOCK_ILI)
4537		sbuf_printf(sb, "ILI: residue %#jx", (uintmax_t) info);
4538}
4539
4540void
4541scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4542		     u_int sense_len, uint8_t *cdb, int cdb_len,
4543		     struct scsi_inquiry_data *inq_data,
4544		     struct scsi_sense_desc_header *header)
4545{
4546	struct scsi_sense_info *info;
4547
4548	info = (struct scsi_sense_info *)header;
4549
4550	scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info));
4551}
4552
4553void
4554scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4555			u_int sense_len, uint8_t *cdb, int cdb_len,
4556			struct scsi_inquiry_data *inq_data,
4557			struct scsi_sense_desc_header *header)
4558{
4559	struct scsi_sense_command *command;
4560
4561	command = (struct scsi_sense_command *)header;
4562
4563	scsi_command_sbuf(sb, cdb, cdb_len, inq_data,
4564			  scsi_8btou64(command->command_info));
4565}
4566
4567void
4568scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4569		    u_int sense_len, uint8_t *cdb, int cdb_len,
4570		    struct scsi_inquiry_data *inq_data,
4571		    struct scsi_sense_desc_header *header)
4572{
4573	struct scsi_sense_sks *sks;
4574	int error_code, sense_key, asc, ascq;
4575
4576	sks = (struct scsi_sense_sks *)header;
4577
4578	scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4579			       &asc, &ascq, /*show_errors*/ 1);
4580
4581	scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec);
4582}
4583
4584void
4585scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4586		    u_int sense_len, uint8_t *cdb, int cdb_len,
4587		    struct scsi_inquiry_data *inq_data,
4588		    struct scsi_sense_desc_header *header)
4589{
4590	struct scsi_sense_fru *fru;
4591
4592	fru = (struct scsi_sense_fru *)header;
4593
4594	scsi_fru_sbuf(sb, (uint64_t)fru->fru);
4595}
4596
4597void
4598scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4599		       u_int sense_len, uint8_t *cdb, int cdb_len,
4600		       struct scsi_inquiry_data *inq_data,
4601		       struct scsi_sense_desc_header *header)
4602{
4603	struct scsi_sense_stream *stream;
4604	uint64_t info;
4605
4606	stream = (struct scsi_sense_stream *)header;
4607	info = 0;
4608
4609	scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL);
4610
4611	scsi_stream_sbuf(sb, stream->byte3, info);
4612}
4613
4614void
4615scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4616		      u_int sense_len, uint8_t *cdb, int cdb_len,
4617		      struct scsi_inquiry_data *inq_data,
4618		      struct scsi_sense_desc_header *header)
4619{
4620	struct scsi_sense_block *block;
4621	uint64_t info;
4622
4623	block = (struct scsi_sense_block *)header;
4624	info = 0;
4625
4626	scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL);
4627
4628	scsi_block_sbuf(sb, block->byte3, info);
4629}
4630
4631void
4632scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4633			 u_int sense_len, uint8_t *cdb, int cdb_len,
4634			 struct scsi_inquiry_data *inq_data,
4635			 struct scsi_sense_desc_header *header)
4636{
4637	struct scsi_sense_progress *progress;
4638	const char *sense_key_desc;
4639	const char *asc_desc;
4640	int progress_val;
4641
4642	progress = (struct scsi_sense_progress *)header;
4643
4644	/*
4645	 * Get descriptions for the sense key, ASC, and ASCQ in the
4646	 * progress descriptor.  These could be different than the values
4647	 * in the overall sense data.
4648	 */
4649	scsi_sense_desc(progress->sense_key, progress->add_sense_code,
4650			progress->add_sense_code_qual, inq_data,
4651			&sense_key_desc, &asc_desc);
4652
4653	progress_val = scsi_2btoul(progress->progress);
4654
4655	/*
4656	 * The progress indicator is for the operation described by the
4657	 * sense key, ASC, and ASCQ in the descriptor.
4658	 */
4659	sbuf_cat(sb, sense_key_desc);
4660	sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code,
4661		    progress->add_sense_code_qual, asc_desc);
4662	scsi_progress_sbuf(sb, progress_val);
4663}
4664
4665void
4666scsi_sense_forwarded_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4667			 u_int sense_len, uint8_t *cdb, int cdb_len,
4668			 struct scsi_inquiry_data *inq_data,
4669			 struct scsi_sense_desc_header *header)
4670{
4671	struct scsi_sense_forwarded *forwarded;
4672	const char *sense_key_desc;
4673	const char *asc_desc;
4674	int error_code, sense_key, asc, ascq;
4675
4676	forwarded = (struct scsi_sense_forwarded *)header;
4677	scsi_extract_sense_len((struct scsi_sense_data *)forwarded->sense_data,
4678	    forwarded->length - 2, &error_code, &sense_key, &asc, &ascq, 1);
4679	scsi_sense_desc(sense_key, asc, ascq, NULL, &sense_key_desc, &asc_desc);
4680
4681	sbuf_printf(sb, "Forwarded sense: %s asc:%x,%x (%s): ",
4682	    sense_key_desc, asc, ascq, asc_desc);
4683}
4684
4685/*
4686 * Generic sense descriptor printing routine.  This is used when we have
4687 * not yet implemented a specific printing routine for this descriptor.
4688 */
4689void
4690scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4691			u_int sense_len, uint8_t *cdb, int cdb_len,
4692			struct scsi_inquiry_data *inq_data,
4693			struct scsi_sense_desc_header *header)
4694{
4695	int i;
4696	uint8_t *buf_ptr;
4697
4698	sbuf_printf(sb, "Descriptor %#x:", header->desc_type);
4699
4700	buf_ptr = (uint8_t *)&header[1];
4701
4702	for (i = 0; i < header->length; i++, buf_ptr++)
4703		sbuf_printf(sb, " %02x", *buf_ptr);
4704}
4705
4706/*
4707 * Keep this list in numeric order.  This speeds the array traversal.
4708 */
4709struct scsi_sense_desc_printer {
4710	uint8_t desc_type;
4711	/*
4712	 * The function arguments here are the superset of what is needed
4713	 * to print out various different descriptors.  Command and
4714	 * information descriptors need inquiry data and command type.
4715	 * Sense key specific descriptors need the sense key.
4716	 *
4717	 * The sense, cdb, and inquiry data arguments may be NULL, but the
4718	 * information printed may not be fully decoded as a result.
4719	 */
4720	void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense,
4721			   u_int sense_len, uint8_t *cdb, int cdb_len,
4722			   struct scsi_inquiry_data *inq_data,
4723			   struct scsi_sense_desc_header *header);
4724} scsi_sense_printers[] = {
4725	{SSD_DESC_INFO, scsi_sense_info_sbuf},
4726	{SSD_DESC_COMMAND, scsi_sense_command_sbuf},
4727	{SSD_DESC_SKS, scsi_sense_sks_sbuf},
4728	{SSD_DESC_FRU, scsi_sense_fru_sbuf},
4729	{SSD_DESC_STREAM, scsi_sense_stream_sbuf},
4730	{SSD_DESC_BLOCK, scsi_sense_block_sbuf},
4731	{SSD_DESC_PROGRESS, scsi_sense_progress_sbuf},
4732	{SSD_DESC_FORWARDED, scsi_sense_forwarded_sbuf}
4733};
4734
4735void
4736scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4737		     u_int sense_len, uint8_t *cdb, int cdb_len,
4738		     struct scsi_inquiry_data *inq_data,
4739		     struct scsi_sense_desc_header *header)
4740{
4741	int i;
4742
4743	for (i = 0; i < (sizeof(scsi_sense_printers) /
4744	     sizeof(scsi_sense_printers[0])); i++) {
4745		struct scsi_sense_desc_printer *printer;
4746
4747		printer = &scsi_sense_printers[i];
4748
4749		/*
4750		 * The list is sorted, so quit if we've passed our
4751		 * descriptor number.
4752		 */
4753		if (printer->desc_type > header->desc_type)
4754			break;
4755
4756		if (printer->desc_type != header->desc_type)
4757			continue;
4758
4759		printer->print_func(sb, sense, sense_len, cdb, cdb_len,
4760				    inq_data, header);
4761
4762		return;
4763	}
4764
4765	/*
4766	 * No specific printing routine, so use the generic routine.
4767	 */
4768	scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len,
4769				inq_data, header);
4770}
4771
4772scsi_sense_data_type
4773scsi_sense_type(struct scsi_sense_data *sense_data)
4774{
4775	switch (sense_data->error_code & SSD_ERRCODE) {
4776	case SSD_DESC_CURRENT_ERROR:
4777	case SSD_DESC_DEFERRED_ERROR:
4778		return (SSD_TYPE_DESC);
4779		break;
4780	case SSD_CURRENT_ERROR:
4781	case SSD_DEFERRED_ERROR:
4782		return (SSD_TYPE_FIXED);
4783		break;
4784	default:
4785		break;
4786	}
4787
4788	return (SSD_TYPE_NONE);
4789}
4790
4791struct scsi_print_sense_info {
4792	struct sbuf *sb;
4793	char *path_str;
4794	uint8_t *cdb;
4795	int cdb_len;
4796	struct scsi_inquiry_data *inq_data;
4797};
4798
4799static int
4800scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
4801		     struct scsi_sense_desc_header *header, void *arg)
4802{
4803	struct scsi_print_sense_info *print_info;
4804
4805	print_info = (struct scsi_print_sense_info *)arg;
4806
4807	switch (header->desc_type) {
4808	case SSD_DESC_INFO:
4809	case SSD_DESC_FRU:
4810	case SSD_DESC_COMMAND:
4811	case SSD_DESC_SKS:
4812	case SSD_DESC_BLOCK:
4813	case SSD_DESC_STREAM:
4814		/*
4815		 * We have already printed these descriptors, if they are
4816		 * present.
4817		 */
4818		break;
4819	default: {
4820		sbuf_printf(print_info->sb, "%s", print_info->path_str);
4821		scsi_sense_desc_sbuf(print_info->sb,
4822				     (struct scsi_sense_data *)sense, sense_len,
4823				     print_info->cdb, print_info->cdb_len,
4824				     print_info->inq_data, header);
4825		sbuf_printf(print_info->sb, "\n");
4826		break;
4827	}
4828	}
4829
4830	/*
4831	 * Tell the iterator that we want to see more descriptors if they
4832	 * are present.
4833	 */
4834	return (0);
4835}
4836
4837void
4838scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len,
4839		     struct sbuf *sb, char *path_str,
4840		     struct scsi_inquiry_data *inq_data, uint8_t *cdb,
4841		     int cdb_len)
4842{
4843	int error_code, sense_key, asc, ascq;
4844
4845	sbuf_cat(sb, path_str);
4846
4847	scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4848			       &asc, &ascq, /*show_errors*/ 1);
4849
4850	sbuf_printf(sb, "SCSI sense: ");
4851	switch (error_code) {
4852	case SSD_DEFERRED_ERROR:
4853	case SSD_DESC_DEFERRED_ERROR:
4854		sbuf_printf(sb, "Deferred error: ");
4855
4856		/* FALLTHROUGH */
4857	case SSD_CURRENT_ERROR:
4858	case SSD_DESC_CURRENT_ERROR:
4859	{
4860		struct scsi_sense_data_desc *desc_sense;
4861		struct scsi_print_sense_info print_info;
4862		const char *sense_key_desc;
4863		const char *asc_desc;
4864		uint8_t sks[3];
4865		uint64_t val;
4866		int info_valid;
4867
4868		/*
4869		 * Get descriptions for the sense key, ASC, and ASCQ.  If
4870		 * these aren't present in the sense data (i.e. the sense
4871		 * data isn't long enough), the -1 values that
4872		 * scsi_extract_sense_len() returns will yield default
4873		 * or error descriptions.
4874		 */
4875		scsi_sense_desc(sense_key, asc, ascq, inq_data,
4876				&sense_key_desc, &asc_desc);
4877
4878		/*
4879		 * We first print the sense key and ASC/ASCQ.
4880		 */
4881		sbuf_cat(sb, sense_key_desc);
4882		sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc);
4883
4884		/*
4885		 * Get the info field if it is valid.
4886		 */
4887		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO,
4888					&val, NULL) == 0)
4889			info_valid = 1;
4890		else
4891			info_valid = 0;
4892
4893		if (info_valid != 0) {
4894			uint8_t bits;
4895
4896			/*
4897			 * Determine whether we have any block or stream
4898			 * device-specific information.
4899			 */
4900			if (scsi_get_block_info(sense, sense_len, inq_data,
4901						&bits) == 0) {
4902				sbuf_cat(sb, path_str);
4903				scsi_block_sbuf(sb, bits, val);
4904				sbuf_printf(sb, "\n");
4905			} else if (scsi_get_stream_info(sense, sense_len,
4906							inq_data, &bits) == 0) {
4907				sbuf_cat(sb, path_str);
4908				scsi_stream_sbuf(sb, bits, val);
4909				sbuf_printf(sb, "\n");
4910			} else if (val != 0) {
4911				/*
4912				 * The information field can be valid but 0.
4913				 * If the block or stream bits aren't set,
4914				 * and this is 0, it isn't terribly useful
4915				 * to print it out.
4916				 */
4917				sbuf_cat(sb, path_str);
4918				scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val);
4919				sbuf_printf(sb, "\n");
4920			}
4921		}
4922
4923		/*
4924		 * Print the FRU.
4925		 */
4926		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU,
4927					&val, NULL) == 0) {
4928			sbuf_cat(sb, path_str);
4929			scsi_fru_sbuf(sb, val);
4930			sbuf_printf(sb, "\n");
4931		}
4932
4933		/*
4934		 * Print any command-specific information.
4935		 */
4936		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND,
4937					&val, NULL) == 0) {
4938			sbuf_cat(sb, path_str);
4939			scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val);
4940			sbuf_printf(sb, "\n");
4941		}
4942
4943		/*
4944		 * Print out any sense-key-specific information.
4945		 */
4946		if (scsi_get_sks(sense, sense_len, sks) == 0) {
4947			sbuf_cat(sb, path_str);
4948			scsi_sks_sbuf(sb, sense_key, sks);
4949			sbuf_printf(sb, "\n");
4950		}
4951
4952		/*
4953		 * If this is fixed sense, we're done.  If we have
4954		 * descriptor sense, we might have more information
4955		 * available.
4956		 */
4957		if (scsi_sense_type(sense) != SSD_TYPE_DESC)
4958			break;
4959
4960		desc_sense = (struct scsi_sense_data_desc *)sense;
4961
4962		print_info.sb = sb;
4963		print_info.path_str = path_str;
4964		print_info.cdb = cdb;
4965		print_info.cdb_len = cdb_len;
4966		print_info.inq_data = inq_data;
4967
4968		/*
4969		 * Print any sense descriptors that we have not already printed.
4970		 */
4971		scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func,
4972				  &print_info);
4973		break;
4974
4975	}
4976	case -1:
4977		/*
4978		 * scsi_extract_sense_len() sets values to -1 if the
4979		 * show_errors flag is set and they aren't present in the
4980		 * sense data.  This means that sense_len is 0.
4981		 */
4982		sbuf_printf(sb, "No sense data present\n");
4983		break;
4984	default: {
4985		sbuf_printf(sb, "Error code 0x%x", error_code);
4986		if (sense->error_code & SSD_ERRCODE_VALID) {
4987			struct scsi_sense_data_fixed *fixed_sense;
4988
4989			fixed_sense = (struct scsi_sense_data_fixed *)sense;
4990
4991			if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){
4992				uint32_t info;
4993
4994				info = scsi_4btoul(fixed_sense->info);
4995
4996				sbuf_printf(sb, " at block no. %d (decimal)",
4997					    info);
4998			}
4999		}
5000		sbuf_printf(sb, "\n");
5001		break;
5002	}
5003	}
5004}
5005
5006/*
5007 * scsi_sense_sbuf() returns 0 for success and -1 for failure.
5008 */
5009#ifdef _KERNEL
5010int
5011scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb,
5012		scsi_sense_string_flags flags)
5013#else /* !_KERNEL */
5014int
5015scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio,
5016		struct sbuf *sb, scsi_sense_string_flags flags)
5017#endif /* _KERNEL/!_KERNEL */
5018{
5019	struct	  scsi_sense_data *sense;
5020	struct	  scsi_inquiry_data *inq_data;
5021#ifdef _KERNEL
5022	struct	  ccb_getdev *cgd;
5023#endif /* _KERNEL */
5024	char	  path_str[64];
5025	uint8_t	  *cdb;
5026
5027#ifndef _KERNEL
5028	if (device == NULL)
5029		return(-1);
5030#endif /* !_KERNEL */
5031	if ((csio == NULL) || (sb == NULL))
5032		return(-1);
5033
5034	/*
5035	 * If the CDB is a physical address, we can't deal with it..
5036	 */
5037	if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0)
5038		flags &= ~SSS_FLAG_PRINT_COMMAND;
5039
5040#ifdef _KERNEL
5041	xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str));
5042#else /* !_KERNEL */
5043	cam_path_string(device, path_str, sizeof(path_str));
5044#endif /* _KERNEL/!_KERNEL */
5045
5046#ifdef _KERNEL
5047	if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
5048		return(-1);
5049	/*
5050	 * Get the device information.
5051	 */
5052	xpt_setup_ccb(&cgd->ccb_h,
5053		      csio->ccb_h.path,
5054		      CAM_PRIORITY_NORMAL);
5055	cgd->ccb_h.func_code = XPT_GDEV_TYPE;
5056	xpt_action((union ccb *)cgd);
5057
5058	/*
5059	 * If the device is unconfigured, just pretend that it is a hard
5060	 * drive.  scsi_op_desc() needs this.
5061	 */
5062	if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
5063		cgd->inq_data.device = T_DIRECT;
5064
5065	inq_data = &cgd->inq_data;
5066
5067#else /* !_KERNEL */
5068
5069	inq_data = &device->inq_data;
5070
5071#endif /* _KERNEL/!_KERNEL */
5072
5073	sense = NULL;
5074
5075	if (flags & SSS_FLAG_PRINT_COMMAND) {
5076
5077		sbuf_cat(sb, path_str);
5078
5079#ifdef _KERNEL
5080		scsi_command_string(csio, sb);
5081#else /* !_KERNEL */
5082		scsi_command_string(device, csio, sb);
5083#endif /* _KERNEL/!_KERNEL */
5084		sbuf_printf(sb, "\n");
5085	}
5086
5087	/*
5088	 * If the sense data is a physical pointer, forget it.
