cam_xpt.c revision 257047
1/*-
2 * Implementation of the Common Access Method Transport (XPT) layer.
3 *
4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions, and the following disclaimer,
13 *    without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 *    derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: stable/10/sys/cam/cam_xpt.c 257047 2013-10-24 10:31:02Z mav $");
32
33#include <sys/param.h>
34#include <sys/bus.h>
35#include <sys/systm.h>
36#include <sys/types.h>
37#include <sys/malloc.h>
38#include <sys/kernel.h>
39#include <sys/time.h>
40#include <sys/conf.h>
41#include <sys/fcntl.h>
42#include <sys/interrupt.h>
43#include <sys/sbuf.h>
44#include <sys/taskqueue.h>
45
46#include <sys/lock.h>
47#include <sys/mutex.h>
48#include <sys/sysctl.h>
49#include <sys/kthread.h>
50
51#include <cam/cam.h>
52#include <cam/cam_ccb.h>
53#include <cam/cam_periph.h>
54#include <cam/cam_queue.h>
55#include <cam/cam_sim.h>
56#include <cam/cam_xpt.h>
57#include <cam/cam_xpt_sim.h>
58#include <cam/cam_xpt_periph.h>
59#include <cam/cam_xpt_internal.h>
60#include <cam/cam_debug.h>
61#include <cam/cam_compat.h>
62
63#include <cam/scsi/scsi_all.h>
64#include <cam/scsi/scsi_message.h>
65#include <cam/scsi/scsi_pass.h>
66
67#include <machine/md_var.h>	/* geometry translation */
68#include <machine/stdarg.h>	/* for xpt_print below */
69
70#include "opt_cam.h"
71
72/*
73 * This is the maximum number of high powered commands (e.g. start unit)
74 * that can be outstanding at a particular time.
75 */
76#ifndef CAM_MAX_HIGHPOWER
77#define CAM_MAX_HIGHPOWER  4
78#endif
79
80/* Datastructures internal to the xpt layer */
81MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
82MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
83MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
84MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
85
86/* Object for defering XPT actions to a taskqueue */
87struct xpt_task {
88	struct task	task;
89	void		*data1;
90	uintptr_t	data2;
91};
92
93typedef enum {
94	XPT_FLAG_OPEN		= 0x01
95} xpt_flags;
96
97struct xpt_softc {
98	xpt_flags		flags;
99
100	/* number of high powered commands that can go through right now */
101	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
102	int			num_highpower;
103
104	/* queue for handling async rescan requests. */
105	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
106	int buses_to_config;
107	int buses_config_done;
108
109	/* Registered busses */
110	TAILQ_HEAD(,cam_eb)	xpt_busses;
111	u_int			bus_generation;
112
113	struct intr_config_hook	*xpt_config_hook;
114
115	int			boot_delay;
116	struct callout 		boot_callout;
117
118	struct mtx		xpt_topo_lock;
119	struct mtx		xpt_lock;
120};
121
122typedef enum {
123	DM_RET_COPY		= 0x01,
124	DM_RET_FLAG_MASK	= 0x0f,
125	DM_RET_NONE		= 0x00,
126	DM_RET_STOP		= 0x10,
127	DM_RET_DESCEND		= 0x20,
128	DM_RET_ERROR		= 0x30,
129	DM_RET_ACTION_MASK	= 0xf0
130} dev_match_ret;
131
132typedef enum {
133	XPT_DEPTH_BUS,
134	XPT_DEPTH_TARGET,
135	XPT_DEPTH_DEVICE,
136	XPT_DEPTH_PERIPH
137} xpt_traverse_depth;
138
139struct xpt_traverse_config {
140	xpt_traverse_depth	depth;
141	void			*tr_func;
142	void			*tr_arg;
143};
144
145typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
146typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
147typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
148typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
149typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
150
151/* Transport layer configuration information */
152static struct xpt_softc xsoftc;
153
154TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay);
155SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
156           &xsoftc.boot_delay, 0, "Bus registration wait time");
157
158/* Queues for our software interrupt handler */
159typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
160typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
161static cam_simq_t cam_simq;
162static struct mtx cam_simq_lock;
163
164/* Pointers to software interrupt handlers */
165static void *cambio_ih;
166
167struct cam_periph *xpt_periph;
168
169static periph_init_t xpt_periph_init;
170
171static struct periph_driver xpt_driver =
172{
173	xpt_periph_init, "xpt",
174	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
175	CAM_PERIPH_DRV_EARLY
176};
177
178PERIPHDRIVER_DECLARE(xpt, xpt_driver);
179
180static d_open_t xptopen;
181static d_close_t xptclose;
182static d_ioctl_t xptioctl;
183static d_ioctl_t xptdoioctl;
184
185static struct cdevsw xpt_cdevsw = {
186	.d_version =	D_VERSION,
187	.d_flags =	0,
188	.d_open =	xptopen,
189	.d_close =	xptclose,
190	.d_ioctl =	xptioctl,
191	.d_name =	"xpt",
192};
193
194/* Storage for debugging datastructures */
195struct cam_path *cam_dpath;
196u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
197TUNABLE_INT("kern.cam.dflags", &cam_dflags);
198SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW,
199	&cam_dflags, 0, "Enabled debug flags");
200u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
201TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay);
202SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW,
203	&cam_debug_delay, 0, "Delay in us after each debug message");
204
205/* Our boot-time initialization hook */
206static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
207
208static moduledata_t cam_moduledata = {
209	"cam",
210	cam_module_event_handler,
211	NULL
212};
213
214static int	xpt_init(void *);
215
216DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
217MODULE_VERSION(cam, 1);
218
219
220static void		xpt_async_bcast(struct async_list *async_head,
221					u_int32_t async_code,
222					struct cam_path *path,
223					void *async_arg);
224static path_id_t xptnextfreepathid(void);
225static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
226static union ccb *xpt_get_ccb(struct cam_ed *device);
227static void	 xpt_run_dev_allocq(struct cam_ed *device);
228static void	 xpt_run_devq(struct cam_devq *devq);
229static timeout_t xpt_release_devq_timeout;
230static void	 xpt_release_simq_timeout(void *arg) __unused;
231static void	 xpt_release_bus(struct cam_eb *bus);
232static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
233		    int run_queue);
234static struct cam_et*
235		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
236static void	 xpt_release_target(struct cam_et *target);
237static struct cam_eb*
238		 xpt_find_bus(path_id_t path_id);
239static struct cam_et*
240		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
241static struct cam_ed*
242		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
243static void	 xpt_config(void *arg);
244static xpt_devicefunc_t xptpassannouncefunc;
245static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
246static void	 xptpoll(struct cam_sim *sim);
247static void	 camisr(void *);
248static void	 camisr_runqueue(struct cam_sim *);
249static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
250				    u_int num_patterns, struct cam_eb *bus);
251static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
252				       u_int num_patterns,
253				       struct cam_ed *device);
254static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
255				       u_int num_patterns,
256				       struct cam_periph *periph);
257static xpt_busfunc_t	xptedtbusfunc;
258static xpt_targetfunc_t	xptedttargetfunc;
259static xpt_devicefunc_t	xptedtdevicefunc;
260static xpt_periphfunc_t	xptedtperiphfunc;
261static xpt_pdrvfunc_t	xptplistpdrvfunc;
262static xpt_periphfunc_t	xptplistperiphfunc;
263static int		xptedtmatch(struct ccb_dev_match *cdm);
264static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
265static int		xptbustraverse(struct cam_eb *start_bus,
266				       xpt_busfunc_t *tr_func, void *arg);
267static int		xpttargettraverse(struct cam_eb *bus,
268					  struct cam_et *start_target,
269					  xpt_targetfunc_t *tr_func, void *arg);
270static int		xptdevicetraverse(struct cam_et *target,
271					  struct cam_ed *start_device,
272					  xpt_devicefunc_t *tr_func, void *arg);
273static int		xptperiphtraverse(struct cam_ed *device,
274					  struct cam_periph *start_periph,
275					  xpt_periphfunc_t *tr_func, void *arg);
276static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
277					xpt_pdrvfunc_t *tr_func, void *arg);
278static int		xptpdperiphtraverse(struct periph_driver **pdrv,
279					    struct cam_periph *start_periph,
280					    xpt_periphfunc_t *tr_func,
281					    void *arg);
282static xpt_busfunc_t	xptdefbusfunc;
283static xpt_targetfunc_t	xptdeftargetfunc;
284static xpt_devicefunc_t	xptdefdevicefunc;
285static xpt_periphfunc_t	xptdefperiphfunc;
286static void		xpt_finishconfig_task(void *context, int pending);
287static void		xpt_dev_async_default(u_int32_t async_code,
288					      struct cam_eb *bus,
289					      struct cam_et *target,
290					      struct cam_ed *device,
291					      void *async_arg);
292static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
293						 struct cam_et *target,
294						 lun_id_t lun_id);
295static xpt_devicefunc_t	xptsetasyncfunc;
296static xpt_busfunc_t	xptsetasyncbusfunc;
297static cam_status	xptregister(struct cam_periph *periph,
298				    void *arg);
299static __inline int periph_is_queued(struct cam_periph *periph);
300static __inline int device_is_queued(struct cam_ed *device);
301
302static __inline int
303xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
304{
305	int	retval;
306
307	if ((dev->ccbq.queue.entries > 0) &&
308	    (dev->ccbq.dev_openings > 0) &&
309	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
310		/*
311		 * The priority of a device waiting for controller
312		 * resources is that of the highest priority CCB
313		 * enqueued.
314		 */
315		retval =
316		    xpt_schedule_dev(&devq->send_queue,
317				     &dev->devq_entry.pinfo,
318				     CAMQ_GET_PRIO(&dev->ccbq.queue));
319	} else {
320		retval = 0;
321	}
322	return (retval);
323}
324
325static __inline int
326periph_is_queued(struct cam_periph *periph)
327{
328	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
329}
330
331static __inline int
332device_is_queued(struct cam_ed *device)
333{
334	return (device->devq_entry.pinfo.index != CAM_UNQUEUED_INDEX);
335}
336
337static void
338xpt_periph_init()
339{
340	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
341}
342
343static void
344xptdone(struct cam_periph *periph, union ccb *done_ccb)
345{
346	/* Caller will release the CCB */
347	wakeup(&done_ccb->ccb_h.cbfcnp);
348}
349
350static int
351xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
352{
353
354	/*
355	 * Only allow read-write access.
356	 */
357	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
358		return(EPERM);
359
360	/*
361	 * We don't allow nonblocking access.
362	 */
363	if ((flags & O_NONBLOCK) != 0) {
364		printf("%s: can't do nonblocking access\n", devtoname(dev));
365		return(ENODEV);
366	}
367
368	/* Mark ourselves open */
369	mtx_lock(&xsoftc.xpt_lock);
370	xsoftc.flags |= XPT_FLAG_OPEN;
371	mtx_unlock(&xsoftc.xpt_lock);
372
373	return(0);
374}
375
376static int
377xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
378{
379
380	/* Mark ourselves closed */
381	mtx_lock(&xsoftc.xpt_lock);
382	xsoftc.flags &= ~XPT_FLAG_OPEN;
383	mtx_unlock(&xsoftc.xpt_lock);
384
385	return(0);
386}
387
388/*
389 * Don't automatically grab the xpt softc lock here even though this is going
390 * through the xpt device.  The xpt device is really just a back door for
391 * accessing other devices and SIMs, so the right thing to do is to grab
392 * the appropriate SIM lock once the bus/SIM is located.
393 */
394static int
395xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
396{
397	int error;
398
399	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
400		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
401	}
402	return (error);
403}
404
405static int
406xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
407{
408	int error;
409
410	error = 0;
411
412	switch(cmd) {
413	/*
414	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
415	 * to accept CCB types that don't quite make sense to send through a
416	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
417	 * in the CAM spec.
418	 */
419	case CAMIOCOMMAND: {
420		union ccb *ccb;
421		union ccb *inccb;
422		struct cam_eb *bus;
423
424		inccb = (union ccb *)addr;
425
426		bus = xpt_find_bus(inccb->ccb_h.path_id);
427		if (bus == NULL)
428			return (EINVAL);
429
430		switch (inccb->ccb_h.func_code) {
431		case XPT_SCAN_BUS:
432		case XPT_RESET_BUS:
433			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
434			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
435				xpt_release_bus(bus);
436				return (EINVAL);
437			}
438			break;
439		case XPT_SCAN_TGT:
440			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
441			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
442				xpt_release_bus(bus);
443				return (EINVAL);
444			}
445			break;
446		default:
447			break;
448		}
449
450		switch(inccb->ccb_h.func_code) {
451		case XPT_SCAN_BUS:
452		case XPT_RESET_BUS:
453		case XPT_PATH_INQ:
454		case XPT_ENG_INQ:
455		case XPT_SCAN_LUN:
456		case XPT_SCAN_TGT:
457
458			ccb = xpt_alloc_ccb();
459
460			CAM_SIM_LOCK(bus->sim);
461
462			/*
463			 * Create a path using the bus, target, and lun the
464			 * user passed in.
465			 */
466			if (xpt_create_path(&ccb->ccb_h.path, NULL,
467					    inccb->ccb_h.path_id,
468					    inccb->ccb_h.target_id,
469					    inccb->ccb_h.target_lun) !=
470					    CAM_REQ_CMP){
471				error = EINVAL;
472				CAM_SIM_UNLOCK(bus->sim);
473				xpt_free_ccb(ccb);
474				break;
475			}
476			/* Ensure all of our fields are correct */
477			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
478				      inccb->ccb_h.pinfo.priority);
479			xpt_merge_ccb(ccb, inccb);
480			ccb->ccb_h.cbfcnp = xptdone;
481			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
482			bcopy(ccb, inccb, sizeof(union ccb));
483			xpt_free_path(ccb->ccb_h.path);
484			xpt_free_ccb(ccb);
485			CAM_SIM_UNLOCK(bus->sim);
486			break;
487
488		case XPT_DEBUG: {
489			union ccb ccb;
490
491			/*
492			 * This is an immediate CCB, so it's okay to
493			 * allocate it on the stack.
494			 */
495
496			CAM_SIM_LOCK(bus->sim);
497
498			/*
499			 * Create a path using the bus, target, and lun the
500			 * user passed in.
501			 */
502			if (xpt_create_path(&ccb.ccb_h.path, NULL,
503					    inccb->ccb_h.path_id,
504					    inccb->ccb_h.target_id,
505					    inccb->ccb_h.target_lun) !=
506					    CAM_REQ_CMP){
507				error = EINVAL;
508				CAM_SIM_UNLOCK(bus->sim);
509				break;
510			}
511			/* Ensure all of our fields are correct */
512			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
513				      inccb->ccb_h.pinfo.priority);
514			xpt_merge_ccb(&ccb, inccb);
515			ccb.ccb_h.cbfcnp = xptdone;
516			xpt_action(&ccb);
517			bcopy(&ccb, inccb, sizeof(union ccb));
518			xpt_free_path(ccb.ccb_h.path);
519			CAM_SIM_UNLOCK(bus->sim);
520			break;
521
522		}
523		case XPT_DEV_MATCH: {
524			struct cam_periph_map_info mapinfo;
525			struct cam_path *old_path;
526
527			/*
528			 * We can't deal with physical addresses for this
529			 * type of transaction.
530			 */
531			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
532			    CAM_DATA_VADDR) {
533				error = EINVAL;
534				break;
535			}
536
537			/*
538			 * Save this in case the caller had it set to
539			 * something in particular.
540			 */
541			old_path = inccb->ccb_h.path;
542
543			/*
544			 * We really don't need a path for the matching
545			 * code.  The path is needed because of the
546			 * debugging statements in xpt_action().  They
547			 * assume that the CCB has a valid path.
548			 */
549			inccb->ccb_h.path = xpt_periph->path;
550
551			bzero(&mapinfo, sizeof(mapinfo));
552
553			/*
554			 * Map the pattern and match buffers into kernel
555			 * virtual address space.
556			 */
557			error = cam_periph_mapmem(inccb, &mapinfo);
558
559			if (error) {
560				inccb->ccb_h.path = old_path;
561				break;
562			}
563
564			/*
565			 * This is an immediate CCB, we can send it on directly.
566			 */
567			CAM_SIM_LOCK(xpt_path_sim(xpt_periph->path));
568			xpt_action(inccb);
569			CAM_SIM_UNLOCK(xpt_path_sim(xpt_periph->path));
570
571			/*
572			 * Map the buffers back into user space.
573			 */
574			cam_periph_unmapmem(inccb, &mapinfo);
575
576			inccb->ccb_h.path = old_path;
577
578			error = 0;
579			break;
580		}
581		default:
582			error = ENOTSUP;
583			break;
584		}
585		xpt_release_bus(bus);
586		break;
587	}
588	/*
589	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
590	 * with the periphal driver name and unit name filled in.  The other
591	 * fields don't really matter as input.  The passthrough driver name
592	 * ("pass"), and unit number are passed back in the ccb.  The current
593	 * device generation number, and the index into the device peripheral
594	 * driver list, and the status are also passed back.  Note that
595	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
596	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
597	 * (or rather should be) impossible for the device peripheral driver
598	 * list to change since we look at the whole thing in one pass, and
599	 * we do it with lock protection.
600	 *
601	 */
602	case CAMGETPASSTHRU: {
603		union ccb *ccb;
604		struct cam_periph *periph;
605		struct periph_driver **p_drv;
606		char   *name;
607		u_int unit;
608		int base_periph_found;
609
610		ccb = (union ccb *)addr;
611		unit = ccb->cgdl.unit_number;
612		name = ccb->cgdl.periph_name;
613		base_periph_found = 0;
614
615		/*
616		 * Sanity check -- make sure we don't get a null peripheral
617		 * driver name.
618		 */
619		if (*ccb->cgdl.periph_name == '\0') {
620			error = EINVAL;
621			break;
622		}
623
624		/* Keep the list from changing while we traverse it */
625		xpt_lock_buses();
626
627		/* first find our driver in the list of drivers */
628		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
629			if (strcmp((*p_drv)->driver_name, name) == 0)
630				break;
631
632		if (*p_drv == NULL) {
633			xpt_unlock_buses();
634			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
635			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
636			*ccb->cgdl.periph_name = '\0';
637			ccb->cgdl.unit_number = 0;
638			error = ENOENT;
639			break;
640		}
641
642		/*
643		 * Run through every peripheral instance of this driver
644		 * and check to see whether it matches the unit passed
645		 * in by the user.  If it does, get out of the loops and
646		 * find the passthrough driver associated with that
647		 * peripheral driver.
