scsi_all.c revision 288692
1/*-
2 * Implementation of Utility functions for all SCSI device types.
3 *
4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions, and the following disclaimer,
13 *    without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 *    derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: stable/10/sys/cam/scsi/scsi_all.c 288692 2015-10-05 06:55:26Z mav $");
32
33#include <sys/param.h>
34#include <sys/types.h>
35#include <sys/stdint.h>
36
37#ifdef _KERNEL
38#include <opt_scsi.h>
39
40#include <sys/systm.h>
41#include <sys/libkern.h>
42#include <sys/kernel.h>
43#include <sys/lock.h>
44#include <sys/malloc.h>
45#include <sys/mutex.h>
46#include <sys/sysctl.h>
47#include <sys/ctype.h>
48#else
49#include <errno.h>
50#include <stdio.h>
51#include <stdlib.h>
52#include <string.h>
53#include <ctype.h>
54#endif
55
56#include <cam/cam.h>
57#include <cam/cam_ccb.h>
58#include <cam/cam_queue.h>
59#include <cam/cam_xpt.h>
60#include <cam/scsi/scsi_all.h>
61#include <sys/ata.h>
62#include <sys/sbuf.h>
63
64#ifdef _KERNEL
65#include <cam/cam_periph.h>
66#include <cam/cam_xpt_sim.h>
67#include <cam/cam_xpt_periph.h>
68#include <cam/cam_xpt_internal.h>
69#else
70#include <camlib.h>
71#include <stddef.h>
72
73#ifndef FALSE
74#define FALSE   0
75#endif /* FALSE */
76#ifndef TRUE
77#define TRUE    1
78#endif /* TRUE */
79#define ERESTART        -1              /* restart syscall */
80#define EJUSTRETURN     -2              /* don't modify regs, just return */
81#endif /* !_KERNEL */
82
83/*
84 * This is the default number of milliseconds we wait for devices to settle
85 * after a SCSI bus reset.
86 */
87#ifndef SCSI_DELAY
88#define SCSI_DELAY 2000
89#endif
90/*
91 * All devices need _some_ sort of bus settle delay, so we'll set it to
92 * a minimum value of 100ms. Note that this is pertinent only for SPI-
93 * not transport like Fibre Channel or iSCSI where 'delay' is completely
94 * meaningless.
95 */
96#ifndef SCSI_MIN_DELAY
97#define SCSI_MIN_DELAY 100
98#endif
99/*
100 * Make sure the user isn't using seconds instead of milliseconds.
101 */
102#if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0)
103#error "SCSI_DELAY is in milliseconds, not seconds!  Please use a larger value"
104#endif
105
106int scsi_delay;
107
108static int	ascentrycomp(const void *key, const void *member);
109static int	senseentrycomp(const void *key, const void *member);
110static void	fetchtableentries(int sense_key, int asc, int ascq,
111				  struct scsi_inquiry_data *,
112				  const struct sense_key_table_entry **,
113				  const struct asc_table_entry **);
114#ifdef _KERNEL
115static void	init_scsi_delay(void);
116static int	sysctl_scsi_delay(SYSCTL_HANDLER_ARGS);
117static int	set_scsi_delay(int delay);
118#endif
119
120#if !defined(SCSI_NO_OP_STRINGS)
121
122#define	D	(1 << T_DIRECT)
123#define	T	(1 << T_SEQUENTIAL)
124#define	L	(1 << T_PRINTER)
125#define	P	(1 << T_PROCESSOR)
126#define	W	(1 << T_WORM)
127#define	R	(1 << T_CDROM)
128#define	O	(1 << T_OPTICAL)
129#define	M	(1 << T_CHANGER)
130#define	A	(1 << T_STORARRAY)
131#define	E	(1 << T_ENCLOSURE)
132#define	B	(1 << T_RBC)
133#define	K	(1 << T_OCRW)
134#define	V	(1 << T_ADC)
135#define	F	(1 << T_OSD)
136#define	S	(1 << T_SCANNER)
137#define	C	(1 << T_COMM)
138
139#define ALL	(D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C)
140
141static struct op_table_entry plextor_cd_ops[] = {
142	{ 0xD8, R, "CD-DA READ" }
143};
144
145static struct scsi_op_quirk_entry scsi_op_quirk_table[] = {
146	{
147		/*
148		 * I believe that 0xD8 is the Plextor proprietary command
149		 * to read CD-DA data.  I'm not sure which Plextor CDROM
150		 * models support the command, though.  I know for sure
151		 * that the 4X, 8X, and 12X models do, and presumably the
152		 * 12-20X does.  I don't know about any earlier models,
153		 * though.  If anyone has any more complete information,
154		 * feel free to change this quirk entry.
155		 */
156		{T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"},
157		sizeof(plextor_cd_ops)/sizeof(struct op_table_entry),
158		plextor_cd_ops
159	}
160};
161
162static struct op_table_entry scsi_op_codes[] = {
163	/*
164	 * From: http://www.t10.org/lists/op-num.txt
165	 * Modifications by Kenneth Merry (ken@FreeBSD.ORG)
166	 *              and Jung-uk Kim (jkim@FreeBSD.org)
167	 *
168	 * Note:  order is important in this table, scsi_op_desc() currently
169	 * depends on the opcodes in the table being in order to save
170	 * search time.
171	 * Note:  scanner and comm. devices are carried over from the previous
172	 * version because they were removed in the latest spec.
173	 */
174	/* File: OP-NUM.TXT
175	 *
176	 * SCSI Operation Codes
177	 * Numeric Sorted Listing
178	 * as of  3/11/08
179	 *
180	 *     D - DIRECT ACCESS DEVICE (SBC-2)                device column key
181	 *     .T - SEQUENTIAL ACCESS DEVICE (SSC-2)           -----------------
182	 *     . L - PRINTER DEVICE (SSC)                      M = Mandatory
183	 *     .  P - PROCESSOR DEVICE (SPC)                   O = Optional
184	 *     .  .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec.
185	 *     .  . R - CD/DVE DEVICE (MMC-3)                  Z = Obsolete
186	 *     .  .  O - OPTICAL MEMORY DEVICE (SBC-2)
187	 *     .  .  .M - MEDIA CHANGER DEVICE (SMC-2)
188	 *     .  .  . A - STORAGE ARRAY DEVICE (SCC-2)
189	 *     .  .  . .E - ENCLOSURE SERVICES DEVICE (SES)
190	 *     .  .  .  .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
191	 *     .  .  .  . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
192	 *     .  .  .  .  V - AUTOMATION/DRIVE INTERFACE (ADC)
193	 *     .  .  .  .  .F - OBJECT-BASED STORAGE (OSD)
194	 * OP  DTLPWROMAEBKVF  Description
195	 * --  --------------  ---------------------------------------------- */
196	/* 00  MMMMMMMMMMMMMM  TEST UNIT READY */
197	{ 0x00,	ALL, "TEST UNIT READY" },
198	/* 01   M              REWIND */
199	{ 0x01,	T, "REWIND" },
200	/* 01  Z V ZZZZ        REZERO UNIT */
201	{ 0x01,	D | W | R | O | M, "REZERO UNIT" },
202	/* 02  VVVVVV V */
203	/* 03  MMMMMMMMMMOMMM  REQUEST SENSE */
204	{ 0x03,	ALL, "REQUEST SENSE" },
205	/* 04  M    OO         FORMAT UNIT */
206	{ 0x04,	D | R | O, "FORMAT UNIT" },
207	/* 04   O              FORMAT MEDIUM */
208	{ 0x04,	T, "FORMAT MEDIUM" },
209	/* 04    O             FORMAT */
210	{ 0x04,	L, "FORMAT" },
211	/* 05  VMVVVV V        READ BLOCK LIMITS */
212	{ 0x05,	T, "READ BLOCK LIMITS" },
213	/* 06  VVVVVV V */
214	/* 07  OVV O OV        REASSIGN BLOCKS */
215	{ 0x07,	D | W | O, "REASSIGN BLOCKS" },
216	/* 07         O        INITIALIZE ELEMENT STATUS */
217	{ 0x07,	M, "INITIALIZE ELEMENT STATUS" },
218	/* 08  MOV O OV        READ(6) */
219	{ 0x08,	D | T | W | O, "READ(6)" },
220	/* 08     O            RECEIVE */
221	{ 0x08,	P, "RECEIVE" },
222	/* 08                  GET MESSAGE(6) */
223	{ 0x08, C, "GET MESSAGE(6)" },
224	/* 09  VVVVVV V */
225	/* 0A  OO  O OV        WRITE(6) */
226	{ 0x0A,	D | T | W | O, "WRITE(6)" },
227	/* 0A     M            SEND(6) */
228	{ 0x0A,	P, "SEND(6)" },
229	/* 0A                  SEND MESSAGE(6) */
230	{ 0x0A, C, "SEND MESSAGE(6)" },
231	/* 0A    M             PRINT */
232	{ 0x0A,	L, "PRINT" },
233	/* 0B  Z   ZOZV        SEEK(6) */
234	{ 0x0B,	D | W | R | O, "SEEK(6)" },
235	/* 0B   O              SET CAPACITY */
236	{ 0x0B,	T, "SET CAPACITY" },
237	/* 0B    O             SLEW AND PRINT */
238	{ 0x0B,	L, "SLEW AND PRINT" },
239	/* 0C  VVVVVV V */
240	/* 0D  VVVVVV V */
241	/* 0E  VVVVVV V */
242	/* 0F  VOVVVV V        READ REVERSE(6) */
243	{ 0x0F,	T, "READ REVERSE(6)" },
244	/* 10  VM VVV          WRITE FILEMARKS(6) */
245	{ 0x10,	T, "WRITE FILEMARKS(6)" },
246	/* 10    O             SYNCHRONIZE BUFFER */
247	{ 0x10,	L, "SYNCHRONIZE BUFFER" },
248	/* 11  VMVVVV          SPACE(6) */
249	{ 0x11,	T, "SPACE(6)" },
250	/* 12  MMMMMMMMMMMMMM  INQUIRY */
251	{ 0x12,	ALL, "INQUIRY" },
252	/* 13  V VVVV */
253	/* 13   O              VERIFY(6) */
254	{ 0x13,	T, "VERIFY(6)" },
255	/* 14  VOOVVV          RECOVER BUFFERED DATA */
256	{ 0x14,	T | L, "RECOVER BUFFERED DATA" },
257	/* 15  OMO O OOOO OO   MODE SELECT(6) */
258	{ 0x15,	ALL & ~(P | R | B | F), "MODE SELECT(6)" },
259	/* 16  ZZMZO OOOZ O    RESERVE(6) */
260	{ 0x16,	ALL & ~(R | B | V | F | C), "RESERVE(6)" },
261	/* 16         Z        RESERVE ELEMENT(6) */
262	{ 0x16,	M, "RESERVE ELEMENT(6)" },
263	/* 17  ZZMZO OOOZ O    RELEASE(6) */
264	{ 0x17,	ALL & ~(R | B | V | F | C), "RELEASE(6)" },
265	/* 17         Z        RELEASE ELEMENT(6) */
266	{ 0x17,	M, "RELEASE ELEMENT(6)" },
267	/* 18  ZZZZOZO    Z    COPY */
268	{ 0x18,	D | T | L | P | W | R | O | K | S, "COPY" },
269	/* 19  VMVVVV          ERASE(6) */
270	{ 0x19,	T, "ERASE(6)" },
271	/* 1A  OMO O OOOO OO   MODE SENSE(6) */
272	{ 0x1A,	ALL & ~(P | R | B | F), "MODE SENSE(6)" },
273	/* 1B  O   OOO O MO O  START STOP UNIT */
274	{ 0x1B,	D | W | R | O | A | B | K | F, "START STOP UNIT" },
275	/* 1B   O          M   LOAD UNLOAD */
276	{ 0x1B,	T | V, "LOAD UNLOAD" },
277	/* 1B                  SCAN */
278	{ 0x1B, S, "SCAN" },
279	/* 1B    O             STOP PRINT */
280	{ 0x1B,	L, "STOP PRINT" },
281	/* 1B         O        OPEN/CLOSE IMPORT/EXPORT ELEMENT */
282	{ 0x1B,	M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" },
283	/* 1C  OOOOO OOOM OOO  RECEIVE DIAGNOSTIC RESULTS */
284	{ 0x1C,	ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" },
285	/* 1D  MMMMM MMOM MMM  SEND DIAGNOSTIC */
286	{ 0x1D,	ALL & ~(R | B), "SEND DIAGNOSTIC" },
287	/* 1E  OO  OOOO   O O  PREVENT ALLOW MEDIUM REMOVAL */
288	{ 0x1E,	D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" },
289	/* 1F */
290	/* 20  V   VVV    V */
291	/* 21  V   VVV    V */
292	/* 22  V   VVV    V */
293	/* 23  V   V V    V */
294	/* 23       O          READ FORMAT CAPACITIES */
295	{ 0x23,	R, "READ FORMAT CAPACITIES" },
296	/* 24  V   VV          SET WINDOW */
297	{ 0x24, S, "SET WINDOW" },
298	/* 25  M   M M   M     READ CAPACITY(10) */
299	{ 0x25,	D | W | O | B, "READ CAPACITY(10)" },
300	/* 25       O          READ CAPACITY */
301	{ 0x25,	R, "READ CAPACITY" },
302	/* 25             M    READ CARD CAPACITY */
303	{ 0x25,	K, "READ CARD CAPACITY" },
304	/* 25                  GET WINDOW */
305	{ 0x25, S, "GET WINDOW" },
306	/* 26  V   VV */
307	/* 27  V   VV */
308	/* 28  M   MOM   MM    READ(10) */
309	{ 0x28,	D | W | R | O | B | K | S, "READ(10)" },
310	/* 28                  GET MESSAGE(10) */
311	{ 0x28, C, "GET MESSAGE(10)" },
312	/* 29  V   VVO         READ GENERATION */
313	{ 0x29,	O, "READ GENERATION" },
314	/* 2A  O   MOM   MO    WRITE(10) */
315	{ 0x2A,	D | W | R | O | B | K, "WRITE(10)" },
316	/* 2A                  SEND(10) */
317	{ 0x2A, S, "SEND(10)" },
318	/* 2A                  SEND MESSAGE(10) */
319	{ 0x2A, C, "SEND MESSAGE(10)" },
320	/* 2B  Z   OOO    O    SEEK(10) */
321	{ 0x2B,	D | W | R | O | K, "SEEK(10)" },
322	/* 2B   O              LOCATE(10) */
323	{ 0x2B,	T, "LOCATE(10)" },
324	/* 2B         O        POSITION TO ELEMENT */
325	{ 0x2B,	M, "POSITION TO ELEMENT" },
326	/* 2C  V    OO         ERASE(10) */
327	{ 0x2C,	R | O, "ERASE(10)" },
328	/* 2D        O         READ UPDATED BLOCK */
329	{ 0x2D,	O, "READ UPDATED BLOCK" },
330	/* 2D  V */
331	/* 2E  O   OOO   MO    WRITE AND VERIFY(10) */
332	{ 0x2E,	D | W | R | O | B | K, "WRITE AND VERIFY(10)" },
333	/* 2F  O   OOO         VERIFY(10) */
334	{ 0x2F,	D | W | R | O, "VERIFY(10)" },
335	/* 30  Z   ZZZ         SEARCH DATA HIGH(10) */
336	{ 0x30,	D | W | R | O, "SEARCH DATA HIGH(10)" },
337	/* 31  Z   ZZZ         SEARCH DATA EQUAL(10) */
338	{ 0x31,	D | W | R | O, "SEARCH DATA EQUAL(10)" },
339	/* 31                  OBJECT POSITION */
340	{ 0x31, S, "OBJECT POSITION" },
341	/* 32  Z   ZZZ         SEARCH DATA LOW(10) */
342	{ 0x32,	D | W | R | O, "SEARCH DATA LOW(10)" },
343	/* 33  Z   OZO         SET LIMITS(10) */
344	{ 0x33,	D | W | R | O, "SET LIMITS(10)" },
345	/* 34  O   O O    O    PRE-FETCH(10) */
346	{ 0x34,	D | W | O | K, "PRE-FETCH(10)" },
347	/* 34   M              READ POSITION */
348	{ 0x34,	T, "READ POSITION" },
349	/* 34                  GET DATA BUFFER STATUS */
350	{ 0x34, S, "GET DATA BUFFER STATUS" },
351	/* 35  O   OOO   MO    SYNCHRONIZE CACHE(10) */
352	{ 0x35,	D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" },
353	/* 36  Z   O O    O    LOCK UNLOCK CACHE(10) */
354	{ 0x36,	D | W | O | K, "LOCK UNLOCK CACHE(10)" },
355	/* 37  O     O         READ DEFECT DATA(10) */
356	{ 0x37,	D | O, "READ DEFECT DATA(10)" },
357	/* 37         O        INITIALIZE ELEMENT STATUS WITH RANGE */
358	{ 0x37,	M, "INITIALIZE ELEMENT STATUS WITH RANGE" },
359	/* 38      O O    O    MEDIUM SCAN */
360	{ 0x38,	W | O | K, "MEDIUM SCAN" },
361	/* 39  ZZZZOZO    Z    COMPARE */
362	{ 0x39,	D | T | L | P | W | R | O | K | S, "COMPARE" },
363	/* 3A  ZZZZOZO    Z    COPY AND VERIFY */
364	{ 0x3A,	D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" },
365	/* 3B  OOOOOOOOOOMOOO  WRITE BUFFER */
366	{ 0x3B,	ALL, "WRITE BUFFER" },
367	/* 3C  OOOOOOOOOO OOO  READ BUFFER */
368	{ 0x3C,	ALL & ~(B), "READ BUFFER" },
369	/* 3D        O         UPDATE BLOCK */
370	{ 0x3D,	O, "UPDATE BLOCK" },
371	/* 3E  O   O O         READ LONG(10) */
372	{ 0x3E,	D | W | O, "READ LONG(10)" },
373	/* 3F  O   O O         WRITE LONG(10) */
374	{ 0x3F,	D | W | O, "WRITE LONG(10)" },
375	/* 40  ZZZZOZOZ        CHANGE DEFINITION */
376	{ 0x40,	D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" },
377	/* 41  O               WRITE SAME(10) */
378	{ 0x41,	D, "WRITE SAME(10)" },
379	/* 42       O          UNMAP */
380	{ 0x42,	D, "UNMAP" },
381	/* 42       O          READ SUB-CHANNEL */
382	{ 0x42,	R, "READ SUB-CHANNEL" },
383	/* 43       O          READ TOC/PMA/ATIP */
384	{ 0x43,	R, "READ TOC/PMA/ATIP" },
385	/* 44   M          M   REPORT DENSITY SUPPORT */
386	{ 0x44,	T | V, "REPORT DENSITY SUPPORT" },
387	/* 44                  READ HEADER */
388	/* 45       O          PLAY AUDIO(10) */
389	{ 0x45,	R, "PLAY AUDIO(10)" },
390	/* 46       M          GET CONFIGURATION */
391	{ 0x46,	R, "GET CONFIGURATION" },
392	/* 47       O          PLAY AUDIO MSF */
393	{ 0x47,	R, "PLAY AUDIO MSF" },
394	/* 48 */
395	/* 49 */
396	/* 4A       M          GET EVENT STATUS NOTIFICATION */
397	{ 0x4A,	R, "GET EVENT STATUS NOTIFICATION" },
398	/* 4B       O          PAUSE/RESUME */
399	{ 0x4B,	R, "PAUSE/RESUME" },
400	/* 4C  OOOOO OOOO OOO  LOG SELECT */
401	{ 0x4C,	ALL & ~(R | B), "LOG SELECT" },
402	/* 4D  OOOOO OOOO OMO  LOG SENSE */
403	{ 0x4D,	ALL & ~(R | B), "LOG SENSE" },
404	/* 4E       O          STOP PLAY/SCAN */
405	{ 0x4E,	R, "STOP PLAY/SCAN" },
406	/* 4F */
407	/* 50  O               XDWRITE(10) */
408	{ 0x50,	D, "XDWRITE(10)" },
409	/* 51  O               XPWRITE(10) */
410	{ 0x51,	D, "XPWRITE(10)" },
411	/* 51       O          READ DISC INFORMATION */
412	{ 0x51,	R, "READ DISC INFORMATION" },
413	/* 52  O               XDREAD(10) */
414	{ 0x52,	D, "XDREAD(10)" },
415	/* 52       O          READ TRACK INFORMATION */
416	{ 0x52,	R, "READ TRACK INFORMATION" },
417	/* 53       O          RESERVE TRACK */
418	{ 0x53,	R, "RESERVE TRACK" },
419	/* 54       O          SEND OPC INFORMATION */
420	{ 0x54,	R, "SEND OPC INFORMATION" },
421	/* 55  OOO OMOOOOMOMO  MODE SELECT(10) */
422	{ 0x55,	ALL & ~(P), "MODE SELECT(10)" },
423	/* 56  ZZMZO OOOZ      RESERVE(10) */
424	{ 0x56,	ALL & ~(R | B | K | V | F | C), "RESERVE(10)" },
425	/* 56         Z        RESERVE ELEMENT(10) */
426	{ 0x56,	M, "RESERVE ELEMENT(10)" },
427	/* 57  ZZMZO OOOZ      RELEASE(10) */
428	{ 0x57,	ALL & ~(R | B | K | V | F | C), "RELEASE(10)" },
429	/* 57         Z        RELEASE ELEMENT(10) */
430	{ 0x57,	M, "RELEASE ELEMENT(10)" },
431	/* 58       O          REPAIR TRACK */
432	{ 0x58,	R, "REPAIR TRACK" },
433	/* 59 */
434	/* 5A  OOO OMOOOOMOMO  MODE SENSE(10) */
435	{ 0x5A,	ALL & ~(P), "MODE SENSE(10)" },
436	/* 5B       O          CLOSE TRACK/SESSION */
437	{ 0x5B,	R, "CLOSE TRACK/SESSION" },
438	/* 5C       O          READ BUFFER CAPACITY */
439	{ 0x5C,	R, "READ BUFFER CAPACITY" },
440	/* 5D       O          SEND CUE SHEET */
441	{ 0x5D,	R, "SEND CUE SHEET" },
442	/* 5E  OOOOO OOOO   M  PERSISTENT RESERVE IN */
443	{ 0x5E,	ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" },
444	/* 5F  OOOOO OOOO   M  PERSISTENT RESERVE OUT */
445	{ 0x5F,	ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" },
446	/* 7E  OO   O OOOO O   extended CDB */
447	{ 0x7E,	D | T | R | M | A | E | B | V, "extended CDB" },
448	/* 7F  O            M  variable length CDB (more than 16 bytes) */
449	{ 0x7F,	D | F, "variable length CDB (more than 16 bytes)" },
450	/* 80  Z               XDWRITE EXTENDED(16) */
451	{ 0x80,	D, "XDWRITE EXTENDED(16)" },
452	/* 80   M              WRITE FILEMARKS(16) */
453	{ 0x80,	T, "WRITE FILEMARKS(16)" },
454	/* 81  Z               REBUILD(16) */
455	{ 0x81,	D, "REBUILD(16)" },
456	/* 81   O              READ REVERSE(16) */
457	{ 0x81,	T, "READ REVERSE(16)" },
458	/* 82  Z               REGENERATE(16) */
459	{ 0x82,	D, "REGENERATE(16)" },
460	/* 83  OOOOO O    OO   EXTENDED COPY */
461	{ 0x83,	D | T | L | P | W | O | K | V, "EXTENDED COPY" },
462	/* 84  OOOOO O    OO   RECEIVE COPY RESULTS */
463	{ 0x84,	D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" },
464	/* 85  O    O    O     ATA COMMAND PASS THROUGH(16) */
465	{ 0x85,	D | R | B, "ATA COMMAND PASS THROUGH(16)" },
466	/* 86  OO OO OOOOOOO   ACCESS CONTROL IN */
467	{ 0x86,	ALL & ~(L | R | F), "ACCESS CONTROL IN" },
468	/* 87  OO OO OOOOOOO   ACCESS CONTROL OUT */
469	{ 0x87,	ALL & ~(L | R | F), "ACCESS CONTROL OUT" },
470	/*
471	 * XXX READ(16)/WRITE(16) were not listed for CD/DVE in op-num.txt
472	 * but we had it since r1.40.  Do we really want them?
473	 */
474	/* 88  MM  O O   O     READ(16) */
475	{ 0x88,	D | T | W | O | B, "READ(16)" },
476	/* 89  O               COMPARE AND WRITE*/
477	{ 0x89,	D, "COMPARE AND WRITE" },
478	/* 8A  OM  O O   O     WRITE(16) */
479	{ 0x8A,	D | T | W | O | B, "WRITE(16)" },
480	/* 8B  O               ORWRITE */
481	{ 0x8B,	D, "ORWRITE" },
482	/* 8C  OO  O OO  O M   READ ATTRIBUTE */
483	{ 0x8C,	D | T | W | O | M | B | V, "READ ATTRIBUTE" },
484	/* 8D  OO  O OO  O O   WRITE ATTRIBUTE */
485	{ 0x8D,	D | T | W | O | M | B | V, "WRITE ATTRIBUTE" },
486	/* 8E  O   O O   O     WRITE AND VERIFY(16) */
487	{ 0x8E,	D | W | O | B, "WRITE AND VERIFY(16)" },
488	/* 8F  OO  O O   O     VERIFY(16) */
489	{ 0x8F,	D | T | W | O | B, "VERIFY(16)" },
490	/* 90  O   O O   O     PRE-FETCH(16) */
491	{ 0x90,	D | W | O | B, "PRE-FETCH(16)" },
492	/* 91  O   O O   O     SYNCHRONIZE CACHE(16) */
493	{ 0x91,	D | W | O | B, "SYNCHRONIZE CACHE(16)" },
494	/* 91   O              SPACE(16) */
495	{ 0x91,	T, "SPACE(16)" },
496	/* 92  Z   O O         LOCK UNLOCK CACHE(16) */
497	{ 0x92,	D | W | O, "LOCK UNLOCK CACHE(16)" },
498	/* 92   O              LOCATE(16) */
499	{ 0x92,	T, "LOCATE(16)" },
500	/* 93  O               WRITE SAME(16) */
501	{ 0x93,	D, "WRITE SAME(16)" },
502	/* 93   M              ERASE(16) */
503	{ 0x93,	T, "ERASE(16)" },
504	/* 94 [usage proposed by SCSI Socket Services project] */
505	/* 95 [usage proposed by SCSI Socket Services project] */
506	/* 96 [usage proposed by SCSI Socket Services project] */
507	/* 97 [usage proposed by SCSI Socket Services project] */
508	/* 98 */
509	/* 99 */
510	/* 9A */
511	/* 9B */
512	/* 9C */
513	/* 9D */
514	/* XXX KDM ALL for this?  op-num.txt defines it for none.. */
515	/* 9E                  SERVICE ACTION IN(16) */
516	{ 0x9E, ALL, "SERVICE ACTION IN(16)" },
517	/* XXX KDM ALL for this?  op-num.txt defines it for ADC.. */
518	/* 9F              M   SERVICE ACTION OUT(16) */
519	{ 0x9F,	ALL, "SERVICE ACTION OUT(16)" },
520	/* A0  MMOOO OMMM OMO  REPORT LUNS */
521	{ 0xA0,	ALL & ~(R | B), "REPORT LUNS" },
522	/* A1       O          BLANK */
523	{ 0xA1,	R, "BLANK" },
524	/* A1  O         O     ATA COMMAND PASS THROUGH(12) */
525	{ 0xA1,	D | B, "ATA COMMAND PASS THROUGH(12)" },
526	/* A2  OO   O      O   SECURITY PROTOCOL IN */
527	{ 0xA2,	D | T | R | V, "SECURITY PROTOCOL IN" },
528	/* A3  OOO O OOMOOOM   MAINTENANCE (IN) */
529	{ 0xA3,	ALL & ~(P | R | F), "MAINTENANCE (IN)" },
530	/* A3       O          SEND KEY */
531	{ 0xA3,	R, "SEND KEY" },
532	/* A4  OOO O OOOOOOO   MAINTENANCE (OUT) */
533	{ 0xA4,	ALL & ~(P | R | F), "MAINTENANCE (OUT)" },
534	/* A4       O          REPORT KEY */
535	{ 0xA4,	R, "REPORT KEY" },
536	/* A5   O  O OM        MOVE MEDIUM */
537	{ 0xA5,	T | W | O | M, "MOVE MEDIUM" },
538	/* A5       O          PLAY AUDIO(12) */
539	{ 0xA5,	R, "PLAY AUDIO(12)" },
540	/* A6         O        EXCHANGE MEDIUM */
541	{ 0xA6,	M, "EXCHANGE MEDIUM" },
542	/* A6       O          LOAD/UNLOAD C/DVD */
543	{ 0xA6,	R, "LOAD/UNLOAD C/DVD" },
544	/* A7  ZZ  O O         MOVE MEDIUM ATTACHED */
545	{ 0xA7,	D | T | W | O, "MOVE MEDIUM ATTACHED" },
546	/* A7       O          SET READ AHEAD */
547	{ 0xA7,	R, "SET READ AHEAD" },
548	/* A8  O   OOO         READ(12) */
549	{ 0xA8,	D | W | R | O, "READ(12)" },
550	/* A8                  GET MESSAGE(12) */
551	{ 0xA8, C, "GET MESSAGE(12)" },
552	/* A9              O   SERVICE ACTION OUT(12) */
553	{ 0xA9,	V, "SERVICE ACTION OUT(12)" },
554	/* AA  O   OOO         WRITE(12) */
555	{ 0xAA,	D | W | R | O, "WRITE(12)" },
556	/* AA                  SEND MESSAGE(12) */
557	{ 0xAA, C, "SEND MESSAGE(12)" },
558	/* AB       O      O   SERVICE ACTION IN(12) */
559	{ 0xAB,	R | V, "SERVICE ACTION IN(12)" },
560	/* AC        O         ERASE(12) */
561	{ 0xAC,	O, "ERASE(12)" },
562	/* AC       O          GET PERFORMANCE */
563	{ 0xAC,	R, "GET PERFORMANCE" },
564	/* AD       O          READ DVD STRUCTURE */
565	{ 0xAD,	R, "READ DVD STRUCTURE" },
566	/* AE  O   O O         WRITE AND VERIFY(12) */
567	{ 0xAE,	D | W | O, "WRITE AND VERIFY(12)" },
568	/* AF  O   OZO         VERIFY(12) */
569	{ 0xAF,	D | W | R | O, "VERIFY(12)" },
570	/* B0      ZZZ         SEARCH DATA HIGH(12) */
571	{ 0xB0,	W | R | O, "SEARCH DATA HIGH(12)" },
572	/* B1      ZZZ         SEARCH DATA EQUAL(12) */
573	{ 0xB1,	W | R | O, "SEARCH DATA EQUAL(12)" },
574	/* B2      ZZZ         SEARCH DATA LOW(12) */
575	{ 0xB2,	W | R | O, "SEARCH DATA LOW(12)" },
576	/* B3  Z   OZO         SET LIMITS(12) */
577	{ 0xB3,	D | W | R | O, "SET LIMITS(12)" },
578	/* B4  ZZ  OZO         READ ELEMENT STATUS ATTACHED */
579	{ 0xB4,	D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" },
580	/* B5  OO   O      O   SECURITY PROTOCOL OUT */
581	{ 0xB5,	D | T | R | V, "SECURITY PROTOCOL OUT" },
582	/* B5         O        REQUEST VOLUME ELEMENT ADDRESS */
583	{ 0xB5,	M, "REQUEST VOLUME ELEMENT ADDRESS" },
584	/* B6         O        SEND VOLUME TAG */
585	{ 0xB6,	M, "SEND VOLUME TAG" },
586	/* B6       O          SET STREAMING */
587	{ 0xB6,	R, "SET STREAMING" },
588	/* B7  O     O         READ DEFECT DATA(12) */
589	{ 0xB7,	D | O, "READ DEFECT DATA(12)" },
590	/* B8   O  OZOM        READ ELEMENT STATUS */
591	{ 0xB8,	T | W | R | O | M, "READ ELEMENT STATUS" },
592	/* B9       O          READ CD MSF */
593	{ 0xB9,	R, "READ CD MSF" },
594	/* BA  O   O OOMO      REDUNDANCY GROUP (IN) */
595	{ 0xBA,	D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" },
596	/* BA       O          SCAN */
597	{ 0xBA,	R, "SCAN" },
598	/* BB  O   O OOOO      REDUNDANCY GROUP (OUT) */
599	{ 0xBB,	D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" },
600	/* BB       O          SET CD SPEED */
601	{ 0xBB,	R, "SET CD SPEED" },
602	/* BC  O   O OOMO      SPARE (IN) */
603	{ 0xBC,	D | W | O | M | A | E, "SPARE (IN)" },
604	/* BD  O   O OOOO      SPARE (OUT) */
605	{ 0xBD,	D | W | O | M | A | E, "SPARE (OUT)" },
606	/* BD       O          MECHANISM STATUS */
607	{ 0xBD,	R, "MECHANISM STATUS" },
608	/* BE  O   O OOMO      VOLUME SET (IN) */
609	{ 0xBE,	D | W | O | M | A | E, "VOLUME SET (IN)" },
610	/* BE       O          READ CD */
611	{ 0xBE,	R, "READ CD" },
612	/* BF  O   O OOOO      VOLUME SET (OUT) */
613	{ 0xBF,	D | W | O | M | A | E, "VOLUME SET (OUT)" },
614	/* BF       O          SEND DVD STRUCTURE */
615	{ 0xBF,	R, "SEND DVD STRUCTURE" }
616};
617
618const char *
619scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data)
620{
621	caddr_t match;
622	int i, j;
623	u_int32_t opmask;
624	u_int16_t pd_type;
625	int       num_ops[2];
626	struct op_table_entry *table[2];
627	int num_tables;
628
629	/*
630	 * If we've got inquiry data, use it to determine what type of
631	 * device we're dealing with here.  Otherwise, assume direct
632	 * access.
633	 */
634	if (inq_data == NULL) {
635		pd_type = T_DIRECT;
636		match = NULL;
637	} else {
638		pd_type = SID_TYPE(inq_data);
639
640		match = cam_quirkmatch((caddr_t)inq_data,
641				       (caddr_t)scsi_op_quirk_table,
642				       sizeof(scsi_op_quirk_table)/
643				       sizeof(*scsi_op_quirk_table),
644				       sizeof(*scsi_op_quirk_table),
645				       scsi_inquiry_match);
646	}
647
648	if (match != NULL) {
649		table[0] = ((struct scsi_op_quirk_entry *)match)->op_table;
650		num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops;
651		table[1] = scsi_op_codes;
652		num_ops[1] = sizeof(scsi_op_codes)/sizeof(scsi_op_codes[0]);
653		num_tables = 2;
654	} else {
655		/*
656		 * If this is true, we have a vendor specific opcode that
657		 * wasn't covered in the quirk table.
658		 */
659		if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80)))
660			return("Vendor Specific Command");
661
662		table[0] = scsi_op_codes;
663		num_ops[0] = sizeof(scsi_op_codes)/sizeof(scsi_op_codes[0]);
664		num_tables = 1;
665	}
666
667	/* RBC is 'Simplified' Direct Access Device */
668	if (pd_type == T_RBC)
669		pd_type = T_DIRECT;
670
671	/* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */
672	if (pd_type == T_NODEVICE)
673		pd_type = T_DIRECT;
674
675	opmask = 1 << pd_type;
676
677	for (j = 0; j < num_tables; j++) {
678		for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){
679			if ((table[j][i].opcode == opcode)
680			 && ((table[j][i].opmask & opmask) != 0))
681				return(table[j][i].desc);
682		}
683	}
684
685	/*
686	 * If we can't find a match for the command in the table, we just
687	 * assume it's a vendor specifc command.
688	 */
689	return("Vendor Specific Command");
690
691}
692
693#else /* SCSI_NO_OP_STRINGS */
694
695const char *
696scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data)
697{
698	return("");
699}
700
701#endif
702
703
704#if !defined(SCSI_NO_SENSE_STRINGS)
705#define SST(asc, ascq, action, desc) \
706	asc, ascq, action, desc
707#else
708const char empty_string[] = "";
709
710#define SST(asc, ascq, action, desc) \
711	asc, ascq, action, empty_string
712#endif
713
714const struct sense_key_table_entry sense_key_table[] =
715{
716	{ SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" },
717	{ SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" },
718	{ SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" },
719	{ SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" },
720	{ SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" },
721	{ SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" },
722	{ SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" },
723	{ SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" },
724	{ SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" },
725	{ SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" },
726	{ SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" },
727	{ SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" },
728	{ SSD_KEY_EQUAL, SS_NOP, "EQUAL" },
729	{ SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" },
730	{ SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" },
731	{ SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" }
732};
733
734const int sense_key_table_size =
735    sizeof(sense_key_table)/sizeof(sense_key_table[0]);
736
737static struct asc_table_entry quantum_fireball_entries[] = {
738	{ SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
739	     "Logical unit not ready, initializing cmd. required") }
740};
741
742static struct asc_table_entry sony_mo_entries[] = {
743	{ SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
744	     "Logical unit not ready, cause not reportable") }
745};
746
747static struct asc_table_entry hgst_entries[] = {
748	{ SST(0x04, 0xF0, SS_RDEF,
749	    "Vendor Unique - Logical Unit Not Ready") },
750	{ SST(0x0A, 0x01, SS_RDEF,
751	    "Unrecovered Super Certification Log Write Error") },
752	{ SST(0x0A, 0x02, SS_RDEF,
753	    "Unrecovered Super Certification Log Read Error") },
754	{ SST(0x15, 0x03, SS_RDEF,
755	    "Unrecovered Sector Error") },
756	{ SST(0x3E, 0x04, SS_RDEF,
757	    "Unrecovered Self-Test Hard-Cache Test Fail") },
758	{ SST(0x3E, 0x05, SS_RDEF,
759	    "Unrecovered Self-Test OTF-Cache Fail") },
760	{ SST(0x40, 0x00, SS_RDEF,
761	    "Unrecovered SAT No Buffer Overflow Error") },
762	{ SST(0x40, 0x01, SS_RDEF,
763	    "Unrecovered SAT Buffer Overflow Error") },
764	{ SST(0x40, 0x02, SS_RDEF,
765	    "Unrecovered SAT No Buffer Overflow With ECS Fault") },
766	{ SST(0x40, 0x03, SS_RDEF,
767	    "Unrecovered SAT Buffer Overflow With ECS Fault") },
768	{ SST(0x40, 0x81, SS_RDEF,
769	    "DRAM Failure") },
770	{ SST(0x44, 0x0B, SS_RDEF,
771	    "Vendor Unique - Internal Target Failure") },
772	{ SST(0x44, 0xF2, SS_RDEF,
773	    "Vendor Unique - Internal Target Failure") },
774	{ SST(0x44, 0xF6, SS_RDEF,
775	    "Vendor Unique - Internal Target Failure") },
776	{ SST(0x44, 0xF9, SS_RDEF,
777	    "Vendor Unique - Internal Target Failure") },
778	{ SST(0x44, 0xFA, SS_RDEF,
779	    "Vendor Unique - Internal Target Failure") },
780	{ SST(0x5D, 0x22, SS_RDEF,
781	    "Extreme Over-Temperature Warning") },
782	{ SST(0x5D, 0x50, SS_RDEF,
783	    "Load/Unload cycle Count Warning") },
784	{ SST(0x81, 0x00, SS_RDEF,
785	    "Vendor Unique - Internal Logic Error") },
786	{ SST(0x85, 0x00, SS_RDEF,
787	    "Vendor Unique - Internal Key Seed Error") },
788};
789
790static struct asc_table_entry seagate_entries[] = {
791	{ SST(0x04, 0xF0, SS_RDEF,
792	    "Logical Unit Not Ready, super certify in Progress") },
793	{ SST(0x08, 0x86, SS_RDEF,
794	    "Write Fault Data Corruption") },
795	{ SST(0x09, 0x0D, SS_RDEF,
796	    "Tracking Failure") },
797	{ SST(0x09, 0x0E, SS_RDEF,
798	    "ETF Failure") },
799	{ SST(0x0B, 0x5D, SS_RDEF,
800	    "Pre-SMART Warning") },
801	{ SST(0x0B, 0x85, SS_RDEF,
802	    "5V Voltage Warning") },
803	{ SST(0x0B, 0x8C, SS_RDEF,
804	    "12V Voltage Warning") },
805	{ SST(0x0C, 0xFF, SS_RDEF,
806	    "Write Error - Too many error recovery revs") },
807	{ SST(0x11, 0xFF, SS_RDEF,
808	    "Unrecovered Read Error - Too many error recovery revs") },
809	{ SST(0x19, 0x0E, SS_RDEF,
810	    "Fewer than 1/2 defect list copies") },
811	{ SST(0x20, 0xF3, SS_RDEF,
812	    "Illegal CDB linked to skip mask cmd") },
813	{ SST(0x24, 0xF0, SS_RDEF,
814	    "Illegal byte in CDB, LBA not matching") },
815	{ SST(0x24, 0xF1, SS_RDEF,
816	    "Illegal byte in CDB, LEN not matching") },
817	{ SST(0x24, 0xF2, SS_RDEF,
818	    "Mask not matching transfer length") },
819	{ SST(0x24, 0xF3, SS_RDEF,
820	    "Drive formatted without plist") },
821	{ SST(0x26, 0x95, SS_RDEF,
822	    "Invalid Field Parameter - CAP File") },
823	{ SST(0x26, 0x96, SS_RDEF,
824	    "Invalid Field Parameter - RAP File") },
825	{ SST(0x26, 0x97, SS_RDEF,
826	    "Invalid Field Parameter - TMS Firmware Tag") },
827	{ SST(0x26, 0x98, SS_RDEF,
828	    "Invalid Field Parameter - Check Sum") },
829	{ SST(0x26, 0x99, SS_RDEF,
830	    "Invalid Field Parameter - Firmware Tag") },
831	{ SST(0x29, 0x08, SS_RDEF,
832	    "Write Log Dump data") },
833	{ SST(0x29, 0x09, SS_RDEF,
834	    "Write Log Dump data") },
835	{ SST(0x29, 0x0A, SS_RDEF,
836	    "Reserved disk space") },
837	{ SST(0x29, 0x0B, SS_RDEF,
838	    "SDBP") },
839	{ SST(0x29, 0x0C, SS_RDEF,
840	    "SDBP") },
841	{ SST(0x31, 0x91, SS_RDEF,
842	    "Format Corrupted World Wide Name (WWN) is Invalid") },
843	{ SST(0x32, 0x03, SS_RDEF,
844	    "Defect List - Length exceeds Command Allocated Length") },
845	{ SST(0x33, 0x00, SS_RDEF,
846	    "Flash not ready for access") },
847	{ SST(0x3F, 0x70, SS_RDEF,
848	    "Invalid RAP block") },
849	{ SST(0x3F, 0x71, SS_RDEF,
850	    "RAP/ETF mismatch") },
851	{ SST(0x3F, 0x90, SS_RDEF,
852	    "Invalid CAP block") },
853	{ SST(0x3F, 0x91, SS_RDEF,
854	    "World Wide Name (WWN) Mismatch") },
855	{ SST(0x40, 0x01, SS_RDEF,
856	    "DRAM Parity Error") },
857	{ SST(0x40, 0x02, SS_RDEF,
858	    "DRAM Parity Error") },
859	{ SST(0x42, 0x0A, SS_RDEF,
860	    "Loopback Test") },
861	{ SST(0x42, 0x0B, SS_RDEF,
862	    "Loopback Test") },
863	{ SST(0x44, 0xF2, SS_RDEF,
864	    "Compare error during data integrity check") },
865	{ SST(0x44, 0xF6, SS_RDEF,
866	    "Unrecoverable error during data integrity check") },
867	{ SST(0x47, 0x80, SS_RDEF,
868	    "Fibre Channel Sequence Error") },
869	{ SST(0x4E, 0x01, SS_RDEF,
870	    "Information Unit Too Short") },
871	{ SST(0x80, 0x00, SS_RDEF,
872	    "General Firmware Error / Command Timeout") },
873	{ SST(0x80, 0x01, SS_RDEF,
874	    "Command Timeout") },
875	{ SST(0x80, 0x02, SS_RDEF,
876	    "Command Timeout") },
877	{ SST(0x80, 0x80, SS_RDEF,
878	    "FC FIFO Error During Read Transfer") },
879	{ SST(0x80, 0x81, SS_RDEF,
880	    "FC FIFO Error During Write Transfer") },
881	{ SST(0x80, 0x82, SS_RDEF,
882	    "DISC FIFO Error During Read Transfer") },
883	{ SST(0x80, 0x83, SS_RDEF,
884	    "DISC FIFO Error During Write Transfer") },
885	{ SST(0x80, 0x84, SS_RDEF,
886	    "LBA Seeded LRC Error on Read") },
887	{ SST(0x80, 0x85, SS_RDEF,
888	    "LBA Seeded LRC Error on Write") },
889	{ SST(0x80, 0x86, SS_RDEF,
890	    "IOEDC Error on Read") },
891	{ SST(0x80, 0x87, SS_RDEF,
892	    "IOEDC Error on Write") },
893	{ SST(0x80, 0x88, SS_RDEF,
894	    "Host Parity Check Failed") },
895	{ SST(0x80, 0x89, SS_RDEF,
896	    "IOEDC error on read detected by formatter") },
897	{ SST(0x80, 0x8A, SS_RDEF,
898	    "Host Parity Errors / Host FIFO Initialization Failed") },
899	{ SST(0x80, 0x8B, SS_RDEF,
900	    "Host Parity Errors") },
901	{ SST(0x80, 0x8C, SS_RDEF,
902	    "Host Parity Errors") },
903	{ SST(0x80, 0x8D, SS_RDEF,
904	    "Host Parity Errors") },
905	{ SST(0x81, 0x00, SS_RDEF,
906	    "LA Check Failed") },
907	{ SST(0x82, 0x00, SS_RDEF,
908	    "Internal client detected insufficient buffer") },
909	{ SST(0x84, 0x00, SS_RDEF,
910	    "Scheduled Diagnostic And Repair") },
911};
912
913static struct scsi_sense_quirk_entry sense_quirk_table[] = {
914	{
915		/*
916		 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b
917		 * when they really should return 0x04 0x02.
