cam_xpt.c revision 257049
1/*-
2 * Implementation of the Common Access Method Transport (XPT) layer.
3 *
4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions, and the following disclaimer,
13 *    without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 *    derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: stable/10/sys/cam/cam_xpt.c 257049 2013-10-24 10:33:31Z mav $");
32
33#include <sys/param.h>
34#include <sys/bus.h>
35#include <sys/systm.h>
36#include <sys/types.h>
37#include <sys/malloc.h>
38#include <sys/kernel.h>
39#include <sys/time.h>
40#include <sys/conf.h>
41#include <sys/fcntl.h>
42#include <sys/interrupt.h>
43#include <sys/sbuf.h>
44#include <sys/taskqueue.h>
45
46#include <sys/lock.h>
47#include <sys/mutex.h>
48#include <sys/sysctl.h>
49#include <sys/kthread.h>
50
51#include <cam/cam.h>
52#include <cam/cam_ccb.h>
53#include <cam/cam_periph.h>
54#include <cam/cam_queue.h>
55#include <cam/cam_sim.h>
56#include <cam/cam_xpt.h>
57#include <cam/cam_xpt_sim.h>
58#include <cam/cam_xpt_periph.h>
59#include <cam/cam_xpt_internal.h>
60#include <cam/cam_debug.h>
61#include <cam/cam_compat.h>
62
63#include <cam/scsi/scsi_all.h>
64#include <cam/scsi/scsi_message.h>
65#include <cam/scsi/scsi_pass.h>
66
67#include <machine/md_var.h>	/* geometry translation */
68#include <machine/stdarg.h>	/* for xpt_print below */
69
70#include "opt_cam.h"
71
72/*
73 * This is the maximum number of high powered commands (e.g. start unit)
74 * that can be outstanding at a particular time.
75 */
76#ifndef CAM_MAX_HIGHPOWER
77#define CAM_MAX_HIGHPOWER  4
78#endif
79
80/* Datastructures internal to the xpt layer */
81MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
82MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
83MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
84MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
85
86/* Object for defering XPT actions to a taskqueue */
87struct xpt_task {
88	struct task	task;
89	void		*data1;
90	uintptr_t	data2;
91};
92
93typedef enum {
94	XPT_FLAG_OPEN		= 0x01
95} xpt_flags;
96
97struct xpt_softc {
98	xpt_flags		flags;
99
100	/* number of high powered commands that can go through right now */
101	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
102	int			num_highpower;
103
104	/* queue for handling async rescan requests. */
105	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
106	int buses_to_config;
107	int buses_config_done;
108
109	/* Registered busses */
110	TAILQ_HEAD(,cam_eb)	xpt_busses;
111	u_int			bus_generation;
112
113	struct intr_config_hook	*xpt_config_hook;
114
115	int			boot_delay;
116	struct callout 		boot_callout;
117
118	struct mtx		xpt_topo_lock;
119	struct mtx		xpt_lock;
120};
121
122typedef enum {
123	DM_RET_COPY		= 0x01,
124	DM_RET_FLAG_MASK	= 0x0f,
125	DM_RET_NONE		= 0x00,
126	DM_RET_STOP		= 0x10,
127	DM_RET_DESCEND		= 0x20,
128	DM_RET_ERROR		= 0x30,
129	DM_RET_ACTION_MASK	= 0xf0
130} dev_match_ret;
131
132typedef enum {
133	XPT_DEPTH_BUS,
134	XPT_DEPTH_TARGET,
135	XPT_DEPTH_DEVICE,
136	XPT_DEPTH_PERIPH
137} xpt_traverse_depth;
138
139struct xpt_traverse_config {
140	xpt_traverse_depth	depth;
141	void			*tr_func;
142	void			*tr_arg;
143};
144
145typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
146typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
147typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
148typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
149typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
150
151/* Transport layer configuration information */
152static struct xpt_softc xsoftc;
153
154TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay);
155SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
156           &xsoftc.boot_delay, 0, "Bus registration wait time");
157
158/* Queues for our software interrupt handler */
159typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
160typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
161static cam_simq_t cam_simq;
162static struct mtx cam_simq_lock;
163
164/* Pointers to software interrupt handlers */
165static void *cambio_ih;
166
167struct cam_periph *xpt_periph;
168
169static periph_init_t xpt_periph_init;
170
171static struct periph_driver xpt_driver =
172{
173	xpt_periph_init, "xpt",
174	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
175	CAM_PERIPH_DRV_EARLY
176};
177
178PERIPHDRIVER_DECLARE(xpt, xpt_driver);
179
180static d_open_t xptopen;
181static d_close_t xptclose;
182static d_ioctl_t xptioctl;
183static d_ioctl_t xptdoioctl;
184
185static struct cdevsw xpt_cdevsw = {
186	.d_version =	D_VERSION,
187	.d_flags =	0,
188	.d_open =	xptopen,
189	.d_close =	xptclose,
190	.d_ioctl =	xptioctl,
191	.d_name =	"xpt",
192};
193
194/* Storage for debugging datastructures */
195struct cam_path *cam_dpath;
196u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
197TUNABLE_INT("kern.cam.dflags", &cam_dflags);
198SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW,
199	&cam_dflags, 0, "Enabled debug flags");
200u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
201TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay);
202SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW,
203	&cam_debug_delay, 0, "Delay in us after each debug message");
204
205/* Our boot-time initialization hook */
206static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
207
208static moduledata_t cam_moduledata = {
209	"cam",
210	cam_module_event_handler,
211	NULL
212};
213
214static int	xpt_init(void *);
215
216DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
217MODULE_VERSION(cam, 1);
218
219
220static void		xpt_async_bcast(struct async_list *async_head,
221					u_int32_t async_code,
222					struct cam_path *path,
223					void *async_arg);
224static path_id_t xptnextfreepathid(void);
225static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
226static union ccb *xpt_get_ccb(struct cam_ed *device);
227static void	 xpt_run_dev_allocq(struct cam_ed *device);
228static void	 xpt_run_devq(struct cam_devq *devq);
229static timeout_t xpt_release_devq_timeout;
230static void	 xpt_release_simq_timeout(void *arg) __unused;
231static void	 xpt_release_bus(struct cam_eb *bus);
232static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
233		    int run_queue);
234static struct cam_et*
235		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
236static void	 xpt_release_target(struct cam_et *target);
237static struct cam_eb*
238		 xpt_find_bus(path_id_t path_id);
239static struct cam_et*
240		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
241static struct cam_ed*
242		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
243static void	 xpt_config(void *arg);
244static xpt_devicefunc_t xptpassannouncefunc;
245static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
246static void	 xptpoll(struct cam_sim *sim);
247static void	 camisr(void *);
248static void	 camisr_runqueue(struct cam_sim *);
249static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
250				    u_int num_patterns, struct cam_eb *bus);
251static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
252				       u_int num_patterns,
253				       struct cam_ed *device);
254static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
255				       u_int num_patterns,
256				       struct cam_periph *periph);
257static xpt_busfunc_t	xptedtbusfunc;
258static xpt_targetfunc_t	xptedttargetfunc;
259static xpt_devicefunc_t	xptedtdevicefunc;
260static xpt_periphfunc_t	xptedtperiphfunc;
261static xpt_pdrvfunc_t	xptplistpdrvfunc;
262static xpt_periphfunc_t	xptplistperiphfunc;
263static int		xptedtmatch(struct ccb_dev_match *cdm);
264static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
265static int		xptbustraverse(struct cam_eb *start_bus,
266				       xpt_busfunc_t *tr_func, void *arg);
267static int		xpttargettraverse(struct cam_eb *bus,
268					  struct cam_et *start_target,
269					  xpt_targetfunc_t *tr_func, void *arg);
270static int		xptdevicetraverse(struct cam_et *target,
271					  struct cam_ed *start_device,
272					  xpt_devicefunc_t *tr_func, void *arg);
273static int		xptperiphtraverse(struct cam_ed *device,
274					  struct cam_periph *start_periph,
275					  xpt_periphfunc_t *tr_func, void *arg);
276static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
277					xpt_pdrvfunc_t *tr_func, void *arg);
278static int		xptpdperiphtraverse(struct periph_driver **pdrv,
279					    struct cam_periph *start_periph,
280					    xpt_periphfunc_t *tr_func,
281					    void *arg);
282static xpt_busfunc_t	xptdefbusfunc;
283static xpt_targetfunc_t	xptdeftargetfunc;
284static xpt_devicefunc_t	xptdefdevicefunc;
285static xpt_periphfunc_t	xptdefperiphfunc;
286static void		xpt_finishconfig_task(void *context, int pending);
287static void		xpt_dev_async_default(u_int32_t async_code,
288					      struct cam_eb *bus,
289					      struct cam_et *target,
290					      struct cam_ed *device,
291					      void *async_arg);
292static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
293						 struct cam_et *target,
294						 lun_id_t lun_id);
295static xpt_devicefunc_t	xptsetasyncfunc;
296static xpt_busfunc_t	xptsetasyncbusfunc;
297static cam_status	xptregister(struct cam_periph *periph,
298				    void *arg);
299static __inline int periph_is_queued(struct cam_periph *periph);
300static __inline int device_is_queued(struct cam_ed *device);
301
302static __inline int
303xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
304{
305	int	retval;
306
307	if ((dev->ccbq.queue.entries > 0) &&
308	    (dev->ccbq.dev_openings > 0) &&
309	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
310		/*
311		 * The priority of a device waiting for controller
312		 * resources is that of the highest priority CCB
313		 * enqueued.
314		 */
315		retval =
316		    xpt_schedule_dev(&devq->send_queue,
317				     &dev->devq_entry.pinfo,
318				     CAMQ_GET_PRIO(&dev->ccbq.queue));
319	} else {
320		retval = 0;
321	}
322	return (retval);
323}
324
325static __inline int
326periph_is_queued(struct cam_periph *periph)
327{
328	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
329}
330
331static __inline int
332device_is_queued(struct cam_ed *device)
333{
334	return (device->devq_entry.pinfo.index != CAM_UNQUEUED_INDEX);
335}
336
337static void
338xpt_periph_init()
339{
340	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
341}
342
343static void
344xptdone(struct cam_periph *periph, union ccb *done_ccb)
345{
346	/* Caller will release the CCB */
347	wakeup(&done_ccb->ccb_h.cbfcnp);
348}
349
350static int
351xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
352{
353
354	/*
355	 * Only allow read-write access.
356	 */
357	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
358		return(EPERM);
359
360	/*
361	 * We don't allow nonblocking access.
362	 */
363	if ((flags & O_NONBLOCK) != 0) {
364		printf("%s: can't do nonblocking access\n", devtoname(dev));
365		return(ENODEV);
366	}
367
368	/* Mark ourselves open */
369	mtx_lock(&xsoftc.xpt_lock);
370	xsoftc.flags |= XPT_FLAG_OPEN;
371	mtx_unlock(&xsoftc.xpt_lock);
372
373	return(0);
374}
375
376static int
377xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
378{
379
380	/* Mark ourselves closed */
381	mtx_lock(&xsoftc.xpt_lock);
382	xsoftc.flags &= ~XPT_FLAG_OPEN;
383	mtx_unlock(&xsoftc.xpt_lock);
384
385	return(0);
386}
387
388/*
389 * Don't automatically grab the xpt softc lock here even though this is going
390 * through the xpt device.  The xpt device is really just a back door for
391 * accessing other devices and SIMs, so the right thing to do is to grab
392 * the appropriate SIM lock once the bus/SIM is located.
393 */
394static int
395xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
396{
397	int error;
398
399	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
400		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
401	}
402	return (error);
403}
404
405static int
406xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
407{
408	int error;
409
410	error = 0;
411
412	switch(cmd) {
413	/*
414	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
415	 * to accept CCB types that don't quite make sense to send through a
416	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
417	 * in the CAM spec.
418	 */
419	case CAMIOCOMMAND: {
420		union ccb *ccb;
421		union ccb *inccb;
422		struct cam_eb *bus;
423
424		inccb = (union ccb *)addr;
425
426		bus = xpt_find_bus(inccb->ccb_h.path_id);
427		if (bus == NULL)
428			return (EINVAL);
429
430		switch (inccb->ccb_h.func_code) {
431		case XPT_SCAN_BUS:
432		case XPT_RESET_BUS:
433			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
434			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
435				xpt_release_bus(bus);
436				return (EINVAL);
437			}
438			break;
439		case XPT_SCAN_TGT:
440			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
441			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
442				xpt_release_bus(bus);
443				return (EINVAL);
444			}
445			break;
446		default:
447			break;
448		}
449
450		switch(inccb->ccb_h.func_code) {
451		case XPT_SCAN_BUS:
452		case XPT_RESET_BUS:
453		case XPT_PATH_INQ:
454		case XPT_ENG_INQ:
455		case XPT_SCAN_LUN:
456		case XPT_SCAN_TGT:
457
458			ccb = xpt_alloc_ccb();
459
460			CAM_SIM_LOCK(bus->sim);
461
462			/*
463			 * Create a path using the bus, target, and lun the
464			 * user passed in.
465			 */
466			if (xpt_create_path(&ccb->ccb_h.path, NULL,
467					    inccb->ccb_h.path_id,
468					    inccb->ccb_h.target_id,
469					    inccb->ccb_h.target_lun) !=
470					    CAM_REQ_CMP){
471				error = EINVAL;
472				CAM_SIM_UNLOCK(bus->sim);
473				xpt_free_ccb(ccb);
474				break;
475			}
476			/* Ensure all of our fields are correct */
477			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
478				      inccb->ccb_h.pinfo.priority);
479			xpt_merge_ccb(ccb, inccb);
480			ccb->ccb_h.cbfcnp = xptdone;
481			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
482			bcopy(ccb, inccb, sizeof(union ccb));
483			xpt_free_path(ccb->ccb_h.path);
484			xpt_free_ccb(ccb);
485			CAM_SIM_UNLOCK(bus->sim);
486			break;
487
488		case XPT_DEBUG: {
489			union ccb ccb;
490
491			/*
492			 * This is an immediate CCB, so it's okay to
493			 * allocate it on the stack.
494			 */
495
496			CAM_SIM_LOCK(bus->sim);
497
498			/*
499			 * Create a path using the bus, target, and lun the
500			 * user passed in.
501			 */
502			if (xpt_create_path(&ccb.ccb_h.path, NULL,
503					    inccb->ccb_h.path_id,
504					    inccb->ccb_h.target_id,
505					    inccb->ccb_h.target_lun) !=
506					    CAM_REQ_CMP){
507				error = EINVAL;
508				CAM_SIM_UNLOCK(bus->sim);
509				break;
510			}
511			/* Ensure all of our fields are correct */
512			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
513				      inccb->ccb_h.pinfo.priority);
514			xpt_merge_ccb(&ccb, inccb);
515			ccb.ccb_h.cbfcnp = xptdone;
516			xpt_action(&ccb);
517			bcopy(&ccb, inccb, sizeof(union ccb));
518			xpt_free_path(ccb.ccb_h.path);
519			CAM_SIM_UNLOCK(bus->sim);
520			break;
521
522		}
523		case XPT_DEV_MATCH: {
524			struct cam_periph_map_info mapinfo;
525			struct cam_path *old_path;
526
527			/*
528			 * We can't deal with physical addresses for this
529			 * type of transaction.
530			 */
531			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
532			    CAM_DATA_VADDR) {
533				error = EINVAL;
534				break;
535			}
536
537			/*
538			 * Save this in case the caller had it set to
539			 * something in particular.
540			 */
541			old_path = inccb->ccb_h.path;
542
543			/*
544			 * We really don't need a path for the matching
545			 * code.  The path is needed because of the
546			 * debugging statements in xpt_action().  They
547			 * assume that the CCB has a valid path.
548			 */
549			inccb->ccb_h.path = xpt_periph->path;
550
551			bzero(&mapinfo, sizeof(mapinfo));
552
553			/*
554			 * Map the pattern and match buffers into kernel
555			 * virtual address space.
556			 */
557			error = cam_periph_mapmem(inccb, &mapinfo);
558
559			if (error) {
560				inccb->ccb_h.path = old_path;
561				break;
562			}
563
564			/*
565			 * This is an immediate CCB, we can send it on directly.
566			 */
567			CAM_SIM_LOCK(xpt_path_sim(xpt_periph->path));
568			xpt_action(inccb);
569			CAM_SIM_UNLOCK(xpt_path_sim(xpt_periph->path));
570
571			/*
572			 * Map the buffers back into user space.
573			 */
574			cam_periph_unmapmem(inccb, &mapinfo);
575
576			inccb->ccb_h.path = old_path;
577
578			error = 0;
579			break;
580		}
581		default:
582			error = ENOTSUP;
583			break;
584		}
585		xpt_release_bus(bus);
586		break;
587	}
588	/*
589	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
590	 * with the periphal driver name and unit name filled in.  The other
591	 * fields don't really matter as input.  The passthrough driver name
592	 * ("pass"), and unit number are passed back in the ccb.  The current
593	 * device generation number, and the index into the device peripheral
594	 * driver list, and the status are also passed back.  Note that
595	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
596	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
597	 * (or rather should be) impossible for the device peripheral driver
598	 * list to change since we look at the whole thing in one pass, and
599	 * we do it with lock protection.
600	 *
601	 */
602	case CAMGETPASSTHRU: {
603		union ccb *ccb;
604		struct cam_periph *periph;
605		struct periph_driver **p_drv;
606		char   *name;
607		u_int unit;
608		int base_periph_found;
609
610		ccb = (union ccb *)addr;
611		unit = ccb->cgdl.unit_number;
612		name = ccb->cgdl.periph_name;
613		base_periph_found = 0;
614
615		/*
616		 * Sanity check -- make sure we don't get a null peripheral
617		 * driver name.
618		 */
619		if (*ccb->cgdl.periph_name == '\0') {
620			error = EINVAL;
621			break;
622		}
623
624		/* Keep the list from changing while we traverse it */
625		xpt_lock_buses();
626
627		/* first find our driver in the list of drivers */
628		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
629			if (strcmp((*p_drv)->driver_name, name) == 0)
630				break;
631
632		if (*p_drv == NULL) {
633			xpt_unlock_buses();
634			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
635			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
636			*ccb->cgdl.periph_name = '\0';
637			ccb->cgdl.unit_number = 0;
638			error = ENOENT;
639			break;
640		}
641
642		/*
643		 * Run through every peripheral instance of this driver
644		 * and check to see whether it matches the unit passed
645		 * in by the user.  If it does, get out of the loops and
646		 * find the passthrough driver associated with that
647		 * peripheral driver.