648		 */
649		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
650		     periph = TAILQ_NEXT(periph, unit_links)) {
651
652			if (periph->unit_number == unit)
653				break;
654		}
655		/*
656		 * If we found the peripheral driver that the user passed
657		 * in, go through all of the peripheral drivers for that
658		 * particular device and look for a passthrough driver.
659		 */
660		if (periph != NULL) {
661			struct cam_ed *device;
662			int i;
663
664			base_periph_found = 1;
665			device = periph->path->device;
666			for (i = 0, periph = SLIST_FIRST(&device->periphs);
667			     periph != NULL;
668			     periph = SLIST_NEXT(periph, periph_links), i++) {
669				/*
670				 * Check to see whether we have a
671				 * passthrough device or not.
672				 */
673				if (strcmp(periph->periph_name, "pass") == 0) {
674					/*
675					 * Fill in the getdevlist fields.
676					 */
677					strcpy(ccb->cgdl.periph_name,
678					       periph->periph_name);
679					ccb->cgdl.unit_number =
680						periph->unit_number;
681					if (SLIST_NEXT(periph, periph_links))
682						ccb->cgdl.status =
683							CAM_GDEVLIST_MORE_DEVS;
684					else
685						ccb->cgdl.status =
686						       CAM_GDEVLIST_LAST_DEVICE;
687					ccb->cgdl.generation =
688						device->generation;
689					ccb->cgdl.index = i;
690					/*
691					 * Fill in some CCB header fields
692					 * that the user may want.
693					 */
694					ccb->ccb_h.path_id =
695						periph->path->bus->path_id;
696					ccb->ccb_h.target_id =
697						periph->path->target->target_id;
698					ccb->ccb_h.target_lun =
699						periph->path->device->lun_id;
700					ccb->ccb_h.status = CAM_REQ_CMP;
701					break;
702				}
703			}
704		}
705
706		/*
707		 * If the periph is null here, one of two things has
708		 * happened.  The first possibility is that we couldn't
709		 * find the unit number of the particular peripheral driver
710		 * that the user is asking about.  e.g. the user asks for
711		 * the passthrough driver for "da11".  We find the list of
712		 * "da" peripherals all right, but there is no unit 11.
713		 * The other possibility is that we went through the list
714		 * of peripheral drivers attached to the device structure,
715		 * but didn't find one with the name "pass".  Either way,
716		 * we return ENOENT, since we couldn't find something.
717		 */
718		if (periph == NULL) {
719			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
720			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
721			*ccb->cgdl.periph_name = '\0';
722			ccb->cgdl.unit_number = 0;
723			error = ENOENT;
724			/*
725			 * It is unfortunate that this is even necessary,
726			 * but there are many, many clueless users out there.
727			 * If this is true, the user is looking for the
728			 * passthrough driver, but doesn't have one in his
729			 * kernel.
730			 */
731			if (base_periph_found == 1) {
732				printf("xptioctl: pass driver is not in the "
733				       "kernel\n");
734				printf("xptioctl: put \"device pass\" in "
735				       "your kernel config file\n");
736			}
737		}
738		xpt_unlock_buses();
739		break;
740		}
741	default:
742		error = ENOTTY;
743		break;
744	}
745
746	return(error);
747}
748
749static int
750cam_module_event_handler(module_t mod, int what, void *arg)
751{
752	int error;
753
754	switch (what) {
755	case MOD_LOAD:
756		if ((error = xpt_init(NULL)) != 0)
757			return (error);
758		break;
759	case MOD_UNLOAD:
760		return EBUSY;
761	default:
762		return EOPNOTSUPP;
763	}
764
765	return 0;
766}
767
768static void
769xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
770{
771
772	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
773		xpt_free_path(done_ccb->ccb_h.path);
774		xpt_free_ccb(done_ccb);
775	} else {
776		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
777		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
778	}
779	xpt_release_boot();
780}
781
782/* thread to handle bus rescans */
783static void
784xpt_scanner_thread(void *dummy)
785{
786	union ccb	*ccb;
787	struct cam_sim	*sim;
788
789	xpt_lock_buses();
790	for (;;) {
791		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
792			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
793			       "ccb_scanq", 0);
794		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
795			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
796			xpt_unlock_buses();
797
798			sim = ccb->ccb_h.path->bus->sim;
799			CAM_SIM_LOCK(sim);
800			xpt_action(ccb);
801			CAM_SIM_UNLOCK(sim);
802
803			xpt_lock_buses();
804		}
805	}
806}
807
808void
809xpt_rescan(union ccb *ccb)
810{
811	struct ccb_hdr *hdr;
812
813	/* Prepare request */
814	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
815	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
816		ccb->ccb_h.func_code = XPT_SCAN_BUS;
817	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
818	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
819		ccb->ccb_h.func_code = XPT_SCAN_TGT;
820	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
821	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
822		ccb->ccb_h.func_code = XPT_SCAN_LUN;
823	else {
824		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
825		xpt_free_path(ccb->ccb_h.path);
826		xpt_free_ccb(ccb);
827		return;
828	}
829	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
830	ccb->ccb_h.cbfcnp = xpt_rescan_done;
831	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
832	/* Don't make duplicate entries for the same paths. */
833	xpt_lock_buses();
834	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
835		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
836			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
837				wakeup(&xsoftc.ccb_scanq);
838				xpt_unlock_buses();
839				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
840				xpt_free_path(ccb->ccb_h.path);
841				xpt_free_ccb(ccb);
842				return;
843			}
844		}
845	}
846	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
847	xsoftc.buses_to_config++;
848	wakeup(&xsoftc.ccb_scanq);
849	xpt_unlock_buses();
850}
851
852/* Functions accessed by the peripheral drivers */
853static int
854xpt_init(void *dummy)
855{
856	struct cam_sim *xpt_sim;
857	struct cam_path *path;
858	struct cam_devq *devq;
859	cam_status status;
860
861	TAILQ_INIT(&xsoftc.xpt_busses);
862	TAILQ_INIT(&cam_simq);
863	TAILQ_INIT(&xsoftc.ccb_scanq);
864	STAILQ_INIT(&xsoftc.highpowerq);
865	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
866
867	mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
868	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
869	mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
870
871#ifdef CAM_BOOT_DELAY
872	/*
873	 * Override this value at compile time to assist our users
874	 * who don't use loader to boot a kernel.
875	 */
876	xsoftc.boot_delay = CAM_BOOT_DELAY;
877#endif
878	/*
879	 * The xpt layer is, itself, the equivelent of a SIM.
880	 * Allow 16 ccbs in the ccb pool for it.  This should
881	 * give decent parallelism when we probe busses and
882	 * perform other XPT functions.
883	 */
884	devq = cam_simq_alloc(16);
885	xpt_sim = cam_sim_alloc(xptaction,
886				xptpoll,
887				"xpt",
888				/*softc*/NULL,
889				/*unit*/0,
890				/*mtx*/&xsoftc.xpt_lock,
891				/*max_dev_transactions*/0,
892				/*max_tagged_dev_transactions*/0,
893				devq);
894	if (xpt_sim == NULL)
895		return (ENOMEM);
896
897	mtx_lock(&xsoftc.xpt_lock);
898	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
899		mtx_unlock(&xsoftc.xpt_lock);
900		printf("xpt_init: xpt_bus_register failed with status %#x,"
901		       " failing attach\n", status);
902		return (EINVAL);
903	}
904
905	/*
906	 * Looking at the XPT from the SIM layer, the XPT is
907	 * the equivelent of a peripheral driver.  Allocate
908	 * a peripheral driver entry for us.
909	 */
910	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
911				      CAM_TARGET_WILDCARD,
912				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
913		mtx_unlock(&xsoftc.xpt_lock);
914		printf("xpt_init: xpt_create_path failed with status %#x,"
915		       " failing attach\n", status);
916		return (EINVAL);
917	}
918
919	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
920			 path, NULL, 0, xpt_sim);
921	xpt_free_path(path);
922	mtx_unlock(&xsoftc.xpt_lock);
923	/* Install our software interrupt handlers */
924	swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
925	/*
926	 * Register a callback for when interrupts are enabled.
927	 */
928	xsoftc.xpt_config_hook =
929	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
930					      M_CAMXPT, M_NOWAIT | M_ZERO);
931	if (xsoftc.xpt_config_hook == NULL) {
932		printf("xpt_init: Cannot malloc config hook "
933		       "- failing attach\n");
934		return (ENOMEM);
935	}
936	xsoftc.xpt_config_hook->ich_func = xpt_config;
937	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
938		free (xsoftc.xpt_config_hook, M_CAMXPT);
939		printf("xpt_init: config_intrhook_establish failed "
940		       "- failing attach\n");
941	}
942
943	return (0);
944}
945
946static cam_status
947xptregister(struct cam_periph *periph, void *arg)
948{
949	struct cam_sim *xpt_sim;
950
951	if (periph == NULL) {
952		printf("xptregister: periph was NULL!!\n");
953		return(CAM_REQ_CMP_ERR);
954	}
955
956	xpt_sim = (struct cam_sim *)arg;
957	xpt_sim->softc = periph;
958	xpt_periph = periph;
959	periph->softc = NULL;
960
961	return(CAM_REQ_CMP);
962}
963
964int32_t
965xpt_add_periph(struct cam_periph *periph)
966{
967	struct cam_ed *device;
968	int32_t	 status;
969	struct periph_list *periph_head;
970
971	mtx_assert(periph->sim->mtx, MA_OWNED);
972
973	device = periph->path->device;
974
975	periph_head = &device->periphs;
976
977	status = CAM_REQ_CMP;
978
979	if (device != NULL) {
980		/*
981		 * Make room for this peripheral
982		 * so it will fit in the queue
983		 * when it's scheduled to run
984		 */
985		status = camq_resize(&device->drvq,
986				     device->drvq.array_size + 1);
987
988		device->generation++;
989
990		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
991	}
992
993	return (status);
994}
995
996void
997xpt_remove_periph(struct cam_periph *periph)
998{
999	struct cam_ed *device;
1000
1001	mtx_assert(periph->sim->mtx, MA_OWNED);
1002
1003	device = periph->path->device;
1004
1005	if (device != NULL) {
1006		struct periph_list *periph_head;
1007
1008		periph_head = &device->periphs;
1009
1010		/* Release the slot for this peripheral */
1011		camq_resize(&device->drvq, device->drvq.array_size - 1);
1012
1013		device->generation++;
1014
1015		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1016	}
1017}
1018
1019
1020void
1021xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1022{
1023	struct	cam_path *path = periph->path;
1024
1025	mtx_assert(periph->sim->mtx, MA_OWNED);
1026
1027	printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
1028	       periph->periph_name, periph->unit_number,
1029	       path->bus->sim->sim_name,
1030	       path->bus->sim->unit_number,
1031	       path->bus->sim->bus_id,
1032	       path->bus->path_id,
1033	       path->target->target_id,
1034	       path->device->lun_id);
1035	printf("%s%d: ", periph->periph_name, periph->unit_number);
1036	if (path->device->protocol == PROTO_SCSI)
1037		scsi_print_inquiry(&path->device->inq_data);
1038	else if (path->device->protocol == PROTO_ATA ||
1039	    path->device->protocol == PROTO_SATAPM)
1040		ata_print_ident(&path->device->ident_data);
1041	else if (path->device->protocol == PROTO_SEMB)
1042		semb_print_ident(
1043		    (struct sep_identify_data *)&path->device->ident_data);
1044	else
1045		printf("Unknown protocol device\n");
1046	if (path->device->serial_num_len > 0) {
1047		/* Don't wrap the screen  - print only the first 60 chars */
1048		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1049		       periph->unit_number, path->device->serial_num);
1050	}
1051	/* Announce transport details. */
1052	(*(path->bus->xport->announce))(periph);
1053	/* Announce command queueing. */
1054	if (path->device->inq_flags & SID_CmdQue
1055	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1056		printf("%s%d: Command Queueing enabled\n",
1057		       periph->periph_name, periph->unit_number);
1058	}
1059	/* Announce caller's details if they've passed in. */
1060	if (announce_string != NULL)
1061		printf("%s%d: %s\n", periph->periph_name,
1062		       periph->unit_number, announce_string);
1063}
1064
1065void
1066xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1067{
1068	if (quirks != 0) {
1069		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1070		    periph->unit_number, quirks, bit_string);
1071	}
1072}
1073
1074int
1075xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1076{
1077	int ret = -1, l;
1078	struct ccb_dev_advinfo cdai;
1079	struct scsi_vpd_id_descriptor *idd;
1080
1081	mtx_assert(path->bus->sim->mtx, MA_OWNED);
1082
1083	memset(&cdai, 0, sizeof(cdai));
1084	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1085	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1086	cdai.bufsiz = len;
1087
1088	if (!strcmp(attr, "GEOM::ident"))
1089		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1090	else if (!strcmp(attr, "GEOM::physpath"))
1091		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1092	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1093		 strcmp(attr, "GEOM::lunname") == 0) {
1094		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1095		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1096	} else
1097		goto out;
1098
1099	cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1100	if (cdai.buf == NULL) {
1101		ret = ENOMEM;
1102		goto out;
1103	}
1104	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1105	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1106		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1107	if (cdai.provsiz == 0)
1108		goto out;
1109	if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) {
1110		if (strcmp(attr, "GEOM::lunid") == 0) {
1111			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1112			    cdai.provsiz, scsi_devid_is_lun_naa);
1113			if (idd == NULL)
1114				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1115				    cdai.provsiz, scsi_devid_is_lun_eui64);
1116		} else
1117			idd = NULL;
1118		if (idd == NULL)
1119			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1120			    cdai.provsiz, scsi_devid_is_lun_t10);
1121		if (idd == NULL)
1122			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1123			    cdai.provsiz, scsi_devid_is_lun_name);
1124		if (idd == NULL)
1125			goto out;
1126		ret = 0;
1127		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII ||
1128		    (idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) {
1129			l = strnlen(idd->identifier, idd->length);
1130			if (l < len) {
1131				bcopy(idd->identifier, buf, l);
1132				buf[l] = 0;
1133			} else
1134				ret = EFAULT;
1135		} else {
1136			if (idd->length * 2 < len) {
1137				for (l = 0; l < idd->length; l++)
1138					sprintf(buf + l * 2, "%02x",
1139					    idd->identifier[l]);
1140			} else
1141				ret = EFAULT;
1142		}
1143	} else {
1144		ret = 0;
1145		if (strlcpy(buf, cdai.buf, len) >= len)
1146			ret = EFAULT;
1147	}
1148
1149out:
1150	if (cdai.buf != NULL)
1151		free(cdai.buf, M_CAMXPT);
1152	return ret;
1153}
1154
1155static dev_match_ret
1156xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1157	    struct cam_eb *bus)
1158{
1159	dev_match_ret retval;
1160	int i;
1161
1162	retval = DM_RET_NONE;
1163
1164	/*
1165	 * If we aren't given something to match against, that's an error.
1166	 */
1167	if (bus == NULL)
1168		return(DM_RET_ERROR);
1169
1170	/*
1171	 * If there are no match entries, then this bus matches no
1172	 * matter what.
1173	 */
1174	if ((patterns == NULL) || (num_patterns == 0))
1175		return(DM_RET_DESCEND | DM_RET_COPY);
1176
1177	for (i = 0; i < num_patterns; i++) {
1178		struct bus_match_pattern *cur_pattern;
1179
1180		/*
1181		 * If the pattern in question isn't for a bus node, we
1182		 * aren't interested.  However, we do indicate to the
1183		 * calling routine that we should continue descending the
1184		 * tree, since the user wants to match against lower-level
1185		 * EDT elements.
1186		 */
1187		if (patterns[i].type != DEV_MATCH_BUS) {
1188			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1189				retval |= DM_RET_DESCEND;
1190			continue;
1191		}
1192
1193		cur_pattern = &patterns[i].pattern.bus_pattern;
1194
1195		/*
1196		 * If they want to match any bus node, we give them any
1197		 * device node.
1198		 */
1199		if (cur_pattern->flags == BUS_MATCH_ANY) {
1200			/* set the copy flag */
1201			retval |= DM_RET_COPY;
1202
1203			/*
1204			 * If we've already decided on an action, go ahead
1205			 * and return.
1206			 */
1207			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1208				return(retval);
1209		}
1210
1211		/*
1212		 * Not sure why someone would do this...
1213		 */
1214		if (cur_pattern->flags == BUS_MATCH_NONE)
1215			continue;
1216
1217		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1218		 && (cur_pattern->path_id != bus->path_id))
1219			continue;
1220
1221		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1222		 && (cur_pattern->bus_id != bus->sim->bus_id))
1223			continue;
1224
1225		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1226		 && (cur_pattern->unit_number != bus->sim->unit_number))
1227			continue;
1228
1229		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1230		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1231			     DEV_IDLEN) != 0))
1232			continue;
1233
1234		/*
1235		 * If we get to this point, the user definitely wants
1236		 * information on this bus.  So tell the caller to copy the
1237		 * data out.
1238		 */
1239		retval |= DM_RET_COPY;
1240
1241		/*
1242		 * If the return action has been set to descend, then we
1243		 * know that we've already seen a non-bus matching
1244		 * expression, therefore we need to further descend the tree.
1245		 * This won't change by continuing around the loop, so we
1246		 * go ahead and return.  If we haven't seen a non-bus
1247		 * matching expression, we keep going around the loop until
1248		 * we exhaust the matching expressions.  We'll set the stop
1249		 * flag once we fall out of the loop.
1250		 */
1251		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1252			return(retval);
1253	}
1254
1255	/*
1256	 * If the return action hasn't been set to descend yet, that means
1257	 * we haven't seen anything other than bus matching patterns.  So
1258	 * tell the caller to stop descending the tree -- the user doesn't
1259	 * want to match against lower level tree elements.
1260	 */
1261	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1262		retval |= DM_RET_STOP;
1263
1264	return(retval);
1265}
1266
1267static dev_match_ret
1268xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1269	       struct cam_ed *device)
1270{
1271	dev_match_ret retval;
1272	int i;
1273
1274	retval = DM_RET_NONE;
1275
1276	/*
1277	 * If we aren't given something to match against, that's an error.
1278	 */
1279	if (device == NULL)
1280		return(DM_RET_ERROR);
1281
1282	/*
1283	 * If there are no match entries, then this device matches no
1284	 * matter what.
1285	 */
1286	if ((patterns == NULL) || (num_patterns == 0))
1287		return(DM_RET_DESCEND | DM_RET_COPY);
1288
1289	for (i = 0; i < num_patterns; i++) {
1290		struct device_match_pattern *cur_pattern;
1291		struct scsi_vpd_device_id *device_id_page;
1292
1293		/*
1294		 * If the pattern in question isn't for a device node, we
1295		 * aren't interested.