918		 */
919		{T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"},
920		/*num_sense_keys*/0,
921		sizeof(quantum_fireball_entries)/sizeof(struct asc_table_entry),
922		/*sense key entries*/NULL,
923		quantum_fireball_entries
924	},
925	{
926		/*
927		 * This Sony MO drive likes to return 0x04, 0x00 when it
928		 * isn't spun up.
929		 */
930		{T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"},
931		/*num_sense_keys*/0,
932		sizeof(sony_mo_entries)/sizeof(struct asc_table_entry),
933		/*sense key entries*/NULL,
934		sony_mo_entries
935	},
936	{
937		/*
938		 * HGST vendor-specific error codes
939		 */
940		{T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"},
941		/*num_sense_keys*/0,
942		sizeof(hgst_entries)/sizeof(struct asc_table_entry),
943		/*sense key entries*/NULL,
944		hgst_entries
945	},
946	{
947		/*
948		 * SEAGATE vendor-specific error codes
949		 */
950		{T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"},
951		/*num_sense_keys*/0,
952		sizeof(seagate_entries)/sizeof(struct asc_table_entry),
953		/*sense key entries*/NULL,
954		seagate_entries
955	}
956};
957
958const int sense_quirk_table_size =
959    sizeof(sense_quirk_table)/sizeof(sense_quirk_table[0]);
960
961static struct asc_table_entry asc_table[] = {
962	/*
963	 * From: http://www.t10.org/lists/asc-num.txt
964	 * Modifications by Jung-uk Kim (jkim@FreeBSD.org)
965	 */
966	/*
967	 * File: ASC-NUM.TXT
968	 *
969	 * SCSI ASC/ASCQ Assignments
970	 * Numeric Sorted Listing
971	 * as of  5/20/12
972	 *
973	 * D - DIRECT ACCESS DEVICE (SBC-2)                   device column key
974	 * .T - SEQUENTIAL ACCESS DEVICE (SSC)               -------------------
975	 * . L - PRINTER DEVICE (SSC)                           blank = reserved
976	 * .  P - PROCESSOR DEVICE (SPC)                     not blank = allowed
977	 * .  .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2)
978	 * .  . R - CD DEVICE (MMC)
979	 * .  .  O - OPTICAL MEMORY DEVICE (SBC-2)
980	 * .  .  .M - MEDIA CHANGER DEVICE (SMC)
981	 * .  .  . A - STORAGE ARRAY DEVICE (SCC)
982	 * .  .  .  E - ENCLOSURE SERVICES DEVICE (SES)
983	 * .  .  .  .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
984	 * .  .  .  . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
985	 * .  .  .  .  V - AUTOMATION/DRIVE INTERFACE (ADC)
986	 * .  .  .  .  .F - OBJECT-BASED STORAGE (OSD)
987	 * DTLPWROMAEBKVF
988	 * ASC      ASCQ  Action
989	 * Description
990	 */
991	/* DTLPWROMAEBKVF */
992	{ SST(0x00, 0x00, SS_NOP,
993	    "No additional sense information") },
994	/*  T             */
995	{ SST(0x00, 0x01, SS_RDEF,
996	    "Filemark detected") },
997	/*  T             */
998	{ SST(0x00, 0x02, SS_RDEF,
999	    "End-of-partition/medium detected") },
1000	/*  T             */
1001	{ SST(0x00, 0x03, SS_RDEF,
1002	    "Setmark detected") },
1003	/*  T             */
1004	{ SST(0x00, 0x04, SS_RDEF,
1005	    "Beginning-of-partition/medium detected") },
1006	/*  TL            */
1007	{ SST(0x00, 0x05, SS_RDEF,
1008	    "End-of-data detected") },
1009	/* DTLPWROMAEBKVF */
1010	{ SST(0x00, 0x06, SS_RDEF,
1011	    "I/O process terminated") },
1012	/*  T             */
1013	{ SST(0x00, 0x07, SS_RDEF,	/* XXX TBD */
1014	    "Programmable early warning detected") },
1015	/*      R         */
1016	{ SST(0x00, 0x11, SS_FATAL | EBUSY,
1017	    "Audio play operation in progress") },
1018	/*      R         */
1019	{ SST(0x00, 0x12, SS_NOP,
1020	    "Audio play operation paused") },
1021	/*      R         */
1022	{ SST(0x00, 0x13, SS_NOP,
1023	    "Audio play operation successfully completed") },
1024	/*      R         */
1025	{ SST(0x00, 0x14, SS_RDEF,
1026	    "Audio play operation stopped due to error") },
1027	/*      R         */
1028	{ SST(0x00, 0x15, SS_NOP,
1029	    "No current audio status to return") },
1030	/* DTLPWROMAEBKVF */
1031	{ SST(0x00, 0x16, SS_FATAL | EBUSY,
1032	    "Operation in progress") },
1033	/* DTL WROMAEBKVF */
1034	{ SST(0x00, 0x17, SS_RDEF,
1035	    "Cleaning requested") },
1036	/*  T             */
1037	{ SST(0x00, 0x18, SS_RDEF,	/* XXX TBD */
1038	    "Erase operation in progress") },
1039	/*  T             */
1040	{ SST(0x00, 0x19, SS_RDEF,	/* XXX TBD */
1041	    "Locate operation in progress") },
1042	/*  T             */
1043	{ SST(0x00, 0x1A, SS_RDEF,	/* XXX TBD */
1044	    "Rewind operation in progress") },
1045	/*  T             */
1046	{ SST(0x00, 0x1B, SS_RDEF,	/* XXX TBD */
1047	    "Set capacity operation in progress") },
1048	/*  T             */
1049	{ SST(0x00, 0x1C, SS_RDEF,	/* XXX TBD */
1050	    "Verify operation in progress") },
1051	/* DT        B    */
1052	{ SST(0x00, 0x1D, SS_RDEF,	/* XXX TBD */
1053	    "ATA pass through information available") },
1054	/* DT   R MAEBKV  */
1055	{ SST(0x00, 0x1E, SS_RDEF,	/* XXX TBD */
1056	    "Conflicting SA creation request") },
1057	/* DT        B    */
1058	{ SST(0x00, 0x1F, SS_RDEF,	/* XXX TBD */
1059	    "Logical unit transitioning to another power condition") },
1060	/* DT P      B    */
1061	{ SST(0x00, 0x20, SS_RDEF,	/* XXX TBD */
1062	    "Extended copy information available") },
1063	/* D   W O   BK   */
1064	{ SST(0x01, 0x00, SS_RDEF,
1065	    "No index/sector signal") },
1066	/* D   WRO   BK   */
1067	{ SST(0x02, 0x00, SS_RDEF,
1068	    "No seek complete") },
1069	/* DTL W O   BK   */
1070	{ SST(0x03, 0x00, SS_RDEF,
1071	    "Peripheral device write fault") },
1072	/*  T             */
1073	{ SST(0x03, 0x01, SS_RDEF,
1074	    "No write current") },
1075	/*  T             */
1076	{ SST(0x03, 0x02, SS_RDEF,
1077	    "Excessive write errors") },
1078	/* DTLPWROMAEBKVF */
1079	{ SST(0x04, 0x00, SS_RDEF,
1080	    "Logical unit not ready, cause not reportable") },
1081	/* DTLPWROMAEBKVF */
1082	{ SST(0x04, 0x01, SS_WAIT | EBUSY,
1083	    "Logical unit is in process of becoming ready") },
1084	/* DTLPWROMAEBKVF */
1085	{ SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
1086	    "Logical unit not ready, initializing command required") },
1087	/* DTLPWROMAEBKVF */
1088	{ SST(0x04, 0x03, SS_FATAL | ENXIO,
1089	    "Logical unit not ready, manual intervention required") },
1090	/* DTL  RO   B    */
1091	{ SST(0x04, 0x04, SS_FATAL | EBUSY,
1092	    "Logical unit not ready, format in progress") },
1093	/* DT  W O A BK F */
1094	{ SST(0x04, 0x05, SS_FATAL | EBUSY,
1095	    "Logical unit not ready, rebuild in progress") },
1096	/* DT  W O A BK   */
1097	{ SST(0x04, 0x06, SS_FATAL | EBUSY,
1098	    "Logical unit not ready, recalculation in progress") },
1099	/* DTLPWROMAEBKVF */
1100	{ SST(0x04, 0x07, SS_FATAL | EBUSY,
1101	    "Logical unit not ready, operation in progress") },
1102	/*      R         */
1103	{ SST(0x04, 0x08, SS_FATAL | EBUSY,
1104	    "Logical unit not ready, long write in progress") },
1105	/* DTLPWROMAEBKVF */
1106	{ SST(0x04, 0x09, SS_RDEF,	/* XXX TBD */
1107	    "Logical unit not ready, self-test in progress") },
1108	/* DTLPWROMAEBKVF */
1109	{ SST(0x04, 0x0A, SS_WAIT | ENXIO,
1110	    "Logical unit not accessible, asymmetric access state transition")},
1111	/* DTLPWROMAEBKVF */
1112	{ SST(0x04, 0x0B, SS_FATAL | ENXIO,
1113	    "Logical unit not accessible, target port in standby state") },
1114	/* DTLPWROMAEBKVF */
1115	{ SST(0x04, 0x0C, SS_FATAL | ENXIO,
1116	    "Logical unit not accessible, target port in unavailable state") },
1117	/*              F */
1118	{ SST(0x04, 0x0D, SS_RDEF,	/* XXX TBD */
1119	    "Logical unit not ready, structure check required") },
1120	/* DT  WROM  B    */
1121	{ SST(0x04, 0x10, SS_RDEF,	/* XXX TBD */
1122	    "Logical unit not ready, auxiliary memory not accessible") },
1123	/* DT  WRO AEB VF */
1124	{ SST(0x04, 0x11, SS_WAIT | EBUSY,
1125	    "Logical unit not ready, notify (enable spinup) required") },
1126	/*        M    V  */
1127	{ SST(0x04, 0x12, SS_RDEF,	/* XXX TBD */
1128	    "Logical unit not ready, offline") },
1129	/* DT   R MAEBKV  */
1130	{ SST(0x04, 0x13, SS_RDEF,	/* XXX TBD */
1131	    "Logical unit not ready, SA creation in progress") },
1132	/* D         B    */
1133	{ SST(0x04, 0x14, SS_RDEF,	/* XXX TBD */
1134	    "Logical unit not ready, space allocation in progress") },
1135	/*        M       */
1136	{ SST(0x04, 0x15, SS_RDEF,	/* XXX TBD */
1137	    "Logical unit not ready, robotics disabled") },
1138	/*        M       */
1139	{ SST(0x04, 0x16, SS_RDEF,	/* XXX TBD */
1140	    "Logical unit not ready, configuration required") },
1141	/*        M       */
1142	{ SST(0x04, 0x17, SS_RDEF,	/* XXX TBD */
1143	    "Logical unit not ready, calibration required") },
1144	/*        M       */
1145	{ SST(0x04, 0x18, SS_RDEF,	/* XXX TBD */
1146	    "Logical unit not ready, a door is open") },
1147	/*        M       */
1148	{ SST(0x04, 0x19, SS_RDEF,	/* XXX TBD */
1149	    "Logical unit not ready, operating in sequential mode") },
1150	/* DT        B    */
1151	{ SST(0x04, 0x1A, SS_RDEF,	/* XXX TBD */
1152	    "Logical unit not ready, START/STOP UNIT command in progress") },
1153	/* D         B    */
1154	{ SST(0x04, 0x1B, SS_RDEF,	/* XXX TBD */
1155	    "Logical unit not ready, sanitize in progress") },
1156	/* DT     MAEB    */
1157	{ SST(0x04, 0x1C, SS_RDEF,	/* XXX TBD */
1158	    "Logical unit not ready, additional power use not yet granted") },
1159	/* DTL WROMAEBKVF */
1160	{ SST(0x05, 0x00, SS_RDEF,
1161	    "Logical unit does not respond to selection") },
1162	/* D   WROM  BK   */
1163	{ SST(0x06, 0x00, SS_RDEF,
1164	    "No reference position found") },
1165	/* DTL WROM  BK   */
1166	{ SST(0x07, 0x00, SS_RDEF,
1167	    "Multiple peripheral devices selected") },
1168	/* DTL WROMAEBKVF */
1169	{ SST(0x08, 0x00, SS_RDEF,
1170	    "Logical unit communication failure") },
1171	/* DTL WROMAEBKVF */
1172	{ SST(0x08, 0x01, SS_RDEF,
1173	    "Logical unit communication time-out") },
1174	/* DTL WROMAEBKVF */
1175	{ SST(0x08, 0x02, SS_RDEF,
1176	    "Logical unit communication parity error") },
1177	/* DT   ROM  BK   */
1178	{ SST(0x08, 0x03, SS_RDEF,
1179	    "Logical unit communication CRC error (Ultra-DMA/32)") },
1180	/* DTLPWRO    K   */
1181	{ SST(0x08, 0x04, SS_RDEF,	/* XXX TBD */
1182	    "Unreachable copy target") },
1183	/* DT  WRO   B    */
1184	{ SST(0x09, 0x00, SS_RDEF,
1185	    "Track following error") },
1186	/*     WRO    K   */
1187	{ SST(0x09, 0x01, SS_RDEF,
1188	    "Tracking servo failure") },
1189	/*     WRO    K   */
1190	{ SST(0x09, 0x02, SS_RDEF,
1191	    "Focus servo failure") },
1192	/*     WRO        */
1193	{ SST(0x09, 0x03, SS_RDEF,
1194	    "Spindle servo failure") },
1195	/* DT  WRO   B    */
1196	{ SST(0x09, 0x04, SS_RDEF,
1197	    "Head select fault") },
1198	/* DTLPWROMAEBKVF */
1199	{ SST(0x0A, 0x00, SS_FATAL | ENOSPC,
1200	    "Error log overflow") },
1201	/* DTLPWROMAEBKVF */
1202	{ SST(0x0B, 0x00, SS_RDEF,
1203	    "Warning") },
1204	/* DTLPWROMAEBKVF */
1205	{ SST(0x0B, 0x01, SS_RDEF,
1206	    "Warning - specified temperature exceeded") },
1207	/* DTLPWROMAEBKVF */
1208	{ SST(0x0B, 0x02, SS_RDEF,
1209	    "Warning - enclosure degraded") },
1210	/* DTLPWROMAEBKVF */
1211	{ SST(0x0B, 0x03, SS_RDEF,	/* XXX TBD */
1212	    "Warning - background self-test failed") },
1213	/* DTLPWRO AEBKVF */
1214	{ SST(0x0B, 0x04, SS_RDEF,	/* XXX TBD */
1215	    "Warning - background pre-scan detected medium error") },
1216	/* DTLPWRO AEBKVF */
1217	{ SST(0x0B, 0x05, SS_RDEF,	/* XXX TBD */
1218	    "Warning - background medium scan detected medium error") },
1219	/* DTLPWROMAEBKVF */
1220	{ SST(0x0B, 0x06, SS_RDEF,	/* XXX TBD */
1221	    "Warning - non-volatile cache now volatile") },
1222	/* DTLPWROMAEBKVF */
1223	{ SST(0x0B, 0x07, SS_RDEF,	/* XXX TBD */
1224	    "Warning - degraded power to non-volatile cache") },
1225	/* DTLPWROMAEBKVF */
1226	{ SST(0x0B, 0x08, SS_RDEF,	/* XXX TBD */
1227	    "Warning - power loss expected") },
1228	/* D              */
1229	{ SST(0x0B, 0x09, SS_RDEF,	/* XXX TBD */
1230	    "Warning - device statistics notification available") },
1231	/*  T   R         */
1232	{ SST(0x0C, 0x00, SS_RDEF,
1233	    "Write error") },
1234	/*            K   */
1235	{ SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1236	    "Write error - recovered with auto reallocation") },
1237	/* D   W O   BK   */
1238	{ SST(0x0C, 0x02, SS_RDEF,
1239	    "Write error - auto reallocation failed") },
1240	/* D   W O   BK   */
1241	{ SST(0x0C, 0x03, SS_RDEF,
1242	    "Write error - recommend reassignment") },
1243	/* DT  W O   B    */
1244	{ SST(0x0C, 0x04, SS_RDEF,
1245	    "Compression check miscompare error") },
1246	/* DT  W O   B    */
1247	{ SST(0x0C, 0x05, SS_RDEF,
1248	    "Data expansion occurred during compression") },
1249	/* DT  W O   B    */
1250	{ SST(0x0C, 0x06, SS_RDEF,
1251	    "Block not compressible") },
1252	/*      R         */
1253	{ SST(0x0C, 0x07, SS_RDEF,
1254	    "Write error - recovery needed") },
1255	/*      R         */
1256	{ SST(0x0C, 0x08, SS_RDEF,
1257	    "Write error - recovery failed") },
1258	/*      R         */
1259	{ SST(0x0C, 0x09, SS_RDEF,
1260	    "Write error - loss of streaming") },
1261	/*      R         */
1262	{ SST(0x0C, 0x0A, SS_RDEF,
1263	    "Write error - padding blocks added") },
1264	/* DT  WROM  B    */
1265	{ SST(0x0C, 0x0B, SS_RDEF,	/* XXX TBD */
1266	    "Auxiliary memory write error") },
1267	/* DTLPWRO AEBKVF */
1268	{ SST(0x0C, 0x0C, SS_RDEF,	/* XXX TBD */
1269	    "Write error - unexpected unsolicited data") },
1270	/* DTLPWRO AEBKVF */
1271	{ SST(0x0C, 0x0D, SS_RDEF,	/* XXX TBD */
1272	    "Write error - not enough unsolicited data") },
1273	/* DT  W O   BK   */
1274	{ SST(0x0C, 0x0E, SS_RDEF,	/* XXX TBD */
1275	    "Multiple write errors") },
1276	/*      R         */
1277	{ SST(0x0C, 0x0F, SS_RDEF,	/* XXX TBD */
1278	    "Defects in error window") },
1279	/* DTLPWRO A  K   */
1280	{ SST(0x0D, 0x00, SS_RDEF,	/* XXX TBD */
1281	    "Error detected by third party temporary initiator") },
1282	/* DTLPWRO A  K   */
1283	{ SST(0x0D, 0x01, SS_RDEF,	/* XXX TBD */
1284	    "Third party device failure") },
1285	/* DTLPWRO A  K   */
1286	{ SST(0x0D, 0x02, SS_RDEF,	/* XXX TBD */
1287	    "Copy target device not reachable") },
1288	/* DTLPWRO A  K   */
1289	{ SST(0x0D, 0x03, SS_RDEF,	/* XXX TBD */
1290	    "Incorrect copy target device type") },
1291	/* DTLPWRO A  K   */
1292	{ SST(0x0D, 0x04, SS_RDEF,	/* XXX TBD */
1293	    "Copy target device data underrun") },
1294	/* DTLPWRO A  K   */
1295	{ SST(0x0D, 0x05, SS_RDEF,	/* XXX TBD */
1296	    "Copy target device data overrun") },
1297	/* DT PWROMAEBK F */
1298	{ SST(0x0E, 0x00, SS_RDEF,	/* XXX TBD */
1299	    "Invalid information unit") },
1300	/* DT PWROMAEBK F */
1301	{ SST(0x0E, 0x01, SS_RDEF,	/* XXX TBD */
1302	    "Information unit too short") },
1303	/* DT PWROMAEBK F */
1304	{ SST(0x0E, 0x02, SS_RDEF,	/* XXX TBD */
1305	    "Information unit too long") },
1306	/* DT P R MAEBK F */
1307	{ SST(0x0E, 0x03, SS_RDEF,	/* XXX TBD */
1308	    "Invalid field in command information unit") },
1309	/* D   W O   BK   */
1310	{ SST(0x10, 0x00, SS_RDEF,
1311	    "ID CRC or ECC error") },
1312	/* DT  W O        */
1313	{ SST(0x10, 0x01, SS_RDEF,	/* XXX TBD */
1314	    "Logical block guard check failed") },
1315	/* DT  W O        */
1316	{ SST(0x10, 0x02, SS_RDEF,	/* XXX TBD */
1317	    "Logical block application tag check failed") },
1318	/* DT  W O        */
1319	{ SST(0x10, 0x03, SS_RDEF,	/* XXX TBD */
1320	    "Logical block reference tag check failed") },
1321	/*  T             */
1322	{ SST(0x10, 0x04, SS_RDEF,	/* XXX TBD */
1323	    "Logical block protection error on recovered buffer data") },
1324	/*  T             */
1325	{ SST(0x10, 0x05, SS_RDEF,	/* XXX TBD */
1326	    "Logical block protection method error") },
1327	/* DT  WRO   BK   */
1328	{ SST(0x11, 0x00, SS_FATAL|EIO,
1329	    "Unrecovered read error") },
1330	/* DT  WRO   BK   */
1331	{ SST(0x11, 0x01, SS_FATAL|EIO,
1332	    "Read retries exhausted") },
1333	/* DT  WRO   BK   */
1334	{ SST(0x11, 0x02, SS_FATAL|EIO,
1335	    "Error too long to correct") },
1336	/* DT  W O   BK   */
1337	{ SST(0x11, 0x03, SS_FATAL|EIO,
1338	    "Multiple read errors") },
1339	/* D   W O   BK   */
1340	{ SST(0x11, 0x04, SS_FATAL|EIO,
1341	    "Unrecovered read error - auto reallocate failed") },
1342	/*     WRO   B    */
1343	{ SST(0x11, 0x05, SS_FATAL|EIO,
1344	    "L-EC uncorrectable error") },
1345	/*     WRO   B    */
1346	{ SST(0x11, 0x06, SS_FATAL|EIO,
1347	    "CIRC unrecovered error") },
1348	/*     W O   B    */
1349	{ SST(0x11, 0x07, SS_RDEF,
1350	    "Data re-synchronization error") },
1351	/*  T             */
1352	{ SST(0x11, 0x08, SS_RDEF,
1353	    "Incomplete block read") },
1354	/*  T             */
1355	{ SST(0x11, 0x09, SS_RDEF,
1356	    "No gap found") },
1357	/* DT    O   BK   */
1358	{ SST(0x11, 0x0A, SS_RDEF,
1359	    "Miscorrected error") },
1360	/* D   W O   BK   */
1361	{ SST(0x11, 0x0B, SS_FATAL|EIO,
1362	    "Unrecovered read error - recommend reassignment") },
1363	/* D   W O   BK   */
1364	{ SST(0x11, 0x0C, SS_FATAL|EIO,
1365	    "Unrecovered read error - recommend rewrite the data") },
1366	/* DT  WRO   B    */
1367	{ SST(0x11, 0x0D, SS_RDEF,
1368	    "De-compression CRC error") },
1369	/* DT  WRO   B    */
1370	{ SST(0x11, 0x0E, SS_RDEF,
1371	    "Cannot decompress using declared algorithm") },
1372	/*      R         */
1373	{ SST(0x11, 0x0F, SS_RDEF,
1374	    "Error reading UPC/EAN number") },
1375	/*      R         */
1376	{ SST(0x11, 0x10, SS_RDEF,
1377	    "Error reading ISRC number") },
1378	/*      R         */
1379	{ SST(0x11, 0x11, SS_RDEF,
1380	    "Read error - loss of streaming") },
1381	/* DT  WROM  B    */
1382	{ SST(0x11, 0x12, SS_RDEF,	/* XXX TBD */
1383	    "Auxiliary memory read error") },
1384	/* DTLPWRO AEBKVF */
1385	{ SST(0x11, 0x13, SS_RDEF,	/* XXX TBD */
1386	    "Read error - failed retransmission request") },
1387	/* D              */
1388	{ SST(0x11, 0x14, SS_RDEF,	/* XXX TBD */
1389	    "Read error - LBA marked bad by application client") },
1390	/* D   W O   BK   */
1391	{ SST(0x12, 0x00, SS_RDEF,
1392	    "Address mark not found for ID field") },
1393	/* D   W O   BK   */
1394	{ SST(0x13, 0x00, SS_RDEF,
1395	    "Address mark not found for data field") },
1396	/* DTL WRO   BK   */
1397	{ SST(0x14, 0x00, SS_RDEF,
1398	    "Recorded entity not found") },
1399	/* DT  WRO   BK   */
1400	{ SST(0x14, 0x01, SS_RDEF,
1401	    "Record not found") },
1402	/*  T             */
1403	{ SST(0x14, 0x02, SS_RDEF,
1404	    "Filemark or setmark not found") },
1405	/*  T             */
1406	{ SST(0x14, 0x03, SS_RDEF,
1407	    "End-of-data not found") },
1408	/*  T             */
1409	{ SST(0x14, 0x04, SS_RDEF,
1410	    "Block sequence error") },
1411	/* DT  W O   BK   */
1412	{ SST(0x14, 0x05, SS_RDEF,
1413	    "Record not found - recommend reassignment") },
1414	/* DT  W O   BK   */
1415	{ SST(0x14, 0x06, SS_RDEF,
1416	    "Record not found - data auto-reallocated") },
1417	/*  T             */
1418	{ SST(0x14, 0x07, SS_RDEF,	/* XXX TBD */
1419	    "Locate operation failure") },
1420	/* DTL WROM  BK   */
1421	{ SST(0x15, 0x00, SS_RDEF,
1422	    "Random positioning error") },
1423	/* DTL WROM  BK   */
1424	{ SST(0x15, 0x01, SS_RDEF,
1425	    "Mechanical positioning error") },
1426	/* DT  WRO   BK   */
1427	{ SST(0x15, 0x02, SS_RDEF,
1428	    "Positioning error detected by read of medium") },
1429	/* D   W O   BK   */
1430	{ SST(0x16, 0x00, SS_RDEF,
1431	    "Data synchronization mark error") },
1432	/* D   W O   BK   */
1433	{ SST(0x16, 0x01, SS_RDEF,
1434	    "Data sync error - data rewritten") },
1435	/* D   W O   BK   */
1436	{ SST(0x16, 0x02, SS_RDEF,
1437	    "Data sync error - recommend rewrite") },
1438	/* D   W O   BK   */
1439	{ SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1440	    "Data sync error - data auto-reallocated") },
1441	/* D   W O   BK   */
1442	{ SST(0x16, 0x04, SS_RDEF,
1443	    "Data sync error - recommend reassignment") },
1444	/* DT  WRO   BK   */
1445	{ SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1446	    "Recovered data with no error correction applied") },
1447	/* DT  WRO   BK   */
1448	{ SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1449	    "Recovered data with retries") },
1450	/* DT  WRO   BK   */
1451	{ SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1452	    "Recovered data with positive head offset") },
1453	/* DT  WRO   BK   */
1454	{ SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1455	    "Recovered data with negative head offset") },
1456	/*     WRO   B    */
1457	{ SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1458	    "Recovered data with retries and/or CIRC applied") },
1459	/* D   WRO   BK   */
1460	{ SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1461	    "Recovered data using previous sector ID") },
1462	/* D   W O   BK   */
1463	{ SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1464	    "Recovered data without ECC - data auto-reallocated") },
1465	/* D   WRO   BK   */
1466	{ SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1467	    "Recovered data without ECC - recommend reassignment") },
1468	/* D   WRO   BK   */
1469	{ SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1470	    "Recovered data without ECC - recommend rewrite") },
1471	/* D   WRO   BK   */
1472	{ SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE,
1473	    "Recovered data without ECC - data rewritten") },
1474	/* DT  WRO   BK   */
1475	{ SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1476	    "Recovered data with error correction applied") },
1477	/* D   WRO   BK   */
1478	{ SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1479	    "Recovered data with error corr. & retries applied") },
1480	/* D   WRO   BK   */
1481	{ SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1482	    "Recovered data - data auto-reallocated") },
1483	/*      R         */
1484	{ SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1485	    "Recovered data with CIRC") },
1486	/*      R         */
1487	{ SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1488	    "Recovered data with L-EC") },
1489	/* D   WRO   BK   */
1490	{ SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1491	    "Recovered data - recommend reassignment") },
1492	/* D   WRO   BK   */
1493	{ SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1494	    "Recovered data - recommend rewrite") },
1495	/* D   W O   BK   */
1496	{ SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1497	    "Recovered data with ECC - data rewritten") },
1498	/*      R         */
1499	{ SST(0x18, 0x08, SS_RDEF,	/* XXX TBD */
1500	    "Recovered data with linking") },
1501	/* D     O    K   */
1502	{ SST(0x19, 0x00, SS_RDEF,
1503	    "Defect list error") },
1504	/* D     O    K   */
1505	{ SST(0x19, 0x01, SS_RDEF,
1506	    "Defect list not available") },
1507	/* D     O    K   */
1508	{ SST(0x19, 0x02, SS_RDEF,
1509	    "Defect list error in primary list") },
1510	/* D     O    K   */
1511	{ SST(0x19, 0x03, SS_RDEF,
1512	    "Defect list error in grown list") },
1513	/* DTLPWROMAEBKVF */
1514	{ SST(0x1A, 0x00, SS_RDEF,
1515	    "Parameter list length error") },
1516	/* DTLPWROMAEBKVF */
1517	{ SST(0x1B, 0x00, SS_RDEF,
1518	    "Synchronous data transfer error") },
1519	/* D     O   BK   */
1520	{ SST(0x1C, 0x00, SS_RDEF,
1521	    "Defect list not found") },
1522	/* D     O   BK   */
1523	{ SST(0x1C, 0x01, SS_RDEF,
1524	    "Primary defect list not found") },
1525	/* D     O   BK   */
1526	{ SST(0x1C, 0x02, SS_RDEF,
1527	    "Grown defect list not found") },
1528	/* DT  WRO   BK   */
1529	{ SST(0x1D, 0x00, SS_FATAL,
1530	    "Miscompare during verify operation") },
1531	/* D         B    */
1532	{ SST(0x1D, 0x01, SS_RDEF,	/* XXX TBD */
1533	    "Miscomparable verify of unmapped LBA") },
1534	/* D   W O   BK   */
1535	{ SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1536	    "Recovered ID with ECC correction") },
1537	/* D     O    K   */
1538	{ SST(0x1F, 0x00, SS_RDEF,
1539	    "Partial defect list transfer") },
1540	/* DTLPWROMAEBKVF */
1541	{ SST(0x20, 0x00, SS_FATAL | EINVAL,
1542	    "Invalid command operation code") },
1543	/* DT PWROMAEBK   */
1544	{ SST(0x20, 0x01, SS_RDEF,	/* XXX TBD */
1545	    "Access denied - initiator pending-enrolled") },
1546	/* DT PWROMAEBK   */
1547	{ SST(0x20, 0x02, SS_RDEF,	/* XXX TBD */
1548	    "Access denied - no access rights") },
1549	/* DT PWROMAEBK   */
1550	{ SST(0x20, 0x03, SS_RDEF,	/* XXX TBD */
1551	    "Access denied - invalid mgmt ID key") },
1552	/*  T             */
1553	{ SST(0x20, 0x04, SS_RDEF,	/* XXX TBD */
1554	    "Illegal command while in write capable state") },
1555	/*  T             */
1556	{ SST(0x20, 0x05, SS_RDEF,	/* XXX TBD */
1557	    "Obsolete") },
1558	/*  T             */
1559	{ SST(0x20, 0x06, SS_RDEF,	/* XXX TBD */
1560	    "Illegal command while in explicit address mode") },
1561	/*  T             */
1562	{ SST(0x20, 0x07, SS_RDEF,	/* XXX TBD */
1563	    "Illegal command while in implicit address mode") },
1564	/* DT PWROMAEBK   */
1565	{ SST(0x20, 0x08, SS_RDEF,	/* XXX TBD */
1566	    "Access denied - enrollment conflict") },
1567	/* DT PWROMAEBK   */
1568	{ SST(0x20, 0x09, SS_RDEF,	/* XXX TBD */
1569	    "Access denied - invalid LU identifier") },
1570	/* DT PWROMAEBK   */
1571	{ SST(0x20, 0x0A, SS_RDEF,	/* XXX TBD */
1572	    "Access denied - invalid proxy token") },
1573	/* DT PWROMAEBK   */
1574	{ SST(0x20, 0x0B, SS_RDEF,	/* XXX TBD */
1575	    "Access denied - ACL LUN conflict") },
1576	/*  T             */
1577	{ SST(0x20, 0x0C, SS_FATAL | EINVAL,
1578	    "Illegal command when not in append-only mode") },
1579	/* DT  WRO   BK   */
1580	{ SST(0x21, 0x00, SS_FATAL | EINVAL,
1581	    "Logical block address out of range") },
1582	/* DT  WROM  BK   */
1583	{ SST(0x21, 0x01, SS_FATAL | EINVAL,
1584	    "Invalid element address") },
1585	/*      R         */
1586	{ SST(0x21, 0x02, SS_RDEF,	/* XXX TBD */
1587	    "Invalid address for write") },
1588	/*      R         */
1589	{ SST(0x21, 0x03, SS_RDEF,	/* XXX TBD */
1590	    "Invalid write crossing layer jump") },
1591	/* D              */
1592	{ SST(0x22, 0x00, SS_FATAL | EINVAL,
1593	    "Illegal function (use 20 00, 24 00, or 26 00)") },
1594	/* DT P      B    */
1595	{ SST(0x23, 0x00, SS_FATAL | EINVAL,
1596	    "Invalid token operation, cause not reportable") },
1597	/* DT P      B    */
1598	{ SST(0x23, 0x01, SS_FATAL | EINVAL,
1599	    "Invalid token operation, unsupported token type") },
1600	/* DT P      B    */
1601	{ SST(0x23, 0x02, SS_FATAL | EINVAL,
1602	    "Invalid token operation, remote token usage not supported") },
1603	/* DT P      B    */
1604	{ SST(0x23, 0x03, SS_FATAL | EINVAL,
1605	    "Invalid token operation, remote ROD token creation not supported") },
1606	/* DT P      B    */
1607	{ SST(0x23, 0x04, SS_FATAL | EINVAL,
1608	    "Invalid token operation, token unknown") },
1609	/* DT P      B    */
1610	{ SST(0x23, 0x05, SS_FATAL | EINVAL,
1611	    "Invalid token operation, token corrupt") },
1612	/* DT P      B    */
1613	{ SST(0x23, 0x06, SS_FATAL | EINVAL,
1614	    "Invalid token operation, token revoked") },
1615	/* DT P      B    */
1616	{ SST(0x23, 0x07, SS_FATAL | EINVAL,
1617	    "Invalid token operation, token expired") },
1618	/* DT P      B    */
1619	{ SST(0x23, 0x08, SS_FATAL | EINVAL,
1620	    "Invalid token operation, token cancelled") },
1621	/* DT P      B    */
1622	{ SST(0x23, 0x09, SS_FATAL | EINVAL,
1623	    "Invalid token operation, token deleted") },
1624	/* DT P      B    */
1625	{ SST(0x23, 0x0A, SS_FATAL | EINVAL,
1626	    "Invalid token operation, invalid token length") },
1627	/* DTLPWROMAEBKVF */
1628	{ SST(0x24, 0x00, SS_FATAL | EINVAL,
1629	    "Invalid field in CDB") },
1630	/* DTLPWRO AEBKVF */
1631	{ SST(0x24, 0x01, SS_RDEF,	/* XXX TBD */
1632	    "CDB decryption error") },
1633	/*  T             */
1634	{ SST(0x24, 0x02, SS_RDEF,	/* XXX TBD */
1635	    "Obsolete") },
1636	/*  T             */
1637	{ SST(0x24, 0x03, SS_RDEF,	/* XXX TBD */
1638	    "Obsolete") },
1639	/*              F */
1640	{ SST(0x24, 0x04, SS_RDEF,	/* XXX TBD */
1641	    "Security audit value frozen") },
1642	/*              F */
1643	{ SST(0x24, 0x05, SS_RDEF,	/* XXX TBD */
1644	    "Security working key frozen") },
1645	/*              F */
1646	{ SST(0x24, 0x06, SS_RDEF,	/* XXX TBD */
1647	    "NONCE not unique") },
1648	/*              F */
1649	{ SST(0x24, 0x07, SS_RDEF,	/* XXX TBD */
1650	    "NONCE timestamp out of range") },
1651	/* DT   R MAEBKV  */
1652	{ SST(0x24, 0x08, SS_RDEF,	/* XXX TBD */
1653	    "Invalid XCDB") },
1654	/* DTLPWROMAEBKVF */
1655	{ SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST,
1656	    "Logical unit not supported") },
1657	/* DTLPWROMAEBKVF */
1658	{ SST(0x26, 0x00, SS_FATAL | EINVAL,
1659	    "Invalid field in parameter list") },
1660	/* DTLPWROMAEBKVF */
1661	{ SST(0x26, 0x01, SS_FATAL | EINVAL,
1662	    "Parameter not supported") },
1663	/* DTLPWROMAEBKVF */
1664	{ SST(0x26, 0x02, SS_FATAL | EINVAL,
1665	    "Parameter value invalid") },
1666	/* DTLPWROMAE K   */
1667	{ SST(0x26, 0x03, SS_FATAL | EINVAL,
1668	    "Threshold parameters not supported") },
1669	/* DTLPWROMAEBKVF */
1670	{ SST(0x26, 0x04, SS_FATAL | EINVAL,
1671	    "Invalid release of persistent reservation") },
1672	/* DTLPWRO A BK   */
1673	{ SST(0x26, 0x05, SS_RDEF,	/* XXX TBD */
1674	    "Data decryption error") },
1675	/* DTLPWRO    K   */
1676	{ SST(0x26, 0x06, SS_FATAL | EINVAL,
1677	    "Too many target descriptors") },
1678	/* DTLPWRO    K   */
1679	{ SST(0x26, 0x07, SS_FATAL | EINVAL,
1680	    "Unsupported target descriptor type code") },
1681	/* DTLPWRO    K   */
1682	{ SST(0x26, 0x08, SS_FATAL | EINVAL,
1683	    "Too many segment descriptors") },
1684	/* DTLPWRO    K   */
1685	{ SST(0x26, 0x09, SS_FATAL | EINVAL,
1686	    "Unsupported segment descriptor type code") },
1687	/* DTLPWRO    K   */
1688	{ SST(0x26, 0x0A, SS_FATAL | EINVAL,
1689	    "Unexpected inexact segment") },
1690	/* DTLPWRO    K   */
1691	{ SST(0x26, 0x0B, SS_FATAL | EINVAL,
1692	    "Inline data length exceeded") },
1693	/* DTLPWRO    K   */
1694	{ SST(0x26, 0x0C, SS_FATAL | EINVAL,
1695	    "Invalid operation for copy source or destination") },
1696	/* DTLPWRO    K   */
1697	{ SST(0x26, 0x0D, SS_FATAL | EINVAL,
1698	    "Copy segment granularity violation") },
1699	/* DT PWROMAEBK   */
1700	{ SST(0x26, 0x0E, SS_RDEF,	/* XXX TBD */
1701	    "Invalid parameter while port is enabled") },
1702	/*              F */
1703	{ SST(0x26, 0x0F, SS_RDEF,	/* XXX TBD */
1704	    "Invalid data-out buffer integrity check value") },
1705	/*  T             */
1706	{ SST(0x26, 0x10, SS_RDEF,	/* XXX TBD */
1707	    "Data decryption key fail limit reached") },
1708	/*  T             */
1709	{ SST(0x26, 0x11, SS_RDEF,	/* XXX TBD */
1710	    "Incomplete key-associated data set") },
1711	/*  T             */
1712	{ SST(0x26, 0x12, SS_RDEF,	/* XXX TBD */
1713	    "Vendor specific key reference not found") },
1714	/* DT  WRO   BK   */
1715	{ SST(0x27, 0x00, SS_FATAL | EACCES,
1716	    "Write protected") },
1717	/* DT  WRO   BK   */
1718	{ SST(0x27, 0x01, SS_FATAL | EACCES,
1719	    "Hardware write protected") },
1720	/* DT  WRO   BK   */
1721	{ SST(0x27, 0x02, SS_FATAL | EACCES,
1722	    "Logical unit software write protected") },
1723	/*  T   R         */
1724	{ SST(0x27, 0x03, SS_FATAL | EACCES,
1725	    "Associated write protect") },
1726	/*  T   R         */
1727	{ SST(0x27, 0x04, SS_FATAL | EACCES,
1728	    "Persistent write protect") },
1729	/*  T   R         */
1730	{ SST(0x27, 0x05, SS_FATAL | EACCES,
1731	    "Permanent write protect") },
1732	/*      R       F */
1733	{ SST(0x27, 0x06, SS_RDEF,	/* XXX TBD */
1734	    "Conditional write protect") },
1735	/* D         B    */
1736	{ SST(0x27, 0x07, SS_FATAL | ENOSPC,
1737	    "Space allocation failed write protect") },
1738	/* DTLPWROMAEBKVF */
1739	{ SST(0x28, 0x00, SS_FATAL | ENXIO,
1740	    "Not ready to ready change, medium may have changed") },
1741	/* DT  WROM  B    */
1742	{ SST(0x28, 0x01, SS_FATAL | ENXIO,
1743	    "Import or export element accessed") },
1744	/*      R         */
1745	{ SST(0x28, 0x02, SS_RDEF,	/* XXX TBD */
1746	    "Format-layer may have changed") },
1747	/*        M       */
1748	{ SST(0x28, 0x03, SS_RDEF,	/* XXX TBD */
1749	    "Import/export element accessed, medium changed") },
1750	/*
1751	 * XXX JGibbs - All of these should use the same errno, but I don't
1752	 * think ENXIO is the correct choice.  Should we borrow from
1753	 * the networking errnos?  ECONNRESET anyone?