648		 */
649		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
650		     periph = TAILQ_NEXT(periph, unit_links)) {
651
652			if (periph->unit_number == unit)
653				break;
654		}
655		/*
656		 * If we found the peripheral driver that the user passed
657		 * in, go through all of the peripheral drivers for that
658		 * particular device and look for a passthrough driver.
659		 */
660		if (periph != NULL) {
661			struct cam_ed *device;
662			int i;
663
664			base_periph_found = 1;
665			device = periph->path->device;
666			for (i = 0, periph = SLIST_FIRST(&device->periphs);
667			     periph != NULL;
668			     periph = SLIST_NEXT(periph, periph_links), i++) {
669				/*
670				 * Check to see whether we have a
671				 * passthrough device or not.
672				 */
673				if (strcmp(periph->periph_name, "pass") == 0) {
674					/*
675					 * Fill in the getdevlist fields.
676					 */
677					strcpy(ccb->cgdl.periph_name,
678					       periph->periph_name);
679					ccb->cgdl.unit_number =
680						periph->unit_number;
681					if (SLIST_NEXT(periph, periph_links))
682						ccb->cgdl.status =
683							CAM_GDEVLIST_MORE_DEVS;
684					else
685						ccb->cgdl.status =
686						       CAM_GDEVLIST_LAST_DEVICE;
687					ccb->cgdl.generation =
688						device->generation;
689					ccb->cgdl.index = i;
690					/*
691					 * Fill in some CCB header fields
692					 * that the user may want.
693					 */
694					ccb->ccb_h.path_id =
695						periph->path->bus->path_id;
696					ccb->ccb_h.target_id =
697						periph->path->target->target_id;
698					ccb->ccb_h.target_lun =
699						periph->path->device->lun_id;
700					ccb->ccb_h.status = CAM_REQ_CMP;
701					break;
702				}
703			}
704		}
705
706		/*
707		 * If the periph is null here, one of two things has
708		 * happened.  The first possibility is that we couldn't
709		 * find the unit number of the particular peripheral driver
710		 * that the user is asking about.  e.g. the user asks for
711		 * the passthrough driver for "da11".  We find the list of
712		 * "da" peripherals all right, but there is no unit 11.
713		 * The other possibility is that we went through the list
714		 * of peripheral drivers attached to the device structure,
715		 * but didn't find one with the name "pass".  Either way,
716		 * we return ENOENT, since we couldn't find something.
717		 */
718		if (periph == NULL) {
719			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
720			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
721			*ccb->cgdl.periph_name = '\0';
722			ccb->cgdl.unit_number = 0;
723			error = ENOENT;
724			/*
725			 * It is unfortunate that this is even necessary,
726			 * but there are many, many clueless users out there.
727			 * If this is true, the user is looking for the
728			 * passthrough driver, but doesn't have one in his
729			 * kernel.
730			 */
731			if (base_periph_found == 1) {
732				printf("xptioctl: pass driver is not in the "
733				       "kernel\n");
734				printf("xptioctl: put \"device pass\" in "
735				       "your kernel config file\n");
736			}
737		}
738		xpt_unlock_buses();
739		break;
740		}
741	default:
742		error = ENOTTY;
743		break;
744	}
745
746	return(error);
747}
748
749static int
750cam_module_event_handler(module_t mod, int what, void *arg)
751{
752	int error;
753
754	switch (what) {
755	case MOD_LOAD:
756		if ((error = xpt_init(NULL)) != 0)
757			return (error);
758		break;
759	case MOD_UNLOAD:
760		return EBUSY;
761	default:
762		return EOPNOTSUPP;
763	}
764
765	return 0;
766}
767
768static void
769xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
770{
771
772	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
773		xpt_free_path(done_ccb->ccb_h.path);
774		xpt_free_ccb(done_ccb);
775	} else {
776		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
777		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
778	}
779	xpt_release_boot();
780}
781
782/* thread to handle bus rescans */
783static void
784xpt_scanner_thread(void *dummy)
785{
786	union ccb	*ccb;
787	struct cam_sim	*sim;
788
789	xpt_lock_buses();
790	for (;;) {
791		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
792			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
793			       "ccb_scanq", 0);
794		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
795			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
796			xpt_unlock_buses();
797
798			sim = ccb->ccb_h.path->bus->sim;
799			CAM_SIM_LOCK(sim);
800			xpt_action(ccb);
801			CAM_SIM_UNLOCK(sim);
802
803			xpt_lock_buses();
804		}
805	}
806}
807
808void
809xpt_rescan(union ccb *ccb)
810{
811	struct ccb_hdr *hdr;
812
813	/* Prepare request */
814	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
815	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
816		ccb->ccb_h.func_code = XPT_SCAN_BUS;
817	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
818	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
819		ccb->ccb_h.func_code = XPT_SCAN_TGT;
820	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
821	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
822		ccb->ccb_h.func_code = XPT_SCAN_LUN;
823	else {
824		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
825		xpt_free_path(ccb->ccb_h.path);
826		xpt_free_ccb(ccb);
827		return;
828	}
829	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
830	ccb->ccb_h.cbfcnp = xpt_rescan_done;
831	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
832	/* Don't make duplicate entries for the same paths. */
833	xpt_lock_buses();
834	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
835		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
836			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
837				wakeup(&xsoftc.ccb_scanq);
838				xpt_unlock_buses();
839				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
840				xpt_free_path(ccb->ccb_h.path);
841				xpt_free_ccb(ccb);
842				return;
843			}
844		}
845	}
846	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
847	xsoftc.buses_to_config++;
848	wakeup(&xsoftc.ccb_scanq);
849	xpt_unlock_buses();
850}
851
852/* Functions accessed by the peripheral drivers */
853static int
854xpt_init(void *dummy)
855{
856	struct cam_sim *xpt_sim;
857	struct cam_path *path;
858	struct cam_devq *devq;
859	cam_status status;
860
861	TAILQ_INIT(&xsoftc.xpt_busses);
862	TAILQ_INIT(&cam_simq);
863	TAILQ_INIT(&xsoftc.ccb_scanq);
864	STAILQ_INIT(&xsoftc.highpowerq);
865	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
866
867	mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
868	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
869	mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
870
871#ifdef CAM_BOOT_DELAY
872	/*
873	 * Override this value at compile time to assist our users
874	 * who don't use loader to boot a kernel.
875	 */
876	xsoftc.boot_delay = CAM_BOOT_DELAY;
877#endif
878	/*
879	 * The xpt layer is, itself, the equivelent of a SIM.
880	 * Allow 16 ccbs in the ccb pool for it.  This should
881	 * give decent parallelism when we probe busses and
882	 * perform other XPT functions.
883	 */
884	devq = cam_simq_alloc(16);
885	xpt_sim = cam_sim_alloc(xptaction,
886				xptpoll,
887				"xpt",
888				/*softc*/NULL,
889				/*unit*/0,
890				/*mtx*/&xsoftc.xpt_lock,
891				/*max_dev_transactions*/0,
892				/*max_tagged_dev_transactions*/0,
893				devq);
894	if (xpt_sim == NULL)
895		return (ENOMEM);
896
897	mtx_lock(&xsoftc.xpt_lock);
898	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
899		mtx_unlock(&xsoftc.xpt_lock);
900		printf("xpt_init: xpt_bus_register failed with status %#x,"
901		       " failing attach\n", status);
902		return (EINVAL);
903	}
904
905	/*
906	 * Looking at the XPT from the SIM layer, the XPT is
907	 * the equivelent of a peripheral driver.  Allocate
908	 * a peripheral driver entry for us.
909	 */
910	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
911				      CAM_TARGET_WILDCARD,
912				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
913		mtx_unlock(&xsoftc.xpt_lock);
914		printf("xpt_init: xpt_create_path failed with status %#x,"
915		       " failing attach\n", status);
916		return (EINVAL);
917	}
918
919	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
920			 path, NULL, 0, xpt_sim);
921	xpt_free_path(path);
922	mtx_unlock(&xsoftc.xpt_lock);
923	/* Install our software interrupt handlers */
924	swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
925	/*
926	 * Register a callback for when interrupts are enabled.
927	 */
928	xsoftc.xpt_config_hook =
929	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
930					      M_CAMXPT, M_NOWAIT | M_ZERO);
931	if (xsoftc.xpt_config_hook == NULL) {
932		printf("xpt_init: Cannot malloc config hook "
933		       "- failing attach\n");
934		return (ENOMEM);
935	}
936	xsoftc.xpt_config_hook->ich_func = xpt_config;
937	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
938		free (xsoftc.xpt_config_hook, M_CAMXPT);
939		printf("xpt_init: config_intrhook_establish failed "
940		       "- failing attach\n");
941	}
942
943	return (0);
944}
945
946static cam_status
947xptregister(struct cam_periph *periph, void *arg)
948{
949	struct cam_sim *xpt_sim;
950
951	if (periph == NULL) {
952		printf("xptregister: periph was NULL!!\n");
953		return(CAM_REQ_CMP_ERR);
954	}
955
956	xpt_sim = (struct cam_sim *)arg;
957	xpt_sim->softc = periph;
958	xpt_periph = periph;
959	periph->softc = NULL;
960
961	return(CAM_REQ_CMP);
962}
963
964int32_t
965xpt_add_periph(struct cam_periph *periph)
966{
967	struct cam_ed *device;
968	int32_t	 status;
969	struct periph_list *periph_head;
970
971	mtx_assert(periph->sim->mtx, MA_OWNED);
972
973	device = periph->path->device;
974
975	periph_head = &device->periphs;
976
977	status = CAM_REQ_CMP;
978
979	if (device != NULL) {
980		/*
981		 * Make room for this peripheral
982		 * so it will fit in the queue
983		 * when it's scheduled to run
984		 */
985		status = camq_resize(&device->drvq,
986				     device->drvq.array_size + 1);
987
988		device->generation++;
989
990		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
991	}
992
993	return (status);
994}
995
996void
997xpt_remove_periph(struct cam_periph *periph)
998{
999	struct cam_ed *device;
1000
1001	mtx_assert(periph->sim->mtx, MA_OWNED);
1002
1003	device = periph->path->device;
1004
1005	if (device != NULL) {
1006		struct periph_list *periph_head;
1007
1008		periph_head = &device->periphs;
1009
1010		/* Release the slot for this peripheral */
1011		camq_resize(&device->drvq, device->drvq.array_size - 1);
1012
1013		device->generation++;
1014
1015		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1016	}
1017}
1018
1019
1020void
1021xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1022{
1023	struct	cam_path *path = periph->path;
1024
1025	mtx_assert(periph->sim->mtx, MA_OWNED);
1026	periph->flags |= CAM_PERIPH_ANNOUNCED;
1027
1028	printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
1029	       periph->periph_name, periph->unit_number,
1030	       path->bus->sim->sim_name,
1031	       path->bus->sim->unit_number,
1032	       path->bus->sim->bus_id,
1033	       path->bus->path_id,
1034	       path->target->target_id,
1035	       path->device->lun_id);
1036	printf("%s%d: ", periph->periph_name, periph->unit_number);
1037	if (path->device->protocol == PROTO_SCSI)
1038		scsi_print_inquiry(&path->device->inq_data);
1039	else if (path->device->protocol == PROTO_ATA ||
1040	    path->device->protocol == PROTO_SATAPM)
1041		ata_print_ident(&path->device->ident_data);
1042	else if (path->device->protocol == PROTO_SEMB)
1043		semb_print_ident(
1044		    (struct sep_identify_data *)&path->device->ident_data);
1045	else
1046		printf("Unknown protocol device\n");
1047	if (path->device->serial_num_len > 0) {
1048		/* Don't wrap the screen  - print only the first 60 chars */
1049		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1050		       periph->unit_number, path->device->serial_num);
1051	}
1052	/* Announce transport details. */
1053	(*(path->bus->xport->announce))(periph);
1054	/* Announce command queueing. */
1055	if (path->device->inq_flags & SID_CmdQue
1056	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1057		printf("%s%d: Command Queueing enabled\n",
1058		       periph->periph_name, periph->unit_number);
1059	}
1060	/* Announce caller's details if they've passed in. */
1061	if (announce_string != NULL)
1062		printf("%s%d: %s\n", periph->periph_name,
1063		       periph->unit_number, announce_string);
1064}
1065
1066void
1067xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1068{
1069	if (quirks != 0) {
1070		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1071		    periph->unit_number, quirks, bit_string);
1072	}
1073}
1074
1075void
1076xpt_denounce_periph(struct cam_periph *periph)
1077{
1078	struct	cam_path *path = periph->path;
1079
1080	mtx_assert(periph->sim->mtx, MA_OWNED);
1081	printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
1082	       periph->periph_name, periph->unit_number,
1083	       path->bus->sim->sim_name,
1084	       path->bus->sim->unit_number,
1085	       path->bus->sim->bus_id,
1086	       path->bus->path_id,
1087	       path->target->target_id,
1088	       path->device->lun_id);
1089	printf("%s%d: ", periph->periph_name, periph->unit_number);
1090	if (path->device->protocol == PROTO_SCSI)
1091		scsi_print_inquiry_short(&path->device->inq_data);
1092	else if (path->device->protocol == PROTO_ATA ||
1093	    path->device->protocol == PROTO_SATAPM)
1094		ata_print_ident_short(&path->device->ident_data);
1095	else if (path->device->protocol == PROTO_SEMB)
1096		semb_print_ident_short(
1097		    (struct sep_identify_data *)&path->device->ident_data);
1098	else
1099		printf("Unknown protocol device");
1100	if (path->device->serial_num_len > 0)
1101		printf(" s/n %.60s", path->device->serial_num);
1102	printf(" detached\n");
1103}
1104
1105
1106int
1107xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1108{
1109	int ret = -1, l;
1110	struct ccb_dev_advinfo cdai;
1111	struct scsi_vpd_id_descriptor *idd;
1112
1113	mtx_assert(path->bus->sim->mtx, MA_OWNED);
1114
1115	memset(&cdai, 0, sizeof(cdai));
1116	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1117	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1118	cdai.bufsiz = len;
1119
1120	if (!strcmp(attr, "GEOM::ident"))
1121		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1122	else if (!strcmp(attr, "GEOM::physpath"))
1123		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1124	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1125		 strcmp(attr, "GEOM::lunname") == 0) {
1126		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1127		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1128	} else
1129		goto out;
1130
1131	cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1132	if (cdai.buf == NULL) {
1133		ret = ENOMEM;
1134		goto out;
1135	}
1136	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1137	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1138		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1139	if (cdai.provsiz == 0)
1140		goto out;
1141	if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) {
1142		if (strcmp(attr, "GEOM::lunid") == 0) {
1143			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1144			    cdai.provsiz, scsi_devid_is_lun_naa);
1145			if (idd == NULL)
1146				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1147				    cdai.provsiz, scsi_devid_is_lun_eui64);
1148		} else
1149			idd = NULL;
1150		if (idd == NULL)
1151			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1152			    cdai.provsiz, scsi_devid_is_lun_t10);
1153		if (idd == NULL)
1154			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1155			    cdai.provsiz, scsi_devid_is_lun_name);
1156		if (idd == NULL)
1157			goto out;
1158		ret = 0;
1159		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII ||
1160		    (idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) {
1161			l = strnlen(idd->identifier, idd->length);
1162			if (l < len) {
1163				bcopy(idd->identifier, buf, l);
1164				buf[l] = 0;
1165			} else
1166				ret = EFAULT;
1167		} else {
1168			if (idd->length * 2 < len) {
1169				for (l = 0; l < idd->length; l++)
1170					sprintf(buf + l * 2, "%02x",
1171					    idd->identifier[l]);
1172			} else
1173				ret = EFAULT;
1174		}
1175	} else {
1176		ret = 0;
1177		if (strlcpy(buf, cdai.buf, len) >= len)
1178			ret = EFAULT;
1179	}
1180
1181out:
1182	if (cdai.buf != NULL)
1183		free(cdai.buf, M_CAMXPT);
1184	return ret;
1185}
1186
1187static dev_match_ret
1188xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1189	    struct cam_eb *bus)
1190{
1191	dev_match_ret retval;
1192	int i;
1193
1194	retval = DM_RET_NONE;
1195
1196	/*
1197	 * If we aren't given something to match against, that's an error.
1198	 */
1199	if (bus == NULL)
1200		return(DM_RET_ERROR);
1201
1202	/*
1203	 * If there are no match entries, then this bus matches no
1204	 * matter what.
1205	 */
1206	if ((patterns == NULL) || (num_patterns == 0))
1207		return(DM_RET_DESCEND | DM_RET_COPY);
1208
1209	for (i = 0; i < num_patterns; i++) {
1210		struct bus_match_pattern *cur_pattern;
1211
1212		/*
1213		 * If the pattern in question isn't for a bus node, we
1214		 * aren't interested.  However, we do indicate to the
1215		 * calling routine that we should continue descending the
1216		 * tree, since the user wants to match against lower-level
1217		 * EDT elements.
1218		 */
1219		if (patterns[i].type != DEV_MATCH_BUS) {
1220			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1221				retval |= DM_RET_DESCEND;
1222			continue;
1223		}
1224
1225		cur_pattern = &patterns[i].pattern.bus_pattern;
1226
1227		/*
1228		 * If they want to match any bus node, we give them any
1229		 * device node.
1230		 */
1231		if (cur_pattern->flags == BUS_MATCH_ANY) {
1232			/* set the copy flag */
1233			retval |= DM_RET_COPY;
1234
1235			/*
1236			 * If we've already decided on an action, go ahead
1237			 * and return.
1238			 */
1239			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1240				return(retval);
1241		}
1242
1243		/*
1244		 * Not sure why someone would do this...
1245		 */
1246		if (cur_pattern->flags == BUS_MATCH_NONE)
1247			continue;
1248
1249		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1250		 && (cur_pattern->path_id != bus->path_id))
1251			continue;
1252
1253		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1254		 && (cur_pattern->bus_id != bus->sim->bus_id))
1255			continue;
1256
1257		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1258		 && (cur_pattern->unit_number != bus->sim->unit_number))
1259			continue;
1260
1261		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1262		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1263			     DEV_IDLEN) != 0))
1264			continue;
1265
1266		/*
1267		 * If we get to this point, the user definitely wants
1268		 * information on this bus.  So tell the caller to copy the
1269		 * data out.
1270		 */
1271		retval |= DM_RET_COPY;
1272
1273		/*
1274		 * If the return action has been set to descend, then we
1275		 * know that we've already seen a non-bus matching
1276		 * expression, therefore we need to further descend the tree.
1277		 * This won't change by continuing around the loop, so we
1278		 * go ahead and return.  If we haven't seen a non-bus
1279		 * matching expression, we keep going around the loop until
1280		 * we exhaust the matching expressions.  We'll set the stop
1281		 * flag once we fall out of the loop.