5089	 */
5090	if (csio->ccb_h.flags & CAM_SENSE_PTR) {
5091		if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
5092#ifdef _KERNEL
5093			xpt_free_ccb((union ccb*)cgd);
5094#endif /* _KERNEL/!_KERNEL */
5095			return(-1);
5096		} else {
5097			/*
5098			 * bcopy the pointer to avoid unaligned access
5099			 * errors on finicky architectures.  We don't
5100			 * ensure that the sense data is pointer aligned.
5101			 */
5102			bcopy(&csio->sense_data, &sense,
5103			      sizeof(struct scsi_sense_data *));
5104		}
5105	} else {
5106		/*
5107		 * If the physical sense flag is set, but the sense pointer
5108		 * is not also set, we assume that the user is an idiot and
5109		 * return.  (Well, okay, it could be that somehow, the
5110		 * entire csio is physical, but we would have probably core
5111		 * dumped on one of the bogus pointer deferences above
5112		 * already.)
5113		 */
5114		if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
5115#ifdef _KERNEL
5116			xpt_free_ccb((union ccb*)cgd);
5117#endif /* _KERNEL/!_KERNEL */
5118			return(-1);
5119		} else
5120			sense = &csio->sense_data;
5121	}
5122
5123	if (csio->ccb_h.flags & CAM_CDB_POINTER)
5124		cdb = csio->cdb_io.cdb_ptr;
5125	else
5126		cdb = csio->cdb_io.cdb_bytes;
5127
5128	scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb,
5129			     path_str, inq_data, cdb, csio->cdb_len);
5130
5131#ifdef _KERNEL
5132	xpt_free_ccb((union ccb*)cgd);
5133#endif /* _KERNEL/!_KERNEL */
5134	return(0);
5135}
5136
5137
5138
5139#ifdef _KERNEL
5140char *
5141scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len)
5142#else /* !_KERNEL */
5143char *
5144scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio,
5145		  char *str, int str_len)
5146#endif /* _KERNEL/!_KERNEL */
5147{
5148	struct sbuf sb;
5149
5150	sbuf_new(&sb, str, str_len, 0);
5151
5152#ifdef _KERNEL
5153	scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
5154#else /* !_KERNEL */
5155	scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
5156#endif /* _KERNEL/!_KERNEL */
5157
5158	sbuf_finish(&sb);
5159
5160	return(sbuf_data(&sb));
5161}
5162
5163#ifdef _KERNEL
5164void
5165scsi_sense_print(struct ccb_scsiio *csio)
5166{
5167	struct sbuf sb;
5168	char str[512];
5169
5170	sbuf_new(&sb, str, sizeof(str), 0);
5171
5172	scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
5173
5174	sbuf_finish(&sb);
5175
5176	printf("%s", sbuf_data(&sb));
5177}
5178
5179#else /* !_KERNEL */
5180void
5181scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio,
5182		 FILE *ofile)
5183{
5184	struct sbuf sb;
5185	char str[512];
5186
5187	if ((device == NULL) || (csio == NULL) || (ofile == NULL))
5188		return;
5189
5190	sbuf_new(&sb, str, sizeof(str), 0);
5191
5192	scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
5193
5194	sbuf_finish(&sb);
5195
5196	fprintf(ofile, "%s", sbuf_data(&sb));
5197}
5198
5199#endif /* _KERNEL/!_KERNEL */
5200
5201/*
5202 * Extract basic sense information.  This is backward-compatible with the
5203 * previous implementation.  For new implementations,
5204 * scsi_extract_sense_len() is recommended.
5205 */
5206void
5207scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code,
5208		   int *sense_key, int *asc, int *ascq)
5209{
5210	scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code,
5211			       sense_key, asc, ascq, /*show_errors*/ 0);
5212}
5213
5214/*
5215 * Extract basic sense information from SCSI I/O CCB structure.
5216 */
5217int
5218scsi_extract_sense_ccb(union ccb *ccb,
5219    int *error_code, int *sense_key, int *asc, int *ascq)
5220{
5221	struct scsi_sense_data *sense_data;
5222
5223	/* Make sure there are some sense data we can access. */
5224	if (ccb->ccb_h.func_code != XPT_SCSI_IO ||
5225	    (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR ||
5226	    (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) ||
5227	    (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 ||
5228	    (ccb->ccb_h.flags & CAM_SENSE_PHYS))
5229		return (0);
5230
5231	if (ccb->ccb_h.flags & CAM_SENSE_PTR)
5232		bcopy(&ccb->csio.sense_data, &sense_data,
5233		    sizeof(struct scsi_sense_data *));
5234	else
5235		sense_data = &ccb->csio.sense_data;
5236	scsi_extract_sense_len(sense_data,
5237	    ccb->csio.sense_len - ccb->csio.sense_resid,
5238	    error_code, sense_key, asc, ascq, 1);
5239	if (*error_code == -1)
5240		return (0);
5241	return (1);
5242}
5243
5244/*
5245 * Extract basic sense information.  If show_errors is set, sense values
5246 * will be set to -1 if they are not present.
5247 */
5248void
5249scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len,
5250		       int *error_code, int *sense_key, int *asc, int *ascq,
5251		       int show_errors)
5252{
5253	/*
5254	 * If we have no length, we have no sense.
5255	 */
5256	if (sense_len == 0) {
5257		if (show_errors == 0) {
5258			*error_code = 0;
5259			*sense_key = 0;
5260			*asc = 0;
5261			*ascq = 0;
5262		} else {
5263			*error_code = -1;
5264			*sense_key = -1;
5265			*asc = -1;
5266			*ascq = -1;
5267		}
5268		return;
5269	}
5270
5271	*error_code = sense_data->error_code & SSD_ERRCODE;
5272
5273	switch (*error_code) {
5274	case SSD_DESC_CURRENT_ERROR:
5275	case SSD_DESC_DEFERRED_ERROR: {
5276		struct scsi_sense_data_desc *sense;
5277
5278		sense = (struct scsi_sense_data_desc *)sense_data;
5279
5280		if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key))
5281			*sense_key = sense->sense_key & SSD_KEY;
5282		else
5283			*sense_key = (show_errors) ? -1 : 0;
5284
5285		if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code))
5286			*asc = sense->add_sense_code;
5287		else
5288			*asc = (show_errors) ? -1 : 0;
5289
5290		if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual))
5291			*ascq = sense->add_sense_code_qual;
5292		else
5293			*ascq = (show_errors) ? -1 : 0;
5294		break;
5295	}
5296	case SSD_CURRENT_ERROR:
5297	case SSD_DEFERRED_ERROR:
5298	default: {
5299		struct scsi_sense_data_fixed *sense;
5300
5301		sense = (struct scsi_sense_data_fixed *)sense_data;
5302
5303		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags))
5304			*sense_key = sense->flags & SSD_KEY;
5305		else
5306			*sense_key = (show_errors) ? -1 : 0;
5307
5308		if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code))
5309		 && (SSD_FIXED_IS_FILLED(sense, add_sense_code)))
5310			*asc = sense->add_sense_code;
5311		else
5312			*asc = (show_errors) ? -1 : 0;
5313
5314		if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual))
5315		 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual)))
5316			*ascq = sense->add_sense_code_qual;
5317		else
5318			*ascq = (show_errors) ? -1 : 0;
5319		break;
5320	}
5321	}
5322}
5323
5324int
5325scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len,
5326		   int show_errors)
5327{
5328	int error_code, sense_key, asc, ascq;
5329
5330	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5331			       &sense_key, &asc, &ascq, show_errors);
5332
5333	return (sense_key);
5334}
5335
5336int
5337scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len,
5338	     int show_errors)
5339{
5340	int error_code, sense_key, asc, ascq;
5341
5342	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5343			       &sense_key, &asc, &ascq, show_errors);
5344
5345	return (asc);
5346}
5347
5348int
5349scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len,
5350	      int show_errors)
5351{
5352	int error_code, sense_key, asc, ascq;
5353
5354	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5355			       &sense_key, &asc, &ascq, show_errors);
5356
5357	return (ascq);
5358}
5359
5360/*
5361 * This function currently requires at least 36 bytes, or
5362 * SHORT_INQUIRY_LENGTH, worth of data to function properly.  If this
5363 * function needs more or less data in the future, another length should be
5364 * defined in scsi_all.h to indicate the minimum amount of data necessary
5365 * for this routine to function properly.
5366 */
5367void
5368scsi_print_inquiry(struct scsi_inquiry_data *inq_data)
5369{
5370	u_int8_t type;
5371	char *dtype, *qtype;
5372	char vendor[16], product[48], revision[16], rstr[12];
5373
5374	type = SID_TYPE(inq_data);
5375
5376	/*
5377	 * Figure out basic device type and qualifier.
5378	 */
5379	if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) {
5380		qtype = " (vendor-unique qualifier)";
5381	} else {
5382		switch (SID_QUAL(inq_data)) {
5383		case SID_QUAL_LU_CONNECTED:
5384			qtype = "";
5385			break;
5386
5387		case SID_QUAL_LU_OFFLINE:
5388			qtype = " (offline)";
5389			break;
5390
5391		case SID_QUAL_RSVD:
5392			qtype = " (reserved qualifier)";
5393			break;
5394		default:
5395		case SID_QUAL_BAD_LU:
5396			qtype = " (LUN not supported)";
5397			break;
5398		}
5399	}
5400
5401	switch (type) {
5402	case T_DIRECT:
5403		dtype = "Direct Access";
5404		break;
5405	case T_SEQUENTIAL:
5406		dtype = "Sequential Access";
5407		break;
5408	case T_PRINTER:
5409		dtype = "Printer";
5410		break;
5411	case T_PROCESSOR:
5412		dtype = "Processor";
5413		break;
5414	case T_WORM:
5415		dtype = "WORM";
5416		break;
5417	case T_CDROM:
5418		dtype = "CD-ROM";
5419		break;
5420	case T_SCANNER:
5421		dtype = "Scanner";
5422		break;
5423	case T_OPTICAL:
5424		dtype = "Optical";
5425		break;
5426	case T_CHANGER:
5427		dtype = "Changer";
5428		break;
5429	case T_COMM:
5430		dtype = "Communication";
5431		break;
5432	case T_STORARRAY:
5433		dtype = "Storage Array";
5434		break;
5435	case T_ENCLOSURE:
5436		dtype = "Enclosure Services";
5437		break;
5438	case T_RBC:
5439		dtype = "Simplified Direct Access";
5440		break;
5441	case T_OCRW:
5442		dtype = "Optical Card Read/Write";
5443		break;
5444	case T_OSD:
5445		dtype = "Object-Based Storage";
5446		break;
5447	case T_ADC:
5448		dtype = "Automation/Drive Interface";
5449		break;
5450	case T_NODEVICE:
5451		dtype = "Uninstalled";
5452		break;
5453	default:
5454		dtype = "unknown";
5455		break;
5456	}
5457
5458	cam_strvis(vendor, inq_data->vendor, sizeof(inq_data->vendor),
5459		   sizeof(vendor));
5460	cam_strvis(product, inq_data->product, sizeof(inq_data->product),
5461		   sizeof(product));
5462	cam_strvis(revision, inq_data->revision, sizeof(inq_data->revision),
5463		   sizeof(revision));
5464
5465	if (SID_ANSI_REV(inq_data) == SCSI_REV_0)
5466		snprintf(rstr, sizeof(rstr), "SCSI");
5467	else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) {
5468		snprintf(rstr, sizeof(rstr), "SCSI-%d",
5469		    SID_ANSI_REV(inq_data));
5470	} else {
5471		snprintf(rstr, sizeof(rstr), "SPC-%d SCSI",
5472		    SID_ANSI_REV(inq_data) - 2);
5473	}
5474	printf("<%s %s %s> %s %s %s device%s\n",
5475	       vendor, product, revision,
5476	       SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed",
5477	       dtype, rstr, qtype);
5478}
5479
5480void
5481scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data)
5482{
5483	char vendor[16], product[48], revision[16];
5484
5485	cam_strvis(vendor, inq_data->vendor, sizeof(inq_data->vendor),
5486		   sizeof(vendor));
5487	cam_strvis(product, inq_data->product, sizeof(inq_data->product),
5488		   sizeof(product));
5489	cam_strvis(revision, inq_data->revision, sizeof(inq_data->revision),
5490		   sizeof(revision));
5491
5492	printf("<%s %s %s>", vendor, product, revision);
5493}
5494
5495/*
5496 * Table of syncrates that don't follow the "divisible by 4"
5497 * rule. This table will be expanded in future SCSI specs.
5498 */
5499static struct {
5500	u_int period_factor;
5501	u_int period;	/* in 100ths of ns */
5502} scsi_syncrates[] = {
5503	{ 0x08, 625 },	/* FAST-160 */
5504	{ 0x09, 1250 },	/* FAST-80 */
5505	{ 0x0a, 2500 },	/* FAST-40 40MHz */
5506	{ 0x0b, 3030 },	/* FAST-40 33MHz */
5507	{ 0x0c, 5000 }	/* FAST-20 */
5508};
5509
5510/*
5511 * Return the frequency in kHz corresponding to the given
5512 * sync period factor.
5513 */
5514u_int
5515scsi_calc_syncsrate(u_int period_factor)
5516{
5517	int i;
5518	int num_syncrates;
5519
5520	/*
5521	 * It's a bug if period is zero, but if it is anyway, don't
5522	 * die with a divide fault- instead return something which
5523	 * 'approximates' async
5524	 */
5525	if (period_factor == 0) {
5526		return (3300);
5527	}
5528
5529	num_syncrates = sizeof(scsi_syncrates) / sizeof(scsi_syncrates[0]);
5530	/* See if the period is in the "exception" table */
5531	for (i = 0; i < num_syncrates; i++) {
5532
5533		if (period_factor == scsi_syncrates[i].period_factor) {
5534			/* Period in kHz */
5535			return (100000000 / scsi_syncrates[i].period);
5536		}
5537	}
5538
5539	/*
5540	 * Wasn't in the table, so use the standard
5541	 * 4 times conversion.
5542	 */
5543	return (10000000 / (period_factor * 4 * 10));
5544}
5545
5546/*
5547 * Return the SCSI sync parameter that corresponsd to
5548 * the passed in period in 10ths of ns.
5549 */
5550u_int
5551scsi_calc_syncparam(u_int period)
5552{
5553	int i;
5554	int num_syncrates;
5555
5556	if (period == 0)
5557		return (~0);	/* Async */
5558
5559	/* Adjust for exception table being in 100ths. */
5560	period *= 10;
5561	num_syncrates = sizeof(scsi_syncrates) / sizeof(scsi_syncrates[0]);
5562	/* See if the period is in the "exception" table */
5563	for (i = 0; i < num_syncrates; i++) {
5564
5565		if (period <= scsi_syncrates[i].period) {
5566			/* Period in 100ths of ns */
5567			return (scsi_syncrates[i].period_factor);
5568		}
5569	}
5570
5571	/*
5572	 * Wasn't in the table, so use the standard
5573	 * 1/4 period in ns conversion.
5574	 */
5575	return (period/400);
5576}
5577
5578int
5579scsi_devid_is_naa_ieee_reg(uint8_t *bufp)
5580{
5581	struct scsi_vpd_id_descriptor *descr;
5582	struct scsi_vpd_id_naa_basic *naa;
5583
5584	descr = (struct scsi_vpd_id_descriptor *)bufp;
5585	naa = (struct scsi_vpd_id_naa_basic *)descr->identifier;
5586	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5587		return 0;
5588	if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg))
5589		return 0;
5590	if ((naa->naa >> SVPD_ID_NAA_NAA_SHIFT) != SVPD_ID_NAA_IEEE_REG)
5591		return 0;
5592	return 1;
5593}
5594
5595int
5596scsi_devid_is_sas_target(uint8_t *bufp)
5597{
5598	struct scsi_vpd_id_descriptor *descr;
5599
5600	descr = (struct scsi_vpd_id_descriptor *)bufp;
5601	if (!scsi_devid_is_naa_ieee_reg(bufp))
5602		return 0;
5603	if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */
5604		return 0;
5605	if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS)
5606		return 0;
5607	return 1;
5608}
5609
5610int
5611scsi_devid_is_lun_eui64(uint8_t *bufp)
5612{
5613	struct scsi_vpd_id_descriptor *descr;
5614
5615	descr = (struct scsi_vpd_id_descriptor *)bufp;
5616	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5617		return 0;
5618	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64)
5619		return 0;
5620	return 1;
5621}
5622
5623int
5624scsi_devid_is_lun_naa(uint8_t *bufp)
5625{
5626	struct scsi_vpd_id_descriptor *descr;
5627
5628	descr = (struct scsi_vpd_id_descriptor *)bufp;
5629	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5630		return 0;
5631	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5632		return 0;
5633	return 1;
5634}
5635
5636int
5637scsi_devid_is_lun_t10(uint8_t *bufp)
5638{
5639	struct scsi_vpd_id_descriptor *descr;
5640
5641	descr = (struct scsi_vpd_id_descriptor *)bufp;
5642	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5643		return 0;
5644	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10)
5645		return 0;
5646	return 1;
5647}
5648
5649int
5650scsi_devid_is_lun_name(uint8_t *bufp)
5651{
5652	struct scsi_vpd_id_descriptor *descr;
5653
5654	descr = (struct scsi_vpd_id_descriptor *)bufp;
5655	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5656		return 0;
5657	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME)
5658		return 0;
5659	return 1;
5660}
5661
5662int
5663scsi_devid_is_lun_md5(uint8_t *bufp)
5664{
5665	struct scsi_vpd_id_descriptor *descr;
5666
5667	descr = (struct scsi_vpd_id_descriptor *)bufp;
5668	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5669		return 0;
5670	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_MD5_LUN_ID)
5671		return 0;
5672	return 1;
5673}
5674
5675int
5676scsi_devid_is_lun_uuid(uint8_t *bufp)
5677{
5678	struct scsi_vpd_id_descriptor *descr;
5679
5680	descr = (struct scsi_vpd_id_descriptor *)bufp;
5681	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5682		return 0;
5683	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_UUID)
5684		return 0;
5685	return 1;
5686}
5687
5688int
5689scsi_devid_is_port_naa(uint8_t *bufp)
5690{
5691	struct scsi_vpd_id_descriptor *descr;
5692
5693	descr = (struct scsi_vpd_id_descriptor *)bufp;
5694	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT)
5695		return 0;
5696	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5697		return 0;
5698	return 1;
5699}
5700
5701struct scsi_vpd_id_descriptor *
5702scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len,
5703    scsi_devid_checkfn_t ck_fn)
5704{
5705	uint8_t *desc_buf_end;
5706
5707	desc_buf_end = (uint8_t *)desc + len;
5708
5709	for (; desc->identifier <= desc_buf_end &&
5710	    desc->identifier + desc->length <= desc_buf_end;
5711	    desc = (struct scsi_vpd_id_descriptor *)(desc->identifier
5712						    + desc->length)) {
5713
5714		if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0)
5715			return (desc);
5716	}
5717	return (NULL);
5718}
5719
5720struct scsi_vpd_id_descriptor *
5721scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len,
5722    scsi_devid_checkfn_t ck_fn)
5723{
5724	uint32_t len;
5725
5726	if (page_len < sizeof(*id))
5727		return (NULL);
5728	len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id));
5729	return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *)
5730	    id->desc_list, len, ck_fn));
5731}
5732
5733int
5734scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr,
5735		      uint32_t valid_len)
5736{
5737	switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) {
5738	case SCSI_PROTO_FC: {
5739		struct scsi_transportid_fcp *fcp;
5740		uint64_t n_port_name;
5741
5742		fcp = (struct scsi_transportid_fcp *)hdr;
5743
5744		n_port_name = scsi_8btou64(fcp->n_port_name);
5745
5746		sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name);
5747		break;
5748	}
5749	case SCSI_PROTO_SPI: {
5750		struct scsi_transportid_spi *spi;
5751
5752		spi = (struct scsi_transportid_spi *)hdr;
5753
5754		sbuf_printf(sb, "SPI address: %u,%u",
5755			    scsi_2btoul(spi->scsi_addr),
5756			    scsi_2btoul(spi->rel_trgt_port_id));
5757		break;
5758	}
5759	case SCSI_PROTO_SSA:
5760		/*
5761		 * XXX KDM there is no transport ID defined in SPC-4 for
5762		 * SSA.