1754	 */
1755	/* DTLPWROMAEBKVF */
1756	{ SST(0x29, 0x00, SS_FATAL | ENXIO,
1757	    "Power on, reset, or bus device reset occurred") },
1758	/* DTLPWROMAEBKVF */
1759	{ SST(0x29, 0x01, SS_RDEF,
1760	    "Power on occurred") },
1761	/* DTLPWROMAEBKVF */
1762	{ SST(0x29, 0x02, SS_RDEF,
1763	    "SCSI bus reset occurred") },
1764	/* DTLPWROMAEBKVF */
1765	{ SST(0x29, 0x03, SS_RDEF,
1766	    "Bus device reset function occurred") },
1767	/* DTLPWROMAEBKVF */
1768	{ SST(0x29, 0x04, SS_RDEF,
1769	    "Device internal reset") },
1770	/* DTLPWROMAEBKVF */
1771	{ SST(0x29, 0x05, SS_RDEF,
1772	    "Transceiver mode changed to single-ended") },
1773	/* DTLPWROMAEBKVF */
1774	{ SST(0x29, 0x06, SS_RDEF,
1775	    "Transceiver mode changed to LVD") },
1776	/* DTLPWROMAEBKVF */
1777	{ SST(0x29, 0x07, SS_RDEF,	/* XXX TBD */
1778	    "I_T nexus loss occurred") },
1779	/* DTL WROMAEBKVF */
1780	{ SST(0x2A, 0x00, SS_RDEF,
1781	    "Parameters changed") },
1782	/* DTL WROMAEBKVF */
1783	{ SST(0x2A, 0x01, SS_RDEF,
1784	    "Mode parameters changed") },
1785	/* DTL WROMAE K   */
1786	{ SST(0x2A, 0x02, SS_RDEF,
1787	    "Log parameters changed") },
1788	/* DTLPWROMAE K   */
1789	{ SST(0x2A, 0x03, SS_RDEF,
1790	    "Reservations preempted") },
1791	/* DTLPWROMAE     */
1792	{ SST(0x2A, 0x04, SS_RDEF,	/* XXX TBD */
1793	    "Reservations released") },
1794	/* DTLPWROMAE     */
1795	{ SST(0x2A, 0x05, SS_RDEF,	/* XXX TBD */
1796	    "Registrations preempted") },
1797	/* DTLPWROMAEBKVF */
1798	{ SST(0x2A, 0x06, SS_RDEF,	/* XXX TBD */
1799	    "Asymmetric access state changed") },
1800	/* DTLPWROMAEBKVF */
1801	{ SST(0x2A, 0x07, SS_RDEF,	/* XXX TBD */
1802	    "Implicit asymmetric access state transition failed") },
1803	/* DT  WROMAEBKVF */
1804	{ SST(0x2A, 0x08, SS_RDEF,	/* XXX TBD */
1805	    "Priority changed") },
1806	/* D              */
1807	{ SST(0x2A, 0x09, SS_RDEF,	/* XXX TBD */
1808	    "Capacity data has changed") },
1809	/* DT             */
1810	{ SST(0x2A, 0x0A, SS_RDEF,	/* XXX TBD */
1811	    "Error history I_T nexus cleared") },
1812	/* DT             */
1813	{ SST(0x2A, 0x0B, SS_RDEF,	/* XXX TBD */
1814	    "Error history snapshot released") },
1815	/*              F */
1816	{ SST(0x2A, 0x0C, SS_RDEF,	/* XXX TBD */
1817	    "Error recovery attributes have changed") },
1818	/*  T             */
1819	{ SST(0x2A, 0x0D, SS_RDEF,	/* XXX TBD */
1820	    "Data encryption capabilities changed") },
1821	/* DT     M E  V  */
1822	{ SST(0x2A, 0x10, SS_RDEF,	/* XXX TBD */
1823	    "Timestamp changed") },
1824	/*  T             */
1825	{ SST(0x2A, 0x11, SS_RDEF,	/* XXX TBD */
1826	    "Data encryption parameters changed by another I_T nexus") },
1827	/*  T             */
1828	{ SST(0x2A, 0x12, SS_RDEF,	/* XXX TBD */
1829	    "Data encryption parameters changed by vendor specific event") },
1830	/*  T             */
1831	{ SST(0x2A, 0x13, SS_RDEF,	/* XXX TBD */
1832	    "Data encryption key instance counter has changed") },
1833	/* DT   R MAEBKV  */
1834	{ SST(0x2A, 0x14, SS_RDEF,	/* XXX TBD */
1835	    "SA creation capabilities data has changed") },
1836	/*  T     M    V  */
1837	{ SST(0x2A, 0x15, SS_RDEF,	/* XXX TBD */
1838	    "Medium removal prevention preempted") },
1839	/* DTLPWRO    K   */
1840	{ SST(0x2B, 0x00, SS_RDEF,
1841	    "Copy cannot execute since host cannot disconnect") },
1842	/* DTLPWROMAEBKVF */
1843	{ SST(0x2C, 0x00, SS_RDEF,
1844	    "Command sequence error") },
1845	/*                */
1846	{ SST(0x2C, 0x01, SS_RDEF,
1847	    "Too many windows specified") },
1848	/*                */
1849	{ SST(0x2C, 0x02, SS_RDEF,
1850	    "Invalid combination of windows specified") },
1851	/*      R         */
1852	{ SST(0x2C, 0x03, SS_RDEF,
1853	    "Current program area is not empty") },
1854	/*      R         */
1855	{ SST(0x2C, 0x04, SS_RDEF,
1856	    "Current program area is empty") },
1857	/*           B    */
1858	{ SST(0x2C, 0x05, SS_RDEF,	/* XXX TBD */
1859	    "Illegal power condition request") },
1860	/*      R         */
1861	{ SST(0x2C, 0x06, SS_RDEF,	/* XXX TBD */
1862	    "Persistent prevent conflict") },
1863	/* DTLPWROMAEBKVF */
1864	{ SST(0x2C, 0x07, SS_RDEF,	/* XXX TBD */
1865	    "Previous busy status") },
1866	/* DTLPWROMAEBKVF */
1867	{ SST(0x2C, 0x08, SS_RDEF,	/* XXX TBD */
1868	    "Previous task set full status") },
1869	/* DTLPWROM EBKVF */
1870	{ SST(0x2C, 0x09, SS_RDEF,	/* XXX TBD */
1871	    "Previous reservation conflict status") },
1872	/*              F */
1873	{ SST(0x2C, 0x0A, SS_RDEF,	/* XXX TBD */
1874	    "Partition or collection contains user objects") },
1875	/*  T             */
1876	{ SST(0x2C, 0x0B, SS_RDEF,	/* XXX TBD */
1877	    "Not reserved") },
1878	/* D              */
1879	{ SST(0x2C, 0x0C, SS_RDEF,	/* XXX TBD */
1880	    "ORWRITE generation does not match") },
1881	/*  T             */
1882	{ SST(0x2D, 0x00, SS_RDEF,
1883	    "Overwrite error on update in place") },
1884	/*      R         */
1885	{ SST(0x2E, 0x00, SS_RDEF,	/* XXX TBD */
1886	    "Insufficient time for operation") },
1887	/* DTLPWROMAEBKVF */
1888	{ SST(0x2F, 0x00, SS_RDEF,
1889	    "Commands cleared by another initiator") },
1890	/* D              */
1891	{ SST(0x2F, 0x01, SS_RDEF,	/* XXX TBD */
1892	    "Commands cleared by power loss notification") },
1893	/* DTLPWROMAEBKVF */
1894	{ SST(0x2F, 0x02, SS_RDEF,	/* XXX TBD */
1895	    "Commands cleared by device server") },
1896	/* DT  WROM  BK   */
1897	{ SST(0x30, 0x00, SS_RDEF,
1898	    "Incompatible medium installed") },
1899	/* DT  WRO   BK   */
1900	{ SST(0x30, 0x01, SS_RDEF,
1901	    "Cannot read medium - unknown format") },
1902	/* DT  WRO   BK   */
1903	{ SST(0x30, 0x02, SS_RDEF,
1904	    "Cannot read medium - incompatible format") },
1905	/* DT   R     K   */
1906	{ SST(0x30, 0x03, SS_RDEF,
1907	    "Cleaning cartridge installed") },
1908	/* DT  WRO   BK   */
1909	{ SST(0x30, 0x04, SS_RDEF,
1910	    "Cannot write medium - unknown format") },
1911	/* DT  WRO   BK   */
1912	{ SST(0x30, 0x05, SS_RDEF,
1913	    "Cannot write medium - incompatible format") },
1914	/* DT  WRO   B    */
1915	{ SST(0x30, 0x06, SS_RDEF,
1916	    "Cannot format medium - incompatible medium") },
1917	/* DTL WROMAEBKVF */
1918	{ SST(0x30, 0x07, SS_RDEF,
1919	    "Cleaning failure") },
1920	/*      R         */
1921	{ SST(0x30, 0x08, SS_RDEF,
1922	    "Cannot write - application code mismatch") },
1923	/*      R         */
1924	{ SST(0x30, 0x09, SS_RDEF,
1925	    "Current session not fixated for append") },
1926	/* DT  WRO AEBK   */
1927	{ SST(0x30, 0x0A, SS_RDEF,	/* XXX TBD */
1928	    "Cleaning request rejected") },
1929	/*  T             */
1930	{ SST(0x30, 0x0C, SS_RDEF,	/* XXX TBD */
1931	    "WORM medium - overwrite attempted") },
1932	/*  T             */
1933	{ SST(0x30, 0x0D, SS_RDEF,	/* XXX TBD */
1934	    "WORM medium - integrity check") },
1935	/*      R         */
1936	{ SST(0x30, 0x10, SS_RDEF,	/* XXX TBD */
1937	    "Medium not formatted") },
1938	/*        M       */
1939	{ SST(0x30, 0x11, SS_RDEF,	/* XXX TBD */
1940	    "Incompatible volume type") },
1941	/*        M       */
1942	{ SST(0x30, 0x12, SS_RDEF,	/* XXX TBD */
1943	    "Incompatible volume qualifier") },
1944	/*        M       */
1945	{ SST(0x30, 0x13, SS_RDEF,	/* XXX TBD */
1946	    "Cleaning volume expired") },
1947	/* DT  WRO   BK   */
1948	{ SST(0x31, 0x00, SS_RDEF,
1949	    "Medium format corrupted") },
1950	/* D L  RO   B    */
1951	{ SST(0x31, 0x01, SS_RDEF,
1952	    "Format command failed") },
1953	/*      R         */
1954	{ SST(0x31, 0x02, SS_RDEF,	/* XXX TBD */
1955	    "Zoned formatting failed due to spare linking") },
1956	/* D         B    */
1957	{ SST(0x31, 0x03, SS_RDEF,	/* XXX TBD */
1958	    "SANITIZE command failed") },
1959	/* D   W O   BK   */
1960	{ SST(0x32, 0x00, SS_RDEF,
1961	    "No defect spare location available") },
1962	/* D   W O   BK   */
1963	{ SST(0x32, 0x01, SS_RDEF,
1964	    "Defect list update failure") },
1965	/*  T             */
1966	{ SST(0x33, 0x00, SS_RDEF,
1967	    "Tape length error") },
1968	/* DTLPWROMAEBKVF */
1969	{ SST(0x34, 0x00, SS_RDEF,
1970	    "Enclosure failure") },
1971	/* DTLPWROMAEBKVF */
1972	{ SST(0x35, 0x00, SS_RDEF,
1973	    "Enclosure services failure") },
1974	/* DTLPWROMAEBKVF */
1975	{ SST(0x35, 0x01, SS_RDEF,
1976	    "Unsupported enclosure function") },
1977	/* DTLPWROMAEBKVF */
1978	{ SST(0x35, 0x02, SS_RDEF,
1979	    "Enclosure services unavailable") },
1980	/* DTLPWROMAEBKVF */
1981	{ SST(0x35, 0x03, SS_RDEF,
1982	    "Enclosure services transfer failure") },
1983	/* DTLPWROMAEBKVF */
1984	{ SST(0x35, 0x04, SS_RDEF,
1985	    "Enclosure services transfer refused") },
1986	/* DTL WROMAEBKVF */
1987	{ SST(0x35, 0x05, SS_RDEF,	/* XXX TBD */
1988	    "Enclosure services checksum error") },
1989	/*   L            */
1990	{ SST(0x36, 0x00, SS_RDEF,
1991	    "Ribbon, ink, or toner failure") },
1992	/* DTL WROMAEBKVF */
1993	{ SST(0x37, 0x00, SS_RDEF,
1994	    "Rounded parameter") },
1995	/*           B    */
1996	{ SST(0x38, 0x00, SS_RDEF,	/* XXX TBD */
1997	    "Event status notification") },
1998	/*           B    */
1999	{ SST(0x38, 0x02, SS_RDEF,	/* XXX TBD */
2000	    "ESN - power management class event") },
2001	/*           B    */
2002	{ SST(0x38, 0x04, SS_RDEF,	/* XXX TBD */
2003	    "ESN - media class event") },
2004	/*           B    */
2005	{ SST(0x38, 0x06, SS_RDEF,	/* XXX TBD */
2006	    "ESN - device busy class event") },
2007	/* D              */
2008	{ SST(0x38, 0x07, SS_RDEF,	/* XXX TBD */
2009	    "Thin provisioning soft threshold reached") },
2010	/* DTL WROMAE K   */
2011	{ SST(0x39, 0x00, SS_RDEF,
2012	    "Saving parameters not supported") },
2013	/* DTL WROM  BK   */
2014	{ SST(0x3A, 0x00, SS_FATAL | ENXIO,
2015	    "Medium not present") },
2016	/* DT  WROM  BK   */
2017	{ SST(0x3A, 0x01, SS_FATAL | ENXIO,
2018	    "Medium not present - tray closed") },
2019	/* DT  WROM  BK   */
2020	{ SST(0x3A, 0x02, SS_FATAL | ENXIO,
2021	    "Medium not present - tray open") },
2022	/* DT  WROM  B    */
2023	{ SST(0x3A, 0x03, SS_RDEF,	/* XXX TBD */
2024	    "Medium not present - loadable") },
2025	/* DT  WRO   B    */
2026	{ SST(0x3A, 0x04, SS_RDEF,	/* XXX TBD */
2027	    "Medium not present - medium auxiliary memory accessible") },
2028	/*  TL            */
2029	{ SST(0x3B, 0x00, SS_RDEF,
2030	    "Sequential positioning error") },
2031	/*  T             */
2032	{ SST(0x3B, 0x01, SS_RDEF,
2033	    "Tape position error at beginning-of-medium") },
2034	/*  T             */
2035	{ SST(0x3B, 0x02, SS_RDEF,
2036	    "Tape position error at end-of-medium") },
2037	/*   L            */
2038	{ SST(0x3B, 0x03, SS_RDEF,
2039	    "Tape or electronic vertical forms unit not ready") },
2040	/*   L            */
2041	{ SST(0x3B, 0x04, SS_RDEF,
2042	    "Slew failure") },
2043	/*   L            */
2044	{ SST(0x3B, 0x05, SS_RDEF,
2045	    "Paper jam") },
2046	/*   L            */
2047	{ SST(0x3B, 0x06, SS_RDEF,
2048	    "Failed to sense top-of-form") },
2049	/*   L            */
2050	{ SST(0x3B, 0x07, SS_RDEF,
2051	    "Failed to sense bottom-of-form") },
2052	/*  T             */
2053	{ SST(0x3B, 0x08, SS_RDEF,
2054	    "Reposition error") },
2055	/*                */
2056	{ SST(0x3B, 0x09, SS_RDEF,
2057	    "Read past end of medium") },
2058	/*                */
2059	{ SST(0x3B, 0x0A, SS_RDEF,
2060	    "Read past beginning of medium") },
2061	/*                */
2062	{ SST(0x3B, 0x0B, SS_RDEF,
2063	    "Position past end of medium") },
2064	/*  T             */
2065	{ SST(0x3B, 0x0C, SS_RDEF,
2066	    "Position past beginning of medium") },
2067	/* DT  WROM  BK   */
2068	{ SST(0x3B, 0x0D, SS_FATAL | ENOSPC,
2069	    "Medium destination element full") },
2070	/* DT  WROM  BK   */
2071	{ SST(0x3B, 0x0E, SS_RDEF,
2072	    "Medium source element empty") },
2073	/*      R         */
2074	{ SST(0x3B, 0x0F, SS_RDEF,
2075	    "End of medium reached") },
2076	/* DT  WROM  BK   */
2077	{ SST(0x3B, 0x11, SS_RDEF,
2078	    "Medium magazine not accessible") },
2079	/* DT  WROM  BK   */
2080	{ SST(0x3B, 0x12, SS_RDEF,
2081	    "Medium magazine removed") },
2082	/* DT  WROM  BK   */
2083	{ SST(0x3B, 0x13, SS_RDEF,
2084	    "Medium magazine inserted") },
2085	/* DT  WROM  BK   */
2086	{ SST(0x3B, 0x14, SS_RDEF,
2087	    "Medium magazine locked") },
2088	/* DT  WROM  BK   */
2089	{ SST(0x3B, 0x15, SS_RDEF,
2090	    "Medium magazine unlocked") },
2091	/*      R         */
2092	{ SST(0x3B, 0x16, SS_RDEF,	/* XXX TBD */
2093	    "Mechanical positioning or changer error") },
2094	/*              F */
2095	{ SST(0x3B, 0x17, SS_RDEF,	/* XXX TBD */
2096	    "Read past end of user object") },
2097	/*        M       */
2098	{ SST(0x3B, 0x18, SS_RDEF,	/* XXX TBD */
2099	    "Element disabled") },
2100	/*        M       */
2101	{ SST(0x3B, 0x19, SS_RDEF,	/* XXX TBD */
2102	    "Element enabled") },
2103	/*        M       */
2104	{ SST(0x3B, 0x1A, SS_RDEF,	/* XXX TBD */
2105	    "Data transfer device removed") },
2106	/*        M       */
2107	{ SST(0x3B, 0x1B, SS_RDEF,	/* XXX TBD */
2108	    "Data transfer device inserted") },
2109	/*  T             */
2110	{ SST(0x3B, 0x1C, SS_RDEF,	/* XXX TBD */
2111	    "Too many logical objects on partition to support operation") },
2112	/* DTLPWROMAE K   */
2113	{ SST(0x3D, 0x00, SS_RDEF,
2114	    "Invalid bits in IDENTIFY message") },
2115	/* DTLPWROMAEBKVF */
2116	{ SST(0x3E, 0x00, SS_RDEF,
2117	    "Logical unit has not self-configured yet") },
2118	/* DTLPWROMAEBKVF */
2119	{ SST(0x3E, 0x01, SS_RDEF,
2120	    "Logical unit failure") },
2121	/* DTLPWROMAEBKVF */
2122	{ SST(0x3E, 0x02, SS_RDEF,
2123	    "Timeout on logical unit") },
2124	/* DTLPWROMAEBKVF */
2125	{ SST(0x3E, 0x03, SS_RDEF,	/* XXX TBD */
2126	    "Logical unit failed self-test") },
2127	/* DTLPWROMAEBKVF */
2128	{ SST(0x3E, 0x04, SS_RDEF,	/* XXX TBD */
2129	    "Logical unit unable to update self-test log") },
2130	/* DTLPWROMAEBKVF */
2131	{ SST(0x3F, 0x00, SS_RDEF,
2132	    "Target operating conditions have changed") },
2133	/* DTLPWROMAEBKVF */
2134	{ SST(0x3F, 0x01, SS_RDEF,
2135	    "Microcode has been changed") },
2136	/* DTLPWROM  BK   */
2137	{ SST(0x3F, 0x02, SS_RDEF,
2138	    "Changed operating definition") },
2139	/* DTLPWROMAEBKVF */
2140	{ SST(0x3F, 0x03, SS_RDEF,
2141	    "INQUIRY data has changed") },
2142	/* DT  WROMAEBK   */
2143	{ SST(0x3F, 0x04, SS_RDEF,
2144	    "Component device attached") },
2145	/* DT  WROMAEBK   */
2146	{ SST(0x3F, 0x05, SS_RDEF,
2147	    "Device identifier changed") },
2148	/* DT  WROMAEB    */
2149	{ SST(0x3F, 0x06, SS_RDEF,
2150	    "Redundancy group created or modified") },
2151	/* DT  WROMAEB    */
2152	{ SST(0x3F, 0x07, SS_RDEF,
2153	    "Redundancy group deleted") },
2154	/* DT  WROMAEB    */
2155	{ SST(0x3F, 0x08, SS_RDEF,
2156	    "Spare created or modified") },
2157	/* DT  WROMAEB    */
2158	{ SST(0x3F, 0x09, SS_RDEF,
2159	    "Spare deleted") },
2160	/* DT  WROMAEBK   */
2161	{ SST(0x3F, 0x0A, SS_RDEF,
2162	    "Volume set created or modified") },
2163	/* DT  WROMAEBK   */
2164	{ SST(0x3F, 0x0B, SS_RDEF,
2165	    "Volume set deleted") },
2166	/* DT  WROMAEBK   */
2167	{ SST(0x3F, 0x0C, SS_RDEF,
2168	    "Volume set deassigned") },
2169	/* DT  WROMAEBK   */
2170	{ SST(0x3F, 0x0D, SS_RDEF,
2171	    "Volume set reassigned") },
2172	/* DTLPWROMAE     */
2173	{ SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN ,
2174	    "Reported LUNs data has changed") },
2175	/* DTLPWROMAEBKVF */
2176	{ SST(0x3F, 0x0F, SS_RDEF,	/* XXX TBD */
2177	    "Echo buffer overwritten") },
2178	/* DT  WROM  B    */
2179	{ SST(0x3F, 0x10, SS_RDEF,	/* XXX TBD */
2180	    "Medium loadable") },
2181	/* DT  WROM  B    */
2182	{ SST(0x3F, 0x11, SS_RDEF,	/* XXX TBD */
2183	    "Medium auxiliary memory accessible") },
2184	/* DTLPWR MAEBK F */
2185	{ SST(0x3F, 0x12, SS_RDEF,	/* XXX TBD */
2186	    "iSCSI IP address added") },
2187	/* DTLPWR MAEBK F */
2188	{ SST(0x3F, 0x13, SS_RDEF,	/* XXX TBD */
2189	    "iSCSI IP address removed") },
2190	/* DTLPWR MAEBK F */
2191	{ SST(0x3F, 0x14, SS_RDEF,	/* XXX TBD */
2192	    "iSCSI IP address changed") },
2193	/* D              */
2194	{ SST(0x40, 0x00, SS_RDEF,
2195	    "RAM failure") },		/* deprecated - use 40 NN instead */
2196	/* DTLPWROMAEBKVF */
2197	{ SST(0x40, 0x80, SS_RDEF,
2198	    "Diagnostic failure: ASCQ = Component ID") },
2199	/* DTLPWROMAEBKVF */
2200	{ SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE,
2201	    NULL) },			/* Range 0x80->0xFF */
2202	/* D              */
2203	{ SST(0x41, 0x00, SS_RDEF,
2204	    "Data path failure") },	/* deprecated - use 40 NN instead */
2205	/* D              */
2206	{ SST(0x42, 0x00, SS_RDEF,
2207	    "Power-on or self-test failure") },
2208					/* deprecated - use 40 NN instead */
2209	/* DTLPWROMAEBKVF */
2210	{ SST(0x43, 0x00, SS_RDEF,
2211	    "Message error") },
2212	/* DTLPWROMAEBKVF */
2213	{ SST(0x44, 0x00, SS_RDEF,
2214	    "Internal target failure") },
2215	/* DT P   MAEBKVF */
2216	{ SST(0x44, 0x01, SS_RDEF,	/* XXX TBD */
2217	    "Persistent reservation information lost") },
2218	/* DT        B    */
2219	{ SST(0x44, 0x71, SS_RDEF,	/* XXX TBD */
2220	    "ATA device failed set features") },
2221	/* DTLPWROMAEBKVF */
2222	{ SST(0x45, 0x00, SS_RDEF,
2223	    "Select or reselect failure") },
2224	/* DTLPWROM  BK   */
2225	{ SST(0x46, 0x00, SS_RDEF,
2226	    "Unsuccessful soft reset") },
2227	/* DTLPWROMAEBKVF */
2228	{ SST(0x47, 0x00, SS_RDEF,
2229	    "SCSI parity error") },
2230	/* DTLPWROMAEBKVF */
2231	{ SST(0x47, 0x01, SS_RDEF,	/* XXX TBD */
2232	    "Data phase CRC error detected") },
2233	/* DTLPWROMAEBKVF */
2234	{ SST(0x47, 0x02, SS_RDEF,	/* XXX TBD */
2235	    "SCSI parity error detected during ST data phase") },
2236	/* DTLPWROMAEBKVF */
2237	{ SST(0x47, 0x03, SS_RDEF,	/* XXX TBD */
2238	    "Information unit iuCRC error detected") },
2239	/* DTLPWROMAEBKVF */
2240	{ SST(0x47, 0x04, SS_RDEF,	/* XXX TBD */
2241	    "Asynchronous information protection error detected") },
2242	/* DTLPWROMAEBKVF */
2243	{ SST(0x47, 0x05, SS_RDEF,	/* XXX TBD */
2244	    "Protocol service CRC error") },
2245	/* DT     MAEBKVF */
2246	{ SST(0x47, 0x06, SS_RDEF,	/* XXX TBD */
2247	    "PHY test function in progress") },
2248	/* DT PWROMAEBK   */
2249	{ SST(0x47, 0x7F, SS_RDEF,	/* XXX TBD */
2250	    "Some commands cleared by iSCSI protocol event") },
2251	/* DTLPWROMAEBKVF */
2252	{ SST(0x48, 0x00, SS_RDEF,
2253	    "Initiator detected error message received") },
2254	/* DTLPWROMAEBKVF */
2255	{ SST(0x49, 0x00, SS_RDEF,
2256	    "Invalid message error") },
2257	/* DTLPWROMAEBKVF */
2258	{ SST(0x4A, 0x00, SS_RDEF,
2259	    "Command phase error") },
2260	/* DTLPWROMAEBKVF */
2261	{ SST(0x4B, 0x00, SS_RDEF,
2262	    "Data phase error") },
2263	/* DT PWROMAEBK   */
2264	{ SST(0x4B, 0x01, SS_RDEF,	/* XXX TBD */
2265	    "Invalid target port transfer tag received") },
2266	/* DT PWROMAEBK   */
2267	{ SST(0x4B, 0x02, SS_RDEF,	/* XXX TBD */
2268	    "Too much write data") },
2269	/* DT PWROMAEBK   */
2270	{ SST(0x4B, 0x03, SS_RDEF,	/* XXX TBD */
2271	    "ACK/NAK timeout") },
2272	/* DT PWROMAEBK   */
2273	{ SST(0x4B, 0x04, SS_RDEF,	/* XXX TBD */
2274	    "NAK received") },
2275	/* DT PWROMAEBK   */
2276	{ SST(0x4B, 0x05, SS_RDEF,	/* XXX TBD */
2277	    "Data offset error") },
2278	/* DT PWROMAEBK   */
2279	{ SST(0x4B, 0x06, SS_RDEF,	/* XXX TBD */
2280	    "Initiator response timeout") },
2281	/* DT PWROMAEBK F */
2282	{ SST(0x4B, 0x07, SS_RDEF,	/* XXX TBD */
2283	    "Connection lost") },
2284	/* DT PWROMAEBK F */
2285	{ SST(0x4B, 0x08, SS_RDEF,	/* XXX TBD */
2286	    "Data-in buffer overflow - data buffer size") },
2287	/* DT PWROMAEBK F */
2288	{ SST(0x4B, 0x09, SS_RDEF,	/* XXX TBD */
2289	    "Data-in buffer overflow - data buffer descriptor area") },
2290	/* DT PWROMAEBK F */
2291	{ SST(0x4B, 0x0A, SS_RDEF,	/* XXX TBD */
2292	    "Data-in buffer error") },
2293	/* DT PWROMAEBK F */
2294	{ SST(0x4B, 0x0B, SS_RDEF,	/* XXX TBD */
2295	    "Data-out buffer overflow - data buffer size") },
2296	/* DT PWROMAEBK F */
2297	{ SST(0x4B, 0x0C, SS_RDEF,	/* XXX TBD */
2298	    "Data-out buffer overflow - data buffer descriptor area") },
2299	/* DT PWROMAEBK F */
2300	{ SST(0x4B, 0x0D, SS_RDEF,	/* XXX TBD */
2301	    "Data-out buffer error") },
2302	/* DTLPWROMAEBKVF */
2303	{ SST(0x4C, 0x00, SS_RDEF,
2304	    "Logical unit failed self-configuration") },
2305	/* DTLPWROMAEBKVF */
2306	{ SST(0x4D, 0x00, SS_RDEF,
2307	    "Tagged overlapped commands: ASCQ = Queue tag ID") },
2308	/* DTLPWROMAEBKVF */
2309	{ SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE,
2310	    NULL) },			/* Range 0x00->0xFF */
2311	/* DTLPWROMAEBKVF */
2312	{ SST(0x4E, 0x00, SS_RDEF,
2313	    "Overlapped commands attempted") },
2314	/*  T             */
2315	{ SST(0x50, 0x00, SS_RDEF,
2316	    "Write append error") },
2317	/*  T             */
2318	{ SST(0x50, 0x01, SS_RDEF,
2319	    "Write append position error") },
2320	/*  T             */
2321	{ SST(0x50, 0x02, SS_RDEF,
2322	    "Position error related to timing") },
2323	/*  T   RO        */
2324	{ SST(0x51, 0x00, SS_RDEF,
2325	    "Erase failure") },
2326	/*      R         */
2327	{ SST(0x51, 0x01, SS_RDEF,	/* XXX TBD */
2328	    "Erase failure - incomplete erase operation detected") },
2329	/*  T             */
2330	{ SST(0x52, 0x00, SS_RDEF,
2331	    "Cartridge fault") },
2332	/* DTL WROM  BK   */
2333	{ SST(0x53, 0x00, SS_RDEF,
2334	    "Media load or eject failed") },
2335	/*  T             */
2336	{ SST(0x53, 0x01, SS_RDEF,
2337	    "Unload tape failure") },
2338	/* DT  WROM  BK   */
2339	{ SST(0x53, 0x02, SS_RDEF,
2340	    "Medium removal prevented") },
2341	/*        M       */
2342	{ SST(0x53, 0x03, SS_RDEF,	/* XXX TBD */
2343	    "Medium removal prevented by data transfer element") },
2344	/*  T             */
2345	{ SST(0x53, 0x04, SS_RDEF,	/* XXX TBD */
2346	    "Medium thread or unthread failure") },
2347	/*        M       */
2348	{ SST(0x53, 0x05, SS_RDEF,	/* XXX TBD */
2349	    "Volume identifier invalid") },
2350	/*  T             */
2351	{ SST(0x53, 0x06, SS_RDEF,	/* XXX TBD */
2352	    "Volume identifier missing") },
2353	/*        M       */
2354	{ SST(0x53, 0x07, SS_RDEF,	/* XXX TBD */
2355	    "Duplicate volume identifier") },
2356	/*        M       */
2357	{ SST(0x53, 0x08, SS_RDEF,	/* XXX TBD */
2358	    "Element status unknown") },
2359	/*    P           */
2360	{ SST(0x54, 0x00, SS_RDEF,
2361	    "SCSI to host system interface failure") },
2362	/*    P           */
2363	{ SST(0x55, 0x00, SS_RDEF,
2364	    "System resource failure") },
2365	/* D     O   BK   */
2366	{ SST(0x55, 0x01, SS_FATAL | ENOSPC,
2367	    "System buffer full") },
2368	/* DTLPWROMAE K   */
2369	{ SST(0x55, 0x02, SS_RDEF,	/* XXX TBD */
2370	    "Insufficient reservation resources") },
2371	/* DTLPWROMAE K   */
2372	{ SST(0x55, 0x03, SS_RDEF,	/* XXX TBD */
2373	    "Insufficient resources") },
2374	/* DTLPWROMAE K   */
2375	{ SST(0x55, 0x04, SS_RDEF,	/* XXX TBD */
2376	    "Insufficient registration resources") },
2377	/* DT PWROMAEBK   */
2378	{ SST(0x55, 0x05, SS_RDEF,	/* XXX TBD */
2379	    "Insufficient access control resources") },
2380	/* DT  WROM  B    */
2381	{ SST(0x55, 0x06, SS_RDEF,	/* XXX TBD */
2382	    "Auxiliary memory out of space") },
2383	/*              F */
2384	{ SST(0x55, 0x07, SS_RDEF,	/* XXX TBD */
2385	    "Quota error") },
2386	/*  T             */
2387	{ SST(0x55, 0x08, SS_RDEF,	/* XXX TBD */
2388	    "Maximum number of supplemental decryption keys exceeded") },
2389	/*        M       */
2390	{ SST(0x55, 0x09, SS_RDEF,	/* XXX TBD */
2391	    "Medium auxiliary memory not accessible") },
2392	/*        M       */
2393	{ SST(0x55, 0x0A, SS_RDEF,	/* XXX TBD */
2394	    "Data currently unavailable") },
2395	/* DTLPWROMAEBKVF */
2396	{ SST(0x55, 0x0B, SS_RDEF,	/* XXX TBD */
2397	    "Insufficient power for operation") },
2398	/* DT P      B    */
2399	{ SST(0x55, 0x0C, SS_RDEF,	/* XXX TBD */
2400	    "Insufficient resources to create ROD") },
2401	/* DT P      B    */
2402	{ SST(0x55, 0x0D, SS_RDEF,	/* XXX TBD */
2403	    "Insufficient resources to create ROD token") },
2404	/*      R         */
2405	{ SST(0x57, 0x00, SS_RDEF,
2406	    "Unable to recover table-of-contents") },
2407	/*       O        */
2408	{ SST(0x58, 0x00, SS_RDEF,
2409	    "Generation does not exist") },
2410	/*       O        */
2411	{ SST(0x59, 0x00, SS_RDEF,
2412	    "Updated block read") },
2413	/* DTLPWRO   BK   */
2414	{ SST(0x5A, 0x00, SS_RDEF,
2415	    "Operator request or state change input") },
2416	/* DT  WROM  BK   */
2417	{ SST(0x5A, 0x01, SS_RDEF,
2418	    "Operator medium removal request") },
2419	/* DT  WRO A BK   */
2420	{ SST(0x5A, 0x02, SS_RDEF,
2421	    "Operator selected write protect") },
2422	/* DT  WRO A BK   */
2423	{ SST(0x5A, 0x03, SS_RDEF,
2424	    "Operator selected write permit") },
2425	/* DTLPWROM   K   */
2426	{ SST(0x5B, 0x00, SS_RDEF,
2427	    "Log exception") },
2428	/* DTLPWROM   K   */
2429	{ SST(0x5B, 0x01, SS_RDEF,
2430	    "Threshold condition met") },
2431	/* DTLPWROM   K   */
2432	{ SST(0x5B, 0x02, SS_RDEF,
2433	    "Log counter at maximum") },
2434	/* DTLPWROM   K   */
2435	{ SST(0x5B, 0x03, SS_RDEF,
2436	    "Log list codes exhausted") },
2437	/* D     O        */
2438	{ SST(0x5C, 0x00, SS_RDEF,
2439	    "RPL status change") },
2440	/* D     O        */
2441	{ SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
2442	    "Spindles synchronized") },
2443	/* D     O        */
2444	{ SST(0x5C, 0x02, SS_RDEF,
2445	    "Spindles not synchronized") },
2446	/* DTLPWROMAEBKVF */
2447	{ SST(0x5D, 0x00, SS_RDEF,
2448	    "Failure prediction threshold exceeded") },
2449	/*      R    B    */
2450	{ SST(0x5D, 0x01, SS_RDEF,	/* XXX TBD */
2451	    "Media failure prediction threshold exceeded") },
2452	/*      R         */
2453	{ SST(0x5D, 0x02, SS_RDEF,	/* XXX TBD */
2454	    "Logical unit failure prediction threshold exceeded") },
2455	/*      R         */
2456	{ SST(0x5D, 0x03, SS_RDEF,	/* XXX TBD */
2457	    "Spare area exhaustion prediction threshold exceeded") },
2458	/* D         B    */
2459	{ SST(0x5D, 0x10, SS_RDEF,	/* XXX TBD */
2460	    "Hardware impending failure general hard drive failure") },
2461	/* D         B    */
2462	{ SST(0x5D, 0x11, SS_RDEF,	/* XXX TBD */
2463	    "Hardware impending failure drive error rate too high") },
2464	/* D         B    */
2465	{ SST(0x5D, 0x12, SS_RDEF,	/* XXX TBD */
2466	    "Hardware impending failure data error rate too high") },
2467	/* D         B    */
2468	{ SST(0x5D, 0x13, SS_RDEF,	/* XXX TBD */
2469	    "Hardware impending failure seek error rate too high") },
2470	/* D         B    */
2471	{ SST(0x5D, 0x14, SS_RDEF,	/* XXX TBD */
2472	    "Hardware impending failure too many block reassigns") },
2473	/* D         B    */
2474	{ SST(0x5D, 0x15, SS_RDEF,	/* XXX TBD */
2475	    "Hardware impending failure access times too high") },
2476	/* D         B    */
2477	{ SST(0x5D, 0x16, SS_RDEF,	/* XXX TBD */
2478	    "Hardware impending failure start unit times too high") },
2479	/* D         B    */
2480	{ SST(0x5D, 0x17, SS_RDEF,	/* XXX TBD */
2481	    "Hardware impending failure channel parametrics") },
2482	/* D         B    */
2483	{ SST(0x5D, 0x18, SS_RDEF,	/* XXX TBD */
2484	    "Hardware impending failure controller detected") },
2485	/* D         B    */
2486	{ SST(0x5D, 0x19, SS_RDEF,	/* XXX TBD */
2487	    "Hardware impending failure throughput performance") },
2488	/* D         B    */
2489	{ SST(0x5D, 0x1A, SS_RDEF,	/* XXX TBD */
2490	    "Hardware impending failure seek time performance") },
2491	/* D         B    */
2492	{ SST(0x5D, 0x1B, SS_RDEF,	/* XXX TBD */
2493	    "Hardware impending failure spin-up retry count") },
2494	/* D         B    */
2495	{ SST(0x5D, 0x1C, SS_RDEF,	/* XXX TBD */
2496	    "Hardware impending failure drive calibration retry count") },
2497	/* D         B    */
2498	{ SST(0x5D, 0x20, SS_RDEF,	/* XXX TBD */
2499	    "Controller impending failure general hard drive failure") },
2500	/* D         B    */
2501	{ SST(0x5D, 0x21, SS_RDEF,	/* XXX TBD */
2502	    "Controller impending failure drive error rate too high") },
2503	/* D         B    */
2504	{ SST(0x5D, 0x22, SS_RDEF,	/* XXX TBD */
2505	    "Controller impending failure data error rate too high") },
2506	/* D         B    */
2507	{ SST(0x5D, 0x23, SS_RDEF,	/* XXX TBD */
2508	    "Controller impending failure seek error rate too high") },
2509	/* D         B    */
2510	{ SST(0x5D, 0x24, SS_RDEF,	/* XXX TBD */
2511	    "Controller impending failure too many block reassigns") },
2512	/* D         B    */
2513	{ SST(0x5D, 0x25, SS_RDEF,	/* XXX TBD */
2514	    "Controller impending failure access times too high") },
2515	/* D         B    */
2516	{ SST(0x5D, 0x26, SS_RDEF,	/* XXX TBD */
2517	    "Controller impending failure start unit times too high") },
2518	/* D         B    */
2519	{ SST(0x5D, 0x27, SS_RDEF,	/* XXX TBD */
2520	    "Controller impending failure channel parametrics") },
2521	/* D         B    */
2522	{ SST(0x5D, 0x28, SS_RDEF,	/* XXX TBD */
2523	    "Controller impending failure controller detected") },
2524	/* D         B    */
2525	{ SST(0x5D, 0x29, SS_RDEF,	/* XXX TBD */
2526	    "Controller impending failure throughput performance") },
2527	/* D         B    */
2528	{ SST(0x5D, 0x2A, SS_RDEF,	/* XXX TBD */
2529	    "Controller impending failure seek time performance") },
2530	/* D         B    */
2531	{ SST(0x5D, 0x2B, SS_RDEF,	/* XXX TBD */
2532	    "Controller impending failure spin-up retry count") },
2533	/* D         B    */
2534	{ SST(0x5D, 0x2C, SS_RDEF,	/* XXX TBD */
2535	    "Controller impending failure drive calibration retry count") },
2536	/* D         B    */
2537	{ SST(0x5D, 0x30, SS_RDEF,	/* XXX TBD */
2538	    "Data channel impending failure general hard drive failure") },
2539	/* D         B    */
2540	{ SST(0x5D, 0x31, SS_RDEF,	/* XXX TBD */
2541	    "Data channel impending failure drive error rate too high") },
2542	/* D         B    */
2543	{ SST(0x5D, 0x32, SS_RDEF,	/* XXX TBD */
2544	    "Data channel impending failure data error rate too high") },
2545	/* D         B    */
2546	{ SST(0x5D, 0x33, SS_RDEF,	/* XXX TBD */
2547	    "Data channel impending failure seek error rate too high") },
2548	/* D         B    */
2549	{ SST(0x5D, 0x34, SS_RDEF,	/* XXX TBD */
2550	    "Data channel impending failure too many block reassigns") },
2551	/* D         B    */
2552	{ SST(0x5D, 0x35, SS_RDEF,	/* XXX TBD */
2553	    "Data channel impending failure access times too high") },
2554	/* D         B    */
2555	{ SST(0x5D, 0x36, SS_RDEF,	/* XXX TBD */
2556	    "Data channel impending failure start unit times too high") },
2557	/* D         B    */
2558	{ SST(0x5D, 0x37, SS_RDEF,	/* XXX TBD */
2559	    "Data channel impending failure channel parametrics") },
2560	/* D         B    */
2561	{ SST(0x5D, 0x38, SS_RDEF,	/* XXX TBD */
2562	    "Data channel impending failure controller detected") },
2563	/* D         B    */
2564	{ SST(0x5D, 0x39, SS_RDEF,	/* XXX TBD */
2565	    "Data channel impending failure throughput performance") },
2566	/* D         B    */
2567	{ SST(0x5D, 0x3A, SS_RDEF,	/* XXX TBD */
2568	    "Data channel impending failure seek time performance") },
2569	/* D         B    */
2570	{ SST(0x5D, 0x3B, SS_RDEF,	/* XXX TBD */
2571	    "Data channel impending failure spin-up retry count") },
2572	/* D         B    */
2573	{ SST(0x5D, 0x3C, SS_RDEF,	/* XXX TBD */
2574	    "Data channel impending failure drive calibration retry count") },
2575	/* D         B    */
2576	{ SST(0x5D, 0x40, SS_RDEF,	/* XXX TBD */
2577	    "Servo impending failure general hard drive failure") },
2578	/* D         B    */
2579	{ SST(0x5D, 0x41, SS_RDEF,	/* XXX TBD */
2580	    "Servo impending failure drive error rate too high") },
2581	/* D         B    */
2582	{ SST(0x5D, 0x42, SS_RDEF,	/* XXX TBD */
2583	    "Servo impending failure data error rate too high") },
2584	/* D         B    */
2585	{ SST(0x5D, 0x43, SS_RDEF,	/* XXX TBD */
2586	    "Servo impending failure seek error rate too high") },
2587	/* D         B    */
2588	{ SST(0x5D, 0x44, SS_RDEF,	/* XXX TBD */
2589	    "Servo impending failure too many block reassigns") },
2590	/* D         B    */
2591	{ SST(0x5D, 0x45, SS_RDEF,	/* XXX TBD */
2592	    "Servo impending failure access times too high") },
2593	/* D         B    */
2594	{ SST(0x5D, 0x46, SS_RDEF,	/* XXX TBD */
2595	    "Servo impending failure start unit times too high") },
2596	/* D         B    */
2597	{ SST(0x5D, 0x47, SS_RDEF,	/* XXX TBD */
2598	    "Servo impending failure channel parametrics") },
2599	/* D         B    */
2600	{ SST(0x5D, 0x48, SS_RDEF,	/* XXX TBD */
2601	    "Servo impending failure controller detected") },
2602	/* D         B    */