1282		 */
1283		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1284			return(retval);
1285	}
1286
1287	/*
1288	 * If the return action hasn't been set to descend yet, that means
1289	 * we haven't seen anything other than bus matching patterns.  So
1290	 * tell the caller to stop descending the tree -- the user doesn't
1291	 * want to match against lower level tree elements.
1292	 */
1293	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1294		retval |= DM_RET_STOP;
1295
1296	return(retval);
1297}
1298
1299static dev_match_ret
1300xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1301	       struct cam_ed *device)
1302{
1303	dev_match_ret retval;
1304	int i;
1305
1306	retval = DM_RET_NONE;
1307
1308	/*
1309	 * If we aren't given something to match against, that's an error.
1310	 */
1311	if (device == NULL)
1312		return(DM_RET_ERROR);
1313
1314	/*
1315	 * If there are no match entries, then this device matches no
1316	 * matter what.
1317	 */
1318	if ((patterns == NULL) || (num_patterns == 0))
1319		return(DM_RET_DESCEND | DM_RET_COPY);
1320
1321	for (i = 0; i < num_patterns; i++) {
1322		struct device_match_pattern *cur_pattern;
1323		struct scsi_vpd_device_id *device_id_page;
1324
1325		/*
1326		 * If the pattern in question isn't for a device node, we
1327		 * aren't interested.
1328		 */
1329		if (patterns[i].type != DEV_MATCH_DEVICE) {
1330			if ((patterns[i].type == DEV_MATCH_PERIPH)
1331			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1332				retval |= DM_RET_DESCEND;
1333			continue;
1334		}
1335
1336		cur_pattern = &patterns[i].pattern.device_pattern;
1337
1338		/* Error out if mutually exclusive options are specified. */
1339		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1340		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1341			return(DM_RET_ERROR);
1342
1343		/*
1344		 * If they want to match any device node, we give them any
1345		 * device node.
1346		 */
1347		if (cur_pattern->flags == DEV_MATCH_ANY)
1348			goto copy_dev_node;
1349
1350		/*
1351		 * Not sure why someone would do this...
1352		 */
1353		if (cur_pattern->flags == DEV_MATCH_NONE)
1354			continue;
1355
1356		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1357		 && (cur_pattern->path_id != device->target->bus->path_id))
1358			continue;
1359
1360		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1361		 && (cur_pattern->target_id != device->target->target_id))
1362			continue;
1363
1364		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1365		 && (cur_pattern->target_lun != device->lun_id))
1366			continue;
1367
1368		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1369		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1370				    (caddr_t)&cur_pattern->data.inq_pat,
1371				    1, sizeof(cur_pattern->data.inq_pat),
1372				    scsi_static_inquiry_match) == NULL))
1373			continue;
1374
1375		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1376		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1377		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1378		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1379				      device->device_id_len
1380				    - SVPD_DEVICE_ID_HDR_LEN,
1381				      cur_pattern->data.devid_pat.id,
1382				      cur_pattern->data.devid_pat.id_len) != 0))
1383			continue;
1384
1385copy_dev_node:
1386		/*
1387		 * If we get to this point, the user definitely wants
1388		 * information on this device.  So tell the caller to copy
1389		 * the data out.
1390		 */
1391		retval |= DM_RET_COPY;
1392
1393		/*
1394		 * If the return action has been set to descend, then we
1395		 * know that we've already seen a peripheral matching
1396		 * expression, therefore we need to further descend the tree.
1397		 * This won't change by continuing around the loop, so we
1398		 * go ahead and return.  If we haven't seen a peripheral
1399		 * matching expression, we keep going around the loop until
1400		 * we exhaust the matching expressions.  We'll set the stop
1401		 * flag once we fall out of the loop.
1402		 */
1403		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1404			return(retval);
1405	}
1406
1407	/*
1408	 * If the return action hasn't been set to descend yet, that means
1409	 * we haven't seen any peripheral matching patterns.  So tell the
1410	 * caller to stop descending the tree -- the user doesn't want to
1411	 * match against lower level tree elements.
1412	 */
1413	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1414		retval |= DM_RET_STOP;
1415
1416	return(retval);
1417}
1418
1419/*
1420 * Match a single peripheral against any number of match patterns.
1421 */
1422static dev_match_ret
1423xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1424	       struct cam_periph *periph)
1425{
1426	dev_match_ret retval;
1427	int i;
1428
1429	/*
1430	 * If we aren't given something to match against, that's an error.
1431	 */
1432	if (periph == NULL)
1433		return(DM_RET_ERROR);
1434
1435	/*
1436	 * If there are no match entries, then this peripheral matches no
1437	 * matter what.
1438	 */
1439	if ((patterns == NULL) || (num_patterns == 0))
1440		return(DM_RET_STOP | DM_RET_COPY);
1441
1442	/*
1443	 * There aren't any nodes below a peripheral node, so there's no
1444	 * reason to descend the tree any further.
1445	 */
1446	retval = DM_RET_STOP;
1447
1448	for (i = 0; i < num_patterns; i++) {
1449		struct periph_match_pattern *cur_pattern;
1450
1451		/*
1452		 * If the pattern in question isn't for a peripheral, we
1453		 * aren't interested.
1454		 */
1455		if (patterns[i].type != DEV_MATCH_PERIPH)
1456			continue;
1457
1458		cur_pattern = &patterns[i].pattern.periph_pattern;
1459
1460		/*
1461		 * If they want to match on anything, then we will do so.
1462		 */
1463		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1464			/* set the copy flag */
1465			retval |= DM_RET_COPY;
1466
1467			/*
1468			 * We've already set the return action to stop,
1469			 * since there are no nodes below peripherals in
1470			 * the tree.
1471			 */
1472			return(retval);
1473		}
1474
1475		/*
1476		 * Not sure why someone would do this...
1477		 */
1478		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1479			continue;
1480
1481		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1482		 && (cur_pattern->path_id != periph->path->bus->path_id))
1483			continue;
1484
1485		/*
1486		 * For the target and lun id's, we have to make sure the
1487		 * target and lun pointers aren't NULL.  The xpt peripheral
1488		 * has a wildcard target and device.
1489		 */
1490		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1491		 && ((periph->path->target == NULL)
1492		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1493			continue;
1494
1495		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1496		 && ((periph->path->device == NULL)
1497		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1498			continue;
1499
1500		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1501		 && (cur_pattern->unit_number != periph->unit_number))
1502			continue;
1503
1504		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1505		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1506			     DEV_IDLEN) != 0))
1507			continue;
1508
1509		/*
1510		 * If we get to this point, the user definitely wants
1511		 * information on this peripheral.  So tell the caller to
1512		 * copy the data out.
1513		 */
1514		retval |= DM_RET_COPY;
1515
1516		/*
1517		 * The return action has already been set to stop, since
1518		 * peripherals don't have any nodes below them in the EDT.
1519		 */
1520		return(retval);
1521	}
1522
1523	/*
1524	 * If we get to this point, the peripheral that was passed in
1525	 * doesn't match any of the patterns.
1526	 */
1527	return(retval);
1528}
1529
1530static int
1531xptedtbusfunc(struct cam_eb *bus, void *arg)
1532{
1533	struct ccb_dev_match *cdm;
1534	dev_match_ret retval;
1535
1536	cdm = (struct ccb_dev_match *)arg;
1537
1538	/*
1539	 * If our position is for something deeper in the tree, that means
1540	 * that we've already seen this node.  So, we keep going down.
1541	 */
1542	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1543	 && (cdm->pos.cookie.bus == bus)
1544	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1545	 && (cdm->pos.cookie.target != NULL))
1546		retval = DM_RET_DESCEND;
1547	else
1548		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1549
1550	/*
1551	 * If we got an error, bail out of the search.
1552	 */
1553	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1554		cdm->status = CAM_DEV_MATCH_ERROR;
1555		return(0);
1556	}
1557
1558	/*
1559	 * If the copy flag is set, copy this bus out.
1560	 */
1561	if (retval & DM_RET_COPY) {
1562		int spaceleft, j;
1563
1564		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1565			sizeof(struct dev_match_result));
1566
1567		/*
1568		 * If we don't have enough space to put in another
1569		 * match result, save our position and tell the
1570		 * user there are more devices to check.
1571		 */
1572		if (spaceleft < sizeof(struct dev_match_result)) {
1573			bzero(&cdm->pos, sizeof(cdm->pos));
1574			cdm->pos.position_type =
1575				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1576
1577			cdm->pos.cookie.bus = bus;
1578			cdm->pos.generations[CAM_BUS_GENERATION]=
1579				xsoftc.bus_generation;
1580			cdm->status = CAM_DEV_MATCH_MORE;
1581			return(0);
1582		}
1583		j = cdm->num_matches;
1584		cdm->num_matches++;
1585		cdm->matches[j].type = DEV_MATCH_BUS;
1586		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1587		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1588		cdm->matches[j].result.bus_result.unit_number =
1589			bus->sim->unit_number;
1590		strncpy(cdm->matches[j].result.bus_result.dev_name,
1591			bus->sim->sim_name, DEV_IDLEN);
1592	}
1593
1594	/*
1595	 * If the user is only interested in busses, there's no
1596	 * reason to descend to the next level in the tree.
1597	 */
1598	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1599		return(1);
1600
1601	/*
1602	 * If there is a target generation recorded, check it to
1603	 * make sure the target list hasn't changed.
1604	 */
1605	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1606	 && (bus == cdm->pos.cookie.bus)
1607	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1608	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1609	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1610	     bus->generation)) {
1611		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1612		return(0);
1613	}
1614
1615	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1616	 && (cdm->pos.cookie.bus == bus)
1617	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1618	 && (cdm->pos.cookie.target != NULL))
1619		return(xpttargettraverse(bus,
1620					(struct cam_et *)cdm->pos.cookie.target,
1621					 xptedttargetfunc, arg));
1622	else
1623		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1624}
1625
1626static int
1627xptedttargetfunc(struct cam_et *target, void *arg)
1628{
1629	struct ccb_dev_match *cdm;
1630
1631	cdm = (struct ccb_dev_match *)arg;
1632
1633	/*
1634	 * If there is a device list generation recorded, check it to
1635	 * make sure the device list hasn't changed.
1636	 */
1637	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1638	 && (cdm->pos.cookie.bus == target->bus)
1639	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1640	 && (cdm->pos.cookie.target == target)
1641	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1642	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1643	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1644	     target->generation)) {
1645		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1646		return(0);
1647	}
1648
1649	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1650	 && (cdm->pos.cookie.bus == target->bus)
1651	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1652	 && (cdm->pos.cookie.target == target)
1653	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1654	 && (cdm->pos.cookie.device != NULL))
1655		return(xptdevicetraverse(target,
1656					(struct cam_ed *)cdm->pos.cookie.device,
1657					 xptedtdevicefunc, arg));
1658	else
1659		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1660}
1661
1662static int
1663xptedtdevicefunc(struct cam_ed *device, void *arg)
1664{
1665
1666	struct ccb_dev_match *cdm;
1667	dev_match_ret retval;
1668
1669	cdm = (struct ccb_dev_match *)arg;
1670
1671	/*
1672	 * If our position is for something deeper in the tree, that means
1673	 * that we've already seen this node.  So, we keep going down.
1674	 */
1675	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1676	 && (cdm->pos.cookie.device == device)
1677	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1678	 && (cdm->pos.cookie.periph != NULL))
1679		retval = DM_RET_DESCEND;
1680	else
1681		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1682					device);
1683
1684	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1685		cdm->status = CAM_DEV_MATCH_ERROR;
1686		return(0);
1687	}
1688
1689	/*
1690	 * If the copy flag is set, copy this device out.
1691	 */
1692	if (retval & DM_RET_COPY) {
1693		int spaceleft, j;
1694
1695		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1696			sizeof(struct dev_match_result));
1697
1698		/*
1699		 * If we don't have enough space to put in another
1700		 * match result, save our position and tell the
1701		 * user there are more devices to check.
1702		 */
1703		if (spaceleft < sizeof(struct dev_match_result)) {
1704			bzero(&cdm->pos, sizeof(cdm->pos));
1705			cdm->pos.position_type =
1706				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1707				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1708
1709			cdm->pos.cookie.bus = device->target->bus;
1710			cdm->pos.generations[CAM_BUS_GENERATION]=
1711				xsoftc.bus_generation;
1712			cdm->pos.cookie.target = device->target;
1713			cdm->pos.generations[CAM_TARGET_GENERATION] =
1714				device->target->bus->generation;
1715			cdm->pos.cookie.device = device;
1716			cdm->pos.generations[CAM_DEV_GENERATION] =
1717				device->target->generation;
1718			cdm->status = CAM_DEV_MATCH_MORE;
1719			return(0);
1720		}
1721		j = cdm->num_matches;
1722		cdm->num_matches++;
1723		cdm->matches[j].type = DEV_MATCH_DEVICE;
1724		cdm->matches[j].result.device_result.path_id =
1725			device->target->bus->path_id;
1726		cdm->matches[j].result.device_result.target_id =
1727			device->target->target_id;
1728		cdm->matches[j].result.device_result.target_lun =
1729			device->lun_id;
1730		cdm->matches[j].result.device_result.protocol =
1731			device->protocol;
1732		bcopy(&device->inq_data,
1733		      &cdm->matches[j].result.device_result.inq_data,
1734		      sizeof(struct scsi_inquiry_data));
1735		bcopy(&device->ident_data,
1736		      &cdm->matches[j].result.device_result.ident_data,
1737		      sizeof(struct ata_params));
1738
1739		/* Let the user know whether this device is unconfigured */
1740		if (device->flags & CAM_DEV_UNCONFIGURED)
1741			cdm->matches[j].result.device_result.flags =
1742				DEV_RESULT_UNCONFIGURED;
1743		else
1744			cdm->matches[j].result.device_result.flags =
1745				DEV_RESULT_NOFLAG;
1746	}
1747
1748	/*
1749	 * If the user isn't interested in peripherals, don't descend
1750	 * the tree any further.
1751	 */
1752	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1753		return(1);
1754
1755	/*
1756	 * If there is a peripheral list generation recorded, make sure
1757	 * it hasn't changed.
1758	 */
1759	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1760	 && (device->target->bus == cdm->pos.cookie.bus)
1761	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1762	 && (device->target == cdm->pos.cookie.target)
1763	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1764	 && (device == cdm->pos.cookie.device)
1765	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1766	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1767	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1768	     device->generation)){
1769		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1770		return(0);
1771	}
1772
1773	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1774	 && (cdm->pos.cookie.bus == device->target->bus)
1775	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1776	 && (cdm->pos.cookie.target == device->target)
1777	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1778	 && (cdm->pos.cookie.device == device)
1779	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1780	 && (cdm->pos.cookie.periph != NULL))
1781		return(xptperiphtraverse(device,
1782				(struct cam_periph *)cdm->pos.cookie.periph,
1783				xptedtperiphfunc, arg));
1784	else
1785		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
1786}
1787
1788static int
1789xptedtperiphfunc(struct cam_periph *periph, void *arg)
1790{
1791	struct ccb_dev_match *cdm;
1792	dev_match_ret retval;
1793
1794	cdm = (struct ccb_dev_match *)arg;
1795
1796	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1797
1798	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1799		cdm->status = CAM_DEV_MATCH_ERROR;
1800		return(0);
1801	}
1802
1803	/*
1804	 * If the copy flag is set, copy this peripheral out.
1805	 */
1806	if (retval & DM_RET_COPY) {
1807		int spaceleft, j;
1808
1809		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1810			sizeof(struct dev_match_result));
1811
1812		/*
1813		 * If we don't have enough space to put in another
1814		 * match result, save our position and tell the
1815		 * user there are more devices to check.
1816		 */
1817		if (spaceleft < sizeof(struct dev_match_result)) {
1818			bzero(&cdm->pos, sizeof(cdm->pos));
1819			cdm->pos.position_type =
1820				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1821				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1822				CAM_DEV_POS_PERIPH;
1823
1824			cdm->pos.cookie.bus = periph->path->bus;
1825			cdm->pos.generations[CAM_BUS_GENERATION]=
1826				xsoftc.bus_generation;
1827			cdm->pos.cookie.target = periph->path->target;
1828			cdm->pos.generations[CAM_TARGET_GENERATION] =
1829				periph->path->bus->generation;
1830			cdm->pos.cookie.device = periph->path->device;
1831			cdm->pos.generations[CAM_DEV_GENERATION] =
1832				periph->path->target->generation;
1833			cdm->pos.cookie.periph = periph;
1834			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1835				periph->path->device->generation;
1836			cdm->status = CAM_DEV_MATCH_MORE;
1837			return(0);
1838		}
1839
1840		j = cdm->num_matches;
1841		cdm->num_matches++;
1842		cdm->matches[j].type = DEV_MATCH_PERIPH;
1843		cdm->matches[j].result.periph_result.path_id =
1844			periph->path->bus->path_id;
1845		cdm->matches[j].result.periph_result.target_id =
1846			periph->path->target->target_id;
1847		cdm->matches[j].result.periph_result.target_lun =
1848			periph->path->device->lun_id;
1849		cdm->matches[j].result.periph_result.unit_number =
1850			periph->unit_number;
1851		strncpy(cdm->matches[j].result.periph_result.periph_name,
1852			periph->periph_name, DEV_IDLEN);
1853	}
1854
1855	return(1);
1856}
1857
1858static int
1859xptedtmatch(struct ccb_dev_match *cdm)
1860{
1861	int ret;
1862
1863	cdm->num_matches = 0;
1864
1865	/*
1866	 * Check the bus list generation.  If it has changed, the user
1867	 * needs to reset everything and start over.
1868	 */
1869	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1870	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
1871	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
1872		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1873		return(0);
1874	}
1875
1876	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1877	 && (cdm->pos.cookie.bus != NULL))
1878		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
1879				     xptedtbusfunc, cdm);
1880	else
1881		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
1882
1883	/*
1884	 * If we get back 0, that means that we had to stop before fully
1885	 * traversing the EDT.  It also means that one of the subroutines
1886	 * has set the status field to the proper value.  If we get back 1,
1887	 * we've fully traversed the EDT and copied out any matching entries.
1888	 */
1889	if (ret == 1)
1890		cdm->status = CAM_DEV_MATCH_LAST;
1891
1892	return(ret);
1893}
1894
1895static int
1896xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1897{
1898	struct ccb_dev_match *cdm;
1899
1900	cdm = (struct ccb_dev_match *)arg;
1901
1902	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1903	 && (cdm->pos.cookie.pdrv == pdrv)
1904	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1905	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1906	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1907	     (*pdrv)->generation)) {
1908		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1909		return(0);
1910	}
1911
1912	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1913	 && (cdm->pos.cookie.pdrv == pdrv)
1914	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1915	 && (cdm->pos.cookie.periph != NULL))
1916		return(xptpdperiphtraverse(pdrv,
1917				(struct cam_periph *)cdm->pos.cookie.periph,
1918				xptplistperiphfunc, arg));
1919	else
1920		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
1921}
1922
1923static int
1924xptplistperiphfunc(struct cam_periph *periph, void *arg)
1925{
1926	struct ccb_dev_match *cdm;
1927	dev_match_ret retval;
1928
1929	cdm = (struct ccb_dev_match *)arg;
1930
1931	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1932
1933	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1934		cdm->status = CAM_DEV_MATCH_ERROR;
1935		return(0);
1936	}
1937
1938	/*
1939	 * If the copy flag is set, copy this peripheral out.