5763		 */
5764		break;
5765	case SCSI_PROTO_1394: {
5766		struct scsi_transportid_1394 *sbp;
5767		uint64_t eui64;
5768
5769		sbp = (struct scsi_transportid_1394 *)hdr;
5770
5771		eui64 = scsi_8btou64(sbp->eui64);
5772		sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64);
5773		break;
5774	}
5775	case SCSI_PROTO_RDMA: {
5776		struct scsi_transportid_rdma *rdma;
5777		unsigned int i;
5778
5779		rdma = (struct scsi_transportid_rdma *)hdr;
5780
5781		sbuf_printf(sb, "RDMA address: 0x");
5782		for (i = 0; i < sizeof(rdma->initiator_port_id); i++)
5783			sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]);
5784		break;
5785	}
5786	case SCSI_PROTO_ISCSI: {
5787		uint32_t add_len, i;
5788		uint8_t *iscsi_name = NULL;
5789		int nul_found = 0;
5790
5791		sbuf_printf(sb, "iSCSI address: ");
5792		if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5793		    SCSI_TRN_ISCSI_FORMAT_DEVICE) {
5794			struct scsi_transportid_iscsi_device *dev;
5795
5796			dev = (struct scsi_transportid_iscsi_device *)hdr;
5797
5798			/*
5799			 * Verify how much additional data we really have.
5800			 */
5801			add_len = scsi_2btoul(dev->additional_length);
5802			add_len = MIN(add_len, valid_len -
5803				__offsetof(struct scsi_transportid_iscsi_device,
5804					   iscsi_name));
5805			iscsi_name = &dev->iscsi_name[0];
5806
5807		} else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5808			    SCSI_TRN_ISCSI_FORMAT_PORT) {
5809			struct scsi_transportid_iscsi_port *port;
5810
5811			port = (struct scsi_transportid_iscsi_port *)hdr;
5812
5813			add_len = scsi_2btoul(port->additional_length);
5814			add_len = MIN(add_len, valid_len -
5815				__offsetof(struct scsi_transportid_iscsi_port,
5816					   iscsi_name));
5817			iscsi_name = &port->iscsi_name[0];
5818		} else {
5819			sbuf_printf(sb, "unknown format %x",
5820				    (hdr->format_protocol &
5821				     SCSI_TRN_FORMAT_MASK) >>
5822				     SCSI_TRN_FORMAT_SHIFT);
5823			break;
5824		}
5825		if (add_len == 0) {
5826			sbuf_printf(sb, "not enough data");
5827			break;
5828		}
5829		/*
5830		 * This is supposed to be a NUL-terminated ASCII
5831		 * string, but you never know.  So we're going to
5832		 * check.  We need to do this because there is no
5833		 * sbuf equivalent of strncat().
5834		 */
5835		for (i = 0; i < add_len; i++) {
5836			if (iscsi_name[i] == '\0') {
5837				nul_found = 1;
5838				break;
5839			}
5840		}
5841		/*
5842		 * If there is a NUL in the name, we can just use
5843		 * sbuf_cat().  Otherwise we need to use sbuf_bcat().
5844		 */
5845		if (nul_found != 0)
5846			sbuf_cat(sb, iscsi_name);
5847		else
5848			sbuf_bcat(sb, iscsi_name, add_len);
5849		break;
5850	}
5851	case SCSI_PROTO_SAS: {
5852		struct scsi_transportid_sas *sas;
5853		uint64_t sas_addr;
5854
5855		sas = (struct scsi_transportid_sas *)hdr;
5856
5857		sas_addr = scsi_8btou64(sas->sas_address);
5858		sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr);
5859		break;
5860	}
5861	case SCSI_PROTO_ADITP:
5862	case SCSI_PROTO_ATA:
5863	case SCSI_PROTO_UAS:
5864		/*
5865		 * No Transport ID format for ADI, ATA or USB is defined in
5866		 * SPC-4.
5867		 */
5868		sbuf_printf(sb, "No known Transport ID format for protocol "
5869			    "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK);
5870		break;
5871	case SCSI_PROTO_SOP: {
5872		struct scsi_transportid_sop *sop;
5873		struct scsi_sop_routing_id_norm *rid;
5874
5875		sop = (struct scsi_transportid_sop *)hdr;
5876		rid = (struct scsi_sop_routing_id_norm *)sop->routing_id;
5877
5878		/*
5879		 * Note that there is no alternate format specified in SPC-4
5880		 * for the PCIe routing ID, so we don't really have a way
5881		 * to know whether the second byte of the routing ID is
5882		 * a device and function or just a function.  So we just
5883		 * assume bus,device,function.
5884		 */
5885		sbuf_printf(sb, "SOP Routing ID: %u,%u,%u",
5886			    rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT,
5887			    rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX);
5888		break;
5889	}
5890	case SCSI_PROTO_NONE:
5891	default:
5892		sbuf_printf(sb, "Unknown protocol %#x",
5893			    hdr->format_protocol & SCSI_TRN_PROTO_MASK);
5894		break;
5895	}
5896
5897	return (0);
5898}
5899
5900struct scsi_nv scsi_proto_map[] = {
5901	{ "fcp", SCSI_PROTO_FC },
5902	{ "spi", SCSI_PROTO_SPI },
5903	{ "ssa", SCSI_PROTO_SSA },
5904	{ "sbp", SCSI_PROTO_1394 },
5905	{ "1394", SCSI_PROTO_1394 },
5906	{ "srp", SCSI_PROTO_RDMA },
5907	{ "rdma", SCSI_PROTO_RDMA },
5908	{ "iscsi", SCSI_PROTO_ISCSI },
5909	{ "iqn", SCSI_PROTO_ISCSI },
5910	{ "sas", SCSI_PROTO_SAS },
5911	{ "aditp", SCSI_PROTO_ADITP },
5912	{ "ata", SCSI_PROTO_ATA },
5913	{ "uas", SCSI_PROTO_UAS },
5914	{ "usb", SCSI_PROTO_UAS },
5915	{ "sop", SCSI_PROTO_SOP }
5916};
5917
5918const char *
5919scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value)
5920{
5921	int i;
5922
5923	for (i = 0; i < num_table_entries; i++) {
5924		if (table[i].value == value)
5925			return (table[i].name);
5926	}
5927
5928	return (NULL);
5929}
5930
5931/*
5932 * Given a name/value table, find a value matching the given name.
5933 * Return values:
5934 *	SCSI_NV_FOUND - match found
5935 *	SCSI_NV_AMBIGUOUS - more than one match, none of them exact
5936 *	SCSI_NV_NOT_FOUND - no match found
5937 */
5938scsi_nv_status
5939scsi_get_nv(struct scsi_nv *table, int num_table_entries,
5940	    char *name, int *table_entry, scsi_nv_flags flags)
5941{
5942	int i, num_matches = 0;
5943
5944	for (i = 0; i < num_table_entries; i++) {
5945		size_t table_len, name_len;
5946
5947		table_len = strlen(table[i].name);
5948		name_len = strlen(name);
5949
5950		if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0)
5951		  && (strncasecmp(table[i].name, name, name_len) == 0))
5952		|| (((flags & SCSI_NV_FLAG_IG_CASE) == 0)
5953		 && (strncmp(table[i].name, name, name_len) == 0))) {
5954			*table_entry = i;
5955
5956			/*
5957			 * Check for an exact match.  If we have the same
5958			 * number of characters in the table as the argument,
5959			 * and we already know they're the same, we have
5960			 * an exact match.
5961		 	 */
5962			if (table_len == name_len)
5963				return (SCSI_NV_FOUND);
5964
5965			/*
5966			 * Otherwise, bump up the number of matches.  We'll
5967			 * see later how many we have.
5968			 */
5969			num_matches++;
5970		}
5971	}
5972
5973	if (num_matches > 1)
5974		return (SCSI_NV_AMBIGUOUS);
5975	else if (num_matches == 1)
5976		return (SCSI_NV_FOUND);
5977	else
5978		return (SCSI_NV_NOT_FOUND);
5979}
5980
5981/*
5982 * Parse transport IDs for Fibre Channel, 1394 and SAS.  Since these are
5983 * all 64-bit numbers, the code is similar.
5984 */
5985int
5986scsi_parse_transportid_64bit(int proto_id, char *id_str,
5987			     struct scsi_transportid_header **hdr,
5988			     unsigned int *alloc_len,
5989#ifdef _KERNEL
5990			     struct malloc_type *type, int flags,
5991#endif
5992			     char *error_str, int error_str_len)
5993{
5994	uint64_t value;
5995	char *endptr;
5996	int retval;
5997	size_t alloc_size;
5998
5999	retval = 0;
6000
6001	value = strtouq(id_str, &endptr, 0);
6002	if (*endptr != '\0') {
6003		if (error_str != NULL) {
6004			snprintf(error_str, error_str_len, "%s: error "
6005				 "parsing ID %s, 64-bit number required",
6006				 __func__, id_str);
6007		}
6008		retval = 1;
6009		goto bailout;
6010	}
6011
6012	switch (proto_id) {
6013	case SCSI_PROTO_FC:
6014		alloc_size = sizeof(struct scsi_transportid_fcp);
6015		break;
6016	case SCSI_PROTO_1394:
6017		alloc_size = sizeof(struct scsi_transportid_1394);
6018		break;
6019	case SCSI_PROTO_SAS:
6020		alloc_size = sizeof(struct scsi_transportid_sas);
6021		break;
6022	default:
6023		if (error_str != NULL) {
6024			snprintf(error_str, error_str_len, "%s: unsupoprted "
6025				 "protocol %d", __func__, proto_id);
6026		}
6027		retval = 1;
6028		goto bailout;
6029		break; /* NOTREACHED */
6030	}
6031#ifdef _KERNEL
6032	*hdr = malloc(alloc_size, type, flags);
6033#else /* _KERNEL */
6034	*hdr = malloc(alloc_size);
6035#endif /*_KERNEL */
6036	if (*hdr == NULL) {
6037		if (error_str != NULL) {
6038			snprintf(error_str, error_str_len, "%s: unable to "
6039				 "allocate %zu bytes", __func__, alloc_size);
6040		}
6041		retval = 1;
6042		goto bailout;
6043	}
6044
6045	*alloc_len = alloc_size;
6046
6047	bzero(*hdr, alloc_size);
6048
6049	switch (proto_id) {
6050	case SCSI_PROTO_FC: {
6051		struct scsi_transportid_fcp *fcp;
6052
6053		fcp = (struct scsi_transportid_fcp *)(*hdr);
6054		fcp->format_protocol = SCSI_PROTO_FC |
6055				       SCSI_TRN_FCP_FORMAT_DEFAULT;
6056		scsi_u64to8b(value, fcp->n_port_name);
6057		break;
6058	}
6059	case SCSI_PROTO_1394: {
6060		struct scsi_transportid_1394 *sbp;
6061
6062		sbp = (struct scsi_transportid_1394 *)(*hdr);
6063		sbp->format_protocol = SCSI_PROTO_1394 |
6064				       SCSI_TRN_1394_FORMAT_DEFAULT;
6065		scsi_u64to8b(value, sbp->eui64);
6066		break;
6067	}
6068	case SCSI_PROTO_SAS: {
6069		struct scsi_transportid_sas *sas;
6070
6071		sas = (struct scsi_transportid_sas *)(*hdr);
6072		sas->format_protocol = SCSI_PROTO_SAS |
6073				       SCSI_TRN_SAS_FORMAT_DEFAULT;
6074		scsi_u64to8b(value, sas->sas_address);
6075		break;
6076	}
6077	default:
6078		break;
6079	}
6080bailout:
6081	return (retval);
6082}
6083
6084/*
6085 * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port
6086 */
6087int
6088scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr,
6089			   unsigned int *alloc_len,
6090#ifdef _KERNEL
6091			   struct malloc_type *type, int flags,
6092#endif
6093			   char *error_str, int error_str_len)
6094{
6095	unsigned long scsi_addr, target_port;
6096	struct scsi_transportid_spi *spi;
6097	char *tmpstr, *endptr;
6098	int retval;
6099
6100	retval = 0;
6101
6102	tmpstr = strsep(&id_str, ",");
6103	if (tmpstr == NULL) {
6104		if (error_str != NULL) {
6105			snprintf(error_str, error_str_len,
6106				 "%s: no ID found", __func__);
6107		}
6108		retval = 1;
6109		goto bailout;
6110	}
6111	scsi_addr = strtoul(tmpstr, &endptr, 0);
6112	if (*endptr != '\0') {
6113		if (error_str != NULL) {
6114			snprintf(error_str, error_str_len, "%s: error "
6115				 "parsing SCSI ID %s, number required",
6116				 __func__, tmpstr);
6117		}
6118		retval = 1;
6119		goto bailout;
6120	}
6121
6122	if (id_str == NULL) {
6123		if (error_str != NULL) {
6124			snprintf(error_str, error_str_len, "%s: no relative "
6125				 "target port found", __func__);
6126		}
6127		retval = 1;
6128		goto bailout;
6129	}
6130
6131	target_port = strtoul(id_str, &endptr, 0);
6132	if (*endptr != '\0') {
6133		if (error_str != NULL) {
6134			snprintf(error_str, error_str_len, "%s: error "
6135				 "parsing relative target port %s, number "
6136				 "required", __func__, id_str);
6137		}
6138		retval = 1;
6139		goto bailout;
6140	}
6141#ifdef _KERNEL
6142	spi = malloc(sizeof(*spi), type, flags);
6143#else
6144	spi = malloc(sizeof(*spi));
6145#endif
6146	if (spi == NULL) {
6147		if (error_str != NULL) {
6148			snprintf(error_str, error_str_len, "%s: unable to "
6149				 "allocate %zu bytes", __func__,
6150				 sizeof(*spi));
6151		}
6152		retval = 1;
6153		goto bailout;
6154	}
6155	*alloc_len = sizeof(*spi);
6156	bzero(spi, sizeof(*spi));
6157
6158	spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT;
6159	scsi_ulto2b(scsi_addr, spi->scsi_addr);
6160	scsi_ulto2b(target_port, spi->rel_trgt_port_id);
6161
6162	*hdr = (struct scsi_transportid_header *)spi;
6163bailout:
6164	return (retval);
6165}
6166
6167/*
6168 * Parse an RDMA/SRP Initiator Port ID string.  This is 32 hexadecimal digits,
6169 * optionally prefixed by "0x" or "0X".
6170 */
6171int
6172scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr,
6173			    unsigned int *alloc_len,
6174#ifdef _KERNEL
6175			    struct malloc_type *type, int flags,
6176#endif
6177			    char *error_str, int error_str_len)
6178{
6179	struct scsi_transportid_rdma *rdma;
6180	int retval;
6181	size_t id_len, rdma_id_size;
6182	uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN];
6183	char *tmpstr;
6184	unsigned int i, j;
6185
6186	retval = 0;
6187	id_len = strlen(id_str);
6188	rdma_id_size = SCSI_TRN_RDMA_PORT_LEN;
6189
6190	/*
6191	 * Check the size.  It needs to be either 32 or 34 characters long.
6192	 */
6193	if ((id_len != (rdma_id_size * 2))
6194	 && (id_len != ((rdma_id_size * 2) + 2))) {
6195		if (error_str != NULL) {
6196			snprintf(error_str, error_str_len, "%s: RDMA ID "
6197				 "must be 32 hex digits (0x prefix "
6198				 "optional), only %zu seen", __func__, id_len);
6199		}
6200		retval = 1;
6201		goto bailout;
6202	}
6203
6204	tmpstr = id_str;
6205	/*
6206	 * If the user gave us 34 characters, the string needs to start
6207	 * with '0x'.
6208	 */
6209	if (id_len == ((rdma_id_size * 2) + 2)) {
6210	 	if ((tmpstr[0] == '0')
6211		 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) {
6212			tmpstr += 2;
6213		} else {
6214			if (error_str != NULL) {
6215				snprintf(error_str, error_str_len, "%s: RDMA "
6216					 "ID prefix, if used, must be \"0x\", "
6217					 "got %s", __func__, tmpstr);
6218			}
6219			retval = 1;
6220			goto bailout;
6221		}
6222	}
6223	bzero(rdma_id, sizeof(rdma_id));
6224
6225	/*
6226	 * Convert ASCII hex into binary bytes.  There is no standard
6227	 * 128-bit integer type, and so no strtou128t() routine to convert
6228	 * from hex into a large integer.  In the end, we're not going to
6229	 * an integer, but rather to a byte array, so that and the fact
6230	 * that we require the user to give us 32 hex digits simplifies the
6231	 * logic.
6232	 */
6233	for (i = 0; i < (rdma_id_size * 2); i++) {
6234		int cur_shift;
6235		unsigned char c;
6236
6237		/* Increment the byte array one for every 2 hex digits */
6238		j = i >> 1;
6239
6240		/*
6241		 * The first digit in every pair is the most significant
6242		 * 4 bits.  The second is the least significant 4 bits.