2603	{ SST(0x5D, 0x49, SS_RDEF,	/* XXX TBD */
2604	    "Servo impending failure throughput performance") },
2605	/* D         B    */
2606	{ SST(0x5D, 0x4A, SS_RDEF,	/* XXX TBD */
2607	    "Servo impending failure seek time performance") },
2608	/* D         B    */
2609	{ SST(0x5D, 0x4B, SS_RDEF,	/* XXX TBD */
2610	    "Servo impending failure spin-up retry count") },
2611	/* D         B    */
2612	{ SST(0x5D, 0x4C, SS_RDEF,	/* XXX TBD */
2613	    "Servo impending failure drive calibration retry count") },
2614	/* D         B    */
2615	{ SST(0x5D, 0x50, SS_RDEF,	/* XXX TBD */
2616	    "Spindle impending failure general hard drive failure") },
2617	/* D         B    */
2618	{ SST(0x5D, 0x51, SS_RDEF,	/* XXX TBD */
2619	    "Spindle impending failure drive error rate too high") },
2620	/* D         B    */
2621	{ SST(0x5D, 0x52, SS_RDEF,	/* XXX TBD */
2622	    "Spindle impending failure data error rate too high") },
2623	/* D         B    */
2624	{ SST(0x5D, 0x53, SS_RDEF,	/* XXX TBD */
2625	    "Spindle impending failure seek error rate too high") },
2626	/* D         B    */
2627	{ SST(0x5D, 0x54, SS_RDEF,	/* XXX TBD */
2628	    "Spindle impending failure too many block reassigns") },
2629	/* D         B    */
2630	{ SST(0x5D, 0x55, SS_RDEF,	/* XXX TBD */
2631	    "Spindle impending failure access times too high") },
2632	/* D         B    */
2633	{ SST(0x5D, 0x56, SS_RDEF,	/* XXX TBD */
2634	    "Spindle impending failure start unit times too high") },
2635	/* D         B    */
2636	{ SST(0x5D, 0x57, SS_RDEF,	/* XXX TBD */
2637	    "Spindle impending failure channel parametrics") },
2638	/* D         B    */
2639	{ SST(0x5D, 0x58, SS_RDEF,	/* XXX TBD */
2640	    "Spindle impending failure controller detected") },
2641	/* D         B    */
2642	{ SST(0x5D, 0x59, SS_RDEF,	/* XXX TBD */
2643	    "Spindle impending failure throughput performance") },
2644	/* D         B    */
2645	{ SST(0x5D, 0x5A, SS_RDEF,	/* XXX TBD */
2646	    "Spindle impending failure seek time performance") },
2647	/* D         B    */
2648	{ SST(0x5D, 0x5B, SS_RDEF,	/* XXX TBD */
2649	    "Spindle impending failure spin-up retry count") },
2650	/* D         B    */
2651	{ SST(0x5D, 0x5C, SS_RDEF,	/* XXX TBD */
2652	    "Spindle impending failure drive calibration retry count") },
2653	/* D         B    */
2654	{ SST(0x5D, 0x60, SS_RDEF,	/* XXX TBD */
2655	    "Firmware impending failure general hard drive failure") },
2656	/* D         B    */
2657	{ SST(0x5D, 0x61, SS_RDEF,	/* XXX TBD */
2658	    "Firmware impending failure drive error rate too high") },
2659	/* D         B    */
2660	{ SST(0x5D, 0x62, SS_RDEF,	/* XXX TBD */
2661	    "Firmware impending failure data error rate too high") },
2662	/* D         B    */
2663	{ SST(0x5D, 0x63, SS_RDEF,	/* XXX TBD */
2664	    "Firmware impending failure seek error rate too high") },
2665	/* D         B    */
2666	{ SST(0x5D, 0x64, SS_RDEF,	/* XXX TBD */
2667	    "Firmware impending failure too many block reassigns") },
2668	/* D         B    */
2669	{ SST(0x5D, 0x65, SS_RDEF,	/* XXX TBD */
2670	    "Firmware impending failure access times too high") },
2671	/* D         B    */
2672	{ SST(0x5D, 0x66, SS_RDEF,	/* XXX TBD */
2673	    "Firmware impending failure start unit times too high") },
2674	/* D         B    */
2675	{ SST(0x5D, 0x67, SS_RDEF,	/* XXX TBD */
2676	    "Firmware impending failure channel parametrics") },
2677	/* D         B    */
2678	{ SST(0x5D, 0x68, SS_RDEF,	/* XXX TBD */
2679	    "Firmware impending failure controller detected") },
2680	/* D         B    */
2681	{ SST(0x5D, 0x69, SS_RDEF,	/* XXX TBD */
2682	    "Firmware impending failure throughput performance") },
2683	/* D         B    */
2684	{ SST(0x5D, 0x6A, SS_RDEF,	/* XXX TBD */
2685	    "Firmware impending failure seek time performance") },
2686	/* D         B    */
2687	{ SST(0x5D, 0x6B, SS_RDEF,	/* XXX TBD */
2688	    "Firmware impending failure spin-up retry count") },
2689	/* D         B    */
2690	{ SST(0x5D, 0x6C, SS_RDEF,	/* XXX TBD */
2691	    "Firmware impending failure drive calibration retry count") },
2692	/* DTLPWROMAEBKVF */
2693	{ SST(0x5D, 0xFF, SS_RDEF,
2694	    "Failure prediction threshold exceeded (false)") },
2695	/* DTLPWRO A  K   */
2696	{ SST(0x5E, 0x00, SS_RDEF,
2697	    "Low power condition on") },
2698	/* DTLPWRO A  K   */
2699	{ SST(0x5E, 0x01, SS_RDEF,
2700	    "Idle condition activated by timer") },
2701	/* DTLPWRO A  K   */
2702	{ SST(0x5E, 0x02, SS_RDEF,
2703	    "Standby condition activated by timer") },
2704	/* DTLPWRO A  K   */
2705	{ SST(0x5E, 0x03, SS_RDEF,
2706	    "Idle condition activated by command") },
2707	/* DTLPWRO A  K   */
2708	{ SST(0x5E, 0x04, SS_RDEF,
2709	    "Standby condition activated by command") },
2710	/* DTLPWRO A  K   */
2711	{ SST(0x5E, 0x05, SS_RDEF,
2712	    "Idle-B condition activated by timer") },
2713	/* DTLPWRO A  K   */
2714	{ SST(0x5E, 0x06, SS_RDEF,
2715	    "Idle-B condition activated by command") },
2716	/* DTLPWRO A  K   */
2717	{ SST(0x5E, 0x07, SS_RDEF,
2718	    "Idle-C condition activated by timer") },
2719	/* DTLPWRO A  K   */
2720	{ SST(0x5E, 0x08, SS_RDEF,
2721	    "Idle-C condition activated by command") },
2722	/* DTLPWRO A  K   */
2723	{ SST(0x5E, 0x09, SS_RDEF,
2724	    "Standby-Y condition activated by timer") },
2725	/* DTLPWRO A  K   */
2726	{ SST(0x5E, 0x0A, SS_RDEF,
2727	    "Standby-Y condition activated by command") },
2728	/*           B    */
2729	{ SST(0x5E, 0x41, SS_RDEF,	/* XXX TBD */
2730	    "Power state change to active") },
2731	/*           B    */
2732	{ SST(0x5E, 0x42, SS_RDEF,	/* XXX TBD */
2733	    "Power state change to idle") },
2734	/*           B    */
2735	{ SST(0x5E, 0x43, SS_RDEF,	/* XXX TBD */
2736	    "Power state change to standby") },
2737	/*           B    */
2738	{ SST(0x5E, 0x45, SS_RDEF,	/* XXX TBD */
2739	    "Power state change to sleep") },
2740	/*           BK   */
2741	{ SST(0x5E, 0x47, SS_RDEF,	/* XXX TBD */
2742	    "Power state change to device control") },
2743	/*                */
2744	{ SST(0x60, 0x00, SS_RDEF,
2745	    "Lamp failure") },
2746	/*                */
2747	{ SST(0x61, 0x00, SS_RDEF,
2748	    "Video acquisition error") },
2749	/*                */
2750	{ SST(0x61, 0x01, SS_RDEF,
2751	    "Unable to acquire video") },
2752	/*                */
2753	{ SST(0x61, 0x02, SS_RDEF,
2754	    "Out of focus") },
2755	/*                */
2756	{ SST(0x62, 0x00, SS_RDEF,
2757	    "Scan head positioning error") },
2758	/*      R         */
2759	{ SST(0x63, 0x00, SS_RDEF,
2760	    "End of user area encountered on this track") },
2761	/*      R         */
2762	{ SST(0x63, 0x01, SS_FATAL | ENOSPC,
2763	    "Packet does not fit in available space") },
2764	/*      R         */
2765	{ SST(0x64, 0x00, SS_FATAL | ENXIO,
2766	    "Illegal mode for this track") },
2767	/*      R         */
2768	{ SST(0x64, 0x01, SS_RDEF,
2769	    "Invalid packet size") },
2770	/* DTLPWROMAEBKVF */
2771	{ SST(0x65, 0x00, SS_RDEF,
2772	    "Voltage fault") },
2773	/*                */
2774	{ SST(0x66, 0x00, SS_RDEF,
2775	    "Automatic document feeder cover up") },
2776	/*                */
2777	{ SST(0x66, 0x01, SS_RDEF,
2778	    "Automatic document feeder lift up") },
2779	/*                */
2780	{ SST(0x66, 0x02, SS_RDEF,
2781	    "Document jam in automatic document feeder") },
2782	/*                */
2783	{ SST(0x66, 0x03, SS_RDEF,
2784	    "Document miss feed automatic in document feeder") },
2785	/*         A      */
2786	{ SST(0x67, 0x00, SS_RDEF,
2787	    "Configuration failure") },
2788	/*         A      */
2789	{ SST(0x67, 0x01, SS_RDEF,
2790	    "Configuration of incapable logical units failed") },
2791	/*         A      */
2792	{ SST(0x67, 0x02, SS_RDEF,
2793	    "Add logical unit failed") },
2794	/*         A      */
2795	{ SST(0x67, 0x03, SS_RDEF,
2796	    "Modification of logical unit failed") },
2797	/*         A      */
2798	{ SST(0x67, 0x04, SS_RDEF,
2799	    "Exchange of logical unit failed") },
2800	/*         A      */
2801	{ SST(0x67, 0x05, SS_RDEF,
2802	    "Remove of logical unit failed") },
2803	/*         A      */
2804	{ SST(0x67, 0x06, SS_RDEF,
2805	    "Attachment of logical unit failed") },
2806	/*         A      */
2807	{ SST(0x67, 0x07, SS_RDEF,
2808	    "Creation of logical unit failed") },
2809	/*         A      */
2810	{ SST(0x67, 0x08, SS_RDEF,	/* XXX TBD */
2811	    "Assign failure occurred") },
2812	/*         A      */
2813	{ SST(0x67, 0x09, SS_RDEF,	/* XXX TBD */
2814	    "Multiply assigned logical unit") },
2815	/* DTLPWROMAEBKVF */
2816	{ SST(0x67, 0x0A, SS_RDEF,	/* XXX TBD */
2817	    "Set target port groups command failed") },
2818	/* DT        B    */
2819	{ SST(0x67, 0x0B, SS_RDEF,	/* XXX TBD */
2820	    "ATA device feature not enabled") },
2821	/*         A      */
2822	{ SST(0x68, 0x00, SS_RDEF,
2823	    "Logical unit not configured") },
2824	/*         A      */
2825	{ SST(0x69, 0x00, SS_RDEF,
2826	    "Data loss on logical unit") },
2827	/*         A      */
2828	{ SST(0x69, 0x01, SS_RDEF,
2829	    "Multiple logical unit failures") },
2830	/*         A      */
2831	{ SST(0x69, 0x02, SS_RDEF,
2832	    "Parity/data mismatch") },
2833	/*         A      */
2834	{ SST(0x6A, 0x00, SS_RDEF,
2835	    "Informational, refer to log") },
2836	/*         A      */
2837	{ SST(0x6B, 0x00, SS_RDEF,
2838	    "State change has occurred") },
2839	/*         A      */
2840	{ SST(0x6B, 0x01, SS_RDEF,
2841	    "Redundancy level got better") },
2842	/*         A      */
2843	{ SST(0x6B, 0x02, SS_RDEF,
2844	    "Redundancy level got worse") },
2845	/*         A      */
2846	{ SST(0x6C, 0x00, SS_RDEF,
2847	    "Rebuild failure occurred") },
2848	/*         A      */
2849	{ SST(0x6D, 0x00, SS_RDEF,
2850	    "Recalculate failure occurred") },
2851	/*         A      */
2852	{ SST(0x6E, 0x00, SS_RDEF,
2853	    "Command to logical unit failed") },
2854	/*      R         */
2855	{ SST(0x6F, 0x00, SS_RDEF,	/* XXX TBD */
2856	    "Copy protection key exchange failure - authentication failure") },
2857	/*      R         */
2858	{ SST(0x6F, 0x01, SS_RDEF,	/* XXX TBD */
2859	    "Copy protection key exchange failure - key not present") },
2860	/*      R         */
2861	{ SST(0x6F, 0x02, SS_RDEF,	/* XXX TBD */
2862	    "Copy protection key exchange failure - key not established") },
2863	/*      R         */
2864	{ SST(0x6F, 0x03, SS_RDEF,	/* XXX TBD */
2865	    "Read of scrambled sector without authentication") },
2866	/*      R         */
2867	{ SST(0x6F, 0x04, SS_RDEF,	/* XXX TBD */
2868	    "Media region code is mismatched to logical unit region") },
2869	/*      R         */
2870	{ SST(0x6F, 0x05, SS_RDEF,	/* XXX TBD */
2871	    "Drive region must be permanent/region reset count error") },
2872	/*      R         */
2873	{ SST(0x6F, 0x06, SS_RDEF,	/* XXX TBD */
2874	    "Insufficient block count for binding NONCE recording") },
2875	/*      R         */
2876	{ SST(0x6F, 0x07, SS_RDEF,	/* XXX TBD */
2877	    "Conflict in binding NONCE recording") },
2878	/*  T             */
2879	{ SST(0x70, 0x00, SS_RDEF,
2880	    "Decompression exception short: ASCQ = Algorithm ID") },
2881	/*  T             */
2882	{ SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE,
2883	    NULL) },			/* Range 0x00 -> 0xFF */
2884	/*  T             */
2885	{ SST(0x71, 0x00, SS_RDEF,
2886	    "Decompression exception long: ASCQ = Algorithm ID") },
2887	/*  T             */
2888	{ SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE,
2889	    NULL) },			/* Range 0x00 -> 0xFF */
2890	/*      R         */
2891	{ SST(0x72, 0x00, SS_RDEF,
2892	    "Session fixation error") },
2893	/*      R         */
2894	{ SST(0x72, 0x01, SS_RDEF,
2895	    "Session fixation error writing lead-in") },
2896	/*      R         */
2897	{ SST(0x72, 0x02, SS_RDEF,
2898	    "Session fixation error writing lead-out") },
2899	/*      R         */
2900	{ SST(0x72, 0x03, SS_RDEF,
2901	    "Session fixation error - incomplete track in session") },
2902	/*      R         */
2903	{ SST(0x72, 0x04, SS_RDEF,
2904	    "Empty or partially written reserved track") },
2905	/*      R         */
2906	{ SST(0x72, 0x05, SS_RDEF,	/* XXX TBD */
2907	    "No more track reservations allowed") },
2908	/*      R         */
2909	{ SST(0x72, 0x06, SS_RDEF,	/* XXX TBD */
2910	    "RMZ extension is not allowed") },
2911	/*      R         */
2912	{ SST(0x72, 0x07, SS_RDEF,	/* XXX TBD */
2913	    "No more test zone extensions are allowed") },
2914	/*      R         */
2915	{ SST(0x73, 0x00, SS_RDEF,
2916	    "CD control error") },
2917	/*      R         */
2918	{ SST(0x73, 0x01, SS_RDEF,
2919	    "Power calibration area almost full") },
2920	/*      R         */
2921	{ SST(0x73, 0x02, SS_FATAL | ENOSPC,
2922	    "Power calibration area is full") },
2923	/*      R         */
2924	{ SST(0x73, 0x03, SS_RDEF,
2925	    "Power calibration area error") },
2926	/*      R         */
2927	{ SST(0x73, 0x04, SS_RDEF,
2928	    "Program memory area update failure") },
2929	/*      R         */
2930	{ SST(0x73, 0x05, SS_RDEF,
2931	    "Program memory area is full") },
2932	/*      R         */
2933	{ SST(0x73, 0x06, SS_RDEF,	/* XXX TBD */
2934	    "RMA/PMA is almost full") },
2935	/*      R         */
2936	{ SST(0x73, 0x10, SS_RDEF,	/* XXX TBD */
2937	    "Current power calibration area almost full") },
2938	/*      R         */
2939	{ SST(0x73, 0x11, SS_RDEF,	/* XXX TBD */
2940	    "Current power calibration area is full") },
2941	/*      R         */
2942	{ SST(0x73, 0x17, SS_RDEF,	/* XXX TBD */
2943	    "RDZ is full") },
2944	/*  T             */
2945	{ SST(0x74, 0x00, SS_RDEF,	/* XXX TBD */
2946	    "Security error") },
2947	/*  T             */
2948	{ SST(0x74, 0x01, SS_RDEF,	/* XXX TBD */
2949	    "Unable to decrypt data") },
2950	/*  T             */
2951	{ SST(0x74, 0x02, SS_RDEF,	/* XXX TBD */
2952	    "Unencrypted data encountered while decrypting") },
2953	/*  T             */
2954	{ SST(0x74, 0x03, SS_RDEF,	/* XXX TBD */
2955	    "Incorrect data encryption key") },
2956	/*  T             */
2957	{ SST(0x74, 0x04, SS_RDEF,	/* XXX TBD */
2958	    "Cryptographic integrity validation failed") },
2959	/*  T             */
2960	{ SST(0x74, 0x05, SS_RDEF,	/* XXX TBD */
2961	    "Error decrypting data") },
2962	/*  T             */
2963	{ SST(0x74, 0x06, SS_RDEF,	/* XXX TBD */
2964	    "Unknown signature verification key") },
2965	/*  T             */
2966	{ SST(0x74, 0x07, SS_RDEF,	/* XXX TBD */
2967	    "Encryption parameters not useable") },
2968	/* DT   R M E  VF */
2969	{ SST(0x74, 0x08, SS_RDEF,	/* XXX TBD */
2970	    "Digital signature validation failure") },
2971	/*  T             */
2972	{ SST(0x74, 0x09, SS_RDEF,	/* XXX TBD */
2973	    "Encryption mode mismatch on read") },
2974	/*  T             */
2975	{ SST(0x74, 0x0A, SS_RDEF,	/* XXX TBD */
2976	    "Encrypted block not raw read enabled") },
2977	/*  T             */
2978	{ SST(0x74, 0x0B, SS_RDEF,	/* XXX TBD */
2979	    "Incorrect encryption parameters") },
2980	/* DT   R MAEBKV  */
2981	{ SST(0x74, 0x0C, SS_RDEF,	/* XXX TBD */
2982	    "Unable to decrypt parameter list") },
2983	/*  T             */
2984	{ SST(0x74, 0x0D, SS_RDEF,	/* XXX TBD */
2985	    "Encryption algorithm disabled") },
2986	/* DT   R MAEBKV  */
2987	{ SST(0x74, 0x10, SS_RDEF,	/* XXX TBD */
2988	    "SA creation parameter value invalid") },
2989	/* DT   R MAEBKV  */
2990	{ SST(0x74, 0x11, SS_RDEF,	/* XXX TBD */
2991	    "SA creation parameter value rejected") },
2992	/* DT   R MAEBKV  */
2993	{ SST(0x74, 0x12, SS_RDEF,	/* XXX TBD */
2994	    "Invalid SA usage") },
2995	/*  T             */
2996	{ SST(0x74, 0x21, SS_RDEF,	/* XXX TBD */
2997	    "Data encryption configuration prevented") },
2998	/* DT   R MAEBKV  */
2999	{ SST(0x74, 0x30, SS_RDEF,	/* XXX TBD */
3000	    "SA creation parameter not supported") },
3001	/* DT   R MAEBKV  */
3002	{ SST(0x74, 0x40, SS_RDEF,	/* XXX TBD */
3003	    "Authentication failed") },
3004	/*             V  */
3005	{ SST(0x74, 0x61, SS_RDEF,	/* XXX TBD */
3006	    "External data encryption key manager access error") },
3007	/*             V  */
3008	{ SST(0x74, 0x62, SS_RDEF,	/* XXX TBD */
3009	    "External data encryption key manager error") },
3010	/*             V  */
3011	{ SST(0x74, 0x63, SS_RDEF,	/* XXX TBD */
3012	    "External data encryption key not found") },
3013	/*             V  */
3014	{ SST(0x74, 0x64, SS_RDEF,	/* XXX TBD */
3015	    "External data encryption request not authorized") },
3016	/*  T             */
3017	{ SST(0x74, 0x6E, SS_RDEF,	/* XXX TBD */
3018	    "External data encryption control timeout") },
3019	/*  T             */
3020	{ SST(0x74, 0x6F, SS_RDEF,	/* XXX TBD */
3021	    "External data encryption control error") },
3022	/* DT   R M E  V  */
3023	{ SST(0x74, 0x71, SS_RDEF,	/* XXX TBD */
3024	    "Logical unit access not authorized") },
3025	/* D              */
3026	{ SST(0x74, 0x79, SS_RDEF,	/* XXX TBD */
3027	    "Security conflict in translated device") }
3028};
3029
3030const int asc_table_size = sizeof(asc_table)/sizeof(asc_table[0]);
3031
3032struct asc_key
3033{
3034	int asc;
3035	int ascq;
3036};
3037
3038static int
3039ascentrycomp(const void *key, const void *member)
3040{
3041	int asc;
3042	int ascq;
3043	const struct asc_table_entry *table_entry;
3044
3045	asc = ((const struct asc_key *)key)->asc;
3046	ascq = ((const struct asc_key *)key)->ascq;
3047	table_entry = (const struct asc_table_entry *)member;
3048
3049	if (asc >= table_entry->asc) {
3050
3051		if (asc > table_entry->asc)
3052			return (1);
3053
3054		if (ascq <= table_entry->ascq) {
3055			/* Check for ranges */
3056			if (ascq == table_entry->ascq
3057		 	 || ((table_entry->action & SSQ_RANGE) != 0
3058		  	   && ascq >= (table_entry - 1)->ascq))
3059				return (0);
3060			return (-1);
3061		}
3062		return (1);
3063	}
3064	return (-1);
3065}
3066
3067static int
3068senseentrycomp(const void *key, const void *member)
3069{
3070	int sense_key;
3071	const struct sense_key_table_entry *table_entry;
3072
3073	sense_key = *((const int *)key);
3074	table_entry = (const struct sense_key_table_entry *)member;
3075
3076	if (sense_key >= table_entry->sense_key) {
3077		if (sense_key == table_entry->sense_key)
3078			return (0);
3079		return (1);
3080	}
3081	return (-1);
3082}
3083
3084static void
3085fetchtableentries(int sense_key, int asc, int ascq,
3086		  struct scsi_inquiry_data *inq_data,
3087		  const struct sense_key_table_entry **sense_entry,
3088		  const struct asc_table_entry **asc_entry)
3089{
3090	caddr_t match;
3091	const struct asc_table_entry *asc_tables[2];
3092	const struct sense_key_table_entry *sense_tables[2];
3093	struct asc_key asc_ascq;
3094	size_t asc_tables_size[2];
3095	size_t sense_tables_size[2];
3096	int num_asc_tables;
3097	int num_sense_tables;
3098	int i;
3099
3100	/* Default to failure */
3101	*sense_entry = NULL;
3102	*asc_entry = NULL;
3103	match = NULL;
3104	if (inq_data != NULL)
3105		match = cam_quirkmatch((caddr_t)inq_data,
3106				       (caddr_t)sense_quirk_table,
3107				       sense_quirk_table_size,
3108				       sizeof(*sense_quirk_table),
3109				       scsi_inquiry_match);
3110
3111	if (match != NULL) {
3112		struct scsi_sense_quirk_entry *quirk;
3113
3114		quirk = (struct scsi_sense_quirk_entry *)match;
3115		asc_tables[0] = quirk->asc_info;
3116		asc_tables_size[0] = quirk->num_ascs;
3117		asc_tables[1] = asc_table;
3118		asc_tables_size[1] = asc_table_size;
3119		num_asc_tables = 2;
3120		sense_tables[0] = quirk->sense_key_info;
3121		sense_tables_size[0] = quirk->num_sense_keys;
3122		sense_tables[1] = sense_key_table;
3123		sense_tables_size[1] = sense_key_table_size;
3124		num_sense_tables = 2;
3125	} else {
3126		asc_tables[0] = asc_table;
3127		asc_tables_size[0] = asc_table_size;
3128		num_asc_tables = 1;
3129		sense_tables[0] = sense_key_table;
3130		sense_tables_size[0] = sense_key_table_size;
3131		num_sense_tables = 1;
3132	}
3133
3134	asc_ascq.asc = asc;
3135	asc_ascq.ascq = ascq;
3136	for (i = 0; i < num_asc_tables; i++) {
3137		void *found_entry;
3138
3139		found_entry = bsearch(&asc_ascq, asc_tables[i],
3140				      asc_tables_size[i],
3141				      sizeof(**asc_tables),
3142				      ascentrycomp);
3143
3144		if (found_entry) {
3145			*asc_entry = (struct asc_table_entry *)found_entry;
3146			break;
3147		}
3148	}
3149
3150	for (i = 0; i < num_sense_tables; i++) {
3151		void *found_entry;
3152
3153		found_entry = bsearch(&sense_key, sense_tables[i],
3154				      sense_tables_size[i],
3155				      sizeof(**sense_tables),
3156				      senseentrycomp);
3157
3158		if (found_entry) {
3159			*sense_entry =
3160			    (struct sense_key_table_entry *)found_entry;
3161			break;
3162		}
3163	}
3164}
3165
3166void
3167scsi_sense_desc(int sense_key, int asc, int ascq,
3168		struct scsi_inquiry_data *inq_data,
3169		const char **sense_key_desc, const char **asc_desc)
3170{
3171	const struct asc_table_entry *asc_entry;
3172	const struct sense_key_table_entry *sense_entry;
3173
3174	fetchtableentries(sense_key, asc, ascq,
3175			  inq_data,
3176			  &sense_entry,
3177			  &asc_entry);
3178
3179	if (sense_entry != NULL)
3180		*sense_key_desc = sense_entry->desc;
3181	else
3182		*sense_key_desc = "Invalid Sense Key";
3183
3184	if (asc_entry != NULL)
3185		*asc_desc = asc_entry->desc;
3186	else if (asc >= 0x80 && asc <= 0xff)
3187		*asc_desc = "Vendor Specific ASC";
3188	else if (ascq >= 0x80 && ascq <= 0xff)
3189		*asc_desc = "Vendor Specific ASCQ";
3190	else
3191		*asc_desc = "Reserved ASC/ASCQ pair";
3192}
3193
3194/*
3195 * Given sense and device type information, return the appropriate action.
3196 * If we do not understand the specific error as identified by the ASC/ASCQ
3197 * pair, fall back on the more generic actions derived from the sense key.
3198 */
3199scsi_sense_action
3200scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data,
3201		  u_int32_t sense_flags)
3202{
3203	const struct asc_table_entry *asc_entry;
3204	const struct sense_key_table_entry *sense_entry;
3205	int error_code, sense_key, asc, ascq;
3206	scsi_sense_action action;
3207
3208	if (!scsi_extract_sense_ccb((union ccb *)csio,
3209	    &error_code, &sense_key, &asc, &ascq)) {
3210		action = SS_RETRY | SSQ_DECREMENT_COUNT | SSQ_PRINT_SENSE | EIO;
3211	} else if ((error_code == SSD_DEFERRED_ERROR)
3212	 || (error_code == SSD_DESC_DEFERRED_ERROR)) {
3213		/*
3214		 * XXX dufault@FreeBSD.org
3215		 * This error doesn't relate to the command associated
3216		 * with this request sense.  A deferred error is an error
3217		 * for a command that has already returned GOOD status
3218		 * (see SCSI2 8.2.14.2).
3219		 *
3220		 * By my reading of that section, it looks like the current
3221		 * command has been cancelled, we should now clean things up
3222		 * (hopefully recovering any lost data) and then retry the
3223		 * current command.  There are two easy choices, both wrong:
3224		 *
3225		 * 1. Drop through (like we had been doing), thus treating
3226		 *    this as if the error were for the current command and
3227		 *    return and stop the current command.
3228		 *
3229		 * 2. Issue a retry (like I made it do) thus hopefully
3230		 *    recovering the current transfer, and ignoring the
3231		 *    fact that we've dropped a command.
3232		 *
3233		 * These should probably be handled in a device specific
3234		 * sense handler or punted back up to a user mode daemon
3235		 */
3236		action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3237	} else {
3238		fetchtableentries(sense_key, asc, ascq,
3239				  inq_data,
3240				  &sense_entry,
3241				  &asc_entry);
3242
3243		/*
3244		 * Override the 'No additional Sense' entry (0,0)
3245		 * with the error action of the sense key.
3246		 */
3247		if (asc_entry != NULL
3248		 && (asc != 0 || ascq != 0))
3249			action = asc_entry->action;
3250		else if (sense_entry != NULL)
3251			action = sense_entry->action;
3252		else
3253			action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3254
3255		if (sense_key == SSD_KEY_RECOVERED_ERROR) {
3256			/*
3257			 * The action succeeded but the device wants
3258			 * the user to know that some recovery action
3259			 * was required.
3260			 */
3261			action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK);
3262			action |= SS_NOP|SSQ_PRINT_SENSE;
3263		} else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) {
3264			if ((sense_flags & SF_QUIET_IR) != 0)
3265				action &= ~SSQ_PRINT_SENSE;
3266		} else if (sense_key == SSD_KEY_UNIT_ATTENTION) {
3267			if ((sense_flags & SF_RETRY_UA) != 0
3268			 && (action & SS_MASK) == SS_FAIL) {
3269				action &= ~(SS_MASK|SSQ_MASK);
3270				action |= SS_RETRY|SSQ_DECREMENT_COUNT|
3271					  SSQ_PRINT_SENSE;
3272			}
3273			action |= SSQ_UA;
3274		}
3275	}
3276	if ((action & SS_MASK) >= SS_START &&
3277	    (sense_flags & SF_NO_RECOVERY)) {
3278		action &= ~SS_MASK;
3279		action |= SS_FAIL;
3280	} else if ((action & SS_MASK) == SS_RETRY &&
3281	    (sense_flags & SF_NO_RETRY)) {
3282		action &= ~SS_MASK;
3283		action |= SS_FAIL;
3284	}
3285	if ((sense_flags & SF_PRINT_ALWAYS) != 0)
3286		action |= SSQ_PRINT_SENSE;
3287	else if ((sense_flags & SF_NO_PRINT) != 0)
3288		action &= ~SSQ_PRINT_SENSE;
3289
3290	return (action);
3291}
3292
3293char *
3294scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string, size_t len)
3295{
3296	u_int8_t cdb_len;
3297	int i;
3298
3299	if (cdb_ptr == NULL)
3300		return("");
3301
3302	/* Silence warnings */
3303	cdb_len = 0;
3304
3305	/*
3306	 * This is taken from the SCSI-3 draft spec.
3307	 * (T10/1157D revision 0.3)
3308	 * The top 3 bits of an opcode are the group code.  The next 5 bits
3309	 * are the command code.
3310	 * Group 0:  six byte commands
3311	 * Group 1:  ten byte commands
3312	 * Group 2:  ten byte commands
3313	 * Group 3:  reserved
3314	 * Group 4:  sixteen byte commands
3315	 * Group 5:  twelve byte commands
3316	 * Group 6:  vendor specific
3317	 * Group 7:  vendor specific
3318	 */
3319	switch((*cdb_ptr >> 5) & 0x7) {
3320		case 0:
3321			cdb_len = 6;
3322			break;
3323		case 1:
3324		case 2:
3325			cdb_len = 10;
3326			break;
3327		case 3:
3328		case 6:
3329		case 7:
3330			/* in this case, just print out the opcode */
3331			cdb_len = 1;
3332			break;
3333		case 4:
3334			cdb_len = 16;
3335			break;
3336		case 5:
3337			cdb_len = 12;
3338			break;
3339	}
3340	*cdb_string = '\0';
3341	for (i = 0; i < cdb_len; i++)
3342		snprintf(cdb_string + strlen(cdb_string),
3343			 len - strlen(cdb_string), "%02hhx ", cdb_ptr[i]);
3344
3345	return(cdb_string);
3346}
3347
3348const char *
3349scsi_status_string(struct ccb_scsiio *csio)
3350{
3351	switch(csio->scsi_status) {
3352	case SCSI_STATUS_OK:
3353		return("OK");
3354	case SCSI_STATUS_CHECK_COND:
3355		return("Check Condition");
3356	case SCSI_STATUS_BUSY:
3357		return("Busy");
3358	case SCSI_STATUS_INTERMED:
3359		return("Intermediate");
3360	case SCSI_STATUS_INTERMED_COND_MET:
3361		return("Intermediate-Condition Met");
3362	case SCSI_STATUS_RESERV_CONFLICT:
3363		return("Reservation Conflict");
3364	case SCSI_STATUS_CMD_TERMINATED:
3365		return("Command Terminated");
3366	case SCSI_STATUS_QUEUE_FULL:
3367		return("Queue Full");
3368	case SCSI_STATUS_ACA_ACTIVE:
3369		return("ACA Active");
3370	case SCSI_STATUS_TASK_ABORTED:
3371		return("Task Aborted");
3372	default: {
3373		static char unkstr[64];
3374		snprintf(unkstr, sizeof(unkstr), "Unknown %#x",
3375			 csio->scsi_status);
3376		return(unkstr);
3377	}
3378	}
3379}
3380
3381/*
3382 * scsi_command_string() returns 0 for success and -1 for failure.
3383 */
3384#ifdef _KERNEL
3385int
3386scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb)
3387#else /* !_KERNEL */
3388int
3389scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio,
3390		    struct sbuf *sb)
3391#endif /* _KERNEL/!_KERNEL */
3392{
3393	struct scsi_inquiry_data *inq_data;
3394	char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
3395#ifdef _KERNEL
3396	struct	  ccb_getdev *cgd;
3397#endif /* _KERNEL */
3398
3399#ifdef _KERNEL
3400	if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
3401		return(-1);
3402	/*
3403	 * Get the device information.
3404	 */
3405	xpt_setup_ccb(&cgd->ccb_h,
3406		      csio->ccb_h.path,
3407		      CAM_PRIORITY_NORMAL);
3408	cgd->ccb_h.func_code = XPT_GDEV_TYPE;
3409	xpt_action((union ccb *)cgd);
3410
3411	/*
3412	 * If the device is unconfigured, just pretend that it is a hard
3413	 * drive.  scsi_op_desc() needs this.
3414	 */
3415	if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
3416		cgd->inq_data.device = T_DIRECT;
3417
3418	inq_data = &cgd->inq_data;
3419
3420#else /* !_KERNEL */
3421
3422	inq_data = &device->inq_data;
3423
3424#endif /* _KERNEL/!_KERNEL */
3425
3426	if ((csio->ccb_h.flags & CAM_CDB_POINTER) != 0) {
3427		sbuf_printf(sb, "%s. CDB: %s",
3428			    scsi_op_desc(csio->cdb_io.cdb_ptr[0], inq_data),
3429			    scsi_cdb_string(csio->cdb_io.cdb_ptr, cdb_str,
3430					    sizeof(cdb_str)));
3431	} else {
3432		sbuf_printf(sb, "%s. CDB: %s",
3433			    scsi_op_desc(csio->cdb_io.cdb_bytes[0], inq_data),
3434			    scsi_cdb_string(csio->cdb_io.cdb_bytes, cdb_str,
3435					    sizeof(cdb_str)));
3436	}
3437
3438#ifdef _KERNEL
3439	xpt_free_ccb((union ccb *)cgd);
3440#endif
3441
3442	return(0);
3443}
3444
3445/*
3446 * Iterate over sense descriptors.  Each descriptor is passed into iter_func().
3447 * If iter_func() returns 0, list traversal continues.  If iter_func()
3448 * returns non-zero, list traversal is stopped.
3449 */
3450void
3451scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len,
3452		  int (*iter_func)(struct scsi_sense_data_desc *sense,
3453				   u_int, struct scsi_sense_desc_header *,
3454				   void *), void *arg)
3455{
3456	int cur_pos;
3457	int desc_len;
3458
3459	/*
3460	 * First make sure the extra length field is present.
3461	 */
3462	if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0)
3463		return;
3464
3465	/*
3466	 * The length of data actually returned may be different than the
3467	 * extra_len recorded in the sturcture.
3468	 */
3469	desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc);
3470
3471	/*
3472	 * Limit this further by the extra length reported, and the maximum
3473	 * allowed extra length.
3474	 */
3475	desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX));
3476
3477	/*
3478	 * Subtract the size of the header from the descriptor length.
3479	 * This is to ensure that we have at least the header left, so we
3480	 * don't have to check that inside the loop.  This can wind up
3481	 * being a negative value.
3482	 */
3483	desc_len -= sizeof(struct scsi_sense_desc_header);
3484
3485	for (cur_pos = 0; cur_pos < desc_len;) {
3486		struct scsi_sense_desc_header *header;
3487
3488		header = (struct scsi_sense_desc_header *)
3489			&sense->sense_desc[cur_pos];
3490
3491		/*
3492		 * Check to make sure we have the entire descriptor.  We
3493		 * don't call iter_func() unless we do.
3494		 *
3495		 * Note that although cur_pos is at the beginning of the
3496		 * descriptor, desc_len already has the header length
3497		 * subtracted.  So the comparison of the length in the
3498		 * header (which does not include the header itself) to
3499		 * desc_len - cur_pos is correct.
3500		 */
3501		if (header->length > (desc_len - cur_pos))
3502			break;
3503
3504		if (iter_func(sense, sense_len, header, arg) != 0)
3505			break;
3506
3507		cur_pos += sizeof(*header) + header->length;
3508	}
3509}
3510
3511struct scsi_find_desc_info {
3512	uint8_t desc_type;
3513	struct scsi_sense_desc_header *header;
3514};
3515
3516static int
3517scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
3518		    struct scsi_sense_desc_header *header, void *arg)
3519{
3520	struct scsi_find_desc_info *desc_info;
3521
3522	desc_info = (struct scsi_find_desc_info *)arg;
3523
3524	if (header->desc_type == desc_info->desc_type) {
3525		desc_info->header = header;
3526
3527		/* We found the descriptor, tell the iterator to stop. */
3528		return (1);
3529	} else
3530		return (0);
3531}
3532
3533/*
3534 * Given a descriptor type, return a pointer to it if it is in the sense
3535 * data and not truncated.  Avoiding truncating sense data will simplify
3536 * things significantly for the caller.
3537 */
3538uint8_t *
3539scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len,
3540	       uint8_t desc_type)
3541{
3542	struct scsi_find_desc_info desc_info;
3543
3544	desc_info.desc_type = desc_type;
3545	desc_info.header = NULL;
3546
3547	scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info);
3548
3549	return ((uint8_t *)desc_info.header);
3550}
3551
3552/*
3553 * Fill in SCSI sense data with the specified parameters.  This routine can
3554 * fill in either fixed or descriptor type sense data.