1940	 */
1941	if (retval & DM_RET_COPY) {
1942		int spaceleft, j;
1943
1944		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1945			sizeof(struct dev_match_result));
1946
1947		/*
1948		 * If we don't have enough space to put in another
1949		 * match result, save our position and tell the
1950		 * user there are more devices to check.
1951		 */
1952		if (spaceleft < sizeof(struct dev_match_result)) {
1953			struct periph_driver **pdrv;
1954
1955			pdrv = NULL;
1956			bzero(&cdm->pos, sizeof(cdm->pos));
1957			cdm->pos.position_type =
1958				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1959				CAM_DEV_POS_PERIPH;
1960
1961			/*
1962			 * This may look a bit non-sensical, but it is
1963			 * actually quite logical.  There are very few
1964			 * peripheral drivers, and bloating every peripheral
1965			 * structure with a pointer back to its parent
1966			 * peripheral driver linker set entry would cost
1967			 * more in the long run than doing this quick lookup.
1968			 */
1969			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1970				if (strcmp((*pdrv)->driver_name,
1971				    periph->periph_name) == 0)
1972					break;
1973			}
1974
1975			if (*pdrv == NULL) {
1976				cdm->status = CAM_DEV_MATCH_ERROR;
1977				return(0);
1978			}
1979
1980			cdm->pos.cookie.pdrv = pdrv;
1981			/*
1982			 * The periph generation slot does double duty, as
1983			 * does the periph pointer slot.  They are used for
1984			 * both edt and pdrv lookups and positioning.
1985			 */
1986			cdm->pos.cookie.periph = periph;
1987			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1988				(*pdrv)->generation;
1989			cdm->status = CAM_DEV_MATCH_MORE;
1990			return(0);
1991		}
1992
1993		j = cdm->num_matches;
1994		cdm->num_matches++;
1995		cdm->matches[j].type = DEV_MATCH_PERIPH;
1996		cdm->matches[j].result.periph_result.path_id =
1997			periph->path->bus->path_id;
1998
1999		/*
2000		 * The transport layer peripheral doesn't have a target or
2001		 * lun.
2002		 */
2003		if (periph->path->target)
2004			cdm->matches[j].result.periph_result.target_id =
2005				periph->path->target->target_id;
2006		else
2007			cdm->matches[j].result.periph_result.target_id = -1;
2008
2009		if (periph->path->device)
2010			cdm->matches[j].result.periph_result.target_lun =
2011				periph->path->device->lun_id;
2012		else
2013			cdm->matches[j].result.periph_result.target_lun = -1;
2014
2015		cdm->matches[j].result.periph_result.unit_number =
2016			periph->unit_number;
2017		strncpy(cdm->matches[j].result.periph_result.periph_name,
2018			periph->periph_name, DEV_IDLEN);
2019	}
2020
2021	return(1);
2022}
2023
2024static int
2025xptperiphlistmatch(struct ccb_dev_match *cdm)
2026{
2027	int ret;
2028
2029	cdm->num_matches = 0;
2030
2031	/*
2032	 * At this point in the edt traversal function, we check the bus
2033	 * list generation to make sure that no busses have been added or
2034	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2035	 * For the peripheral driver list traversal function, however, we
2036	 * don't have to worry about new peripheral driver types coming or
2037	 * going; they're in a linker set, and therefore can't change
2038	 * without a recompile.
2039	 */
2040
2041	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2042	 && (cdm->pos.cookie.pdrv != NULL))
2043		ret = xptpdrvtraverse(
2044				(struct periph_driver **)cdm->pos.cookie.pdrv,
2045				xptplistpdrvfunc, cdm);
2046	else
2047		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2048
2049	/*
2050	 * If we get back 0, that means that we had to stop before fully
2051	 * traversing the peripheral driver tree.  It also means that one of
2052	 * the subroutines has set the status field to the proper value.  If
2053	 * we get back 1, we've fully traversed the EDT and copied out any
2054	 * matching entries.
2055	 */
2056	if (ret == 1)
2057		cdm->status = CAM_DEV_MATCH_LAST;
2058
2059	return(ret);
2060}
2061
2062static int
2063xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2064{
2065	struct cam_eb *bus, *next_bus;
2066	int retval;
2067
2068	retval = 1;
2069
2070	xpt_lock_buses();
2071	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2072	     bus != NULL;
2073	     bus = next_bus) {
2074
2075		bus->refcount++;
2076
2077		/*
2078		 * XXX The locking here is obviously very complex.  We
2079		 * should work to simplify it.
2080		 */
2081		xpt_unlock_buses();
2082		CAM_SIM_LOCK(bus->sim);
2083		retval = tr_func(bus, arg);
2084		CAM_SIM_UNLOCK(bus->sim);
2085
2086		xpt_lock_buses();
2087		next_bus = TAILQ_NEXT(bus, links);
2088		xpt_unlock_buses();
2089
2090		xpt_release_bus(bus);
2091
2092		if (retval == 0)
2093			return(retval);
2094		xpt_lock_buses();
2095	}
2096	xpt_unlock_buses();
2097
2098	return(retval);
2099}
2100
2101static int
2102xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2103		  xpt_targetfunc_t *tr_func, void *arg)
2104{
2105	struct cam_et *target, *next_target;
2106	int retval;
2107
2108	mtx_assert(bus->sim->mtx, MA_OWNED);
2109	retval = 1;
2110	for (target = (start_target ? start_target :
2111		       TAILQ_FIRST(&bus->et_entries));
2112	     target != NULL; target = next_target) {
2113
2114		target->refcount++;
2115
2116		retval = tr_func(target, arg);
2117
2118		next_target = TAILQ_NEXT(target, links);
2119
2120		xpt_release_target(target);
2121
2122		if (retval == 0)
2123			return(retval);
2124	}
2125
2126	return(retval);
2127}
2128
2129static int
2130xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2131		  xpt_devicefunc_t *tr_func, void *arg)
2132{
2133	struct cam_ed *device, *next_device;
2134	int retval;
2135
2136	mtx_assert(target->bus->sim->mtx, MA_OWNED);
2137	retval = 1;
2138	for (device = (start_device ? start_device :
2139		       TAILQ_FIRST(&target->ed_entries));
2140	     device != NULL;
2141	     device = next_device) {
2142
2143		/*
2144		 * Hold a reference so the current device does not go away
2145		 * on us.
2146		 */
2147		device->refcount++;
2148
2149		retval = tr_func(device, arg);
2150
2151		/*
2152		 * Grab our next pointer before we release the current
2153		 * device.
2154		 */
2155		next_device = TAILQ_NEXT(device, links);
2156
2157		xpt_release_device(device);
2158
2159		if (retval == 0)
2160			return(retval);
2161	}
2162
2163	return(retval);
2164}
2165
2166static int
2167xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2168		  xpt_periphfunc_t *tr_func, void *arg)
2169{
2170	struct cam_periph *periph, *next_periph;
2171	int retval;
2172
2173	retval = 1;
2174
2175	mtx_assert(device->sim->mtx, MA_OWNED);
2176	xpt_lock_buses();
2177	for (periph = (start_periph ? start_periph :
2178		       SLIST_FIRST(&device->periphs));
2179	     periph != NULL;
2180	     periph = next_periph) {
2181
2182
2183		/*
2184		 * In this case, we want to show peripherals that have been
2185		 * invalidated, but not peripherals that are scheduled to
2186		 * be freed.  So instead of calling cam_periph_acquire(),
2187		 * which will fail if the periph has been invalidated, we
2188		 * just check for the free flag here.  If it is in the
2189		 * process of being freed, we skip to the next periph.
2190		 */
2191		if (periph->flags & CAM_PERIPH_FREE) {
2192			next_periph = SLIST_NEXT(periph, periph_links);
2193			continue;
2194		}
2195
2196		/*
2197		 * Acquire a reference to this periph while we call the
2198		 * traversal function, so it can't go away.
2199		 */
2200		periph->refcount++;
2201
2202		retval = tr_func(periph, arg);
2203
2204		/*
2205		 * Grab the next peripheral before we release this one, so
2206		 * our next pointer is still valid.
2207		 */
2208		next_periph = SLIST_NEXT(periph, periph_links);
2209
2210		cam_periph_release_locked_buses(periph);
2211
2212		if (retval == 0)
2213			goto bailout_done;
2214	}
2215
2216bailout_done:
2217
2218	xpt_unlock_buses();
2219
2220	return(retval);
2221}
2222
2223static int
2224xptpdrvtraverse(struct periph_driver **start_pdrv,
2225		xpt_pdrvfunc_t *tr_func, void *arg)
2226{
2227	struct periph_driver **pdrv;
2228	int retval;
2229
2230	retval = 1;
2231
2232	/*
2233	 * We don't traverse the peripheral driver list like we do the
2234	 * other lists, because it is a linker set, and therefore cannot be
2235	 * changed during runtime.  If the peripheral driver list is ever
2236	 * re-done to be something other than a linker set (i.e. it can
2237	 * change while the system is running), the list traversal should
2238	 * be modified to work like the other traversal functions.
2239	 */
2240	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2241	     *pdrv != NULL; pdrv++) {
2242		retval = tr_func(pdrv, arg);
2243
2244		if (retval == 0)
2245			return(retval);
2246	}
2247
2248	return(retval);
2249}
2250
2251static int
2252xptpdperiphtraverse(struct periph_driver **pdrv,
2253		    struct cam_periph *start_periph,
2254		    xpt_periphfunc_t *tr_func, void *arg)
2255{
2256	struct cam_periph *periph, *next_periph;
2257	struct cam_sim *sim;
2258	int retval;
2259
2260	retval = 1;
2261
2262	xpt_lock_buses();
2263	for (periph = (start_periph ? start_periph :
2264	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2265	     periph = next_periph) {
2266
2267
2268		/*
2269		 * In this case, we want to show peripherals that have been
2270		 * invalidated, but not peripherals that are scheduled to
2271		 * be freed.  So instead of calling cam_periph_acquire(),
2272		 * which will fail if the periph has been invalidated, we
2273		 * just check for the free flag here.  If it is free, we
2274		 * skip to the next periph.
2275		 */
2276		if (periph->flags & CAM_PERIPH_FREE) {
2277			next_periph = TAILQ_NEXT(periph, unit_links);
2278			continue;
2279		}
2280
2281		/*
2282		 * Acquire a reference to this periph while we call the
2283		 * traversal function, so it can't go away.
2284		 */
2285		periph->refcount++;
2286		sim = periph->sim;
2287		xpt_unlock_buses();
2288		CAM_SIM_LOCK(sim);
2289		xpt_lock_buses();
2290		retval = tr_func(periph, arg);
2291
2292		/*
2293		 * Grab the next peripheral before we release this one, so
2294		 * our next pointer is still valid.
2295		 */
2296		next_periph = TAILQ_NEXT(periph, unit_links);
2297
2298		cam_periph_release_locked_buses(periph);
2299		CAM_SIM_UNLOCK(sim);
2300
2301		if (retval == 0)
2302			goto bailout_done;
2303	}
2304bailout_done:
2305
2306	xpt_unlock_buses();
2307
2308	return(retval);
2309}
2310
2311static int
2312xptdefbusfunc(struct cam_eb *bus, void *arg)
2313{
2314	struct xpt_traverse_config *tr_config;
2315
2316	tr_config = (struct xpt_traverse_config *)arg;
2317
2318	if (tr_config->depth == XPT_DEPTH_BUS) {
2319		xpt_busfunc_t *tr_func;
2320
2321		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2322
2323		return(tr_func(bus, tr_config->tr_arg));
2324	} else
2325		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2326}
2327
2328static int
2329xptdeftargetfunc(struct cam_et *target, void *arg)
2330{
2331	struct xpt_traverse_config *tr_config;
2332
2333	tr_config = (struct xpt_traverse_config *)arg;
2334
2335	if (tr_config->depth == XPT_DEPTH_TARGET) {
2336		xpt_targetfunc_t *tr_func;
2337
2338		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2339
2340		return(tr_func(target, tr_config->tr_arg));
2341	} else
2342		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2343}
2344
2345static int
2346xptdefdevicefunc(struct cam_ed *device, void *arg)
2347{
2348	struct xpt_traverse_config *tr_config;
2349
2350	tr_config = (struct xpt_traverse_config *)arg;
2351
2352	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2353		xpt_devicefunc_t *tr_func;
2354
2355		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2356
2357		return(tr_func(device, tr_config->tr_arg));
2358	} else
2359		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2360}
2361
2362static int
2363xptdefperiphfunc(struct cam_periph *periph, void *arg)
2364{
2365	struct xpt_traverse_config *tr_config;
2366	xpt_periphfunc_t *tr_func;
2367
2368	tr_config = (struct xpt_traverse_config *)arg;
2369
2370	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2371
2372	/*
2373	 * Unlike the other default functions, we don't check for depth
2374	 * here.  The peripheral driver level is the last level in the EDT,
2375	 * so if we're here, we should execute the function in question.
2376	 */
2377	return(tr_func(periph, tr_config->tr_arg));
2378}
2379
2380/*
2381 * Execute the given function for every bus in the EDT.
2382 */
2383static int
2384xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2385{
2386	struct xpt_traverse_config tr_config;
2387
2388	tr_config.depth = XPT_DEPTH_BUS;
2389	tr_config.tr_func = tr_func;
2390	tr_config.tr_arg = arg;
2391
2392	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2393}
2394
2395/*
2396 * Execute the given function for every device in the EDT.
2397 */
2398static int
2399xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2400{
2401	struct xpt_traverse_config tr_config;
2402
2403	tr_config.depth = XPT_DEPTH_DEVICE;
2404	tr_config.tr_func = tr_func;
2405	tr_config.tr_arg = arg;
2406
2407	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2408}
2409
2410static int
2411xptsetasyncfunc(struct cam_ed *device, void *arg)
2412{
2413	struct cam_path path;
2414	struct ccb_getdev cgd;
2415	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2416
2417	/*
2418	 * Don't report unconfigured devices (Wildcard devs,
2419	 * devices only for target mode, device instances
2420	 * that have been invalidated but are waiting for
2421	 * their last reference count to be released).
2422	 */
2423	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2424		return (1);
2425
2426	xpt_compile_path(&path,
2427			 NULL,
2428			 device->target->bus->path_id,
2429			 device->target->target_id,
2430			 device->lun_id);
2431	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2432	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2433	xpt_action((union ccb *)&cgd);
2434	csa->callback(csa->callback_arg,
2435			    AC_FOUND_DEVICE,
2436			    &path, &cgd);
2437	xpt_release_path(&path);
2438
2439	return(1);
2440}
2441
2442static int
2443xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2444{
2445	struct cam_path path;
2446	struct ccb_pathinq cpi;
2447	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2448
2449	xpt_compile_path(&path, /*periph*/NULL,
2450			 bus->path_id,
2451			 CAM_TARGET_WILDCARD,
2452			 CAM_LUN_WILDCARD);
2453	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2454	cpi.ccb_h.func_code = XPT_PATH_INQ;
2455	xpt_action((union ccb *)&cpi);
2456	csa->callback(csa->callback_arg,
2457			    AC_PATH_REGISTERED,
2458			    &path, &cpi);
2459	xpt_release_path(&path);
2460
2461	return(1);
2462}
2463
2464void
2465xpt_action(union ccb *start_ccb)
2466{
2467
2468	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2469
2470	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2471	(*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2472}
2473
2474void
2475xpt_action_default(union ccb *start_ccb)
2476{
2477	struct cam_path *path;
2478
2479	path = start_ccb->ccb_h.path;
2480	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2481
2482	switch (start_ccb->ccb_h.func_code) {
2483	case XPT_SCSI_IO:
2484	{
2485		struct cam_ed *device;
2486
2487		/*
2488		 * For the sake of compatibility with SCSI-1
2489		 * devices that may not understand the identify
2490		 * message, we include lun information in the
2491		 * second byte of all commands.  SCSI-1 specifies
2492		 * that luns are a 3 bit value and reserves only 3
2493		 * bits for lun information in the CDB.  Later
2494		 * revisions of the SCSI spec allow for more than 8
2495		 * luns, but have deprecated lun information in the
2496		 * CDB.  So, if the lun won't fit, we must omit.
2497		 *
2498		 * Also be aware that during initial probing for devices,
2499		 * the inquiry information is unknown but initialized to 0.
2500		 * This means that this code will be exercised while probing
2501		 * devices with an ANSI revision greater than 2.
2502		 */
2503		device = path->device;
2504		if (device->protocol_version <= SCSI_REV_2
2505		 && start_ccb->ccb_h.target_lun < 8
2506		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2507
2508			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2509			    start_ccb->ccb_h.target_lun << 5;
2510		}
2511		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2512	}
2513	/* FALLTHROUGH */
2514	case XPT_TARGET_IO:
2515	case XPT_CONT_TARGET_IO:
2516		start_ccb->csio.sense_resid = 0;
2517		start_ccb->csio.resid = 0;
2518		/* FALLTHROUGH */
2519	case XPT_ATA_IO:
2520		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2521			start_ccb->ataio.resid = 0;
2522		/* FALLTHROUGH */
2523	case XPT_RESET_DEV:
2524	case XPT_ENG_EXEC:
2525	case XPT_SMP_IO:
2526		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2527		if (xpt_schedule_devq(path->bus->sim->devq, path->device))
2528			xpt_run_devq(path->bus->sim->devq);
2529		break;
2530	case XPT_CALC_GEOMETRY:
2531	{
2532		struct cam_sim *sim;
2533
2534		/* Filter out garbage */
2535		if (start_ccb->ccg.block_size == 0
2536		 || start_ccb->ccg.volume_size == 0) {
2537			start_ccb->ccg.cylinders = 0;
2538			start_ccb->ccg.heads = 0;
2539			start_ccb->ccg.secs_per_track = 0;
2540			start_ccb->ccb_h.status = CAM_REQ_CMP;
2541			break;
2542		}
2543#if defined(PC98) || defined(__sparc64__)
2544		/*
2545		 * In a PC-98 system, geometry translation depens on
2546		 * the "real" device geometry obtained from mode page 4.