1296		 */
1297		if (patterns[i].type != DEV_MATCH_DEVICE) {
1298			if ((patterns[i].type == DEV_MATCH_PERIPH)
1299			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1300				retval |= DM_RET_DESCEND;
1301			continue;
1302		}
1303
1304		cur_pattern = &patterns[i].pattern.device_pattern;
1305
1306		/* Error out if mutually exclusive options are specified. */
1307		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1308		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1309			return(DM_RET_ERROR);
1310
1311		/*
1312		 * If they want to match any device node, we give them any
1313		 * device node.
1314		 */
1315		if (cur_pattern->flags == DEV_MATCH_ANY)
1316			goto copy_dev_node;
1317
1318		/*
1319		 * Not sure why someone would do this...
1320		 */
1321		if (cur_pattern->flags == DEV_MATCH_NONE)
1322			continue;
1323
1324		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1325		 && (cur_pattern->path_id != device->target->bus->path_id))
1326			continue;
1327
1328		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1329		 && (cur_pattern->target_id != device->target->target_id))
1330			continue;
1331
1332		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1333		 && (cur_pattern->target_lun != device->lun_id))
1334			continue;
1335
1336		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1337		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1338				    (caddr_t)&cur_pattern->data.inq_pat,
1339				    1, sizeof(cur_pattern->data.inq_pat),
1340				    scsi_static_inquiry_match) == NULL))
1341			continue;
1342
1343		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1344		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1345		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1346		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1347				      device->device_id_len
1348				    - SVPD_DEVICE_ID_HDR_LEN,
1349				      cur_pattern->data.devid_pat.id,
1350				      cur_pattern->data.devid_pat.id_len) != 0))
1351			continue;
1352
1353copy_dev_node:
1354		/*
1355		 * If we get to this point, the user definitely wants
1356		 * information on this device.  So tell the caller to copy
1357		 * the data out.
1358		 */
1359		retval |= DM_RET_COPY;
1360
1361		/*
1362		 * If the return action has been set to descend, then we
1363		 * know that we've already seen a peripheral matching
1364		 * expression, therefore we need to further descend the tree.
1365		 * This won't change by continuing around the loop, so we
1366		 * go ahead and return.  If we haven't seen a peripheral
1367		 * matching expression, we keep going around the loop until
1368		 * we exhaust the matching expressions.  We'll set the stop
1369		 * flag once we fall out of the loop.
1370		 */
1371		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1372			return(retval);
1373	}
1374
1375	/*
1376	 * If the return action hasn't been set to descend yet, that means
1377	 * we haven't seen any peripheral matching patterns.  So tell the
1378	 * caller to stop descending the tree -- the user doesn't want to
1379	 * match against lower level tree elements.
1380	 */
1381	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1382		retval |= DM_RET_STOP;
1383
1384	return(retval);
1385}
1386
1387/*
1388 * Match a single peripheral against any number of match patterns.
1389 */
1390static dev_match_ret
1391xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1392	       struct cam_periph *periph)
1393{
1394	dev_match_ret retval;
1395	int i;
1396
1397	/*
1398	 * If we aren't given something to match against, that's an error.
1399	 */
1400	if (periph == NULL)
1401		return(DM_RET_ERROR);
1402
1403	/*
1404	 * If there are no match entries, then this peripheral matches no
1405	 * matter what.
1406	 */
1407	if ((patterns == NULL) || (num_patterns == 0))
1408		return(DM_RET_STOP | DM_RET_COPY);
1409
1410	/*
1411	 * There aren't any nodes below a peripheral node, so there's no
1412	 * reason to descend the tree any further.
1413	 */
1414	retval = DM_RET_STOP;
1415
1416	for (i = 0; i < num_patterns; i++) {
1417		struct periph_match_pattern *cur_pattern;
1418
1419		/*
1420		 * If the pattern in question isn't for a peripheral, we
1421		 * aren't interested.
1422		 */
1423		if (patterns[i].type != DEV_MATCH_PERIPH)
1424			continue;
1425
1426		cur_pattern = &patterns[i].pattern.periph_pattern;
1427
1428		/*
1429		 * If they want to match on anything, then we will do so.
1430		 */
1431		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1432			/* set the copy flag */
1433			retval |= DM_RET_COPY;
1434
1435			/*
1436			 * We've already set the return action to stop,
1437			 * since there are no nodes below peripherals in
1438			 * the tree.
1439			 */
1440			return(retval);
1441		}
1442
1443		/*
1444		 * Not sure why someone would do this...
1445		 */
1446		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1447			continue;
1448
1449		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1450		 && (cur_pattern->path_id != periph->path->bus->path_id))
1451			continue;
1452
1453		/*
1454		 * For the target and lun id's, we have to make sure the
1455		 * target and lun pointers aren't NULL.  The xpt peripheral
1456		 * has a wildcard target and device.
1457		 */
1458		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1459		 && ((periph->path->target == NULL)
1460		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1461			continue;
1462
1463		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1464		 && ((periph->path->device == NULL)
1465		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1466			continue;
1467
1468		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1469		 && (cur_pattern->unit_number != periph->unit_number))
1470			continue;
1471
1472		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1473		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1474			     DEV_IDLEN) != 0))
1475			continue;
1476
1477		/*
1478		 * If we get to this point, the user definitely wants
1479		 * information on this peripheral.  So tell the caller to
1480		 * copy the data out.
1481		 */
1482		retval |= DM_RET_COPY;
1483
1484		/*
1485		 * The return action has already been set to stop, since
1486		 * peripherals don't have any nodes below them in the EDT.
1487		 */
1488		return(retval);
1489	}
1490
1491	/*
1492	 * If we get to this point, the peripheral that was passed in
1493	 * doesn't match any of the patterns.
1494	 */
1495	return(retval);
1496}
1497
1498static int
1499xptedtbusfunc(struct cam_eb *bus, void *arg)
1500{
1501	struct ccb_dev_match *cdm;
1502	dev_match_ret retval;
1503
1504	cdm = (struct ccb_dev_match *)arg;
1505
1506	/*
1507	 * If our position is for something deeper in the tree, that means
1508	 * that we've already seen this node.  So, we keep going down.
1509	 */
1510	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1511	 && (cdm->pos.cookie.bus == bus)
1512	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1513	 && (cdm->pos.cookie.target != NULL))
1514		retval = DM_RET_DESCEND;
1515	else
1516		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1517
1518	/*
1519	 * If we got an error, bail out of the search.
1520	 */
1521	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1522		cdm->status = CAM_DEV_MATCH_ERROR;
1523		return(0);
1524	}
1525
1526	/*
1527	 * If the copy flag is set, copy this bus out.
1528	 */
1529	if (retval & DM_RET_COPY) {
1530		int spaceleft, j;
1531
1532		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1533			sizeof(struct dev_match_result));
1534
1535		/*
1536		 * If we don't have enough space to put in another
1537		 * match result, save our position and tell the
1538		 * user there are more devices to check.
1539		 */
1540		if (spaceleft < sizeof(struct dev_match_result)) {
1541			bzero(&cdm->pos, sizeof(cdm->pos));
1542			cdm->pos.position_type =
1543				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1544
1545			cdm->pos.cookie.bus = bus;
1546			cdm->pos.generations[CAM_BUS_GENERATION]=
1547				xsoftc.bus_generation;
1548			cdm->status = CAM_DEV_MATCH_MORE;
1549			return(0);
1550		}
1551		j = cdm->num_matches;
1552		cdm->num_matches++;
1553		cdm->matches[j].type = DEV_MATCH_BUS;
1554		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1555		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1556		cdm->matches[j].result.bus_result.unit_number =
1557			bus->sim->unit_number;
1558		strncpy(cdm->matches[j].result.bus_result.dev_name,
1559			bus->sim->sim_name, DEV_IDLEN);
1560	}
1561
1562	/*
1563	 * If the user is only interested in busses, there's no
1564	 * reason to descend to the next level in the tree.
1565	 */
1566	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1567		return(1);
1568
1569	/*
1570	 * If there is a target generation recorded, check it to
1571	 * make sure the target list hasn't changed.
1572	 */
1573	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1574	 && (bus == cdm->pos.cookie.bus)
1575	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1576	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1577	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1578	     bus->generation)) {
1579		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1580		return(0);
1581	}
1582
1583	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1584	 && (cdm->pos.cookie.bus == bus)
1585	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1586	 && (cdm->pos.cookie.target != NULL))
1587		return(xpttargettraverse(bus,
1588					(struct cam_et *)cdm->pos.cookie.target,
1589					 xptedttargetfunc, arg));
1590	else
1591		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1592}
1593
1594static int
1595xptedttargetfunc(struct cam_et *target, void *arg)
1596{
1597	struct ccb_dev_match *cdm;
1598
1599	cdm = (struct ccb_dev_match *)arg;
1600
1601	/*
1602	 * If there is a device list generation recorded, check it to
1603	 * make sure the device list hasn't changed.
1604	 */
1605	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1606	 && (cdm->pos.cookie.bus == target->bus)
1607	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1608	 && (cdm->pos.cookie.target == target)
1609	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1610	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1611	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1612	     target->generation)) {
1613		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1614		return(0);
1615	}
1616
1617	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1618	 && (cdm->pos.cookie.bus == target->bus)
1619	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1620	 && (cdm->pos.cookie.target == target)
1621	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1622	 && (cdm->pos.cookie.device != NULL))
1623		return(xptdevicetraverse(target,
1624					(struct cam_ed *)cdm->pos.cookie.device,
1625					 xptedtdevicefunc, arg));
1626	else
1627		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1628}
1629
1630static int
1631xptedtdevicefunc(struct cam_ed *device, void *arg)
1632{
1633
1634	struct ccb_dev_match *cdm;
1635	dev_match_ret retval;
1636
1637	cdm = (struct ccb_dev_match *)arg;
1638
1639	/*
1640	 * If our position is for something deeper in the tree, that means
1641	 * that we've already seen this node.  So, we keep going down.
1642	 */
1643	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1644	 && (cdm->pos.cookie.device == device)
1645	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1646	 && (cdm->pos.cookie.periph != NULL))
1647		retval = DM_RET_DESCEND;
1648	else
1649		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1650					device);
1651
1652	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1653		cdm->status = CAM_DEV_MATCH_ERROR;
1654		return(0);
1655	}
1656
1657	/*
1658	 * If the copy flag is set, copy this device out.
1659	 */
1660	if (retval & DM_RET_COPY) {
1661		int spaceleft, j;
1662
1663		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1664			sizeof(struct dev_match_result));
1665
1666		/*
1667		 * If we don't have enough space to put in another
1668		 * match result, save our position and tell the
1669		 * user there are more devices to check.
1670		 */
1671		if (spaceleft < sizeof(struct dev_match_result)) {
1672			bzero(&cdm->pos, sizeof(cdm->pos));
1673			cdm->pos.position_type =
1674				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1675				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1676
1677			cdm->pos.cookie.bus = device->target->bus;
1678			cdm->pos.generations[CAM_BUS_GENERATION]=
1679				xsoftc.bus_generation;
1680			cdm->pos.cookie.target = device->target;
1681			cdm->pos.generations[CAM_TARGET_GENERATION] =
1682				device->target->bus->generation;
1683			cdm->pos.cookie.device = device;
1684			cdm->pos.generations[CAM_DEV_GENERATION] =
1685				device->target->generation;
1686			cdm->status = CAM_DEV_MATCH_MORE;
1687			return(0);
1688		}
1689		j = cdm->num_matches;
1690		cdm->num_matches++;
1691		cdm->matches[j].type = DEV_MATCH_DEVICE;
1692		cdm->matches[j].result.device_result.path_id =
1693			device->target->bus->path_id;
1694		cdm->matches[j].result.device_result.target_id =
1695			device->target->target_id;
1696		cdm->matches[j].result.device_result.target_lun =
1697			device->lun_id;
1698		cdm->matches[j].result.device_result.protocol =
1699			device->protocol;
1700		bcopy(&device->inq_data,
1701		      &cdm->matches[j].result.device_result.inq_data,
1702		      sizeof(struct scsi_inquiry_data));
1703		bcopy(&device->ident_data,
1704		      &cdm->matches[j].result.device_result.ident_data,
1705		      sizeof(struct ata_params));
1706
1707		/* Let the user know whether this device is unconfigured */
1708		if (device->flags & CAM_DEV_UNCONFIGURED)
1709			cdm->matches[j].result.device_result.flags =
1710				DEV_RESULT_UNCONFIGURED;
1711		else
1712			cdm->matches[j].result.device_result.flags =
1713				DEV_RESULT_NOFLAG;
1714	}
1715
1716	/*
1717	 * If the user isn't interested in peripherals, don't descend
1718	 * the tree any further.
1719	 */
1720	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1721		return(1);
1722
1723	/*
1724	 * If there is a peripheral list generation recorded, make sure
1725	 * it hasn't changed.
1726	 */
1727	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1728	 && (device->target->bus == cdm->pos.cookie.bus)
1729	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1730	 && (device->target == cdm->pos.cookie.target)
1731	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1732	 && (device == cdm->pos.cookie.device)
1733	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1734	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1735	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1736	     device->generation)){
1737		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1738		return(0);
1739	}
1740
1741	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1742	 && (cdm->pos.cookie.bus == device->target->bus)
1743	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1744	 && (cdm->pos.cookie.target == device->target)
1745	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1746	 && (cdm->pos.cookie.device == device)
1747	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1748	 && (cdm->pos.cookie.periph != NULL))
1749		return(xptperiphtraverse(device,
1750				(struct cam_periph *)cdm->pos.cookie.periph,
1751				xptedtperiphfunc, arg));
1752	else
1753		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
1754}
1755
1756static int
1757xptedtperiphfunc(struct cam_periph *periph, void *arg)
1758{
1759	struct ccb_dev_match *cdm;
1760	dev_match_ret retval;
1761
1762	cdm = (struct ccb_dev_match *)arg;
1763
1764	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1765
1766	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1767		cdm->status = CAM_DEV_MATCH_ERROR;
1768		return(0);
1769	}
1770
1771	/*
1772	 * If the copy flag is set, copy this peripheral out.
1773	 */
1774	if (retval & DM_RET_COPY) {
1775		int spaceleft, j;
1776
1777		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1778			sizeof(struct dev_match_result));
1779
1780		/*
1781		 * If we don't have enough space to put in another
1782		 * match result, save our position and tell the
1783		 * user there are more devices to check.
1784		 */
1785		if (spaceleft < sizeof(struct dev_match_result)) {
1786			bzero(&cdm->pos, sizeof(cdm->pos));
1787			cdm->pos.position_type =
1788				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1789				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1790				CAM_DEV_POS_PERIPH;
1791
1792			cdm->pos.cookie.bus = periph->path->bus;
1793			cdm->pos.generations[CAM_BUS_GENERATION]=
1794				xsoftc.bus_generation;
1795			cdm->pos.cookie.target = periph->path->target;
1796			cdm->pos.generations[CAM_TARGET_GENERATION] =
1797				periph->path->bus->generation;
1798			cdm->pos.cookie.device = periph->path->device;
1799			cdm->pos.generations[CAM_DEV_GENERATION] =
1800				periph->path->target->generation;
1801			cdm->pos.cookie.periph = periph;
1802			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1803				periph->path->device->generation;
1804			cdm->status = CAM_DEV_MATCH_MORE;
1805			return(0);
1806		}
1807
1808		j = cdm->num_matches;
1809		cdm->num_matches++;
1810		cdm->matches[j].type = DEV_MATCH_PERIPH;
1811		cdm->matches[j].result.periph_result.path_id =
1812			periph->path->bus->path_id;
1813		cdm->matches[j].result.periph_result.target_id =
1814			periph->path->target->target_id;
1815		cdm->matches[j].result.periph_result.target_lun =
1816			periph->path->device->lun_id;
1817		cdm->matches[j].result.periph_result.unit_number =
1818			periph->unit_number;
1819		strncpy(cdm->matches[j].result.periph_result.periph_name,
1820			periph->periph_name, DEV_IDLEN);
1821	}
1822
1823	return(1);
1824}
1825
1826static int
1827xptedtmatch(struct ccb_dev_match *cdm)
1828{
1829	int ret;
1830
1831	cdm->num_matches = 0;
1832
1833	/*
1834	 * Check the bus list generation.  If it has changed, the user
1835	 * needs to reset everything and start over.
1836	 */
1837	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1838	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
1839	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
1840		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1841		return(0);
1842	}
1843
1844	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1845	 && (cdm->pos.cookie.bus != NULL))
1846		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
1847				     xptedtbusfunc, cdm);
1848	else
1849		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
1850
1851	/*
1852	 * If we get back 0, that means that we had to stop before fully
1853	 * traversing the EDT.  It also means that one of the subroutines
1854	 * has set the status field to the proper value.  If we get back 1,
1855	 * we've fully traversed the EDT and copied out any matching entries.
1856	 */
1857	if (ret == 1)
1858		cdm->status = CAM_DEV_MATCH_LAST;
1859
1860	return(ret);
1861}
1862
1863static int
1864xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1865{
1866	struct ccb_dev_match *cdm;
1867
1868	cdm = (struct ccb_dev_match *)arg;
1869
1870	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1871	 && (cdm->pos.cookie.pdrv == pdrv)
1872	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1873	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1874	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1875	     (*pdrv)->generation)) {
1876		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1877		return(0);
1878	}
1879
1880	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1881	 && (cdm->pos.cookie.pdrv == pdrv)
1882	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1883	 && (cdm->pos.cookie.periph != NULL))
1884		return(xptpdperiphtraverse(pdrv,
1885				(struct cam_periph *)cdm->pos.cookie.periph,
1886				xptplistperiphfunc, arg));
1887	else
1888		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
1889}
1890
1891static int
1892xptplistperiphfunc(struct cam_periph *periph, void *arg)
1893{
1894	struct ccb_dev_match *cdm;
1895	dev_match_ret retval;
1896
1897	cdm = (struct ccb_dev_match *)arg;
1898
1899	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1900
1901	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1902		cdm->status = CAM_DEV_MATCH_ERROR;
1903		return(0);
1904	}
1905
1906	/*
1907	 * If the copy flag is set, copy this peripheral out.
1908	 */
1909	if (retval & DM_RET_COPY) {
1910		int spaceleft, j;
1911
1912		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1913			sizeof(struct dev_match_result));
1914
1915		/*
1916		 * If we don't have enough space to put in another
1917		 * match result, save our position and tell the
1918		 * user there are more devices to check.
