cam_periph.c revision 288817
1/*-
2 * Common functions for CAM "type" (peripheral) drivers.
3 *
4 * Copyright (c) 1997, 1998 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions, and the following disclaimer,
13 *    without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 *    derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: stable/10/sys/cam/cam_periph.c 288817 2015-10-05 11:45:28Z mav $");
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/types.h>
36#include <sys/malloc.h>
37#include <sys/kernel.h>
38#include <sys/bio.h>
39#include <sys/lock.h>
40#include <sys/mutex.h>
41#include <sys/buf.h>
42#include <sys/proc.h>
43#include <sys/devicestat.h>
44#include <sys/bus.h>
45#include <sys/sbuf.h>
46#include <vm/vm.h>
47#include <vm/vm_extern.h>
48
49#include <cam/cam.h>
50#include <cam/cam_ccb.h>
51#include <cam/cam_queue.h>
52#include <cam/cam_xpt_periph.h>
53#include <cam/cam_periph.h>
54#include <cam/cam_debug.h>
55#include <cam/cam_sim.h>
56
57#include <cam/scsi/scsi_all.h>
58#include <cam/scsi/scsi_message.h>
59#include <cam/scsi/scsi_pass.h>
60
61static	u_int		camperiphnextunit(struct periph_driver *p_drv,
62					  u_int newunit, int wired,
63					  path_id_t pathid, target_id_t target,
64					  lun_id_t lun);
65static	u_int		camperiphunit(struct periph_driver *p_drv,
66				      path_id_t pathid, target_id_t target,
67				      lun_id_t lun);
68static	void		camperiphdone(struct cam_periph *periph,
69					union ccb *done_ccb);
70static  void		camperiphfree(struct cam_periph *periph);
71static int		camperiphscsistatuserror(union ccb *ccb,
72					        union ccb **orig_ccb,
73						 cam_flags camflags,
74						 u_int32_t sense_flags,
75						 int *openings,
76						 u_int32_t *relsim_flags,
77						 u_int32_t *timeout,
78						 u_int32_t  *action,
79						 const char **action_string);
80static	int		camperiphscsisenseerror(union ccb *ccb,
81					        union ccb **orig_ccb,
82					        cam_flags camflags,
83					        u_int32_t sense_flags,
84					        int *openings,
85					        u_int32_t *relsim_flags,
86					        u_int32_t *timeout,
87					        u_int32_t *action,
88					        const char **action_string);
89
90static int nperiph_drivers;
91static int initialized = 0;
92struct periph_driver **periph_drivers;
93
94static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers");
95
96static int periph_selto_delay = 1000;
97TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay);
98static int periph_noresrc_delay = 500;
99TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay);
100static int periph_busy_delay = 500;
101TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay);
102
103
104void
105periphdriver_register(void *data)
106{
107	struct periph_driver *drv = (struct periph_driver *)data;
108	struct periph_driver **newdrivers, **old;
109	int ndrivers;
110
111again:
112	ndrivers = nperiph_drivers + 2;
113	newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH,
114			    M_WAITOK);
115	xpt_lock_buses();
116	if (ndrivers != nperiph_drivers + 2) {
117		/*
118		 * Lost race against itself; go around.
119		 */
120		xpt_unlock_buses();
121		free(newdrivers, M_CAMPERIPH);
122		goto again;
123	}
124	if (periph_drivers)
125		bcopy(periph_drivers, newdrivers,
126		      sizeof(*newdrivers) * nperiph_drivers);
127	newdrivers[nperiph_drivers] = drv;
128	newdrivers[nperiph_drivers + 1] = NULL;
129	old = periph_drivers;
130	periph_drivers = newdrivers;
131	nperiph_drivers++;
132	xpt_unlock_buses();
133	if (old)
134		free(old, M_CAMPERIPH);
135	/* If driver marked as early or it is late now, initialize it. */
136	if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) ||
137	    initialized > 1)
138		(*drv->init)();
139}
140
141void
142periphdriver_init(int level)
143{
144	int	i, early;
145
146	initialized = max(initialized, level);
147	for (i = 0; periph_drivers[i] != NULL; i++) {
148		early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2;
149		if (early == initialized)
150			(*periph_drivers[i]->init)();
151	}
152}
153
154cam_status
155cam_periph_alloc(periph_ctor_t *periph_ctor,
156		 periph_oninv_t *periph_oninvalidate,
157		 periph_dtor_t *periph_dtor, periph_start_t *periph_start,
158		 char *name, cam_periph_type type, struct cam_path *path,
159		 ac_callback_t *ac_callback, ac_code code, void *arg)
160{
161	struct		periph_driver **p_drv;
162	struct		cam_sim *sim;
163	struct		cam_periph *periph;
164	struct		cam_periph *cur_periph;
165	path_id_t	path_id;
166	target_id_t	target_id;
167	lun_id_t	lun_id;
168	cam_status	status;
169	u_int		init_level;
170
171	init_level = 0;
172	/*
173	 * Handle Hot-Plug scenarios.  If there is already a peripheral
174	 * of our type assigned to this path, we are likely waiting for
175	 * final close on an old, invalidated, peripheral.  If this is
176	 * the case, queue up a deferred call to the peripheral's async
177	 * handler.  If it looks like a mistaken re-allocation, complain.
178	 */
179	if ((periph = cam_periph_find(path, name)) != NULL) {
180
181		if ((periph->flags & CAM_PERIPH_INVALID) != 0
182		 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) {
183			periph->flags |= CAM_PERIPH_NEW_DEV_FOUND;
184			periph->deferred_callback = ac_callback;
185			periph->deferred_ac = code;
186			return (CAM_REQ_INPROG);
187		} else {
188			printf("cam_periph_alloc: attempt to re-allocate "
189			       "valid device %s%d rejected flags %#x "
190			       "refcount %d\n", periph->periph_name,
191			       periph->unit_number, periph->flags,
192			       periph->refcount);
193		}
194		return (CAM_REQ_INVALID);
195	}
196
197	periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH,
198					     M_NOWAIT|M_ZERO);
199
200	if (periph == NULL)
201		return (CAM_RESRC_UNAVAIL);
202
203	init_level++;
204
205
206	sim = xpt_path_sim(path);
207	path_id = xpt_path_path_id(path);
208	target_id = xpt_path_target_id(path);
209	lun_id = xpt_path_lun_id(path);
210	periph->periph_start = periph_start;
211	periph->periph_dtor = periph_dtor;
212	periph->periph_oninval = periph_oninvalidate;
213	periph->type = type;
214	periph->periph_name = name;
215	periph->scheduled_priority = CAM_PRIORITY_NONE;
216	periph->immediate_priority = CAM_PRIORITY_NONE;
217	periph->refcount = 1;		/* Dropped by invalidation. */
218	periph->sim = sim;
219	SLIST_INIT(&periph->ccb_list);
220	status = xpt_create_path(&path, periph, path_id, target_id, lun_id);
221	if (status != CAM_REQ_CMP)
222		goto failure;
223	periph->path = path;
224
225	xpt_lock_buses();
226	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
227		if (strcmp((*p_drv)->driver_name, name) == 0)
228			break;
229	}
230	if (*p_drv == NULL) {
231		printf("cam_periph_alloc: invalid periph name '%s'\n", name);
232		xpt_unlock_buses();
233		xpt_free_path(periph->path);
234		free(periph, M_CAMPERIPH);
235		return (CAM_REQ_INVALID);
236	}
237	periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id);
238	cur_periph = TAILQ_FIRST(&(*p_drv)->units);
239	while (cur_periph != NULL
240	    && cur_periph->unit_number < periph->unit_number)
241		cur_periph = TAILQ_NEXT(cur_periph, unit_links);
242	if (cur_periph != NULL) {
243		KASSERT(cur_periph->unit_number != periph->unit_number, ("duplicate units on periph list"));
244		TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links);
245	} else {
246		TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links);
247		(*p_drv)->generation++;
248	}
249	xpt_unlock_buses();
250
251	init_level++;
252
253	status = xpt_add_periph(periph);
254	if (status != CAM_REQ_CMP)
255		goto failure;
256
257	init_level++;
258	CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n"));
259
260	status = periph_ctor(periph, arg);
261
262	if (status == CAM_REQ_CMP)
263		init_level++;
264
265failure:
266	switch (init_level) {
267	case 4:
268		/* Initialized successfully */
269		break;
270	case 3:
271		CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n"));
272		xpt_remove_periph(periph);
273		/* FALLTHROUGH */
274	case 2:
275		xpt_lock_buses();
276		TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
277		xpt_unlock_buses();
278		xpt_free_path(periph->path);
279		/* FALLTHROUGH */
280	case 1:
281		free(periph, M_CAMPERIPH);
282		/* FALLTHROUGH */
283	case 0:
284		/* No cleanup to perform. */
285		break;
286	default:
287		panic("%s: Unknown init level", __func__);
288	}
289	return(status);
290}
291
292/*
293 * Find a peripheral structure with the specified path, target, lun,
294 * and (optionally) type.  If the name is NULL, this function will return
295 * the first peripheral driver that matches the specified path.