2547		 * SCSI geometry translation is performed in the
2548		 * initialization routine of the SCSI BIOS and the result
2549		 * stored in host memory.  If the translation is available
2550		 * in host memory, use it.  If not, rely on the default
2551		 * translation the device driver performs.
2552		 * For sparc64, we may need adjust the geometry of large
2553		 * disks in order to fit the limitations of the 16-bit
2554		 * fields of the VTOC8 disk label.
2555		 */
2556		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2557			start_ccb->ccb_h.status = CAM_REQ_CMP;
2558			break;
2559		}
2560#endif
2561		sim = path->bus->sim;
2562		(*(sim->sim_action))(sim, start_ccb);
2563		break;
2564	}
2565	case XPT_ABORT:
2566	{
2567		union ccb* abort_ccb;
2568
2569		abort_ccb = start_ccb->cab.abort_ccb;
2570		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2571
2572			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2573				struct cam_ccbq *ccbq;
2574				struct cam_ed *device;
2575
2576				device = abort_ccb->ccb_h.path->device;
2577				ccbq = &device->ccbq;
2578				cam_ccbq_remove_ccb(ccbq, abort_ccb);
2579				abort_ccb->ccb_h.status =
2580				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2581				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2582				xpt_done(abort_ccb);
2583				start_ccb->ccb_h.status = CAM_REQ_CMP;
2584				break;
2585			}
2586			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2587			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2588				/*
2589				 * We've caught this ccb en route to
2590				 * the SIM.  Flag it for abort and the
2591				 * SIM will do so just before starting
2592				 * real work on the CCB.
2593				 */
2594				abort_ccb->ccb_h.status =
2595				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2596				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2597				start_ccb->ccb_h.status = CAM_REQ_CMP;
2598				break;
2599			}
2600		}
2601		if (XPT_FC_IS_QUEUED(abort_ccb)
2602		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2603			/*
2604			 * It's already completed but waiting
2605			 * for our SWI to get to it.
2606			 */
2607			start_ccb->ccb_h.status = CAM_UA_ABORT;
2608			break;
2609		}
2610		/*
2611		 * If we weren't able to take care of the abort request
2612		 * in the XPT, pass the request down to the SIM for processing.
2613		 */
2614	}
2615	/* FALLTHROUGH */
2616	case XPT_ACCEPT_TARGET_IO:
2617	case XPT_EN_LUN:
2618	case XPT_IMMED_NOTIFY:
2619	case XPT_NOTIFY_ACK:
2620	case XPT_RESET_BUS:
2621	case XPT_IMMEDIATE_NOTIFY:
2622	case XPT_NOTIFY_ACKNOWLEDGE:
2623	case XPT_GET_SIM_KNOB:
2624	case XPT_SET_SIM_KNOB:
2625	{
2626		struct cam_sim *sim;
2627
2628		sim = path->bus->sim;
2629		(*(sim->sim_action))(sim, start_ccb);
2630		break;
2631	}
2632	case XPT_PATH_INQ:
2633	{
2634		struct cam_sim *sim;
2635
2636		sim = path->bus->sim;
2637		(*(sim->sim_action))(sim, start_ccb);
2638		break;
2639	}
2640	case XPT_PATH_STATS:
2641		start_ccb->cpis.last_reset = path->bus->last_reset;
2642		start_ccb->ccb_h.status = CAM_REQ_CMP;
2643		break;
2644	case XPT_GDEV_TYPE:
2645	{
2646		struct cam_ed *dev;
2647
2648		dev = path->device;
2649		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2650			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2651		} else {
2652			struct ccb_getdev *cgd;
2653
2654			cgd = &start_ccb->cgd;
2655			cgd->protocol = dev->protocol;
2656			cgd->inq_data = dev->inq_data;
2657			cgd->ident_data = dev->ident_data;
2658			cgd->inq_flags = dev->inq_flags;
2659			cgd->ccb_h.status = CAM_REQ_CMP;
2660			cgd->serial_num_len = dev->serial_num_len;
2661			if ((dev->serial_num_len > 0)
2662			 && (dev->serial_num != NULL))
2663				bcopy(dev->serial_num, cgd->serial_num,
2664				      dev->serial_num_len);
2665		}
2666		break;
2667	}
2668	case XPT_GDEV_STATS:
2669	{
2670		struct cam_ed *dev;
2671
2672		dev = path->device;
2673		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2674			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2675		} else {
2676			struct ccb_getdevstats *cgds;
2677			struct cam_eb *bus;
2678			struct cam_et *tar;
2679
2680			cgds = &start_ccb->cgds;
2681			bus = path->bus;
2682			tar = path->target;
2683			cgds->dev_openings = dev->ccbq.dev_openings;
2684			cgds->dev_active = dev->ccbq.dev_active;
2685			cgds->devq_openings = dev->ccbq.devq_openings;
2686			cgds->devq_queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2687			cgds->held = dev->ccbq.held;
2688			cgds->last_reset = tar->last_reset;
2689			cgds->maxtags = dev->maxtags;
2690			cgds->mintags = dev->mintags;
2691			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2692				cgds->last_reset = bus->last_reset;
2693			cgds->ccb_h.status = CAM_REQ_CMP;
2694		}
2695		break;
2696	}
2697	case XPT_GDEVLIST:
2698	{
2699		struct cam_periph	*nperiph;
2700		struct periph_list	*periph_head;
2701		struct ccb_getdevlist	*cgdl;
2702		u_int			i;
2703		struct cam_ed		*device;
2704		int			found;
2705
2706
2707		found = 0;
2708
2709		/*
2710		 * Don't want anyone mucking with our data.
2711		 */
2712		device = path->device;
2713		periph_head = &device->periphs;
2714		cgdl = &start_ccb->cgdl;
2715
2716		/*
2717		 * Check and see if the list has changed since the user
2718		 * last requested a list member.  If so, tell them that the
2719		 * list has changed, and therefore they need to start over
2720		 * from the beginning.
2721		 */
2722		if ((cgdl->index != 0) &&
2723		    (cgdl->generation != device->generation)) {
2724			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2725			break;
2726		}
2727
2728		/*
2729		 * Traverse the list of peripherals and attempt to find
2730		 * the requested peripheral.
2731		 */
2732		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2733		     (nperiph != NULL) && (i <= cgdl->index);
2734		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2735			if (i == cgdl->index) {
2736				strncpy(cgdl->periph_name,
2737					nperiph->periph_name,
2738					DEV_IDLEN);
2739				cgdl->unit_number = nperiph->unit_number;
2740				found = 1;
2741			}
2742		}
2743		if (found == 0) {
2744			cgdl->status = CAM_GDEVLIST_ERROR;
2745			break;
2746		}
2747
2748		if (nperiph == NULL)
2749			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2750		else
2751			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2752
2753		cgdl->index++;
2754		cgdl->generation = device->generation;
2755
2756		cgdl->ccb_h.status = CAM_REQ_CMP;
2757		break;
2758	}
2759	case XPT_DEV_MATCH:
2760	{
2761		dev_pos_type position_type;
2762		struct ccb_dev_match *cdm;
2763
2764		cdm = &start_ccb->cdm;
2765
2766		/*
2767		 * There are two ways of getting at information in the EDT.
2768		 * The first way is via the primary EDT tree.  It starts
2769		 * with a list of busses, then a list of targets on a bus,
2770		 * then devices/luns on a target, and then peripherals on a
2771		 * device/lun.  The "other" way is by the peripheral driver
2772		 * lists.  The peripheral driver lists are organized by
2773		 * peripheral driver.  (obviously)  So it makes sense to
2774		 * use the peripheral driver list if the user is looking
2775		 * for something like "da1", or all "da" devices.  If the
2776		 * user is looking for something on a particular bus/target
2777		 * or lun, it's generally better to go through the EDT tree.
2778		 */
2779
2780		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2781			position_type = cdm->pos.position_type;
2782		else {
2783			u_int i;
2784
2785			position_type = CAM_DEV_POS_NONE;
2786
2787			for (i = 0; i < cdm->num_patterns; i++) {
2788				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2789				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2790					position_type = CAM_DEV_POS_EDT;
2791					break;
2792				}
2793			}
2794
2795			if (cdm->num_patterns == 0)
2796				position_type = CAM_DEV_POS_EDT;
2797			else if (position_type == CAM_DEV_POS_NONE)
2798				position_type = CAM_DEV_POS_PDRV;
2799		}
2800
2801		/*
2802		 * Note that we drop the SIM lock here, because the EDT
2803		 * traversal code needs to do its own locking.
2804		 */
2805		CAM_SIM_UNLOCK(xpt_path_sim(cdm->ccb_h.path));
2806		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2807		case CAM_DEV_POS_EDT:
2808			xptedtmatch(cdm);
2809			break;
2810		case CAM_DEV_POS_PDRV:
2811			xptperiphlistmatch(cdm);
2812			break;
2813		default:
2814			cdm->status = CAM_DEV_MATCH_ERROR;
2815			break;
2816		}
2817		CAM_SIM_LOCK(xpt_path_sim(cdm->ccb_h.path));
2818
2819		if (cdm->status == CAM_DEV_MATCH_ERROR)
2820			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2821		else
2822			start_ccb->ccb_h.status = CAM_REQ_CMP;
2823
2824		break;
2825	}
2826	case XPT_SASYNC_CB:
2827	{
2828		struct ccb_setasync *csa;
2829		struct async_node *cur_entry;
2830		struct async_list *async_head;
2831		u_int32_t added;
2832
2833		csa = &start_ccb->csa;
2834		added = csa->event_enable;
2835		async_head = &path->device->asyncs;
2836
2837		/*
2838		 * If there is already an entry for us, simply
2839		 * update it.
2840		 */
2841		cur_entry = SLIST_FIRST(async_head);
2842		while (cur_entry != NULL) {
2843			if ((cur_entry->callback_arg == csa->callback_arg)
2844			 && (cur_entry->callback == csa->callback))
2845				break;
2846			cur_entry = SLIST_NEXT(cur_entry, links);
2847		}
2848
2849		if (cur_entry != NULL) {
2850		 	/*
2851			 * If the request has no flags set,
2852			 * remove the entry.
2853			 */
2854			added &= ~cur_entry->event_enable;
2855			if (csa->event_enable == 0) {
2856				SLIST_REMOVE(async_head, cur_entry,
2857					     async_node, links);
2858				xpt_release_device(path->device);
2859				free(cur_entry, M_CAMXPT);
2860			} else {
2861				cur_entry->event_enable = csa->event_enable;
2862			}
2863			csa->event_enable = added;
2864		} else {
2865			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2866					   M_NOWAIT);
2867			if (cur_entry == NULL) {
2868				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2869				break;
2870			}
2871			cur_entry->event_enable = csa->event_enable;
2872			cur_entry->callback_arg = csa->callback_arg;
2873			cur_entry->callback = csa->callback;
2874			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2875			xpt_acquire_device(path->device);
2876		}
2877		start_ccb->ccb_h.status = CAM_REQ_CMP;
2878		break;
2879	}
2880	case XPT_REL_SIMQ:
2881	{
2882		struct ccb_relsim *crs;
2883		struct cam_ed *dev;
2884
2885		crs = &start_ccb->crs;
2886		dev = path->device;
2887		if (dev == NULL) {
2888
2889			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2890			break;
2891		}
2892
2893		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2894
2895			/* Don't ever go below one opening */
2896			if (crs->openings > 0) {
2897				xpt_dev_ccbq_resize(path, crs->openings);
2898				if (bootverbose) {
2899					xpt_print(path,
2900					    "number of openings is now %d\n",
2901					    crs->openings);
2902				}
2903			}
2904		}
2905
2906		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2907
2908			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2909
2910				/*
2911				 * Just extend the old timeout and decrement
2912				 * the freeze count so that a single timeout
2913				 * is sufficient for releasing the queue.
2914				 */
2915				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2916				callout_stop(&dev->callout);
2917			} else {
2918
2919				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2920			}
2921
2922			callout_reset(&dev->callout,
2923			    (crs->release_timeout * hz) / 1000,
2924			    xpt_release_devq_timeout, dev);
2925
2926			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2927
2928		}
2929
2930		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2931
2932			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2933				/*
2934				 * Decrement the freeze count so that a single
2935				 * completion is still sufficient to unfreeze
2936				 * the queue.
2937				 */
2938				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2939			} else {
2940
2941				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2942				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2943			}
2944		}
2945
2946		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2947
2948			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2949			 || (dev->ccbq.dev_active == 0)) {
2950
2951				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2952			} else {
2953
2954				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2955				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2956			}
2957		}
2958
2959		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
2960			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
2961		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
2962		start_ccb->ccb_h.status = CAM_REQ_CMP;
2963		break;
2964	}
2965	case XPT_DEBUG: {
2966		struct cam_path *oldpath;
2967		struct cam_sim *oldsim;
2968
2969		/* Check that all request bits are supported. */
2970		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
2971			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2972			break;
2973		}
2974
2975		cam_dflags = CAM_DEBUG_NONE;
2976		if (cam_dpath != NULL) {
2977			/* To release the old path we must hold proper lock. */
2978			oldpath = cam_dpath;
2979			cam_dpath = NULL;
2980			oldsim = xpt_path_sim(oldpath);
2981			CAM_SIM_UNLOCK(xpt_path_sim(start_ccb->ccb_h.path));
2982			CAM_SIM_LOCK(oldsim);
2983			xpt_free_path(oldpath);
2984			CAM_SIM_UNLOCK(oldsim);
2985			CAM_SIM_LOCK(xpt_path_sim(start_ccb->ccb_h.path));
2986		}
2987		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
2988			if (xpt_create_path(&cam_dpath, NULL,
2989					    start_ccb->ccb_h.path_id,
2990					    start_ccb->ccb_h.target_id,
2991					    start_ccb->ccb_h.target_lun) !=
2992					    CAM_REQ_CMP) {
2993				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2994			} else {
2995				cam_dflags = start_ccb->cdbg.flags;
2996				start_ccb->ccb_h.status = CAM_REQ_CMP;
2997				xpt_print(cam_dpath, "debugging flags now %x\n",
2998				    cam_dflags);
2999			}
3000		} else
3001			start_ccb->ccb_h.status = CAM_REQ_CMP;
3002		break;
3003	}
3004	case XPT_NOOP:
3005		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3006			xpt_freeze_devq(path, 1);
3007		start_ccb->ccb_h.status = CAM_REQ_CMP;
3008		break;
3009	default:
3010	case XPT_SDEV_TYPE:
3011	case XPT_TERM_IO:
3012	case XPT_ENG_INQ:
3013		/* XXX Implement */
3014		printf("%s: CCB type %#x not supported\n", __func__,
3015		       start_ccb->ccb_h.func_code);
3016		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3017		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3018			xpt_done(start_ccb);
3019		}
3020		break;
3021	}
3022}
3023
3024void
3025xpt_polled_action(union ccb *start_ccb)
3026{
3027	u_int32_t timeout;
3028	struct	  cam_sim *sim;
3029	struct	  cam_devq *devq;
3030	struct	  cam_ed *dev;
3031
3032
3033	timeout = start_ccb->ccb_h.timeout * 10;
3034	sim = start_ccb->ccb_h.path->bus->sim;
3035	devq = sim->devq;
3036	dev = start_ccb->ccb_h.path->device;
3037
3038	mtx_assert(sim->mtx, MA_OWNED);
3039
3040	/* Don't use ISR for this SIM while polling. */
3041	sim->flags |= CAM_SIM_POLLED;
3042
3043	/*
3044	 * Steal an opening so that no other queued requests
3045	 * can get it before us while we simulate interrupts.
3046	 */
3047	dev->ccbq.devq_openings--;
3048	dev->ccbq.dev_openings--;
3049
3050	while(((devq != NULL && devq->send_openings <= 0) ||
3051	   dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
3052		DELAY(100);
3053		(*(sim->sim_poll))(sim);
3054		camisr_runqueue(sim);
3055	}
3056
3057	dev->ccbq.devq_openings++;
3058	dev->ccbq.dev_openings++;
3059
3060	if (timeout != 0) {
3061		xpt_action(start_ccb);
3062		while(--timeout > 0) {
3063			(*(sim->sim_poll))(sim);
3064			camisr_runqueue(sim);
3065			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3066			    != CAM_REQ_INPROG)
3067				break;
3068			DELAY(100);
3069		}
3070		if (timeout == 0) {
3071			/*
3072			 * XXX Is it worth adding a sim_timeout entry
3073			 * point so we can attempt recovery?  If
3074			 * this is only used for dumps, I don't think
3075			 * it is.
3076			 */
3077			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3078		}
3079	} else {
3080		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3081	}
3082
3083	/* We will use CAM ISR for this SIM again. */
3084	sim->flags &= ~CAM_SIM_POLLED;
3085}
3086
3087/*
3088 * Schedule a peripheral driver to receive a ccb when it's
3089 * target device has space for more transactions.
3090 */
3091void
3092xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3093{
3094	struct cam_ed *device;
3095	int runq = 0;
3096
3097	mtx_assert(perph->sim->mtx, MA_OWNED);
3098
3099	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3100	device = perph->path->device;
3101	if (periph_is_queued(perph)) {
3102		/* Simply reorder based on new priority */
3103		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3104			  ("   change priority to %d\n", new_priority));
3105		if (new_priority < perph->pinfo.priority) {
3106			camq_change_priority(&device->drvq,
3107					     perph->pinfo.index,
3108					     new_priority);
3109			runq = 1;
3110		}
3111	} else {
3112		/* New entry on the queue */
3113		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3114			  ("   added periph to queue\n"));
3115		perph->pinfo.priority = new_priority;
3116		perph->pinfo.generation = ++device->drvq.generation;
3117		camq_insert(&device->drvq, &perph->pinfo);
3118		runq = 1;
3119	}
3120	if (runq != 0) {
3121		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3122			  ("   calling xpt_run_dev_allocq\n"));
3123		xpt_run_dev_allocq(device);
3124	}
3125}
3126
3127
3128/*
3129 * Schedule a device to run on a given queue.
3130 * If the device was inserted as a new entry on the queue,
3131 * return 1 meaning the device queue should be run. If we
3132 * were already queued, implying someone else has already
3133 * started the queue, return 0 so the caller doesn't attempt
3134 * to run the queue.
3135 */
3136int
3137xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3138		 u_int32_t new_priority)
3139{
3140	int retval;
3141	u_int32_t old_priority;
3142
3143	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3144
3145	old_priority = pinfo->priority;
3146
3147	/*
3148	 * Are we already queued?