1919		 */
1920		if (spaceleft < sizeof(struct dev_match_result)) {
1921			struct periph_driver **pdrv;
1922
1923			pdrv = NULL;
1924			bzero(&cdm->pos, sizeof(cdm->pos));
1925			cdm->pos.position_type =
1926				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1927				CAM_DEV_POS_PERIPH;
1928
1929			/*
1930			 * This may look a bit non-sensical, but it is
1931			 * actually quite logical.  There are very few
1932			 * peripheral drivers, and bloating every peripheral
1933			 * structure with a pointer back to its parent
1934			 * peripheral driver linker set entry would cost
1935			 * more in the long run than doing this quick lookup.
1936			 */
1937			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1938				if (strcmp((*pdrv)->driver_name,
1939				    periph->periph_name) == 0)
1940					break;
1941			}
1942
1943			if (*pdrv == NULL) {
1944				cdm->status = CAM_DEV_MATCH_ERROR;
1945				return(0);
1946			}
1947
1948			cdm->pos.cookie.pdrv = pdrv;
1949			/*
1950			 * The periph generation slot does double duty, as
1951			 * does the periph pointer slot.  They are used for
1952			 * both edt and pdrv lookups and positioning.
1953			 */
1954			cdm->pos.cookie.periph = periph;
1955			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1956				(*pdrv)->generation;
1957			cdm->status = CAM_DEV_MATCH_MORE;
1958			return(0);
1959		}
1960
1961		j = cdm->num_matches;
1962		cdm->num_matches++;
1963		cdm->matches[j].type = DEV_MATCH_PERIPH;
1964		cdm->matches[j].result.periph_result.path_id =
1965			periph->path->bus->path_id;
1966
1967		/*
1968		 * The transport layer peripheral doesn't have a target or
1969		 * lun.
1970		 */
1971		if (periph->path->target)
1972			cdm->matches[j].result.periph_result.target_id =
1973				periph->path->target->target_id;
1974		else
1975			cdm->matches[j].result.periph_result.target_id = -1;
1976
1977		if (periph->path->device)
1978			cdm->matches[j].result.periph_result.target_lun =
1979				periph->path->device->lun_id;
1980		else
1981			cdm->matches[j].result.periph_result.target_lun = -1;
1982
1983		cdm->matches[j].result.periph_result.unit_number =
1984			periph->unit_number;
1985		strncpy(cdm->matches[j].result.periph_result.periph_name,
1986			periph->periph_name, DEV_IDLEN);
1987	}
1988
1989	return(1);
1990}
1991
1992static int
1993xptperiphlistmatch(struct ccb_dev_match *cdm)
1994{
1995	int ret;
1996
1997	cdm->num_matches = 0;
1998
1999	/*
2000	 * At this point in the edt traversal function, we check the bus
2001	 * list generation to make sure that no busses have been added or
2002	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2003	 * For the peripheral driver list traversal function, however, we
2004	 * don't have to worry about new peripheral driver types coming or
2005	 * going; they're in a linker set, and therefore can't change
2006	 * without a recompile.
2007	 */
2008
2009	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2010	 && (cdm->pos.cookie.pdrv != NULL))
2011		ret = xptpdrvtraverse(
2012				(struct periph_driver **)cdm->pos.cookie.pdrv,
2013				xptplistpdrvfunc, cdm);
2014	else
2015		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2016
2017	/*
2018	 * If we get back 0, that means that we had to stop before fully
2019	 * traversing the peripheral driver tree.  It also means that one of
2020	 * the subroutines has set the status field to the proper value.  If
2021	 * we get back 1, we've fully traversed the EDT and copied out any
2022	 * matching entries.
2023	 */
2024	if (ret == 1)
2025		cdm->status = CAM_DEV_MATCH_LAST;
2026
2027	return(ret);
2028}
2029
2030static int
2031xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2032{
2033	struct cam_eb *bus, *next_bus;
2034	int retval;
2035
2036	retval = 1;
2037
2038	xpt_lock_buses();
2039	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2040	     bus != NULL;
2041	     bus = next_bus) {
2042
2043		bus->refcount++;
2044
2045		/*
2046		 * XXX The locking here is obviously very complex.  We
2047		 * should work to simplify it.
2048		 */
2049		xpt_unlock_buses();
2050		CAM_SIM_LOCK(bus->sim);
2051		retval = tr_func(bus, arg);
2052		CAM_SIM_UNLOCK(bus->sim);
2053
2054		xpt_lock_buses();
2055		next_bus = TAILQ_NEXT(bus, links);
2056		xpt_unlock_buses();
2057
2058		xpt_release_bus(bus);
2059
2060		if (retval == 0)
2061			return(retval);
2062		xpt_lock_buses();
2063	}
2064	xpt_unlock_buses();
2065
2066	return(retval);
2067}
2068
2069static int
2070xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2071		  xpt_targetfunc_t *tr_func, void *arg)
2072{
2073	struct cam_et *target, *next_target;
2074	int retval;
2075
2076	mtx_assert(bus->sim->mtx, MA_OWNED);
2077	retval = 1;
2078	for (target = (start_target ? start_target :
2079		       TAILQ_FIRST(&bus->et_entries));
2080	     target != NULL; target = next_target) {
2081
2082		target->refcount++;
2083
2084		retval = tr_func(target, arg);
2085
2086		next_target = TAILQ_NEXT(target, links);
2087
2088		xpt_release_target(target);
2089
2090		if (retval == 0)
2091			return(retval);
2092	}
2093
2094	return(retval);
2095}
2096
2097static int
2098xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2099		  xpt_devicefunc_t *tr_func, void *arg)
2100{
2101	struct cam_ed *device, *next_device;
2102	int retval;
2103
2104	mtx_assert(target->bus->sim->mtx, MA_OWNED);
2105	retval = 1;
2106	for (device = (start_device ? start_device :
2107		       TAILQ_FIRST(&target->ed_entries));
2108	     device != NULL;
2109	     device = next_device) {
2110
2111		/*
2112		 * Hold a reference so the current device does not go away
2113		 * on us.
2114		 */
2115		device->refcount++;
2116
2117		retval = tr_func(device, arg);
2118
2119		/*
2120		 * Grab our next pointer before we release the current
2121		 * device.
2122		 */
2123		next_device = TAILQ_NEXT(device, links);
2124
2125		xpt_release_device(device);
2126
2127		if (retval == 0)
2128			return(retval);
2129	}
2130
2131	return(retval);
2132}
2133
2134static int
2135xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2136		  xpt_periphfunc_t *tr_func, void *arg)
2137{
2138	struct cam_periph *periph, *next_periph;
2139	int retval;
2140
2141	retval = 1;
2142
2143	mtx_assert(device->sim->mtx, MA_OWNED);
2144	xpt_lock_buses();
2145	for (periph = (start_periph ? start_periph :
2146		       SLIST_FIRST(&device->periphs));
2147	     periph != NULL;
2148	     periph = next_periph) {
2149
2150
2151		/*
2152		 * In this case, we want to show peripherals that have been
2153		 * invalidated, but not peripherals that are scheduled to
2154		 * be freed.  So instead of calling cam_periph_acquire(),
2155		 * which will fail if the periph has been invalidated, we
2156		 * just check for the free flag here.  If it is in the
2157		 * process of being freed, we skip to the next periph.
2158		 */
2159		if (periph->flags & CAM_PERIPH_FREE) {
2160			next_periph = SLIST_NEXT(periph, periph_links);
2161			continue;
2162		}
2163
2164		/*
2165		 * Acquire a reference to this periph while we call the
2166		 * traversal function, so it can't go away.
2167		 */
2168		periph->refcount++;
2169
2170		retval = tr_func(periph, arg);
2171
2172		/*
2173		 * Grab the next peripheral before we release this one, so
2174		 * our next pointer is still valid.
2175		 */
2176		next_periph = SLIST_NEXT(periph, periph_links);
2177
2178		cam_periph_release_locked_buses(periph);
2179
2180		if (retval == 0)
2181			goto bailout_done;
2182	}
2183
2184bailout_done:
2185
2186	xpt_unlock_buses();
2187
2188	return(retval);
2189}
2190
2191static int
2192xptpdrvtraverse(struct periph_driver **start_pdrv,
2193		xpt_pdrvfunc_t *tr_func, void *arg)
2194{
2195	struct periph_driver **pdrv;
2196	int retval;
2197
2198	retval = 1;
2199
2200	/*
2201	 * We don't traverse the peripheral driver list like we do the
2202	 * other lists, because it is a linker set, and therefore cannot be
2203	 * changed during runtime.  If the peripheral driver list is ever
2204	 * re-done to be something other than a linker set (i.e. it can
2205	 * change while the system is running), the list traversal should
2206	 * be modified to work like the other traversal functions.
2207	 */
2208	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2209	     *pdrv != NULL; pdrv++) {
2210		retval = tr_func(pdrv, arg);
2211
2212		if (retval == 0)
2213			return(retval);
2214	}
2215
2216	return(retval);
2217}
2218
2219static int
2220xptpdperiphtraverse(struct periph_driver **pdrv,
2221		    struct cam_periph *start_periph,
2222		    xpt_periphfunc_t *tr_func, void *arg)
2223{
2224	struct cam_periph *periph, *next_periph;
2225	struct cam_sim *sim;
2226	int retval;
2227
2228	retval = 1;
2229
2230	xpt_lock_buses();
2231	for (periph = (start_periph ? start_periph :
2232	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2233	     periph = next_periph) {
2234
2235
2236		/*
2237		 * In this case, we want to show peripherals that have been
2238		 * invalidated, but not peripherals that are scheduled to
2239		 * be freed.  So instead of calling cam_periph_acquire(),
2240		 * which will fail if the periph has been invalidated, we
2241		 * just check for the free flag here.  If it is free, we
2242		 * skip to the next periph.
2243		 */
2244		if (periph->flags & CAM_PERIPH_FREE) {
2245			next_periph = TAILQ_NEXT(periph, unit_links);
2246			continue;
2247		}
2248
2249		/*
2250		 * Acquire a reference to this periph while we call the
2251		 * traversal function, so it can't go away.
2252		 */
2253		periph->refcount++;
2254		sim = periph->sim;
2255		xpt_unlock_buses();
2256		CAM_SIM_LOCK(sim);
2257		xpt_lock_buses();
2258		retval = tr_func(periph, arg);
2259
2260		/*
2261		 * Grab the next peripheral before we release this one, so
2262		 * our next pointer is still valid.
2263		 */
2264		next_periph = TAILQ_NEXT(periph, unit_links);
2265
2266		cam_periph_release_locked_buses(periph);
2267		CAM_SIM_UNLOCK(sim);
2268
2269		if (retval == 0)
2270			goto bailout_done;
2271	}
2272bailout_done:
2273
2274	xpt_unlock_buses();
2275
2276	return(retval);
2277}
2278
2279static int
2280xptdefbusfunc(struct cam_eb *bus, void *arg)
2281{
2282	struct xpt_traverse_config *tr_config;
2283
2284	tr_config = (struct xpt_traverse_config *)arg;
2285
2286	if (tr_config->depth == XPT_DEPTH_BUS) {
2287		xpt_busfunc_t *tr_func;
2288
2289		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2290
2291		return(tr_func(bus, tr_config->tr_arg));
2292	} else
2293		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2294}
2295
2296static int
2297xptdeftargetfunc(struct cam_et *target, void *arg)
2298{
2299	struct xpt_traverse_config *tr_config;
2300
2301	tr_config = (struct xpt_traverse_config *)arg;
2302
2303	if (tr_config->depth == XPT_DEPTH_TARGET) {
2304		xpt_targetfunc_t *tr_func;
2305
2306		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2307
2308		return(tr_func(target, tr_config->tr_arg));
2309	} else
2310		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2311}
2312
2313static int
2314xptdefdevicefunc(struct cam_ed *device, void *arg)
2315{
2316	struct xpt_traverse_config *tr_config;
2317
2318	tr_config = (struct xpt_traverse_config *)arg;
2319
2320	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2321		xpt_devicefunc_t *tr_func;
2322
2323		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2324
2325		return(tr_func(device, tr_config->tr_arg));
2326	} else
2327		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2328}
2329
2330static int
2331xptdefperiphfunc(struct cam_periph *periph, void *arg)
2332{
2333	struct xpt_traverse_config *tr_config;
2334	xpt_periphfunc_t *tr_func;
2335
2336	tr_config = (struct xpt_traverse_config *)arg;
2337
2338	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2339
2340	/*
2341	 * Unlike the other default functions, we don't check for depth
2342	 * here.  The peripheral driver level is the last level in the EDT,
2343	 * so if we're here, we should execute the function in question.
2344	 */
2345	return(tr_func(periph, tr_config->tr_arg));
2346}
2347
2348/*
2349 * Execute the given function for every bus in the EDT.
2350 */
2351static int
2352xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2353{
2354	struct xpt_traverse_config tr_config;
2355
2356	tr_config.depth = XPT_DEPTH_BUS;
2357	tr_config.tr_func = tr_func;
2358	tr_config.tr_arg = arg;
2359
2360	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2361}
2362
2363/*
2364 * Execute the given function for every device in the EDT.
2365 */
2366static int
2367xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2368{
2369	struct xpt_traverse_config tr_config;
2370
2371	tr_config.depth = XPT_DEPTH_DEVICE;
2372	tr_config.tr_func = tr_func;
2373	tr_config.tr_arg = arg;
2374
2375	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2376}
2377
2378static int
2379xptsetasyncfunc(struct cam_ed *device, void *arg)
2380{
2381	struct cam_path path;
2382	struct ccb_getdev cgd;
2383	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2384
2385	/*
2386	 * Don't report unconfigured devices (Wildcard devs,
2387	 * devices only for target mode, device instances
2388	 * that have been invalidated but are waiting for
2389	 * their last reference count to be released).
2390	 */
2391	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2392		return (1);
2393
2394	xpt_compile_path(&path,
2395			 NULL,
2396			 device->target->bus->path_id,
2397			 device->target->target_id,
2398			 device->lun_id);
2399	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2400	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2401	xpt_action((union ccb *)&cgd);
2402	csa->callback(csa->callback_arg,
2403			    AC_FOUND_DEVICE,
2404			    &path, &cgd);
2405	xpt_release_path(&path);
2406
2407	return(1);
2408}
2409
2410static int
2411xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2412{
2413	struct cam_path path;
2414	struct ccb_pathinq cpi;
2415	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2416
2417	xpt_compile_path(&path, /*periph*/NULL,
2418			 bus->path_id,
2419			 CAM_TARGET_WILDCARD,
2420			 CAM_LUN_WILDCARD);
2421	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2422	cpi.ccb_h.func_code = XPT_PATH_INQ;
2423	xpt_action((union ccb *)&cpi);
2424	csa->callback(csa->callback_arg,
2425			    AC_PATH_REGISTERED,
2426			    &path, &cpi);
2427	xpt_release_path(&path);
2428
2429	return(1);
2430}
2431
2432void
2433xpt_action(union ccb *start_ccb)
2434{
2435
2436	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2437
2438	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2439	(*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2440}
2441
2442void
2443xpt_action_default(union ccb *start_ccb)
2444{
2445	struct cam_path *path;
2446
2447	path = start_ccb->ccb_h.path;
2448	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2449
2450	switch (start_ccb->ccb_h.func_code) {
2451	case XPT_SCSI_IO:
2452	{
2453		struct cam_ed *device;
2454
2455		/*
2456		 * For the sake of compatibility with SCSI-1
2457		 * devices that may not understand the identify
2458		 * message, we include lun information in the
2459		 * second byte of all commands.  SCSI-1 specifies
2460		 * that luns are a 3 bit value and reserves only 3
2461		 * bits for lun information in the CDB.  Later
2462		 * revisions of the SCSI spec allow for more than 8
2463		 * luns, but have deprecated lun information in the
2464		 * CDB.  So, if the lun won't fit, we must omit.
2465		 *
2466		 * Also be aware that during initial probing for devices,
2467		 * the inquiry information is unknown but initialized to 0.
2468		 * This means that this code will be exercised while probing
2469		 * devices with an ANSI revision greater than 2.
2470		 */
2471		device = path->device;
2472		if (device->protocol_version <= SCSI_REV_2
2473		 && start_ccb->ccb_h.target_lun < 8
2474		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2475
2476			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2477			    start_ccb->ccb_h.target_lun << 5;
2478		}
2479		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2480	}
2481	/* FALLTHROUGH */
2482	case XPT_TARGET_IO:
2483	case XPT_CONT_TARGET_IO:
2484		start_ccb->csio.sense_resid = 0;
2485		start_ccb->csio.resid = 0;
2486		/* FALLTHROUGH */
2487	case XPT_ATA_IO:
2488		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2489			start_ccb->ataio.resid = 0;
2490		/* FALLTHROUGH */
2491	case XPT_RESET_DEV:
2492	case XPT_ENG_EXEC:
2493	case XPT_SMP_IO:
2494		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2495		if (xpt_schedule_devq(path->bus->sim->devq, path->device))
2496			xpt_run_devq(path->bus->sim->devq);
2497		break;
2498	case XPT_CALC_GEOMETRY:
2499	{
2500		struct cam_sim *sim;
2501
2502		/* Filter out garbage */
2503		if (start_ccb->ccg.block_size == 0
2504		 || start_ccb->ccg.volume_size == 0) {
2505			start_ccb->ccg.cylinders = 0;
2506			start_ccb->ccg.heads = 0;
2507			start_ccb->ccg.secs_per_track = 0;
2508			start_ccb->ccb_h.status = CAM_REQ_CMP;
2509			break;
2510		}
2511#if defined(PC98) || defined(__sparc64__)
2512		/*
2513		 * In a PC-98 system, geometry translation depens on
2514		 * the "real" device geometry obtained from mode page 4.
2515		 * SCSI geometry translation is performed in the
2516		 * initialization routine of the SCSI BIOS and the result
2517		 * stored in host memory.  If the translation is available
2518		 * in host memory, use it.  If not, rely on the default
2519		 * translation the device driver performs.
2520		 * For sparc64, we may need adjust the geometry of large
2521		 * disks in order to fit the limitations of the 16-bit
2522		 * fields of the VTOC8 disk label.