6243		 */
6244		if ((i % 2) == 0)
6245			cur_shift = 4;
6246		else
6247			cur_shift = 0;
6248
6249		c = tmpstr[i];
6250		/* Convert the ASCII hex character into a number */
6251		if (isdigit(c))
6252			c -= '0';
6253		else if (isalpha(c))
6254			c -= isupper(c) ? 'A' - 10 : 'a' - 10;
6255		else {
6256			if (error_str != NULL) {
6257				snprintf(error_str, error_str_len, "%s: "
6258					 "RDMA ID must be hex digits, got "
6259					 "invalid character %c", __func__,
6260					 tmpstr[i]);
6261			}
6262			retval = 1;
6263			goto bailout;
6264		}
6265		/*
6266		 * The converted number can't be less than 0; the type is
6267		 * unsigned, and the subtraction logic will not give us
6268		 * a negative number.  So we only need to make sure that
6269		 * the value is not greater than 0xf.  (i.e. make sure the
6270		 * user didn't give us a value like "0x12jklmno").
6271		 */
6272		if (c > 0xf) {
6273			if (error_str != NULL) {
6274				snprintf(error_str, error_str_len, "%s: "
6275					 "RDMA ID must be hex digits, got "
6276					 "invalid character %c", __func__,
6277					 tmpstr[i]);
6278			}
6279			retval = 1;
6280			goto bailout;
6281		}
6282
6283		rdma_id[j] |= c << cur_shift;
6284	}
6285
6286#ifdef _KERNEL
6287	rdma = malloc(sizeof(*rdma), type, flags);
6288#else
6289	rdma = malloc(sizeof(*rdma));
6290#endif
6291	if (rdma == NULL) {
6292		if (error_str != NULL) {
6293			snprintf(error_str, error_str_len, "%s: unable to "
6294				 "allocate %zu bytes", __func__,
6295				 sizeof(*rdma));
6296		}
6297		retval = 1;
6298		goto bailout;
6299	}
6300	*alloc_len = sizeof(*rdma);
6301	bzero(rdma, *alloc_len);
6302
6303	rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT;
6304	bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN);
6305
6306	*hdr = (struct scsi_transportid_header *)rdma;
6307
6308bailout:
6309	return (retval);
6310}
6311
6312/*
6313 * Parse an iSCSI name.  The format is either just the name:
6314 *
6315 *	iqn.2012-06.com.example:target0
6316 * or the name, separator and initiator session ID:
6317 *
6318 *	iqn.2012-06.com.example:target0,i,0x123
6319 *
6320 * The separator format is exact.
6321 */
6322int
6323scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr,
6324			     unsigned int *alloc_len,
6325#ifdef _KERNEL
6326			     struct malloc_type *type, int flags,
6327#endif
6328			     char *error_str, int error_str_len)
6329{
6330	size_t id_len, sep_len, id_size, name_len;
6331	int retval;
6332	unsigned int i, sep_pos, sep_found;
6333	const char *sep_template = ",i,0x";
6334	const char *iqn_prefix = "iqn.";
6335	struct scsi_transportid_iscsi_device *iscsi;
6336
6337	retval = 0;
6338	sep_found = 0;
6339
6340	id_len = strlen(id_str);
6341	sep_len = strlen(sep_template);
6342
6343	/*
6344	 * The separator is defined as exactly ',i,0x'.  Any other commas,
6345	 * or any other form, is an error.  So look for a comma, and once
6346	 * we find that, the next few characters must match the separator
6347	 * exactly.  Once we get through the separator, there should be at
6348	 * least one character.
6349	 */
6350	for (i = 0, sep_pos = 0; i < id_len; i++) {
6351		if (sep_pos == 0) {
6352		 	if (id_str[i] == sep_template[sep_pos])
6353				sep_pos++;
6354
6355			continue;
6356		}
6357		if (sep_pos < sep_len) {
6358			if (id_str[i] == sep_template[sep_pos]) {
6359				sep_pos++;
6360				continue;
6361			}
6362			if (error_str != NULL) {
6363				snprintf(error_str, error_str_len, "%s: "
6364					 "invalid separator in iSCSI name "
6365					 "\"%s\"",
6366					 __func__, id_str);
6367			}
6368			retval = 1;
6369			goto bailout;
6370		} else {
6371			sep_found = 1;
6372			break;
6373		}
6374	}
6375
6376	/*
6377	 * Check to see whether we have a separator but no digits after it.
6378	 */
6379	if ((sep_pos != 0)
6380	 && (sep_found == 0)) {
6381		if (error_str != NULL) {
6382			snprintf(error_str, error_str_len, "%s: no digits "
6383				 "found after separator in iSCSI name \"%s\"",
6384				 __func__, id_str);
6385		}
6386		retval = 1;
6387		goto bailout;
6388	}
6389
6390	/*
6391	 * The incoming ID string has the "iqn." prefix stripped off.  We
6392	 * need enough space for the base structure (the structures are the
6393	 * same for the two iSCSI forms), the prefix, the ID string and a
6394	 * terminating NUL.
6395	 */
6396	id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1;
6397
6398#ifdef _KERNEL
6399	iscsi = malloc(id_size, type, flags);
6400#else
6401	iscsi = malloc(id_size);
6402#endif
6403	if (iscsi == NULL) {
6404		if (error_str != NULL) {
6405			snprintf(error_str, error_str_len, "%s: unable to "
6406				 "allocate %zu bytes", __func__, id_size);
6407		}
6408		retval = 1;
6409		goto bailout;
6410	}
6411	*alloc_len = id_size;
6412	bzero(iscsi, id_size);
6413
6414	iscsi->format_protocol = SCSI_PROTO_ISCSI;
6415	if (sep_found == 0)
6416		iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE;
6417	else
6418		iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT;
6419	name_len = id_size - sizeof(*iscsi);
6420	scsi_ulto2b(name_len, iscsi->additional_length);
6421	snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str);
6422
6423	*hdr = (struct scsi_transportid_header *)iscsi;
6424
6425bailout:
6426	return (retval);
6427}
6428
6429/*
6430 * Parse a SCSI over PCIe (SOP) identifier.  The Routing ID can either be
6431 * of the form 'bus,device,function' or 'bus,function'.
6432 */
6433int
6434scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr,
6435			   unsigned int *alloc_len,
6436#ifdef _KERNEL
6437			   struct malloc_type *type, int flags,
6438#endif
6439			   char *error_str, int error_str_len)
6440{
6441	struct scsi_transportid_sop *sop;
6442	unsigned long bus, device, function;
6443	char *tmpstr, *endptr;
6444	int retval, device_spec;
6445
6446	retval = 0;
6447	device_spec = 0;
6448	device = 0;
6449
6450	tmpstr = strsep(&id_str, ",");
6451	if ((tmpstr == NULL)
6452	 || (*tmpstr == '\0')) {
6453		if (error_str != NULL) {
6454			snprintf(error_str, error_str_len, "%s: no ID found",
6455				 __func__);
6456		}
6457		retval = 1;
6458		goto bailout;
6459	}
6460	bus = strtoul(tmpstr, &endptr, 0);
6461	if (*endptr != '\0') {
6462		if (error_str != NULL) {
6463			snprintf(error_str, error_str_len, "%s: error "
6464				 "parsing PCIe bus %s, number required",
6465				 __func__, tmpstr);
6466		}
6467		retval = 1;
6468		goto bailout;
6469	}
6470	if ((id_str == NULL)
6471	 || (*id_str == '\0')) {
6472		if (error_str != NULL) {
6473			snprintf(error_str, error_str_len, "%s: no PCIe "
6474				 "device or function found", __func__);
6475		}
6476		retval = 1;
6477		goto bailout;
6478	}
6479	tmpstr = strsep(&id_str, ",");
6480	function = strtoul(tmpstr, &endptr, 0);
6481	if (*endptr != '\0') {
6482		if (error_str != NULL) {
6483			snprintf(error_str, error_str_len, "%s: error "
6484				 "parsing PCIe device/function %s, number "
6485				 "required", __func__, tmpstr);
6486		}
6487		retval = 1;
6488		goto bailout;
6489	}
6490	/*
6491	 * Check to see whether the user specified a third value.  If so,
6492	 * the second is the device.
6493	 */
6494	if (id_str != NULL) {
6495		if (*id_str == '\0') {
6496			if (error_str != NULL) {
6497				snprintf(error_str, error_str_len, "%s: "
6498					 "no PCIe function found", __func__);
6499			}
6500			retval = 1;
6501			goto bailout;
6502		}
6503		device = function;
6504		device_spec = 1;
6505		function = strtoul(id_str, &endptr, 0);
6506		if (*endptr != '\0') {
6507			if (error_str != NULL) {
6508				snprintf(error_str, error_str_len, "%s: "
6509					 "error parsing PCIe function %s, "
6510					 "number required", __func__, id_str);
6511			}
6512			retval = 1;
6513			goto bailout;
6514		}
6515	}
6516	if (bus > SCSI_TRN_SOP_BUS_MAX) {
6517		if (error_str != NULL) {
6518			snprintf(error_str, error_str_len, "%s: bus value "
6519				 "%lu greater than maximum %u", __func__,
6520				 bus, SCSI_TRN_SOP_BUS_MAX);
6521		}
6522		retval = 1;
6523		goto bailout;
6524	}
6525
6526	if ((device_spec != 0)
6527	 && (device > SCSI_TRN_SOP_DEV_MASK)) {
6528		if (error_str != NULL) {
6529			snprintf(error_str, error_str_len, "%s: device value "
6530				 "%lu greater than maximum %u", __func__,
6531				 device, SCSI_TRN_SOP_DEV_MAX);
6532		}
6533		retval = 1;
6534		goto bailout;
6535	}
6536
6537	if (((device_spec != 0)
6538	  && (function > SCSI_TRN_SOP_FUNC_NORM_MAX))
6539	 || ((device_spec == 0)
6540	  && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) {
6541		if (error_str != NULL) {
6542			snprintf(error_str, error_str_len, "%s: function value "
6543				 "%lu greater than maximum %u", __func__,
6544				 function, (device_spec == 0) ?
6545				 SCSI_TRN_SOP_FUNC_ALT_MAX :
6546				 SCSI_TRN_SOP_FUNC_NORM_MAX);
6547		}
6548		retval = 1;
6549		goto bailout;
6550	}
6551
6552#ifdef _KERNEL
6553	sop = malloc(sizeof(*sop), type, flags);
6554#else
6555	sop = malloc(sizeof(*sop));
6556#endif
6557	if (sop == NULL) {
6558		if (error_str != NULL) {
6559			snprintf(error_str, error_str_len, "%s: unable to "
6560				 "allocate %zu bytes", __func__, sizeof(*sop));
6561		}
6562		retval = 1;
6563		goto bailout;
6564	}
6565	*alloc_len = sizeof(*sop);
6566	bzero(sop, sizeof(*sop));
6567	sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT;
6568	if (device_spec != 0) {
6569		struct scsi_sop_routing_id_norm rid;
6570
6571		rid.bus = bus;
6572		rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function;
6573		bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6574		      sizeof(sop->routing_id)));
6575	} else {
6576		struct scsi_sop_routing_id_alt rid;
6577
6578		rid.bus = bus;
6579		rid.function = function;
6580		bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6581		      sizeof(sop->routing_id)));
6582	}
6583
6584	*hdr = (struct scsi_transportid_header *)sop;
6585bailout:
6586	return (retval);
6587}
6588
6589/*
6590 * transportid_str: NUL-terminated string with format: protcol,id
6591 *		    The ID is protocol specific.
6592 * hdr:		    Storage will be allocated for the transport ID.
6593 * alloc_len:	    The amount of memory allocated is returned here.
6594 * type:	    Malloc bucket (kernel only).
6595 * flags:	    Malloc flags (kernel only).
6596 * error_str:	    If non-NULL, it will contain error information (without
6597 * 		    a terminating newline) if an error is returned.
6598 * error_str_len:   Allocated length of the error string.
6599 *
6600 * Returns 0 for success, non-zero for failure.
6601 */
6602int
6603scsi_parse_transportid(char *transportid_str,
6604		       struct scsi_transportid_header **hdr,
6605		       unsigned int *alloc_len,
6606#ifdef _KERNEL
6607		       struct malloc_type *type, int flags,
6608#endif
6609		       char *error_str, int error_str_len)
6610{
6611	char *tmpstr;
6612	scsi_nv_status status;
6613	int retval, num_proto_entries, table_entry;
6614
6615	retval = 0;
6616	table_entry = 0;
6617
6618	/*
6619	 * We do allow a period as well as a comma to separate the protocol
6620	 * from the ID string.  This is to accommodate iSCSI names, which
6621	 * start with "iqn.".
6622	 */
6623	tmpstr = strsep(&transportid_str, ",.");
6624	if (tmpstr == NULL) {
6625		if (error_str != NULL) {
6626			snprintf(error_str, error_str_len,
6627				 "%s: transportid_str is NULL", __func__);
6628		}
6629		retval = 1;
6630		goto bailout;
6631	}
6632
6633	num_proto_entries = sizeof(scsi_proto_map) /
6634			    sizeof(scsi_proto_map[0]);
6635	status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr,
6636			     &table_entry, SCSI_NV_FLAG_IG_CASE);
6637	if (status != SCSI_NV_FOUND) {
6638		if (error_str != NULL) {
6639			snprintf(error_str, error_str_len, "%s: %s protocol "
6640				 "name %s", __func__,
6641				 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" :
6642				 "invalid", tmpstr);
6643		}
6644		retval = 1;
6645		goto bailout;
6646	}
6647	switch (scsi_proto_map[table_entry].value) {
6648	case SCSI_PROTO_FC:
6649	case SCSI_PROTO_1394:
6650	case SCSI_PROTO_SAS:
6651		retval = scsi_parse_transportid_64bit(
6652		    scsi_proto_map[table_entry].value, transportid_str, hdr,
6653		    alloc_len,
6654#ifdef _KERNEL
6655		    type, flags,
6656#endif
6657		    error_str, error_str_len);
6658		break;
6659	case SCSI_PROTO_SPI:
6660		retval = scsi_parse_transportid_spi(transportid_str, hdr,
6661		    alloc_len,
6662#ifdef _KERNEL
6663		    type, flags,
6664#endif
6665		    error_str, error_str_len);
6666		break;
6667	case SCSI_PROTO_RDMA:
6668		retval = scsi_parse_transportid_rdma(transportid_str, hdr,
6669		    alloc_len,
6670#ifdef _KERNEL
6671		    type, flags,
6672#endif
6673		    error_str, error_str_len);
6674		break;
6675	case SCSI_PROTO_ISCSI:
6676		retval = scsi_parse_transportid_iscsi(transportid_str, hdr,
6677		    alloc_len,
6678#ifdef _KERNEL
6679		    type, flags,
6680#endif
6681		    error_str, error_str_len);
6682		break;
6683	case SCSI_PROTO_SOP:
6684		retval = scsi_parse_transportid_sop(transportid_str, hdr,
6685		    alloc_len,
6686#ifdef _KERNEL
6687		    type, flags,
6688#endif
6689		    error_str, error_str_len);
6690		break;
6691	case SCSI_PROTO_SSA:
6692	case SCSI_PROTO_ADITP:
6693	case SCSI_PROTO_ATA:
6694	case SCSI_PROTO_UAS:
6695	case SCSI_PROTO_NONE:
6696	default:
6697		/*
6698		 * There is no format defined for a Transport ID for these
6699		 * protocols.  So even if the user gives us something, we
6700		 * have no way to turn it into a standard SCSI Transport ID.