296 */
297struct cam_periph *
298cam_periph_find(struct cam_path *path, char *name)
299{
300	struct periph_driver **p_drv;
301	struct cam_periph *periph;
302
303	xpt_lock_buses();
304	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
305
306		if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0))
307			continue;
308
309		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
310			if (xpt_path_comp(periph->path, path) == 0) {
311				xpt_unlock_buses();
312				cam_periph_assert(periph, MA_OWNED);
313				return(periph);
314			}
315		}
316		if (name != NULL) {
317			xpt_unlock_buses();
318			return(NULL);
319		}
320	}
321	xpt_unlock_buses();
322	return(NULL);
323}
324
325/*
326 * Find peripheral driver instances attached to the specified path.
327 */
328int
329cam_periph_list(struct cam_path *path, struct sbuf *sb)
330{
331	struct sbuf local_sb;
332	struct periph_driver **p_drv;
333	struct cam_periph *periph;
334	int count;
335	int sbuf_alloc_len;
336
337	sbuf_alloc_len = 16;
338retry:
339	sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN);
340	count = 0;
341	xpt_lock_buses();
342	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
343
344		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
345			if (xpt_path_comp(periph->path, path) != 0)
346				continue;
347
348			if (sbuf_len(&local_sb) != 0)
349				sbuf_cat(&local_sb, ",");
350
351			sbuf_printf(&local_sb, "%s%d", periph->periph_name,
352				    periph->unit_number);
353
354			if (sbuf_error(&local_sb) == ENOMEM) {
355				sbuf_alloc_len *= 2;
356				xpt_unlock_buses();
357				sbuf_delete(&local_sb);
358				goto retry;
359			}
360			count++;
361		}
362	}
363	xpt_unlock_buses();
364	sbuf_finish(&local_sb);
365	sbuf_cpy(sb, sbuf_data(&local_sb));
366	sbuf_delete(&local_sb);
367	return (count);
368}
369
370cam_status
371cam_periph_acquire(struct cam_periph *periph)
372{
373	cam_status status;
374
375	status = CAM_REQ_CMP_ERR;
376	if (periph == NULL)
377		return (status);
378
379	xpt_lock_buses();
380	if ((periph->flags & CAM_PERIPH_INVALID) == 0) {
381		periph->refcount++;
382		status = CAM_REQ_CMP;
383	}
384	xpt_unlock_buses();
385
386	return (status);
387}
388
389void
390cam_periph_doacquire(struct cam_periph *periph)
391{
392
393	xpt_lock_buses();
394	KASSERT(periph->refcount >= 1,
395	    ("cam_periph_doacquire() with refcount == %d", periph->refcount));
396	periph->refcount++;
397	xpt_unlock_buses();
398}
399
400void
401cam_periph_release_locked_buses(struct cam_periph *periph)
402{
403
404	cam_periph_assert(periph, MA_OWNED);
405	KASSERT(periph->refcount >= 1, ("periph->refcount >= 1"));
406	if (--periph->refcount == 0)
407		camperiphfree(periph);
408}
409
410void
411cam_periph_release_locked(struct cam_periph *periph)
412{
413
414	if (periph == NULL)
415		return;
416
417	xpt_lock_buses();
418	cam_periph_release_locked_buses(periph);
419	xpt_unlock_buses();
420}
421
422void
423cam_periph_release(struct cam_periph *periph)
424{
425	struct mtx *mtx;
426
427	if (periph == NULL)
428		return;
429
430	cam_periph_assert(periph, MA_NOTOWNED);
431	mtx = cam_periph_mtx(periph);
432	mtx_lock(mtx);
433	cam_periph_release_locked(periph);
434	mtx_unlock(mtx);
435}
436
437int
438cam_periph_hold(struct cam_periph *periph, int priority)
439{
440	int error;
441
442	/*
443	 * Increment the reference count on the peripheral
444	 * while we wait for our lock attempt to succeed
445	 * to ensure the peripheral doesn't disappear out
446	 * from user us while we sleep.
447	 */
448
449	if (cam_periph_acquire(periph) != CAM_REQ_CMP)
450		return (ENXIO);
451
452	cam_periph_assert(periph, MA_OWNED);
453	while ((periph->flags & CAM_PERIPH_LOCKED) != 0) {
454		periph->flags |= CAM_PERIPH_LOCK_WANTED;
455		if ((error = cam_periph_sleep(periph, periph, priority,
456		    "caplck", 0)) != 0) {
457			cam_periph_release_locked(periph);
458			return (error);
459		}
460		if (periph->flags & CAM_PERIPH_INVALID) {
461			cam_periph_release_locked(periph);
462			return (ENXIO);
463		}
464	}
465
466	periph->flags |= CAM_PERIPH_LOCKED;
467	return (0);
468}
469
470void
471cam_periph_unhold(struct cam_periph *periph)
472{
473
474	cam_periph_assert(periph, MA_OWNED);
475
476	periph->flags &= ~CAM_PERIPH_LOCKED;
477	if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) {
478		periph->flags &= ~CAM_PERIPH_LOCK_WANTED;
479		wakeup(periph);
480	}
481
482	cam_periph_release_locked(periph);
483}
484
485/*
486 * Look for the next unit number that is not currently in use for this
487 * peripheral type starting at "newunit".  Also exclude unit numbers that
488 * are reserved by for future "hardwiring" unless we already know that this
489 * is a potential wired device.  Only assume that the device is "wired" the
490 * first time through the loop since after that we'll be looking at unit
491 * numbers that did not match a wiring entry.