2523		 */
2524		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2525			start_ccb->ccb_h.status = CAM_REQ_CMP;
2526			break;
2527		}
2528#endif
2529		sim = path->bus->sim;
2530		(*(sim->sim_action))(sim, start_ccb);
2531		break;
2532	}
2533	case XPT_ABORT:
2534	{
2535		union ccb* abort_ccb;
2536
2537		abort_ccb = start_ccb->cab.abort_ccb;
2538		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2539
2540			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2541				struct cam_ccbq *ccbq;
2542				struct cam_ed *device;
2543
2544				device = abort_ccb->ccb_h.path->device;
2545				ccbq = &device->ccbq;
2546				cam_ccbq_remove_ccb(ccbq, abort_ccb);
2547				abort_ccb->ccb_h.status =
2548				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2549				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2550				xpt_done(abort_ccb);
2551				start_ccb->ccb_h.status = CAM_REQ_CMP;
2552				break;
2553			}
2554			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2555			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2556				/*
2557				 * We've caught this ccb en route to
2558				 * the SIM.  Flag it for abort and the
2559				 * SIM will do so just before starting
2560				 * real work on the CCB.
2561				 */
2562				abort_ccb->ccb_h.status =
2563				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2564				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2565				start_ccb->ccb_h.status = CAM_REQ_CMP;
2566				break;
2567			}
2568		}
2569		if (XPT_FC_IS_QUEUED(abort_ccb)
2570		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2571			/*
2572			 * It's already completed but waiting
2573			 * for our SWI to get to it.
2574			 */
2575			start_ccb->ccb_h.status = CAM_UA_ABORT;
2576			break;
2577		}
2578		/*
2579		 * If we weren't able to take care of the abort request
2580		 * in the XPT, pass the request down to the SIM for processing.
2581		 */
2582	}
2583	/* FALLTHROUGH */
2584	case XPT_ACCEPT_TARGET_IO:
2585	case XPT_EN_LUN:
2586	case XPT_IMMED_NOTIFY:
2587	case XPT_NOTIFY_ACK:
2588	case XPT_RESET_BUS:
2589	case XPT_IMMEDIATE_NOTIFY:
2590	case XPT_NOTIFY_ACKNOWLEDGE:
2591	case XPT_GET_SIM_KNOB:
2592	case XPT_SET_SIM_KNOB:
2593	{
2594		struct cam_sim *sim;
2595
2596		sim = path->bus->sim;
2597		(*(sim->sim_action))(sim, start_ccb);
2598		break;
2599	}
2600	case XPT_PATH_INQ:
2601	{
2602		struct cam_sim *sim;
2603
2604		sim = path->bus->sim;
2605		(*(sim->sim_action))(sim, start_ccb);
2606		break;
2607	}
2608	case XPT_PATH_STATS:
2609		start_ccb->cpis.last_reset = path->bus->last_reset;
2610		start_ccb->ccb_h.status = CAM_REQ_CMP;
2611		break;
2612	case XPT_GDEV_TYPE:
2613	{
2614		struct cam_ed *dev;
2615
2616		dev = path->device;
2617		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2618			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2619		} else {
2620			struct ccb_getdev *cgd;
2621
2622			cgd = &start_ccb->cgd;
2623			cgd->protocol = dev->protocol;
2624			cgd->inq_data = dev->inq_data;
2625			cgd->ident_data = dev->ident_data;
2626			cgd->inq_flags = dev->inq_flags;
2627			cgd->ccb_h.status = CAM_REQ_CMP;
2628			cgd->serial_num_len = dev->serial_num_len;
2629			if ((dev->serial_num_len > 0)
2630			 && (dev->serial_num != NULL))
2631				bcopy(dev->serial_num, cgd->serial_num,
2632				      dev->serial_num_len);
2633		}
2634		break;
2635	}
2636	case XPT_GDEV_STATS:
2637	{
2638		struct cam_ed *dev;
2639
2640		dev = path->device;
2641		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2642			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2643		} else {
2644			struct ccb_getdevstats *cgds;
2645			struct cam_eb *bus;
2646			struct cam_et *tar;
2647
2648			cgds = &start_ccb->cgds;
2649			bus = path->bus;
2650			tar = path->target;
2651			cgds->dev_openings = dev->ccbq.dev_openings;
2652			cgds->dev_active = dev->ccbq.dev_active;
2653			cgds->devq_openings = dev->ccbq.devq_openings;
2654			cgds->devq_queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2655			cgds->held = dev->ccbq.held;
2656			cgds->last_reset = tar->last_reset;
2657			cgds->maxtags = dev->maxtags;
2658			cgds->mintags = dev->mintags;
2659			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2660				cgds->last_reset = bus->last_reset;
2661			cgds->ccb_h.status = CAM_REQ_CMP;
2662		}
2663		break;
2664	}
2665	case XPT_GDEVLIST:
2666	{
2667		struct cam_periph	*nperiph;
2668		struct periph_list	*periph_head;
2669		struct ccb_getdevlist	*cgdl;
2670		u_int			i;
2671		struct cam_ed		*device;
2672		int			found;
2673
2674
2675		found = 0;
2676
2677		/*
2678		 * Don't want anyone mucking with our data.
2679		 */
2680		device = path->device;
2681		periph_head = &device->periphs;
2682		cgdl = &start_ccb->cgdl;
2683
2684		/*
2685		 * Check and see if the list has changed since the user
2686		 * last requested a list member.  If so, tell them that the
2687		 * list has changed, and therefore they need to start over
2688		 * from the beginning.
2689		 */
2690		if ((cgdl->index != 0) &&
2691		    (cgdl->generation != device->generation)) {
2692			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2693			break;
2694		}
2695
2696		/*
2697		 * Traverse the list of peripherals and attempt to find
2698		 * the requested peripheral.
2699		 */
2700		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2701		     (nperiph != NULL) && (i <= cgdl->index);
2702		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2703			if (i == cgdl->index) {
2704				strncpy(cgdl->periph_name,
2705					nperiph->periph_name,
2706					DEV_IDLEN);
2707				cgdl->unit_number = nperiph->unit_number;
2708				found = 1;
2709			}
2710		}
2711		if (found == 0) {
2712			cgdl->status = CAM_GDEVLIST_ERROR;
2713			break;
2714		}
2715
2716		if (nperiph == NULL)
2717			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2718		else
2719			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2720
2721		cgdl->index++;
2722		cgdl->generation = device->generation;
2723
2724		cgdl->ccb_h.status = CAM_REQ_CMP;
2725		break;
2726	}
2727	case XPT_DEV_MATCH:
2728	{
2729		dev_pos_type position_type;
2730		struct ccb_dev_match *cdm;
2731
2732		cdm = &start_ccb->cdm;
2733
2734		/*
2735		 * There are two ways of getting at information in the EDT.
2736		 * The first way is via the primary EDT tree.  It starts
2737		 * with a list of busses, then a list of targets on a bus,
2738		 * then devices/luns on a target, and then peripherals on a
2739		 * device/lun.  The "other" way is by the peripheral driver
2740		 * lists.  The peripheral driver lists are organized by
2741		 * peripheral driver.  (obviously)  So it makes sense to
2742		 * use the peripheral driver list if the user is looking
2743		 * for something like "da1", or all "da" devices.  If the
2744		 * user is looking for something on a particular bus/target
2745		 * or lun, it's generally better to go through the EDT tree.
2746		 */
2747
2748		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2749			position_type = cdm->pos.position_type;
2750		else {
2751			u_int i;
2752
2753			position_type = CAM_DEV_POS_NONE;
2754
2755			for (i = 0; i < cdm->num_patterns; i++) {
2756				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2757				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2758					position_type = CAM_DEV_POS_EDT;
2759					break;
2760				}
2761			}
2762
2763			if (cdm->num_patterns == 0)
2764				position_type = CAM_DEV_POS_EDT;
2765			else if (position_type == CAM_DEV_POS_NONE)
2766				position_type = CAM_DEV_POS_PDRV;
2767		}
2768
2769		/*
2770		 * Note that we drop the SIM lock here, because the EDT
2771		 * traversal code needs to do its own locking.
2772		 */
2773		CAM_SIM_UNLOCK(xpt_path_sim(cdm->ccb_h.path));
2774		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2775		case CAM_DEV_POS_EDT:
2776			xptedtmatch(cdm);
2777			break;
2778		case CAM_DEV_POS_PDRV:
2779			xptperiphlistmatch(cdm);
2780			break;
2781		default:
2782			cdm->status = CAM_DEV_MATCH_ERROR;
2783			break;
2784		}
2785		CAM_SIM_LOCK(xpt_path_sim(cdm->ccb_h.path));
2786
2787		if (cdm->status == CAM_DEV_MATCH_ERROR)
2788			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2789		else
2790			start_ccb->ccb_h.status = CAM_REQ_CMP;
2791
2792		break;
2793	}
2794	case XPT_SASYNC_CB:
2795	{
2796		struct ccb_setasync *csa;
2797		struct async_node *cur_entry;
2798		struct async_list *async_head;
2799		u_int32_t added;
2800
2801		csa = &start_ccb->csa;
2802		added = csa->event_enable;
2803		async_head = &path->device->asyncs;
2804
2805		/*
2806		 * If there is already an entry for us, simply
2807		 * update it.
2808		 */
2809		cur_entry = SLIST_FIRST(async_head);
2810		while (cur_entry != NULL) {
2811			if ((cur_entry->callback_arg == csa->callback_arg)
2812			 && (cur_entry->callback == csa->callback))
2813				break;
2814			cur_entry = SLIST_NEXT(cur_entry, links);
2815		}
2816
2817		if (cur_entry != NULL) {
2818		 	/*
2819			 * If the request has no flags set,
2820			 * remove the entry.
2821			 */
2822			added &= ~cur_entry->event_enable;
2823			if (csa->event_enable == 0) {
2824				SLIST_REMOVE(async_head, cur_entry,
2825					     async_node, links);
2826				xpt_release_device(path->device);
2827				free(cur_entry, M_CAMXPT);
2828			} else {
2829				cur_entry->event_enable = csa->event_enable;
2830			}
2831			csa->event_enable = added;
2832		} else {
2833			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2834					   M_NOWAIT);
2835			if (cur_entry == NULL) {
2836				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2837				break;
2838			}
2839			cur_entry->event_enable = csa->event_enable;
2840			cur_entry->callback_arg = csa->callback_arg;
2841			cur_entry->callback = csa->callback;
2842			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2843			xpt_acquire_device(path->device);
2844		}
2845		start_ccb->ccb_h.status = CAM_REQ_CMP;
2846		break;
2847	}
2848	case XPT_REL_SIMQ:
2849	{
2850		struct ccb_relsim *crs;
2851		struct cam_ed *dev;
2852
2853		crs = &start_ccb->crs;
2854		dev = path->device;
2855		if (dev == NULL) {
2856
2857			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2858			break;
2859		}
2860
2861		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2862
2863			/* Don't ever go below one opening */
2864			if (crs->openings > 0) {
2865				xpt_dev_ccbq_resize(path, crs->openings);
2866				if (bootverbose) {
2867					xpt_print(path,
2868					    "number of openings is now %d\n",
2869					    crs->openings);
2870				}
2871			}
2872		}
2873
2874		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2875
2876			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2877
2878				/*
2879				 * Just extend the old timeout and decrement
2880				 * the freeze count so that a single timeout
2881				 * is sufficient for releasing the queue.
2882				 */
2883				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2884				callout_stop(&dev->callout);
2885			} else {
2886
2887				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2888			}
2889
2890			callout_reset(&dev->callout,
2891			    (crs->release_timeout * hz) / 1000,
2892			    xpt_release_devq_timeout, dev);
2893
2894			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2895
2896		}
2897
2898		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2899
2900			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2901				/*
2902				 * Decrement the freeze count so that a single
2903				 * completion is still sufficient to unfreeze
2904				 * the queue.
2905				 */
2906				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2907			} else {
2908
2909				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2910				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2911			}
2912		}
2913
2914		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2915
2916			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2917			 || (dev->ccbq.dev_active == 0)) {
2918
2919				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2920			} else {
2921
2922				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2923				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2924			}
2925		}
2926
2927		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
2928			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
2929		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
2930		start_ccb->ccb_h.status = CAM_REQ_CMP;
2931		break;
2932	}
2933	case XPT_DEBUG: {
2934		struct cam_path *oldpath;
2935		struct cam_sim *oldsim;
2936
2937		/* Check that all request bits are supported. */
2938		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
2939			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2940			break;
2941		}
2942
2943		cam_dflags = CAM_DEBUG_NONE;
2944		if (cam_dpath != NULL) {
2945			/* To release the old path we must hold proper lock. */
2946			oldpath = cam_dpath;
2947			cam_dpath = NULL;
2948			oldsim = xpt_path_sim(oldpath);
2949			CAM_SIM_UNLOCK(xpt_path_sim(start_ccb->ccb_h.path));
2950			CAM_SIM_LOCK(oldsim);
2951			xpt_free_path(oldpath);
2952			CAM_SIM_UNLOCK(oldsim);
2953			CAM_SIM_LOCK(xpt_path_sim(start_ccb->ccb_h.path));
2954		}
2955		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
2956			if (xpt_create_path(&cam_dpath, NULL,
2957					    start_ccb->ccb_h.path_id,
2958					    start_ccb->ccb_h.target_id,
2959					    start_ccb->ccb_h.target_lun) !=
2960					    CAM_REQ_CMP) {
2961				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2962			} else {
2963				cam_dflags = start_ccb->cdbg.flags;
2964				start_ccb->ccb_h.status = CAM_REQ_CMP;
2965				xpt_print(cam_dpath, "debugging flags now %x\n",
2966				    cam_dflags);
2967			}
2968		} else
2969			start_ccb->ccb_h.status = CAM_REQ_CMP;
2970		break;
2971	}
2972	case XPT_NOOP:
2973		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
2974			xpt_freeze_devq(path, 1);
2975		start_ccb->ccb_h.status = CAM_REQ_CMP;
2976		break;
2977	default:
2978	case XPT_SDEV_TYPE:
2979	case XPT_TERM_IO:
2980	case XPT_ENG_INQ:
2981		/* XXX Implement */
2982		printf("%s: CCB type %#x not supported\n", __func__,
2983		       start_ccb->ccb_h.func_code);
2984		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
2985		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
2986			xpt_done(start_ccb);
2987		}
2988		break;
2989	}
2990}
2991
2992void
2993xpt_polled_action(union ccb *start_ccb)
2994{
2995	u_int32_t timeout;
2996	struct	  cam_sim *sim;
2997	struct	  cam_devq *devq;
2998	struct	  cam_ed *dev;
2999
3000
3001	timeout = start_ccb->ccb_h.timeout * 10;
3002	sim = start_ccb->ccb_h.path->bus->sim;
3003	devq = sim->devq;
3004	dev = start_ccb->ccb_h.path->device;
3005
3006	mtx_assert(sim->mtx, MA_OWNED);
3007
3008	/* Don't use ISR for this SIM while polling. */
3009	sim->flags |= CAM_SIM_POLLED;
3010
3011	/*
3012	 * Steal an opening so that no other queued requests
3013	 * can get it before us while we simulate interrupts.
3014	 */
3015	dev->ccbq.devq_openings--;
3016	dev->ccbq.dev_openings--;
3017
3018	while(((devq != NULL && devq->send_openings <= 0) ||
3019	   dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
3020		DELAY(100);
3021		(*(sim->sim_poll))(sim);
3022		camisr_runqueue(sim);
3023	}
3024
3025	dev->ccbq.devq_openings++;
3026	dev->ccbq.dev_openings++;
3027
3028	if (timeout != 0) {
3029		xpt_action(start_ccb);
3030		while(--timeout > 0) {
3031			(*(sim->sim_poll))(sim);
3032			camisr_runqueue(sim);
3033			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3034			    != CAM_REQ_INPROG)
3035				break;
3036			DELAY(100);
3037		}
3038		if (timeout == 0) {
3039			/*
3040			 * XXX Is it worth adding a sim_timeout entry
3041			 * point so we can attempt recovery?  If
3042			 * this is only used for dumps, I don't think
3043			 * it is.
3044			 */
3045			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3046		}
3047	} else {
3048		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3049	}
3050
3051	/* We will use CAM ISR for this SIM again. */
3052	sim->flags &= ~CAM_SIM_POLLED;
3053}
3054
3055/*
3056 * Schedule a peripheral driver to receive a ccb when it's
3057 * target device has space for more transactions.
3058 */
3059void
3060xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3061{
3062	struct cam_ed *device;
3063	int runq = 0;
3064
3065	mtx_assert(perph->sim->mtx, MA_OWNED);
3066
3067	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3068	device = perph->path->device;
3069	if (periph_is_queued(perph)) {
3070		/* Simply reorder based on new priority */
3071		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3072			  ("   change priority to %d\n", new_priority));
3073		if (new_priority < perph->pinfo.priority) {
3074			camq_change_priority(&device->drvq,
3075					     perph->pinfo.index,
3076					     new_priority);
3077			runq = 1;
3078		}
3079	} else {
3080		/* New entry on the queue */
3081		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3082			  ("   added periph to queue\n"));
3083		perph->pinfo.priority = new_priority;
3084		perph->pinfo.generation = ++device->drvq.generation;
3085		camq_insert(&device->drvq, &perph->pinfo);
3086		runq = 1;
3087	}
3088	if (runq != 0) {
3089		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3090			  ("   calling xpt_run_dev_allocq\n"));
3091		xpt_run_dev_allocq(device);
3092	}
3093}
3094
3095
3096/*
3097 * Schedule a device to run on a given queue.
3098 * If the device was inserted as a new entry on the queue,
3099 * return 1 meaning the device queue should be run. If we
3100 * were already queued, implying someone else has already
3101 * started the queue, return 0 so the caller doesn't attempt
3102 * to run the queue.
3103 */
3104int
3105xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3106		 u_int32_t new_priority)
3107{
3108	int retval;
3109	u_int32_t old_priority;
3110
3111	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3112
3113	old_priority = pinfo->priority;
3114
3115	/*
3116	 * Are we already queued?