6701		 */
6702		retval = 1;
6703		if (error_str != NULL) {
6704			snprintf(error_str, error_str_len, "%s: no Transport "
6705				 "ID format exists for protocol %s",
6706				 __func__, tmpstr);
6707		}
6708		goto bailout;
6709		break;	/* NOTREACHED */
6710	}
6711bailout:
6712	return (retval);
6713}
6714
6715struct scsi_attrib_table_entry scsi_mam_attr_table[] = {
6716	{ SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6717	  "Remaining Capacity in Partition",
6718	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL },
6719	{ SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6720	  "Maximum Capacity in Partition",
6721	  /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6722	{ SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX,
6723	  "TapeAlert Flags",
6724	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6725	{ SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE,
6726	  "Load Count",
6727	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6728	{ SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE,
6729	  "MAM Space Remaining",
6730	  /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6731	  /*parse_str*/ NULL },
6732	{ SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6733	  "Assigning Organization",
6734	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6735	  /*parse_str*/ NULL },
6736	{ SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6737	  "Format Density Code",
6738	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6739	{ SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE,
6740	  "Initialization Count",
6741	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6742	{ SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE,
6743	  "Volume Identifier",
6744	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6745	  /*parse_str*/ NULL },
6746	{ SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX,
6747	  "Volume Change Reference",
6748	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6749	  /*parse_str*/ NULL },
6750	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE,
6751	  "Device Vendor/Serial at Last Load",
6752	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6753	  /*parse_str*/ NULL },
6754	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE,
6755	  "Device Vendor/Serial at Last Load - 1",
6756	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6757	  /*parse_str*/ NULL },
6758	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE,
6759	  "Device Vendor/Serial at Last Load - 2",
6760	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6761	  /*parse_str*/ NULL },
6762	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE,
6763	  "Device Vendor/Serial at Last Load - 3",
6764	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6765	  /*parse_str*/ NULL },
6766	{ SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE,
6767	  "Total MB Written in Medium Life",
6768	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6769	  /*parse_str*/ NULL },
6770	{ SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE,
6771	  "Total MB Read in Medium Life",
6772	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6773	  /*parse_str*/ NULL },
6774	{ SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE,
6775	  "Total MB Written in Current/Last Load",
6776	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6777	  /*parse_str*/ NULL },
6778	{ SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE,
6779	  "Total MB Read in Current/Last Load",
6780	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6781	  /*parse_str*/ NULL },
6782	{ SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6783	  "Logical Position of First Encrypted Block",
6784	  /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6785	  /*parse_str*/ NULL },
6786	{ SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6787	  "Logical Position of First Unencrypted Block after First "
6788	  "Encrypted Block",
6789	  /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6790	  /*parse_str*/ NULL },
6791	{ SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6792	  "Medium Usage History",
6793	  /*suffix*/ NULL, /*to_str*/ NULL,
6794	  /*parse_str*/ NULL },
6795	{ SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6796	  "Partition Usage History",
6797	  /*suffix*/ NULL, /*to_str*/ NULL,
6798	  /*parse_str*/ NULL },
6799	{ SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE,
6800	  "Medium Manufacturer",
6801	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6802	  /*parse_str*/ NULL },
6803	{ SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE,
6804	  "Medium Serial Number",
6805	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6806	  /*parse_str*/ NULL },
6807	{ SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE,
6808	  "Medium Length",
6809	  /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf,
6810	  /*parse_str*/ NULL },
6811	{ SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 |
6812	  SCSI_ATTR_FLAG_FP_1DIGIT,
6813	  "Medium Width",
6814	  /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf,
6815	  /*parse_str*/ NULL },
6816	{ SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6817	  "Assigning Organization",
6818	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6819	  /*parse_str*/ NULL },
6820	{ SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6821	  "Medium Density Code",
6822	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6823	  /*parse_str*/ NULL },
6824	{ SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE,
6825	  "Medium Manufacture Date",
6826	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6827	  /*parse_str*/ NULL },
6828	{ SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE,
6829	  "MAM Capacity",
6830	  /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6831	  /*parse_str*/ NULL },
6832	{ SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX,
6833	  "Medium Type",
6834	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6835	  /*parse_str*/ NULL },
6836	{ SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX,
6837	  "Medium Type Information",
6838	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6839	  /*parse_str*/ NULL },
6840	{ SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE,
6841	  "Medium Serial Number",
6842	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6843	  /*parse_str*/ NULL },
6844	{ SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE,
6845	  "Application Vendor",
6846	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6847	  /*parse_str*/ NULL },
6848	{ SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE,
6849	  "Application Name",
6850	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6851	  /*parse_str*/ NULL },
6852	{ SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE,
6853	  "Application Version",
6854	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6855	  /*parse_str*/ NULL },
6856	{ SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE,
6857	  "User Medium Text Label",
6858	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6859	  /*parse_str*/ NULL },
6860	{ SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE,
6861	  "Date and Time Last Written",
6862	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6863	  /*parse_str*/ NULL },
6864	{ SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX,
6865	  "Text Localization Identifier",
6866	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6867	  /*parse_str*/ NULL },
6868	{ SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE,
6869	  "Barcode",
6870	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6871	  /*parse_str*/ NULL },
6872	{ SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE,
6873	  "Owning Host Textual Name",
6874	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6875	  /*parse_str*/ NULL },
6876	{ SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE,
6877	  "Media Pool",
6878	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6879	  /*parse_str*/ NULL },
6880	{ SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE,
6881	  "Partition User Text Label",
6882	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6883	  /*parse_str*/ NULL },
6884	{ SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE,
6885	  "Load/Unload at Partition",
6886	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6887	  /*parse_str*/ NULL },
6888	{ SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE,
6889	  "Application Format Version",
6890	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6891	  /*parse_str*/ NULL },
6892	{ SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE,
6893	  "Volume Coherency Information",
6894	  /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf,
6895	  /*parse_str*/ NULL },
6896	{ 0x0ff1, SCSI_ATTR_FLAG_NONE,
6897	  "Spectra MLM Creation",
6898	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6899	  /*parse_str*/ NULL },
6900	{ 0x0ff2, SCSI_ATTR_FLAG_NONE,
6901	  "Spectra MLM C3",
6902	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6903	  /*parse_str*/ NULL },
6904	{ 0x0ff3, SCSI_ATTR_FLAG_NONE,
6905	  "Spectra MLM RW",
6906	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6907	  /*parse_str*/ NULL },
6908	{ 0x0ff4, SCSI_ATTR_FLAG_NONE,
6909	  "Spectra MLM SDC List",
6910	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6911	  /*parse_str*/ NULL },
6912	{ 0x0ff7, SCSI_ATTR_FLAG_NONE,
6913	  "Spectra MLM Post Scan",
6914	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6915	  /*parse_str*/ NULL },
6916	{ 0x0ffe, SCSI_ATTR_FLAG_NONE,
6917	  "Spectra MLM Checksum",
6918	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6919	  /*parse_str*/ NULL },
6920	{ 0x17f1, SCSI_ATTR_FLAG_NONE,
6921	  "Spectra MLM Creation",
6922	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6923	  /*parse_str*/ NULL },
6924	{ 0x17f2, SCSI_ATTR_FLAG_NONE,
6925	  "Spectra MLM C3",
6926	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6927	  /*parse_str*/ NULL },
6928	{ 0x17f3, SCSI_ATTR_FLAG_NONE,
6929	  "Spectra MLM RW",
6930	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6931	  /*parse_str*/ NULL },
6932	{ 0x17f4, SCSI_ATTR_FLAG_NONE,
6933	  "Spectra MLM SDC List",
6934	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6935	  /*parse_str*/ NULL },
6936	{ 0x17f7, SCSI_ATTR_FLAG_NONE,
6937	  "Spectra MLM Post Scan",
6938	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6939	  /*parse_str*/ NULL },
6940	{ 0x17ff, SCSI_ATTR_FLAG_NONE,
6941	  "Spectra MLM Checksum",
6942	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6943	  /*parse_str*/ NULL },
6944};
6945
6946/*
6947 * Print out Volume Coherency Information (Attribute 0x080c).
6948 * This field has two variable length members, including one at the
6949 * beginning, so it isn't practical to have a fixed structure definition.
6950 * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25,
6951 * 2013.
6952 */
6953int
6954scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
6955			 uint32_t valid_len, uint32_t flags,
6956			 uint32_t output_flags, char *error_str,
6957			 int error_str_len)
6958{
6959	size_t avail_len;
6960	uint32_t field_size;
6961	uint64_t tmp_val;
6962	uint8_t *cur_ptr;
6963	int retval;
6964	int vcr_len, as_len;
6965
6966	retval = 0;
6967	tmp_val = 0;
6968
6969	field_size = scsi_2btoul(hdr->length);
6970	avail_len = valid_len - sizeof(*hdr);
6971	if (field_size > avail_len) {
6972		if (error_str != NULL) {
6973			snprintf(error_str, error_str_len, "Available "
6974				 "length of attribute ID 0x%.4x %zu < field "
6975				 "length %u", scsi_2btoul(hdr->id), avail_len,
6976				 field_size);
6977		}
6978		retval = 1;
6979		goto bailout;
6980	} else if (field_size == 0) {
6981		/*
6982		 * It isn't clear from the spec whether a field length of
6983		 * 0 is invalid here.  It probably is, but be lenient here
6984		 * to avoid inconveniencing the user.
6985		 */
6986		goto bailout;
6987	}
6988	cur_ptr = hdr->attribute;
6989	vcr_len = *cur_ptr;
6990	cur_ptr++;
6991
6992	sbuf_printf(sb, "\n\tVolume Change Reference Value:");
6993
6994	switch (vcr_len) {
6995	case 0:
6996		if (error_str != NULL) {
6997			snprintf(error_str, error_str_len, "Volume Change "
6998				 "Reference value has length of 0");
6999		}
7000		retval = 1;
7001		goto bailout;
7002		break; /*NOTREACHED*/
7003	case 1:
7004		tmp_val = *cur_ptr;
7005		break;
7006	case 2:
7007		tmp_val = scsi_2btoul(cur_ptr);
7008		break;
7009	case 3:
7010		tmp_val = scsi_3btoul(cur_ptr);
7011		break;
7012	case 4:
7013		tmp_val = scsi_4btoul(cur_ptr);
7014		break;
7015	case 8:
7016		tmp_val = scsi_8btou64(cur_ptr);
7017		break;
7018	default:
7019		sbuf_printf(sb, "\n");
7020		sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0);
7021		break;
7022	}
7023	if (vcr_len <= 8)
7024		sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val);
7025
7026	cur_ptr += vcr_len;
7027	tmp_val = scsi_8btou64(cur_ptr);
7028	sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val);
7029
7030	cur_ptr += sizeof(tmp_val);
7031	tmp_val = scsi_8btou64(cur_ptr);
7032	sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n",
7033		    (uintmax_t)tmp_val);
7034
7035	/*
7036	 * Figure out how long the Application Client Specific Information
7037	 * is and produce a hexdump.
7038	 */
7039	cur_ptr += sizeof(tmp_val);
7040	as_len = scsi_2btoul(cur_ptr);
7041	cur_ptr += sizeof(uint16_t);
7042	sbuf_printf(sb, "\tApplication Client Specific Information: ");
7043	if (((as_len == SCSI_LTFS_VER0_LEN)
7044	  || (as_len == SCSI_LTFS_VER1_LEN))
7045	 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) {
7046		sbuf_printf(sb, "LTFS\n");
7047		cur_ptr += SCSI_LTFS_STR_LEN + 1;
7048		if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0')
7049			cur_ptr[SCSI_LTFS_UUID_LEN] = '\0';
7050		sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr);
7051		cur_ptr += SCSI_LTFS_UUID_LEN + 1;
7052		/* XXX KDM check the length */
7053		sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr);
7054	} else {
7055		sbuf_printf(sb, "Unknown\n");
7056		sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0);
7057	}
7058
7059bailout:
7060	return (retval);
7061}
7062
7063int
7064scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7065			 uint32_t valid_len, uint32_t flags,
7066			 uint32_t output_flags, char *error_str,
7067			 int error_str_len)
7068{
7069	size_t avail_len;
7070	uint32_t field_size;
7071	struct scsi_attrib_vendser *vendser;
7072	cam_strvis_flags strvis_flags;
7073	int retval = 0;
7074
7075	field_size = scsi_2btoul(hdr->length);
7076	avail_len = valid_len - sizeof(*hdr);
7077	if (field_size > avail_len) {
7078		if (error_str != NULL) {
7079			snprintf(error_str, error_str_len, "Available "
7080				 "length of attribute ID 0x%.4x %zu < field "
7081				 "length %u", scsi_2btoul(hdr->id), avail_len,
7082				 field_size);
7083		}
7084		retval = 1;
7085		goto bailout;
7086	} else if (field_size == 0) {
7087		/*
7088		 * A field size of 0 doesn't make sense here.  The device
7089		 * can at least give you the vendor ID, even if it can't
7090		 * give you the serial number.
7091		 */
7092		if (error_str != NULL) {
7093			snprintf(error_str, error_str_len, "The length of "
7094				 "attribute ID 0x%.4x is 0",
7095				 scsi_2btoul(hdr->id));
7096		}
7097		retval = 1;
7098		goto bailout;
7099	}
7100	vendser = (struct scsi_attrib_vendser *)hdr->attribute;
7101
7102	switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
7103	case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
7104		strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
7105		break;
7106	case SCSI_ATTR_OUTPUT_NONASCII_RAW:
7107		strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
7108		break;
7109	case SCSI_ATTR_OUTPUT_NONASCII_ESC:
7110	default:
7111		strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
7112		break;;
7113	}
7114	cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor),
7115	    strvis_flags);
7116	sbuf_putc(sb, ' ');
7117	cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num),
7118	    strvis_flags);
7119bailout:
7120	return (retval);
7121}
7122
7123int
7124scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7125			 uint32_t valid_len, uint32_t flags,
7126			 uint32_t output_flags, char *error_str,
7127			 int error_str_len)
7128{
7129	uint32_t field_size;
7130	ssize_t avail_len;
7131	uint32_t print_len;
7132	uint8_t *num_ptr;
7133	int retval = 0;
7134
7135	field_size = scsi_2btoul(hdr->length);
7136	avail_len = valid_len - sizeof(*hdr);
7137	print_len = MIN(avail_len, field_size);
7138	num_ptr = hdr->attribute;
7139
7140	if (print_len > 0) {
7141		sbuf_printf(sb, "\n");
7142		sbuf_hexdump(sb, num_ptr, print_len, NULL, 0);
7143	}
7144
7145	return (retval);
7146}
7147
7148int
7149scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7150		     uint32_t valid_len, uint32_t flags,
7151		     uint32_t output_flags, char *error_str,
7152		     int error_str_len)
7153{
7154	uint64_t print_number;
7155	size_t avail_len;
7156	uint32_t number_size;
7157	int retval = 0;
7158
7159	number_size = scsi_2btoul(hdr->length);
7160
7161	avail_len = valid_len - sizeof(*hdr);
7162	if (avail_len < number_size) {
7163		if (error_str != NULL) {
7164			snprintf(error_str, error_str_len, "Available "
7165				 "length of attribute ID 0x%.4x %zu < field "
7166				 "length %u", scsi_2btoul(hdr->id), avail_len,
7167				 number_size);
7168		}
7169		retval = 1;
7170		goto bailout;
7171	}
7172
7173	switch (number_size) {
7174	case 0:
7175		/*
7176		 * We don't treat this as an error, since there may be
7177		 * scenarios where a device reports a field but then gives
7178		 * a length of 0.  See the note in scsi_attrib_ascii_sbuf().
7179		 */
7180		goto bailout;
7181		break; /*NOTREACHED*/
7182	case 1:
7183		print_number = hdr->attribute[0];
7184		break;
7185	case 2:
7186		print_number = scsi_2btoul(hdr->attribute);
7187		break;
7188	case 3:
7189		print_number = scsi_3btoul(hdr->attribute);
7190		break;
7191	case 4:
7192		print_number = scsi_4btoul(hdr->attribute);
7193		break;
7194	case 8:
7195		print_number = scsi_8btou64(hdr->attribute);
7196		break;
7197	default:
7198		/*
7199		 * If we wind up here, the number is too big to print
7200		 * normally, so just do a hexdump.
7201		 */
7202		retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
7203						  flags, output_flags,
7204						  error_str, error_str_len);
7205		goto bailout;
7206		break;
7207	}
7208
7209	if (flags & SCSI_ATTR_FLAG_FP) {
7210#ifndef _KERNEL
7211		long double num_float;
7212
7213		num_float = (long double)print_number;
7214
7215		if (flags & SCSI_ATTR_FLAG_DIV_10)
7216			num_float /= 10;
7217
7218		sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ?
7219			    1 : 0, num_float);
7220#else /* _KERNEL */
7221		sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ?
7222			    (print_number / 10) : print_number);
7223#endif /* _KERNEL */
7224	} else if (flags & SCSI_ATTR_FLAG_HEX) {
7225		sbuf_printf(sb, "0x%jx", (uintmax_t)print_number);
7226	} else
7227		sbuf_printf(sb, "%ju", (uintmax_t)print_number);
7228
7229bailout:
7230	return (retval);
7231}
7232
7233int
7234scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7235		       uint32_t valid_len, uint32_t flags,
7236		       uint32_t output_flags, char *error_str,
7237		       int error_str_len)
7238{
7239	size_t avail_len;
7240	uint32_t field_size, print_size;
7241	int retval = 0;
7242
7243	avail_len = valid_len - sizeof(*hdr);
7244	field_size = scsi_2btoul(hdr->length);
7245	print_size = MIN(avail_len, field_size);
7246
7247	if (print_size > 0) {
7248		cam_strvis_flags strvis_flags;
7249
7250		switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
7251		case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
7252			strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
7253			break;
7254		case SCSI_ATTR_OUTPUT_NONASCII_RAW:
7255			strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
7256			break;
7257		case SCSI_ATTR_OUTPUT_NONASCII_ESC:
7258		default:
7259			strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
7260			break;
7261		}
7262		cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags);
7263	} else if (avail_len < field_size) {
7264		/*
7265		 * We only report an error if the user didn't allocate
7266		 * enough space to hold the full value of this field.  If
7267		 * the field length is 0, that is allowed by the spec.
7268		 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER
7269		 * "This attribute indicates the current volume identifier
7270		 * (see SMC-3) of the medium. If the device server supports
7271		 * this attribute but does not have access to the volume
7272		 * identifier, the device server shall report this attribute
7273		 * with an attribute length value of zero."
7274		 */
7275		if (error_str != NULL) {
7276			snprintf(error_str, error_str_len, "Available "
7277				 "length of attribute ID 0x%.4x %zu < field "
7278				 "length %u", scsi_2btoul(hdr->id), avail_len,
7279				 field_size);
7280		}
7281		retval = 1;
7282	}
7283
7284	return (retval);
7285}
7286
7287int
7288scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7289		      uint32_t valid_len, uint32_t flags,
7290		      uint32_t output_flags, char *error_str,
7291		      int error_str_len)
7292{
7293	size_t avail_len;
7294	uint32_t field_size, print_size;
7295	int retval = 0;
7296	int esc_text = 1;
7297
7298	avail_len = valid_len - sizeof(*hdr);
7299	field_size = scsi_2btoul(hdr->length);
7300	print_size = MIN(avail_len, field_size);
7301
7302	if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) ==
7303	     SCSI_ATTR_OUTPUT_TEXT_RAW)
7304		esc_text = 0;
7305
7306	if (print_size > 0) {
7307		uint32_t i;
7308
7309		for (i = 0; i < print_size; i++) {
7310			if (hdr->attribute[i] == '\0')
7311				continue;
7312			else if (((unsigned char)hdr->attribute[i] < 0x80)
7313			      || (esc_text == 0))
7314				sbuf_putc(sb, hdr->attribute[i]);
7315			else
7316				sbuf_printf(sb, "%%%02x",
7317				    (unsigned char)hdr->attribute[i]);
7318		}
7319	} else if (avail_len < field_size) {
7320		/*
7321		 * We only report an error if the user didn't allocate
7322		 * enough space to hold the full value of this field.
7323		 */
7324		if (error_str != NULL) {
7325			snprintf(error_str, error_str_len, "Available "
7326				 "length of attribute ID 0x%.4x %zu < field "
7327				 "length %u", scsi_2btoul(hdr->id), avail_len,
7328				 field_size);
7329		}
7330		retval = 1;
7331	}
7332
7333	return (retval);
7334}
7335
7336struct scsi_attrib_table_entry *
7337scsi_find_attrib_entry(struct scsi_attrib_table_entry *table,
7338		       size_t num_table_entries, uint32_t id)
7339{
7340	uint32_t i;
7341
7342	for (i = 0; i < num_table_entries; i++) {
7343		if (table[i].id == id)
7344			return (&table[i]);
7345	}
7346
7347	return (NULL);
7348}
7349
7350struct scsi_attrib_table_entry *
7351scsi_get_attrib_entry(uint32_t id)
7352{
7353	return (scsi_find_attrib_entry(scsi_mam_attr_table,
7354		sizeof(scsi_mam_attr_table) / sizeof(scsi_mam_attr_table[0]),
7355		id));
7356}
7357
7358int
7359scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len,
7360   struct scsi_mam_attribute_header *hdr, uint32_t output_flags,
7361   char *error_str, size_t error_str_len)
7362{
7363	int retval;
7364
7365	switch (hdr->byte2 & SMA_FORMAT_MASK) {
7366	case SMA_FORMAT_ASCII:
7367		retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len,
7368		    SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len);
7369		break;
7370	case SMA_FORMAT_BINARY:
7371		if (scsi_2btoul(hdr->length) <= 8)
7372			retval = scsi_attrib_int_sbuf(sb, hdr, valid_len,
7373			    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7374			    error_str_len);
7375		else
7376			retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
7377			    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7378			    error_str_len);
7379		break;
7380	case SMA_FORMAT_TEXT:
7381		retval = scsi_attrib_text_sbuf(sb, hdr, valid_len,
7382		    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7383		    error_str_len);
7384		break;
7385	default:
7386		if (error_str != NULL) {
7387			snprintf(error_str, error_str_len, "Unknown attribute "
7388			    "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK);
7389		}
7390		retval = 1;
7391		goto bailout;
7392		break; /*NOTREACHED*/
7393	}
7394
7395	sbuf_trim(sb);
7396
7397bailout:
7398
7399	return (retval);
7400}
7401
7402void
7403scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags,
7404			struct scsi_mam_attribute_header *hdr,
7405			uint32_t valid_len, const char *desc)
7406{
7407	int need_space = 0;
7408	uint32_t len;
7409	uint32_t id;
7410
7411	/*
7412	 * We can't do anything if we don't have enough valid data for the
7413	 * header.