492 */
493static u_int
494camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired,
495		  path_id_t pathid, target_id_t target, lun_id_t lun)
496{
497	struct	cam_periph *periph;
498	char	*periph_name;
499	int	i, val, dunit, r;
500	const char *dname, *strval;
501
502	periph_name = p_drv->driver_name;
503	for (;;newunit++) {
504
505		for (periph = TAILQ_FIRST(&p_drv->units);
506		     periph != NULL && periph->unit_number != newunit;
507		     periph = TAILQ_NEXT(periph, unit_links))
508			;
509
510		if (periph != NULL && periph->unit_number == newunit) {
511			if (wired != 0) {
512				xpt_print(periph->path, "Duplicate Wired "
513				    "Device entry!\n");
514				xpt_print(periph->path, "Second device (%s "
515				    "device at scbus%d target %d lun %d) will "
516				    "not be wired\n", periph_name, pathid,
517				    target, lun);
518				wired = 0;
519			}
520			continue;
521		}
522		if (wired)
523			break;
524
525		/*
526		 * Don't match entries like "da 4" as a wired down
527		 * device, but do match entries like "da 4 target 5"
528		 * or even "da 4 scbus 1".
529		 */
530		i = 0;
531		dname = periph_name;
532		for (;;) {
533			r = resource_find_dev(&i, dname, &dunit, NULL, NULL);
534			if (r != 0)
535				break;
536			/* if no "target" and no specific scbus, skip */
537			if (resource_int_value(dname, dunit, "target", &val) &&
538			    (resource_string_value(dname, dunit, "at",&strval)||
539			     strcmp(strval, "scbus") == 0))
540				continue;
541			if (newunit == dunit)
542				break;
543		}
544		if (r != 0)
545			break;
546	}
547	return (newunit);
548}
549
550static u_int
551camperiphunit(struct periph_driver *p_drv, path_id_t pathid,
552	      target_id_t target, lun_id_t lun)
553{
554	u_int	unit;
555	int	wired, i, val, dunit;
556	const char *dname, *strval;
557	char	pathbuf[32], *periph_name;
558
559	periph_name = p_drv->driver_name;
560	snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid);
561	unit = 0;
562	i = 0;
563	dname = periph_name;
564	for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0;
565	     wired = 0) {
566		if (resource_string_value(dname, dunit, "at", &strval) == 0) {
567			if (strcmp(strval, pathbuf) != 0)
568				continue;
569			wired++;
570		}
571		if (resource_int_value(dname, dunit, "target", &val) == 0) {
572			if (val != target)
573				continue;
574			wired++;
575		}
576		if (resource_int_value(dname, dunit, "lun", &val) == 0) {
577			if (val != lun)
578				continue;
579			wired++;
580		}
581		if (wired != 0) {
582			unit = dunit;
583			break;
584		}
585	}
586
587	/*
588	 * Either start from 0 looking for the next unit or from
589	 * the unit number given in the resource config.  This way,
590	 * if we have wildcard matches, we don't return the same
591	 * unit number twice.
592	 */
593	unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun);
594
595	return (unit);
596}
597
598void
599cam_periph_invalidate(struct cam_periph *periph)
600{
601
602	cam_periph_assert(periph, MA_OWNED);
603	/*
604	 * We only call this routine the first time a peripheral is
605	 * invalidated.
606	 */
607	if ((periph->flags & CAM_PERIPH_INVALID) != 0)
608		return;
609
610	CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n"));
611	if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting)
612		xpt_denounce_periph(periph);
613	periph->flags |= CAM_PERIPH_INVALID;
614	periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND;
615	if (periph->periph_oninval != NULL)
616		periph->periph_oninval(periph);
617	cam_periph_release_locked(periph);
618}
619
620static void
621camperiphfree(struct cam_periph *periph)
622{
623	struct periph_driver **p_drv;
624
625	cam_periph_assert(periph, MA_OWNED);
626	KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating",
627	    periph->periph_name, periph->unit_number));
628	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
629		if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0)
630			break;
631	}
632	if (*p_drv == NULL) {
633		printf("camperiphfree: attempt to free non-existant periph\n");
634		return;
635	}
636
637	/*
638	 * We need to set this flag before dropping the topology lock, to
639	 * let anyone who is traversing the list that this peripheral is
640	 * about to be freed, and there will be no more reference count
641	 * checks.
642	 */
643	periph->flags |= CAM_PERIPH_FREE;
644
645	/*
646	 * The peripheral destructor semantics dictate calling with only the
647	 * SIM mutex held.  Since it might sleep, it should not be called
648	 * with the topology lock held.
649	 */
650	xpt_unlock_buses();
651
652	/*
653	 * We need to call the peripheral destructor prior to removing the
654	 * peripheral from the list.  Otherwise, we risk running into a
655	 * scenario where the peripheral unit number may get reused
656	 * (because it has been removed from the list), but some resources
657	 * used by the peripheral are still hanging around.  In particular,
658	 * the devfs nodes used by some peripherals like the pass(4) driver
659	 * aren't fully cleaned up until the destructor is run.  If the
660	 * unit number is reused before the devfs instance is fully gone,
661	 * devfs will panic.
662	 */
663	if (periph->periph_dtor != NULL)
664		periph->periph_dtor(periph);
665
666	/*
667	 * The peripheral list is protected by the topology lock.
668	 */
669	xpt_lock_buses();
670
671	TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
672	(*p_drv)->generation++;
673
674	xpt_remove_periph(periph);
675
676	xpt_unlock_buses();
677	if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting)
678		xpt_print(periph->path, "Periph destroyed\n");
679	else
680		CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n"));
681
682	if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) {
683		union ccb ccb;
684		void *arg;
685
686		switch (periph->deferred_ac) {
687		case AC_FOUND_DEVICE:
688			ccb.ccb_h.func_code = XPT_GDEV_TYPE;
689			xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
690			xpt_action(&ccb);
691			arg = &ccb;
692			break;
693		case AC_PATH_REGISTERED:
694			ccb.ccb_h.func_code = XPT_PATH_INQ;
695			xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
696			xpt_action(&ccb);
697			arg = &ccb;
698			break;
699		default:
700			arg = NULL;
701			break;
702		}
703		periph->deferred_callback(NULL, periph->deferred_ac,
704					  periph->path, arg);
705	}
706	xpt_free_path(periph->path);
707	free(periph, M_CAMPERIPH);
708	xpt_lock_buses();
709}
710
711/*
712 * Map user virtual pointers into kernel virtual address space, so we can
713 * access the memory.  This is now a generic function that centralizes most
714 * of the sanity checks on the data flags, if any.
715 * This also only works for up to MAXPHYS memory.  Since we use
716 * buffers to map stuff in and out, we're limited to the buffer size.
717 */
718int
719cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo,
720    u_int maxmap)
721{
722	int numbufs, i, j;
723	int flags[CAM_PERIPH_MAXMAPS];
724	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
725	u_int32_t lengths[CAM_PERIPH_MAXMAPS];
726	u_int32_t dirs[CAM_PERIPH_MAXMAPS];
727
728	if (maxmap == 0)
729		maxmap = DFLTPHYS;	/* traditional default */
730	else if (maxmap > MAXPHYS)
731		maxmap = MAXPHYS;	/* for safety */
732	switch(ccb->ccb_h.func_code) {
733	case XPT_DEV_MATCH:
734		if (ccb->cdm.match_buf_len == 0) {
735			printf("cam_periph_mapmem: invalid match buffer "
736			       "length 0\n");
737			return(EINVAL);
738		}
739		if (ccb->cdm.pattern_buf_len > 0) {
740			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
741			lengths[0] = ccb->cdm.pattern_buf_len;
742			dirs[0] = CAM_DIR_OUT;
743			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
744			lengths[1] = ccb->cdm.match_buf_len;
745			dirs[1] = CAM_DIR_IN;
746			numbufs = 2;
747		} else {
748			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
749			lengths[0] = ccb->cdm.match_buf_len;
750			dirs[0] = CAM_DIR_IN;
751			numbufs = 1;
752		}
753		/*
754		 * This request will not go to the hardware, no reason
755		 * to be so strict. vmapbuf() is able to map up to MAXPHYS.