3117	 */
3118	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3119		/* Simply reorder based on new priority */
3120		if (new_priority < old_priority) {
3121			camq_change_priority(queue, pinfo->index,
3122					     new_priority);
3123			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3124					("changed priority to %d\n",
3125					 new_priority));
3126			retval = 1;
3127		} else
3128			retval = 0;
3129	} else {
3130		/* New entry on the queue */
3131		if (new_priority < old_priority)
3132			pinfo->priority = new_priority;
3133
3134		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3135				("Inserting onto queue\n"));
3136		pinfo->generation = ++queue->generation;
3137		camq_insert(queue, pinfo);
3138		retval = 1;
3139	}
3140	return (retval);
3141}
3142
3143static void
3144xpt_run_dev_allocq(struct cam_ed *device)
3145{
3146	struct camq	*drvq;
3147
3148	if (device->ccbq.devq_allocating)
3149		return;
3150	device->ccbq.devq_allocating = 1;
3151	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq(%p)\n", device));
3152	drvq = &device->drvq;
3153	while ((drvq->entries > 0) &&
3154	    (device->ccbq.devq_openings > 0 ||
3155	     CAMQ_GET_PRIO(drvq) <= CAM_PRIORITY_OOB) &&
3156	    (device->ccbq.queue.qfrozen_cnt == 0)) {
3157		union	ccb *work_ccb;
3158		struct	cam_periph *drv;
3159
3160		KASSERT(drvq->entries > 0, ("xpt_run_dev_allocq: "
3161		    "Device on queue without any work to do"));
3162		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3163			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3164			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3165				      drv->pinfo.priority);
3166			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3167					("calling periph start\n"));
3168			drv->periph_start(drv, work_ccb);
3169		} else {
3170			/*
3171			 * Malloc failure in alloc_ccb
3172			 */
3173			/*
3174			 * XXX add us to a list to be run from free_ccb
3175			 * if we don't have any ccbs active on this
3176			 * device queue otherwise we may never get run
3177			 * again.
3178			 */
3179			break;
3180		}
3181	}
3182	device->ccbq.devq_allocating = 0;
3183}
3184
3185static void
3186xpt_run_devq(struct cam_devq *devq)
3187{
3188	char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
3189
3190	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3191
3192	devq->send_queue.qfrozen_cnt++;
3193	while ((devq->send_queue.entries > 0)
3194	    && (devq->send_openings > 0)
3195	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3196		struct	cam_ed_qinfo *qinfo;
3197		struct	cam_ed *device;
3198		union ccb *work_ccb;
3199		struct	cam_sim *sim;
3200
3201		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3202							   CAMQ_HEAD);
3203		device = qinfo->device;
3204		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3205				("running device %p\n", device));
3206
3207		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3208		if (work_ccb == NULL) {
3209			printf("device on run queue with no ccbs???\n");
3210			continue;
3211		}
3212
3213		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3214
3215			mtx_lock(&xsoftc.xpt_lock);
3216		 	if (xsoftc.num_highpower <= 0) {
3217				/*
3218				 * We got a high power command, but we
3219				 * don't have any available slots.  Freeze
3220				 * the device queue until we have a slot
3221				 * available.
3222				 */
3223				xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3224				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3225						   work_ccb->ccb_h.path->device,
3226						   highpowerq_entry);
3227
3228				mtx_unlock(&xsoftc.xpt_lock);
3229				continue;
3230			} else {
3231				/*
3232				 * Consume a high power slot while
3233				 * this ccb runs.
3234				 */
3235				xsoftc.num_highpower--;
3236			}
3237			mtx_unlock(&xsoftc.xpt_lock);
3238		}
3239		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3240		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3241
3242		devq->send_openings--;
3243		devq->send_active++;
3244
3245		xpt_schedule_devq(devq, device);
3246
3247		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3248			/*
3249			 * The client wants to freeze the queue
3250			 * after this CCB is sent.
3251			 */
3252			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3253		}
3254
3255		/* In Target mode, the peripheral driver knows best... */
3256		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3257			if ((device->inq_flags & SID_CmdQue) != 0
3258			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3259				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3260			else
3261				/*
3262				 * Clear this in case of a retried CCB that
3263				 * failed due to a rejected tag.
3264				 */
3265				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3266		}
3267
3268		switch (work_ccb->ccb_h.func_code) {
3269		case XPT_SCSI_IO:
3270			CAM_DEBUG(work_ccb->ccb_h.path,
3271			    CAM_DEBUG_CDB,("%s. CDB: %s\n",
3272			     scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0],
3273					  &device->inq_data),
3274			     scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes,
3275					     cdb_str, sizeof(cdb_str))));
3276			break;
3277		case XPT_ATA_IO:
3278			CAM_DEBUG(work_ccb->ccb_h.path,
3279			    CAM_DEBUG_CDB,("%s. ACB: %s\n",
3280			     ata_op_string(&work_ccb->ataio.cmd),
3281			     ata_cmd_string(&work_ccb->ataio.cmd,
3282					    cdb_str, sizeof(cdb_str))));
3283			break;
3284		default:
3285			break;
3286		}
3287
3288		/*
3289		 * Device queues can be shared among multiple sim instances
3290		 * that reside on different busses.  Use the SIM in the queue
3291		 * CCB's path, rather than the one in the bus that was passed
3292		 * into this function.
3293		 */
3294		sim = work_ccb->ccb_h.path->bus->sim;
3295		(*(sim->sim_action))(sim, work_ccb);
3296	}
3297	devq->send_queue.qfrozen_cnt--;
3298}
3299
3300/*
3301 * This function merges stuff from the slave ccb into the master ccb, while
3302 * keeping important fields in the master ccb constant.
3303 */
3304void
3305xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3306{
3307
3308	/*
3309	 * Pull fields that are valid for peripheral drivers to set
3310	 * into the master CCB along with the CCB "payload".
3311	 */
3312	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3313	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3314	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3315	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3316	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3317	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3318}
3319
3320void
3321xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3322{
3323
3324	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3325	ccb_h->pinfo.priority = priority;
3326	ccb_h->path = path;
3327	ccb_h->path_id = path->bus->path_id;
3328	if (path->target)
3329		ccb_h->target_id = path->target->target_id;
3330	else
3331		ccb_h->target_id = CAM_TARGET_WILDCARD;
3332	if (path->device) {
3333		ccb_h->target_lun = path->device->lun_id;
3334		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3335	} else {
3336		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3337	}
3338	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3339	ccb_h->flags = 0;
3340	ccb_h->xflags = 0;
3341}
3342
3343/* Path manipulation functions */
3344cam_status
3345xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3346		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3347{
3348	struct	   cam_path *path;
3349	cam_status status;
3350
3351	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3352
3353	if (path == NULL) {
3354		status = CAM_RESRC_UNAVAIL;
3355		return(status);
3356	}
3357	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3358	if (status != CAM_REQ_CMP) {
3359		free(path, M_CAMPATH);
3360		path = NULL;
3361	}
3362	*new_path_ptr = path;
3363	return (status);
3364}
3365
3366cam_status
3367xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3368			 struct cam_periph *periph, path_id_t path_id,
3369			 target_id_t target_id, lun_id_t lun_id)
3370{
3371	struct	   cam_path *path;
3372	struct	   cam_eb *bus = NULL;
3373	cam_status status;
3374
3375	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_WAITOK);
3376
3377	bus = xpt_find_bus(path_id);
3378	if (bus != NULL)
3379		CAM_SIM_LOCK(bus->sim);
3380	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3381	if (bus != NULL) {
3382		CAM_SIM_UNLOCK(bus->sim);
3383		xpt_release_bus(bus);
3384	}
3385	if (status != CAM_REQ_CMP) {
3386		free(path, M_CAMPATH);
3387		path = NULL;
3388	}
3389	*new_path_ptr = path;
3390	return (status);
3391}
3392
3393cam_status
3394xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3395		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3396{
3397	struct	     cam_eb *bus;
3398	struct	     cam_et *target;
3399	struct	     cam_ed *device;
3400	cam_status   status;
3401
3402	status = CAM_REQ_CMP;	/* Completed without error */
3403	target = NULL;		/* Wildcarded */
3404	device = NULL;		/* Wildcarded */
3405
3406	/*
3407	 * We will potentially modify the EDT, so block interrupts
3408	 * that may attempt to create cam paths.
3409	 */
3410	bus = xpt_find_bus(path_id);
3411	if (bus == NULL) {
3412		status = CAM_PATH_INVALID;
3413	} else {
3414		target = xpt_find_target(bus, target_id);
3415		if (target == NULL) {
3416			/* Create one */
3417			struct cam_et *new_target;
3418
3419			new_target = xpt_alloc_target(bus, target_id);
3420			if (new_target == NULL) {
3421				status = CAM_RESRC_UNAVAIL;
3422			} else {
3423				target = new_target;
3424			}
3425		}
3426		if (target != NULL) {
3427			device = xpt_find_device(target, lun_id);
3428			if (device == NULL) {
3429				/* Create one */
3430				struct cam_ed *new_device;
3431
3432				new_device =
3433				    (*(bus->xport->alloc_device))(bus,
3434								      target,
3435								      lun_id);
3436				if (new_device == NULL) {
3437					status = CAM_RESRC_UNAVAIL;
3438				} else {
3439					device = new_device;
3440				}
3441			}
3442		}
3443	}
3444
3445	/*
3446	 * Only touch the user's data if we are successful.
3447	 */
3448	if (status == CAM_REQ_CMP) {
3449		new_path->periph = perph;
3450		new_path->bus = bus;
3451		new_path->target = target;
3452		new_path->device = device;
3453		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3454	} else {
3455		if (device != NULL)
3456			xpt_release_device(device);
3457		if (target != NULL)
3458			xpt_release_target(target);
3459		if (bus != NULL)
3460			xpt_release_bus(bus);
3461	}
3462	return (status);
3463}
3464
3465void
3466xpt_release_path(struct cam_path *path)
3467{
3468	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3469	if (path->device != NULL) {
3470		xpt_release_device(path->device);
3471		path->device = NULL;
3472	}
3473	if (path->target != NULL) {
3474		xpt_release_target(path->target);
3475		path->target = NULL;
3476	}
3477	if (path->bus != NULL) {
3478		xpt_release_bus(path->bus);
3479		path->bus = NULL;
3480	}
3481}
3482
3483void
3484xpt_free_path(struct cam_path *path)
3485{
3486
3487	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3488	xpt_release_path(path);
3489	free(path, M_CAMPATH);
3490}
3491
3492void
3493xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3494    uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3495{
3496
3497	xpt_lock_buses();
3498	if (bus_ref) {
3499		if (path->bus)
3500			*bus_ref = path->bus->refcount;
3501		else
3502			*bus_ref = 0;
3503	}
3504	if (periph_ref) {
3505		if (path->periph)
3506			*periph_ref = path->periph->refcount;
3507		else
3508			*periph_ref = 0;
3509	}
3510	xpt_unlock_buses();
3511	if (target_ref) {
3512		if (path->target)
3513			*target_ref = path->target->refcount;
3514		else
3515			*target_ref = 0;
3516	}
3517	if (device_ref) {
3518		if (path->device)
3519			*device_ref = path->device->refcount;
3520		else
3521			*device_ref = 0;
3522	}
3523}
3524
3525/*
3526 * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3527 * in path1, 2 for match with wildcards in path2.
3528 */
3529int
3530xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3531{
3532	int retval = 0;
3533
3534	if (path1->bus != path2->bus) {
3535		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3536			retval = 1;
3537		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3538			retval = 2;
3539		else
3540			return (-1);
3541	}
3542	if (path1->target != path2->target) {
3543		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3544			if (retval == 0)
3545				retval = 1;
3546		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3547			retval = 2;
3548		else
3549			return (-1);
3550	}
3551	if (path1->device != path2->device) {
3552		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3553			if (retval == 0)
3554				retval = 1;
3555		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3556			retval = 2;
3557		else
3558			return (-1);
3559	}
3560	return (retval);
3561}
3562
3563int
3564xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3565{
3566	int retval = 0;
3567
3568	if (path->bus != dev->target->bus) {
3569		if (path->bus->path_id == CAM_BUS_WILDCARD)
3570			retval = 1;
3571		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3572			retval = 2;
3573		else
3574			return (-1);
3575	}
3576	if (path->target != dev->target) {
3577		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3578			if (retval == 0)
3579				retval = 1;
3580		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3581			retval = 2;
3582		else
3583			return (-1);
3584	}
3585	if (path->device != dev) {
3586		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3587			if (retval == 0)
3588				retval = 1;
3589		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3590			retval = 2;
3591		else
3592			return (-1);
3593	}
3594	return (retval);
3595}
3596
3597void
3598xpt_print_path(struct cam_path *path)
3599{
3600
3601	if (path == NULL)
3602		printf("(nopath): ");
3603	else {
3604		if (path->periph != NULL)
3605			printf("(%s%d:", path->periph->periph_name,
3606			       path->periph->unit_number);
3607		else
3608			printf("(noperiph:");
3609
3610		if (path->bus != NULL)
3611			printf("%s%d:%d:", path->bus->sim->sim_name,
3612			       path->bus->sim->unit_number,
3613			       path->bus->sim->bus_id);
3614		else
3615			printf("nobus:");
3616
3617		if (path->target != NULL)
3618			printf("%d:", path->target->target_id);
3619		else
3620			printf("X:");
3621
3622		if (path->device != NULL)
3623			printf("%d): ", path->device->lun_id);
3624		else
3625			printf("X): ");
3626	}
3627}
3628
3629void
3630xpt_print_device(struct cam_ed *device)
3631{
3632
3633	if (device == NULL)
3634		printf("(nopath): ");
3635	else {
3636		printf("(noperiph:%s%d:%d:%d:%d): ", device->sim->sim_name,
3637		       device->sim->unit_number,
3638		       device->sim->bus_id,
3639		       device->target->target_id,
3640		       device->lun_id);
3641	}
3642}
3643
3644void
3645xpt_print(struct cam_path *path, const char *fmt, ...)
3646{
3647	va_list ap;
3648	xpt_print_path(path);
3649	va_start(ap, fmt);
3650	vprintf(fmt, ap);
3651	va_end(ap);
3652}
3653
3654int
3655xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3656{
3657	struct sbuf sb;
3658
3659#ifdef INVARIANTS
3660	if (path != NULL && path->bus != NULL)
3661		mtx_assert(path->bus->sim->mtx, MA_OWNED);
3662#endif
3663
3664	sbuf_new(&sb, str, str_len, 0);
3665
3666	if (path == NULL)
3667		sbuf_printf(&sb, "(nopath): ");
3668	else {
3669		if (path->periph != NULL)
3670			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3671				    path->periph->unit_number);
3672		else
3673			sbuf_printf(&sb, "(noperiph:");
3674
3675		if (path->bus != NULL)
3676			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3677				    path->bus->sim->unit_number,
3678				    path->bus->sim->bus_id);
3679		else
3680			sbuf_printf(&sb, "nobus:");
3681
3682		if (path->target != NULL)
3683			sbuf_printf(&sb, "%d:", path->target->target_id);
3684		else
3685			sbuf_printf(&sb, "X:");
3686
3687		if (path->device != NULL)
3688			sbuf_printf(&sb, "%d): ", path->device->lun_id);
3689		else
3690			sbuf_printf(&sb, "X): ");
3691	}
3692	sbuf_finish(&sb);
3693
3694	return(sbuf_len(&sb));
3695}
3696
3697path_id_t
3698xpt_path_path_id(struct cam_path *path)
3699{
3700	return(path->bus->path_id);
3701}
3702
3703target_id_t
3704xpt_path_target_id(struct cam_path *path)
3705{
3706	if (path->target != NULL)
3707		return (path->target->target_id);
3708	else
3709		return (CAM_TARGET_WILDCARD);
3710}
3711
3712lun_id_t
3713xpt_path_lun_id(struct cam_path *path)
3714{
3715	if (path->device != NULL)
3716		return (path->device->lun_id);
3717	else
3718		return (CAM_LUN_WILDCARD);
3719}
3720
3721struct cam_sim *
3722xpt_path_sim(struct cam_path *path)
3723{
3724
3725	return (path->bus->sim);
3726}
3727
3728struct cam_periph*
3729xpt_path_periph(struct cam_path *path)
3730{
3731	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3732
3733	return (path->periph);
3734}
3735
3736int
3737xpt_path_legacy_ata_id(struct cam_path *path)
3738{
3739	struct cam_eb *bus;
3740	int bus_id;
3741
3742	if ((strcmp(path->bus->sim->sim_name, "ata") != 0) &&
3743	    strcmp(path->bus->sim->sim_name, "ahcich") != 0 &&
3744	    strcmp(path->bus->sim->sim_name, "mvsch") != 0 &&
3745	    strcmp(path->bus->sim->sim_name, "siisch") != 0)
3746		return (-1);
3747
3748	if (strcmp(path->bus->sim->sim_name, "ata") == 0 &&
3749	    path->bus->sim->unit_number < 2) {
3750		bus_id = path->bus->sim->unit_number;
3751	} else {
3752		bus_id = 2;
3753		xpt_lock_buses();
3754		TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
3755			if (bus == path->bus)
3756				break;
3757			if ((strcmp(bus->sim->sim_name, "ata") == 0 &&
3758			     bus->sim->unit_number >= 2) ||
3759			    strcmp(bus->sim->sim_name, "ahcich") == 0 ||
3760			    strcmp(bus->sim->sim_name, "mvsch") == 0 ||
3761			    strcmp(bus->sim->sim_name, "siisch") == 0)
3762				bus_id++;
3763		}
3764		xpt_unlock_buses();
3765	}
3766	if (path->target != NULL) {
3767		if (path->target->target_id < 2)
3768			return (bus_id * 2 + path->target->target_id);
3769		else
3770			return (-1);
3771	} else
3772		return (bus_id * 2);
3773}
3774
3775/*
3776 * Release a CAM control block for the caller.  Remit the cost of the structure
3777 * to the device referenced by the path.  If the this device had no 'credits'
3778 * and peripheral drivers have registered async callbacks for this notification
3779 * call them now.
3780 */
3781void
3782xpt_release_ccb(union ccb *free_ccb)
3783{
3784	struct	 cam_path *path;
3785	struct	 cam_ed *device;
3786	struct	 cam_eb *bus;
3787	struct   cam_sim *sim;
3788
3789	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3790	path = free_ccb->ccb_h.path;
3791	device = path->device;
3792	bus = path->bus;
3793	sim = bus->sim;
3794
3795	mtx_assert(sim->mtx, MA_OWNED);
3796
3797	cam_ccbq_release_opening(&device->ccbq);
3798	if (sim->ccb_count > sim->max_ccbs) {
3799		xpt_free_ccb(free_ccb);
3800		sim->ccb_count--;
3801	} else {
3802		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
3803		    xpt_links.sle);
3804	}
3805	xpt_run_dev_allocq(device);
3806}
3807
3808/* Functions accessed by SIM drivers */
3809
3810static struct xpt_xport xport_default = {
3811	.alloc_device = xpt_alloc_device_default,
3812	.action = xpt_action_default,
3813	.async = xpt_dev_async_default,
3814};
3815
3816/*
3817 * A sim structure, listing the SIM entry points and instance
3818 * identification info is passed to xpt_bus_register to hook the SIM
3819 * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3820 * for this new bus and places it in the array of busses and assigns
3821 * it a path_id.  The path_id may be influenced by "hard wiring"
3822 * information specified by the user.  Once interrupt services are
3823 * available, the bus will be probed.