7414	 */
7415	if (valid_len < sizeof(*hdr))
7416		return;
7417
7418	id = scsi_2btoul(hdr->id);
7419	/*
7420	 * Note that we print out the value of the attribute listed in the
7421	 * header, regardless of whether we actually got that many bytes
7422	 * back from the device through the controller.  A truncated result
7423	 * could be the result of a failure to ask for enough data; the
7424	 * header indicates how many bytes are allocated for this attribute
7425	 * in the MAM.
7426	 */
7427	len = scsi_2btoul(hdr->length);
7428
7429	if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) ==
7430	    SCSI_ATTR_OUTPUT_FIELD_NONE)
7431		return;
7432
7433	if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC)
7434	 && (desc != NULL)) {
7435		sbuf_printf(sb, "%s", desc);
7436		need_space = 1;
7437	}
7438
7439	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) {
7440		sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id);
7441		need_space = 0;
7442	}
7443
7444	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) {
7445		sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len);
7446		need_space = 0;
7447	}
7448	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) {
7449		sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "",
7450			    (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW");
7451	}
7452	sbuf_printf(sb, ": ");
7453}
7454
7455int
7456scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7457		 uint32_t valid_len, struct scsi_attrib_table_entry *user_table,
7458		 size_t num_user_entries, int prefer_user_table,
7459		 uint32_t output_flags, char *error_str, int error_str_len)
7460{
7461	int retval;
7462	struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL;
7463	struct scsi_attrib_table_entry *entry = NULL;
7464	size_t table1_size = 0, table2_size = 0;
7465	uint32_t id;
7466
7467	retval = 0;
7468
7469	if (valid_len < sizeof(*hdr)) {
7470		retval = 1;
7471		goto bailout;
7472	}
7473
7474	id = scsi_2btoul(hdr->id);
7475
7476	if (user_table != NULL) {
7477		if (prefer_user_table != 0) {
7478			table1 = user_table;
7479			table1_size = num_user_entries;
7480			table2 = scsi_mam_attr_table;
7481			table2_size = sizeof(scsi_mam_attr_table) /
7482				      sizeof(scsi_mam_attr_table[0]);
7483		} else {
7484			table1 = scsi_mam_attr_table;
7485			table1_size = sizeof(scsi_mam_attr_table) /
7486				      sizeof(scsi_mam_attr_table[0]);
7487			table2 = user_table;
7488			table2_size = num_user_entries;
7489		}
7490	} else {
7491		table1 = scsi_mam_attr_table;
7492		table1_size = sizeof(scsi_mam_attr_table) /
7493			      sizeof(scsi_mam_attr_table[0]);
7494	}
7495
7496	entry = scsi_find_attrib_entry(table1, table1_size, id);
7497	if (entry != NULL) {
7498		scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len,
7499					entry->desc);
7500		if (entry->to_str == NULL)
7501			goto print_default;
7502		retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7503				       output_flags, error_str, error_str_len);
7504		goto bailout;
7505	}
7506	if (table2 != NULL) {
7507		entry = scsi_find_attrib_entry(table2, table2_size, id);
7508		if (entry != NULL) {
7509			if (entry->to_str == NULL)
7510				goto print_default;
7511
7512			scsi_attrib_prefix_sbuf(sb, output_flags, hdr,
7513						valid_len, entry->desc);
7514			retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7515					       output_flags, error_str,
7516					       error_str_len);
7517			goto bailout;
7518		}
7519	}
7520
7521	scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL);
7522
7523print_default:
7524	retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags,
7525	    error_str, error_str_len);
7526bailout:
7527	if (retval == 0) {
7528	 	if ((entry != NULL)
7529		 && (entry->suffix != NULL))
7530			sbuf_printf(sb, " %s", entry->suffix);
7531
7532		sbuf_trim(sb);
7533		sbuf_printf(sb, "\n");
7534	}
7535
7536	return (retval);
7537}
7538
7539void
7540scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries,
7541		     void (*cbfcnp)(struct cam_periph *, union ccb *),
7542		     u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout)
7543{
7544	struct scsi_test_unit_ready *scsi_cmd;
7545
7546	cam_fill_csio(csio,
7547		      retries,
7548		      cbfcnp,
7549		      CAM_DIR_NONE,
7550		      tag_action,
7551		      /*data_ptr*/NULL,
7552		      /*dxfer_len*/0,
7553		      sense_len,
7554		      sizeof(*scsi_cmd),
7555		      timeout);
7556
7557	scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes;
7558	bzero(scsi_cmd, sizeof(*scsi_cmd));
7559	scsi_cmd->opcode = TEST_UNIT_READY;
7560}
7561
7562void
7563scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries,
7564		   void (*cbfcnp)(struct cam_periph *, union ccb *),
7565		   void *data_ptr, u_int8_t dxfer_len, u_int8_t tag_action,
7566		   u_int8_t sense_len, u_int32_t timeout)
7567{
7568	struct scsi_request_sense *scsi_cmd;
7569
7570	cam_fill_csio(csio,
7571		      retries,
7572		      cbfcnp,
7573		      CAM_DIR_IN,
7574		      tag_action,
7575		      data_ptr,
7576		      dxfer_len,
7577		      sense_len,
7578		      sizeof(*scsi_cmd),
7579		      timeout);
7580
7581	scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes;
7582	bzero(scsi_cmd, sizeof(*scsi_cmd));
7583	scsi_cmd->opcode = REQUEST_SENSE;
7584	scsi_cmd->length = dxfer_len;
7585}
7586
7587void
7588scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries,
7589	     void (*cbfcnp)(struct cam_periph *, union ccb *),
7590	     u_int8_t tag_action, u_int8_t *inq_buf, u_int32_t inq_len,
7591	     int evpd, u_int8_t page_code, u_int8_t sense_len,
7592	     u_int32_t timeout)
7593{
7594	struct scsi_inquiry *scsi_cmd;
7595
7596	cam_fill_csio(csio,
7597		      retries,
7598		      cbfcnp,
7599		      /*flags*/CAM_DIR_IN,
7600		      tag_action,
7601		      /*data_ptr*/inq_buf,
7602		      /*dxfer_len*/inq_len,
7603		      sense_len,
7604		      sizeof(*scsi_cmd),
7605		      timeout);
7606
7607	scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes;
7608	bzero(scsi_cmd, sizeof(*scsi_cmd));
7609	scsi_cmd->opcode = INQUIRY;
7610	if (evpd) {
7611		scsi_cmd->byte2 |= SI_EVPD;
7612		scsi_cmd->page_code = page_code;
7613	}
7614	scsi_ulto2b(inq_len, scsi_cmd->length);
7615}
7616
7617void
7618scsi_mode_sense(struct ccb_scsiio *csio, u_int32_t retries,
7619		void (*cbfcnp)(struct cam_periph *, union ccb *),
7620		u_int8_t tag_action, int dbd, u_int8_t page_code,
7621		u_int8_t page, u_int8_t *param_buf, u_int32_t param_len,
7622		u_int8_t sense_len, u_int32_t timeout)
7623{
7624
7625	scsi_mode_sense_len(csio, retries, cbfcnp, tag_action, dbd,
7626			    page_code, page, param_buf, param_len, 0,
7627			    sense_len, timeout);
7628}
7629
7630void
7631scsi_mode_sense_len(struct ccb_scsiio *csio, u_int32_t retries,
7632		    void (*cbfcnp)(struct cam_periph *, union ccb *),
7633		    u_int8_t tag_action, int dbd, u_int8_t page_code,
7634		    u_int8_t page, u_int8_t *param_buf, u_int32_t param_len,
7635		    int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout)
7636{
7637	u_int8_t cdb_len;
7638
7639	/*
7640	 * Use the smallest possible command to perform the operation.
7641	 */
7642	if ((param_len < 256)
7643	 && (minimum_cmd_size < 10)) {
7644		/*
7645		 * We can fit in a 6 byte cdb.
7646		 */
7647		struct scsi_mode_sense_6 *scsi_cmd;
7648
7649		scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes;
7650		bzero(scsi_cmd, sizeof(*scsi_cmd));
7651		scsi_cmd->opcode = MODE_SENSE_6;
7652		if (dbd != 0)
7653			scsi_cmd->byte2 |= SMS_DBD;
7654		scsi_cmd->page = page_code | page;
7655		scsi_cmd->length = param_len;
7656		cdb_len = sizeof(*scsi_cmd);
7657	} else {
7658		/*
7659		 * Need a 10 byte cdb.
7660		 */
7661		struct scsi_mode_sense_10 *scsi_cmd;
7662
7663		scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes;
7664		bzero(scsi_cmd, sizeof(*scsi_cmd));
7665		scsi_cmd->opcode = MODE_SENSE_10;
7666		if (dbd != 0)
7667			scsi_cmd->byte2 |= SMS_DBD;
7668		scsi_cmd->page = page_code | page;
7669		scsi_ulto2b(param_len, scsi_cmd->length);
7670		cdb_len = sizeof(*scsi_cmd);
7671	}
7672	cam_fill_csio(csio,
7673		      retries,
7674		      cbfcnp,
7675		      CAM_DIR_IN,
7676		      tag_action,
7677		      param_buf,
7678		      param_len,
7679		      sense_len,
7680		      cdb_len,
7681		      timeout);
7682}
7683
7684void
7685scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries,
7686		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7687		 u_int8_t tag_action, int scsi_page_fmt, int save_pages,
7688		 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len,
7689		 u_int32_t timeout)
7690{
7691	scsi_mode_select_len(csio, retries, cbfcnp, tag_action,
7692			     scsi_page_fmt, save_pages, param_buf,
7693			     param_len, 0, sense_len, timeout);
7694}
7695
7696void
7697scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries,
7698		     void (*cbfcnp)(struct cam_periph *, union ccb *),
7699		     u_int8_t tag_action, int scsi_page_fmt, int save_pages,
7700		     u_int8_t *param_buf, u_int32_t param_len,
7701		     int minimum_cmd_size, u_int8_t sense_len,
7702		     u_int32_t timeout)
7703{
7704	u_int8_t cdb_len;
7705
7706	/*
7707	 * Use the smallest possible command to perform the operation.
7708	 */
7709	if ((param_len < 256)
7710	 && (minimum_cmd_size < 10)) {
7711		/*
7712		 * We can fit in a 6 byte cdb.
7713		 */
7714		struct scsi_mode_select_6 *scsi_cmd;
7715
7716		scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes;
7717		bzero(scsi_cmd, sizeof(*scsi_cmd));
7718		scsi_cmd->opcode = MODE_SELECT_6;
7719		if (scsi_page_fmt != 0)
7720			scsi_cmd->byte2 |= SMS_PF;
7721		if (save_pages != 0)
7722			scsi_cmd->byte2 |= SMS_SP;
7723		scsi_cmd->length = param_len;
7724		cdb_len = sizeof(*scsi_cmd);
7725	} else {
7726		/*
7727		 * Need a 10 byte cdb.
7728		 */
7729		struct scsi_mode_select_10 *scsi_cmd;
7730
7731		scsi_cmd =
7732		    (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes;
7733		bzero(scsi_cmd, sizeof(*scsi_cmd));
7734		scsi_cmd->opcode = MODE_SELECT_10;
7735		if (scsi_page_fmt != 0)
7736			scsi_cmd->byte2 |= SMS_PF;
7737		if (save_pages != 0)
7738			scsi_cmd->byte2 |= SMS_SP;
7739		scsi_ulto2b(param_len, scsi_cmd->length);
7740		cdb_len = sizeof(*scsi_cmd);
7741	}
7742	cam_fill_csio(csio,
7743		      retries,
7744		      cbfcnp,
7745		      CAM_DIR_OUT,
7746		      tag_action,
7747		      param_buf,
7748		      param_len,
7749		      sense_len,
7750		      cdb_len,
7751		      timeout);
7752}
7753
7754void
7755scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries,
7756	       void (*cbfcnp)(struct cam_periph *, union ccb *),
7757	       u_int8_t tag_action, u_int8_t page_code, u_int8_t page,
7758	       int save_pages, int ppc, u_int32_t paramptr,
7759	       u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len,
7760	       u_int32_t timeout)
7761{
7762	struct scsi_log_sense *scsi_cmd;
7763	u_int8_t cdb_len;
7764
7765	scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes;
7766	bzero(scsi_cmd, sizeof(*scsi_cmd));
7767	scsi_cmd->opcode = LOG_SENSE;
7768	scsi_cmd->page = page_code | page;
7769	if (save_pages != 0)
7770		scsi_cmd->byte2 |= SLS_SP;
7771	if (ppc != 0)
7772		scsi_cmd->byte2 |= SLS_PPC;
7773	scsi_ulto2b(paramptr, scsi_cmd->paramptr);
7774	scsi_ulto2b(param_len, scsi_cmd->length);
7775	cdb_len = sizeof(*scsi_cmd);
7776
7777	cam_fill_csio(csio,
7778		      retries,
7779		      cbfcnp,
7780		      /*flags*/CAM_DIR_IN,
7781		      tag_action,
7782		      /*data_ptr*/param_buf,
7783		      /*dxfer_len*/param_len,
7784		      sense_len,
7785		      cdb_len,
7786		      timeout);
7787}
7788
7789void
7790scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries,
7791		void (*cbfcnp)(struct cam_periph *, union ccb *),
7792		u_int8_t tag_action, u_int8_t page_code, int save_pages,
7793		int pc_reset, u_int8_t *param_buf, u_int32_t param_len,
7794		u_int8_t sense_len, u_int32_t timeout)
7795{
7796	struct scsi_log_select *scsi_cmd;
7797	u_int8_t cdb_len;
7798
7799	scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes;
7800	bzero(scsi_cmd, sizeof(*scsi_cmd));
7801	scsi_cmd->opcode = LOG_SELECT;
7802	scsi_cmd->page = page_code & SLS_PAGE_CODE;
7803	if (save_pages != 0)
7804		scsi_cmd->byte2 |= SLS_SP;
7805	if (pc_reset != 0)
7806		scsi_cmd->byte2 |= SLS_PCR;
7807	scsi_ulto2b(param_len, scsi_cmd->length);
7808	cdb_len = sizeof(*scsi_cmd);
7809
7810	cam_fill_csio(csio,
7811		      retries,
7812		      cbfcnp,
7813		      /*flags*/CAM_DIR_OUT,
7814		      tag_action,
7815		      /*data_ptr*/param_buf,
7816		      /*dxfer_len*/param_len,
7817		      sense_len,
7818		      cdb_len,
7819		      timeout);
7820}
7821
7822/*
7823 * Prevent or allow the user to remove the media
7824 */
7825void
7826scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries,
7827	     void (*cbfcnp)(struct cam_periph *, union ccb *),
7828	     u_int8_t tag_action, u_int8_t action,
7829	     u_int8_t sense_len, u_int32_t timeout)
7830{
7831	struct scsi_prevent *scsi_cmd;
7832
7833	cam_fill_csio(csio,
7834		      retries,
7835		      cbfcnp,
7836		      /*flags*/CAM_DIR_NONE,
7837		      tag_action,
7838		      /*data_ptr*/NULL,
7839		      /*dxfer_len*/0,
7840		      sense_len,
7841		      sizeof(*scsi_cmd),
7842		      timeout);
7843
7844	scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes;
7845	bzero(scsi_cmd, sizeof(*scsi_cmd));
7846	scsi_cmd->opcode = PREVENT_ALLOW;
7847	scsi_cmd->how = action;
7848}
7849
7850/* XXX allow specification of address and PMI bit and LBA */
7851void
7852scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries,
7853		   void (*cbfcnp)(struct cam_periph *, union ccb *),
7854		   u_int8_t tag_action,
7855		   struct scsi_read_capacity_data *rcap_buf,
7856		   u_int8_t sense_len, u_int32_t timeout)
7857{
7858	struct scsi_read_capacity *scsi_cmd;
7859
7860	cam_fill_csio(csio,
7861		      retries,
7862		      cbfcnp,
7863		      /*flags*/CAM_DIR_IN,
7864		      tag_action,
7865		      /*data_ptr*/(u_int8_t *)rcap_buf,
7866		      /*dxfer_len*/sizeof(*rcap_buf),
7867		      sense_len,
7868		      sizeof(*scsi_cmd),
7869		      timeout);
7870
7871	scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes;
7872	bzero(scsi_cmd, sizeof(*scsi_cmd));
7873	scsi_cmd->opcode = READ_CAPACITY;
7874}
7875
7876void
7877scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries,
7878		      void (*cbfcnp)(struct cam_periph *, union ccb *),
7879		      uint8_t tag_action, uint64_t lba, int reladr, int pmi,
7880		      uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len,
7881		      uint32_t timeout)
7882{
7883	struct scsi_read_capacity_16 *scsi_cmd;
7884
7885
7886	cam_fill_csio(csio,
7887		      retries,
7888		      cbfcnp,
7889		      /*flags*/CAM_DIR_IN,
7890		      tag_action,
7891		      /*data_ptr*/(u_int8_t *)rcap_buf,
7892		      /*dxfer_len*/rcap_buf_len,
7893		      sense_len,
7894		      sizeof(*scsi_cmd),
7895		      timeout);
7896	scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes;
7897	bzero(scsi_cmd, sizeof(*scsi_cmd));
7898	scsi_cmd->opcode = SERVICE_ACTION_IN;
7899	scsi_cmd->service_action = SRC16_SERVICE_ACTION;
7900	scsi_u64to8b(lba, scsi_cmd->addr);
7901	scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len);
7902	if (pmi)
7903		reladr |= SRC16_PMI;
7904	if (reladr)
7905		reladr |= SRC16_RELADR;
7906}
7907
7908void
7909scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries,
7910		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7911		 u_int8_t tag_action, u_int8_t select_report,
7912		 struct scsi_report_luns_data *rpl_buf, u_int32_t alloc_len,
7913		 u_int8_t sense_len, u_int32_t timeout)
7914{
7915	struct scsi_report_luns *scsi_cmd;
7916
7917	cam_fill_csio(csio,
7918		      retries,
7919		      cbfcnp,
7920		      /*flags*/CAM_DIR_IN,
7921		      tag_action,
7922		      /*data_ptr*/(u_int8_t *)rpl_buf,
7923		      /*dxfer_len*/alloc_len,
7924		      sense_len,
7925		      sizeof(*scsi_cmd),
7926		      timeout);
7927	scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes;
7928	bzero(scsi_cmd, sizeof(*scsi_cmd));
7929	scsi_cmd->opcode = REPORT_LUNS;
7930	scsi_cmd->select_report = select_report;
7931	scsi_ulto4b(alloc_len, scsi_cmd->length);
7932}
7933
7934void
7935scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries,
7936		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7937		 u_int8_t tag_action, u_int8_t pdf,
7938		 void *buf, u_int32_t alloc_len,
7939		 u_int8_t sense_len, u_int32_t timeout)
7940{
7941	struct scsi_target_group *scsi_cmd;
7942
7943	cam_fill_csio(csio,
7944		      retries,
7945		      cbfcnp,
7946		      /*flags*/CAM_DIR_IN,
7947		      tag_action,
7948		      /*data_ptr*/(u_int8_t *)buf,
7949		      /*dxfer_len*/alloc_len,
7950		      sense_len,
7951		      sizeof(*scsi_cmd),
7952		      timeout);
7953	scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
7954	bzero(scsi_cmd, sizeof(*scsi_cmd));
7955	scsi_cmd->opcode = MAINTENANCE_IN;
7956	scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf;
7957	scsi_ulto4b(alloc_len, scsi_cmd->length);
7958}
7959
7960void
7961scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries,
7962		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7963		 u_int8_t tag_action, void *buf, u_int32_t alloc_len,
7964		 u_int8_t sense_len, u_int32_t timeout)
7965{
7966	struct scsi_target_group *scsi_cmd;
7967
7968	cam_fill_csio(csio,
7969		      retries,
7970		      cbfcnp,
7971		      /*flags*/CAM_DIR_OUT,
7972		      tag_action,
7973		      /*data_ptr*/(u_int8_t *)buf,
7974		      /*dxfer_len*/alloc_len,
7975		      sense_len,
7976		      sizeof(*scsi_cmd),
7977		      timeout);
7978	scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
7979	bzero(scsi_cmd, sizeof(*scsi_cmd));
7980	scsi_cmd->opcode = MAINTENANCE_OUT;
7981	scsi_cmd->service_action = SET_TARGET_PORT_GROUPS;
7982	scsi_ulto4b(alloc_len, scsi_cmd->length);
7983}
7984
7985/*
7986 * Syncronize the media to the contents of the cache for
7987 * the given lba/count pair.  Specifying 0/0 means sync
7988 * the whole cache.