756		 */
757		maxmap = MAXPHYS;
758		break;
759	case XPT_SCSI_IO:
760	case XPT_CONT_TARGET_IO:
761		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
762			return(0);
763		if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
764			return (EINVAL);
765		data_ptrs[0] = &ccb->csio.data_ptr;
766		lengths[0] = ccb->csio.dxfer_len;
767		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
768		numbufs = 1;
769		break;
770	case XPT_ATA_IO:
771		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
772			return(0);
773		if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
774			return (EINVAL);
775		data_ptrs[0] = &ccb->ataio.data_ptr;
776		lengths[0] = ccb->ataio.dxfer_len;
777		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
778		numbufs = 1;
779		break;
780	case XPT_SMP_IO:
781		data_ptrs[0] = &ccb->smpio.smp_request;
782		lengths[0] = ccb->smpio.smp_request_len;
783		dirs[0] = CAM_DIR_OUT;
784		data_ptrs[1] = &ccb->smpio.smp_response;
785		lengths[1] = ccb->smpio.smp_response_len;
786		dirs[1] = CAM_DIR_IN;
787		numbufs = 2;
788		break;
789	case XPT_DEV_ADVINFO:
790		if (ccb->cdai.bufsiz == 0)
791			return (0);
792
793		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
794		lengths[0] = ccb->cdai.bufsiz;
795		dirs[0] = CAM_DIR_IN;
796		numbufs = 1;
797
798		/*
799		 * This request will not go to the hardware, no reason
800		 * to be so strict. vmapbuf() is able to map up to MAXPHYS.
801		 */
802		maxmap = MAXPHYS;
803		break;
804	default:
805		return(EINVAL);
806		break; /* NOTREACHED */
807	}
808
809	/*
810	 * Check the transfer length and permissions first, so we don't
811	 * have to unmap any previously mapped buffers.
812	 */
813	for (i = 0; i < numbufs; i++) {
814
815		flags[i] = 0;
816
817		/*
818		 * The userland data pointer passed in may not be page
819		 * aligned.  vmapbuf() truncates the address to a page
820		 * boundary, so if the address isn't page aligned, we'll
821		 * need enough space for the given transfer length, plus
822		 * whatever extra space is necessary to make it to the page
823		 * boundary.
824		 */
825		if ((lengths[i] +
826		    (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > maxmap){
827			printf("cam_periph_mapmem: attempt to map %lu bytes, "
828			       "which is greater than %lu\n",
829			       (long)(lengths[i] +
830			       (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)),
831			       (u_long)maxmap);
832			return(E2BIG);
833		}
834
835		if (dirs[i] & CAM_DIR_OUT) {
836			flags[i] = BIO_WRITE;
837		}
838
839		if (dirs[i] & CAM_DIR_IN) {
840			flags[i] = BIO_READ;
841		}
842
843	}
844
845	/*
846	 * This keeps the the kernel stack of current thread from getting
847	 * swapped.  In low-memory situations where the kernel stack might
848	 * otherwise get swapped out, this holds it and allows the thread
849	 * to make progress and release the kernel mapped pages sooner.
850	 *
851	 * XXX KDM should I use P_NOSWAP instead?
852	 */
853	PHOLD(curproc);
854
855	for (i = 0; i < numbufs; i++) {
856		/*
857		 * Get the buffer.
858		 */
859		mapinfo->bp[i] = getpbuf(NULL);
860
861		/* save the buffer's data address */
862		mapinfo->bp[i]->b_saveaddr = mapinfo->bp[i]->b_data;
863
864		/* put our pointer in the data slot */
865		mapinfo->bp[i]->b_data = *data_ptrs[i];
866
867		/* set the transfer length, we know it's < MAXPHYS */
868		mapinfo->bp[i]->b_bufsize = lengths[i];
869
870		/* set the direction */
871		mapinfo->bp[i]->b_iocmd = flags[i];
872
873		/*
874		 * Map the buffer into kernel memory.
875		 *
876		 * Note that useracc() alone is not a  sufficient test.
877		 * vmapbuf() can still fail due to a smaller file mapped
878		 * into a larger area of VM, or if userland races against
879		 * vmapbuf() after the useracc() check.
880		 */
881		if (vmapbuf(mapinfo->bp[i], 1) < 0) {
882			for (j = 0; j < i; ++j) {
883				*data_ptrs[j] = mapinfo->bp[j]->b_saveaddr;
884				vunmapbuf(mapinfo->bp[j]);
885				relpbuf(mapinfo->bp[j], NULL);
886			}
887			relpbuf(mapinfo->bp[i], NULL);
888			PRELE(curproc);
889			return(EACCES);
890		}
891
892		/* set our pointer to the new mapped area */
893		*data_ptrs[i] = mapinfo->bp[i]->b_data;
894
895		mapinfo->num_bufs_used++;
896	}
897
898	/*
899	 * Now that we've gotten this far, change ownership to the kernel
900	 * of the buffers so that we don't run afoul of returning to user
901	 * space with locks (on the buffer) held.
902	 */
903	for (i = 0; i < numbufs; i++) {
904		BUF_KERNPROC(mapinfo->bp[i]);
905	}
906
907
908	return(0);
909}
910
911/*
912 * Unmap memory segments mapped into kernel virtual address space by
913 * cam_periph_mapmem().
914 */
915void
916cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
917{
918	int numbufs, i;
919	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
920
921	if (mapinfo->num_bufs_used <= 0) {
922		/* nothing to free and the process wasn't held. */
923		return;
924	}
925
926	switch (ccb->ccb_h.func_code) {
927	case XPT_DEV_MATCH:
928		numbufs = min(mapinfo->num_bufs_used, 2);
929
930		if (numbufs == 1) {
931			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
932		} else {
933			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
934			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
935		}
936		break;
937	case XPT_SCSI_IO:
938	case XPT_CONT_TARGET_IO:
939		data_ptrs[0] = &ccb->csio.data_ptr;
940		numbufs = min(mapinfo->num_bufs_used, 1);
941		break;
942	case XPT_ATA_IO:
943		data_ptrs[0] = &ccb->ataio.data_ptr;
944		numbufs = min(mapinfo->num_bufs_used, 1);
945		break;
946	case XPT_SMP_IO:
947		numbufs = min(mapinfo->num_bufs_used, 2);
948		data_ptrs[0] = &ccb->smpio.smp_request;
949		data_ptrs[1] = &ccb->smpio.smp_response;
950		break;
951	case XPT_DEV_ADVINFO:
952		numbufs = min(mapinfo->num_bufs_used, 1);
953		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
954		break;
955	default:
956		/* allow ourselves to be swapped once again */
957		PRELE(curproc);
958		return;
959		break; /* NOTREACHED */
960	}
961
962	for (i = 0; i < numbufs; i++) {
963		/* Set the user's pointer back to the original value */
964		*data_ptrs[i] = mapinfo->bp[i]->b_saveaddr;
965
966		/* unmap the buffer */
967		vunmapbuf(mapinfo->bp[i]);
968
969		/* release the buffer */
970		relpbuf(mapinfo->bp[i], NULL);
971	}
972
973	/* allow ourselves to be swapped once again */
974	PRELE(curproc);
975}
976
977void
978cam_periph_ccbwait(union ccb *ccb)
979{
980
981	if ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX)
982	 || ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG))
983		xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp, PRIBIO,
984		    "cbwait", 0);
985}
986
987int
988cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr,
989		 int (*error_routine)(union ccb *ccb,
990				      cam_flags camflags,
991				      u_int32_t sense_flags))
992{
993	union ccb 	     *ccb;
994	int 		     error;
995	int		     found;
996
997	error = found = 0;
998
999	switch(cmd){
1000	case CAMGETPASSTHRU:
1001		ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL);
1002		xpt_setup_ccb(&ccb->ccb_h,
1003			      ccb->ccb_h.path,
1004			      CAM_PRIORITY_NORMAL);
1005		ccb->ccb_h.func_code = XPT_GDEVLIST;
1006
1007		/*
1008		 * Basically, the point of this is that we go through
1009		 * getting the list of devices, until we find a passthrough
1010		 * device.  In the current version of the CAM code, the
1011		 * only way to determine what type of device we're dealing
1012		 * with is by its name.