3555 */
3556void
3557scsi_set_sense_data_va(struct scsi_sense_data *sense_data,
3558		      scsi_sense_data_type sense_format, int current_error,
3559		      int sense_key, int asc, int ascq, va_list ap)
3560{
3561	int descriptor_sense;
3562	scsi_sense_elem_type elem_type;
3563
3564	/*
3565	 * Determine whether to return fixed or descriptor format sense
3566	 * data.  If the user specifies SSD_TYPE_NONE for some reason,
3567	 * they'll just get fixed sense data.
3568	 */
3569	if (sense_format == SSD_TYPE_DESC)
3570		descriptor_sense = 1;
3571	else
3572		descriptor_sense = 0;
3573
3574	/*
3575	 * Zero the sense data, so that we don't pass back any garbage data
3576	 * to the user.
3577	 */
3578	memset(sense_data, 0, sizeof(*sense_data));
3579
3580	if (descriptor_sense != 0) {
3581		struct scsi_sense_data_desc *sense;
3582
3583		sense = (struct scsi_sense_data_desc *)sense_data;
3584		/*
3585		 * The descriptor sense format eliminates the use of the
3586		 * valid bit.
3587		 */
3588		if (current_error != 0)
3589			sense->error_code = SSD_DESC_CURRENT_ERROR;
3590		else
3591			sense->error_code = SSD_DESC_DEFERRED_ERROR;
3592		sense->sense_key = sense_key;
3593		sense->add_sense_code = asc;
3594		sense->add_sense_code_qual = ascq;
3595		/*
3596		 * Start off with no extra length, since the above data
3597		 * fits in the standard descriptor sense information.
3598		 */
3599		sense->extra_len = 0;
3600		while ((elem_type = (scsi_sense_elem_type)va_arg(ap,
3601			scsi_sense_elem_type)) != SSD_ELEM_NONE) {
3602			int sense_len, len_to_copy;
3603			uint8_t *data;
3604
3605			if (elem_type >= SSD_ELEM_MAX) {
3606				printf("%s: invalid sense type %d\n", __func__,
3607				       elem_type);
3608				break;
3609			}
3610
3611			sense_len = (int)va_arg(ap, int);
3612			len_to_copy = MIN(sense_len, SSD_EXTRA_MAX -
3613					  sense->extra_len);
3614			data = (uint8_t *)va_arg(ap, uint8_t *);
3615
3616			/*
3617			 * We've already consumed the arguments for this one.
3618			 */
3619			if (elem_type == SSD_ELEM_SKIP)
3620				continue;
3621
3622			switch (elem_type) {
3623			case SSD_ELEM_DESC: {
3624
3625				/*
3626				 * This is a straight descriptor.  All we
3627				 * need to do is copy the data in.
3628				 */
3629				bcopy(data, &sense->sense_desc[
3630				      sense->extra_len], len_to_copy);
3631				sense->extra_len += len_to_copy;
3632				break;
3633			}
3634			case SSD_ELEM_SKS: {
3635				struct scsi_sense_sks sks;
3636
3637				bzero(&sks, sizeof(sks));
3638
3639				/*
3640				 * This is already-formatted sense key
3641				 * specific data.  We just need to fill out
3642				 * the header and copy everything in.
3643				 */
3644				bcopy(data, &sks.sense_key_spec,
3645				      MIN(len_to_copy,
3646				          sizeof(sks.sense_key_spec)));
3647
3648				sks.desc_type = SSD_DESC_SKS;
3649				sks.length = sizeof(sks) -
3650				    offsetof(struct scsi_sense_sks, reserved1);
3651				bcopy(&sks,&sense->sense_desc[sense->extra_len],
3652				      sizeof(sks));
3653				sense->extra_len += sizeof(sks);
3654				break;
3655			}
3656			case SSD_ELEM_INFO:
3657			case SSD_ELEM_COMMAND: {
3658				struct scsi_sense_command cmd;
3659				struct scsi_sense_info info;
3660				uint8_t *data_dest;
3661				uint8_t *descriptor;
3662				int descriptor_size, i, copy_len;
3663
3664				bzero(&cmd, sizeof(cmd));
3665				bzero(&info, sizeof(info));
3666
3667				/*
3668				 * Command or information data.  The
3669				 * operate in pretty much the same way.
3670				 */
3671				if (elem_type == SSD_ELEM_COMMAND) {
3672					len_to_copy = MIN(len_to_copy,
3673					    sizeof(cmd.command_info));
3674					descriptor = (uint8_t *)&cmd;
3675					descriptor_size  = sizeof(cmd);
3676					data_dest =(uint8_t *)&cmd.command_info;
3677					cmd.desc_type = SSD_DESC_COMMAND;
3678					cmd.length = sizeof(cmd) -
3679					    offsetof(struct scsi_sense_command,
3680						     reserved);
3681				} else {
3682					len_to_copy = MIN(len_to_copy,
3683					    sizeof(info.info));
3684					descriptor = (uint8_t *)&info;
3685					descriptor_size = sizeof(cmd);
3686					data_dest = (uint8_t *)&info.info;
3687					info.desc_type = SSD_DESC_INFO;
3688					info.byte2 = SSD_INFO_VALID;
3689					info.length = sizeof(info) -
3690					    offsetof(struct scsi_sense_info,
3691						     byte2);
3692				}
3693
3694				/*
3695				 * Copy this in reverse because the spec
3696				 * (SPC-4) says that when 4 byte quantities
3697				 * are stored in this 8 byte field, the
3698				 * first four bytes shall be 0.
3699				 *
3700				 * So we fill the bytes in from the end, and
3701				 * if we have less than 8 bytes to copy,
3702				 * the initial, most significant bytes will
3703				 * be 0.
3704				 */
3705				for (i = sense_len - 1; i >= 0 &&
3706				     len_to_copy > 0; i--, len_to_copy--)
3707					data_dest[len_to_copy - 1] = data[i];
3708
3709				/*
3710				 * This calculation looks much like the
3711				 * initial len_to_copy calculation, but
3712				 * we have to do it again here, because
3713				 * we're looking at a larger amount that
3714				 * may or may not fit.  It's not only the
3715				 * data the user passed in, but also the
3716				 * rest of the descriptor.
3717				 */
3718				copy_len = MIN(descriptor_size,
3719				    SSD_EXTRA_MAX - sense->extra_len);
3720				bcopy(descriptor, &sense->sense_desc[
3721				      sense->extra_len], copy_len);
3722				sense->extra_len += copy_len;
3723				break;
3724			}
3725			case SSD_ELEM_FRU: {
3726				struct scsi_sense_fru fru;
3727				int copy_len;
3728
3729				bzero(&fru, sizeof(fru));
3730
3731				fru.desc_type = SSD_DESC_FRU;
3732				fru.length = sizeof(fru) -
3733				    offsetof(struct scsi_sense_fru, reserved);
3734				fru.fru = *data;
3735
3736				copy_len = MIN(sizeof(fru), SSD_EXTRA_MAX -
3737					       sense->extra_len);
3738				bcopy(&fru, &sense->sense_desc[
3739				      sense->extra_len], copy_len);
3740				sense->extra_len += copy_len;
3741				break;
3742			}
3743			case SSD_ELEM_STREAM: {
3744				struct scsi_sense_stream stream_sense;
3745				int copy_len;
3746
3747				bzero(&stream_sense, sizeof(stream_sense));
3748				stream_sense.desc_type = SSD_DESC_STREAM;
3749				stream_sense.length = sizeof(stream_sense) -
3750				   offsetof(struct scsi_sense_stream, reserved);
3751				stream_sense.byte3 = *data;
3752
3753				copy_len = MIN(sizeof(stream_sense),
3754				    SSD_EXTRA_MAX - sense->extra_len);
3755				bcopy(&stream_sense, &sense->sense_desc[
3756				      sense->extra_len], copy_len);
3757				sense->extra_len += copy_len;
3758				break;
3759			}
3760			default:
3761				/*
3762				 * We shouldn't get here, but if we do, do
3763				 * nothing.  We've already consumed the
3764				 * arguments above.
3765				 */
3766				break;
3767			}
3768		}
3769	} else {
3770		struct scsi_sense_data_fixed *sense;
3771
3772		sense = (struct scsi_sense_data_fixed *)sense_data;
3773
3774		if (current_error != 0)
3775			sense->error_code = SSD_CURRENT_ERROR;
3776		else
3777			sense->error_code = SSD_DEFERRED_ERROR;
3778
3779		sense->flags = sense_key;
3780		sense->add_sense_code = asc;
3781		sense->add_sense_code_qual = ascq;
3782		/*
3783		 * We've set the ASC and ASCQ, so we have 6 more bytes of
3784		 * valid data.  If we wind up setting any of the other
3785		 * fields, we'll bump this to 10 extra bytes.
3786		 */
3787		sense->extra_len = 6;
3788
3789		while ((elem_type = (scsi_sense_elem_type)va_arg(ap,
3790			scsi_sense_elem_type)) != SSD_ELEM_NONE) {
3791			int sense_len, len_to_copy;
3792			uint8_t *data;
3793
3794			if (elem_type >= SSD_ELEM_MAX) {
3795				printf("%s: invalid sense type %d\n", __func__,
3796				       elem_type);
3797				break;
3798			}
3799			/*
3800			 * If we get in here, just bump the extra length to
3801			 * 10 bytes.  That will encompass anything we're
3802			 * going to set here.
3803			 */
3804			sense->extra_len = 10;
3805			sense_len = (int)va_arg(ap, int);
3806			data = (uint8_t *)va_arg(ap, uint8_t *);
3807
3808			switch (elem_type) {
3809			case SSD_ELEM_SKS:
3810				/*
3811				 * The user passed in pre-formatted sense
3812				 * key specific data.
3813				 */
3814				bcopy(data, &sense->sense_key_spec[0],
3815				      MIN(sizeof(sense->sense_key_spec),
3816				      sense_len));
3817				break;
3818			case SSD_ELEM_INFO:
3819			case SSD_ELEM_COMMAND: {
3820				uint8_t *data_dest;
3821				int i;
3822
3823				if (elem_type == SSD_ELEM_COMMAND) {
3824					data_dest = &sense->cmd_spec_info[0];
3825					len_to_copy = MIN(sense_len,
3826					    sizeof(sense->cmd_spec_info));
3827				} else {
3828					data_dest = &sense->info[0];
3829					len_to_copy = MIN(sense_len,
3830					    sizeof(sense->info));
3831					/*
3832					 * We're setting the info field, so
3833					 * set the valid bit.
3834					 */
3835					sense->error_code |= SSD_ERRCODE_VALID;
3836				}
3837
3838				/*
3839			 	 * Copy this in reverse so that if we have
3840				 * less than 4 bytes to fill, the least
3841				 * significant bytes will be at the end.
3842				 * If we have more than 4 bytes, only the
3843				 * least significant bytes will be included.
3844				 */
3845				for (i = sense_len - 1; i >= 0 &&
3846				     len_to_copy > 0; i--, len_to_copy--)
3847					data_dest[len_to_copy - 1] = data[i];
3848
3849				break;
3850			}
3851			case SSD_ELEM_FRU:
3852				sense->fru = *data;
3853				break;
3854			case SSD_ELEM_STREAM:
3855				sense->flags |= *data;
3856				break;
3857			case SSD_ELEM_DESC:
3858			default:
3859
3860				/*
3861				 * If the user passes in descriptor sense,
3862				 * we can't handle that in fixed format.
3863				 * So just skip it, and any unknown argument
3864				 * types.
3865				 */
3866				break;
3867			}
3868		}
3869	}
3870}
3871
3872void
3873scsi_set_sense_data(struct scsi_sense_data *sense_data,
3874		    scsi_sense_data_type sense_format, int current_error,
3875		    int sense_key, int asc, int ascq, ...)
3876{
3877	va_list ap;
3878
3879	va_start(ap, ascq);
3880	scsi_set_sense_data_va(sense_data, sense_format, current_error,
3881			       sense_key, asc, ascq, ap);
3882	va_end(ap);
3883}
3884
3885/*
3886 * Get sense information for three similar sense data types.
3887 */
3888int
3889scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len,
3890		    uint8_t info_type, uint64_t *info, int64_t *signed_info)
3891{
3892	scsi_sense_data_type sense_type;
3893
3894	if (sense_len == 0)
3895		goto bailout;
3896
3897	sense_type = scsi_sense_type(sense_data);
3898
3899	switch (sense_type) {
3900	case SSD_TYPE_DESC: {
3901		struct scsi_sense_data_desc *sense;
3902		uint8_t *desc;
3903
3904		sense = (struct scsi_sense_data_desc *)sense_data;
3905
3906		desc = scsi_find_desc(sense, sense_len, info_type);
3907		if (desc == NULL)
3908			goto bailout;
3909
3910		switch (info_type) {
3911		case SSD_DESC_INFO: {
3912			struct scsi_sense_info *info_desc;
3913
3914			info_desc = (struct scsi_sense_info *)desc;
3915			*info = scsi_8btou64(info_desc->info);
3916			if (signed_info != NULL)
3917				*signed_info = *info;
3918			break;
3919		}
3920		case SSD_DESC_COMMAND: {
3921			struct scsi_sense_command *cmd_desc;
3922
3923			cmd_desc = (struct scsi_sense_command *)desc;
3924
3925			*info = scsi_8btou64(cmd_desc->command_info);
3926			if (signed_info != NULL)
3927				*signed_info = *info;
3928			break;
3929		}
3930		case SSD_DESC_FRU: {
3931			struct scsi_sense_fru *fru_desc;
3932
3933			fru_desc = (struct scsi_sense_fru *)desc;
3934
3935			*info = fru_desc->fru;
3936			if (signed_info != NULL)
3937				*signed_info = (int8_t)fru_desc->fru;
3938			break;
3939		}
3940		default:
3941			goto bailout;
3942			break;
3943		}
3944		break;
3945	}
3946	case SSD_TYPE_FIXED: {
3947		struct scsi_sense_data_fixed *sense;
3948
3949		sense = (struct scsi_sense_data_fixed *)sense_data;
3950
3951		switch (info_type) {
3952		case SSD_DESC_INFO: {
3953			uint32_t info_val;
3954
3955			if ((sense->error_code & SSD_ERRCODE_VALID) == 0)
3956				goto bailout;
3957
3958			if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0)
3959				goto bailout;
3960
3961			info_val = scsi_4btoul(sense->info);
3962
3963			*info = info_val;
3964			if (signed_info != NULL)
3965				*signed_info = (int32_t)info_val;
3966			break;
3967		}
3968		case SSD_DESC_COMMAND: {
3969			uint32_t cmd_val;
3970
3971			if ((SSD_FIXED_IS_PRESENT(sense, sense_len,
3972			     cmd_spec_info) == 0)
3973			 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0))
3974				goto bailout;
3975
3976			cmd_val = scsi_4btoul(sense->cmd_spec_info);
3977			if (cmd_val == 0)
3978				goto bailout;
3979
3980			*info = cmd_val;
3981			if (signed_info != NULL)
3982				*signed_info = (int32_t)cmd_val;
3983			break;
3984		}
3985		case SSD_DESC_FRU:
3986			if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0)
3987			 || (SSD_FIXED_IS_FILLED(sense, fru) == 0))
3988				goto bailout;
3989
3990			if (sense->fru == 0)
3991				goto bailout;
3992
3993			*info = sense->fru;
3994			if (signed_info != NULL)
3995				*signed_info = (int8_t)sense->fru;
3996			break;
3997		default:
3998			goto bailout;
3999			break;
4000		}
4001		break;
4002	}
4003	default:
4004		goto bailout;
4005		break;
4006	}
4007
4008	return (0);
4009bailout:
4010	return (1);
4011}
4012
4013int
4014scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks)
4015{
4016	scsi_sense_data_type sense_type;
4017
4018	if (sense_len == 0)
4019		goto bailout;
4020
4021	sense_type = scsi_sense_type(sense_data);
4022
4023	switch (sense_type) {
4024	case SSD_TYPE_DESC: {
4025		struct scsi_sense_data_desc *sense;
4026		struct scsi_sense_sks *desc;
4027
4028		sense = (struct scsi_sense_data_desc *)sense_data;
4029
4030		desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len,
4031							       SSD_DESC_SKS);
4032		if (desc == NULL)
4033			goto bailout;
4034
4035		/*
4036		 * No need to check the SKS valid bit for descriptor sense.
4037		 * If the descriptor is present, it is valid.
4038		 */
4039		bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec));
4040		break;
4041	}
4042	case SSD_TYPE_FIXED: {
4043		struct scsi_sense_data_fixed *sense;
4044
4045		sense = (struct scsi_sense_data_fixed *)sense_data;
4046
4047		if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0)
4048		 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0))
4049			goto bailout;
4050
4051		if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0)
4052			goto bailout;
4053
4054		bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec));
4055		break;
4056	}
4057	default:
4058		goto bailout;
4059		break;
4060	}
4061	return (0);
4062bailout:
4063	return (1);
4064}
4065
4066/*
4067 * Provide a common interface for fixed and descriptor sense to detect
4068 * whether we have block-specific sense information.  It is clear by the
4069 * presence of the block descriptor in descriptor mode, but we have to
4070 * infer from the inquiry data and ILI bit in fixed mode.
4071 */
4072int
4073scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len,
4074		    struct scsi_inquiry_data *inq_data, uint8_t *block_bits)
4075{
4076	scsi_sense_data_type sense_type;
4077
4078	if (inq_data != NULL) {
4079		switch (SID_TYPE(inq_data)) {
4080		case T_DIRECT:
4081		case T_RBC:
4082			break;
4083		default:
4084			goto bailout;
4085			break;
4086		}
4087	}
4088
4089	sense_type = scsi_sense_type(sense_data);
4090
4091	switch (sense_type) {
4092	case SSD_TYPE_DESC: {
4093		struct scsi_sense_data_desc *sense;
4094		struct scsi_sense_block *block;
4095
4096		sense = (struct scsi_sense_data_desc *)sense_data;
4097
4098		block = (struct scsi_sense_block *)scsi_find_desc(sense,
4099		    sense_len, SSD_DESC_BLOCK);
4100		if (block == NULL)
4101			goto bailout;
4102
4103		*block_bits = block->byte3;
4104		break;
4105	}
4106	case SSD_TYPE_FIXED: {
4107		struct scsi_sense_data_fixed *sense;
4108
4109		sense = (struct scsi_sense_data_fixed *)sense_data;
4110
4111		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4112			goto bailout;
4113
4114		if ((sense->flags & SSD_ILI) == 0)
4115			goto bailout;
4116
4117		*block_bits = sense->flags & SSD_ILI;
4118		break;
4119	}
4120	default:
4121		goto bailout;
4122		break;
4123	}
4124	return (0);
4125bailout:
4126	return (1);
4127}
4128
4129int
4130scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len,
4131		     struct scsi_inquiry_data *inq_data, uint8_t *stream_bits)
4132{
4133	scsi_sense_data_type sense_type;
4134
4135	if (inq_data != NULL) {
4136		switch (SID_TYPE(inq_data)) {
4137		case T_SEQUENTIAL:
4138			break;
4139		default:
4140			goto bailout;
4141			break;
4142		}
4143	}
4144
4145	sense_type = scsi_sense_type(sense_data);
4146
4147	switch (sense_type) {
4148	case SSD_TYPE_DESC: {
4149		struct scsi_sense_data_desc *sense;
4150		struct scsi_sense_stream *stream;
4151
4152		sense = (struct scsi_sense_data_desc *)sense_data;
4153
4154		stream = (struct scsi_sense_stream *)scsi_find_desc(sense,
4155		    sense_len, SSD_DESC_STREAM);
4156		if (stream == NULL)
4157			goto bailout;
4158
4159		*stream_bits = stream->byte3;
4160		break;
4161	}
4162	case SSD_TYPE_FIXED: {
4163		struct scsi_sense_data_fixed *sense;
4164
4165		sense = (struct scsi_sense_data_fixed *)sense_data;
4166
4167		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4168			goto bailout;
4169
4170		if ((sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK)) == 0)
4171			goto bailout;
4172
4173		*stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK);
4174		break;
4175	}
4176	default:
4177		goto bailout;
4178		break;
4179	}
4180	return (0);
4181bailout:
4182	return (1);
4183}
4184
4185void
4186scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4187	       struct scsi_inquiry_data *inq_data, uint64_t info)
4188{
4189	sbuf_printf(sb, "Info: %#jx", info);
4190}
4191
4192void
4193scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4194		  struct scsi_inquiry_data *inq_data, uint64_t csi)
4195{
4196	sbuf_printf(sb, "Command Specific Info: %#jx", csi);
4197}
4198
4199
4200void
4201scsi_progress_sbuf(struct sbuf *sb, uint16_t progress)
4202{
4203	sbuf_printf(sb, "Progress: %d%% (%d/%d) complete",
4204		    (progress * 100) / SSD_SKS_PROGRESS_DENOM,
4205		    progress, SSD_SKS_PROGRESS_DENOM);
4206}
4207
4208/*
4209 * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success.
4210 */
4211int
4212scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks)
4213{
4214	if ((sks[0] & SSD_SKS_VALID) == 0)
4215		return (1);
4216
4217	switch (sense_key) {
4218	case SSD_KEY_ILLEGAL_REQUEST: {
4219		struct scsi_sense_sks_field *field;
4220		int bad_command;
4221		char tmpstr[40];
4222
4223		/*Field Pointer*/
4224		field = (struct scsi_sense_sks_field *)sks;
4225
4226		if (field->byte0 & SSD_SKS_FIELD_CMD)
4227			bad_command = 1;
4228		else
4229			bad_command = 0;
4230
4231		tmpstr[0] = '\0';
4232
4233		/* Bit pointer is valid */
4234		if (field->byte0 & SSD_SKS_BPV)
4235			snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4236				 field->byte0 & SSD_SKS_BIT_VALUE);
4237
4238		sbuf_printf(sb, "%s byte %d %sis invalid",
4239			    bad_command ? "Command" : "Data",
4240			    scsi_2btoul(field->field), tmpstr);
4241		break;
4242	}
4243	case SSD_KEY_UNIT_ATTENTION: {
4244		struct scsi_sense_sks_overflow *overflow;
4245
4246		overflow = (struct scsi_sense_sks_overflow *)sks;
4247
4248		/*UA Condition Queue Overflow*/
4249		sbuf_printf(sb, "Unit Attention Condition Queue %s",
4250			    (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ?
4251			    "Overflowed" : "Did Not Overflow??");
4252		break;
4253	}
4254	case SSD_KEY_RECOVERED_ERROR:
4255	case SSD_KEY_HARDWARE_ERROR:
4256	case SSD_KEY_MEDIUM_ERROR: {
4257		struct scsi_sense_sks_retry *retry;
4258
4259		/*Actual Retry Count*/
4260		retry = (struct scsi_sense_sks_retry *)sks;
4261
4262		sbuf_printf(sb, "Actual Retry Count: %d",
4263			    scsi_2btoul(retry->actual_retry_count));
4264		break;
4265	}
4266	case SSD_KEY_NO_SENSE:
4267	case SSD_KEY_NOT_READY: {
4268		struct scsi_sense_sks_progress *progress;
4269		int progress_val;
4270
4271		/*Progress Indication*/
4272		progress = (struct scsi_sense_sks_progress *)sks;
4273		progress_val = scsi_2btoul(progress->progress);
4274
4275		scsi_progress_sbuf(sb, progress_val);
4276		break;
4277	}
4278	case SSD_KEY_COPY_ABORTED: {
4279		struct scsi_sense_sks_segment *segment;
4280		char tmpstr[40];
4281
4282		/*Segment Pointer*/
4283		segment = (struct scsi_sense_sks_segment *)sks;
4284
4285		tmpstr[0] = '\0';
4286
4287		if (segment->byte0 & SSD_SKS_SEGMENT_BPV)
4288			snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4289				 segment->byte0 & SSD_SKS_SEGMENT_BITPTR);
4290
4291		sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 &
4292			    SSD_SKS_SEGMENT_SD) ? "Segment" : "Data",
4293			    scsi_2btoul(segment->field), tmpstr);
4294		break;
4295	}
4296	default:
4297		sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0],
4298			    scsi_2btoul(&sks[1]));
4299		break;
4300	}
4301
4302	return (0);
4303}
4304
4305void
4306scsi_fru_sbuf(struct sbuf *sb, uint64_t fru)
4307{
4308	sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru);
4309}
4310
4311void
4312scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits, uint64_t info)
4313{
4314	int need_comma;
4315
4316	need_comma = 0;
4317	/*
4318	 * XXX KDM this needs more descriptive decoding.
4319	 */
4320	if (stream_bits & SSD_DESC_STREAM_FM) {
4321		sbuf_printf(sb, "Filemark");
4322		need_comma = 1;
4323	}
4324
4325	if (stream_bits & SSD_DESC_STREAM_EOM) {
4326		sbuf_printf(sb, "%sEOM", (need_comma) ? "," : "");
4327		need_comma = 1;
4328	}
4329
4330	if (stream_bits & SSD_DESC_STREAM_ILI)
4331		sbuf_printf(sb, "%sILI", (need_comma) ? "," : "");
4332
4333	sbuf_printf(sb, ": Info: %#jx", (uintmax_t) info);
4334}
4335
4336void
4337scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits, uint64_t info)
4338{
4339	if (block_bits & SSD_DESC_BLOCK_ILI)
4340		sbuf_printf(sb, "ILI: residue %#jx", (uintmax_t) info);
4341}
4342
4343void
4344scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4345		     u_int sense_len, uint8_t *cdb, int cdb_len,
4346		     struct scsi_inquiry_data *inq_data,
4347		     struct scsi_sense_desc_header *header)
4348{
4349	struct scsi_sense_info *info;
4350
4351	info = (struct scsi_sense_info *)header;
4352
4353	scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info));
4354}
4355
4356void
4357scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4358			u_int sense_len, uint8_t *cdb, int cdb_len,
4359			struct scsi_inquiry_data *inq_data,
4360			struct scsi_sense_desc_header *header)
4361{
4362	struct scsi_sense_command *command;
4363
4364	command = (struct scsi_sense_command *)header;
4365
4366	scsi_command_sbuf(sb, cdb, cdb_len, inq_data,
4367			  scsi_8btou64(command->command_info));
4368}
4369
4370void
4371scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4372		    u_int sense_len, uint8_t *cdb, int cdb_len,
4373		    struct scsi_inquiry_data *inq_data,
4374		    struct scsi_sense_desc_header *header)
4375{
4376	struct scsi_sense_sks *sks;
4377	int error_code, sense_key, asc, ascq;
4378
4379	sks = (struct scsi_sense_sks *)header;
4380
4381	scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4382			       &asc, &ascq, /*show_errors*/ 1);
4383
4384	scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec);
4385}
4386
4387void
4388scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4389		    u_int sense_len, uint8_t *cdb, int cdb_len,
4390		    struct scsi_inquiry_data *inq_data,
4391		    struct scsi_sense_desc_header *header)
4392{
4393	struct scsi_sense_fru *fru;
4394
4395	fru = (struct scsi_sense_fru *)header;
4396
4397	scsi_fru_sbuf(sb, (uint64_t)fru->fru);
4398}
4399
4400void
4401scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4402		       u_int sense_len, uint8_t *cdb, int cdb_len,
4403		       struct scsi_inquiry_data *inq_data,
4404		       struct scsi_sense_desc_header *header)
4405{
4406	struct scsi_sense_stream *stream;
4407	uint64_t info;
4408
4409	stream = (struct scsi_sense_stream *)header;
4410	info = 0;
4411
4412	scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL);
4413
4414	scsi_stream_sbuf(sb, stream->byte3, info);
4415}
4416
4417void
4418scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4419		      u_int sense_len, uint8_t *cdb, int cdb_len,
4420		      struct scsi_inquiry_data *inq_data,
4421		      struct scsi_sense_desc_header *header)
4422{
4423	struct scsi_sense_block *block;
4424	uint64_t info;
4425
4426	block = (struct scsi_sense_block *)header;
4427	info = 0;
4428
4429	scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL);
4430
4431	scsi_block_sbuf(sb, block->byte3, info);
4432}
4433
4434void
4435scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4436			 u_int sense_len, uint8_t *cdb, int cdb_len,
4437			 struct scsi_inquiry_data *inq_data,
4438			 struct scsi_sense_desc_header *header)
4439{
4440	struct scsi_sense_progress *progress;
4441	const char *sense_key_desc;
4442	const char *asc_desc;
4443	int progress_val;
4444
4445	progress = (struct scsi_sense_progress *)header;
4446
4447	/*
4448	 * Get descriptions for the sense key, ASC, and ASCQ in the
4449	 * progress descriptor.  These could be different than the values
4450	 * in the overall sense data.
4451	 */
4452	scsi_sense_desc(progress->sense_key, progress->add_sense_code,
4453			progress->add_sense_code_qual, inq_data,
4454			&sense_key_desc, &asc_desc);
4455
4456	progress_val = scsi_2btoul(progress->progress);
4457
4458	/*
4459	 * The progress indicator is for the operation described by the
4460	 * sense key, ASC, and ASCQ in the descriptor.
4461	 */
4462	sbuf_cat(sb, sense_key_desc);
4463	sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code,
4464		    progress->add_sense_code_qual, asc_desc);
4465	scsi_progress_sbuf(sb, progress_val);
4466}
4467
4468/*
4469 * Generic sense descriptor printing routine.  This is used when we have
4470 * not yet implemented a specific printing routine for this descriptor.
4471 */
4472void
4473scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4474			u_int sense_len, uint8_t *cdb, int cdb_len,
4475			struct scsi_inquiry_data *inq_data,
4476			struct scsi_sense_desc_header *header)
4477{
4478	int i;
4479	uint8_t *buf_ptr;
4480
4481	sbuf_printf(sb, "Descriptor %#x:", header->desc_type);
4482
4483	buf_ptr = (uint8_t *)&header[1];
4484
4485	for (i = 0; i < header->length; i++, buf_ptr++)
4486		sbuf_printf(sb, " %02x", *buf_ptr);
4487}
4488
4489/*
4490 * Keep this list in numeric order.  This speeds the array traversal.
4491 */
4492struct scsi_sense_desc_printer {
4493	uint8_t desc_type;
4494	/*
4495	 * The function arguments here are the superset of what is needed
4496	 * to print out various different descriptors.  Command and
4497	 * information descriptors need inquiry data and command type.
4498	 * Sense key specific descriptors need the sense key.
4499	 *
4500	 * The sense, cdb, and inquiry data arguments may be NULL, but the
4501	 * information printed may not be fully decoded as a result.
4502	 */
4503	void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense,
4504			   u_int sense_len, uint8_t *cdb, int cdb_len,
4505			   struct scsi_inquiry_data *inq_data,
4506			   struct scsi_sense_desc_header *header);
4507} scsi_sense_printers[] = {
4508	{SSD_DESC_INFO, scsi_sense_info_sbuf},
4509	{SSD_DESC_COMMAND, scsi_sense_command_sbuf},
4510	{SSD_DESC_SKS, scsi_sense_sks_sbuf},
4511	{SSD_DESC_FRU, scsi_sense_fru_sbuf},
4512	{SSD_DESC_STREAM, scsi_sense_stream_sbuf},
4513	{SSD_DESC_BLOCK, scsi_sense_block_sbuf},
4514	{SSD_DESC_PROGRESS, scsi_sense_progress_sbuf}
4515};
4516
4517void
4518scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4519		     u_int sense_len, uint8_t *cdb, int cdb_len,
4520		     struct scsi_inquiry_data *inq_data,
4521		     struct scsi_sense_desc_header *header)
4522{
4523	int i;
4524
4525	for (i = 0; i < (sizeof(scsi_sense_printers) /
4526	     sizeof(scsi_sense_printers[0])); i++) {
4527		struct scsi_sense_desc_printer *printer;
4528
4529		printer = &scsi_sense_printers[i];
4530
4531		/*
4532		 * The list is sorted, so quit if we've passed our
4533		 * descriptor number.
4534		 */
4535		if (printer->desc_type > header->desc_type)
4536			break;
4537
4538		if (printer->desc_type != header->desc_type)
4539			continue;
4540
4541		printer->print_func(sb, sense, sense_len, cdb, cdb_len,
4542				    inq_data, header);
4543
4544		return;
4545	}
4546
4547	/*
4548	 * No specific printing routine, so use the generic routine.
4549	 */
4550	scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len,
4551				inq_data, header);
4552}
4553
4554scsi_sense_data_type
4555scsi_sense_type(struct scsi_sense_data *sense_data)
4556{
4557	switch (sense_data->error_code & SSD_ERRCODE) {
4558	case SSD_DESC_CURRENT_ERROR:
4559	case SSD_DESC_DEFERRED_ERROR:
4560		return (SSD_TYPE_DESC);
4561		break;
4562	case SSD_CURRENT_ERROR:
4563	case SSD_DEFERRED_ERROR:
4564		return (SSD_TYPE_FIXED);
4565		break;
4566	default:
4567		break;
4568	}
4569
4570	return (SSD_TYPE_NONE);
4571}
4572
4573struct scsi_print_sense_info {
4574	struct sbuf *sb;
4575	char *path_str;
4576	uint8_t *cdb;
4577	int cdb_len;
4578	struct scsi_inquiry_data *inq_data;
4579};
4580
4581static int
4582scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
4583		     struct scsi_sense_desc_header *header, void *arg)
4584{
4585	struct scsi_print_sense_info *print_info;
4586
4587	print_info = (struct scsi_print_sense_info *)arg;
4588
4589	switch (header->desc_type) {
4590	case SSD_DESC_INFO:
4591	case SSD_DESC_FRU:
4592	case SSD_DESC_COMMAND:
4593	case SSD_DESC_SKS:
4594	case SSD_DESC_BLOCK:
4595	case SSD_DESC_STREAM:
4596		/*
4597		 * We have already printed these descriptors, if they are
4598		 * present.
4599		 */
4600		break;
4601	default: {
4602		sbuf_printf(print_info->sb, "%s", print_info->path_str);
4603		scsi_sense_desc_sbuf(print_info->sb,
4604				     (struct scsi_sense_data *)sense, sense_len,
4605				     print_info->cdb, print_info->cdb_len,
4606				     print_info->inq_data, header);
4607		sbuf_printf(print_info->sb, "\n");
4608		break;
4609	}
4610	}
4611
4612	/*
4613	 * Tell the iterator that we want to see more descriptors if they
4614	 * are present.
4615	 */
4616	return (0);
4617}
4618
4619void
4620scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len,
4621		     struct sbuf *sb, char *path_str,
4622		     struct scsi_inquiry_data *inq_data, uint8_t *cdb,
4623		     int cdb_len)
4624{
4625	int error_code, sense_key, asc, ascq;
4626
4627	sbuf_cat(sb, path_str);
4628
4629	scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4630			       &asc, &ascq, /*show_errors*/ 1);
4631
4632	sbuf_printf(sb, "SCSI sense: ");
4633	switch (error_code) {
4634	case SSD_DEFERRED_ERROR:
4635	case SSD_DESC_DEFERRED_ERROR:
4636		sbuf_printf(sb, "Deferred error: ");
4637
4638		/* FALLTHROUGH */
4639	case SSD_CURRENT_ERROR:
4640	case SSD_DESC_CURRENT_ERROR:
4641	{
4642		struct scsi_sense_data_desc *desc_sense;
4643		struct scsi_print_sense_info print_info;
4644		const char *sense_key_desc;
4645		const char *asc_desc;
4646		uint8_t sks[3];
4647		uint64_t val;
4648		int info_valid;
4649
4650		/*
4651		 * Get descriptions for the sense key, ASC, and ASCQ.  If
4652		 * these aren't present in the sense data (i.e. the sense
4653		 * data isn't long enough), the -1 values that
4654		 * scsi_extract_sense_len() returns will yield default
4655		 * or error descriptions.
4656		 */
4657		scsi_sense_desc(sense_key, asc, ascq, inq_data,
4658				&sense_key_desc, &asc_desc);
4659
4660		/*
4661		 * We first print the sense key and ASC/ASCQ.
4662		 */
4663		sbuf_cat(sb, sense_key_desc);
4664		sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc);
4665
4666		/*
4667		 * Get the info field if it is valid.
4668		 */
4669		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO,
4670					&val, NULL) == 0)
4671			info_valid = 1;
4672		else
4673			info_valid = 0;
4674
4675		if (info_valid != 0) {
4676			uint8_t bits;
4677
4678			/*
4679			 * Determine whether we have any block or stream
4680			 * device-specific information.
4681			 */
4682			if (scsi_get_block_info(sense, sense_len, inq_data,
4683						&bits) == 0) {
4684				sbuf_cat(sb, path_str);
4685				scsi_block_sbuf(sb, bits, val);
4686				sbuf_printf(sb, "\n");
4687			} else if (scsi_get_stream_info(sense, sense_len,
4688							inq_data, &bits) == 0) {
4689				sbuf_cat(sb, path_str);
4690				scsi_stream_sbuf(sb, bits, val);
4691				sbuf_printf(sb, "\n");
4692			} else if (val != 0) {
4693				/*
4694				 * The information field can be valid but 0.
4695				 * If the block or stream bits aren't set,
4696				 * and this is 0, it isn't terribly useful
4697				 * to print it out.
4698				 */
4699				sbuf_cat(sb, path_str);
4700				scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val);
4701				sbuf_printf(sb, "\n");
4702			}
4703		}
4704
4705		/*
4706		 * Print the FRU.
4707		 */
4708		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU,
4709					&val, NULL) == 0) {
4710			sbuf_cat(sb, path_str);
4711			scsi_fru_sbuf(sb, val);
4712			sbuf_printf(sb, "\n");
4713		}
4714
4715		/*
4716		 * Print any command-specific information.
4717		 */
4718		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND,
4719					&val, NULL) == 0) {
4720			sbuf_cat(sb, path_str);
4721			scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val);
4722			sbuf_printf(sb, "\n");
4723		}
4724
4725		/*
4726		 * Print out any sense-key-specific information.
4727		 */
4728		if (scsi_get_sks(sense, sense_len, sks) == 0) {
4729			sbuf_cat(sb, path_str);
4730			scsi_sks_sbuf(sb, sense_key, sks);
4731			sbuf_printf(sb, "\n");
4732		}
4733
4734		/*
4735		 * If this is fixed sense, we're done.  If we have
4736		 * descriptor sense, we might have more information
4737		 * available.
4738		 */
4739		if (scsi_sense_type(sense) != SSD_TYPE_DESC)
4740			break;
4741
4742		desc_sense = (struct scsi_sense_data_desc *)sense;
4743
4744		print_info.sb = sb;
4745		print_info.path_str = path_str;
4746		print_info.cdb = cdb;
4747		print_info.cdb_len = cdb_len;
4748		print_info.inq_data = inq_data;
4749
4750		/*
4751		 * Print any sense descriptors that we have not already printed.
4752		 */
4753		scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func,
4754				  &print_info);
4755		break;
4756
4757	}
4758	case -1:
4759		/*
4760		 * scsi_extract_sense_len() sets values to -1 if the
4761		 * show_errors flag is set and they aren't present in the
4762		 * sense data.  This means that sense_len is 0.
4763		 */
4764		sbuf_printf(sb, "No sense data present\n");
4765		break;
4766	default: {
4767		sbuf_printf(sb, "Error code 0x%x", error_code);
4768		if (sense->error_code & SSD_ERRCODE_VALID) {
4769			struct scsi_sense_data_fixed *fixed_sense;
4770
4771			fixed_sense = (struct scsi_sense_data_fixed *)sense;
4772
4773			if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){
4774				uint32_t info;
4775
4776				info = scsi_4btoul(fixed_sense->info);
4777
4778				sbuf_printf(sb, " at block no. %d (decimal)",
4779					    info);
4780			}
4781		}
4782		sbuf_printf(sb, "\n");
4783		break;
4784	}
4785	}
4786}
4787
4788/*
4789 * scsi_sense_sbuf() returns 0 for success and -1 for failure.
4790 */
4791#ifdef _KERNEL
4792int
4793scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb,
4794		scsi_sense_string_flags flags)
4795#else /* !_KERNEL */
4796int
4797scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio,
4798		struct sbuf *sb, scsi_sense_string_flags flags)
4799#endif /* _KERNEL/!_KERNEL */
4800{
4801	struct	  scsi_sense_data *sense;
4802	struct	  scsi_inquiry_data *inq_data;
4803#ifdef _KERNEL
4804	struct	  ccb_getdev *cgd;
4805#endif /* _KERNEL */
4806	char	  path_str[64];
4807	uint8_t	  *cdb;
4808
4809#ifndef _KERNEL
4810	if (device == NULL)
4811		return(-1);
4812#endif /* !_KERNEL */
4813	if ((csio == NULL) || (sb == NULL))
4814		return(-1);
4815
4816	/*
4817	 * If the CDB is a physical address, we can't deal with it..
4818	 */
4819	if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0)
4820		flags &= ~SSS_FLAG_PRINT_COMMAND;
4821
4822#ifdef _KERNEL
4823	xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str));
4824#else /* !_KERNEL */
4825	cam_path_string(device, path_str, sizeof(path_str));
4826#endif /* _KERNEL/!_KERNEL */
4827
4828#ifdef _KERNEL
4829	if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
4830		return(-1);
4831	/*
4832	 * Get the device information.
4833	 */
4834	xpt_setup_ccb(&cgd->ccb_h,
4835		      csio->ccb_h.path,
4836		      CAM_PRIORITY_NORMAL);
4837	cgd->ccb_h.func_code = XPT_GDEV_TYPE;
4838	xpt_action((union ccb *)cgd);
4839
4840	/*
4841	 * If the device is unconfigured, just pretend that it is a hard
4842	 * drive.  scsi_op_desc() needs this.
4843	 */
4844	if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
4845		cgd->inq_data.device = T_DIRECT;
4846
4847	inq_data = &cgd->inq_data;
4848
4849#else /* !_KERNEL */
4850
4851	inq_data = &device->inq_data;
4852
4853#endif /* _KERNEL/!_KERNEL */
4854
4855	sense = NULL;
4856
4857	if (flags & SSS_FLAG_PRINT_COMMAND) {
4858
4859		sbuf_cat(sb, path_str);
4860
4861#ifdef _KERNEL
4862		scsi_command_string(csio, sb);
4863#else /* !_KERNEL */
4864		scsi_command_string(device, csio, sb);
4865#endif /* _KERNEL/!_KERNEL */
4866		sbuf_printf(sb, "\n");
4867	}
4868
4869	/*
4870	 * If the sense data is a physical pointer, forget it.
4871	 */
4872	if (csio->ccb_h.flags & CAM_SENSE_PTR) {
4873		if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
4874#ifdef _KERNEL
4875			xpt_free_ccb((union ccb*)cgd);
4876#endif /* _KERNEL/!_KERNEL */
4877			return(-1);
4878		} else {
4879			/*
4880			 * bcopy the pointer to avoid unaligned access
4881			 * errors on finicky architectures.  We don't
4882			 * ensure that the sense data is pointer aligned.