7989 */
7990void
7991scsi_synchronize_cache(struct ccb_scsiio *csio, u_int32_t retries,
7992		       void (*cbfcnp)(struct cam_periph *, union ccb *),
7993		       u_int8_t tag_action, u_int32_t begin_lba,
7994		       u_int16_t lb_count, u_int8_t sense_len,
7995		       u_int32_t timeout)
7996{
7997	struct scsi_sync_cache *scsi_cmd;
7998
7999	cam_fill_csio(csio,
8000		      retries,
8001		      cbfcnp,
8002		      /*flags*/CAM_DIR_NONE,
8003		      tag_action,
8004		      /*data_ptr*/NULL,
8005		      /*dxfer_len*/0,
8006		      sense_len,
8007		      sizeof(*scsi_cmd),
8008		      timeout);
8009
8010	scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes;
8011	bzero(scsi_cmd, sizeof(*scsi_cmd));
8012	scsi_cmd->opcode = SYNCHRONIZE_CACHE;
8013	scsi_ulto4b(begin_lba, scsi_cmd->begin_lba);
8014	scsi_ulto2b(lb_count, scsi_cmd->lb_count);
8015}
8016
8017void
8018scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries,
8019		void (*cbfcnp)(struct cam_periph *, union ccb *),
8020		u_int8_t tag_action, int readop, u_int8_t byte2,
8021		int minimum_cmd_size, u_int64_t lba, u_int32_t block_count,
8022		u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len,
8023		u_int32_t timeout)
8024{
8025	int read;
8026	u_int8_t cdb_len;
8027
8028	read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ;
8029
8030	/*
8031	 * Use the smallest possible command to perform the operation
8032	 * as some legacy hardware does not support the 10 byte commands.
8033	 * If any of the bits in byte2 is set, we have to go with a larger
8034	 * command.
8035	 */
8036	if ((minimum_cmd_size < 10)
8037	 && ((lba & 0x1fffff) == lba)
8038	 && ((block_count & 0xff) == block_count)
8039	 && (byte2 == 0)) {
8040		/*
8041		 * We can fit in a 6 byte cdb.
8042		 */
8043		struct scsi_rw_6 *scsi_cmd;
8044
8045		scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes;
8046		scsi_cmd->opcode = read ? READ_6 : WRITE_6;
8047		scsi_ulto3b(lba, scsi_cmd->addr);
8048		scsi_cmd->length = block_count & 0xff;
8049		scsi_cmd->control = 0;
8050		cdb_len = sizeof(*scsi_cmd);
8051
8052		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8053			  ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0],
8054			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8055			   scsi_cmd->length, dxfer_len));
8056	} else if ((minimum_cmd_size < 12)
8057		&& ((block_count & 0xffff) == block_count)
8058		&& ((lba & 0xffffffff) == lba)) {
8059		/*
8060		 * Need a 10 byte cdb.
8061		 */
8062		struct scsi_rw_10 *scsi_cmd;
8063
8064		scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes;
8065		scsi_cmd->opcode = read ? READ_10 : WRITE_10;
8066		scsi_cmd->byte2 = byte2;
8067		scsi_ulto4b(lba, scsi_cmd->addr);
8068		scsi_cmd->reserved = 0;
8069		scsi_ulto2b(block_count, scsi_cmd->length);
8070		scsi_cmd->control = 0;
8071		cdb_len = sizeof(*scsi_cmd);
8072
8073		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8074			  ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
8075			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8076			   scsi_cmd->addr[3], scsi_cmd->length[0],
8077			   scsi_cmd->length[1], dxfer_len));
8078	} else if ((minimum_cmd_size < 16)
8079		&& ((block_count & 0xffffffff) == block_count)
8080		&& ((lba & 0xffffffff) == lba)) {
8081		/*
8082		 * The block count is too big for a 10 byte CDB, use a 12
8083		 * byte CDB.
8084		 */
8085		struct scsi_rw_12 *scsi_cmd;
8086
8087		scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes;
8088		scsi_cmd->opcode = read ? READ_12 : WRITE_12;
8089		scsi_cmd->byte2 = byte2;
8090		scsi_ulto4b(lba, scsi_cmd->addr);
8091		scsi_cmd->reserved = 0;
8092		scsi_ulto4b(block_count, scsi_cmd->length);
8093		scsi_cmd->control = 0;
8094		cdb_len = sizeof(*scsi_cmd);
8095
8096		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8097			  ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0],
8098			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8099			   scsi_cmd->addr[3], scsi_cmd->length[0],
8100			   scsi_cmd->length[1], scsi_cmd->length[2],
8101			   scsi_cmd->length[3], dxfer_len));
8102	} else {
8103		/*
8104		 * 16 byte CDB.  We'll only get here if the LBA is larger
8105		 * than 2^32, or if the user asks for a 16 byte command.
8106		 */
8107		struct scsi_rw_16 *scsi_cmd;
8108
8109		scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes;
8110		scsi_cmd->opcode = read ? READ_16 : WRITE_16;
8111		scsi_cmd->byte2 = byte2;
8112		scsi_u64to8b(lba, scsi_cmd->addr);
8113		scsi_cmd->reserved = 0;
8114		scsi_ulto4b(block_count, scsi_cmd->length);
8115		scsi_cmd->control = 0;
8116		cdb_len = sizeof(*scsi_cmd);
8117	}
8118	cam_fill_csio(csio,
8119		      retries,
8120		      cbfcnp,
8121		      (read ? CAM_DIR_IN : CAM_DIR_OUT) |
8122		      ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0),
8123		      tag_action,
8124		      data_ptr,
8125		      dxfer_len,
8126		      sense_len,
8127		      cdb_len,
8128		      timeout);
8129}
8130
8131void
8132scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries,
8133		void (*cbfcnp)(struct cam_periph *, union ccb *),
8134		u_int8_t tag_action, u_int8_t byte2,
8135		int minimum_cmd_size, u_int64_t lba, u_int32_t block_count,
8136		u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len,
8137		u_int32_t timeout)
8138{
8139	u_int8_t cdb_len;
8140	if ((minimum_cmd_size < 16) &&
8141	    ((block_count & 0xffff) == block_count) &&
8142	    ((lba & 0xffffffff) == lba)) {
8143		/*
8144		 * Need a 10 byte cdb.
8145		 */
8146		struct scsi_write_same_10 *scsi_cmd;
8147
8148		scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes;
8149		scsi_cmd->opcode = WRITE_SAME_10;
8150		scsi_cmd->byte2 = byte2;
8151		scsi_ulto4b(lba, scsi_cmd->addr);
8152		scsi_cmd->group = 0;
8153		scsi_ulto2b(block_count, scsi_cmd->length);
8154		scsi_cmd->control = 0;
8155		cdb_len = sizeof(*scsi_cmd);
8156
8157		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8158			  ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
8159			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8160			   scsi_cmd->addr[3], scsi_cmd->length[0],
8161			   scsi_cmd->length[1], dxfer_len));
8162	} else {
8163		/*
8164		 * 16 byte CDB.  We'll only get here if the LBA is larger
8165		 * than 2^32, or if the user asks for a 16 byte command.
8166		 */
8167		struct scsi_write_same_16 *scsi_cmd;
8168
8169		scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes;
8170		scsi_cmd->opcode = WRITE_SAME_16;
8171		scsi_cmd->byte2 = byte2;
8172		scsi_u64to8b(lba, scsi_cmd->addr);
8173		scsi_ulto4b(block_count, scsi_cmd->length);
8174		scsi_cmd->group = 0;
8175		scsi_cmd->control = 0;
8176		cdb_len = sizeof(*scsi_cmd);
8177
8178		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8179			  ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n",
8180			   scsi_cmd->addr[0], scsi_cmd->addr[1],
8181			   scsi_cmd->addr[2], scsi_cmd->addr[3],
8182			   scsi_cmd->addr[4], scsi_cmd->addr[5],
8183			   scsi_cmd->addr[6], scsi_cmd->addr[7],
8184			   scsi_cmd->length[0], scsi_cmd->length[1],
8185			   scsi_cmd->length[2], scsi_cmd->length[3],
8186			   dxfer_len));
8187	}
8188	cam_fill_csio(csio,
8189		      retries,
8190		      cbfcnp,
8191		      /*flags*/CAM_DIR_OUT,
8192		      tag_action,
8193		      data_ptr,
8194		      dxfer_len,
8195		      sense_len,
8196		      cdb_len,
8197		      timeout);
8198}
8199
8200void
8201scsi_ata_identify(struct ccb_scsiio *csio, u_int32_t retries,
8202		  void (*cbfcnp)(struct cam_periph *, union ccb *),
8203		  u_int8_t tag_action, u_int8_t *data_ptr,
8204		  u_int16_t dxfer_len, u_int8_t sense_len,
8205		  u_int32_t timeout)
8206{
8207	scsi_ata_pass_16(csio,
8208			 retries,
8209			 cbfcnp,
8210			 /*flags*/CAM_DIR_IN,
8211			 tag_action,
8212			 /*protocol*/AP_PROTO_PIO_IN,
8213			 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV|
8214				AP_FLAG_BYT_BLOK_BYTES|AP_FLAG_TLEN_SECT_CNT,
8215			 /*features*/0,
8216			 /*sector_count*/dxfer_len,
8217			 /*lba*/0,
8218			 /*command*/ATA_ATA_IDENTIFY,
8219			 /*control*/0,
8220			 data_ptr,
8221			 dxfer_len,
8222			 sense_len,
8223			 timeout);
8224}
8225
8226void
8227scsi_ata_trim(struct ccb_scsiio *csio, u_int32_t retries,
8228	      void (*cbfcnp)(struct cam_periph *, union ccb *),
8229	      u_int8_t tag_action, u_int16_t block_count,
8230	      u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len,
8231	      u_int32_t timeout)
8232{
8233	scsi_ata_pass_16(csio,
8234			 retries,
8235			 cbfcnp,
8236			 /*flags*/CAM_DIR_OUT,
8237			 tag_action,
8238			 /*protocol*/AP_EXTEND|AP_PROTO_DMA,
8239			 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS,
8240			 /*features*/ATA_DSM_TRIM,
8241			 /*sector_count*/block_count,
8242			 /*lba*/0,
8243			 /*command*/ATA_DATA_SET_MANAGEMENT,
8244			 /*control*/0,
8245			 data_ptr,
8246			 dxfer_len,
8247			 sense_len,
8248			 timeout);
8249}
8250
8251void
8252scsi_ata_pass_16(struct ccb_scsiio *csio, u_int32_t retries,
8253		 void (*cbfcnp)(struct cam_periph *, union ccb *),
8254		 u_int32_t flags, u_int8_t tag_action,
8255		 u_int8_t protocol, u_int8_t ata_flags, u_int16_t features,
8256		 u_int16_t sector_count, uint64_t lba, u_int8_t command,
8257		 u_int8_t control, u_int8_t *data_ptr, u_int16_t dxfer_len,
8258		 u_int8_t sense_len, u_int32_t timeout)
8259{
8260	struct ata_pass_16 *ata_cmd;
8261
8262	ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes;
8263	ata_cmd->opcode = ATA_PASS_16;
8264	ata_cmd->protocol = protocol;
8265	ata_cmd->flags = ata_flags;
8266	ata_cmd->features_ext = features >> 8;
8267	ata_cmd->features = features;
8268	ata_cmd->sector_count_ext = sector_count >> 8;
8269	ata_cmd->sector_count = sector_count;
8270	ata_cmd->lba_low = lba;
8271	ata_cmd->lba_mid = lba >> 8;
8272	ata_cmd->lba_high = lba >> 16;
8273	ata_cmd->device = ATA_DEV_LBA;
8274	if (protocol & AP_EXTEND) {
8275		ata_cmd->lba_low_ext = lba >> 24;
8276		ata_cmd->lba_mid_ext = lba >> 32;
8277		ata_cmd->lba_high_ext = lba >> 40;
8278	} else
8279		ata_cmd->device |= (lba >> 24) & 0x0f;
8280	ata_cmd->command = command;
8281	ata_cmd->control = control;
8282
8283	cam_fill_csio(csio,
8284		      retries,
8285		      cbfcnp,
8286		      flags,
8287		      tag_action,
8288		      data_ptr,
8289		      dxfer_len,
8290		      sense_len,
8291		      sizeof(*ata_cmd),
8292		      timeout);
8293}
8294
8295void
8296scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries,
8297	   void (*cbfcnp)(struct cam_periph *, union ccb *),
8298	   u_int8_t tag_action, u_int8_t byte2,
8299	   u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len,
8300	   u_int32_t timeout)
8301{
8302	struct scsi_unmap *scsi_cmd;
8303
8304	scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes;
8305	scsi_cmd->opcode = UNMAP;
8306	scsi_cmd->byte2 = byte2;
8307	scsi_ulto4b(0, scsi_cmd->reserved);
8308	scsi_cmd->group = 0;
8309	scsi_ulto2b(dxfer_len, scsi_cmd->length);
8310	scsi_cmd->control = 0;
8311
8312	cam_fill_csio(csio,
8313		      retries,
8314		      cbfcnp,
8315		      /*flags*/CAM_DIR_OUT,
8316		      tag_action,
8317		      data_ptr,
8318		      dxfer_len,
8319		      sense_len,
8320		      sizeof(*scsi_cmd),
8321		      timeout);
8322}
8323
8324void
8325scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries,
8326				void (*cbfcnp)(struct cam_periph *, union ccb*),
8327				uint8_t tag_action, int pcv, uint8_t page_code,
8328				uint8_t *data_ptr, uint16_t allocation_length,
8329				uint8_t sense_len, uint32_t timeout)
8330{
8331	struct scsi_receive_diag *scsi_cmd;
8332
8333	scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes;
8334	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8335	scsi_cmd->opcode = RECEIVE_DIAGNOSTIC;
8336	if (pcv) {
8337		scsi_cmd->byte2 |= SRD_PCV;
8338		scsi_cmd->page_code = page_code;
8339	}
8340	scsi_ulto2b(allocation_length, scsi_cmd->length);
8341
8342	cam_fill_csio(csio,
8343		      retries,
8344		      cbfcnp,
8345		      /*flags*/CAM_DIR_IN,
8346		      tag_action,
8347		      data_ptr,
8348		      allocation_length,
8349		      sense_len,
8350		      sizeof(*scsi_cmd),
8351		      timeout);
8352}
8353
8354void
8355scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries,
8356		     void (*cbfcnp)(struct cam_periph *, union ccb *),
8357		     uint8_t tag_action, int unit_offline, int device_offline,
8358		     int self_test, int page_format, int self_test_code,
8359		     uint8_t *data_ptr, uint16_t param_list_length,
8360		     uint8_t sense_len, uint32_t timeout)
8361{
8362	struct scsi_send_diag *scsi_cmd;
8363
8364	scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes;
8365	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8366	scsi_cmd->opcode = SEND_DIAGNOSTIC;
8367
8368	/*
8369	 * The default self-test mode control and specific test
8370	 * control are mutually exclusive.