1013		 */
1014		while (found == 0) {
1015			ccb->cgdl.index = 0;
1016			ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
1017			while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
1018
1019				/* we want the next device in the list */
1020				xpt_action(ccb);
1021				if (strncmp(ccb->cgdl.periph_name,
1022				    "pass", 4) == 0){
1023					found = 1;
1024					break;
1025				}
1026			}
1027			if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) &&
1028			    (found == 0)) {
1029				ccb->cgdl.periph_name[0] = '\0';
1030				ccb->cgdl.unit_number = 0;
1031				break;
1032			}
1033		}
1034
1035		/* copy the result back out */
1036		bcopy(ccb, addr, sizeof(union ccb));
1037
1038		/* and release the ccb */
1039		xpt_release_ccb(ccb);
1040
1041		break;
1042	default:
1043		error = ENOTTY;
1044		break;
1045	}
1046	return(error);
1047}
1048
1049static void
1050cam_periph_done(struct cam_periph *periph, union ccb *done_ccb)
1051{
1052
1053	/* Caller will release the CCB */
1054	wakeup(&done_ccb->ccb_h.cbfcnp);
1055}
1056
1057int
1058cam_periph_runccb(union ccb *ccb,
1059		  int (*error_routine)(union ccb *ccb,
1060				       cam_flags camflags,
1061				       u_int32_t sense_flags),
1062		  cam_flags camflags, u_int32_t sense_flags,
1063		  struct devstat *ds)
1064{
1065	struct bintime *starttime;
1066	struct bintime ltime;
1067	int error;
1068
1069	starttime = NULL;
1070	xpt_path_assert(ccb->ccb_h.path, MA_OWNED);
1071
1072	/*
1073	 * If the user has supplied a stats structure, and if we understand
1074	 * this particular type of ccb, record the transaction start.
1075	 */
1076	if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO ||
1077	    ccb->ccb_h.func_code == XPT_ATA_IO)) {
1078		starttime = &ltime;
1079		binuptime(starttime);
1080		devstat_start_transaction(ds, starttime);
1081	}
1082
1083	ccb->ccb_h.cbfcnp = cam_periph_done;
1084	xpt_action(ccb);
1085
1086	do {
1087		cam_periph_ccbwait(ccb);
1088		if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
1089			error = 0;
1090		else if (error_routine != NULL)
1091			error = (*error_routine)(ccb, camflags, sense_flags);
1092		else
1093			error = 0;
1094
1095	} while (error == ERESTART);
1096
1097	if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
1098		cam_release_devq(ccb->ccb_h.path,
1099				 /* relsim_flags */0,
1100				 /* openings */0,
1101				 /* timeout */0,
1102				 /* getcount_only */ FALSE);
1103		ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1104	}
1105
1106	if (ds != NULL) {
1107		if (ccb->ccb_h.func_code == XPT_SCSI_IO) {
1108			devstat_end_transaction(ds,
1109					ccb->csio.dxfer_len - ccb->csio.resid,
1110					ccb->csio.tag_action & 0x3,
1111					((ccb->ccb_h.flags & CAM_DIR_MASK) ==
1112					CAM_DIR_NONE) ?  DEVSTAT_NO_DATA :
1113					(ccb->ccb_h.flags & CAM_DIR_OUT) ?
1114					DEVSTAT_WRITE :
1115					DEVSTAT_READ, NULL, starttime);
1116		} else if (ccb->ccb_h.func_code == XPT_ATA_IO) {
1117			devstat_end_transaction(ds,
1118					ccb->ataio.dxfer_len - ccb->ataio.resid,
1119					ccb->ataio.tag_action & 0x3,
1120					((ccb->ccb_h.flags & CAM_DIR_MASK) ==
1121					CAM_DIR_NONE) ?  DEVSTAT_NO_DATA :
1122					(ccb->ccb_h.flags & CAM_DIR_OUT) ?
1123					DEVSTAT_WRITE :
1124					DEVSTAT_READ, NULL, starttime);
1125		}
1126	}
1127
1128	return(error);
1129}
1130
1131void
1132cam_freeze_devq(struct cam_path *path)
1133{
1134	struct ccb_hdr ccb_h;
1135
1136	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n"));
1137	xpt_setup_ccb(&ccb_h, path, /*priority*/1);
1138	ccb_h.func_code = XPT_NOOP;
1139	ccb_h.flags = CAM_DEV_QFREEZE;
1140	xpt_action((union ccb *)&ccb_h);
1141}
1142
1143u_int32_t
1144cam_release_devq(struct cam_path *path, u_int32_t relsim_flags,
1145		 u_int32_t openings, u_int32_t arg,
1146		 int getcount_only)
1147{
1148	struct ccb_relsim crs;
1149
1150	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n",
1151	    relsim_flags, openings, arg, getcount_only));
1152	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
1153	crs.ccb_h.func_code = XPT_REL_SIMQ;
1154	crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0;
1155	crs.release_flags = relsim_flags;
1156	crs.openings = openings;
1157	crs.release_timeout = arg;
1158	xpt_action((union ccb *)&crs);
1159	return (crs.qfrozen_cnt);
1160}
1161
1162#define saved_ccb_ptr ppriv_ptr0
1163static void
1164camperiphdone(struct cam_periph *periph, union ccb *done_ccb)
1165{
1166	union ccb      *saved_ccb;
1167	cam_status	status;
1168	struct scsi_start_stop_unit *scsi_cmd;
1169	int    error_code, sense_key, asc, ascq;
1170
1171	scsi_cmd = (struct scsi_start_stop_unit *)
1172	    &done_ccb->csio.cdb_io.cdb_bytes;
1173	status = done_ccb->ccb_h.status;
1174
1175	if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1176		if (scsi_extract_sense_ccb(done_ccb,
1177		    &error_code, &sense_key, &asc, &ascq)) {
1178			/*
1179			 * If the error is "invalid field in CDB",
1180			 * and the load/eject flag is set, turn the
1181			 * flag off and try again.  This is just in
1182			 * case the drive in question barfs on the
1183			 * load eject flag.  The CAM code should set
1184			 * the load/eject flag by default for
1185			 * removable media.