4883			 */
4884			bcopy(&csio->sense_data, &sense,
4885			      sizeof(struct scsi_sense_data *));
4886		}
4887	} else {
4888		/*
4889		 * If the physical sense flag is set, but the sense pointer
4890		 * is not also set, we assume that the user is an idiot and
4891		 * return.  (Well, okay, it could be that somehow, the
4892		 * entire csio is physical, but we would have probably core
4893		 * dumped on one of the bogus pointer deferences above
4894		 * already.)
4895		 */
4896		if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
4897#ifdef _KERNEL
4898			xpt_free_ccb((union ccb*)cgd);
4899#endif /* _KERNEL/!_KERNEL */
4900			return(-1);
4901		} else
4902			sense = &csio->sense_data;
4903	}
4904
4905	if (csio->ccb_h.flags & CAM_CDB_POINTER)
4906		cdb = csio->cdb_io.cdb_ptr;
4907	else
4908		cdb = csio->cdb_io.cdb_bytes;
4909
4910	scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb,
4911			     path_str, inq_data, cdb, csio->cdb_len);
4912
4913#ifdef _KERNEL
4914	xpt_free_ccb((union ccb*)cgd);
4915#endif /* _KERNEL/!_KERNEL */
4916	return(0);
4917}
4918
4919
4920
4921#ifdef _KERNEL
4922char *
4923scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len)
4924#else /* !_KERNEL */
4925char *
4926scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio,
4927		  char *str, int str_len)
4928#endif /* _KERNEL/!_KERNEL */
4929{
4930	struct sbuf sb;
4931
4932	sbuf_new(&sb, str, str_len, 0);
4933
4934#ifdef _KERNEL
4935	scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
4936#else /* !_KERNEL */
4937	scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
4938#endif /* _KERNEL/!_KERNEL */
4939
4940	sbuf_finish(&sb);
4941
4942	return(sbuf_data(&sb));
4943}
4944
4945#ifdef _KERNEL
4946void
4947scsi_sense_print(struct ccb_scsiio *csio)
4948{
4949	struct sbuf sb;
4950	char str[512];
4951
4952	sbuf_new(&sb, str, sizeof(str), 0);
4953
4954	scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
4955
4956	sbuf_finish(&sb);
4957
4958	printf("%s", sbuf_data(&sb));
4959}
4960
4961#else /* !_KERNEL */
4962void
4963scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio,
4964		 FILE *ofile)
4965{
4966	struct sbuf sb;
4967	char str[512];
4968
4969	if ((device == NULL) || (csio == NULL) || (ofile == NULL))
4970		return;
4971
4972	sbuf_new(&sb, str, sizeof(str), 0);
4973
4974	scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
4975
4976	sbuf_finish(&sb);
4977
4978	fprintf(ofile, "%s", sbuf_data(&sb));
4979}
4980
4981#endif /* _KERNEL/!_KERNEL */
4982
4983/*
4984 * Extract basic sense information.  This is backward-compatible with the
4985 * previous implementation.  For new implementations,
4986 * scsi_extract_sense_len() is recommended.
4987 */
4988void
4989scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code,
4990		   int *sense_key, int *asc, int *ascq)
4991{
4992	scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code,
4993			       sense_key, asc, ascq, /*show_errors*/ 0);
4994}
4995
4996/*
4997 * Extract basic sense information from SCSI I/O CCB structure.
4998 */
4999int
5000scsi_extract_sense_ccb(union ccb *ccb,
5001    int *error_code, int *sense_key, int *asc, int *ascq)
5002{
5003	struct scsi_sense_data *sense_data;
5004
5005	/* Make sure there are some sense data we can access. */
5006	if (ccb->ccb_h.func_code != XPT_SCSI_IO ||
5007	    (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR ||
5008	    (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) ||
5009	    (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 ||
5010	    (ccb->ccb_h.flags & CAM_SENSE_PHYS))
5011		return (0);
5012
5013	if (ccb->ccb_h.flags & CAM_SENSE_PTR)
5014		bcopy(&ccb->csio.sense_data, &sense_data,
5015		    sizeof(struct scsi_sense_data *));
5016	else
5017		sense_data = &ccb->csio.sense_data;
5018	scsi_extract_sense_len(sense_data,
5019	    ccb->csio.sense_len - ccb->csio.sense_resid,
5020	    error_code, sense_key, asc, ascq, 1);
5021	if (*error_code == -1)
5022		return (0);
5023	return (1);
5024}
5025
5026/*
5027 * Extract basic sense information.  If show_errors is set, sense values
5028 * will be set to -1 if they are not present.
5029 */
5030void
5031scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len,
5032		       int *error_code, int *sense_key, int *asc, int *ascq,
5033		       int show_errors)
5034{
5035	/*
5036	 * If we have no length, we have no sense.
5037	 */
5038	if (sense_len == 0) {
5039		if (show_errors == 0) {
5040			*error_code = 0;
5041			*sense_key = 0;
5042			*asc = 0;
5043			*ascq = 0;
5044		} else {
5045			*error_code = -1;
5046			*sense_key = -1;
5047			*asc = -1;
5048			*ascq = -1;
5049		}
5050		return;
5051	}
5052
5053	*error_code = sense_data->error_code & SSD_ERRCODE;
5054
5055	switch (*error_code) {
5056	case SSD_DESC_CURRENT_ERROR:
5057	case SSD_DESC_DEFERRED_ERROR: {
5058		struct scsi_sense_data_desc *sense;
5059
5060		sense = (struct scsi_sense_data_desc *)sense_data;
5061
5062		if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key))
5063			*sense_key = sense->sense_key & SSD_KEY;
5064		else
5065			*sense_key = (show_errors) ? -1 : 0;
5066
5067		if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code))
5068			*asc = sense->add_sense_code;
5069		else
5070			*asc = (show_errors) ? -1 : 0;
5071
5072		if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual))
5073			*ascq = sense->add_sense_code_qual;
5074		else
5075			*ascq = (show_errors) ? -1 : 0;
5076		break;
5077	}
5078	case SSD_CURRENT_ERROR:
5079	case SSD_DEFERRED_ERROR:
5080	default: {
5081		struct scsi_sense_data_fixed *sense;
5082
5083		sense = (struct scsi_sense_data_fixed *)sense_data;
5084
5085		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags))
5086			*sense_key = sense->flags & SSD_KEY;
5087		else
5088			*sense_key = (show_errors) ? -1 : 0;
5089
5090		if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code))
5091		 && (SSD_FIXED_IS_FILLED(sense, add_sense_code)))
5092			*asc = sense->add_sense_code;
5093		else
5094			*asc = (show_errors) ? -1 : 0;
5095
5096		if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual))
5097		 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual)))
5098			*ascq = sense->add_sense_code_qual;
5099		else
5100			*ascq = (show_errors) ? -1 : 0;
5101		break;
5102	}
5103	}
5104}
5105
5106int
5107scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len,
5108		   int show_errors)
5109{
5110	int error_code, sense_key, asc, ascq;
5111
5112	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5113			       &sense_key, &asc, &ascq, show_errors);
5114
5115	return (sense_key);
5116}
5117
5118int
5119scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len,
5120	     int show_errors)
5121{
5122	int error_code, sense_key, asc, ascq;
5123
5124	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5125			       &sense_key, &asc, &ascq, show_errors);
5126
5127	return (asc);
5128}
5129
5130int
5131scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len,
5132	      int show_errors)
5133{
5134	int error_code, sense_key, asc, ascq;
5135
5136	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5137			       &sense_key, &asc, &ascq, show_errors);
5138
5139	return (ascq);
5140}
5141
5142/*
5143 * This function currently requires at least 36 bytes, or
5144 * SHORT_INQUIRY_LENGTH, worth of data to function properly.  If this
5145 * function needs more or less data in the future, another length should be
5146 * defined in scsi_all.h to indicate the minimum amount of data necessary
5147 * for this routine to function properly.
5148 */
5149void
5150scsi_print_inquiry(struct scsi_inquiry_data *inq_data)
5151{
5152	u_int8_t type;
5153	char *dtype, *qtype;
5154	char vendor[16], product[48], revision[16], rstr[12];
5155
5156	type = SID_TYPE(inq_data);
5157
5158	/*
5159	 * Figure out basic device type and qualifier.
5160	 */
5161	if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) {
5162		qtype = " (vendor-unique qualifier)";
5163	} else {
5164		switch (SID_QUAL(inq_data)) {
5165		case SID_QUAL_LU_CONNECTED:
5166			qtype = "";
5167			break;
5168
5169		case SID_QUAL_LU_OFFLINE:
5170			qtype = " (offline)";
5171			break;
5172
5173		case SID_QUAL_RSVD:
5174			qtype = " (reserved qualifier)";
5175			break;
5176		default:
5177		case SID_QUAL_BAD_LU:
5178			qtype = " (LUN not supported)";
5179			break;
5180		}
5181	}
5182
5183	switch (type) {
5184	case T_DIRECT:
5185		dtype = "Direct Access";
5186		break;
5187	case T_SEQUENTIAL:
5188		dtype = "Sequential Access";
5189		break;
5190	case T_PRINTER:
5191		dtype = "Printer";
5192		break;
5193	case T_PROCESSOR:
5194		dtype = "Processor";
5195		break;
5196	case T_WORM:
5197		dtype = "WORM";
5198		break;
5199	case T_CDROM:
5200		dtype = "CD-ROM";
5201		break;
5202	case T_SCANNER:
5203		dtype = "Scanner";
5204		break;
5205	case T_OPTICAL:
5206		dtype = "Optical";
5207		break;
5208	case T_CHANGER:
5209		dtype = "Changer";
5210		break;
5211	case T_COMM:
5212		dtype = "Communication";
5213		break;
5214	case T_STORARRAY:
5215		dtype = "Storage Array";
5216		break;
5217	case T_ENCLOSURE:
5218		dtype = "Enclosure Services";
5219		break;
5220	case T_RBC:
5221		dtype = "Simplified Direct Access";
5222		break;
5223	case T_OCRW:
5224		dtype = "Optical Card Read/Write";
5225		break;
5226	case T_OSD:
5227		dtype = "Object-Based Storage";
5228		break;
5229	case T_ADC:
5230		dtype = "Automation/Drive Interface";
5231		break;
5232	case T_NODEVICE:
5233		dtype = "Uninstalled";
5234		break;
5235	default:
5236		dtype = "unknown";
5237		break;
5238	}
5239
5240	cam_strvis(vendor, inq_data->vendor, sizeof(inq_data->vendor),
5241		   sizeof(vendor));
5242	cam_strvis(product, inq_data->product, sizeof(inq_data->product),
5243		   sizeof(product));
5244	cam_strvis(revision, inq_data->revision, sizeof(inq_data->revision),
5245		   sizeof(revision));
5246
5247	if (SID_ANSI_REV(inq_data) == SCSI_REV_0)
5248		snprintf(rstr, sizeof(rstr), "SCSI");
5249	else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) {
5250		snprintf(rstr, sizeof(rstr), "SCSI-%d",
5251		    SID_ANSI_REV(inq_data));
5252	} else {
5253		snprintf(rstr, sizeof(rstr), "SPC-%d SCSI",
5254		    SID_ANSI_REV(inq_data) - 2);
5255	}
5256	printf("<%s %s %s> %s %s %s device%s\n",
5257	       vendor, product, revision,
5258	       SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed",
5259	       dtype, rstr, qtype);
5260}
5261
5262void
5263scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data)
5264{
5265	char vendor[16], product[48], revision[16];
5266
5267	cam_strvis(vendor, inq_data->vendor, sizeof(inq_data->vendor),
5268		   sizeof(vendor));
5269	cam_strvis(product, inq_data->product, sizeof(inq_data->product),
5270		   sizeof(product));
5271	cam_strvis(revision, inq_data->revision, sizeof(inq_data->revision),
5272		   sizeof(revision));
5273
5274	printf("<%s %s %s>", vendor, product, revision);
5275}
5276
5277/*
5278 * Table of syncrates that don't follow the "divisible by 4"
5279 * rule. This table will be expanded in future SCSI specs.
5280 */
5281static struct {
5282	u_int period_factor;
5283	u_int period;	/* in 100ths of ns */
5284} scsi_syncrates[] = {
5285	{ 0x08, 625 },	/* FAST-160 */
5286	{ 0x09, 1250 },	/* FAST-80 */
5287	{ 0x0a, 2500 },	/* FAST-40 40MHz */
5288	{ 0x0b, 3030 },	/* FAST-40 33MHz */
5289	{ 0x0c, 5000 }	/* FAST-20 */
5290};
5291
5292/*
5293 * Return the frequency in kHz corresponding to the given
5294 * sync period factor.
5295 */
5296u_int
5297scsi_calc_syncsrate(u_int period_factor)
5298{
5299	int i;
5300	int num_syncrates;
5301
5302	/*
5303	 * It's a bug if period is zero, but if it is anyway, don't
5304	 * die with a divide fault- instead return something which
5305	 * 'approximates' async
5306	 */
5307	if (period_factor == 0) {
5308		return (3300);
5309	}
5310
5311	num_syncrates = sizeof(scsi_syncrates) / sizeof(scsi_syncrates[0]);
5312	/* See if the period is in the "exception" table */
5313	for (i = 0; i < num_syncrates; i++) {
5314
5315		if (period_factor == scsi_syncrates[i].period_factor) {
5316			/* Period in kHz */
5317			return (100000000 / scsi_syncrates[i].period);
5318		}
5319	}
5320
5321	/*
5322	 * Wasn't in the table, so use the standard
5323	 * 4 times conversion.
5324	 */
5325	return (10000000 / (period_factor * 4 * 10));
5326}
5327
5328/*
5329 * Return the SCSI sync parameter that corresponsd to
5330 * the passed in period in 10ths of ns.
5331 */
5332u_int
5333scsi_calc_syncparam(u_int period)
5334{
5335	int i;
5336	int num_syncrates;
5337
5338	if (period == 0)
5339		return (~0);	/* Async */
5340
5341	/* Adjust for exception table being in 100ths. */
5342	period *= 10;
5343	num_syncrates = sizeof(scsi_syncrates) / sizeof(scsi_syncrates[0]);
5344	/* See if the period is in the "exception" table */
5345	for (i = 0; i < num_syncrates; i++) {
5346
5347		if (period <= scsi_syncrates[i].period) {
5348			/* Period in 100ths of ns */
5349			return (scsi_syncrates[i].period_factor);
5350		}
5351	}
5352
5353	/*
5354	 * Wasn't in the table, so use the standard
5355	 * 1/4 period in ns conversion.
5356	 */
5357	return (period/400);
5358}
5359
5360int
5361scsi_devid_is_naa_ieee_reg(uint8_t *bufp)
5362{
5363	struct scsi_vpd_id_descriptor *descr;
5364	struct scsi_vpd_id_naa_basic *naa;
5365
5366	descr = (struct scsi_vpd_id_descriptor *)bufp;
5367	naa = (struct scsi_vpd_id_naa_basic *)descr->identifier;
5368	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5369		return 0;
5370	if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg))
5371		return 0;
5372	if ((naa->naa >> SVPD_ID_NAA_NAA_SHIFT) != SVPD_ID_NAA_IEEE_REG)
5373		return 0;
5374	return 1;
5375}
5376
5377int
5378scsi_devid_is_sas_target(uint8_t *bufp)
5379{
5380	struct scsi_vpd_id_descriptor *descr;
5381
5382	descr = (struct scsi_vpd_id_descriptor *)bufp;
5383	if (!scsi_devid_is_naa_ieee_reg(bufp))
5384		return 0;
5385	if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */
5386		return 0;
5387	if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS)
5388		return 0;
5389	return 1;
5390}
5391
5392int
5393scsi_devid_is_lun_eui64(uint8_t *bufp)
5394{
5395	struct scsi_vpd_id_descriptor *descr;
5396
5397	descr = (struct scsi_vpd_id_descriptor *)bufp;
5398	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5399		return 0;
5400	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64)
5401		return 0;
5402	return 1;
5403}
5404
5405int
5406scsi_devid_is_lun_naa(uint8_t *bufp)
5407{
5408	struct scsi_vpd_id_descriptor *descr;
5409
5410	descr = (struct scsi_vpd_id_descriptor *)bufp;
5411	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5412		return 0;
5413	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5414		return 0;
5415	return 1;
5416}
5417
5418int
5419scsi_devid_is_lun_t10(uint8_t *bufp)
5420{
5421	struct scsi_vpd_id_descriptor *descr;
5422
5423	descr = (struct scsi_vpd_id_descriptor *)bufp;
5424	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5425		return 0;
5426	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10)
5427		return 0;
5428	return 1;
5429}
5430
5431int
5432scsi_devid_is_lun_name(uint8_t *bufp)
5433{
5434	struct scsi_vpd_id_descriptor *descr;
5435
5436	descr = (struct scsi_vpd_id_descriptor *)bufp;
5437	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5438		return 0;
5439	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME)
5440		return 0;
5441	return 1;
5442}
5443
5444struct scsi_vpd_id_descriptor *
5445scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len,
5446    scsi_devid_checkfn_t ck_fn)
5447{
5448	uint8_t *desc_buf_end;
5449
5450	desc_buf_end = (uint8_t *)desc + len;
5451
5452	for (; desc->identifier <= desc_buf_end &&
5453	    desc->identifier + desc->length <= desc_buf_end;
5454	    desc = (struct scsi_vpd_id_descriptor *)(desc->identifier
5455						    + desc->length)) {
5456
5457		if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0)
5458			return (desc);
5459	}
5460	return (NULL);
5461}
5462
5463struct scsi_vpd_id_descriptor *
5464scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len,
5465    scsi_devid_checkfn_t ck_fn)
5466{
5467	uint32_t len;
5468
5469	if (page_len < sizeof(*id))
5470		return (NULL);
5471	len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id));
5472	return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *)
5473	    id->desc_list, len, ck_fn));
5474}
5475
5476int
5477scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr,
5478		      uint32_t valid_len)
5479{
5480	switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) {
5481	case SCSI_PROTO_FC: {
5482		struct scsi_transportid_fcp *fcp;
5483		uint64_t n_port_name;
5484
5485		fcp = (struct scsi_transportid_fcp *)hdr;
5486
5487		n_port_name = scsi_8btou64(fcp->n_port_name);
5488
5489		sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name);
5490		break;
5491	}
5492	case SCSI_PROTO_SPI: {
5493		struct scsi_transportid_spi *spi;
5494
5495		spi = (struct scsi_transportid_spi *)hdr;
5496
5497		sbuf_printf(sb, "SPI address: %u,%u",
5498			    scsi_2btoul(spi->scsi_addr),
5499			    scsi_2btoul(spi->rel_trgt_port_id));
5500		break;
5501	}
5502	case SCSI_PROTO_SSA:
5503		/*
5504		 * XXX KDM there is no transport ID defined in SPC-4 for
5505		 * SSA.
5506		 */
5507		break;
5508	case SCSI_PROTO_1394: {
5509		struct scsi_transportid_1394 *sbp;
5510		uint64_t eui64;
5511
5512		sbp = (struct scsi_transportid_1394 *)hdr;
5513
5514		eui64 = scsi_8btou64(sbp->eui64);
5515		sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64);
5516		break;
5517	}
5518	case SCSI_PROTO_RDMA: {
5519		struct scsi_transportid_rdma *rdma;
5520		unsigned int i;
5521
5522		rdma = (struct scsi_transportid_rdma *)hdr;
5523
5524		sbuf_printf(sb, "RDMA address: 0x");
5525		for (i = 0; i < sizeof(rdma->initiator_port_id); i++)
5526			sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]);
5527		break;
5528	}
5529	case SCSI_PROTO_ISCSI: {
5530		uint32_t add_len, i;
5531		uint8_t *iscsi_name = NULL;
5532		int nul_found = 0;
5533
5534		sbuf_printf(sb, "iSCSI address: ");
5535		if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5536		    SCSI_TRN_ISCSI_FORMAT_DEVICE) {
5537			struct scsi_transportid_iscsi_device *dev;
5538
5539			dev = (struct scsi_transportid_iscsi_device *)hdr;
5540
5541			/*
5542			 * Verify how much additional data we really have.
5543			 */
5544			add_len = scsi_2btoul(dev->additional_length);
5545			add_len = MIN(add_len, valid_len -
5546				__offsetof(struct scsi_transportid_iscsi_device,
5547					   iscsi_name));
5548			iscsi_name = &dev->iscsi_name[0];
5549
5550		} else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5551			    SCSI_TRN_ISCSI_FORMAT_PORT) {
5552			struct scsi_transportid_iscsi_port *port;
5553
5554			port = (struct scsi_transportid_iscsi_port *)hdr;
5555
5556			add_len = scsi_2btoul(port->additional_length);
5557			add_len = MIN(add_len, valid_len -
5558				__offsetof(struct scsi_transportid_iscsi_port,
5559					   iscsi_name));
5560			iscsi_name = &port->iscsi_name[0];
5561		} else {
5562			sbuf_printf(sb, "unknown format %x",
5563				    (hdr->format_protocol &
5564				     SCSI_TRN_FORMAT_MASK) >>
5565				     SCSI_TRN_FORMAT_SHIFT);
5566			break;
5567		}
5568		if (add_len == 0) {
5569			sbuf_printf(sb, "not enough data");
5570			break;
5571		}
5572		/*
5573		 * This is supposed to be a NUL-terminated ASCII
5574		 * string, but you never know.  So we're going to
5575		 * check.  We need to do this because there is no
5576		 * sbuf equivalent of strncat().
5577		 */
5578		for (i = 0; i < add_len; i++) {
5579			if (iscsi_name[i] == '\0') {
5580				nul_found = 1;
5581				break;
5582			}
5583		}
5584		/*
5585		 * If there is a NUL in the name, we can just use
5586		 * sbuf_cat().  Otherwise we need to use sbuf_bcat().
5587		 */
5588		if (nul_found != 0)
5589			sbuf_cat(sb, iscsi_name);
5590		else
5591			sbuf_bcat(sb, iscsi_name, add_len);
5592		break;
5593	}
5594	case SCSI_PROTO_SAS: {
5595		struct scsi_transportid_sas *sas;
5596		uint64_t sas_addr;
5597
5598		sas = (struct scsi_transportid_sas *)hdr;
5599
5600		sas_addr = scsi_8btou64(sas->sas_address);
5601		sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr);
5602		break;
5603	}
5604	case SCSI_PROTO_ADITP:
5605	case SCSI_PROTO_ATA:
5606	case SCSI_PROTO_UAS:
5607		/*
5608		 * No Transport ID format for ADI, ATA or USB is defined in
5609		 * SPC-4.
5610		 */
5611		sbuf_printf(sb, "No known Transport ID format for protocol "
5612			    "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK);
5613		break;
5614	case SCSI_PROTO_SOP: {
5615		struct scsi_transportid_sop *sop;
5616		struct scsi_sop_routing_id_norm *rid;
5617
5618		sop = (struct scsi_transportid_sop *)hdr;
5619		rid = (struct scsi_sop_routing_id_norm *)sop->routing_id;
5620
5621		/*
5622		 * Note that there is no alternate format specified in SPC-4
5623		 * for the PCIe routing ID, so we don't really have a way
5624		 * to know whether the second byte of the routing ID is
5625		 * a device and function or just a function.  So we just
5626		 * assume bus,device,function.
5627		 */
5628		sbuf_printf(sb, "SOP Routing ID: %u,%u,%u",
5629			    rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT,
5630			    rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX);
5631		break;
5632	}
5633	case SCSI_PROTO_NONE:
5634	default:
5635		sbuf_printf(sb, "Unknown protocol %#x",
5636			    hdr->format_protocol & SCSI_TRN_PROTO_MASK);
5637		break;
5638	}
5639
5640	return (0);
5641}
5642
5643struct scsi_nv scsi_proto_map[] = {
5644	{ "fcp", SCSI_PROTO_FC },
5645	{ "spi", SCSI_PROTO_SPI },
5646	{ "ssa", SCSI_PROTO_SSA },
5647	{ "sbp", SCSI_PROTO_1394 },
5648	{ "1394", SCSI_PROTO_1394 },
5649	{ "srp", SCSI_PROTO_RDMA },
5650	{ "rdma", SCSI_PROTO_RDMA },
5651	{ "iscsi", SCSI_PROTO_ISCSI },
5652	{ "iqn", SCSI_PROTO_ISCSI },
5653	{ "sas", SCSI_PROTO_SAS },
5654	{ "aditp", SCSI_PROTO_ADITP },
5655	{ "ata", SCSI_PROTO_ATA },
5656	{ "uas", SCSI_PROTO_UAS },
5657	{ "usb", SCSI_PROTO_UAS },
5658	{ "sop", SCSI_PROTO_SOP }
5659};
5660
5661const char *
5662scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value)
5663{
5664	int i;
5665
5666	for (i = 0; i < num_table_entries; i++) {
5667		if (table[i].value == value)
5668			return (table[i].name);
5669	}
5670
5671	return (NULL);
5672}
5673
5674/*
5675 * Given a name/value table, find a value matching the given name.
5676 * Return values:
5677 *	SCSI_NV_FOUND - match found
5678 *	SCSI_NV_AMBIGUOUS - more than one match, none of them exact
5679 *	SCSI_NV_NOT_FOUND - no match found
5680 */
5681scsi_nv_status
5682scsi_get_nv(struct scsi_nv *table, int num_table_entries,
5683	    char *name, int *table_entry, scsi_nv_flags flags)
5684{
5685	int i, num_matches = 0;
5686
5687	for (i = 0; i < num_table_entries; i++) {
5688		size_t table_len, name_len;
5689
5690		table_len = strlen(table[i].name);
5691		name_len = strlen(name);
5692
5693		if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0)
5694		  && (strncasecmp(table[i].name, name, name_len) == 0))
5695		|| (((flags & SCSI_NV_FLAG_IG_CASE) == 0)
5696		 && (strncmp(table[i].name, name, name_len) == 0))) {
5697			*table_entry = i;
5698
5699			/*
5700			 * Check for an exact match.  If we have the same
5701			 * number of characters in the table as the argument,
5702			 * and we already know they're the same, we have
5703			 * an exact match.
5704		 	 */
5705			if (table_len == name_len)
5706				return (SCSI_NV_FOUND);
5707
5708			/*
5709			 * Otherwise, bump up the number of matches.  We'll
5710			 * see later how many we have.
5711			 */
5712			num_matches++;
5713		}
5714	}
5715
5716	if (num_matches > 1)
5717		return (SCSI_NV_AMBIGUOUS);
5718	else if (num_matches == 1)
5719		return (SCSI_NV_FOUND);
5720	else
5721		return (SCSI_NV_NOT_FOUND);
5722}
5723
5724/*
5725 * Parse transport IDs for Fibre Channel, 1394 and SAS.  Since these are
5726 * all 64-bit numbers, the code is similar.
5727 */
5728int
5729scsi_parse_transportid_64bit(int proto_id, char *id_str,
5730			     struct scsi_transportid_header **hdr,
5731			     unsigned int *alloc_len,
5732#ifdef _KERNEL
5733			     struct malloc_type *type, int flags,
5734#endif
5735			     char *error_str, int error_str_len)
5736{
5737	uint64_t value;
5738	char *endptr;
5739	int retval;
5740	size_t alloc_size;
5741
5742	retval = 0;
5743
5744	value = strtouq(id_str, &endptr, 0);
5745	if (*endptr != '\0') {
5746		if (error_str != NULL) {
5747			snprintf(error_str, error_str_len, "%s: error "
5748				 "parsing ID %s, 64-bit number required",
5749				 __func__, id_str);
5750		}
5751		retval = 1;
5752		goto bailout;
5753	}
5754
5755	switch (proto_id) {
5756	case SCSI_PROTO_FC:
5757		alloc_size = sizeof(struct scsi_transportid_fcp);
5758		break;
5759	case SCSI_PROTO_1394:
5760		alloc_size = sizeof(struct scsi_transportid_1394);
5761		break;
5762	case SCSI_PROTO_SAS:
5763		alloc_size = sizeof(struct scsi_transportid_sas);
5764		break;
5765	default:
5766		if (error_str != NULL) {
5767			snprintf(error_str, error_str_len, "%s: unsupoprted "
5768				 "protocol %d", __func__, proto_id);
5769		}
5770		retval = 1;
5771		goto bailout;
5772		break; /* NOTREACHED */
5773	}
5774#ifdef _KERNEL
5775	*hdr = malloc(alloc_size, type, flags);
5776#else /* _KERNEL */
5777	*hdr = malloc(alloc_size);
5778#endif /*_KERNEL */
5779	if (*hdr == NULL) {
5780		if (error_str != NULL) {
5781			snprintf(error_str, error_str_len, "%s: unable to "
5782				 "allocate %zu bytes", __func__, alloc_size);
5783		}
5784		retval = 1;
5785		goto bailout;
5786	}
5787
5788	*alloc_len = alloc_size;
5789
5790	bzero(*hdr, alloc_size);
5791
5792	switch (proto_id) {
5793	case SCSI_PROTO_FC: {
5794		struct scsi_transportid_fcp *fcp;
5795
5796		fcp = (struct scsi_transportid_fcp *)(*hdr);
5797		fcp->format_protocol = SCSI_PROTO_FC |
5798				       SCSI_TRN_FCP_FORMAT_DEFAULT;
5799		scsi_u64to8b(value, fcp->n_port_name);
5800		break;
5801	}
5802	case SCSI_PROTO_1394: {
5803		struct scsi_transportid_1394 *sbp;
5804
5805		sbp = (struct scsi_transportid_1394 *)(*hdr);
5806		sbp->format_protocol = SCSI_PROTO_1394 |
5807				       SCSI_TRN_1394_FORMAT_DEFAULT;
5808		scsi_u64to8b(value, sbp->eui64);
5809		break;
5810	}
5811	case SCSI_PROTO_SAS: {
5812		struct scsi_transportid_sas *sas;
5813
5814		sas = (struct scsi_transportid_sas *)(*hdr);
5815		sas->format_protocol = SCSI_PROTO_SAS |
5816				       SCSI_TRN_SAS_FORMAT_DEFAULT;
5817		scsi_u64to8b(value, sas->sas_address);
5818		break;
5819	}
5820	default:
5821		break;
5822	}
5823bailout:
5824	return (retval);
5825}
5826
5827/*
5828 * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port
5829 */
5830int
5831scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr,
5832			   unsigned int *alloc_len,
5833#ifdef _KERNEL
5834			   struct malloc_type *type, int flags,
5835#endif
5836			   char *error_str, int error_str_len)
5837{
5838	unsigned long scsi_addr, target_port;
5839	struct scsi_transportid_spi *spi;
5840	char *tmpstr, *endptr;
5841	int retval;
5842
5843	retval = 0;
5844
5845	tmpstr = strsep(&id_str, ",");
5846	if (tmpstr == NULL) {
5847		if (error_str != NULL) {
5848			snprintf(error_str, error_str_len,
5849				 "%s: no ID found", __func__);
5850		}
5851		retval = 1;
5852		goto bailout;
5853	}
5854	scsi_addr = strtoul(tmpstr, &endptr, 0);
5855	if (*endptr != '\0') {
5856		if (error_str != NULL) {
5857			snprintf(error_str, error_str_len, "%s: error "
5858				 "parsing SCSI ID %s, number required",
5859				 __func__, tmpstr);
5860		}
5861		retval = 1;
5862		goto bailout;
5863	}
5864
5865	if (id_str == NULL) {
5866		if (error_str != NULL) {
5867			snprintf(error_str, error_str_len, "%s: no relative "
5868				 "target port found", __func__);
5869		}
5870		retval = 1;
5871		goto bailout;
5872	}
5873
5874	target_port = strtoul(id_str, &endptr, 0);
5875	if (*endptr != '\0') {
5876		if (error_str != NULL) {
5877			snprintf(error_str, error_str_len, "%s: error "
5878				 "parsing relative target port %s, number "
5879				 "required", __func__, id_str);
5880		}
5881		retval = 1;
5882		goto bailout;
5883	}
5884#ifdef _KERNEL
5885	spi = malloc(sizeof(*spi), type, flags);
5886#else
5887	spi = malloc(sizeof(*spi));
5888#endif
5889	if (spi == NULL) {
5890		if (error_str != NULL) {
5891			snprintf(error_str, error_str_len, "%s: unable to "
5892				 "allocate %zu bytes", __func__,
5893				 sizeof(*spi));
5894		}
5895		retval = 1;
5896		goto bailout;
5897	}
5898	*alloc_len = sizeof(*spi);
5899	bzero(spi, sizeof(*spi));
5900
5901	spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT;
5902	scsi_ulto2b(scsi_addr, spi->scsi_addr);
5903	scsi_ulto2b(target_port, spi->rel_trgt_port_id);
5904
5905	*hdr = (struct scsi_transportid_header *)spi;
5906bailout:
5907	return (retval);
5908}
5909
5910/*
5911 * Parse an RDMA/SRP Initiator Port ID string.  This is 32 hexadecimal digits,
5912 * optionally prefixed by "0x" or "0X".
5913 */
5914int
5915scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr,
5916			    unsigned int *alloc_len,
5917#ifdef _KERNEL
5918			    struct malloc_type *type, int flags,
5919#endif
5920			    char *error_str, int error_str_len)
5921{
5922	struct scsi_transportid_rdma *rdma;
5923	int retval;
5924	size_t id_len, rdma_id_size;
5925	uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN];
5926	char *tmpstr;
5927	unsigned int i, j;
5928
5929	retval = 0;
5930	id_len = strlen(id_str);
5931	rdma_id_size = SCSI_TRN_RDMA_PORT_LEN;
5932
5933	/*
5934	 * Check the size.  It needs to be either 32 or 34 characters long.
5935	 */
5936	if ((id_len != (rdma_id_size * 2))
5937	 && (id_len != ((rdma_id_size * 2) + 2))) {
5938		if (error_str != NULL) {
5939			snprintf(error_str, error_str_len, "%s: RDMA ID "
5940				 "must be 32 hex digits (0x prefix "
5941				 "optional), only %zu seen", __func__, id_len);
5942		}
5943		retval = 1;
5944		goto bailout;
5945	}
5946
5947	tmpstr = id_str;
5948	/*
5949	 * If the user gave us 34 characters, the string needs to start
5950	 * with '0x'.
5951	 */
5952	if (id_len == ((rdma_id_size * 2) + 2)) {
5953	 	if ((tmpstr[0] == '0')
5954		 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) {
5955			tmpstr += 2;
5956		} else {
5957			if (error_str != NULL) {
5958				snprintf(error_str, error_str_len, "%s: RDMA "
5959					 "ID prefix, if used, must be \"0x\", "
5960					 "got %s", __func__, tmpstr);
5961			}
5962			retval = 1;
5963			goto bailout;
5964		}
5965	}
5966	bzero(rdma_id, sizeof(rdma_id));
5967
5968	/*
5969	 * Convert ASCII hex into binary bytes.  There is no standard
5970	 * 128-bit integer type, and so no strtou128t() routine to convert
5971	 * from hex into a large integer.  In the end, we're not going to
5972	 * an integer, but rather to a byte array, so that and the fact
5973	 * that we require the user to give us 32 hex digits simplifies the
5974	 * logic.
5975	 */
5976	for (i = 0; i < (rdma_id_size * 2); i++) {
5977		int cur_shift;
5978		unsigned char c;
5979
5980		/* Increment the byte array one for every 2 hex digits */
5981		j = i >> 1;
5982
5983		/*
5984		 * The first digit in every pair is the most significant
5985		 * 4 bits.  The second is the least significant 4 bits.
5986		 */
5987		if ((i % 2) == 0)
5988			cur_shift = 4;
5989		else
5990			cur_shift = 0;
5991
5992		c = tmpstr[i];
5993		/* Convert the ASCII hex character into a number */
5994		if (isdigit(c))
5995			c -= '0';
5996		else if (isalpha(c))
5997			c -= isupper(c) ? 'A' - 10 : 'a' - 10;
5998		else {
5999			if (error_str != NULL) {
6000				snprintf(error_str, error_str_len, "%s: "
6001					 "RDMA ID must be hex digits, got "
6002					 "invalid character %c", __func__,
6003					 tmpstr[i]);
6004			}
6005			retval = 1;
6006			goto bailout;
6007		}
6008		/*
6009		 * The converted number can't be less than 0; the type is
6010		 * unsigned, and the subtraction logic will not give us
6011		 * a negative number.  So we only need to make sure that
6012		 * the value is not greater than 0xf.  (i.e. make sure the
6013		 * user didn't give us a value like "0x12jklmno").
6014		 */
6015		if (c > 0xf) {
6016			if (error_str != NULL) {
6017				snprintf(error_str, error_str_len, "%s: "
6018					 "RDMA ID must be hex digits, got "
6019					 "invalid character %c", __func__,
6020					 tmpstr[i]);
6021			}
6022			retval = 1;
6023			goto bailout;
6024		}
6025
6026		rdma_id[j] |= c << cur_shift;
6027	}
6028
6029#ifdef _KERNEL
6030	rdma = malloc(sizeof(*rdma), type, flags);
6031#else
6032	rdma = malloc(sizeof(*rdma));
6033#endif
6034	if (rdma == NULL) {
6035		if (error_str != NULL) {
6036			snprintf(error_str, error_str_len, "%s: unable to "
6037				 "allocate %zu bytes", __func__,
6038				 sizeof(*rdma));
6039		}
6040		retval = 1;
6041		goto bailout;
6042	}
6043	*alloc_len = sizeof(*rdma);
6044	bzero(rdma, *alloc_len);
6045
6046	rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT;
6047	bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN);
6048
6049	*hdr = (struct scsi_transportid_header *)rdma;
6050
6051bailout:
6052	return (retval);
6053}
6054
6055/*
6056 * Parse an iSCSI name.  The format is either just the name:
6057 *
6058 *	iqn.2012-06.com.example:target0
6059 * or the name, separator and initiator session ID:
6060 *
6061 *	iqn.2012-06.com.example:target0,i,0x123
6062 *
6063 * The separator format is exact.
6064 */
6065int
6066scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr,
6067			     unsigned int *alloc_len,
6068#ifdef _KERNEL
6069			     struct malloc_type *type, int flags,
6070#endif
6071			     char *error_str, int error_str_len)
6072{
6073	size_t id_len, sep_len, id_size, name_len;
6074	int retval;
6075	unsigned int i, sep_pos, sep_found;
6076	const char *sep_template = ",i,0x";
6077	const char *iqn_prefix = "iqn.";
6078	struct scsi_transportid_iscsi_device *iscsi;
6079
6080	retval = 0;
6081	sep_found = 0;
6082
6083	id_len = strlen(id_str);
6084	sep_len = strlen(sep_template);
6085
6086	/*
6087	 * The separator is defined as exactly ',i,0x'.  Any other commas,
6088	 * or any other form, is an error.  So look for a comma, and once
6089	 * we find that, the next few characters must match the separator
6090	 * exactly.  Once we get through the separator, there should be at
6091	 * least one character.
6092	 */
6093	for (i = 0, sep_pos = 0; i < id_len; i++) {
6094		if (sep_pos == 0) {
6095		 	if (id_str[i] == sep_template[sep_pos])
6096				sep_pos++;
6097
6098			continue;
6099		}
6100		if (sep_pos < sep_len) {
6101			if (id_str[i] == sep_template[sep_pos]) {
6102				sep_pos++;
6103				continue;
6104			}
6105			if (error_str != NULL) {
6106				snprintf(error_str, error_str_len, "%s: "
6107					 "invalid separator in iSCSI name "
6108					 "\"%s\"",
6109					 __func__, id_str);
6110			}
6111			retval = 1;
6112			goto bailout;
6113		} else {
6114			sep_found = 1;
6115			break;
6116		}
6117	}
6118
6119	/*
6120	 * Check to see whether we have a separator but no digits after it.
6121	 */
6122	if ((sep_pos != 0)
6123	 && (sep_found == 0)) {
6124		if (error_str != NULL) {
6125			snprintf(error_str, error_str_len, "%s: no digits "
6126				 "found after separator in iSCSI name \"%s\"",
6127				 __func__, id_str);
6128		}
6129		retval = 1;
6130		goto bailout;
6131	}
6132
6133	/*
6134	 * The incoming ID string has the "iqn." prefix stripped off.  We
6135	 * need enough space for the base structure (the structures are the
6136	 * same for the two iSCSI forms), the prefix, the ID string and a
6137	 * terminating NUL.
6138	 */
6139	id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1;
6140
6141#ifdef _KERNEL
6142	iscsi = malloc(id_size, type, flags);
6143#else
6144	iscsi = malloc(id_size);
6145#endif
6146	if (iscsi == NULL) {
6147		if (error_str != NULL) {
6148			snprintf(error_str, error_str_len, "%s: unable to "
6149				 "allocate %zu bytes", __func__, id_size);
6150		}
6151		retval = 1;
6152		goto bailout;
6153	}
6154	*alloc_len = id_size;
6155	bzero(iscsi, id_size);
6156
6157	iscsi->format_protocol = SCSI_PROTO_ISCSI;
6158	if (sep_found == 0)
6159		iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE;
6160	else
6161		iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT;
6162	name_len = id_size - sizeof(*iscsi);
6163	scsi_ulto2b(name_len, iscsi->additional_length);
6164	snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str);
6165
6166	*hdr = (struct scsi_transportid_header *)iscsi;
6167
6168bailout:
6169	return (retval);
6170}
6171
6172/*
6173 * Parse a SCSI over PCIe (SOP) identifier.  The Routing ID can either be
6174 * of the form 'bus,device,function' or 'bus,function'.
6175 */
6176int
6177scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr,
6178			   unsigned int *alloc_len,
6179#ifdef _KERNEL
6180			   struct malloc_type *type, int flags,
6181#endif
6182			   char *error_str, int error_str_len)
6183{
6184	struct scsi_transportid_sop *sop;
6185	unsigned long bus, device, function;
6186	char *tmpstr, *endptr;
6187	int retval, device_spec;
6188
6189	retval = 0;
6190	device_spec = 0;
6191	device = 0;
6192
6193	tmpstr = strsep(&id_str, ",");
6194	if ((tmpstr == NULL)
6195	 || (*tmpstr == '\0')) {
6196		if (error_str != NULL) {
6197			snprintf(error_str, error_str_len, "%s: no ID found",
6198				 __func__);
6199		}
6200		retval = 1;
6201		goto bailout;
6202	}
6203	bus = strtoul(tmpstr, &endptr, 0);
6204	if (*endptr != '\0') {
6205		if (error_str != NULL) {
6206			snprintf(error_str, error_str_len, "%s: error "
6207				 "parsing PCIe bus %s, number required",
6208				 __func__, tmpstr);
6209		}
6210		retval = 1;
6211		goto bailout;
6212	}
6213	if ((id_str == NULL)
6214	 || (*id_str == '\0')) {
6215		if (error_str != NULL) {
6216			snprintf(error_str, error_str_len, "%s: no PCIe "
6217				 "device or function found", __func__);
6218		}
6219		retval = 1;
6220		goto bailout;
6221	}
6222	tmpstr = strsep(&id_str, ",");
6223	function = strtoul(tmpstr, &endptr, 0);
6224	if (*endptr != '\0') {
6225		if (error_str != NULL) {
6226			snprintf(error_str, error_str_len, "%s: error "
6227				 "parsing PCIe device/function %s, number "
6228				 "required", __func__, tmpstr);
6229		}
6230		retval = 1;
6231		goto bailout;
6232	}
6233	/*
6234	 * Check to see whether the user specified a third value.  If so,
6235	 * the second is the device.