8371	 */
8372	if (self_test)
8373		self_test_code = SSD_SELF_TEST_CODE_NONE;
8374
8375	scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT)
8376			 & SSD_SELF_TEST_CODE_MASK)
8377			| (unit_offline   ? SSD_UNITOFFL : 0)
8378			| (device_offline ? SSD_DEVOFFL  : 0)
8379			| (self_test      ? SSD_SELFTEST : 0)
8380			| (page_format    ? SSD_PF       : 0);
8381	scsi_ulto2b(param_list_length, scsi_cmd->length);
8382
8383	cam_fill_csio(csio,
8384		      retries,
8385		      cbfcnp,
8386		      /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
8387		      tag_action,
8388		      data_ptr,
8389		      param_list_length,
8390		      sense_len,
8391		      sizeof(*scsi_cmd),
8392		      timeout);
8393}
8394
8395void
8396scsi_read_buffer(struct ccb_scsiio *csio, u_int32_t retries,
8397			void (*cbfcnp)(struct cam_periph *, union ccb*),
8398			uint8_t tag_action, int mode,
8399			uint8_t buffer_id, u_int32_t offset,
8400			uint8_t *data_ptr, uint32_t allocation_length,
8401			uint8_t sense_len, uint32_t timeout)
8402{
8403	struct scsi_read_buffer *scsi_cmd;
8404
8405	scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes;
8406	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8407	scsi_cmd->opcode = READ_BUFFER;
8408	scsi_cmd->byte2 = mode;
8409	scsi_cmd->buffer_id = buffer_id;
8410	scsi_ulto3b(offset, scsi_cmd->offset);
8411	scsi_ulto3b(allocation_length, scsi_cmd->length);
8412
8413	cam_fill_csio(csio,
8414		      retries,
8415		      cbfcnp,
8416		      /*flags*/CAM_DIR_IN,
8417		      tag_action,
8418		      data_ptr,
8419		      allocation_length,
8420		      sense_len,
8421		      sizeof(*scsi_cmd),
8422		      timeout);
8423}
8424
8425void
8426scsi_write_buffer(struct ccb_scsiio *csio, u_int32_t retries,
8427			void (*cbfcnp)(struct cam_periph *, union ccb *),
8428			uint8_t tag_action, int mode,
8429			uint8_t buffer_id, u_int32_t offset,
8430			uint8_t *data_ptr, uint32_t param_list_length,
8431			uint8_t sense_len, uint32_t timeout)
8432{
8433	struct scsi_write_buffer *scsi_cmd;
8434
8435	scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes;
8436	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8437	scsi_cmd->opcode = WRITE_BUFFER;
8438	scsi_cmd->byte2 = mode;
8439	scsi_cmd->buffer_id = buffer_id;
8440	scsi_ulto3b(offset, scsi_cmd->offset);
8441	scsi_ulto3b(param_list_length, scsi_cmd->length);
8442
8443	cam_fill_csio(csio,
8444		      retries,
8445		      cbfcnp,
8446		      /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
8447		      tag_action,
8448		      data_ptr,
8449		      param_list_length,
8450		      sense_len,
8451		      sizeof(*scsi_cmd),
8452		      timeout);
8453}
8454
8455void
8456scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries,
8457		void (*cbfcnp)(struct cam_periph *, union ccb *),
8458		u_int8_t tag_action, int start, int load_eject,
8459		int immediate, u_int8_t sense_len, u_int32_t timeout)
8460{
8461	struct scsi_start_stop_unit *scsi_cmd;
8462	int extra_flags = 0;
8463
8464	scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes;
8465	bzero(scsi_cmd, sizeof(*scsi_cmd));
8466	scsi_cmd->opcode = START_STOP_UNIT;
8467	if (start != 0) {
8468		scsi_cmd->how |= SSS_START;
8469		/* it takes a lot of power to start a drive */
8470		extra_flags |= CAM_HIGH_POWER;
8471	}
8472	if (load_eject != 0)
8473		scsi_cmd->how |= SSS_LOEJ;
8474	if (immediate != 0)
8475		scsi_cmd->byte2 |= SSS_IMMED;
8476
8477	cam_fill_csio(csio,
8478		      retries,
8479		      cbfcnp,
8480		      /*flags*/CAM_DIR_NONE | extra_flags,
8481		      tag_action,
8482		      /*data_ptr*/NULL,
8483		      /*dxfer_len*/0,
8484		      sense_len,
8485		      sizeof(*scsi_cmd),
8486		      timeout);
8487}
8488
8489void
8490scsi_read_attribute(struct ccb_scsiio *csio, u_int32_t retries,
8491		    void (*cbfcnp)(struct cam_periph *, union ccb *),
8492		    u_int8_t tag_action, u_int8_t service_action,
8493		    uint32_t element, u_int8_t elem_type, int logical_volume,
8494		    int partition, u_int32_t first_attribute, int cache,
8495		    u_int8_t *data_ptr, u_int32_t length, int sense_len,
8496		    u_int32_t timeout)
8497{
8498	struct scsi_read_attribute *scsi_cmd;
8499
8500	scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes;
8501	bzero(scsi_cmd, sizeof(*scsi_cmd));
8502
8503	scsi_cmd->opcode = READ_ATTRIBUTE;
8504	scsi_cmd->service_action = service_action;
8505	scsi_ulto2b(element, scsi_cmd->element);
8506	scsi_cmd->elem_type = elem_type;
8507	scsi_cmd->logical_volume = logical_volume;
8508	scsi_cmd->partition = partition;
8509	scsi_ulto2b(first_attribute, scsi_cmd->first_attribute);
8510	scsi_ulto4b(length, scsi_cmd->length);
8511	if (cache != 0)
8512		scsi_cmd->cache |= SRA_CACHE;
8513
8514	cam_fill_csio(csio,
8515		      retries,
8516		      cbfcnp,
8517		      /*flags*/CAM_DIR_IN,
8518		      tag_action,
8519		      /*data_ptr*/data_ptr,
8520		      /*dxfer_len*/length,
8521		      sense_len,
8522		      sizeof(*scsi_cmd),
8523		      timeout);
8524}
8525
8526void
8527scsi_write_attribute(struct ccb_scsiio *csio, u_int32_t retries,
8528		    void (*cbfcnp)(struct cam_periph *, union ccb *),
8529		    u_int8_t tag_action, uint32_t element, int logical_volume,
8530		    int partition, int wtc, u_int8_t *data_ptr,
8531		    u_int32_t length, int sense_len, u_int32_t timeout)
8532{
8533	struct scsi_write_attribute *scsi_cmd;
8534
8535	scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes;
8536	bzero(scsi_cmd, sizeof(*scsi_cmd));
8537
8538	scsi_cmd->opcode = WRITE_ATTRIBUTE;
8539	if (wtc != 0)
8540		scsi_cmd->byte2 = SWA_WTC;
8541	scsi_ulto3b(element, scsi_cmd->element);
8542	scsi_cmd->logical_volume = logical_volume;
8543	scsi_cmd->partition = partition;
8544	scsi_ulto4b(length, scsi_cmd->length);
8545
8546	cam_fill_csio(csio,
8547		      retries,
8548		      cbfcnp,
8549		      /*flags*/CAM_DIR_OUT,
8550		      tag_action,
8551		      /*data_ptr*/data_ptr,
8552		      /*dxfer_len*/length,
8553		      sense_len,
8554		      sizeof(*scsi_cmd),
8555		      timeout);
8556}
8557
8558void
8559scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries,
8560			   void (*cbfcnp)(struct cam_periph *, union ccb *),
8561			   uint8_t tag_action, int service_action,
8562			   uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
8563			   int timeout)
8564{
8565	struct scsi_per_res_in *scsi_cmd;
8566
8567	scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes;
8568	bzero(scsi_cmd, sizeof(*scsi_cmd));
8569
8570	scsi_cmd->opcode = PERSISTENT_RES_IN;
8571	scsi_cmd->action = service_action;
8572	scsi_ulto2b(dxfer_len, scsi_cmd->length);
8573
8574	cam_fill_csio(csio,
8575		      retries,
8576		      cbfcnp,
8577		      /*flags*/CAM_DIR_IN,
8578		      tag_action,
8579		      data_ptr,
8580		      dxfer_len,
8581		      sense_len,
8582		      sizeof(*scsi_cmd),
8583		      timeout);
8584}
8585
8586void
8587scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries,
8588			    void (*cbfcnp)(struct cam_periph *, union ccb *),
8589			    uint8_t tag_action, int service_action,
8590			    int scope, int res_type, uint8_t *data_ptr,
8591			    uint32_t dxfer_len, int sense_len, int timeout)
8592{
8593	struct scsi_per_res_out *scsi_cmd;
8594
8595	scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes;
8596	bzero(scsi_cmd, sizeof(*scsi_cmd));
8597
8598	scsi_cmd->opcode = PERSISTENT_RES_OUT;
8599	scsi_cmd->action = service_action;
8600	scsi_cmd->scope_type = scope | res_type;
8601	scsi_ulto4b(dxfer_len, scsi_cmd->length);
8602
8603	cam_fill_csio(csio,
8604		      retries,
8605		      cbfcnp,
8606		      /*flags*/CAM_DIR_OUT,
8607		      tag_action,
8608		      /*data_ptr*/data_ptr,
8609		      /*dxfer_len*/dxfer_len,
8610		      sense_len,
8611		      sizeof(*scsi_cmd),
8612		      timeout);
8613}
8614
8615void
8616scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries,
8617			  void (*cbfcnp)(struct cam_periph *, union ccb *),
8618			  uint8_t tag_action, uint32_t security_protocol,
8619			  uint32_t security_protocol_specific, int byte4,
8620			  uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
8621			  int timeout)
8622{
8623	struct scsi_security_protocol_in *scsi_cmd;
8624
8625	scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes;
8626	bzero(scsi_cmd, sizeof(*scsi_cmd));
8627
8628	scsi_cmd->opcode = SECURITY_PROTOCOL_IN;
8629
8630	scsi_cmd->security_protocol = security_protocol;
8631	scsi_ulto2b(security_protocol_specific,
8632		    scsi_cmd->security_protocol_specific);
8633	scsi_cmd->byte4 = byte4;
8634	scsi_ulto4b(dxfer_len, scsi_cmd->length);
8635
8636	cam_fill_csio(csio,
8637		      retries,
8638		      cbfcnp,
8639		      /*flags*/CAM_DIR_IN,
8640		      tag_action,
8641		      data_ptr,
8642		      dxfer_len,
8643		      sense_len,
8644		      sizeof(*scsi_cmd),
8645		      timeout);
8646}
8647
8648void
8649scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries,
8650			   void (*cbfcnp)(struct cam_periph *, union ccb *),
8651			   uint8_t tag_action, uint32_t security_protocol,
8652			   uint32_t security_protocol_specific, int byte4,
8653			   uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
8654			   int timeout)
8655{
8656	struct scsi_security_protocol_out *scsi_cmd;
8657
8658	scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes;
8659	bzero(scsi_cmd, sizeof(*scsi_cmd));
8660
8661	scsi_cmd->opcode = SECURITY_PROTOCOL_OUT;
8662
8663	scsi_cmd->security_protocol = security_protocol;
8664	scsi_ulto2b(security_protocol_specific,
8665		    scsi_cmd->security_protocol_specific);
8666	scsi_cmd->byte4 = byte4;
8667	scsi_ulto4b(dxfer_len, scsi_cmd->length);
8668
8669	cam_fill_csio(csio,
8670		      retries,
8671		      cbfcnp,
8672		      /*flags*/CAM_DIR_OUT,
8673		      tag_action,
8674		      data_ptr,
8675		      dxfer_len,
8676		      sense_len,
8677		      sizeof(*scsi_cmd),
8678		      timeout);
8679}
8680
8681void
8682scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries,
8683			      void (*cbfcnp)(struct cam_periph *, union ccb *),
8684			      uint8_t tag_action, int options, int req_opcode,
8685			      int req_service_action, uint8_t *data_ptr,
8686			      uint32_t dxfer_len, int sense_len, int timeout)
8687{
8688	struct scsi_report_supported_opcodes *scsi_cmd;
8689
8690	scsi_cmd = (struct scsi_report_supported_opcodes *)
8691	    &csio->cdb_io.cdb_bytes;
8692	bzero(scsi_cmd, sizeof(*scsi_cmd));
8693
8694	scsi_cmd->opcode = MAINTENANCE_IN;
8695	scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES;
8696	scsi_cmd->options = options;
8697	scsi_cmd->requested_opcode = req_opcode;
8698	scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action);
8699	scsi_ulto4b(dxfer_len, scsi_cmd->length);
8700
8701	cam_fill_csio(csio,
8702		      retries,
8703		      cbfcnp,
8704		      /*flags*/CAM_DIR_IN,
8705		      tag_action,
8706		      data_ptr,
8707		      dxfer_len,
8708		      sense_len,
8709		      sizeof(*scsi_cmd),
8710		      timeout);
8711}
8712
8713/*
8714 * Try make as good a match as possible with
8715 * available sub drivers
8716 */
8717int
8718scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
8719{
8720	struct scsi_inquiry_pattern *entry;
8721	struct scsi_inquiry_data *inq;
8722
8723	entry = (struct scsi_inquiry_pattern *)table_entry;
8724	inq = (struct scsi_inquiry_data *)inqbuffer;
8725
8726	if (((SID_TYPE(inq) == entry->type)
8727	  || (entry->type == T_ANY))
8728	 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
8729				   : entry->media_type & SIP_MEDIA_FIXED)
8730	 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
8731	 && (cam_strmatch(inq->product, entry->product,
8732			  sizeof(inq->product)) == 0)
8733	 && (cam_strmatch(inq->revision, entry->revision,
8734			  sizeof(inq->revision)) == 0)) {
8735		return (0);
8736	}
8737        return (-1);
8738}
8739
8740/*
8741 * Try make as good a match as possible with
8742 * available sub drivers
8743 */
8744int
8745scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
8746{
8747	struct scsi_static_inquiry_pattern *entry;
8748	struct scsi_inquiry_data *inq;
8749
8750	entry = (struct scsi_static_inquiry_pattern *)table_entry;
8751	inq = (struct scsi_inquiry_data *)inqbuffer;
8752
8753	if (((SID_TYPE(inq) == entry->type)
8754	  || (entry->type == T_ANY))
8755	 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
8756				   : entry->media_type & SIP_MEDIA_FIXED)
8757	 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
8758	 && (cam_strmatch(inq->product, entry->product,
8759			  sizeof(inq->product)) == 0)
8760	 && (cam_strmatch(inq->revision, entry->revision,
8761			  sizeof(inq->revision)) == 0)) {
8762		return (0);
8763	}
8764        return (-1);
8765}
8766
8767/**
8768 * Compare two buffers of vpd device descriptors for a match.
8769 *
8770 * \param lhs      Pointer to first buffer of descriptors to compare.
8771 * \param lhs_len  The length of the first buffer.
8772 * \param rhs	   Pointer to second buffer of descriptors to compare.
8773 * \param rhs_len  The length of the second buffer.
8774 *
8775 * \return  0 on a match, -1 otherwise.
8776 *
8777 * Treat rhs and lhs as arrays of vpd device id descriptors.  Walk lhs matching
8778 * against each element in rhs until all data are exhausted or we have found
8779 * a match.
8780 */
8781int
8782scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len)
8783{
8784	struct scsi_vpd_id_descriptor *lhs_id;
8785	struct scsi_vpd_id_descriptor *lhs_last;
8786	struct scsi_vpd_id_descriptor *rhs_last;
8787	uint8_t *lhs_end;
8788	uint8_t *rhs_end;
8789
8790	lhs_end = lhs + lhs_len;
8791	rhs_end = rhs + rhs_len;
8792
8793	/*
8794	 * rhs_last and lhs_last are the last posible position of a valid
8795	 * descriptor assuming it had a zero length identifier.  We use
8796	 * these variables to insure we can safely dereference the length
8797	 * field in our loop termination tests.
8798	 */
8799	lhs_last = (struct scsi_vpd_id_descriptor *)
8800	    (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
8801	rhs_last = (struct scsi_vpd_id_descriptor *)
8802	    (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
8803
8804	lhs_id = (struct scsi_vpd_id_descriptor *)lhs;
8805	while (lhs_id <= lhs_last
8806	    && (lhs_id->identifier + lhs_id->length) <= lhs_end) {
8807		struct scsi_vpd_id_descriptor *rhs_id;
8808
8809		rhs_id = (struct scsi_vpd_id_descriptor *)rhs;
8810		while (rhs_id <= rhs_last
8811		    && (rhs_id->identifier + rhs_id->length) <= rhs_end) {
8812
8813			if ((rhs_id->id_type &
8814			     (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) ==
8815			    (lhs_id->id_type &
8816			     (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK))
8817			 && rhs_id->length == lhs_id->length
8818			 && memcmp(rhs_id->identifier, lhs_id->identifier,
8819				   rhs_id->length) == 0)
8820				return (0);
8821
8822			rhs_id = (struct scsi_vpd_id_descriptor *)
8823			   (rhs_id->identifier + rhs_id->length);
8824		}
8825		lhs_id = (struct scsi_vpd_id_descriptor *)
8826		   (lhs_id->identifier + lhs_id->length);
8827	}
8828	return (-1);
8829}
8830
8831#ifdef _KERNEL
8832int
8833scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id)
8834{
8835	struct cam_ed *device;
8836	struct scsi_vpd_supported_pages *vpds;
8837	int i, num_pages;
8838
8839	device = periph->path->device;
8840	vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds;
8841
8842	if (vpds != NULL) {
8843		num_pages = device->supported_vpds_len -
8844		    SVPD_SUPPORTED_PAGES_HDR_LEN;
8845		for (i = 0; i < num_pages; i++) {
8846			if (vpds->page_list[i] == page_id)
8847				return (1);
8848		}
8849	}
8850
8851	return (0);
8852}
8853
8854static void
8855init_scsi_delay(void)
8856{
8857	int delay;
8858
8859	delay = SCSI_DELAY;
8860	TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay);
8861
8862	if (set_scsi_delay(delay) != 0) {
8863		printf("cam: invalid value for tunable kern.cam.scsi_delay\n");
8864		set_scsi_delay(SCSI_DELAY);
8865	}
8866}
8867SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL);
8868
8869static int
8870sysctl_scsi_delay(SYSCTL_HANDLER_ARGS)
8871{
8872	int error, delay;
8873
8874	delay = scsi_delay;
8875	error = sysctl_handle_int(oidp, &delay, 0, req);
8876	if (error != 0 || req->newptr == NULL)
8877		return (error);
8878	return (set_scsi_delay(delay));
8879}
8880SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay, CTLTYPE_INT|CTLFLAG_RW,
8881    0, 0, sysctl_scsi_delay, "I",
8882    "Delay to allow devices to settle after a SCSI bus reset (ms)");
8883
8884static int
8885set_scsi_delay(int delay)
8886{
8887	/*
8888         * If someone sets this to 0, we assume that they want the
8889         * minimum allowable bus settle delay.
8890	 */
8891	if (delay == 0) {
8892		printf("cam: using minimum scsi_delay (%dms)\n",
8893		    SCSI_MIN_DELAY);
8894		delay = SCSI_MIN_DELAY;
8895	}
8896	if (delay < SCSI_MIN_DELAY)
8897		return (EINVAL);
8898	scsi_delay = delay;
8899	return (0);
8900}
8901#endif /* _KERNEL */
8902