3149	 */
3150	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3151		/* Simply reorder based on new priority */
3152		if (new_priority < old_priority) {
3153			camq_change_priority(queue, pinfo->index,
3154					     new_priority);
3155			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3156					("changed priority to %d\n",
3157					 new_priority));
3158			retval = 1;
3159		} else
3160			retval = 0;
3161	} else {
3162		/* New entry on the queue */
3163		if (new_priority < old_priority)
3164			pinfo->priority = new_priority;
3165
3166		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3167				("Inserting onto queue\n"));
3168		pinfo->generation = ++queue->generation;
3169		camq_insert(queue, pinfo);
3170		retval = 1;
3171	}
3172	return (retval);
3173}
3174
3175static void
3176xpt_run_dev_allocq(struct cam_ed *device)
3177{
3178	struct camq	*drvq;
3179
3180	if (device->ccbq.devq_allocating)
3181		return;
3182	device->ccbq.devq_allocating = 1;
3183	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq(%p)\n", device));
3184	drvq = &device->drvq;
3185	while ((drvq->entries > 0) &&
3186	    (device->ccbq.devq_openings > 0 ||
3187	     CAMQ_GET_PRIO(drvq) <= CAM_PRIORITY_OOB) &&
3188	    (device->ccbq.queue.qfrozen_cnt == 0)) {
3189		union	ccb *work_ccb;
3190		struct	cam_periph *drv;
3191
3192		KASSERT(drvq->entries > 0, ("xpt_run_dev_allocq: "
3193		    "Device on queue without any work to do"));
3194		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3195			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3196			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3197				      drv->pinfo.priority);
3198			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3199					("calling periph start\n"));
3200			drv->periph_start(drv, work_ccb);
3201		} else {
3202			/*
3203			 * Malloc failure in alloc_ccb
3204			 */
3205			/*
3206			 * XXX add us to a list to be run from free_ccb
3207			 * if we don't have any ccbs active on this
3208			 * device queue otherwise we may never get run
3209			 * again.
3210			 */
3211			break;
3212		}
3213	}
3214	device->ccbq.devq_allocating = 0;
3215}
3216
3217static void
3218xpt_run_devq(struct cam_devq *devq)
3219{
3220	char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
3221
3222	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3223
3224	devq->send_queue.qfrozen_cnt++;
3225	while ((devq->send_queue.entries > 0)
3226	    && (devq->send_openings > 0)
3227	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3228		struct	cam_ed_qinfo *qinfo;
3229		struct	cam_ed *device;
3230		union ccb *work_ccb;
3231		struct	cam_sim *sim;
3232
3233		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3234							   CAMQ_HEAD);
3235		device = qinfo->device;
3236		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3237				("running device %p\n", device));
3238
3239		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3240		if (work_ccb == NULL) {
3241			printf("device on run queue with no ccbs???\n");
3242			continue;
3243		}
3244
3245		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3246
3247			mtx_lock(&xsoftc.xpt_lock);
3248		 	if (xsoftc.num_highpower <= 0) {
3249				/*
3250				 * We got a high power command, but we
3251				 * don't have any available slots.  Freeze
3252				 * the device queue until we have a slot
3253				 * available.
3254				 */
3255				xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3256				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3257						   work_ccb->ccb_h.path->device,
3258						   highpowerq_entry);
3259
3260				mtx_unlock(&xsoftc.xpt_lock);
3261				continue;
3262			} else {
3263				/*
3264				 * Consume a high power slot while
3265				 * this ccb runs.
3266				 */
3267				xsoftc.num_highpower--;
3268			}
3269			mtx_unlock(&xsoftc.xpt_lock);
3270		}
3271		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3272		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3273
3274		devq->send_openings--;
3275		devq->send_active++;
3276
3277		xpt_schedule_devq(devq, device);
3278
3279		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3280			/*
3281			 * The client wants to freeze the queue
3282			 * after this CCB is sent.
3283			 */
3284			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3285		}
3286
3287		/* In Target mode, the peripheral driver knows best... */
3288		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3289			if ((device->inq_flags & SID_CmdQue) != 0
3290			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3291				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3292			else
3293				/*
3294				 * Clear this in case of a retried CCB that
3295				 * failed due to a rejected tag.
3296				 */
3297				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3298		}
3299
3300		switch (work_ccb->ccb_h.func_code) {
3301		case XPT_SCSI_IO:
3302			CAM_DEBUG(work_ccb->ccb_h.path,
3303			    CAM_DEBUG_CDB,("%s. CDB: %s\n",
3304			     scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0],
3305					  &device->inq_data),
3306			     scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes,
3307					     cdb_str, sizeof(cdb_str))));
3308			break;
3309		case XPT_ATA_IO:
3310			CAM_DEBUG(work_ccb->ccb_h.path,
3311			    CAM_DEBUG_CDB,("%s. ACB: %s\n",
3312			     ata_op_string(&work_ccb->ataio.cmd),
3313			     ata_cmd_string(&work_ccb->ataio.cmd,
3314					    cdb_str, sizeof(cdb_str))));
3315			break;
3316		default:
3317			break;
3318		}
3319
3320		/*
3321		 * Device queues can be shared among multiple sim instances
3322		 * that reside on different busses.  Use the SIM in the queue
3323		 * CCB's path, rather than the one in the bus that was passed
3324		 * into this function.
3325		 */
3326		sim = work_ccb->ccb_h.path->bus->sim;
3327		(*(sim->sim_action))(sim, work_ccb);
3328	}
3329	devq->send_queue.qfrozen_cnt--;
3330}
3331
3332/*
3333 * This function merges stuff from the slave ccb into the master ccb, while
3334 * keeping important fields in the master ccb constant.
3335 */
3336void
3337xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3338{
3339
3340	/*
3341	 * Pull fields that are valid for peripheral drivers to set
3342	 * into the master CCB along with the CCB "payload".
3343	 */
3344	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3345	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3346	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3347	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3348	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3349	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3350}
3351
3352void
3353xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3354{
3355
3356	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3357	ccb_h->pinfo.priority = priority;
3358	ccb_h->path = path;
3359	ccb_h->path_id = path->bus->path_id;
3360	if (path->target)
3361		ccb_h->target_id = path->target->target_id;
3362	else
3363		ccb_h->target_id = CAM_TARGET_WILDCARD;
3364	if (path->device) {
3365		ccb_h->target_lun = path->device->lun_id;
3366		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3367	} else {
3368		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3369	}
3370	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3371	ccb_h->flags = 0;
3372	ccb_h->xflags = 0;
3373}
3374
3375/* Path manipulation functions */
3376cam_status
3377xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3378		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3379{
3380	struct	   cam_path *path;
3381	cam_status status;
3382
3383	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3384
3385	if (path == NULL) {
3386		status = CAM_RESRC_UNAVAIL;
3387		return(status);
3388	}
3389	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3390	if (status != CAM_REQ_CMP) {
3391		free(path, M_CAMPATH);
3392		path = NULL;
3393	}
3394	*new_path_ptr = path;
3395	return (status);
3396}
3397
3398cam_status
3399xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3400			 struct cam_periph *periph, path_id_t path_id,
3401			 target_id_t target_id, lun_id_t lun_id)
3402{
3403	struct	   cam_path *path;
3404	struct	   cam_eb *bus = NULL;
3405	cam_status status;
3406
3407	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_WAITOK);
3408
3409	bus = xpt_find_bus(path_id);
3410	if (bus != NULL)
3411		CAM_SIM_LOCK(bus->sim);
3412	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3413	if (bus != NULL) {
3414		CAM_SIM_UNLOCK(bus->sim);
3415		xpt_release_bus(bus);
3416	}
3417	if (status != CAM_REQ_CMP) {
3418		free(path, M_CAMPATH);
3419		path = NULL;
3420	}
3421	*new_path_ptr = path;
3422	return (status);
3423}
3424
3425cam_status
3426xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3427		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3428{
3429	struct	     cam_eb *bus;
3430	struct	     cam_et *target;
3431	struct	     cam_ed *device;
3432	cam_status   status;
3433
3434	status = CAM_REQ_CMP;	/* Completed without error */
3435	target = NULL;		/* Wildcarded */
3436	device = NULL;		/* Wildcarded */
3437
3438	/*
3439	 * We will potentially modify the EDT, so block interrupts
3440	 * that may attempt to create cam paths.
3441	 */
3442	bus = xpt_find_bus(path_id);
3443	if (bus == NULL) {
3444		status = CAM_PATH_INVALID;
3445	} else {
3446		target = xpt_find_target(bus, target_id);
3447		if (target == NULL) {
3448			/* Create one */
3449			struct cam_et *new_target;
3450
3451			new_target = xpt_alloc_target(bus, target_id);
3452			if (new_target == NULL) {
3453				status = CAM_RESRC_UNAVAIL;
3454			} else {
3455				target = new_target;
3456			}
3457		}
3458		if (target != NULL) {
3459			device = xpt_find_device(target, lun_id);
3460			if (device == NULL) {
3461				/* Create one */
3462				struct cam_ed *new_device;
3463
3464				new_device =
3465				    (*(bus->xport->alloc_device))(bus,
3466								      target,
3467								      lun_id);
3468				if (new_device == NULL) {
3469					status = CAM_RESRC_UNAVAIL;
3470				} else {
3471					device = new_device;
3472				}
3473			}
3474		}
3475	}
3476
3477	/*
3478	 * Only touch the user's data if we are successful.
3479	 */
3480	if (status == CAM_REQ_CMP) {
3481		new_path->periph = perph;
3482		new_path->bus = bus;
3483		new_path->target = target;
3484		new_path->device = device;
3485		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3486	} else {
3487		if (device != NULL)
3488			xpt_release_device(device);
3489		if (target != NULL)
3490			xpt_release_target(target);
3491		if (bus != NULL)
3492			xpt_release_bus(bus);
3493	}
3494	return (status);
3495}
3496
3497void
3498xpt_release_path(struct cam_path *path)
3499{
3500	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3501	if (path->device != NULL) {
3502		xpt_release_device(path->device);
3503		path->device = NULL;
3504	}
3505	if (path->target != NULL) {
3506		xpt_release_target(path->target);
3507		path->target = NULL;
3508	}
3509	if (path->bus != NULL) {
3510		xpt_release_bus(path->bus);
3511		path->bus = NULL;
3512	}
3513}
3514
3515void
3516xpt_free_path(struct cam_path *path)
3517{
3518
3519	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3520	xpt_release_path(path);
3521	free(path, M_CAMPATH);
3522}
3523
3524void
3525xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3526    uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3527{
3528
3529	xpt_lock_buses();
3530	if (bus_ref) {
3531		if (path->bus)
3532			*bus_ref = path->bus->refcount;
3533		else
3534			*bus_ref = 0;
3535	}
3536	if (periph_ref) {
3537		if (path->periph)
3538			*periph_ref = path->periph->refcount;
3539		else
3540			*periph_ref = 0;
3541	}
3542	xpt_unlock_buses();
3543	if (target_ref) {
3544		if (path->target)
3545			*target_ref = path->target->refcount;
3546		else
3547			*target_ref = 0;
3548	}
3549	if (device_ref) {
3550		if (path->device)
3551			*device_ref = path->device->refcount;
3552		else
3553			*device_ref = 0;
3554	}
3555}
3556
3557/*
3558 * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3559 * in path1, 2 for match with wildcards in path2.
3560 */
3561int
3562xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3563{
3564	int retval = 0;
3565
3566	if (path1->bus != path2->bus) {
3567		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3568			retval = 1;
3569		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3570			retval = 2;
3571		else
3572			return (-1);
3573	}
3574	if (path1->target != path2->target) {
3575		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3576			if (retval == 0)
3577				retval = 1;
3578		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3579			retval = 2;
3580		else
3581			return (-1);
3582	}
3583	if (path1->device != path2->device) {
3584		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3585			if (retval == 0)
3586				retval = 1;
3587		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3588			retval = 2;
3589		else
3590			return (-1);
3591	}
3592	return (retval);
3593}
3594
3595int
3596xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3597{
3598	int retval = 0;
3599
3600	if (path->bus != dev->target->bus) {
3601		if (path->bus->path_id == CAM_BUS_WILDCARD)
3602			retval = 1;
3603		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3604			retval = 2;
3605		else
3606			return (-1);
3607	}
3608	if (path->target != dev->target) {
3609		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3610			if (retval == 0)
3611				retval = 1;
3612		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3613			retval = 2;
3614		else
3615			return (-1);
3616	}
3617	if (path->device != dev) {
3618		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3619			if (retval == 0)
3620				retval = 1;
3621		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3622			retval = 2;
3623		else
3624			return (-1);
3625	}
3626	return (retval);
3627}
3628
3629void
3630xpt_print_path(struct cam_path *path)
3631{
3632
3633	if (path == NULL)
3634		printf("(nopath): ");
3635	else {
3636		if (path->periph != NULL)
3637			printf("(%s%d:", path->periph->periph_name,
3638			       path->periph->unit_number);
3639		else
3640			printf("(noperiph:");
3641
3642		if (path->bus != NULL)
3643			printf("%s%d:%d:", path->bus->sim->sim_name,
3644			       path->bus->sim->unit_number,
3645			       path->bus->sim->bus_id);
3646		else
3647			printf("nobus:");
3648
3649		if (path->target != NULL)
3650			printf("%d:", path->target->target_id);
3651		else
3652			printf("X:");
3653
3654		if (path->device != NULL)
3655			printf("%d): ", path->device->lun_id);
3656		else
3657			printf("X): ");
3658	}
3659}
3660
3661void
3662xpt_print_device(struct cam_ed *device)
3663{
3664
3665	if (device == NULL)
3666		printf("(nopath): ");
3667	else {
3668		printf("(noperiph:%s%d:%d:%d:%d): ", device->sim->sim_name,
3669		       device->sim->unit_number,
3670		       device->sim->bus_id,
3671		       device->target->target_id,
3672		       device->lun_id);
3673	}
3674}
3675
3676void
3677xpt_print(struct cam_path *path, const char *fmt, ...)
3678{
3679	va_list ap;
3680	xpt_print_path(path);
3681	va_start(ap, fmt);
3682	vprintf(fmt, ap);
3683	va_end(ap);
3684}
3685
3686int
3687xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3688{
3689	struct sbuf sb;
3690
3691#ifdef INVARIANTS
3692	if (path != NULL && path->bus != NULL)
3693		mtx_assert(path->bus->sim->mtx, MA_OWNED);
3694#endif
3695
3696	sbuf_new(&sb, str, str_len, 0);
3697
3698	if (path == NULL)
3699		sbuf_printf(&sb, "(nopath): ");
3700	else {
3701		if (path->periph != NULL)
3702			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3703				    path->periph->unit_number);
3704		else
3705			sbuf_printf(&sb, "(noperiph:");
3706
3707		if (path->bus != NULL)
3708			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3709				    path->bus->sim->unit_number,
3710				    path->bus->sim->bus_id);
3711		else
3712			sbuf_printf(&sb, "nobus:");
3713
3714		if (path->target != NULL)
3715			sbuf_printf(&sb, "%d:", path->target->target_id);
3716		else
3717			sbuf_printf(&sb, "X:");
3718
3719		if (path->device != NULL)
3720			sbuf_printf(&sb, "%d): ", path->device->lun_id);
3721		else
3722			sbuf_printf(&sb, "X): ");
3723	}
3724	sbuf_finish(&sb);
3725
3726	return(sbuf_len(&sb));
3727}
3728
3729path_id_t
3730xpt_path_path_id(struct cam_path *path)
3731{
3732	return(path->bus->path_id);
3733}
3734
3735target_id_t
3736xpt_path_target_id(struct cam_path *path)
3737{
3738	if (path->target != NULL)
3739		return (path->target->target_id);
3740	else
3741		return (CAM_TARGET_WILDCARD);
3742}
3743
3744lun_id_t
3745xpt_path_lun_id(struct cam_path *path)
3746{
3747	if (path->device != NULL)
3748		return (path->device->lun_id);
3749	else
3750		return (CAM_LUN_WILDCARD);
3751}
3752
3753struct cam_sim *
3754xpt_path_sim(struct cam_path *path)
3755{
3756
3757	return (path->bus->sim);
3758}
3759
3760struct cam_periph*
3761xpt_path_periph(struct cam_path *path)
3762{
3763	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3764
3765	return (path->periph);
3766}
3767
3768int
3769xpt_path_legacy_ata_id(struct cam_path *path)
3770{
3771	struct cam_eb *bus;
3772	int bus_id;
3773
3774	if ((strcmp(path->bus->sim->sim_name, "ata") != 0) &&
3775	    strcmp(path->bus->sim->sim_name, "ahcich") != 0 &&
3776	    strcmp(path->bus->sim->sim_name, "mvsch") != 0 &&
3777	    strcmp(path->bus->sim->sim_name, "siisch") != 0)
3778		return (-1);
3779
3780	if (strcmp(path->bus->sim->sim_name, "ata") == 0 &&
3781	    path->bus->sim->unit_number < 2) {
3782		bus_id = path->bus->sim->unit_number;
3783	} else {
3784		bus_id = 2;
3785		xpt_lock_buses();
3786		TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
3787			if (bus == path->bus)
3788				break;
3789			if ((strcmp(bus->sim->sim_name, "ata") == 0 &&
3790			     bus->sim->unit_number >= 2) ||
3791			    strcmp(bus->sim->sim_name, "ahcich") == 0 ||
3792			    strcmp(bus->sim->sim_name, "mvsch") == 0 ||
3793			    strcmp(bus->sim->sim_name, "siisch") == 0)
3794				bus_id++;
3795		}
3796		xpt_unlock_buses();
3797	}
3798	if (path->target != NULL) {
3799		if (path->target->target_id < 2)
3800			return (bus_id * 2 + path->target->target_id);
3801		else
3802			return (-1);
3803	} else
3804		return (bus_id * 2);
3805}
3806
3807/*
3808 * Release a CAM control block for the caller.  Remit the cost of the structure
3809 * to the device referenced by the path.  If the this device had no 'credits'
3810 * and peripheral drivers have registered async callbacks for this notification
3811 * call them now.
3812 */
3813void
3814xpt_release_ccb(union ccb *free_ccb)
3815{
3816	struct	 cam_path *path;
3817	struct	 cam_ed *device;
3818	struct	 cam_eb *bus;
3819	struct   cam_sim *sim;
3820
3821	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3822	path = free_ccb->ccb_h.path;
3823	device = path->device;
3824	bus = path->bus;
3825	sim = bus->sim;
3826
3827	mtx_assert(sim->mtx, MA_OWNED);
3828
3829	cam_ccbq_release_opening(&device->ccbq);
3830	if (sim->ccb_count > sim->max_ccbs) {
3831		xpt_free_ccb(free_ccb);
3832		sim->ccb_count--;
3833	} else {
3834		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
3835		    xpt_links.sle);
3836	}
3837	xpt_run_dev_allocq(device);
3838}
3839
3840/* Functions accessed by SIM drivers */
3841
3842static struct xpt_xport xport_default = {
3843	.alloc_device = xpt_alloc_device_default,
3844	.action = xpt_action_default,
3845	.async = xpt_dev_async_default,
3846};
3847
3848/*
3849 * A sim structure, listing the SIM entry points and instance
3850 * identification info is passed to xpt_bus_register to hook the SIM
3851 * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3852 * for this new bus and places it in the array of busses and assigns
3853 * it a path_id.  The path_id may be influenced by "hard wiring"
3854 * information specified by the user.  Once interrupt services are
3855 * available, the bus will be probed.