6236	 */
6237	if (id_str != NULL) {
6238		if (*id_str == '\0') {
6239			if (error_str != NULL) {
6240				snprintf(error_str, error_str_len, "%s: "
6241					 "no PCIe function found", __func__);
6242			}
6243			retval = 1;
6244			goto bailout;
6245		}
6246		device = function;
6247		device_spec = 1;
6248		function = strtoul(id_str, &endptr, 0);
6249		if (*endptr != '\0') {
6250			if (error_str != NULL) {
6251				snprintf(error_str, error_str_len, "%s: "
6252					 "error parsing PCIe function %s, "
6253					 "number required", __func__, id_str);
6254			}
6255			retval = 1;
6256			goto bailout;
6257		}
6258	}
6259	if (bus > SCSI_TRN_SOP_BUS_MAX) {
6260		if (error_str != NULL) {
6261			snprintf(error_str, error_str_len, "%s: bus value "
6262				 "%lu greater than maximum %u", __func__,
6263				 bus, SCSI_TRN_SOP_BUS_MAX);
6264		}
6265		retval = 1;
6266		goto bailout;
6267	}
6268
6269	if ((device_spec != 0)
6270	 && (device > SCSI_TRN_SOP_DEV_MASK)) {
6271		if (error_str != NULL) {
6272			snprintf(error_str, error_str_len, "%s: device value "
6273				 "%lu greater than maximum %u", __func__,
6274				 device, SCSI_TRN_SOP_DEV_MAX);
6275		}
6276		retval = 1;
6277		goto bailout;
6278	}
6279
6280	if (((device_spec != 0)
6281	  && (function > SCSI_TRN_SOP_FUNC_NORM_MAX))
6282	 || ((device_spec == 0)
6283	  && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) {
6284		if (error_str != NULL) {
6285			snprintf(error_str, error_str_len, "%s: function value "
6286				 "%lu greater than maximum %u", __func__,
6287				 function, (device_spec == 0) ?
6288				 SCSI_TRN_SOP_FUNC_ALT_MAX :
6289				 SCSI_TRN_SOP_FUNC_NORM_MAX);
6290		}
6291		retval = 1;
6292		goto bailout;
6293	}
6294
6295#ifdef _KERNEL
6296	sop = malloc(sizeof(*sop), type, flags);
6297#else
6298	sop = malloc(sizeof(*sop));
6299#endif
6300	if (sop == NULL) {
6301		if (error_str != NULL) {
6302			snprintf(error_str, error_str_len, "%s: unable to "
6303				 "allocate %zu bytes", __func__, sizeof(*sop));
6304		}
6305		retval = 1;
6306		goto bailout;
6307	}
6308	*alloc_len = sizeof(*sop);
6309	bzero(sop, sizeof(*sop));
6310	sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT;
6311	if (device_spec != 0) {
6312		struct scsi_sop_routing_id_norm rid;
6313
6314		rid.bus = bus;
6315		rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function;
6316		bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6317		      sizeof(sop->routing_id)));
6318	} else {
6319		struct scsi_sop_routing_id_alt rid;
6320
6321		rid.bus = bus;
6322		rid.function = function;
6323		bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6324		      sizeof(sop->routing_id)));
6325	}
6326
6327	*hdr = (struct scsi_transportid_header *)sop;
6328bailout:
6329	return (retval);
6330}
6331
6332/*
6333 * transportid_str: NUL-terminated string with format: protcol,id
6334 *		    The ID is protocol specific.
6335 * hdr:		    Storage will be allocated for the transport ID.
6336 * alloc_len:	    The amount of memory allocated is returned here.
6337 * type:	    Malloc bucket (kernel only).
6338 * flags:	    Malloc flags (kernel only).
6339 * error_str:	    If non-NULL, it will contain error information (without
6340 * 		    a terminating newline) if an error is returned.
6341 * error_str_len:   Allocated length of the error string.
6342 *
6343 * Returns 0 for success, non-zero for failure.
6344 */
6345int
6346scsi_parse_transportid(char *transportid_str,
6347		       struct scsi_transportid_header **hdr,
6348		       unsigned int *alloc_len,
6349#ifdef _KERNEL
6350		       struct malloc_type *type, int flags,
6351#endif
6352		       char *error_str, int error_str_len)
6353{
6354	char *tmpstr;
6355	scsi_nv_status status;
6356	int retval, num_proto_entries, table_entry;
6357
6358	retval = 0;
6359	table_entry = 0;
6360
6361	/*
6362	 * We do allow a period as well as a comma to separate the protocol
6363	 * from the ID string.  This is to accommodate iSCSI names, which
6364	 * start with "iqn.".
6365	 */
6366	tmpstr = strsep(&transportid_str, ",.");
6367	if (tmpstr == NULL) {
6368		if (error_str != NULL) {
6369			snprintf(error_str, error_str_len,
6370				 "%s: transportid_str is NULL", __func__);
6371		}
6372		retval = 1;
6373		goto bailout;
6374	}
6375
6376	num_proto_entries = sizeof(scsi_proto_map) /
6377			    sizeof(scsi_proto_map[0]);
6378	status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr,
6379			     &table_entry, SCSI_NV_FLAG_IG_CASE);
6380	if (status != SCSI_NV_FOUND) {
6381		if (error_str != NULL) {
6382			snprintf(error_str, error_str_len, "%s: %s protocol "
6383				 "name %s", __func__,
6384				 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" :
6385				 "invalid", tmpstr);
6386		}
6387		retval = 1;
6388		goto bailout;
6389	}
6390	switch (scsi_proto_map[table_entry].value) {
6391	case SCSI_PROTO_FC:
6392	case SCSI_PROTO_1394:
6393	case SCSI_PROTO_SAS:
6394		retval = scsi_parse_transportid_64bit(
6395		    scsi_proto_map[table_entry].value, transportid_str, hdr,
6396		    alloc_len,
6397#ifdef _KERNEL
6398		    type, flags,
6399#endif
6400		    error_str, error_str_len);
6401		break;
6402	case SCSI_PROTO_SPI:
6403		retval = scsi_parse_transportid_spi(transportid_str, hdr,
6404		    alloc_len,
6405#ifdef _KERNEL
6406		    type, flags,
6407#endif
6408		    error_str, error_str_len);
6409		break;
6410	case SCSI_PROTO_RDMA:
6411		retval = scsi_parse_transportid_rdma(transportid_str, hdr,
6412		    alloc_len,
6413#ifdef _KERNEL
6414		    type, flags,
6415#endif
6416		    error_str, error_str_len);
6417		break;
6418	case SCSI_PROTO_ISCSI:
6419		retval = scsi_parse_transportid_iscsi(transportid_str, hdr,
6420		    alloc_len,
6421#ifdef _KERNEL
6422		    type, flags,
6423#endif
6424		    error_str, error_str_len);
6425		break;
6426	case SCSI_PROTO_SOP:
6427		retval = scsi_parse_transportid_sop(transportid_str, hdr,
6428		    alloc_len,
6429#ifdef _KERNEL
6430		    type, flags,
6431#endif
6432		    error_str, error_str_len);
6433		break;
6434	case SCSI_PROTO_SSA:
6435	case SCSI_PROTO_ADITP:
6436	case SCSI_PROTO_ATA:
6437	case SCSI_PROTO_UAS:
6438	case SCSI_PROTO_NONE:
6439	default:
6440		/*
6441		 * There is no format defined for a Transport ID for these
6442		 * protocols.  So even if the user gives us something, we
6443		 * have no way to turn it into a standard SCSI Transport ID.
6444		 */
6445		retval = 1;
6446		if (error_str != NULL) {
6447			snprintf(error_str, error_str_len, "%s: no Transport "
6448				 "ID format exists for protocol %s",
6449				 __func__, tmpstr);
6450		}
6451		goto bailout;
6452		break;	/* NOTREACHED */
6453	}
6454bailout:
6455	return (retval);
6456}
6457
6458struct scsi_attrib_table_entry scsi_mam_attr_table[] = {
6459	{ SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6460	  "Remaining Capacity in Partition",
6461	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL },
6462	{ SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6463	  "Maximum Capacity in Partition",
6464	  /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6465	{ SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX,
6466	  "TapeAlert Flags",
6467	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6468	{ SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE,
6469	  "Load Count",
6470	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6471	{ SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE,
6472	  "MAM Space Remaining",
6473	  /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6474	  /*parse_str*/ NULL },
6475	{ SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6476	  "Assigning Organization",
6477	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6478	  /*parse_str*/ NULL },
6479	{ SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6480	  "Format Density Code",
6481	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6482	{ SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE,
6483	  "Initialization Count",
6484	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6485	{ SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE,
6486	  "Volume Identifier",
6487	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6488	  /*parse_str*/ NULL },
6489	{ SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX,
6490	  "Volume Change Reference",
6491	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6492	  /*parse_str*/ NULL },
6493	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE,
6494	  "Device Vendor/Serial at Last Load",
6495	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6496	  /*parse_str*/ NULL },
6497	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE,
6498	  "Device Vendor/Serial at Last Load - 1",
6499	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6500	  /*parse_str*/ NULL },
6501	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE,
6502	  "Device Vendor/Serial at Last Load - 2",
6503	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6504	  /*parse_str*/ NULL },
6505	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE,
6506	  "Device Vendor/Serial at Last Load - 3",
6507	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6508	  /*parse_str*/ NULL },
6509	{ SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE,
6510	  "Total MB Written in Medium Life",
6511	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6512	  /*parse_str*/ NULL },
6513	{ SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE,
6514	  "Total MB Read in Medium Life",
6515	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6516	  /*parse_str*/ NULL },
6517	{ SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE,
6518	  "Total MB Written in Current/Last Load",
6519	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6520	  /*parse_str*/ NULL },
6521	{ SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE,
6522	  "Total MB Read in Current/Last Load",
6523	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6524	  /*parse_str*/ NULL },
6525	{ SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6526	  "Logical Position of First Encrypted Block",
6527	  /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6528	  /*parse_str*/ NULL },
6529	{ SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6530	  "Logical Position of First Unencrypted Block after First "
6531	  "Encrypted Block",
6532	  /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6533	  /*parse_str*/ NULL },
6534	{ SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6535	  "Medium Usage History",
6536	  /*suffix*/ NULL, /*to_str*/ NULL,
6537	  /*parse_str*/ NULL },
6538	{ SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6539	  "Partition Usage History",
6540	  /*suffix*/ NULL, /*to_str*/ NULL,
6541	  /*parse_str*/ NULL },
6542	{ SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE,
6543	  "Medium Manufacturer",
6544	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6545	  /*parse_str*/ NULL },
6546	{ SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE,
6547	  "Medium Serial Number",
6548	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6549	  /*parse_str*/ NULL },
6550	{ SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE,
6551	  "Medium Length",
6552	  /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf,
6553	  /*parse_str*/ NULL },
6554	{ SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 |
6555	  SCSI_ATTR_FLAG_FP_1DIGIT,
6556	  "Medium Width",
6557	  /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf,
6558	  /*parse_str*/ NULL },
6559	{ SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6560	  "Assigning Organization",
6561	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6562	  /*parse_str*/ NULL },
6563	{ SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6564	  "Medium Density Code",
6565	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6566	  /*parse_str*/ NULL },
6567	{ SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE,
6568	  "Medium Manufacture Date",
6569	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6570	  /*parse_str*/ NULL },
6571	{ SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE,
6572	  "MAM Capacity",
6573	  /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6574	  /*parse_str*/ NULL },
6575	{ SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX,
6576	  "Medium Type",
6577	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6578	  /*parse_str*/ NULL },
6579	{ SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX,
6580	  "Medium Type Information",
6581	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6582	  /*parse_str*/ NULL },
6583	{ SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE,
6584	  "Medium Serial Number",
6585	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6586	  /*parse_str*/ NULL },
6587	{ SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE,
6588	  "Application Vendor",
6589	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6590	  /*parse_str*/ NULL },
6591	{ SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE,
6592	  "Application Name",
6593	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6594	  /*parse_str*/ NULL },
6595	{ SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE,
6596	  "Application Version",
6597	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6598	  /*parse_str*/ NULL },
6599	{ SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE,
6600	  "User Medium Text Label",
6601	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6602	  /*parse_str*/ NULL },
6603	{ SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE,
6604	  "Date and Time Last Written",
6605	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6606	  /*parse_str*/ NULL },
6607	{ SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX,
6608	  "Text Localization Identifier",
6609	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6610	  /*parse_str*/ NULL },
6611	{ SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE,
6612	  "Barcode",
6613	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6614	  /*parse_str*/ NULL },
6615	{ SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE,
6616	  "Owning Host Textual Name",
6617	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6618	  /*parse_str*/ NULL },
6619	{ SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE,
6620	  "Media Pool",
6621	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6622	  /*parse_str*/ NULL },
6623	{ SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE,
6624	  "Partition User Text Label",
6625	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6626	  /*parse_str*/ NULL },
6627	{ SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE,
6628	  "Load/Unload at Partition",
6629	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6630	  /*parse_str*/ NULL },
6631	{ SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE,
6632	  "Application Format Version",
6633	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6634	  /*parse_str*/ NULL },
6635	{ SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE,
6636	  "Volume Coherency Information",
6637	  /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf,
6638	  /*parse_str*/ NULL },
6639	{ 0x0ff1, SCSI_ATTR_FLAG_NONE,
6640	  "Spectra MLM Creation",
6641	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6642	  /*parse_str*/ NULL },
6643	{ 0x0ff2, SCSI_ATTR_FLAG_NONE,
6644	  "Spectra MLM C3",
6645	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6646	  /*parse_str*/ NULL },
6647	{ 0x0ff3, SCSI_ATTR_FLAG_NONE,
6648	  "Spectra MLM RW",
6649	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6650	  /*parse_str*/ NULL },
6651	{ 0x0ff4, SCSI_ATTR_FLAG_NONE,
6652	  "Spectra MLM SDC List",
6653	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6654	  /*parse_str*/ NULL },
6655	{ 0x0ff7, SCSI_ATTR_FLAG_NONE,
6656	  "Spectra MLM Post Scan",
6657	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6658	  /*parse_str*/ NULL },
6659	{ 0x0ffe, SCSI_ATTR_FLAG_NONE,
6660	  "Spectra MLM Checksum",
6661	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6662	  /*parse_str*/ NULL },
6663	{ 0x17f1, SCSI_ATTR_FLAG_NONE,
6664	  "Spectra MLM Creation",
6665	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6666	  /*parse_str*/ NULL },
6667	{ 0x17f2, SCSI_ATTR_FLAG_NONE,
6668	  "Spectra MLM C3",
6669	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6670	  /*parse_str*/ NULL },
6671	{ 0x17f3, SCSI_ATTR_FLAG_NONE,
6672	  "Spectra MLM RW",
6673	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6674	  /*parse_str*/ NULL },
6675	{ 0x17f4, SCSI_ATTR_FLAG_NONE,
6676	  "Spectra MLM SDC List",
6677	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6678	  /*parse_str*/ NULL },
6679	{ 0x17f7, SCSI_ATTR_FLAG_NONE,
6680	  "Spectra MLM Post Scan",
6681	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6682	  /*parse_str*/ NULL },
6683	{ 0x17ff, SCSI_ATTR_FLAG_NONE,
6684	  "Spectra MLM Checksum",
6685	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6686	  /*parse_str*/ NULL },
6687};
6688
6689/*
6690 * Print out Volume Coherency Information (Attribute 0x080c).
6691 * This field has two variable length members, including one at the
6692 * beginning, so it isn't practical to have a fixed structure definition.
6693 * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25,
6694 * 2013.
6695 */
6696int
6697scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
6698			 uint32_t valid_len, uint32_t flags,
6699			 uint32_t output_flags, char *error_str,
6700			 int error_str_len)
6701{
6702	size_t avail_len;
6703	uint32_t field_size;
6704	uint64_t tmp_val;
6705	uint8_t *cur_ptr;
6706	int retval;
6707	int vcr_len, as_len;
6708
6709	retval = 0;
6710	tmp_val = 0;
6711
6712	field_size = scsi_2btoul(hdr->length);
6713	avail_len = valid_len - sizeof(*hdr);
6714	if (field_size > avail_len) {
6715		if (error_str != NULL) {
6716			snprintf(error_str, error_str_len, "Available "
6717				 "length of attribute ID 0x%.4x %zu < field "
6718				 "length %u", scsi_2btoul(hdr->id), avail_len,
6719				 field_size);
6720		}
6721		retval = 1;
6722		goto bailout;
6723	} else if (field_size == 0) {
6724		/*
6725		 * It isn't clear from the spec whether a field length of
6726		 * 0 is invalid here.  It probably is, but be lenient here
6727		 * to avoid inconveniencing the user.
6728		 */
6729		goto bailout;
6730	}
6731	cur_ptr = hdr->attribute;
6732	vcr_len = *cur_ptr;
6733	cur_ptr++;
6734
6735	sbuf_printf(sb, "\n\tVolume Change Reference Value:");
6736
6737	switch (vcr_len) {
6738	case 0:
6739		if (error_str != NULL) {
6740			snprintf(error_str, error_str_len, "Volume Change "
6741				 "Reference value has length of 0");
6742		}
6743		retval = 1;
6744		goto bailout;
6745		break; /*NOTREACHED*/
6746	case 1:
6747		tmp_val = *cur_ptr;
6748		break;
6749	case 2:
6750		tmp_val = scsi_2btoul(cur_ptr);
6751		break;
6752	case 3:
6753		tmp_val = scsi_3btoul(cur_ptr);
6754		break;
6755	case 4:
6756		tmp_val = scsi_4btoul(cur_ptr);
6757		break;
6758	case 8:
6759		tmp_val = scsi_8btou64(cur_ptr);
6760		break;
6761	default:
6762		sbuf_printf(sb, "\n");
6763		sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0);
6764		break;
6765	}
6766	if (vcr_len <= 8)
6767		sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val);
6768
6769	cur_ptr += vcr_len;
6770	tmp_val = scsi_8btou64(cur_ptr);
6771	sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val);
6772
6773	cur_ptr += sizeof(tmp_val);
6774	tmp_val = scsi_8btou64(cur_ptr);
6775	sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n",
6776		    (uintmax_t)tmp_val);
6777
6778	/*
6779	 * Figure out how long the Application Client Specific Information
6780	 * is and produce a hexdump.
6781	 */
6782	cur_ptr += sizeof(tmp_val);
6783	as_len = scsi_2btoul(cur_ptr);
6784	cur_ptr += sizeof(uint16_t);
6785	sbuf_printf(sb, "\tApplication Client Specific Information: ");
6786	if (((as_len == SCSI_LTFS_VER0_LEN)
6787	  || (as_len == SCSI_LTFS_VER1_LEN))
6788	 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) {
6789		sbuf_printf(sb, "LTFS\n");
6790		cur_ptr += SCSI_LTFS_STR_LEN + 1;
6791		if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0')
6792			cur_ptr[SCSI_LTFS_UUID_LEN] = '\0';
6793		sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr);
6794		cur_ptr += SCSI_LTFS_UUID_LEN + 1;
6795		/* XXX KDM check the length */
6796		sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr);
6797	} else {
6798		sbuf_printf(sb, "Unknown\n");
6799		sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0);
6800	}
6801
6802bailout:
6803	return (retval);
6804}
6805
6806int
6807scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
6808			 uint32_t valid_len, uint32_t flags,
6809			 uint32_t output_flags, char *error_str,
6810			 int error_str_len)
6811{
6812	size_t avail_len;
6813	uint32_t field_size;
6814	struct scsi_attrib_vendser *vendser;
6815	cam_strvis_flags strvis_flags;
6816	int retval = 0;
6817
6818	field_size = scsi_2btoul(hdr->length);
6819	avail_len = valid_len - sizeof(*hdr);
6820	if (field_size > avail_len) {
6821		if (error_str != NULL) {
6822			snprintf(error_str, error_str_len, "Available "
6823				 "length of attribute ID 0x%.4x %zu < field "
6824				 "length %u", scsi_2btoul(hdr->id), avail_len,
6825				 field_size);
6826		}
6827		retval = 1;
6828		goto bailout;
6829	} else if (field_size == 0) {
6830		/*
6831		 * A field size of 0 doesn't make sense here.  The device
6832		 * can at least give you the vendor ID, even if it can't
6833		 * give you the serial number.
6834		 */
6835		if (error_str != NULL) {
6836			snprintf(error_str, error_str_len, "The length of "
6837				 "attribute ID 0x%.4x is 0",
6838				 scsi_2btoul(hdr->id));
6839		}
6840		retval = 1;
6841		goto bailout;
6842	}
6843	vendser = (struct scsi_attrib_vendser *)hdr->attribute;
6844
6845	switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
6846	case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
6847		strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
6848		break;
6849	case SCSI_ATTR_OUTPUT_NONASCII_RAW:
6850		strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
6851		break;
6852	case SCSI_ATTR_OUTPUT_NONASCII_ESC:
6853	default:
6854		strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
6855		break;;
6856	}
6857	cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor),
6858	    strvis_flags);
6859	sbuf_putc(sb, ' ');
6860	cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num),
6861	    strvis_flags);
6862bailout:
6863	return (retval);
6864}
6865
6866int
6867scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
6868			 uint32_t valid_len, uint32_t flags,
6869			 uint32_t output_flags, char *error_str,
6870			 int error_str_len)
6871{
6872	uint32_t field_size;
6873	ssize_t avail_len;
6874	uint32_t print_len;
6875	uint8_t *num_ptr;
6876	int retval = 0;
6877
6878	field_size = scsi_2btoul(hdr->length);
6879	avail_len = valid_len - sizeof(*hdr);
6880	print_len = MIN(avail_len, field_size);
6881	num_ptr = hdr->attribute;
6882
6883	if (print_len > 0) {
6884		sbuf_printf(sb, "\n");
6885		sbuf_hexdump(sb, num_ptr, print_len, NULL, 0);
6886	}
6887
6888	return (retval);
6889}
6890
6891int
6892scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
6893		     uint32_t valid_len, uint32_t flags,
6894		     uint32_t output_flags, char *error_str,
6895		     int error_str_len)
6896{
6897	uint64_t print_number;
6898	size_t avail_len;
6899	uint32_t number_size;
6900	int retval = 0;
6901
6902	number_size = scsi_2btoul(hdr->length);
6903
6904	avail_len = valid_len - sizeof(*hdr);
6905	if (avail_len < number_size) {
6906		if (error_str != NULL) {
6907			snprintf(error_str, error_str_len, "Available "
6908				 "length of attribute ID 0x%.4x %zu < field "
6909				 "length %u", scsi_2btoul(hdr->id), avail_len,
6910				 number_size);
6911		}
6912		retval = 1;
6913		goto bailout;
6914	}
6915
6916	switch (number_size) {
6917	case 0:
6918		/*
6919		 * We don't treat this as an error, since there may be
6920		 * scenarios where a device reports a field but then gives
6921		 * a length of 0.  See the note in scsi_attrib_ascii_sbuf().
6922		 */
6923		goto bailout;
6924		break; /*NOTREACHED*/
6925	case 1:
6926		print_number = hdr->attribute[0];
6927		break;
6928	case 2:
6929		print_number = scsi_2btoul(hdr->attribute);
6930		break;
6931	case 3:
6932		print_number = scsi_3btoul(hdr->attribute);
6933		break;
6934	case 4:
6935		print_number = scsi_4btoul(hdr->attribute);
6936		break;
6937	case 8:
6938		print_number = scsi_8btou64(hdr->attribute);
6939		break;
6940	default:
6941		/*
6942		 * If we wind up here, the number is too big to print
6943		 * normally, so just do a hexdump.
6944		 */
6945		retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
6946						  flags, output_flags,
6947						  error_str, error_str_len);
6948		goto bailout;
6949		break;
6950	}
6951
6952	if (flags & SCSI_ATTR_FLAG_FP) {
6953#ifndef _KERNEL
6954		long double num_float;
6955
6956		num_float = (long double)print_number;
6957
6958		if (flags & SCSI_ATTR_FLAG_DIV_10)
6959			num_float /= 10;
6960
6961		sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ?
6962			    1 : 0, num_float);
6963#else /* _KERNEL */
6964		sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ?
6965			    (print_number / 10) : print_number);
6966#endif /* _KERNEL */
6967	} else if (flags & SCSI_ATTR_FLAG_HEX) {
6968		sbuf_printf(sb, "0x%jx", (uintmax_t)print_number);
6969	} else
6970		sbuf_printf(sb, "%ju", (uintmax_t)print_number);
6971
6972bailout:
6973	return (retval);
6974}
6975
6976int
6977scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
6978		       uint32_t valid_len, uint32_t flags,
6979		       uint32_t output_flags, char *error_str,
6980		       int error_str_len)
6981{
6982	size_t avail_len;
6983	uint32_t field_size, print_size;
6984	int retval = 0;
6985
6986	avail_len = valid_len - sizeof(*hdr);
6987	field_size = scsi_2btoul(hdr->length);
6988	print_size = MIN(avail_len, field_size);
6989
6990	if (print_size > 0) {
6991		cam_strvis_flags strvis_flags;
6992
6993		switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
6994		case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
6995			strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
6996			break;
6997		case SCSI_ATTR_OUTPUT_NONASCII_RAW:
6998			strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
6999			break;
7000		case SCSI_ATTR_OUTPUT_NONASCII_ESC:
7001		default:
7002			strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
7003			break;
7004		}
7005		cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags);
7006	} else if (avail_len < field_size) {
7007		/*
7008		 * We only report an error if the user didn't allocate
7009		 * enough space to hold the full value of this field.  If
7010		 * the field length is 0, that is allowed by the spec.
7011		 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER
7012		 * "This attribute indicates the current volume identifier
7013		 * (see SMC-3) of the medium. If the device server supports
7014		 * this attribute but does not have access to the volume
7015		 * identifier, the device server shall report this attribute
7016		 * with an attribute length value of zero."
7017		 */
7018		if (error_str != NULL) {
7019			snprintf(error_str, error_str_len, "Available "
7020				 "length of attribute ID 0x%.4x %zu < field "
7021				 "length %u", scsi_2btoul(hdr->id), avail_len,
7022				 field_size);
7023		}
7024		retval = 1;
7025	}
7026
7027	return (retval);
7028}
7029
7030int
7031scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7032		      uint32_t valid_len, uint32_t flags,
7033		      uint32_t output_flags, char *error_str,
7034		      int error_str_len)
7035{
7036	size_t avail_len;
7037	uint32_t field_size, print_size;
7038	int retval = 0;
7039	int esc_text = 1;
7040
7041	avail_len = valid_len - sizeof(*hdr);
7042	field_size = scsi_2btoul(hdr->length);
7043	print_size = MIN(avail_len, field_size);
7044
7045	if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) ==
7046	     SCSI_ATTR_OUTPUT_TEXT_RAW)
7047		esc_text = 0;
7048
7049	if (print_size > 0) {
7050		uint32_t i;
7051
7052		for (i = 0; i < print_size; i++) {
7053			if (hdr->attribute[i] == '\0')
7054				continue;
7055			else if (((unsigned char)hdr->attribute[i] < 0x80)
7056			      || (esc_text == 0))
7057				sbuf_putc(sb, hdr->attribute[i]);
7058			else
7059				sbuf_printf(sb, "%%%02x",
7060				    (unsigned char)hdr->attribute[i]);
7061		}
7062	} else if (avail_len < field_size) {
7063		/*
7064		 * We only report an error if the user didn't allocate
7065		 * enough space to hold the full value of this field.
7066		 */
7067		if (error_str != NULL) {
7068			snprintf(error_str, error_str_len, "Available "
7069				 "length of attribute ID 0x%.4x %zu < field "
7070				 "length %u", scsi_2btoul(hdr->id), avail_len,
7071				 field_size);
7072		}
7073		retval = 1;
7074	}
7075
7076	return (retval);
7077}
7078
7079struct scsi_attrib_table_entry *
7080scsi_find_attrib_entry(struct scsi_attrib_table_entry *table,
7081		       size_t num_table_entries, uint32_t id)
7082{
7083	uint32_t i;
7084
7085	for (i = 0; i < num_table_entries; i++) {
7086		if (table[i].id == id)
7087			return (&table[i]);
7088	}
7089
7090	return (NULL);
7091}
7092
7093struct scsi_attrib_table_entry *
7094scsi_get_attrib_entry(uint32_t id)
7095{
7096	return (scsi_find_attrib_entry(scsi_mam_attr_table,
7097		sizeof(scsi_mam_attr_table) / sizeof(scsi_mam_attr_table[0]),
7098		id));
7099}
7100
7101int
7102scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len,
7103   struct scsi_mam_attribute_header *hdr, uint32_t output_flags,
7104   char *error_str, size_t error_str_len)
7105{
7106	int retval;
7107
7108	switch (hdr->byte2 & SMA_FORMAT_MASK) {
7109	case SMA_FORMAT_ASCII:
7110		retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len,
7111		    SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len);
7112		break;
7113	case SMA_FORMAT_BINARY:
7114		if (scsi_2btoul(hdr->length) <= 8)
7115			retval = scsi_attrib_int_sbuf(sb, hdr, valid_len,
7116			    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7117			    error_str_len);
7118		else
7119			retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
7120			    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7121			    error_str_len);
7122		break;
7123	case SMA_FORMAT_TEXT:
7124		retval = scsi_attrib_text_sbuf(sb, hdr, valid_len,
7125		    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7126		    error_str_len);
7127		break;
7128	default:
7129		if (error_str != NULL) {
7130			snprintf(error_str, error_str_len, "Unknown attribute "
7131			    "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK);
7132		}
7133		retval = 1;
7134		goto bailout;
7135		break; /*NOTREACHED*/
7136	}
7137
7138	sbuf_trim(sb);
7139
7140bailout:
7141
7142	return (retval);
7143}
7144
7145void
7146scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags,
7147			struct scsi_mam_attribute_header *hdr,
7148			uint32_t valid_len, const char *desc)
7149{
7150	int need_space = 0;
7151	uint32_t len;
7152	uint32_t id;
7153
7154	/*
7155	 * We can't do anything if we don't have enough valid data for the
7156	 * header.
7157	 */
7158	if (valid_len < sizeof(*hdr))
7159		return;
7160
7161	id = scsi_2btoul(hdr->id);
7162	/*
7163	 * Note that we print out the value of the attribute listed in the
7164	 * header, regardless of whether we actually got that many bytes
7165	 * back from the device through the controller.  A truncated result
7166	 * could be the result of a failure to ask for enough data; the
7167	 * header indicates how many bytes are allocated for this attribute
7168	 * in the MAM.
7169	 */
7170	len = scsi_2btoul(hdr->length);
7171
7172	if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) ==
7173	    SCSI_ATTR_OUTPUT_FIELD_NONE)
7174		return;
7175
7176	if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC)
7177	 && (desc != NULL)) {
7178		sbuf_printf(sb, "%s", desc);
7179		need_space = 1;
7180	}
7181
7182	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) {
7183		sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id);
7184		need_space = 0;
7185	}
7186
7187	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) {
7188		sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len);
7189		need_space = 0;
7190	}
7191	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) {
7192		sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "",
7193			    (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW");
7194	}
7195	sbuf_printf(sb, ": ");
7196}
7197
7198int
7199scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7200		 uint32_t valid_len, struct scsi_attrib_table_entry *user_table,
7201		 size_t num_user_entries, int prefer_user_table,
7202		 uint32_t output_flags, char *error_str, int error_str_len)
7203{
7204	int retval;
7205	struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL;
7206	struct scsi_attrib_table_entry *entry = NULL;
7207	size_t table1_size = 0, table2_size = 0;
7208	uint32_t id;
7209
7210	retval = 0;
7211
7212	if (valid_len < sizeof(*hdr)) {
7213		retval = 1;
7214		goto bailout;
7215	}
7216
7217	id = scsi_2btoul(hdr->id);
7218
7219	if (user_table != NULL) {
7220		if (prefer_user_table != 0) {
7221			table1 = user_table;
7222			table1_size = num_user_entries;
7223			table2 = scsi_mam_attr_table;
7224			table2_size = sizeof(scsi_mam_attr_table) /
7225				      sizeof(scsi_mam_attr_table[0]);
7226		} else {
7227			table1 = scsi_mam_attr_table;
7228			table1_size = sizeof(scsi_mam_attr_table) /
7229				      sizeof(scsi_mam_attr_table[0]);
7230			table2 = user_table;
7231			table2_size = num_user_entries;
7232		}
7233	} else {
7234		table1 = scsi_mam_attr_table;
7235		table1_size = sizeof(scsi_mam_attr_table) /
7236			      sizeof(scsi_mam_attr_table[0]);
7237	}
7238
7239	entry = scsi_find_attrib_entry(table1, table1_size, id);
7240	if (entry != NULL) {
7241		scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len,
7242					entry->desc);
7243		if (entry->to_str == NULL)
7244			goto print_default;
7245		retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7246				       output_flags, error_str, error_str_len);
7247		goto bailout;
7248	}
7249	if (table2 != NULL) {
7250		entry = scsi_find_attrib_entry(table2, table2_size, id);
7251		if (entry != NULL) {
7252			if (entry->to_str == NULL)
7253				goto print_default;
7254
7255			scsi_attrib_prefix_sbuf(sb, output_flags, hdr,
7256						valid_len, entry->desc);
7257			retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7258					       output_flags, error_str,
7259					       error_str_len);
7260			goto bailout;
7261		}
7262	}
7263
7264	scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL);
7265
7266print_default:
7267	retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags,
7268	    error_str, error_str_len);
7269bailout:
7270	if (retval == 0) {
7271	 	if ((entry != NULL)
7272		 && (entry->suffix != NULL))
7273			sbuf_printf(sb, " %s", entry->suffix);
7274
7275		sbuf_trim(sb);
7276		sbuf_printf(sb, "\n");
7277	}
7278
7279	return (retval);
7280}
7281
7282void
7283scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries,
7284		     void (*cbfcnp)(struct cam_periph *, union ccb *),
7285		     u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout)
7286{
7287	struct scsi_test_unit_ready *scsi_cmd;
7288
7289	cam_fill_csio(csio,
7290		      retries,
7291		      cbfcnp,
7292		      CAM_DIR_NONE,
7293		      tag_action,
7294		      /*data_ptr*/NULL,
7295		      /*dxfer_len*/0,
7296		      sense_len,
7297		      sizeof(*scsi_cmd),
7298		      timeout);
7299
7300	scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes;
7301	bzero(scsi_cmd, sizeof(*scsi_cmd));
7302	scsi_cmd->opcode = TEST_UNIT_READY;
7303}
7304
7305void
7306scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries,
7307		   void (*cbfcnp)(struct cam_periph *, union ccb *),
7308		   void *data_ptr, u_int8_t dxfer_len, u_int8_t tag_action,
7309		   u_int8_t sense_len, u_int32_t timeout)
7310{
7311	struct scsi_request_sense *scsi_cmd;
7312
7313	cam_fill_csio(csio,
7314		      retries,
7315		      cbfcnp,
7316		      CAM_DIR_IN,
7317		      tag_action,
7318		      data_ptr,
7319		      dxfer_len,
7320		      sense_len,
7321		      sizeof(*scsi_cmd),
7322		      timeout);
7323
7324	scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes;
7325	bzero(scsi_cmd, sizeof(*scsi_cmd));
7326	scsi_cmd->opcode = REQUEST_SENSE;
7327	scsi_cmd->length = dxfer_len;
7328}
7329
7330void
7331scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries,
7332	     void (*cbfcnp)(struct cam_periph *, union ccb *),
7333	     u_int8_t tag_action, u_int8_t *inq_buf, u_int32_t inq_len,
7334	     int evpd, u_int8_t page_code, u_int8_t sense_len,
7335	     u_int32_t timeout)
7336{
7337	struct scsi_inquiry *scsi_cmd;
7338
7339	cam_fill_csio(csio,
7340		      retries,
7341		      cbfcnp,
7342		      /*flags*/CAM_DIR_IN,
7343		      tag_action,
7344		      /*data_ptr*/inq_buf,
7345		      /*dxfer_len*/inq_len,
7346		      sense_len,
7347		      sizeof(*scsi_cmd),
7348		      timeout);
7349
7350	scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes;
7351	bzero(scsi_cmd, sizeof(*scsi_cmd));
7352	scsi_cmd->opcode = INQUIRY;
7353	if (evpd) {
7354		scsi_cmd->byte2 |= SI_EVPD;
7355		scsi_cmd->page_code = page_code;
7356	}
7357	scsi_ulto2b(inq_len, scsi_cmd->length);
7358}
7359
7360void
7361scsi_mode_sense(struct ccb_scsiio *csio, u_int32_t retries,
7362		void (*cbfcnp)(struct cam_periph *, union ccb *),
7363		u_int8_t tag_action, int dbd, u_int8_t page_code,
7364		u_int8_t page, u_int8_t *param_buf, u_int32_t param_len,
7365		u_int8_t sense_len, u_int32_t timeout)
7366{
7367
7368	scsi_mode_sense_len(csio, retries, cbfcnp, tag_action, dbd,
7369			    page_code, page, param_buf, param_len, 0,
7370			    sense_len, timeout);
7371}
7372
7373void
7374scsi_mode_sense_len(struct ccb_scsiio *csio, u_int32_t retries,
7375		    void (*cbfcnp)(struct cam_periph *, union ccb *),
7376		    u_int8_t tag_action, int dbd, u_int8_t page_code,
7377		    u_int8_t page, u_int8_t *param_buf, u_int32_t param_len,
7378		    int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout)
7379{
7380	u_int8_t cdb_len;
7381
7382	/*
7383	 * Use the smallest possible command to perform the operation.
7384	 */
7385	if ((param_len < 256)
7386	 && (minimum_cmd_size < 10)) {
7387		/*
7388		 * We can fit in a 6 byte cdb.
7389		 */
7390		struct scsi_mode_sense_6 *scsi_cmd;
7391
7392		scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes;
7393		bzero(scsi_cmd, sizeof(*scsi_cmd));
7394		scsi_cmd->opcode = MODE_SENSE_6;
7395		if (dbd != 0)
7396			scsi_cmd->byte2 |= SMS_DBD;
7397		scsi_cmd->page = page_code | page;
7398		scsi_cmd->length = param_len;
7399		cdb_len = sizeof(*scsi_cmd);
7400	} else {
7401		/*
7402		 * Need a 10 byte cdb.
7403		 */
7404		struct scsi_mode_sense_10 *scsi_cmd;
7405
7406		scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes;
7407		bzero(scsi_cmd, sizeof(*scsi_cmd));
7408		scsi_cmd->opcode = MODE_SENSE_10;
7409		if (dbd != 0)
7410			scsi_cmd->byte2 |= SMS_DBD;
7411		scsi_cmd->page = page_code | page;
7412		scsi_ulto2b(param_len, scsi_cmd->length);
7413		cdb_len = sizeof(*scsi_cmd);
7414	}
7415	cam_fill_csio(csio,
7416		      retries,
7417		      cbfcnp,
7418		      CAM_DIR_IN,
7419		      tag_action,
7420		      param_buf,
7421		      param_len,
7422		      sense_len,
7423		      cdb_len,
7424		      timeout);
7425}
7426
7427void
7428scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries,
7429		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7430		 u_int8_t tag_action, int scsi_page_fmt, int save_pages,
7431		 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len,
7432		 u_int32_t timeout)
7433{
7434	scsi_mode_select_len(csio, retries, cbfcnp, tag_action,
7435			     scsi_page_fmt, save_pages, param_buf,
7436			     param_len, 0, sense_len, timeout);
7437}
7438
7439void
7440scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries,
7441		     void (*cbfcnp)(struct cam_periph *, union ccb *),
7442		     u_int8_t tag_action, int scsi_page_fmt, int save_pages,
7443		     u_int8_t *param_buf, u_int32_t param_len,
7444		     int minimum_cmd_size, u_int8_t sense_len,
7445		     u_int32_t timeout)
7446{
7447	u_int8_t cdb_len;
7448
7449	/*
7450	 * Use the smallest possible command to perform the operation.
7451	 */
7452	if ((param_len < 256)
7453	 && (minimum_cmd_size < 10)) {
7454		/*
7455		 * We can fit in a 6 byte cdb.
7456		 */
7457		struct scsi_mode_select_6 *scsi_cmd;
7458
7459		scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes;
7460		bzero(scsi_cmd, sizeof(*scsi_cmd));
7461		scsi_cmd->opcode = MODE_SELECT_6;
7462		if (scsi_page_fmt != 0)
7463			scsi_cmd->byte2 |= SMS_PF;
7464		if (save_pages != 0)
7465			scsi_cmd->byte2 |= SMS_SP;
7466		scsi_cmd->length = param_len;
7467		cdb_len = sizeof(*scsi_cmd);
7468	} else {
7469		/*
7470		 * Need a 10 byte cdb.