1186			 */
1187			if ((scsi_cmd->opcode == START_STOP_UNIT) &&
1188			    ((scsi_cmd->how & SSS_LOEJ) != 0) &&
1189			     (asc == 0x24) && (ascq == 0x00)) {
1190				scsi_cmd->how &= ~SSS_LOEJ;
1191				if (status & CAM_DEV_QFRZN) {
1192					cam_release_devq(done_ccb->ccb_h.path,
1193					    0, 0, 0, 0);
1194					done_ccb->ccb_h.status &=
1195					    ~CAM_DEV_QFRZN;
1196				}
1197				xpt_action(done_ccb);
1198				goto out;
1199			}
1200		}
1201		if (cam_periph_error(done_ccb,
1202		    0, SF_RETRY_UA | SF_NO_PRINT, NULL) == ERESTART)
1203			goto out;
1204		if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) {
1205			cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0);
1206			done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1207		}
1208	} else {
1209		/*
1210		 * If we have successfully taken a device from the not
1211		 * ready to ready state, re-scan the device and re-get
1212		 * the inquiry information.  Many devices (mostly disks)
1213		 * don't properly report their inquiry information unless
1214		 * they are spun up.
1215		 */
1216		if (scsi_cmd->opcode == START_STOP_UNIT)
1217			xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL);
1218	}
1219
1220	/*
1221	 * Perform the final retry with the original CCB so that final
1222	 * error processing is performed by the owner of the CCB.
1223	 */
1224	saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
1225	bcopy(saved_ccb, done_ccb, sizeof(*done_ccb));
1226	xpt_free_ccb(saved_ccb);
1227	if (done_ccb->ccb_h.cbfcnp != camperiphdone)
1228		periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1229	xpt_action(done_ccb);
1230
1231out:
1232	/* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */
1233	cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0);
1234}
1235
1236/*
1237 * Generic Async Event handler.  Peripheral drivers usually
1238 * filter out the events that require personal attention,
1239 * and leave the rest to this function.
1240 */
1241void
1242cam_periph_async(struct cam_periph *periph, u_int32_t code,
1243		 struct cam_path *path, void *arg)
1244{
1245	switch (code) {
1246	case AC_LOST_DEVICE:
1247		cam_periph_invalidate(periph);
1248		break;
1249	default:
1250		break;
1251	}
1252}
1253
1254void
1255cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle)
1256{
1257	struct ccb_getdevstats cgds;
1258
1259	xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
1260	cgds.ccb_h.func_code = XPT_GDEV_STATS;
1261	xpt_action((union ccb *)&cgds);
1262	cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle);
1263}
1264
1265void
1266cam_periph_freeze_after_event(struct cam_periph *periph,
1267			      struct timeval* event_time, u_int duration_ms)
1268{
1269	struct timeval delta;
1270	struct timeval duration_tv;
1271
1272	if (!timevalisset(event_time))
1273		return;
1274
1275	microtime(&delta);
1276	timevalsub(&delta, event_time);
1277	duration_tv.tv_sec = duration_ms / 1000;
1278	duration_tv.tv_usec = (duration_ms % 1000) * 1000;
1279	if (timevalcmp(&delta, &duration_tv, <)) {
1280		timevalsub(&duration_tv, &delta);
1281
1282		duration_ms = duration_tv.tv_sec * 1000;
1283		duration_ms += duration_tv.tv_usec / 1000;
1284		cam_freeze_devq(periph->path);
1285		cam_release_devq(periph->path,
1286				RELSIM_RELEASE_AFTER_TIMEOUT,
1287				/*reduction*/0,
1288				/*timeout*/duration_ms,
1289				/*getcount_only*/0);
1290	}
1291
1292}
1293
1294static int
1295camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb,
1296    cam_flags camflags, u_int32_t sense_flags,
1297    int *openings, u_int32_t *relsim_flags,
1298    u_int32_t *timeout, u_int32_t *action, const char **action_string)
1299{
1300	int error;
1301
1302	switch (ccb->csio.scsi_status) {
1303	case SCSI_STATUS_OK:
1304	case SCSI_STATUS_COND_MET:
1305	case SCSI_STATUS_INTERMED:
1306	case SCSI_STATUS_INTERMED_COND_MET:
1307		error = 0;
1308		break;
1309	case SCSI_STATUS_CMD_TERMINATED:
1310	case SCSI_STATUS_CHECK_COND:
1311		error = camperiphscsisenseerror(ccb, orig_ccb,
1312					        camflags,
1313					        sense_flags,
1314					        openings,
1315					        relsim_flags,
1316					        timeout,
1317					        action,
1318					        action_string);
1319		break;
1320	case SCSI_STATUS_QUEUE_FULL:
1321	{
1322		/* no decrement */
1323		struct ccb_getdevstats cgds;
1324
1325		/*
1326		 * First off, find out what the current
1327		 * transaction counts are.
1328		 */
1329		xpt_setup_ccb(&cgds.ccb_h,
1330			      ccb->ccb_h.path,
1331			      CAM_PRIORITY_NORMAL);
1332		cgds.ccb_h.func_code = XPT_GDEV_STATS;
1333		xpt_action((union ccb *)&cgds);
1334
1335		/*
1336		 * If we were the only transaction active, treat
1337		 * the QUEUE FULL as if it were a BUSY condition.
1338		 */
1339		if (cgds.dev_active != 0) {
1340			int total_openings;
1341
1342			/*
1343		 	 * Reduce the number of openings to
1344			 * be 1 less than the amount it took
1345			 * to get a queue full bounded by the
1346			 * minimum allowed tag count for this
1347			 * device.
1348		 	 */
1349			total_openings = cgds.dev_active + cgds.dev_openings;
1350			*openings = cgds.dev_active;
1351			if (*openings < cgds.mintags)
1352				*openings = cgds.mintags;
1353			if (*openings < total_openings)
1354				*relsim_flags = RELSIM_ADJUST_OPENINGS;
1355			else {
1356				/*
1357				 * Some devices report queue full for
1358				 * temporary resource shortages.  For
1359				 * this reason, we allow a minimum
1360				 * tag count to be entered via a
1361				 * quirk entry to prevent the queue
1362				 * count on these devices from falling
1363				 * to a pessimisticly low value.  We
1364				 * still wait for the next successful
1365				 * completion, however, before queueing
1366				 * more transactions to the device.
1367				 */
1368				*relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT;
1369			}
1370			*timeout = 0;
1371			error = ERESTART;
1372			*action &= ~SSQ_PRINT_SENSE;
1373			break;
1374		}
1375		/* FALLTHROUGH */
1376	}
1377	case SCSI_STATUS_BUSY:
1378		/*
1379		 * Restart the queue after either another
1380		 * command completes or a 1 second timeout.
1381		 */
1382		if ((sense_flags & SF_RETRY_BUSY) != 0 ||
1383		    (ccb->ccb_h.retry_count--) > 0) {
1384			error = ERESTART;
1385			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT
1386				      | RELSIM_RELEASE_AFTER_CMDCMPLT;
1387			*timeout = 1000;
1388		} else {
1389			error = EIO;
1390		}
1391		break;
1392	case SCSI_STATUS_RESERV_CONFLICT:
1393	default:
1394		error = EIO;
1395		break;
1396	}
1397	return (error);
1398}
1399
1400static int
1401camperiphscsisenseerror(union ccb *ccb, union ccb **orig,
1402    cam_flags camflags, u_int32_t sense_flags,
1403    int *openings, u_int32_t *relsim_flags,
1404    u_int32_t *timeout, u_int32_t *action, const char **action_string)
1405{
1406	struct cam_periph *periph;
1407	union ccb *orig_ccb = ccb;
1408	int error, recoveryccb;
1409
1410	periph = xpt_path_periph(ccb->ccb_h.path);
1411	recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone);
1412	if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) {
1413		/*
1414		 * If error recovery is already in progress, don't attempt
1415		 * to process this error, but requeue it unconditionally
1416		 * and attempt to process it once error recovery has
1417		 * completed.  This failed command is probably related to
1418		 * the error that caused the currently active error recovery
1419		 * action so our  current recovery efforts should also
1420		 * address this command.  Be aware that the error recovery
1421		 * code assumes that only one recovery action is in progress
1422		 * on a particular peripheral instance at any given time
1423		 * (e.g. only one saved CCB for error recovery) so it is
1424		 * imperitive that we don't violate this assumption.