3856 */
3857int32_t
3858xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3859{
3860	struct cam_eb *new_bus;
3861	struct cam_eb *old_bus;
3862	struct ccb_pathinq cpi;
3863	struct cam_path *path;
3864	cam_status status;
3865
3866	mtx_assert(sim->mtx, MA_OWNED);
3867
3868	sim->bus_id = bus;
3869	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3870					  M_CAMXPT, M_NOWAIT);
3871	if (new_bus == NULL) {
3872		/* Couldn't satisfy request */
3873		return (CAM_RESRC_UNAVAIL);
3874	}
3875
3876	TAILQ_INIT(&new_bus->et_entries);
3877	cam_sim_hold(sim);
3878	new_bus->sim = sim;
3879	timevalclear(&new_bus->last_reset);
3880	new_bus->flags = 0;
3881	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3882	new_bus->generation = 0;
3883
3884	xpt_lock_buses();
3885	sim->path_id = new_bus->path_id =
3886	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3887	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3888	while (old_bus != NULL
3889	    && old_bus->path_id < new_bus->path_id)
3890		old_bus = TAILQ_NEXT(old_bus, links);
3891	if (old_bus != NULL)
3892		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3893	else
3894		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3895	xsoftc.bus_generation++;
3896	xpt_unlock_buses();
3897
3898	/*
3899	 * Set a default transport so that a PATH_INQ can be issued to
3900	 * the SIM.  This will then allow for probing and attaching of
3901	 * a more appropriate transport.
3902	 */
3903	new_bus->xport = &xport_default;
3904
3905	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3906				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3907	if (status != CAM_REQ_CMP) {
3908		xpt_release_bus(new_bus);
3909		free(path, M_CAMXPT);
3910		return (CAM_RESRC_UNAVAIL);
3911	}
3912
3913	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3914	cpi.ccb_h.func_code = XPT_PATH_INQ;
3915	xpt_action((union ccb *)&cpi);
3916
3917	if (cpi.ccb_h.status == CAM_REQ_CMP) {
3918		switch (cpi.transport) {
3919		case XPORT_SPI:
3920		case XPORT_SAS:
3921		case XPORT_FC:
3922		case XPORT_USB:
3923		case XPORT_ISCSI:
3924		case XPORT_SRP:
3925		case XPORT_PPB:
3926			new_bus->xport = scsi_get_xport();
3927			break;
3928		case XPORT_ATA:
3929		case XPORT_SATA:
3930			new_bus->xport = ata_get_xport();
3931			break;
3932		default:
3933			new_bus->xport = &xport_default;
3934			break;
3935		}
3936	}
3937
3938	/* Notify interested parties */
3939	if (sim->path_id != CAM_XPT_PATH_ID) {
3940
3941		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3942		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
3943			union	ccb *scan_ccb;
3944
3945			/* Initiate bus rescan. */
3946			scan_ccb = xpt_alloc_ccb_nowait();
3947			if (scan_ccb != NULL) {
3948				scan_ccb->ccb_h.path = path;
3949				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3950				scan_ccb->crcn.flags = 0;
3951				xpt_rescan(scan_ccb);
3952			} else
3953				xpt_print(path,
3954					  "Can't allocate CCB to scan bus\n");
3955		} else
3956			xpt_free_path(path);
3957	} else
3958		xpt_free_path(path);
3959	return (CAM_SUCCESS);
3960}
3961
3962int32_t
3963xpt_bus_deregister(path_id_t pathid)
3964{
3965	struct cam_path bus_path;
3966	cam_status status;
3967
3968	status = xpt_compile_path(&bus_path, NULL, pathid,
3969				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3970	if (status != CAM_REQ_CMP)
3971		return (status);
3972
3973	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3974	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3975
3976	/* Release the reference count held while registered. */
3977	xpt_release_bus(bus_path.bus);
3978	xpt_release_path(&bus_path);
3979
3980	return (CAM_REQ_CMP);
3981}
3982
3983static path_id_t
3984xptnextfreepathid(void)
3985{
3986	struct cam_eb *bus;
3987	path_id_t pathid;
3988	const char *strval;
3989
3990	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
3991	pathid = 0;
3992	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3993retry:
3994	/* Find an unoccupied pathid */
3995	while (bus != NULL && bus->path_id <= pathid) {
3996		if (bus->path_id == pathid)
3997			pathid++;
3998		bus = TAILQ_NEXT(bus, links);
3999	}
4000
4001	/*
4002	 * Ensure that this pathid is not reserved for
4003	 * a bus that may be registered in the future.
4004	 */
4005	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4006		++pathid;
4007		/* Start the search over */
4008		goto retry;
4009	}
4010	return (pathid);
4011}
4012
4013static path_id_t
4014xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4015{
4016	path_id_t pathid;
4017	int i, dunit, val;
4018	char buf[32];
4019	const char *dname;
4020
4021	pathid = CAM_XPT_PATH_ID;
4022	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4023	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4024		return (pathid);
4025	i = 0;
4026	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4027		if (strcmp(dname, "scbus")) {
4028			/* Avoid a bit of foot shooting. */
4029			continue;
4030		}
4031		if (dunit < 0)		/* unwired?! */
4032			continue;
4033		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4034			if (sim_bus == val) {
4035				pathid = dunit;
4036				break;
4037			}
4038		} else if (sim_bus == 0) {
4039			/* Unspecified matches bus 0 */
4040			pathid = dunit;
4041			break;
4042		} else {
4043			printf("Ambiguous scbus configuration for %s%d "
4044			       "bus %d, cannot wire down.  The kernel "
4045			       "config entry for scbus%d should "
4046			       "specify a controller bus.\n"
4047			       "Scbus will be assigned dynamically.\n",
4048			       sim_name, sim_unit, sim_bus, dunit);
4049			break;
4050		}
4051	}
4052
4053	if (pathid == CAM_XPT_PATH_ID)
4054		pathid = xptnextfreepathid();
4055	return (pathid);
4056}
4057
4058static const char *
4059xpt_async_string(u_int32_t async_code)
4060{
4061
4062	switch (async_code) {
4063	case AC_BUS_RESET: return ("AC_BUS_RESET");
4064	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4065	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4066	case AC_SENT_BDR: return ("AC_SENT_BDR");
4067	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4068	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4069	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4070	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4071	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4072	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4073	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4074	case AC_CONTRACT: return ("AC_CONTRACT");
4075	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4076	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4077	}
4078	return ("AC_UNKNOWN");
4079}
4080
4081void
4082xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4083{
4084	struct cam_eb *bus;
4085	struct cam_et *target, *next_target;
4086	struct cam_ed *device, *next_device;
4087
4088	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4089	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4090	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4091
4092	/*
4093	 * Most async events come from a CAM interrupt context.  In
4094	 * a few cases, the error recovery code at the peripheral layer,
4095	 * which may run from our SWI or a process context, may signal
4096	 * deferred events with a call to xpt_async.
4097	 */
4098
4099	bus = path->bus;
4100
4101	if (async_code == AC_BUS_RESET) {
4102		/* Update our notion of when the last reset occurred */
4103		microtime(&bus->last_reset);
4104	}
4105
4106	for (target = TAILQ_FIRST(&bus->et_entries);
4107	     target != NULL;
4108	     target = next_target) {
4109
4110		next_target = TAILQ_NEXT(target, links);
4111
4112		if (path->target != target
4113		 && path->target->target_id != CAM_TARGET_WILDCARD
4114		 && target->target_id != CAM_TARGET_WILDCARD)
4115			continue;
4116
4117		if (async_code == AC_SENT_BDR) {
4118			/* Update our notion of when the last reset occurred */
4119			microtime(&path->target->last_reset);
4120		}
4121
4122		for (device = TAILQ_FIRST(&target->ed_entries);
4123		     device != NULL;
4124		     device = next_device) {
4125
4126			next_device = TAILQ_NEXT(device, links);
4127
4128			if (path->device != device
4129			 && path->device->lun_id != CAM_LUN_WILDCARD
4130			 && device->lun_id != CAM_LUN_WILDCARD)
4131				continue;
4132			/*
4133			 * The async callback could free the device.
4134			 * If it is a broadcast async, it doesn't hold
4135			 * device reference, so take our own reference.
4136			 */
4137			xpt_acquire_device(device);
4138			(*(bus->xport->async))(async_code, bus,
4139					       target, device,
4140					       async_arg);
4141
4142			xpt_async_bcast(&device->asyncs, async_code,
4143					path, async_arg);
4144			xpt_release_device(device);
4145		}
4146	}
4147
4148	/*
4149	 * If this wasn't a fully wildcarded async, tell all
4150	 * clients that want all async events.
4151	 */
4152	if (bus != xpt_periph->path->bus)
4153		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4154				path, async_arg);
4155}
4156
4157static void
4158xpt_async_bcast(struct async_list *async_head,
4159		u_int32_t async_code,
4160		struct cam_path *path, void *async_arg)
4161{
4162	struct async_node *cur_entry;
4163
4164	cur_entry = SLIST_FIRST(async_head);
4165	while (cur_entry != NULL) {
4166		struct async_node *next_entry;
4167		/*
4168		 * Grab the next list entry before we call the current
4169		 * entry's callback.  This is because the callback function
4170		 * can delete its async callback entry.
4171		 */
4172		next_entry = SLIST_NEXT(cur_entry, links);
4173		if ((cur_entry->event_enable & async_code) != 0)
4174			cur_entry->callback(cur_entry->callback_arg,
4175					    async_code, path,
4176					    async_arg);
4177		cur_entry = next_entry;
4178	}
4179}
4180
4181static void
4182xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4183		      struct cam_et *target, struct cam_ed *device,
4184		      void *async_arg)
4185{
4186	printf("%s called\n", __func__);
4187}
4188
4189u_int32_t
4190xpt_freeze_devq(struct cam_path *path, u_int count)
4191{
4192	struct cam_ed *dev = path->device;
4193
4194	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4195	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq() %u->%u\n",
4196	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4197	dev->ccbq.queue.qfrozen_cnt += count;
4198	/* Remove frozen device from sendq. */
4199	if (device_is_queued(dev)) {
4200		camq_remove(&dev->sim->devq->send_queue,
4201		    dev->devq_entry.pinfo.index);
4202	}
4203	return (dev->ccbq.queue.qfrozen_cnt);
4204}
4205
4206u_int32_t
4207xpt_freeze_simq(struct cam_sim *sim, u_int count)
4208{
4209
4210	mtx_assert(sim->mtx, MA_OWNED);
4211	sim->devq->send_queue.qfrozen_cnt += count;
4212	return (sim->devq->send_queue.qfrozen_cnt);
4213}
4214
4215static void
4216xpt_release_devq_timeout(void *arg)
4217{
4218	struct cam_ed *device;
4219
4220	device = (struct cam_ed *)arg;
4221	CAM_DEBUG_DEV(device, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4222	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4223}
4224
4225void
4226xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4227{
4228
4229	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4230	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4231	    count, run_queue));
4232	xpt_release_devq_device(path->device, count, run_queue);
4233}
4234
4235void
4236xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4237{
4238
4239	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4240	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4241	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4242	if (count > dev->ccbq.queue.qfrozen_cnt) {
4243#ifdef INVARIANTS
4244		printf("xpt_release_devq(): requested %u > present %u\n",
4245		    count, dev->ccbq.queue.qfrozen_cnt);
4246#endif
4247		count = dev->ccbq.queue.qfrozen_cnt;
4248	}
4249	dev->ccbq.queue.qfrozen_cnt -= count;
4250	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4251		/*
4252		 * No longer need to wait for a successful
4253		 * command completion.
4254		 */
4255		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4256		/*
4257		 * Remove any timeouts that might be scheduled
4258		 * to release this queue.
4259		 */
4260		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4261			callout_stop(&dev->callout);
4262			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4263		}
4264		xpt_run_dev_allocq(dev);
4265		if (run_queue == 0)
4266			return;
4267		/*
4268		 * Now that we are unfrozen schedule the
4269		 * device so any pending transactions are
4270		 * run.
4271		 */
4272		if (xpt_schedule_devq(dev->sim->devq, dev))
4273			xpt_run_devq(dev->sim->devq);
4274	}
4275}
4276
4277void
4278xpt_release_simq(struct cam_sim *sim, int run_queue)
4279{
4280	struct	camq *sendq;
4281
4282	mtx_assert(sim->mtx, MA_OWNED);
4283	sendq = &(sim->devq->send_queue);
4284	if (sendq->qfrozen_cnt <= 0) {
4285#ifdef INVARIANTS
4286		printf("xpt_release_simq: requested 1 > present %u\n",
4287		    sendq->qfrozen_cnt);
4288#endif
4289	} else
4290		sendq->qfrozen_cnt--;
4291	if (sendq->qfrozen_cnt == 0) {
4292		/*
4293		 * If there is a timeout scheduled to release this
4294		 * sim queue, remove it.  The queue frozen count is
4295		 * already at 0.
4296		 */
4297		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4298			callout_stop(&sim->callout);
4299			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4300		}
4301		if (run_queue) {
4302			/*
4303			 * Now that we are unfrozen run the send queue.
4304			 */
4305			xpt_run_devq(sim->devq);
4306		}
4307	}
4308}
4309
4310/*
4311 * XXX Appears to be unused.
4312 */
4313static void
4314xpt_release_simq_timeout(void *arg)
4315{
4316	struct cam_sim *sim;
4317
4318	sim = (struct cam_sim *)arg;
4319	xpt_release_simq(sim, /* run_queue */ TRUE);
4320}
4321
4322void
4323xpt_done(union ccb *done_ccb)
4324{
4325	struct cam_sim *sim;
4326	int	first;
4327
4328	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4329	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4330		/*
4331		 * Queue up the request for handling by our SWI handler
4332		 * any of the "non-immediate" type of ccbs.
4333		 */
4334		sim = done_ccb->ccb_h.path->bus->sim;
4335		TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4336		    sim_links.tqe);
4337		done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4338		if ((sim->flags & (CAM_SIM_ON_DONEQ | CAM_SIM_POLLED |
4339		    CAM_SIM_BATCH)) == 0) {
4340			mtx_lock(&cam_simq_lock);
4341			first = TAILQ_EMPTY(&cam_simq);
4342			TAILQ_INSERT_TAIL(&cam_simq, sim, links);
4343			mtx_unlock(&cam_simq_lock);
4344			sim->flags |= CAM_SIM_ON_DONEQ;
4345			if (first)
4346				swi_sched(cambio_ih, 0);
4347		}
4348	}
4349}
4350
4351void
4352xpt_batch_start(struct cam_sim *sim)
4353{
4354
4355	KASSERT((sim->flags & CAM_SIM_BATCH) == 0, ("Batch flag already set"));
4356	sim->flags |= CAM_SIM_BATCH;
4357}
4358
4359void
4360xpt_batch_done(struct cam_sim *sim)
4361{
4362
4363	KASSERT((sim->flags & CAM_SIM_BATCH) != 0, ("Batch flag was not set"));
4364	sim->flags &= ~CAM_SIM_BATCH;
4365	if (!TAILQ_EMPTY(&sim->sim_doneq) &&
4366	    (sim->flags & CAM_SIM_ON_DONEQ) == 0)
4367		camisr_runqueue(sim);
4368}
4369
4370union ccb *
4371xpt_alloc_ccb()
4372{
4373	union ccb *new_ccb;
4374
4375	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4376	return (new_ccb);
4377}
4378
4379union ccb *
4380xpt_alloc_ccb_nowait()
4381{
4382	union ccb *new_ccb;
4383
4384	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4385	return (new_ccb);
4386}
4387
4388void
4389xpt_free_ccb(union ccb *free_ccb)
4390{
4391	free(free_ccb, M_CAMCCB);
4392}
4393
4394
4395
4396/* Private XPT functions */
4397
4398/*
4399 * Get a CAM control block for the caller. Charge the structure to the device
4400 * referenced by the path.  If the this device has no 'credits' then the
4401 * device already has the maximum number of outstanding operations under way
4402 * and we return NULL. If we don't have sufficient resources to allocate more
4403 * ccbs, we also return NULL.
4404 */
4405static union ccb *
4406xpt_get_ccb(struct cam_ed *device)
4407{
4408	union ccb *new_ccb;
4409	struct cam_sim *sim;
4410
4411	sim = device->sim;
4412	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4413		new_ccb = xpt_alloc_ccb_nowait();
4414                if (new_ccb == NULL) {
4415			return (NULL);
4416		}
4417		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4418				  xpt_links.sle);
4419		sim->ccb_count++;
4420	}
4421	cam_ccbq_take_opening(&device->ccbq);
4422	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4423	return (new_ccb);
4424}
4425
4426static void
4427xpt_release_bus(struct cam_eb *bus)
4428{
4429
4430	xpt_lock_buses();
4431	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4432	if (--bus->refcount > 0) {
4433		xpt_unlock_buses();
4434		return;
4435	}
4436	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4437	    ("refcount is zero, but target list is not empty"));
4438	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4439	xsoftc.bus_generation++;
4440	xpt_unlock_buses();
4441	cam_sim_release(bus->sim);
4442	free(bus, M_CAMXPT);
4443}
4444
4445static struct cam_et *
4446xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4447{
4448	struct cam_et *cur_target, *target;
4449
4450	mtx_assert(bus->sim->mtx, MA_OWNED);
4451	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4452					 M_NOWAIT|M_ZERO);
4453	if (target == NULL)
4454		return (NULL);
4455
4456	TAILQ_INIT(&target->ed_entries);
4457	target->bus = bus;
4458	target->target_id = target_id;
4459	target->refcount = 1;
4460	target->generation = 0;
4461	target->luns = NULL;
4462	timevalclear(&target->last_reset);
4463	/*
4464	 * Hold a reference to our parent bus so it
4465	 * will not go away before we do.