3824 */
3825int32_t
3826xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3827{
3828	struct cam_eb *new_bus;
3829	struct cam_eb *old_bus;
3830	struct ccb_pathinq cpi;
3831	struct cam_path *path;
3832	cam_status status;
3833
3834	mtx_assert(sim->mtx, MA_OWNED);
3835
3836	sim->bus_id = bus;
3837	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3838					  M_CAMXPT, M_NOWAIT);
3839	if (new_bus == NULL) {
3840		/* Couldn't satisfy request */
3841		return (CAM_RESRC_UNAVAIL);
3842	}
3843
3844	TAILQ_INIT(&new_bus->et_entries);
3845	cam_sim_hold(sim);
3846	new_bus->sim = sim;
3847	timevalclear(&new_bus->last_reset);
3848	new_bus->flags = 0;
3849	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3850	new_bus->generation = 0;
3851
3852	xpt_lock_buses();
3853	sim->path_id = new_bus->path_id =
3854	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3855	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3856	while (old_bus != NULL
3857	    && old_bus->path_id < new_bus->path_id)
3858		old_bus = TAILQ_NEXT(old_bus, links);
3859	if (old_bus != NULL)
3860		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3861	else
3862		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3863	xsoftc.bus_generation++;
3864	xpt_unlock_buses();
3865
3866	/*
3867	 * Set a default transport so that a PATH_INQ can be issued to
3868	 * the SIM.  This will then allow for probing and attaching of
3869	 * a more appropriate transport.
3870	 */
3871	new_bus->xport = &xport_default;
3872
3873	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3874				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3875	if (status != CAM_REQ_CMP) {
3876		xpt_release_bus(new_bus);
3877		free(path, M_CAMXPT);
3878		return (CAM_RESRC_UNAVAIL);
3879	}
3880
3881	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3882	cpi.ccb_h.func_code = XPT_PATH_INQ;
3883	xpt_action((union ccb *)&cpi);
3884
3885	if (cpi.ccb_h.status == CAM_REQ_CMP) {
3886		switch (cpi.transport) {
3887		case XPORT_SPI:
3888		case XPORT_SAS:
3889		case XPORT_FC:
3890		case XPORT_USB:
3891		case XPORT_ISCSI:
3892		case XPORT_SRP:
3893		case XPORT_PPB:
3894			new_bus->xport = scsi_get_xport();
3895			break;
3896		case XPORT_ATA:
3897		case XPORT_SATA:
3898			new_bus->xport = ata_get_xport();
3899			break;
3900		default:
3901			new_bus->xport = &xport_default;
3902			break;
3903		}
3904	}
3905
3906	/* Notify interested parties */
3907	if (sim->path_id != CAM_XPT_PATH_ID) {
3908
3909		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3910		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
3911			union	ccb *scan_ccb;
3912
3913			/* Initiate bus rescan. */
3914			scan_ccb = xpt_alloc_ccb_nowait();
3915			if (scan_ccb != NULL) {
3916				scan_ccb->ccb_h.path = path;
3917				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3918				scan_ccb->crcn.flags = 0;
3919				xpt_rescan(scan_ccb);
3920			} else
3921				xpt_print(path,
3922					  "Can't allocate CCB to scan bus\n");
3923		} else
3924			xpt_free_path(path);
3925	} else
3926		xpt_free_path(path);
3927	return (CAM_SUCCESS);
3928}
3929
3930int32_t
3931xpt_bus_deregister(path_id_t pathid)
3932{
3933	struct cam_path bus_path;
3934	cam_status status;
3935
3936	status = xpt_compile_path(&bus_path, NULL, pathid,
3937				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3938	if (status != CAM_REQ_CMP)
3939		return (status);
3940
3941	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3942	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3943
3944	/* Release the reference count held while registered. */
3945	xpt_release_bus(bus_path.bus);
3946	xpt_release_path(&bus_path);
3947
3948	return (CAM_REQ_CMP);
3949}
3950
3951static path_id_t
3952xptnextfreepathid(void)
3953{
3954	struct cam_eb *bus;
3955	path_id_t pathid;
3956	const char *strval;
3957
3958	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
3959	pathid = 0;
3960	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3961retry:
3962	/* Find an unoccupied pathid */
3963	while (bus != NULL && bus->path_id <= pathid) {
3964		if (bus->path_id == pathid)
3965			pathid++;
3966		bus = TAILQ_NEXT(bus, links);
3967	}
3968
3969	/*
3970	 * Ensure that this pathid is not reserved for
3971	 * a bus that may be registered in the future.
3972	 */
3973	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3974		++pathid;
3975		/* Start the search over */
3976		goto retry;
3977	}
3978	return (pathid);
3979}
3980
3981static path_id_t
3982xptpathid(const char *sim_name, int sim_unit, int sim_bus)
3983{
3984	path_id_t pathid;
3985	int i, dunit, val;
3986	char buf[32];
3987	const char *dname;
3988
3989	pathid = CAM_XPT_PATH_ID;
3990	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
3991	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
3992		return (pathid);
3993	i = 0;
3994	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
3995		if (strcmp(dname, "scbus")) {
3996			/* Avoid a bit of foot shooting. */
3997			continue;
3998		}
3999		if (dunit < 0)		/* unwired?! */
4000			continue;
4001		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4002			if (sim_bus == val) {
4003				pathid = dunit;
4004				break;
4005			}
4006		} else if (sim_bus == 0) {
4007			/* Unspecified matches bus 0 */
4008			pathid = dunit;
4009			break;
4010		} else {
4011			printf("Ambiguous scbus configuration for %s%d "
4012			       "bus %d, cannot wire down.  The kernel "
4013			       "config entry for scbus%d should "
4014			       "specify a controller bus.\n"
4015			       "Scbus will be assigned dynamically.\n",
4016			       sim_name, sim_unit, sim_bus, dunit);
4017			break;
4018		}
4019	}
4020
4021	if (pathid == CAM_XPT_PATH_ID)
4022		pathid = xptnextfreepathid();
4023	return (pathid);
4024}
4025
4026static const char *
4027xpt_async_string(u_int32_t async_code)
4028{
4029
4030	switch (async_code) {
4031	case AC_BUS_RESET: return ("AC_BUS_RESET");
4032	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4033	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4034	case AC_SENT_BDR: return ("AC_SENT_BDR");
4035	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4036	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4037	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4038	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4039	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4040	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4041	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4042	case AC_CONTRACT: return ("AC_CONTRACT");
4043	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4044	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4045	}
4046	return ("AC_UNKNOWN");
4047}
4048
4049void
4050xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4051{
4052	struct cam_eb *bus;
4053	struct cam_et *target, *next_target;
4054	struct cam_ed *device, *next_device;
4055
4056	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4057	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4058	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4059
4060	/*
4061	 * Most async events come from a CAM interrupt context.  In
4062	 * a few cases, the error recovery code at the peripheral layer,
4063	 * which may run from our SWI or a process context, may signal
4064	 * deferred events with a call to xpt_async.
4065	 */
4066
4067	bus = path->bus;
4068
4069	if (async_code == AC_BUS_RESET) {
4070		/* Update our notion of when the last reset occurred */
4071		microtime(&bus->last_reset);
4072	}
4073
4074	for (target = TAILQ_FIRST(&bus->et_entries);
4075	     target != NULL;
4076	     target = next_target) {
4077
4078		next_target = TAILQ_NEXT(target, links);
4079
4080		if (path->target != target
4081		 && path->target->target_id != CAM_TARGET_WILDCARD
4082		 && target->target_id != CAM_TARGET_WILDCARD)
4083			continue;
4084
4085		if (async_code == AC_SENT_BDR) {
4086			/* Update our notion of when the last reset occurred */
4087			microtime(&path->target->last_reset);
4088		}
4089
4090		for (device = TAILQ_FIRST(&target->ed_entries);
4091		     device != NULL;
4092		     device = next_device) {
4093
4094			next_device = TAILQ_NEXT(device, links);
4095
4096			if (path->device != device
4097			 && path->device->lun_id != CAM_LUN_WILDCARD
4098			 && device->lun_id != CAM_LUN_WILDCARD)
4099				continue;
4100			/*
4101			 * The async callback could free the device.
4102			 * If it is a broadcast async, it doesn't hold
4103			 * device reference, so take our own reference.
4104			 */
4105			xpt_acquire_device(device);
4106			(*(bus->xport->async))(async_code, bus,
4107					       target, device,
4108					       async_arg);
4109
4110			xpt_async_bcast(&device->asyncs, async_code,
4111					path, async_arg);
4112			xpt_release_device(device);
4113		}
4114	}
4115
4116	/*
4117	 * If this wasn't a fully wildcarded async, tell all
4118	 * clients that want all async events.
4119	 */
4120	if (bus != xpt_periph->path->bus)
4121		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4122				path, async_arg);
4123}
4124
4125static void
4126xpt_async_bcast(struct async_list *async_head,
4127		u_int32_t async_code,
4128		struct cam_path *path, void *async_arg)
4129{
4130	struct async_node *cur_entry;
4131
4132	cur_entry = SLIST_FIRST(async_head);
4133	while (cur_entry != NULL) {
4134		struct async_node *next_entry;
4135		/*
4136		 * Grab the next list entry before we call the current
4137		 * entry's callback.  This is because the callback function
4138		 * can delete its async callback entry.
4139		 */
4140		next_entry = SLIST_NEXT(cur_entry, links);
4141		if ((cur_entry->event_enable & async_code) != 0)
4142			cur_entry->callback(cur_entry->callback_arg,
4143					    async_code, path,
4144					    async_arg);
4145		cur_entry = next_entry;
4146	}
4147}
4148
4149static void
4150xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4151		      struct cam_et *target, struct cam_ed *device,
4152		      void *async_arg)
4153{
4154	printf("%s called\n", __func__);
4155}
4156
4157u_int32_t
4158xpt_freeze_devq(struct cam_path *path, u_int count)
4159{
4160	struct cam_ed *dev = path->device;
4161
4162	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4163	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq() %u->%u\n",
4164	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4165	dev->ccbq.queue.qfrozen_cnt += count;
4166	/* Remove frozen device from sendq. */
4167	if (device_is_queued(dev)) {
4168		camq_remove(&dev->sim->devq->send_queue,
4169		    dev->devq_entry.pinfo.index);
4170	}
4171	return (dev->ccbq.queue.qfrozen_cnt);
4172}
4173
4174u_int32_t
4175xpt_freeze_simq(struct cam_sim *sim, u_int count)
4176{
4177
4178	mtx_assert(sim->mtx, MA_OWNED);
4179	sim->devq->send_queue.qfrozen_cnt += count;
4180	return (sim->devq->send_queue.qfrozen_cnt);
4181}
4182
4183static void
4184xpt_release_devq_timeout(void *arg)
4185{
4186	struct cam_ed *device;
4187
4188	device = (struct cam_ed *)arg;
4189	CAM_DEBUG_DEV(device, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4190	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4191}
4192
4193void
4194xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4195{
4196
4197	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4198	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4199	    count, run_queue));
4200	xpt_release_devq_device(path->device, count, run_queue);
4201}
4202
4203void
4204xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4205{
4206
4207	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4208	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4209	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4210	if (count > dev->ccbq.queue.qfrozen_cnt) {
4211#ifdef INVARIANTS
4212		printf("xpt_release_devq(): requested %u > present %u\n",
4213		    count, dev->ccbq.queue.qfrozen_cnt);
4214#endif
4215		count = dev->ccbq.queue.qfrozen_cnt;
4216	}
4217	dev->ccbq.queue.qfrozen_cnt -= count;
4218	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4219		/*
4220		 * No longer need to wait for a successful
4221		 * command completion.
4222		 */
4223		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4224		/*
4225		 * Remove any timeouts that might be scheduled
4226		 * to release this queue.
4227		 */
4228		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4229			callout_stop(&dev->callout);
4230			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4231		}
4232		xpt_run_dev_allocq(dev);
4233		if (run_queue == 0)
4234			return;
4235		/*
4236		 * Now that we are unfrozen schedule the
4237		 * device so any pending transactions are
4238		 * run.
4239		 */
4240		if (xpt_schedule_devq(dev->sim->devq, dev))
4241			xpt_run_devq(dev->sim->devq);
4242	}
4243}
4244
4245void
4246xpt_release_simq(struct cam_sim *sim, int run_queue)
4247{
4248	struct	camq *sendq;
4249
4250	mtx_assert(sim->mtx, MA_OWNED);
4251	sendq = &(sim->devq->send_queue);
4252	if (sendq->qfrozen_cnt <= 0) {
4253#ifdef INVARIANTS
4254		printf("xpt_release_simq: requested 1 > present %u\n",
4255		    sendq->qfrozen_cnt);
4256#endif
4257	} else
4258		sendq->qfrozen_cnt--;
4259	if (sendq->qfrozen_cnt == 0) {
4260		/*
4261		 * If there is a timeout scheduled to release this
4262		 * sim queue, remove it.  The queue frozen count is
4263		 * already at 0.
4264		 */
4265		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4266			callout_stop(&sim->callout);
4267			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4268		}
4269		if (run_queue) {
4270			/*
4271			 * Now that we are unfrozen run the send queue.
4272			 */
4273			xpt_run_devq(sim->devq);
4274		}
4275	}
4276}
4277
4278/*
4279 * XXX Appears to be unused.
4280 */
4281static void
4282xpt_release_simq_timeout(void *arg)
4283{
4284	struct cam_sim *sim;
4285
4286	sim = (struct cam_sim *)arg;
4287	xpt_release_simq(sim, /* run_queue */ TRUE);
4288}
4289
4290void
4291xpt_done(union ccb *done_ccb)
4292{
4293	struct cam_sim *sim;
4294	int	first;
4295
4296	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4297	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4298		/*
4299		 * Queue up the request for handling by our SWI handler
4300		 * any of the "non-immediate" type of ccbs.
4301		 */
4302		sim = done_ccb->ccb_h.path->bus->sim;
4303		TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4304		    sim_links.tqe);
4305		done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4306		if ((sim->flags & (CAM_SIM_ON_DONEQ | CAM_SIM_POLLED |
4307		    CAM_SIM_BATCH)) == 0) {
4308			mtx_lock(&cam_simq_lock);
4309			first = TAILQ_EMPTY(&cam_simq);
4310			TAILQ_INSERT_TAIL(&cam_simq, sim, links);
4311			mtx_unlock(&cam_simq_lock);
4312			sim->flags |= CAM_SIM_ON_DONEQ;
4313			if (first)
4314				swi_sched(cambio_ih, 0);
4315		}
4316	}
4317}
4318
4319void
4320xpt_batch_start(struct cam_sim *sim)
4321{
4322
4323	KASSERT((sim->flags & CAM_SIM_BATCH) == 0, ("Batch flag already set"));
4324	sim->flags |= CAM_SIM_BATCH;
4325}
4326
4327void
4328xpt_batch_done(struct cam_sim *sim)
4329{
4330
4331	KASSERT((sim->flags & CAM_SIM_BATCH) != 0, ("Batch flag was not set"));
4332	sim->flags &= ~CAM_SIM_BATCH;
4333	if (!TAILQ_EMPTY(&sim->sim_doneq) &&
4334	    (sim->flags & CAM_SIM_ON_DONEQ) == 0)
4335		camisr_runqueue(sim);
4336}
4337
4338union ccb *
4339xpt_alloc_ccb()
4340{
4341	union ccb *new_ccb;
4342
4343	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4344	return (new_ccb);
4345}
4346
4347union ccb *
4348xpt_alloc_ccb_nowait()
4349{
4350	union ccb *new_ccb;
4351
4352	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4353	return (new_ccb);
4354}
4355
4356void
4357xpt_free_ccb(union ccb *free_ccb)
4358{
4359	free(free_ccb, M_CAMCCB);
4360}
4361
4362
4363
4364/* Private XPT functions */
4365
4366/*
4367 * Get a CAM control block for the caller. Charge the structure to the device
4368 * referenced by the path.  If the this device has no 'credits' then the
4369 * device already has the maximum number of outstanding operations under way
4370 * and we return NULL. If we don't have sufficient resources to allocate more
4371 * ccbs, we also return NULL.
4372 */
4373static union ccb *
4374xpt_get_ccb(struct cam_ed *device)
4375{
4376	union ccb *new_ccb;
4377	struct cam_sim *sim;
4378
4379	sim = device->sim;
4380	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4381		new_ccb = xpt_alloc_ccb_nowait();
4382                if (new_ccb == NULL) {
4383			return (NULL);
4384		}
4385		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4386				  xpt_links.sle);
4387		sim->ccb_count++;
4388	}
4389	cam_ccbq_take_opening(&device->ccbq);
4390	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4391	return (new_ccb);
4392}
4393
4394static void
4395xpt_release_bus(struct cam_eb *bus)
4396{
4397
4398	xpt_lock_buses();
4399	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4400	if (--bus->refcount > 0) {
4401		xpt_unlock_buses();
4402		return;
4403	}
4404	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4405	    ("refcount is zero, but target list is not empty"));
4406	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4407	xsoftc.bus_generation++;
4408	xpt_unlock_buses();
4409	cam_sim_release(bus->sim);
4410	free(bus, M_CAMXPT);
4411}
4412
4413static struct cam_et *
4414xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4415{
4416	struct cam_et *cur_target, *target;
4417
4418	mtx_assert(bus->sim->mtx, MA_OWNED);
4419	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4420					 M_NOWAIT|M_ZERO);
4421	if (target == NULL)
4422		return (NULL);
4423
4424	TAILQ_INIT(&target->ed_entries);
4425	target->bus = bus;
4426	target->target_id = target_id;
4427	target->refcount = 1;
4428	target->generation = 0;
4429	target->luns = NULL;
4430	timevalclear(&target->last_reset);
4431	/*
4432	 * Hold a reference to our parent bus so it
4433	 * will not go away before we do.