1425		 */
1426		error = ERESTART;
1427		*action &= ~SSQ_PRINT_SENSE;
1428	} else {
1429		scsi_sense_action err_action;
1430		struct ccb_getdev cgd;
1431
1432		/*
1433		 * Grab the inquiry data for this device.
1434		 */
1435		xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL);
1436		cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1437		xpt_action((union ccb *)&cgd);
1438
1439		err_action = scsi_error_action(&ccb->csio, &cgd.inq_data,
1440		    sense_flags);
1441		error = err_action & SS_ERRMASK;
1442
1443		/*
1444		 * Do not autostart sequential access devices
1445		 * to avoid unexpected tape loading.
1446		 */
1447		if ((err_action & SS_MASK) == SS_START &&
1448		    SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) {
1449			*action_string = "Will not autostart a "
1450			    "sequential access device";
1451			goto sense_error_done;
1452		}
1453
1454		/*
1455		 * Avoid recovery recursion if recovery action is the same.
1456		 */
1457		if ((err_action & SS_MASK) >= SS_START && recoveryccb) {
1458			if (((err_action & SS_MASK) == SS_START &&
1459			     ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) ||
1460			    ((err_action & SS_MASK) == SS_TUR &&
1461			     (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) {
1462				err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO;
1463				*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1464				*timeout = 500;
1465			}
1466		}
1467
1468		/*
1469		 * If the recovery action will consume a retry,
1470		 * make sure we actually have retries available.
1471		 */
1472		if ((err_action & SSQ_DECREMENT_COUNT) != 0) {
1473		 	if (ccb->ccb_h.retry_count > 0 &&
1474			    (periph->flags & CAM_PERIPH_INVALID) == 0)
1475		 		ccb->ccb_h.retry_count--;
1476			else {
1477				*action_string = "Retries exhausted";
1478				goto sense_error_done;
1479			}
1480		}
1481
1482		if ((err_action & SS_MASK) >= SS_START) {
1483			/*
1484			 * Do common portions of commands that
1485			 * use recovery CCBs.
1486			 */
1487			orig_ccb = xpt_alloc_ccb_nowait();
1488			if (orig_ccb == NULL) {
1489				*action_string = "Can't allocate recovery CCB";
1490				goto sense_error_done;
1491			}
1492			/*
1493			 * Clear freeze flag for original request here, as
1494			 * this freeze will be dropped as part of ERESTART.
1495			 */
1496			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1497			bcopy(ccb, orig_ccb, sizeof(*orig_ccb));
1498		}
1499
1500		switch (err_action & SS_MASK) {
1501		case SS_NOP:
1502			*action_string = "No recovery action needed";
1503			error = 0;
1504			break;
1505		case SS_RETRY:
1506			*action_string = "Retrying command (per sense data)";
1507			error = ERESTART;
1508			break;
1509		case SS_FAIL:
1510			*action_string = "Unretryable error";
1511			break;
1512		case SS_START:
1513		{
1514			int le;
1515
1516			/*
1517			 * Send a start unit command to the device, and
1518			 * then retry the command.
1519			 */
1520			*action_string = "Attempting to start unit";
1521			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1522
1523			/*
1524			 * Check for removable media and set
1525			 * load/eject flag appropriately.
1526			 */
1527			if (SID_IS_REMOVABLE(&cgd.inq_data))
1528				le = TRUE;
1529			else
1530				le = FALSE;
1531
1532			scsi_start_stop(&ccb->csio,
1533					/*retries*/1,
1534					camperiphdone,
1535					MSG_SIMPLE_Q_TAG,
1536					/*start*/TRUE,
1537					/*load/eject*/le,
1538					/*immediate*/FALSE,
1539					SSD_FULL_SIZE,
1540					/*timeout*/50000);
1541			break;
1542		}
1543		case SS_TUR:
1544		{
1545			/*
1546			 * Send a Test Unit Ready to the device.
1547			 * If the 'many' flag is set, we send 120
1548			 * test unit ready commands, one every half
1549			 * second.  Otherwise, we just send one TUR.
1550			 * We only want to do this if the retry
1551			 * count has not been exhausted.
1552			 */
1553			int retries;
1554
1555			if ((err_action & SSQ_MANY) != 0) {
1556				*action_string = "Polling device for readiness";
1557				retries = 120;
1558			} else {
1559				*action_string = "Testing device for readiness";
1560				retries = 1;
1561			}
1562			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1563			scsi_test_unit_ready(&ccb->csio,
1564					     retries,
1565					     camperiphdone,
1566					     MSG_SIMPLE_Q_TAG,
1567					     SSD_FULL_SIZE,
1568					     /*timeout*/5000);
1569
1570			/*
1571			 * Accomplish our 500ms delay by deferring
1572			 * the release of our device queue appropriately.
1573			 */
1574			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1575			*timeout = 500;
1576			break;
1577		}
1578		default:
1579			panic("Unhandled error action %x", err_action);
1580		}
1581
1582		if ((err_action & SS_MASK) >= SS_START) {
1583			/*
1584			 * Drop the priority, so that the recovery
1585			 * CCB is the first to execute.  Freeze the queue
1586			 * after this command is sent so that we can
1587			 * restore the old csio and have it queued in
1588			 * the proper order before we release normal
1589			 * transactions to the device.
1590			 */
1591			ccb->ccb_h.pinfo.priority--;
1592			ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
1593			ccb->ccb_h.saved_ccb_ptr = orig_ccb;
1594			error = ERESTART;
1595			*orig = orig_ccb;
1596		}
1597
1598sense_error_done:
1599		*action = err_action;
1600	}
1601	return (error);
1602}
1603
1604/*
1605 * Generic error handler.  Peripheral drivers usually filter
1606 * out the errors that they handle in a unique mannor, then
1607 * call this function.
1608 */
1609int
1610cam_periph_error(union ccb *ccb, cam_flags camflags,
1611		 u_int32_t sense_flags, union ccb *save_ccb)
1612{
1613	struct cam_path *newpath;
1614	union ccb  *orig_ccb, *scan_ccb;
1615	struct cam_periph *periph;
1616	const char *action_string;
1617	cam_status  status;
1618	int	    frozen, error, openings;
1619	u_int32_t   action, relsim_flags, timeout;
1620
1621	action = SSQ_PRINT_SENSE;
1622	periph = xpt_path_periph(ccb->ccb_h.path);
1623	action_string = NULL;
1624	status = ccb->ccb_h.status;
1625	frozen = (status & CAM_DEV_QFRZN) != 0;
1626	status &= CAM_STATUS_MASK;
1627	openings = relsim_flags = timeout = 0;
1628	orig_ccb = ccb;
1629
1630	switch (status) {
1631	case CAM_REQ_CMP:
1632		error = 0;
1633		action &= ~SSQ_PRINT_SENSE;
1634		break;
1635	case CAM_SCSI_STATUS_ERROR:
1636		error = camperiphscsistatuserror(ccb, &orig_ccb,
1637		    camflags, sense_flags, &openings, &relsim_flags,
1638		    &timeout, &action, &action_string);
1639		break;
1640	case CAM_AUTOSENSE_FAIL:
1641		error = EIO;	/* we have to kill the command */
1642		break;
1643	case CAM_UA_ABORT:
1644	case CAM_UA_TERMIO:
1645	case CAM_MSG_REJECT_REC:
1646		/* XXX Don't know that these are correct */
1647		error = EIO;
1648		break;
1649	case CAM_SEL_TIMEOUT:
1650		if ((camflags & CAM_RETRY_SELTO) != 0) {
1651			if (ccb->ccb_h.retry_count > 0 &&
1652			    (periph->flags & CAM_PERIPH_INVALID) == 0) {
1653				ccb->ccb_h.retry_count--;
1654				error = ERESTART;
1655
1656				/*
1657				 * Wait a bit to give the device
1658				 * time to recover before we try again.