7471		 */
7472		struct scsi_mode_select_10 *scsi_cmd;
7473
7474		scsi_cmd =
7475		    (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes;
7476		bzero(scsi_cmd, sizeof(*scsi_cmd));
7477		scsi_cmd->opcode = MODE_SELECT_10;
7478		if (scsi_page_fmt != 0)
7479			scsi_cmd->byte2 |= SMS_PF;
7480		if (save_pages != 0)
7481			scsi_cmd->byte2 |= SMS_SP;
7482		scsi_ulto2b(param_len, scsi_cmd->length);
7483		cdb_len = sizeof(*scsi_cmd);
7484	}
7485	cam_fill_csio(csio,
7486		      retries,
7487		      cbfcnp,
7488		      CAM_DIR_OUT,
7489		      tag_action,
7490		      param_buf,
7491		      param_len,
7492		      sense_len,
7493		      cdb_len,
7494		      timeout);
7495}
7496
7497void
7498scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries,
7499	       void (*cbfcnp)(struct cam_periph *, union ccb *),
7500	       u_int8_t tag_action, u_int8_t page_code, u_int8_t page,
7501	       int save_pages, int ppc, u_int32_t paramptr,
7502	       u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len,
7503	       u_int32_t timeout)
7504{
7505	struct scsi_log_sense *scsi_cmd;
7506	u_int8_t cdb_len;
7507
7508	scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes;
7509	bzero(scsi_cmd, sizeof(*scsi_cmd));
7510	scsi_cmd->opcode = LOG_SENSE;
7511	scsi_cmd->page = page_code | page;
7512	if (save_pages != 0)
7513		scsi_cmd->byte2 |= SLS_SP;
7514	if (ppc != 0)
7515		scsi_cmd->byte2 |= SLS_PPC;
7516	scsi_ulto2b(paramptr, scsi_cmd->paramptr);
7517	scsi_ulto2b(param_len, scsi_cmd->length);
7518	cdb_len = sizeof(*scsi_cmd);
7519
7520	cam_fill_csio(csio,
7521		      retries,
7522		      cbfcnp,
7523		      /*flags*/CAM_DIR_IN,
7524		      tag_action,
7525		      /*data_ptr*/param_buf,
7526		      /*dxfer_len*/param_len,
7527		      sense_len,
7528		      cdb_len,
7529		      timeout);
7530}
7531
7532void
7533scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries,
7534		void (*cbfcnp)(struct cam_periph *, union ccb *),
7535		u_int8_t tag_action, u_int8_t page_code, int save_pages,
7536		int pc_reset, u_int8_t *param_buf, u_int32_t param_len,
7537		u_int8_t sense_len, u_int32_t timeout)
7538{
7539	struct scsi_log_select *scsi_cmd;
7540	u_int8_t cdb_len;
7541
7542	scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes;
7543	bzero(scsi_cmd, sizeof(*scsi_cmd));
7544	scsi_cmd->opcode = LOG_SELECT;
7545	scsi_cmd->page = page_code & SLS_PAGE_CODE;
7546	if (save_pages != 0)
7547		scsi_cmd->byte2 |= SLS_SP;
7548	if (pc_reset != 0)
7549		scsi_cmd->byte2 |= SLS_PCR;
7550	scsi_ulto2b(param_len, scsi_cmd->length);
7551	cdb_len = sizeof(*scsi_cmd);
7552
7553	cam_fill_csio(csio,
7554		      retries,
7555		      cbfcnp,
7556		      /*flags*/CAM_DIR_OUT,
7557		      tag_action,
7558		      /*data_ptr*/param_buf,
7559		      /*dxfer_len*/param_len,
7560		      sense_len,
7561		      cdb_len,
7562		      timeout);
7563}
7564
7565/*
7566 * Prevent or allow the user to remove the media
7567 */
7568void
7569scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries,
7570	     void (*cbfcnp)(struct cam_periph *, union ccb *),
7571	     u_int8_t tag_action, u_int8_t action,
7572	     u_int8_t sense_len, u_int32_t timeout)
7573{
7574	struct scsi_prevent *scsi_cmd;
7575
7576	cam_fill_csio(csio,
7577		      retries,
7578		      cbfcnp,
7579		      /*flags*/CAM_DIR_NONE,
7580		      tag_action,
7581		      /*data_ptr*/NULL,
7582		      /*dxfer_len*/0,
7583		      sense_len,
7584		      sizeof(*scsi_cmd),
7585		      timeout);
7586
7587	scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes;
7588	bzero(scsi_cmd, sizeof(*scsi_cmd));
7589	scsi_cmd->opcode = PREVENT_ALLOW;
7590	scsi_cmd->how = action;
7591}
7592
7593/* XXX allow specification of address and PMI bit and LBA */
7594void
7595scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries,
7596		   void (*cbfcnp)(struct cam_periph *, union ccb *),
7597		   u_int8_t tag_action,
7598		   struct scsi_read_capacity_data *rcap_buf,
7599		   u_int8_t sense_len, u_int32_t timeout)
7600{
7601	struct scsi_read_capacity *scsi_cmd;
7602
7603	cam_fill_csio(csio,
7604		      retries,
7605		      cbfcnp,
7606		      /*flags*/CAM_DIR_IN,
7607		      tag_action,
7608		      /*data_ptr*/(u_int8_t *)rcap_buf,
7609		      /*dxfer_len*/sizeof(*rcap_buf),
7610		      sense_len,
7611		      sizeof(*scsi_cmd),
7612		      timeout);
7613
7614	scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes;
7615	bzero(scsi_cmd, sizeof(*scsi_cmd));
7616	scsi_cmd->opcode = READ_CAPACITY;
7617}
7618
7619void
7620scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries,
7621		      void (*cbfcnp)(struct cam_periph *, union ccb *),
7622		      uint8_t tag_action, uint64_t lba, int reladr, int pmi,
7623		      uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len,
7624		      uint32_t timeout)
7625{
7626	struct scsi_read_capacity_16 *scsi_cmd;
7627
7628
7629	cam_fill_csio(csio,
7630		      retries,
7631		      cbfcnp,
7632		      /*flags*/CAM_DIR_IN,
7633		      tag_action,
7634		      /*data_ptr*/(u_int8_t *)rcap_buf,
7635		      /*dxfer_len*/rcap_buf_len,
7636		      sense_len,
7637		      sizeof(*scsi_cmd),
7638		      timeout);
7639	scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes;
7640	bzero(scsi_cmd, sizeof(*scsi_cmd));
7641	scsi_cmd->opcode = SERVICE_ACTION_IN;
7642	scsi_cmd->service_action = SRC16_SERVICE_ACTION;
7643	scsi_u64to8b(lba, scsi_cmd->addr);
7644	scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len);
7645	if (pmi)
7646		reladr |= SRC16_PMI;
7647	if (reladr)
7648		reladr |= SRC16_RELADR;
7649}
7650
7651void
7652scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries,
7653		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7654		 u_int8_t tag_action, u_int8_t select_report,
7655		 struct scsi_report_luns_data *rpl_buf, u_int32_t alloc_len,
7656		 u_int8_t sense_len, u_int32_t timeout)
7657{
7658	struct scsi_report_luns *scsi_cmd;
7659
7660	cam_fill_csio(csio,
7661		      retries,
7662		      cbfcnp,
7663		      /*flags*/CAM_DIR_IN,
7664		      tag_action,
7665		      /*data_ptr*/(u_int8_t *)rpl_buf,
7666		      /*dxfer_len*/alloc_len,
7667		      sense_len,
7668		      sizeof(*scsi_cmd),
7669		      timeout);
7670	scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes;
7671	bzero(scsi_cmd, sizeof(*scsi_cmd));
7672	scsi_cmd->opcode = REPORT_LUNS;
7673	scsi_cmd->select_report = select_report;
7674	scsi_ulto4b(alloc_len, scsi_cmd->length);
7675}
7676
7677void
7678scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries,
7679		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7680		 u_int8_t tag_action, u_int8_t pdf,
7681		 void *buf, u_int32_t alloc_len,
7682		 u_int8_t sense_len, u_int32_t timeout)
7683{
7684	struct scsi_target_group *scsi_cmd;
7685
7686	cam_fill_csio(csio,
7687		      retries,
7688		      cbfcnp,
7689		      /*flags*/CAM_DIR_IN,
7690		      tag_action,
7691		      /*data_ptr*/(u_int8_t *)buf,
7692		      /*dxfer_len*/alloc_len,
7693		      sense_len,
7694		      sizeof(*scsi_cmd),
7695		      timeout);
7696	scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
7697	bzero(scsi_cmd, sizeof(*scsi_cmd));
7698	scsi_cmd->opcode = MAINTENANCE_IN;
7699	scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf;
7700	scsi_ulto4b(alloc_len, scsi_cmd->length);
7701}
7702
7703void
7704scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries,
7705		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7706		 u_int8_t tag_action, void *buf, u_int32_t alloc_len,
7707		 u_int8_t sense_len, u_int32_t timeout)
7708{
7709	struct scsi_target_group *scsi_cmd;
7710
7711	cam_fill_csio(csio,
7712		      retries,
7713		      cbfcnp,
7714		      /*flags*/CAM_DIR_OUT,
7715		      tag_action,
7716		      /*data_ptr*/(u_int8_t *)buf,
7717		      /*dxfer_len*/alloc_len,
7718		      sense_len,
7719		      sizeof(*scsi_cmd),
7720		      timeout);
7721	scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
7722	bzero(scsi_cmd, sizeof(*scsi_cmd));
7723	scsi_cmd->opcode = MAINTENANCE_OUT;
7724	scsi_cmd->service_action = SET_TARGET_PORT_GROUPS;
7725	scsi_ulto4b(alloc_len, scsi_cmd->length);
7726}
7727
7728/*
7729 * Syncronize the media to the contents of the cache for
7730 * the given lba/count pair.  Specifying 0/0 means sync
7731 * the whole cache.
7732 */
7733void
7734scsi_synchronize_cache(struct ccb_scsiio *csio, u_int32_t retries,
7735		       void (*cbfcnp)(struct cam_periph *, union ccb *),
7736		       u_int8_t tag_action, u_int32_t begin_lba,
7737		       u_int16_t lb_count, u_int8_t sense_len,
7738		       u_int32_t timeout)
7739{
7740	struct scsi_sync_cache *scsi_cmd;
7741
7742	cam_fill_csio(csio,
7743		      retries,
7744		      cbfcnp,
7745		      /*flags*/CAM_DIR_NONE,
7746		      tag_action,
7747		      /*data_ptr*/NULL,
7748		      /*dxfer_len*/0,
7749		      sense_len,
7750		      sizeof(*scsi_cmd),
7751		      timeout);
7752
7753	scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes;
7754	bzero(scsi_cmd, sizeof(*scsi_cmd));
7755	scsi_cmd->opcode = SYNCHRONIZE_CACHE;
7756	scsi_ulto4b(begin_lba, scsi_cmd->begin_lba);
7757	scsi_ulto2b(lb_count, scsi_cmd->lb_count);
7758}
7759
7760void
7761scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries,
7762		void (*cbfcnp)(struct cam_periph *, union ccb *),
7763		u_int8_t tag_action, int readop, u_int8_t byte2,
7764		int minimum_cmd_size, u_int64_t lba, u_int32_t block_count,
7765		u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len,
7766		u_int32_t timeout)
7767{
7768	int read;
7769	u_int8_t cdb_len;
7770
7771	read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ;
7772
7773	/*
7774	 * Use the smallest possible command to perform the operation
7775	 * as some legacy hardware does not support the 10 byte commands.
7776	 * If any of the bits in byte2 is set, we have to go with a larger
7777	 * command.
7778	 */
7779	if ((minimum_cmd_size < 10)
7780	 && ((lba & 0x1fffff) == lba)
7781	 && ((block_count & 0xff) == block_count)
7782	 && (byte2 == 0)) {
7783		/*
7784		 * We can fit in a 6 byte cdb.
7785		 */
7786		struct scsi_rw_6 *scsi_cmd;
7787
7788		scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes;
7789		scsi_cmd->opcode = read ? READ_6 : WRITE_6;
7790		scsi_ulto3b(lba, scsi_cmd->addr);
7791		scsi_cmd->length = block_count & 0xff;
7792		scsi_cmd->control = 0;
7793		cdb_len = sizeof(*scsi_cmd);
7794
7795		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
7796			  ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0],
7797			   scsi_cmd->addr[1], scsi_cmd->addr[2],
7798			   scsi_cmd->length, dxfer_len));
7799	} else if ((minimum_cmd_size < 12)
7800		&& ((block_count & 0xffff) == block_count)
7801		&& ((lba & 0xffffffff) == lba)) {
7802		/*
7803		 * Need a 10 byte cdb.
7804		 */
7805		struct scsi_rw_10 *scsi_cmd;
7806
7807		scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes;
7808		scsi_cmd->opcode = read ? READ_10 : WRITE_10;
7809		scsi_cmd->byte2 = byte2;
7810		scsi_ulto4b(lba, scsi_cmd->addr);
7811		scsi_cmd->reserved = 0;
7812		scsi_ulto2b(block_count, scsi_cmd->length);
7813		scsi_cmd->control = 0;
7814		cdb_len = sizeof(*scsi_cmd);
7815
7816		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
7817			  ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
7818			   scsi_cmd->addr[1], scsi_cmd->addr[2],
7819			   scsi_cmd->addr[3], scsi_cmd->length[0],
7820			   scsi_cmd->length[1], dxfer_len));
7821	} else if ((minimum_cmd_size < 16)
7822		&& ((block_count & 0xffffffff) == block_count)
7823		&& ((lba & 0xffffffff) == lba)) {
7824		/*
7825		 * The block count is too big for a 10 byte CDB, use a 12
7826		 * byte CDB.
7827		 */
7828		struct scsi_rw_12 *scsi_cmd;
7829
7830		scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes;
7831		scsi_cmd->opcode = read ? READ_12 : WRITE_12;
7832		scsi_cmd->byte2 = byte2;
7833		scsi_ulto4b(lba, scsi_cmd->addr);
7834		scsi_cmd->reserved = 0;
7835		scsi_ulto4b(block_count, scsi_cmd->length);
7836		scsi_cmd->control = 0;
7837		cdb_len = sizeof(*scsi_cmd);
7838
7839		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
7840			  ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0],
7841			   scsi_cmd->addr[1], scsi_cmd->addr[2],
7842			   scsi_cmd->addr[3], scsi_cmd->length[0],
7843			   scsi_cmd->length[1], scsi_cmd->length[2],
7844			   scsi_cmd->length[3], dxfer_len));
7845	} else {
7846		/*
7847		 * 16 byte CDB.  We'll only get here if the LBA is larger
7848		 * than 2^32, or if the user asks for a 16 byte command.
7849		 */
7850		struct scsi_rw_16 *scsi_cmd;
7851
7852		scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes;
7853		scsi_cmd->opcode = read ? READ_16 : WRITE_16;
7854		scsi_cmd->byte2 = byte2;
7855		scsi_u64to8b(lba, scsi_cmd->addr);
7856		scsi_cmd->reserved = 0;
7857		scsi_ulto4b(block_count, scsi_cmd->length);
7858		scsi_cmd->control = 0;
7859		cdb_len = sizeof(*scsi_cmd);
7860	}
7861	cam_fill_csio(csio,
7862		      retries,
7863		      cbfcnp,
7864		      (read ? CAM_DIR_IN : CAM_DIR_OUT) |
7865		      ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0),
7866		      tag_action,
7867		      data_ptr,
7868		      dxfer_len,
7869		      sense_len,
7870		      cdb_len,
7871		      timeout);
7872}
7873
7874void
7875scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries,
7876		void (*cbfcnp)(struct cam_periph *, union ccb *),
7877		u_int8_t tag_action, u_int8_t byte2,
7878		int minimum_cmd_size, u_int64_t lba, u_int32_t block_count,
7879		u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len,
7880		u_int32_t timeout)
7881{
7882	u_int8_t cdb_len;
7883	if ((minimum_cmd_size < 16) &&
7884	    ((block_count & 0xffff) == block_count) &&
7885	    ((lba & 0xffffffff) == lba)) {
7886		/*
7887		 * Need a 10 byte cdb.
7888		 */
7889		struct scsi_write_same_10 *scsi_cmd;
7890
7891		scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes;
7892		scsi_cmd->opcode = WRITE_SAME_10;
7893		scsi_cmd->byte2 = byte2;
7894		scsi_ulto4b(lba, scsi_cmd->addr);
7895		scsi_cmd->group = 0;
7896		scsi_ulto2b(block_count, scsi_cmd->length);
7897		scsi_cmd->control = 0;
7898		cdb_len = sizeof(*scsi_cmd);
7899
7900		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
7901			  ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
7902			   scsi_cmd->addr[1], scsi_cmd->addr[2],
7903			   scsi_cmd->addr[3], scsi_cmd->length[0],
7904			   scsi_cmd->length[1], dxfer_len));
7905	} else {
7906		/*
7907		 * 16 byte CDB.  We'll only get here if the LBA is larger
7908		 * than 2^32, or if the user asks for a 16 byte command.
7909		 */
7910		struct scsi_write_same_16 *scsi_cmd;
7911
7912		scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes;
7913		scsi_cmd->opcode = WRITE_SAME_16;
7914		scsi_cmd->byte2 = byte2;
7915		scsi_u64to8b(lba, scsi_cmd->addr);
7916		scsi_ulto4b(block_count, scsi_cmd->length);
7917		scsi_cmd->group = 0;
7918		scsi_cmd->control = 0;
7919		cdb_len = sizeof(*scsi_cmd);
7920
7921		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
7922			  ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n",
7923			   scsi_cmd->addr[0], scsi_cmd->addr[1],
7924			   scsi_cmd->addr[2], scsi_cmd->addr[3],
7925			   scsi_cmd->addr[4], scsi_cmd->addr[5],
7926			   scsi_cmd->addr[6], scsi_cmd->addr[7],
7927			   scsi_cmd->length[0], scsi_cmd->length[1],
7928			   scsi_cmd->length[2], scsi_cmd->length[3],
7929			   dxfer_len));
7930	}
7931	cam_fill_csio(csio,
7932		      retries,
7933		      cbfcnp,
7934		      /*flags*/CAM_DIR_OUT,
7935		      tag_action,
7936		      data_ptr,
7937		      dxfer_len,
7938		      sense_len,
7939		      cdb_len,
7940		      timeout);
7941}
7942
7943void
7944scsi_ata_identify(struct ccb_scsiio *csio, u_int32_t retries,
7945		  void (*cbfcnp)(struct cam_periph *, union ccb *),
7946		  u_int8_t tag_action, u_int8_t *data_ptr,
7947		  u_int16_t dxfer_len, u_int8_t sense_len,
7948		  u_int32_t timeout)
7949{
7950	scsi_ata_pass_16(csio,
7951			 retries,
7952			 cbfcnp,
7953			 /*flags*/CAM_DIR_IN,
7954			 tag_action,
7955			 /*protocol*/AP_PROTO_PIO_IN,
7956			 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV|
7957				AP_FLAG_BYT_BLOK_BYTES|AP_FLAG_TLEN_SECT_CNT,
7958			 /*features*/0,
7959			 /*sector_count*/dxfer_len,
7960			 /*lba*/0,
7961			 /*command*/ATA_ATA_IDENTIFY,
7962			 /*control*/0,
7963			 data_ptr,
7964			 dxfer_len,
7965			 sense_len,
7966			 timeout);
7967}
7968
7969void
7970scsi_ata_trim(struct ccb_scsiio *csio, u_int32_t retries,
7971	      void (*cbfcnp)(struct cam_periph *, union ccb *),
7972	      u_int8_t tag_action, u_int16_t block_count,
7973	      u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len,
7974	      u_int32_t timeout)
7975{
7976	scsi_ata_pass_16(csio,
7977			 retries,
7978			 cbfcnp,
7979			 /*flags*/CAM_DIR_OUT,
7980			 tag_action,
7981			 /*protocol*/AP_EXTEND|AP_PROTO_DMA,
7982			 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS,
7983			 /*features*/ATA_DSM_TRIM,
7984			 /*sector_count*/block_count,
7985			 /*lba*/0,
7986			 /*command*/ATA_DATA_SET_MANAGEMENT,
7987			 /*control*/0,
7988			 data_ptr,
7989			 dxfer_len,
7990			 sense_len,
7991			 timeout);
7992}
7993
7994void
7995scsi_ata_pass_16(struct ccb_scsiio *csio, u_int32_t retries,
7996		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7997		 u_int32_t flags, u_int8_t tag_action,
7998		 u_int8_t protocol, u_int8_t ata_flags, u_int16_t features,
7999		 u_int16_t sector_count, uint64_t lba, u_int8_t command,
8000		 u_int8_t control, u_int8_t *data_ptr, u_int16_t dxfer_len,
8001		 u_int8_t sense_len, u_int32_t timeout)
8002{
8003	struct ata_pass_16 *ata_cmd;
8004
8005	ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes;
8006	ata_cmd->opcode = ATA_PASS_16;
8007	ata_cmd->protocol = protocol;
8008	ata_cmd->flags = ata_flags;
8009	ata_cmd->features_ext = features >> 8;
8010	ata_cmd->features = features;
8011	ata_cmd->sector_count_ext = sector_count >> 8;
8012	ata_cmd->sector_count = sector_count;
8013	ata_cmd->lba_low = lba;
8014	ata_cmd->lba_mid = lba >> 8;
8015	ata_cmd->lba_high = lba >> 16;
8016	ata_cmd->device = ATA_DEV_LBA;
8017	if (protocol & AP_EXTEND) {
8018		ata_cmd->lba_low_ext = lba >> 24;
8019		ata_cmd->lba_mid_ext = lba >> 32;
8020		ata_cmd->lba_high_ext = lba >> 40;
8021	} else
8022		ata_cmd->device |= (lba >> 24) & 0x0f;
8023	ata_cmd->command = command;
8024	ata_cmd->control = control;
8025
8026	cam_fill_csio(csio,
8027		      retries,
8028		      cbfcnp,
8029		      flags,
8030		      tag_action,
8031		      data_ptr,
8032		      dxfer_len,
8033		      sense_len,
8034		      sizeof(*ata_cmd),
8035		      timeout);
8036}
8037
8038void
8039scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries,
8040	   void (*cbfcnp)(struct cam_periph *, union ccb *),
8041	   u_int8_t tag_action, u_int8_t byte2,
8042	   u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len,
8043	   u_int32_t timeout)
8044{
8045	struct scsi_unmap *scsi_cmd;
8046
8047	scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes;
8048	scsi_cmd->opcode = UNMAP;
8049	scsi_cmd->byte2 = byte2;
8050	scsi_ulto4b(0, scsi_cmd->reserved);
8051	scsi_cmd->group = 0;
8052	scsi_ulto2b(dxfer_len, scsi_cmd->length);
8053	scsi_cmd->control = 0;
8054
8055	cam_fill_csio(csio,
8056		      retries,
8057		      cbfcnp,
8058		      /*flags*/CAM_DIR_OUT,
8059		      tag_action,
8060		      data_ptr,
8061		      dxfer_len,
8062		      sense_len,
8063		      sizeof(*scsi_cmd),
8064		      timeout);
8065}
8066
8067void
8068scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries,
8069				void (*cbfcnp)(struct cam_periph *, union ccb*),
8070				uint8_t tag_action, int pcv, uint8_t page_code,
8071				uint8_t *data_ptr, uint16_t allocation_length,
8072				uint8_t sense_len, uint32_t timeout)
8073{
8074	struct scsi_receive_diag *scsi_cmd;
8075
8076	scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes;
8077	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8078	scsi_cmd->opcode = RECEIVE_DIAGNOSTIC;
8079	if (pcv) {
8080		scsi_cmd->byte2 |= SRD_PCV;
8081		scsi_cmd->page_code = page_code;
8082	}
8083	scsi_ulto2b(allocation_length, scsi_cmd->length);
8084
8085	cam_fill_csio(csio,
8086		      retries,
8087		      cbfcnp,
8088		      /*flags*/CAM_DIR_IN,
8089		      tag_action,
8090		      data_ptr,
8091		      allocation_length,
8092		      sense_len,
8093		      sizeof(*scsi_cmd),
8094		      timeout);
8095}
8096
8097void
8098scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries,
8099		     void (*cbfcnp)(struct cam_periph *, union ccb *),
8100		     uint8_t tag_action, int unit_offline, int device_offline,
8101		     int self_test, int page_format, int self_test_code,
8102		     uint8_t *data_ptr, uint16_t param_list_length,
8103		     uint8_t sense_len, uint32_t timeout)
8104{
8105	struct scsi_send_diag *scsi_cmd;
8106
8107	scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes;
8108	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8109	scsi_cmd->opcode = SEND_DIAGNOSTIC;
8110
8111	/*
8112	 * The default self-test mode control and specific test
8113	 * control are mutually exclusive.
8114	 */
8115	if (self_test)
8116		self_test_code = SSD_SELF_TEST_CODE_NONE;
8117
8118	scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT)
8119			 & SSD_SELF_TEST_CODE_MASK)
8120			| (unit_offline   ? SSD_UNITOFFL : 0)
8121			| (device_offline ? SSD_DEVOFFL  : 0)
8122			| (self_test      ? SSD_SELFTEST : 0)
8123			| (page_format    ? SSD_PF       : 0);
8124	scsi_ulto2b(param_list_length, scsi_cmd->length);
8125
8126	cam_fill_csio(csio,
8127		      retries,
8128		      cbfcnp,
8129		      /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
8130		      tag_action,
8131		      data_ptr,
8132		      param_list_length,
8133		      sense_len,
8134		      sizeof(*scsi_cmd),
8135		      timeout);
8136}
8137
8138void
8139scsi_read_buffer(struct ccb_scsiio *csio, u_int32_t retries,
8140			void (*cbfcnp)(struct cam_periph *, union ccb*),
8141			uint8_t tag_action, int mode,
8142			uint8_t buffer_id, u_int32_t offset,
8143			uint8_t *data_ptr, uint32_t allocation_length,
8144			uint8_t sense_len, uint32_t timeout)
8145{
8146	struct scsi_read_buffer *scsi_cmd;
8147
8148	scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes;
8149	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8150	scsi_cmd->opcode = READ_BUFFER;
8151	scsi_cmd->byte2 = mode;
8152	scsi_cmd->buffer_id = buffer_id;
8153	scsi_ulto3b(offset, scsi_cmd->offset);
8154	scsi_ulto3b(allocation_length, scsi_cmd->length);
8155
8156	cam_fill_csio(csio,
8157		      retries,
8158		      cbfcnp,
8159		      /*flags*/CAM_DIR_IN,
8160		      tag_action,
8161		      data_ptr,
8162		      allocation_length,
8163		      sense_len,
8164		      sizeof(*scsi_cmd),
8165		      timeout);
8166}
8167
8168void
8169scsi_write_buffer(struct ccb_scsiio *csio, u_int32_t retries,
8170			void (*cbfcnp)(struct cam_periph *, union ccb *),
8171			uint8_t tag_action, int mode,
8172			uint8_t buffer_id, u_int32_t offset,
8173			uint8_t *data_ptr, uint32_t param_list_length,
8174			uint8_t sense_len, uint32_t timeout)
8175{
8176	struct scsi_write_buffer *scsi_cmd;
8177
8178	scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes;
8179	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8180	scsi_cmd->opcode = WRITE_BUFFER;
8181	scsi_cmd->byte2 = mode;
8182	scsi_cmd->buffer_id = buffer_id;
8183	scsi_ulto3b(offset, scsi_cmd->offset);
8184	scsi_ulto3b(param_list_length, scsi_cmd->length);
8185
8186	cam_fill_csio(csio,
8187		      retries,
8188		      cbfcnp,
8189		      /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
8190		      tag_action,
8191		      data_ptr,
8192		      param_list_length,
8193		      sense_len,
8194		      sizeof(*scsi_cmd),
8195		      timeout);
8196}
8197
8198void
8199scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries,
8200		void (*cbfcnp)(struct cam_periph *, union ccb *),
8201		u_int8_t tag_action, int start, int load_eject,
8202		int immediate, u_int8_t sense_len, u_int32_t timeout)
8203{
8204	struct scsi_start_stop_unit *scsi_cmd;
8205	int extra_flags = 0;
8206
8207	scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes;
8208	bzero(scsi_cmd, sizeof(*scsi_cmd));
8209	scsi_cmd->opcode = START_STOP_UNIT;
8210	if (start != 0) {
8211		scsi_cmd->how |= SSS_START;
8212		/* it takes a lot of power to start a drive */
8213		extra_flags |= CAM_HIGH_POWER;
8214	}
8215	if (load_eject != 0)
8216		scsi_cmd->how |= SSS_LOEJ;
8217	if (immediate != 0)
8218		scsi_cmd->byte2 |= SSS_IMMED;
8219
8220	cam_fill_csio(csio,
8221		      retries,
8222		      cbfcnp,
8223		      /*flags*/CAM_DIR_NONE | extra_flags,
8224		      tag_action,
8225		      /*data_ptr*/NULL,
8226		      /*dxfer_len*/0,
8227		      sense_len,
8228		      sizeof(*scsi_cmd),
8229		      timeout);
8230}
8231
8232void
8233scsi_read_attribute(struct ccb_scsiio *csio, u_int32_t retries,
8234		    void (*cbfcnp)(struct cam_periph *, union ccb *),
8235		    u_int8_t tag_action, u_int8_t service_action,
8236		    uint32_t element, u_int8_t elem_type, int logical_volume,
8237		    int partition, u_int32_t first_attribute, int cache,
8238		    u_int8_t *data_ptr, u_int32_t length, int sense_len,
8239		    u_int32_t timeout)
8240{
8241	struct scsi_read_attribute *scsi_cmd;
8242
8243	scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes;
8244	bzero(scsi_cmd, sizeof(*scsi_cmd));
8245
8246	scsi_cmd->opcode = READ_ATTRIBUTE;
8247	scsi_cmd->service_action = service_action,
8248	scsi_ulto2b(element, scsi_cmd->element);
8249	scsi_cmd->elem_type = elem_type;
8250	scsi_cmd->logical_volume = logical_volume;
8251	scsi_cmd->partition = partition;
8252	scsi_ulto2b(first_attribute, scsi_cmd->first_attribute);
8253	scsi_ulto4b(length, scsi_cmd->length);
8254	if (cache != 0)
8255		scsi_cmd->cache |= SRA_CACHE;
8256
8257	cam_fill_csio(csio,
8258		      retries,
8259		      cbfcnp,
8260		      /*flags*/CAM_DIR_IN,
8261		      tag_action,
8262		      /*data_ptr*/data_ptr,
8263		      /*dxfer_len*/length,
8264		      sense_len,
8265		      sizeof(*scsi_cmd),
8266		      timeout);
8267}
8268
8269void
8270scsi_write_attribute(struct ccb_scsiio *csio, u_int32_t retries,
8271		    void (*cbfcnp)(struct cam_periph *, union ccb *),
8272		    u_int8_t tag_action, uint32_t element, int logical_volume,
8273		    int partition, int wtc, u_int8_t *data_ptr,
8274		    u_int32_t length, int sense_len, u_int32_t timeout)
8275{
8276	struct scsi_write_attribute *scsi_cmd;
8277
8278	scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes;
8279	bzero(scsi_cmd, sizeof(*scsi_cmd));
8280
8281	scsi_cmd->opcode = WRITE_ATTRIBUTE;
8282	if (wtc != 0)
8283		scsi_cmd->byte2 = SWA_WTC;
8284	scsi_ulto3b(element, scsi_cmd->element);
8285	scsi_cmd->logical_volume = logical_volume;
8286	scsi_cmd->partition = partition;
8287	scsi_ulto4b(length, scsi_cmd->length);
8288
8289	cam_fill_csio(csio,
8290		      retries,
8291		      cbfcnp,
8292		      /*flags*/CAM_DIR_OUT,
8293		      tag_action,
8294		      /*data_ptr*/data_ptr,
8295		      /*dxfer_len*/length,
8296		      sense_len,
8297		      sizeof(*scsi_cmd),
8298		      timeout);
8299}
8300
8301void
8302scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries,
8303			   void (*cbfcnp)(struct cam_periph *, union ccb *),
8304			   uint8_t tag_action, int service_action,
8305			   uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
8306			   int timeout)
8307{
8308	struct scsi_per_res_in *scsi_cmd;
8309
8310	scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes;
8311	bzero(scsi_cmd, sizeof(*scsi_cmd));
8312
8313	scsi_cmd->opcode = PERSISTENT_RES_IN;
8314	scsi_cmd->action = service_action;
8315	scsi_ulto2b(dxfer_len, scsi_cmd->length);
8316
8317	cam_fill_csio(csio,
8318		      retries,
8319		      cbfcnp,
8320		      /*flags*/CAM_DIR_IN,
8321		      tag_action,
8322		      data_ptr,
8323		      dxfer_len,
8324		      sense_len,
8325		      sizeof(*scsi_cmd),
8326		      timeout);
8327}
8328
8329void
8330scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries,
8331			    void (*cbfcnp)(struct cam_periph *, union ccb *),
8332			    uint8_t tag_action, int service_action,
8333			    int scope, int res_type, uint8_t *data_ptr,
8334			    uint32_t dxfer_len, int sense_len, int timeout)
8335{
8336	struct scsi_per_res_out *scsi_cmd;
8337
8338	scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes;
8339	bzero(scsi_cmd, sizeof(*scsi_cmd));
8340
8341	scsi_cmd->opcode = PERSISTENT_RES_OUT;
8342	scsi_cmd->action = service_action;
8343	scsi_cmd->scope_type = scope | res_type;
8344
8345	cam_fill_csio(csio,
8346		      retries,
8347		      cbfcnp,
8348		      /*flags*/CAM_DIR_OUT,
8349		      tag_action,
8350		      /*data_ptr*/data_ptr,
8351		      /*dxfer_len*/dxfer_len,
8352		      sense_len,
8353		      sizeof(*scsi_cmd),
8354		      timeout);
8355}
8356
8357void
8358scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries,
8359			  void (*cbfcnp)(struct cam_periph *, union ccb *),
8360			  uint8_t tag_action, uint32_t security_protocol,
8361			  uint32_t security_protocol_specific, int byte4,
8362			  uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
8363			  int timeout)
8364{
8365	struct scsi_security_protocol_in *scsi_cmd;
8366
8367	scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes;
8368	bzero(scsi_cmd, sizeof(*scsi_cmd));
8369
8370	scsi_cmd->opcode = SECURITY_PROTOCOL_IN;
8371
8372	scsi_cmd->security_protocol = security_protocol;
8373	scsi_ulto2b(security_protocol_specific,
8374		    scsi_cmd->security_protocol_specific);
8375	scsi_cmd->byte4 = byte4;
8376	scsi_ulto4b(dxfer_len, scsi_cmd->length);
8377
8378	cam_fill_csio(csio,
8379		      retries,
8380		      cbfcnp,
8381		      /*flags*/CAM_DIR_IN,
8382		      tag_action,
8383		      data_ptr,
8384		      dxfer_len,
8385		      sense_len,
8386		      sizeof(*scsi_cmd),
8387		      timeout);
8388}
8389
8390void
8391scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries,
8392			   void (*cbfcnp)(struct cam_periph *, union ccb *),
8393			   uint8_t tag_action, uint32_t security_protocol,
8394			   uint32_t security_protocol_specific, int byte4,
8395			   uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
8396			   int timeout)
8397{
8398	struct scsi_security_protocol_out *scsi_cmd;
8399
8400	scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes;
8401	bzero(scsi_cmd, sizeof(*scsi_cmd));
8402
8403	scsi_cmd->opcode = SECURITY_PROTOCOL_OUT;
8404
8405	scsi_cmd->security_protocol = security_protocol;
8406	scsi_ulto2b(security_protocol_specific,
8407		    scsi_cmd->security_protocol_specific);
8408	scsi_cmd->byte4 = byte4;
8409	scsi_ulto4b(dxfer_len, scsi_cmd->length);
8410
8411	cam_fill_csio(csio,
8412		      retries,
8413		      cbfcnp,
8414		      /*flags*/CAM_DIR_OUT,
8415		      tag_action,
8416		      data_ptr,
8417		      dxfer_len,
8418		      sense_len,
8419		      sizeof(*scsi_cmd),
8420		      timeout);
8421}
8422
8423void
8424scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries,
8425			      void (*cbfcnp)(struct cam_periph *, union ccb *),
8426			      uint8_t tag_action, int options, int req_opcode,
8427			      int req_service_action, uint8_t *data_ptr,
8428			      uint32_t dxfer_len, int sense_len, int timeout)
8429{
8430	struct scsi_report_supported_opcodes *scsi_cmd;
8431
8432	scsi_cmd = (struct scsi_report_supported_opcodes *)
8433	    &csio->cdb_io.cdb_bytes;
8434	bzero(scsi_cmd, sizeof(*scsi_cmd));
8435
8436	scsi_cmd->opcode = MAINTENANCE_IN;
8437	scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES;
8438	scsi_cmd->options = options;
8439	scsi_cmd->requested_opcode = req_opcode;
8440	scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action);
8441	scsi_ulto4b(dxfer_len, scsi_cmd->length);
8442
8443	cam_fill_csio(csio,
8444		      retries,
8445		      cbfcnp,
8446		      /*flags*/CAM_DIR_IN,
8447		      tag_action,
8448		      data_ptr,
8449		      dxfer_len,
8450		      sense_len,
8451		      sizeof(*scsi_cmd),
8452		      timeout);
8453}
8454
8455/*
8456 * Try make as good a match as possible with
8457 * available sub drivers
8458 */
8459int
8460scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
8461{
8462	struct scsi_inquiry_pattern *entry;
8463	struct scsi_inquiry_data *inq;
8464
8465	entry = (struct scsi_inquiry_pattern *)table_entry;
8466	inq = (struct scsi_inquiry_data *)inqbuffer;
8467
8468	if (((SID_TYPE(inq) == entry->type)
8469	  || (entry->type == T_ANY))
8470	 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
8471				   : entry->media_type & SIP_MEDIA_FIXED)
8472	 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
8473	 && (cam_strmatch(inq->product, entry->product,
8474			  sizeof(inq->product)) == 0)
8475	 && (cam_strmatch(inq->revision, entry->revision,
8476			  sizeof(inq->revision)) == 0)) {
8477		return (0);
8478	}
8479        return (-1);
8480}
8481
8482/*
8483 * Try make as good a match as possible with
8484 * available sub drivers
8485 */
8486int
8487scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
8488{
8489	struct scsi_static_inquiry_pattern *entry;
8490	struct scsi_inquiry_data *inq;
8491
8492	entry = (struct scsi_static_inquiry_pattern *)table_entry;
8493	inq = (struct scsi_inquiry_data *)inqbuffer;
8494
8495	if (((SID_TYPE(inq) == entry->type)
8496	  || (entry->type == T_ANY))
8497	 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
8498				   : entry->media_type & SIP_MEDIA_FIXED)
8499	 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
8500	 && (cam_strmatch(inq->product, entry->product,
8501			  sizeof(inq->product)) == 0)
8502	 && (cam_strmatch(inq->revision, entry->revision,
8503			  sizeof(inq->revision)) == 0)) {
8504		return (0);
8505	}
8506        return (-1);
8507}
8508
8509/**
8510 * Compare two buffers of vpd device descriptors for a match.
8511 *
8512 * \param lhs      Pointer to first buffer of descriptors to compare.
8513 * \param lhs_len  The length of the first buffer.
8514 * \param rhs	   Pointer to second buffer of descriptors to compare.
8515 * \param rhs_len  The length of the second buffer.
8516 *
8517 * \return  0 on a match, -1 otherwise.
8518 *
8519 * Treat rhs and lhs as arrays of vpd device id descriptors.  Walk lhs matching
8520 * agains each element in rhs until all data are exhausted or we have found
8521 * a match.
8522 */
8523int
8524scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len)
8525{
8526	struct scsi_vpd_id_descriptor *lhs_id;
8527	struct scsi_vpd_id_descriptor *lhs_last;
8528	struct scsi_vpd_id_descriptor *rhs_last;
8529	uint8_t *lhs_end;
8530	uint8_t *rhs_end;
8531
8532	lhs_end = lhs + lhs_len;
8533	rhs_end = rhs + rhs_len;
8534
8535	/*
8536	 * rhs_last and lhs_last are the last posible position of a valid
8537	 * descriptor assuming it had a zero length identifier.  We use
8538	 * these variables to insure we can safely dereference the length
8539	 * field in our loop termination tests.
8540	 */
8541	lhs_last = (struct scsi_vpd_id_descriptor *)
8542	    (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
8543	rhs_last = (struct scsi_vpd_id_descriptor *)
8544	    (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
8545
8546	lhs_id = (struct scsi_vpd_id_descriptor *)lhs;
8547	while (lhs_id <= lhs_last
8548	    && (lhs_id->identifier + lhs_id->length) <= lhs_end) {
8549		struct scsi_vpd_id_descriptor *rhs_id;
8550
8551		rhs_id = (struct scsi_vpd_id_descriptor *)rhs;
8552		while (rhs_id <= rhs_last
8553		    && (rhs_id->identifier + rhs_id->length) <= rhs_end) {
8554
8555			if ((rhs_id->id_type &
8556			     (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) ==
8557			    (lhs_id->id_type &
8558			     (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK))
8559			 && rhs_id->length == lhs_id->length
8560			 && memcmp(rhs_id->identifier, lhs_id->identifier,
8561				   rhs_id->length) == 0)
8562				return (0);
8563
8564			rhs_id = (struct scsi_vpd_id_descriptor *)
8565			   (rhs_id->identifier + rhs_id->length);
8566		}
8567		lhs_id = (struct scsi_vpd_id_descriptor *)
8568		   (lhs_id->identifier + lhs_id->length);
8569	}
8570	return (-1);
8571}
8572
8573#ifdef _KERNEL
8574int
8575scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id)
8576{
8577	struct cam_ed *device;
8578	struct scsi_vpd_supported_pages *vpds;
8579	int i, num_pages;
8580
8581	device = periph->path->device;
8582	vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds;
8583
8584	if (vpds != NULL) {
8585		num_pages = device->supported_vpds_len -
8586		    SVPD_SUPPORTED_PAGES_HDR_LEN;
8587		for (i = 0; i < num_pages; i++) {
8588			if (vpds->page_list[i] == page_id)
8589				return (1);
8590		}
8591	}
8592
8593	return (0);
8594}
8595
8596static void
8597init_scsi_delay(void)
8598{
8599	int delay;
8600
8601	delay = SCSI_DELAY;
8602	TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay);
8603
8604	if (set_scsi_delay(delay) != 0) {
8605		printf("cam: invalid value for tunable kern.cam.scsi_delay\n");
8606		set_scsi_delay(SCSI_DELAY);
8607	}
8608}
8609SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL);
8610
8611static int
8612sysctl_scsi_delay(SYSCTL_HANDLER_ARGS)
8613{
8614	int error, delay;
8615
8616	delay = scsi_delay;
8617	error = sysctl_handle_int(oidp, &delay, 0, req);
8618	if (error != 0 || req->newptr == NULL)
8619		return (error);
8620	return (set_scsi_delay(delay));
8621}
8622SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay, CTLTYPE_INT|CTLFLAG_RW,
8623    0, 0, sysctl_scsi_delay, "I",
8624    "Delay to allow devices to settle after a SCSI bus reset (ms)");
8625
8626static int
8627set_scsi_delay(int delay)
8628{
8629	/*
8630         * If someone sets this to 0, we assume that they want the
8631         * minimum allowable bus settle delay.
8632	 */
8633	if (delay == 0) {
8634		printf("cam: using minimum scsi_delay (%dms)\n",
8635		    SCSI_MIN_DELAY);
8636		delay = SCSI_MIN_DELAY;
8637	}
8638	if (delay < SCSI_MIN_DELAY)
8639		return (EINVAL);
8640	scsi_delay = delay;
8641	return (0);
8642}
8643#endif /* _KERNEL */
8644