4434	 */
4435	xpt_lock_buses();
4436	bus->refcount++;
4437	xpt_unlock_buses();
4438
4439	/* Insertion sort into our bus's target list */
4440	cur_target = TAILQ_FIRST(&bus->et_entries);
4441	while (cur_target != NULL && cur_target->target_id < target_id)
4442		cur_target = TAILQ_NEXT(cur_target, links);
4443	if (cur_target != NULL) {
4444		TAILQ_INSERT_BEFORE(cur_target, target, links);
4445	} else {
4446		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4447	}
4448	bus->generation++;
4449	return (target);
4450}
4451
4452static void
4453xpt_release_target(struct cam_et *target)
4454{
4455
4456	mtx_assert(target->bus->sim->mtx, MA_OWNED);
4457	if (--target->refcount > 0)
4458		return;
4459	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4460	    ("refcount is zero, but device list is not empty"));
4461	TAILQ_REMOVE(&target->bus->et_entries, target, links);
4462	target->bus->generation++;
4463	xpt_release_bus(target->bus);
4464	if (target->luns)
4465		free(target->luns, M_CAMXPT);
4466	free(target, M_CAMXPT);
4467}
4468
4469static struct cam_ed *
4470xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4471			 lun_id_t lun_id)
4472{
4473	struct cam_ed *device;
4474
4475	device = xpt_alloc_device(bus, target, lun_id);
4476	if (device == NULL)
4477		return (NULL);
4478
4479	device->mintags = 1;
4480	device->maxtags = 1;
4481	bus->sim->max_ccbs += device->ccbq.devq_openings;
4482	return (device);
4483}
4484
4485struct cam_ed *
4486xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4487{
4488	struct cam_ed	*cur_device, *device;
4489	struct cam_devq	*devq;
4490	cam_status status;
4491
4492	mtx_assert(target->bus->sim->mtx, MA_OWNED);
4493	/* Make space for us in the device queue on our bus */
4494	devq = bus->sim->devq;
4495	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4496	if (status != CAM_REQ_CMP)
4497		return (NULL);
4498
4499	device = (struct cam_ed *)malloc(sizeof(*device),
4500					 M_CAMDEV, M_NOWAIT|M_ZERO);
4501	if (device == NULL)
4502		return (NULL);
4503
4504	cam_init_pinfo(&device->devq_entry.pinfo);
4505	device->devq_entry.device = device;
4506	device->target = target;
4507	device->lun_id = lun_id;
4508	device->sim = bus->sim;
4509	/* Initialize our queues */
4510	if (camq_init(&device->drvq, 0) != 0) {
4511		free(device, M_CAMDEV);
4512		return (NULL);
4513	}
4514	if (cam_ccbq_init(&device->ccbq,
4515			  bus->sim->max_dev_openings) != 0) {
4516		camq_fini(&device->drvq);
4517		free(device, M_CAMDEV);
4518		return (NULL);
4519	}
4520	SLIST_INIT(&device->asyncs);
4521	SLIST_INIT(&device->periphs);
4522	device->generation = 0;
4523	device->flags = CAM_DEV_UNCONFIGURED;
4524	device->tag_delay_count = 0;
4525	device->tag_saved_openings = 0;
4526	device->refcount = 1;
4527	callout_init_mtx(&device->callout, bus->sim->mtx, 0);
4528
4529	cur_device = TAILQ_FIRST(&target->ed_entries);
4530	while (cur_device != NULL && cur_device->lun_id < lun_id)
4531		cur_device = TAILQ_NEXT(cur_device, links);
4532	if (cur_device != NULL)
4533		TAILQ_INSERT_BEFORE(cur_device, device, links);
4534	else
4535		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4536	target->refcount++;
4537	target->generation++;
4538	return (device);
4539}
4540
4541void
4542xpt_acquire_device(struct cam_ed *device)
4543{
4544
4545	mtx_assert(device->sim->mtx, MA_OWNED);
4546	device->refcount++;
4547}
4548
4549void
4550xpt_release_device(struct cam_ed *device)
4551{
4552	struct cam_devq *devq;
4553
4554	mtx_assert(device->sim->mtx, MA_OWNED);
4555	if (--device->refcount > 0)
4556		return;
4557
4558	KASSERT(SLIST_EMPTY(&device->periphs),
4559	    ("refcount is zero, but periphs list is not empty"));
4560	if (device->devq_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4561		panic("Removing device while still queued for ccbs");
4562
4563	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4564		callout_stop(&device->callout);
4565
4566	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4567	device->target->generation++;
4568	device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings;
4569	/* Release our slot in the devq */
4570	devq = device->target->bus->sim->devq;
4571	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4572	camq_fini(&device->drvq);
4573	cam_ccbq_fini(&device->ccbq);
4574	/*
4575	 * Free allocated memory.  free(9) does nothing if the
4576	 * supplied pointer is NULL, so it is safe to call without
4577	 * checking.
4578	 */
4579	free(device->supported_vpds, M_CAMXPT);
4580	free(device->device_id, M_CAMXPT);
4581	free(device->physpath, M_CAMXPT);
4582	free(device->rcap_buf, M_CAMXPT);
4583	free(device->serial_num, M_CAMXPT);
4584
4585	xpt_release_target(device->target);
4586	free(device, M_CAMDEV);
4587}
4588
4589u_int32_t
4590xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4591{
4592	int	diff;
4593	int	result;
4594	struct	cam_ed *dev;
4595
4596	dev = path->device;
4597
4598	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4599	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4600	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4601	 || (dev->inq_flags & SID_CmdQue) != 0)
4602		dev->tag_saved_openings = newopenings;
4603	/* Adjust the global limit */
4604	dev->sim->max_ccbs += diff;
4605	return (result);
4606}
4607
4608static struct cam_eb *
4609xpt_find_bus(path_id_t path_id)
4610{
4611	struct cam_eb *bus;
4612
4613	xpt_lock_buses();
4614	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4615	     bus != NULL;
4616	     bus = TAILQ_NEXT(bus, links)) {
4617		if (bus->path_id == path_id) {
4618			bus->refcount++;
4619			break;
4620		}
4621	}
4622	xpt_unlock_buses();
4623	return (bus);
4624}
4625
4626static struct cam_et *
4627xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4628{
4629	struct cam_et *target;
4630
4631	mtx_assert(bus->sim->mtx, MA_OWNED);
4632	for (target = TAILQ_FIRST(&bus->et_entries);
4633	     target != NULL;
4634	     target = TAILQ_NEXT(target, links)) {
4635		if (target->target_id == target_id) {
4636			target->refcount++;
4637			break;
4638		}
4639	}
4640	return (target);
4641}
4642
4643static struct cam_ed *
4644xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4645{
4646	struct cam_ed *device;
4647
4648	mtx_assert(target->bus->sim->mtx, MA_OWNED);
4649	for (device = TAILQ_FIRST(&target->ed_entries);
4650	     device != NULL;
4651	     device = TAILQ_NEXT(device, links)) {
4652		if (device->lun_id == lun_id) {
4653			device->refcount++;
4654			break;
4655		}
4656	}
4657	return (device);
4658}
4659
4660void
4661xpt_start_tags(struct cam_path *path)
4662{
4663	struct ccb_relsim crs;
4664	struct cam_ed *device;
4665	struct cam_sim *sim;
4666	int    newopenings;
4667
4668	device = path->device;
4669	sim = path->bus->sim;
4670	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4671	xpt_freeze_devq(path, /*count*/1);
4672	device->inq_flags |= SID_CmdQue;
4673	if (device->tag_saved_openings != 0)
4674		newopenings = device->tag_saved_openings;
4675	else
4676		newopenings = min(device->maxtags,
4677				  sim->max_tagged_dev_openings);
4678	xpt_dev_ccbq_resize(path, newopenings);
4679	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4680	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4681	crs.ccb_h.func_code = XPT_REL_SIMQ;
4682	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4683	crs.openings
4684	    = crs.release_timeout
4685	    = crs.qfrozen_cnt
4686	    = 0;
4687	xpt_action((union ccb *)&crs);
4688}
4689
4690void
4691xpt_stop_tags(struct cam_path *path)
4692{
4693	struct ccb_relsim crs;
4694	struct cam_ed *device;
4695	struct cam_sim *sim;
4696
4697	device = path->device;
4698	sim = path->bus->sim;
4699	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4700	device->tag_delay_count = 0;
4701	xpt_freeze_devq(path, /*count*/1);
4702	device->inq_flags &= ~SID_CmdQue;
4703	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4704	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4705	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4706	crs.ccb_h.func_code = XPT_REL_SIMQ;
4707	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4708	crs.openings
4709	    = crs.release_timeout
4710	    = crs.qfrozen_cnt
4711	    = 0;
4712	xpt_action((union ccb *)&crs);
4713}
4714
4715static void
4716xpt_boot_delay(void *arg)
4717{
4718
4719	xpt_release_boot();
4720}
4721
4722static void
4723xpt_config(void *arg)
4724{
4725	/*
4726	 * Now that interrupts are enabled, go find our devices
4727	 */
4728
4729	/* Setup debugging path */
4730	if (cam_dflags != CAM_DEBUG_NONE) {
4731		if (xpt_create_path_unlocked(&cam_dpath, NULL,
4732				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4733				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4734			printf("xpt_config: xpt_create_path() failed for debug"
4735			       " target %d:%d:%d, debugging disabled\n",
4736			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4737			cam_dflags = CAM_DEBUG_NONE;
4738		}
4739	} else
4740		cam_dpath = NULL;
4741
4742	periphdriver_init(1);
4743	xpt_hold_boot();
4744	callout_init(&xsoftc.boot_callout, 1);
4745	callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000,
4746	    xpt_boot_delay, NULL);
4747	/* Fire up rescan thread. */
4748	if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
4749		printf("xpt_config: failed to create rescan thread.\n");
4750	}
4751}
4752
4753void
4754xpt_hold_boot(void)
4755{
4756	xpt_lock_buses();
4757	xsoftc.buses_to_config++;
4758	xpt_unlock_buses();
4759}
4760
4761void
4762xpt_release_boot(void)
4763{
4764	xpt_lock_buses();
4765	xsoftc.buses_to_config--;
4766	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4767		struct	xpt_task *task;
4768
4769		xsoftc.buses_config_done = 1;
4770		xpt_unlock_buses();
4771		/* Call manually because we don't have any busses */
4772		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4773		if (task != NULL) {
4774			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4775			taskqueue_enqueue(taskqueue_thread, &task->task);
4776		}
4777	} else
4778		xpt_unlock_buses();
4779}
4780
4781/*
4782 * If the given device only has one peripheral attached to it, and if that
4783 * peripheral is the passthrough driver, announce it.  This insures that the
4784 * user sees some sort of announcement for every peripheral in their system.
4785 */
4786static int
4787xptpassannouncefunc(struct cam_ed *device, void *arg)
4788{
4789	struct cam_periph *periph;
4790	int i;
4791
4792	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4793	     periph = SLIST_NEXT(periph, periph_links), i++);
4794
4795	periph = SLIST_FIRST(&device->periphs);
4796	if ((i == 1)
4797	 && (strncmp(periph->periph_name, "pass", 4) == 0))
4798		xpt_announce_periph(periph, NULL);
4799
4800	return(1);
4801}
4802
4803static void
4804xpt_finishconfig_task(void *context, int pending)
4805{
4806
4807	periphdriver_init(2);
4808	/*
4809	 * Check for devices with no "standard" peripheral driver
4810	 * attached.  For any devices like that, announce the
4811	 * passthrough driver so the user will see something.
4812	 */
4813	if (!bootverbose)
4814		xpt_for_all_devices(xptpassannouncefunc, NULL);
4815
4816	/* Release our hook so that the boot can continue. */
4817	config_intrhook_disestablish(xsoftc.xpt_config_hook);
4818	free(xsoftc.xpt_config_hook, M_CAMXPT);
4819	xsoftc.xpt_config_hook = NULL;
4820
4821	free(context, M_CAMXPT);
4822}
4823
4824cam_status
4825xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
4826		   struct cam_path *path)
4827{
4828	struct ccb_setasync csa;
4829	cam_status status;
4830	int xptpath = 0;
4831
4832	if (path == NULL) {
4833		mtx_lock(&xsoftc.xpt_lock);
4834		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
4835					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4836		if (status != CAM_REQ_CMP) {
4837			mtx_unlock(&xsoftc.xpt_lock);
4838			return (status);
4839		}
4840		xptpath = 1;
4841	}
4842
4843	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
4844	csa.ccb_h.func_code = XPT_SASYNC_CB;
4845	csa.event_enable = event;
4846	csa.callback = cbfunc;
4847	csa.callback_arg = cbarg;
4848	xpt_action((union ccb *)&csa);
4849	status = csa.ccb_h.status;
4850
4851	if (xptpath) {
4852		xpt_free_path(path);
4853		mtx_unlock(&xsoftc.xpt_lock);
4854	}
4855
4856	if ((status == CAM_REQ_CMP) &&
4857	    (csa.event_enable & AC_FOUND_DEVICE)) {
4858		/*
4859		 * Get this peripheral up to date with all
4860		 * the currently existing devices.
4861		 */
4862		xpt_for_all_devices(xptsetasyncfunc, &csa);
4863	}
4864	if ((status == CAM_REQ_CMP) &&
4865	    (csa.event_enable & AC_PATH_REGISTERED)) {
4866		/*
4867		 * Get this peripheral up to date with all
4868		 * the currently existing busses.
4869		 */
4870		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
4871	}
4872
4873	return (status);
4874}
4875
4876static void
4877xptaction(struct cam_sim *sim, union ccb *work_ccb)
4878{
4879	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
4880
4881	switch (work_ccb->ccb_h.func_code) {
4882	/* Common cases first */
4883	case XPT_PATH_INQ:		/* Path routing inquiry */
4884	{
4885		struct ccb_pathinq *cpi;
4886
4887		cpi = &work_ccb->cpi;
4888		cpi->version_num = 1; /* XXX??? */
4889		cpi->hba_inquiry = 0;
4890		cpi->target_sprt = 0;
4891		cpi->hba_misc = 0;
4892		cpi->hba_eng_cnt = 0;
4893		cpi->max_target = 0;
4894		cpi->max_lun = 0;
4895		cpi->initiator_id = 0;
4896		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
4897		strncpy(cpi->hba_vid, "", HBA_IDLEN);
4898		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
4899		cpi->unit_number = sim->unit_number;
4900		cpi->bus_id = sim->bus_id;
4901		cpi->base_transfer_speed = 0;
4902		cpi->protocol = PROTO_UNSPECIFIED;
4903		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
4904		cpi->transport = XPORT_UNSPECIFIED;
4905		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
4906		cpi->ccb_h.status = CAM_REQ_CMP;
4907		xpt_done(work_ccb);
4908		break;
4909	}
4910	default:
4911		work_ccb->ccb_h.status = CAM_REQ_INVALID;
4912		xpt_done(work_ccb);
4913		break;
4914	}
4915}
4916
4917/*
4918 * The xpt as a "controller" has no interrupt sources, so polling
4919 * is a no-op.
4920 */
4921static void
4922xptpoll(struct cam_sim *sim)
4923{
4924}
4925
4926void
4927xpt_lock_buses(void)
4928{
4929	mtx_lock(&xsoftc.xpt_topo_lock);
4930}
4931
4932void
4933xpt_unlock_buses(void)
4934{
4935	mtx_unlock(&xsoftc.xpt_topo_lock);
4936}
4937
4938static void
4939camisr(void *dummy)
4940{
4941	cam_simq_t queue;
4942	struct cam_sim *sim;
4943
4944	mtx_lock(&cam_simq_lock);
4945	TAILQ_INIT(&queue);
4946	while (!TAILQ_EMPTY(&cam_simq)) {
4947		TAILQ_CONCAT(&queue, &cam_simq, links);
4948		mtx_unlock(&cam_simq_lock);
4949
4950		while ((sim = TAILQ_FIRST(&queue)) != NULL) {
4951			TAILQ_REMOVE(&queue, sim, links);
4952			CAM_SIM_LOCK(sim);
4953			camisr_runqueue(sim);
4954			sim->flags &= ~CAM_SIM_ON_DONEQ;
4955			CAM_SIM_UNLOCK(sim);
4956		}
4957		mtx_lock(&cam_simq_lock);
4958	}
4959	mtx_unlock(&cam_simq_lock);
4960}
4961
4962static void
4963camisr_runqueue(struct cam_sim *sim)
4964{
4965	struct	ccb_hdr *ccb_h;
4966
4967	while ((ccb_h = TAILQ_FIRST(&sim->sim_doneq)) != NULL) {
4968		int	runq;
4969
4970		TAILQ_REMOVE(&sim->sim_doneq, ccb_h, sim_links.tqe);
4971		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
4972
4973		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
4974			  ("camisr\n"));
4975
4976		runq = FALSE;
4977
4978		if (ccb_h->flags & CAM_HIGH_POWER) {
4979			struct highpowerlist	*hphead;
4980			struct cam_ed		*device;
4981
4982			mtx_lock(&xsoftc.xpt_lock);
4983			hphead = &xsoftc.highpowerq;
4984
4985			device = STAILQ_FIRST(hphead);
4986
4987			/*
4988			 * Increment the count since this command is done.
4989			 */
4990			xsoftc.num_highpower++;
4991
4992			/*
4993			 * Any high powered commands queued up?
4994			 */
4995			if (device != NULL) {
4996
4997				STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
4998				mtx_unlock(&xsoftc.xpt_lock);
4999
5000				xpt_release_devq_device(device,
5001						 /*count*/1, /*runqueue*/TRUE);
5002			} else
5003				mtx_unlock(&xsoftc.xpt_lock);
5004		}
5005
5006		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5007			struct cam_ed *dev;
5008
5009			dev = ccb_h->path->device;
5010
5011			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5012			sim->devq->send_active--;
5013			sim->devq->send_openings++;
5014			runq = TRUE;
5015
5016			if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5017			  && (dev->ccbq.dev_active == 0))) {
5018				dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5019				xpt_release_devq(ccb_h->path, /*count*/1,
5020						 /*run_queue*/FALSE);
5021			}
5022
5023			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5024			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5025				dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5026				xpt_release_devq(ccb_h->path, /*count*/1,
5027						 /*run_queue*/FALSE);
5028			}
5029
5030			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5031			 && (--dev->tag_delay_count == 0))
5032				xpt_start_tags(ccb_h->path);
5033			if (!device_is_queued(dev)) {
5034				(void)xpt_schedule_devq(sim->devq, dev);
5035			}
5036		}
5037
5038		if (ccb_h->status & CAM_RELEASE_SIMQ) {
5039			xpt_release_simq(sim, /*run_queue*/TRUE);
5040			ccb_h->status &= ~CAM_RELEASE_SIMQ;
5041			runq = FALSE;
5042		}
5043
5044		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5045		 && (ccb_h->status & CAM_DEV_QFRZN)) {
5046			xpt_release_devq(ccb_h->path, /*count*/1,
5047					 /*run_queue*/TRUE);
5048			ccb_h->status &= ~CAM_DEV_QFRZN;
5049		} else if (runq) {
5050			xpt_run_devq(sim->devq);
5051		}
5052
5053		/* Call the peripheral driver's callback */
5054		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5055	}
5056}
5057