1659				 */
1660				relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1661				timeout = periph_selto_delay;
1662				break;
1663			}
1664			action_string = "Retries exhausted";
1665		}
1666		/* FALLTHROUGH */
1667	case CAM_DEV_NOT_THERE:
1668		error = ENXIO;
1669		action = SSQ_LOST;
1670		break;
1671	case CAM_REQ_INVALID:
1672	case CAM_PATH_INVALID:
1673	case CAM_NO_HBA:
1674	case CAM_PROVIDE_FAIL:
1675	case CAM_REQ_TOO_BIG:
1676	case CAM_LUN_INVALID:
1677	case CAM_TID_INVALID:
1678	case CAM_FUNC_NOTAVAIL:
1679		error = EINVAL;
1680		break;
1681	case CAM_SCSI_BUS_RESET:
1682	case CAM_BDR_SENT:
1683		/*
1684		 * Commands that repeatedly timeout and cause these
1685		 * kinds of error recovery actions, should return
1686		 * CAM_CMD_TIMEOUT, which allows us to safely assume
1687		 * that this command was an innocent bystander to
1688		 * these events and should be unconditionally
1689		 * retried.
1690		 */
1691	case CAM_REQUEUE_REQ:
1692		/* Unconditional requeue if device is still there */
1693		if (periph->flags & CAM_PERIPH_INVALID) {
1694			action_string = "Periph was invalidated";
1695			error = EIO;
1696		} else if (sense_flags & SF_NO_RETRY) {
1697			error = EIO;
1698			action_string = "Retry was blocked";
1699		} else {
1700			error = ERESTART;
1701			action &= ~SSQ_PRINT_SENSE;
1702		}
1703		break;
1704	case CAM_RESRC_UNAVAIL:
1705		/* Wait a bit for the resource shortage to abate. */
1706		timeout = periph_noresrc_delay;
1707		/* FALLTHROUGH */
1708	case CAM_BUSY:
1709		if (timeout == 0) {
1710			/* Wait a bit for the busy condition to abate. */
1711			timeout = periph_busy_delay;
1712		}
1713		relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1714		/* FALLTHROUGH */
1715	case CAM_ATA_STATUS_ERROR:
1716	case CAM_REQ_CMP_ERR:
1717	case CAM_CMD_TIMEOUT:
1718	case CAM_UNEXP_BUSFREE:
1719	case CAM_UNCOR_PARITY:
1720	case CAM_DATA_RUN_ERR:
1721	default:
1722		if (periph->flags & CAM_PERIPH_INVALID) {
1723			error = EIO;
1724			action_string = "Periph was invalidated";
1725		} else if (ccb->ccb_h.retry_count == 0) {
1726			error = EIO;
1727			action_string = "Retries exhausted";
1728		} else if (sense_flags & SF_NO_RETRY) {
1729			error = EIO;
1730			action_string = "Retry was blocked";
1731		} else {
1732			ccb->ccb_h.retry_count--;
1733			error = ERESTART;
1734		}
1735		break;
1736	}
1737
1738	if ((sense_flags & SF_PRINT_ALWAYS) ||
1739	    CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO))
1740		action |= SSQ_PRINT_SENSE;
1741	else if (sense_flags & SF_NO_PRINT)
1742		action &= ~SSQ_PRINT_SENSE;
1743	if ((action & SSQ_PRINT_SENSE) != 0)
1744		cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL);
1745	if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) {
1746		if (error != ERESTART) {
1747			if (action_string == NULL)
1748				action_string = "Unretryable error";
1749			xpt_print(ccb->ccb_h.path, "Error %d, %s\n",
1750			    error, action_string);
1751		} else if (action_string != NULL)
1752			xpt_print(ccb->ccb_h.path, "%s\n", action_string);
1753		else
1754			xpt_print(ccb->ccb_h.path, "Retrying command\n");
1755	}
1756
1757	if ((action & SSQ_LOST) != 0) {
1758		lun_id_t lun_id;
1759
1760		/*
1761		 * For a selection timeout, we consider all of the LUNs on
1762		 * the target to be gone.  If the status is CAM_DEV_NOT_THERE,
1763		 * then we only get rid of the device(s) specified by the
1764		 * path in the original CCB.
1765		 */
1766		if (status == CAM_SEL_TIMEOUT)
1767			lun_id = CAM_LUN_WILDCARD;
1768		else
1769			lun_id = xpt_path_lun_id(ccb->ccb_h.path);
1770
1771		/* Should we do more if we can't create the path?? */
1772		if (xpt_create_path(&newpath, periph,
1773				    xpt_path_path_id(ccb->ccb_h.path),
1774				    xpt_path_target_id(ccb->ccb_h.path),
1775				    lun_id) == CAM_REQ_CMP) {
1776
1777			/*
1778			 * Let peripheral drivers know that this
1779			 * device has gone away.
1780			 */
1781			xpt_async(AC_LOST_DEVICE, newpath, NULL);
1782			xpt_free_path(newpath);
1783		}
1784	}
1785
1786	/* Broadcast UNIT ATTENTIONs to all periphs. */
1787	if ((action & SSQ_UA) != 0)
1788		xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb);
1789
1790	/* Rescan target on "Reported LUNs data has changed" */
1791	if ((action & SSQ_RESCAN) != 0) {
1792		if (xpt_create_path(&newpath, NULL,
1793				    xpt_path_path_id(ccb->ccb_h.path),
1794				    xpt_path_target_id(ccb->ccb_h.path),
1795				    CAM_LUN_WILDCARD) == CAM_REQ_CMP) {
1796
1797			scan_ccb = xpt_alloc_ccb_nowait();
1798			if (scan_ccb != NULL) {
1799				scan_ccb->ccb_h.path = newpath;
1800				scan_ccb->ccb_h.func_code = XPT_SCAN_TGT;
1801				scan_ccb->crcn.flags = 0;
1802				xpt_rescan(scan_ccb);
1803			} else {
1804				xpt_print(newpath,
1805				    "Can't allocate CCB to rescan target\n");
1806				xpt_free_path(newpath);
1807			}
1808		}
1809	}
1810
1811	/* Attempt a retry */
1812	if (error == ERESTART || error == 0) {
1813		if (frozen != 0)
1814			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1815		if (error == ERESTART)
1816			xpt_action(ccb);
1817		if (frozen != 0)
1818			cam_release_devq(ccb->ccb_h.path,
1819					 relsim_flags,
1820					 openings,
1821					 timeout,
1822					 /*getcount_only*/0);
1823	}
1824
1825	return (error);
1826}
1827