4466	 */
4467	xpt_lock_buses();
4468	bus->refcount++;
4469	xpt_unlock_buses();
4470
4471	/* Insertion sort into our bus's target list */
4472	cur_target = TAILQ_FIRST(&bus->et_entries);
4473	while (cur_target != NULL && cur_target->target_id < target_id)
4474		cur_target = TAILQ_NEXT(cur_target, links);
4475	if (cur_target != NULL) {
4476		TAILQ_INSERT_BEFORE(cur_target, target, links);
4477	} else {
4478		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4479	}
4480	bus->generation++;
4481	return (target);
4482}
4483
4484static void
4485xpt_release_target(struct cam_et *target)
4486{
4487
4488	mtx_assert(target->bus->sim->mtx, MA_OWNED);
4489	if (--target->refcount > 0)
4490		return;
4491	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4492	    ("refcount is zero, but device list is not empty"));
4493	TAILQ_REMOVE(&target->bus->et_entries, target, links);
4494	target->bus->generation++;
4495	xpt_release_bus(target->bus);
4496	if (target->luns)
4497		free(target->luns, M_CAMXPT);
4498	free(target, M_CAMXPT);
4499}
4500
4501static struct cam_ed *
4502xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4503			 lun_id_t lun_id)
4504{
4505	struct cam_ed *device;
4506
4507	device = xpt_alloc_device(bus, target, lun_id);
4508	if (device == NULL)
4509		return (NULL);
4510
4511	device->mintags = 1;
4512	device->maxtags = 1;
4513	bus->sim->max_ccbs += device->ccbq.devq_openings;
4514	return (device);
4515}
4516
4517struct cam_ed *
4518xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4519{
4520	struct cam_ed	*cur_device, *device;
4521	struct cam_devq	*devq;
4522	cam_status status;
4523
4524	mtx_assert(target->bus->sim->mtx, MA_OWNED);
4525	/* Make space for us in the device queue on our bus */
4526	devq = bus->sim->devq;
4527	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4528	if (status != CAM_REQ_CMP)
4529		return (NULL);
4530
4531	device = (struct cam_ed *)malloc(sizeof(*device),
4532					 M_CAMDEV, M_NOWAIT|M_ZERO);
4533	if (device == NULL)
4534		return (NULL);
4535
4536	cam_init_pinfo(&device->devq_entry.pinfo);
4537	device->devq_entry.device = device;
4538	device->target = target;
4539	device->lun_id = lun_id;
4540	device->sim = bus->sim;
4541	/* Initialize our queues */
4542	if (camq_init(&device->drvq, 0) != 0) {
4543		free(device, M_CAMDEV);
4544		return (NULL);
4545	}
4546	if (cam_ccbq_init(&device->ccbq,
4547			  bus->sim->max_dev_openings) != 0) {
4548		camq_fini(&device->drvq);
4549		free(device, M_CAMDEV);
4550		return (NULL);
4551	}
4552	SLIST_INIT(&device->asyncs);
4553	SLIST_INIT(&device->periphs);
4554	device->generation = 0;
4555	device->flags = CAM_DEV_UNCONFIGURED;
4556	device->tag_delay_count = 0;
4557	device->tag_saved_openings = 0;
4558	device->refcount = 1;
4559	callout_init_mtx(&device->callout, bus->sim->mtx, 0);
4560
4561	cur_device = TAILQ_FIRST(&target->ed_entries);
4562	while (cur_device != NULL && cur_device->lun_id < lun_id)
4563		cur_device = TAILQ_NEXT(cur_device, links);
4564	if (cur_device != NULL)
4565		TAILQ_INSERT_BEFORE(cur_device, device, links);
4566	else
4567		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4568	target->refcount++;
4569	target->generation++;
4570	return (device);
4571}
4572
4573void
4574xpt_acquire_device(struct cam_ed *device)
4575{
4576
4577	mtx_assert(device->sim->mtx, MA_OWNED);
4578	device->refcount++;
4579}
4580
4581void
4582xpt_release_device(struct cam_ed *device)
4583{
4584	struct cam_devq *devq;
4585
4586	mtx_assert(device->sim->mtx, MA_OWNED);
4587	if (--device->refcount > 0)
4588		return;
4589
4590	KASSERT(SLIST_EMPTY(&device->periphs),
4591	    ("refcount is zero, but periphs list is not empty"));
4592	if (device->devq_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4593		panic("Removing device while still queued for ccbs");
4594
4595	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4596		callout_stop(&device->callout);
4597
4598	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4599	device->target->generation++;
4600	device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings;
4601	/* Release our slot in the devq */
4602	devq = device->target->bus->sim->devq;
4603	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4604	camq_fini(&device->drvq);
4605	cam_ccbq_fini(&device->ccbq);
4606	/*
4607	 * Free allocated memory.  free(9) does nothing if the
4608	 * supplied pointer is NULL, so it is safe to call without
4609	 * checking.
4610	 */
4611	free(device->supported_vpds, M_CAMXPT);
4612	free(device->device_id, M_CAMXPT);
4613	free(device->physpath, M_CAMXPT);
4614	free(device->rcap_buf, M_CAMXPT);
4615	free(device->serial_num, M_CAMXPT);
4616
4617	xpt_release_target(device->target);
4618	free(device, M_CAMDEV);
4619}
4620
4621u_int32_t
4622xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4623{
4624	int	diff;
4625	int	result;
4626	struct	cam_ed *dev;
4627
4628	dev = path->device;
4629
4630	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4631	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4632	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4633	 || (dev->inq_flags & SID_CmdQue) != 0)
4634		dev->tag_saved_openings = newopenings;
4635	/* Adjust the global limit */
4636	dev->sim->max_ccbs += diff;
4637	return (result);
4638}
4639
4640static struct cam_eb *
4641xpt_find_bus(path_id_t path_id)
4642{
4643	struct cam_eb *bus;
4644
4645	xpt_lock_buses();
4646	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4647	     bus != NULL;
4648	     bus = TAILQ_NEXT(bus, links)) {
4649		if (bus->path_id == path_id) {
4650			bus->refcount++;
4651			break;
4652		}
4653	}
4654	xpt_unlock_buses();
4655	return (bus);
4656}
4657
4658static struct cam_et *
4659xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4660{
4661	struct cam_et *target;
4662
4663	mtx_assert(bus->sim->mtx, MA_OWNED);
4664	for (target = TAILQ_FIRST(&bus->et_entries);
4665	     target != NULL;
4666	     target = TAILQ_NEXT(target, links)) {
4667		if (target->target_id == target_id) {
4668			target->refcount++;
4669			break;
4670		}
4671	}
4672	return (target);
4673}
4674
4675static struct cam_ed *
4676xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4677{
4678	struct cam_ed *device;
4679
4680	mtx_assert(target->bus->sim->mtx, MA_OWNED);
4681	for (device = TAILQ_FIRST(&target->ed_entries);
4682	     device != NULL;
4683	     device = TAILQ_NEXT(device, links)) {
4684		if (device->lun_id == lun_id) {
4685			device->refcount++;
4686			break;
4687		}
4688	}
4689	return (device);
4690}
4691
4692void
4693xpt_start_tags(struct cam_path *path)
4694{
4695	struct ccb_relsim crs;
4696	struct cam_ed *device;
4697	struct cam_sim *sim;
4698	int    newopenings;
4699
4700	device = path->device;
4701	sim = path->bus->sim;
4702	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4703	xpt_freeze_devq(path, /*count*/1);
4704	device->inq_flags |= SID_CmdQue;
4705	if (device->tag_saved_openings != 0)
4706		newopenings = device->tag_saved_openings;
4707	else
4708		newopenings = min(device->maxtags,
4709				  sim->max_tagged_dev_openings);
4710	xpt_dev_ccbq_resize(path, newopenings);
4711	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4712	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4713	crs.ccb_h.func_code = XPT_REL_SIMQ;
4714	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4715	crs.openings
4716	    = crs.release_timeout
4717	    = crs.qfrozen_cnt
4718	    = 0;
4719	xpt_action((union ccb *)&crs);
4720}
4721
4722void
4723xpt_stop_tags(struct cam_path *path)
4724{
4725	struct ccb_relsim crs;
4726	struct cam_ed *device;
4727	struct cam_sim *sim;
4728
4729	device = path->device;
4730	sim = path->bus->sim;
4731	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4732	device->tag_delay_count = 0;
4733	xpt_freeze_devq(path, /*count*/1);
4734	device->inq_flags &= ~SID_CmdQue;
4735	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4736	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4737	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4738	crs.ccb_h.func_code = XPT_REL_SIMQ;
4739	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4740	crs.openings
4741	    = crs.release_timeout
4742	    = crs.qfrozen_cnt
4743	    = 0;
4744	xpt_action((union ccb *)&crs);
4745}
4746
4747static void
4748xpt_boot_delay(void *arg)
4749{
4750
4751	xpt_release_boot();
4752}
4753
4754static void
4755xpt_config(void *arg)
4756{
4757	/*
4758	 * Now that interrupts are enabled, go find our devices
4759	 */
4760
4761	/* Setup debugging path */
4762	if (cam_dflags != CAM_DEBUG_NONE) {
4763		if (xpt_create_path_unlocked(&cam_dpath, NULL,
4764				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4765				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4766			printf("xpt_config: xpt_create_path() failed for debug"
4767			       " target %d:%d:%d, debugging disabled\n",
4768			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4769			cam_dflags = CAM_DEBUG_NONE;
4770		}
4771	} else
4772		cam_dpath = NULL;
4773
4774	periphdriver_init(1);
4775	xpt_hold_boot();
4776	callout_init(&xsoftc.boot_callout, 1);
4777	callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000,
4778	    xpt_boot_delay, NULL);
4779	/* Fire up rescan thread. */
4780	if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
4781		printf("xpt_config: failed to create rescan thread.\n");
4782	}
4783}
4784
4785void
4786xpt_hold_boot(void)
4787{
4788	xpt_lock_buses();
4789	xsoftc.buses_to_config++;
4790	xpt_unlock_buses();
4791}
4792
4793void
4794xpt_release_boot(void)
4795{
4796	xpt_lock_buses();
4797	xsoftc.buses_to_config--;
4798	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4799		struct	xpt_task *task;
4800
4801		xsoftc.buses_config_done = 1;
4802		xpt_unlock_buses();
4803		/* Call manually because we don't have any busses */
4804		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4805		if (task != NULL) {
4806			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4807			taskqueue_enqueue(taskqueue_thread, &task->task);
4808		}
4809	} else
4810		xpt_unlock_buses();
4811}
4812
4813/*
4814 * If the given device only has one peripheral attached to it, and if that
4815 * peripheral is the passthrough driver, announce it.  This insures that the
4816 * user sees some sort of announcement for every peripheral in their system.
4817 */
4818static int
4819xptpassannouncefunc(struct cam_ed *device, void *arg)
4820{
4821	struct cam_periph *periph;
4822	int i;
4823
4824	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4825	     periph = SLIST_NEXT(periph, periph_links), i++);
4826
4827	periph = SLIST_FIRST(&device->periphs);
4828	if ((i == 1)
4829	 && (strncmp(periph->periph_name, "pass", 4) == 0))
4830		xpt_announce_periph(periph, NULL);
4831
4832	return(1);
4833}
4834
4835static void
4836xpt_finishconfig_task(void *context, int pending)
4837{
4838
4839	periphdriver_init(2);
4840	/*
4841	 * Check for devices with no "standard" peripheral driver
4842	 * attached.  For any devices like that, announce the
4843	 * passthrough driver so the user will see something.
4844	 */
4845	if (!bootverbose)
4846		xpt_for_all_devices(xptpassannouncefunc, NULL);
4847
4848	/* Release our hook so that the boot can continue. */
4849	config_intrhook_disestablish(xsoftc.xpt_config_hook);
4850	free(xsoftc.xpt_config_hook, M_CAMXPT);
4851	xsoftc.xpt_config_hook = NULL;
4852
4853	free(context, M_CAMXPT);
4854}
4855
4856cam_status
4857xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
4858		   struct cam_path *path)
4859{
4860	struct ccb_setasync csa;
4861	cam_status status;
4862	int xptpath = 0;
4863
4864	if (path == NULL) {
4865		mtx_lock(&xsoftc.xpt_lock);
4866		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
4867					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4868		if (status != CAM_REQ_CMP) {
4869			mtx_unlock(&xsoftc.xpt_lock);
4870			return (status);
4871		}
4872		xptpath = 1;
4873	}
4874
4875	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
4876	csa.ccb_h.func_code = XPT_SASYNC_CB;
4877	csa.event_enable = event;
4878	csa.callback = cbfunc;
4879	csa.callback_arg = cbarg;
4880	xpt_action((union ccb *)&csa);
4881	status = csa.ccb_h.status;
4882
4883	if (xptpath) {
4884		xpt_free_path(path);
4885		mtx_unlock(&xsoftc.xpt_lock);
4886	}
4887
4888	if ((status == CAM_REQ_CMP) &&
4889	    (csa.event_enable & AC_FOUND_DEVICE)) {
4890		/*
4891		 * Get this peripheral up to date with all
4892		 * the currently existing devices.
4893		 */
4894		xpt_for_all_devices(xptsetasyncfunc, &csa);
4895	}
4896	if ((status == CAM_REQ_CMP) &&
4897	    (csa.event_enable & AC_PATH_REGISTERED)) {
4898		/*
4899		 * Get this peripheral up to date with all
4900		 * the currently existing busses.
4901		 */
4902		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
4903	}
4904
4905	return (status);
4906}
4907
4908static void
4909xptaction(struct cam_sim *sim, union ccb *work_ccb)
4910{
4911	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
4912
4913	switch (work_ccb->ccb_h.func_code) {
4914	/* Common cases first */
4915	case XPT_PATH_INQ:		/* Path routing inquiry */
4916	{
4917		struct ccb_pathinq *cpi;
4918
4919		cpi = &work_ccb->cpi;
4920		cpi->version_num = 1; /* XXX??? */
4921		cpi->hba_inquiry = 0;
4922		cpi->target_sprt = 0;
4923		cpi->hba_misc = 0;
4924		cpi->hba_eng_cnt = 0;
4925		cpi->max_target = 0;
4926		cpi->max_lun = 0;
4927		cpi->initiator_id = 0;
4928		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
4929		strncpy(cpi->hba_vid, "", HBA_IDLEN);
4930		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
4931		cpi->unit_number = sim->unit_number;
4932		cpi->bus_id = sim->bus_id;
4933		cpi->base_transfer_speed = 0;
4934		cpi->protocol = PROTO_UNSPECIFIED;
4935		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
4936		cpi->transport = XPORT_UNSPECIFIED;
4937		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
4938		cpi->ccb_h.status = CAM_REQ_CMP;
4939		xpt_done(work_ccb);
4940		break;
4941	}
4942	default:
4943		work_ccb->ccb_h.status = CAM_REQ_INVALID;
4944		xpt_done(work_ccb);
4945		break;
4946	}
4947}
4948
4949/*
4950 * The xpt as a "controller" has no interrupt sources, so polling
4951 * is a no-op.
4952 */
4953static void
4954xptpoll(struct cam_sim *sim)
4955{
4956}
4957
4958void
4959xpt_lock_buses(void)
4960{
4961	mtx_lock(&xsoftc.xpt_topo_lock);
4962}
4963
4964void
4965xpt_unlock_buses(void)
4966{
4967	mtx_unlock(&xsoftc.xpt_topo_lock);
4968}
4969
4970static void
4971camisr(void *dummy)
4972{
4973	cam_simq_t queue;
4974	struct cam_sim *sim;
4975
4976	mtx_lock(&cam_simq_lock);
4977	TAILQ_INIT(&queue);
4978	while (!TAILQ_EMPTY(&cam_simq)) {
4979		TAILQ_CONCAT(&queue, &cam_simq, links);
4980		mtx_unlock(&cam_simq_lock);
4981
4982		while ((sim = TAILQ_FIRST(&queue)) != NULL) {
4983			TAILQ_REMOVE(&queue, sim, links);
4984			CAM_SIM_LOCK(sim);
4985			camisr_runqueue(sim);
4986			sim->flags &= ~CAM_SIM_ON_DONEQ;
4987			CAM_SIM_UNLOCK(sim);
4988		}
4989		mtx_lock(&cam_simq_lock);
4990	}
4991	mtx_unlock(&cam_simq_lock);
4992}
4993
4994static void
4995camisr_runqueue(struct cam_sim *sim)
4996{
4997	struct	ccb_hdr *ccb_h;
4998
4999	while ((ccb_h = TAILQ_FIRST(&sim->sim_doneq)) != NULL) {
5000		int	runq;
5001
5002		TAILQ_REMOVE(&sim->sim_doneq, ccb_h, sim_links.tqe);
5003		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5004
5005		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
5006			  ("camisr\n"));
5007
5008		runq = FALSE;
5009
5010		if (ccb_h->flags & CAM_HIGH_POWER) {
5011			struct highpowerlist	*hphead;
5012			struct cam_ed		*device;
5013
5014			mtx_lock(&xsoftc.xpt_lock);
5015			hphead = &xsoftc.highpowerq;
5016
5017			device = STAILQ_FIRST(hphead);
5018
5019			/*
5020			 * Increment the count since this command is done.
5021			 */
5022			xsoftc.num_highpower++;
5023
5024			/*
5025			 * Any high powered commands queued up?
5026			 */
5027			if (device != NULL) {
5028
5029				STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5030				mtx_unlock(&xsoftc.xpt_lock);
5031
5032				xpt_release_devq_device(device,
5033						 /*count*/1, /*runqueue*/TRUE);
5034			} else
5035				mtx_unlock(&xsoftc.xpt_lock);
5036		}
5037
5038		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5039			struct cam_ed *dev;
5040
5041			dev = ccb_h->path->device;
5042
5043			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5044			sim->devq->send_active--;
5045			sim->devq->send_openings++;
5046			runq = TRUE;
5047
5048			if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5049			  && (dev->ccbq.dev_active == 0))) {
5050				dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5051				xpt_release_devq(ccb_h->path, /*count*/1,
5052						 /*run_queue*/FALSE);
5053			}
5054
5055			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5056			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5057				dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5058				xpt_release_devq(ccb_h->path, /*count*/1,
5059						 /*run_queue*/FALSE);
5060			}
5061
5062			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5063			 && (--dev->tag_delay_count == 0))
5064				xpt_start_tags(ccb_h->path);
5065			if (!device_is_queued(dev)) {
5066				(void)xpt_schedule_devq(sim->devq, dev);
5067			}
5068		}
5069
5070		if (ccb_h->status & CAM_RELEASE_SIMQ) {
5071			xpt_release_simq(sim, /*run_queue*/TRUE);
5072			ccb_h->status &= ~CAM_RELEASE_SIMQ;
5073			runq = FALSE;
5074		}
5075
5076		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5077		 && (ccb_h->status & CAM_DEV_QFRZN)) {
5078			xpt_release_devq(ccb_h->path, /*count*/1,
5079					 /*run_queue*/TRUE);
5080			ccb_h->status &= ~CAM_DEV_QFRZN;
5081		} else if (runq) {
5082			xpt_run_devq(sim->devq);
5083		}
5084
5085		/* Call the peripheral driver's callback */
5086		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5087	}
5088}
5089