zfsimpl.c revision 276081
1/*-
2 * Copyright (c) 2007 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/10/sys/boot/zfs/zfsimpl.c 276081 2014-12-22 20:58:51Z delphij $");
29
30/*
31 *	Stand-alone ZFS file reader.
32 */
33
34#include <sys/stat.h>
35#include <sys/stdint.h>
36
37#include "zfsimpl.h"
38#include "zfssubr.c"
39
40
41struct zfsmount {
42	const spa_t	*spa;
43	objset_phys_t	objset;
44	uint64_t	rootobj;
45};
46
47/*
48 * List of all vdevs, chained through v_alllink.
49 */
50static vdev_list_t zfs_vdevs;
51
52 /*
53 * List of ZFS features supported for read
54 */
55static const char *features_for_read[] = {
56	"org.illumos:lz4_compress",
57	"com.delphix:hole_birth",
58	"com.delphix:extensible_dataset",
59	"com.delphix:embedded_data",
60	"org.open-zfs:large_blocks",
61	NULL
62};
63
64/*
65 * List of all pools, chained through spa_link.
66 */
67static spa_list_t zfs_pools;
68
69static uint64_t zfs_crc64_table[256];
70static const dnode_phys_t *dnode_cache_obj = 0;
71static uint64_t dnode_cache_bn;
72static char *dnode_cache_buf;
73static char *zap_scratch;
74static char *zfs_temp_buf, *zfs_temp_end, *zfs_temp_ptr;
75
76#define TEMP_SIZE	(1024 * 1024)
77
78static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf);
79static int zfs_get_root(const spa_t *spa, uint64_t *objid);
80static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result);
81
82static void
83zfs_init(void)
84{
85	STAILQ_INIT(&zfs_vdevs);
86	STAILQ_INIT(&zfs_pools);
87
88	zfs_temp_buf = malloc(TEMP_SIZE);
89	zfs_temp_end = zfs_temp_buf + TEMP_SIZE;
90	zfs_temp_ptr = zfs_temp_buf;
91	dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE);
92	zap_scratch = malloc(SPA_MAXBLOCKSIZE);
93
94	zfs_init_crc();
95}
96
97static void *
98zfs_alloc(size_t size)
99{
100	char *ptr;
101
102	if (zfs_temp_ptr + size > zfs_temp_end) {
103		printf("ZFS: out of temporary buffer space\n");
104		for (;;) ;
105	}
106	ptr = zfs_temp_ptr;
107	zfs_temp_ptr += size;
108
109	return (ptr);
110}
111
112static void
113zfs_free(void *ptr, size_t size)
114{
115
116	zfs_temp_ptr -= size;
117	if (zfs_temp_ptr != ptr) {
118		printf("ZFS: zfs_alloc()/zfs_free() mismatch\n");
119		for (;;) ;
120	}
121}
122
123static int
124xdr_int(const unsigned char **xdr, int *ip)
125{
126	*ip = ((*xdr)[0] << 24)
127		| ((*xdr)[1] << 16)
128		| ((*xdr)[2] << 8)
129		| ((*xdr)[3] << 0);
130	(*xdr) += 4;
131	return (0);
132}
133
134static int
135xdr_u_int(const unsigned char **xdr, u_int *ip)
136{
137	*ip = ((*xdr)[0] << 24)
138		| ((*xdr)[1] << 16)
139		| ((*xdr)[2] << 8)
140		| ((*xdr)[3] << 0);
141	(*xdr) += 4;
142	return (0);
143}
144
145static int
146xdr_uint64_t(const unsigned char **xdr, uint64_t *lp)
147{
148	u_int hi, lo;
149
150	xdr_u_int(xdr, &hi);
151	xdr_u_int(xdr, &lo);
152	*lp = (((uint64_t) hi) << 32) | lo;
153	return (0);
154}
155
156static int
157nvlist_find(const unsigned char *nvlist, const char *name, int type,
158	    int* elementsp, void *valuep)
159{
160	const unsigned char *p, *pair;
161	int junk;
162	int encoded_size, decoded_size;
163
164	p = nvlist;
165	xdr_int(&p, &junk);
166	xdr_int(&p, &junk);
167
168	pair = p;
169	xdr_int(&p, &encoded_size);
170	xdr_int(&p, &decoded_size);
171	while (encoded_size && decoded_size) {
172		int namelen, pairtype, elements;
173		const char *pairname;
174
175		xdr_int(&p, &namelen);
176		pairname = (const char*) p;
177		p += roundup(namelen, 4);
178		xdr_int(&p, &pairtype);
179
180		if (!memcmp(name, pairname, namelen) && type == pairtype) {
181			xdr_int(&p, &elements);
182			if (elementsp)
183				*elementsp = elements;
184			if (type == DATA_TYPE_UINT64) {
185				xdr_uint64_t(&p, (uint64_t *) valuep);
186				return (0);
187			} else if (type == DATA_TYPE_STRING) {
188				int len;
189				xdr_int(&p, &len);
190				(*(const char**) valuep) = (const char*) p;
191				return (0);
192			} else if (type == DATA_TYPE_NVLIST
193				   || type == DATA_TYPE_NVLIST_ARRAY) {
194				(*(const unsigned char**) valuep) =
195					 (const unsigned char*) p;
196				return (0);
197			} else {
198				return (EIO);
199			}
200		} else {
201			/*
202			 * Not the pair we are looking for, skip to the next one.
203			 */
204			p = pair + encoded_size;
205		}
206
207		pair = p;
208		xdr_int(&p, &encoded_size);
209		xdr_int(&p, &decoded_size);
210	}
211
212	return (EIO);
213}
214
215static int
216nvlist_check_features_for_read(const unsigned char *nvlist)
217{
218	const unsigned char *p, *pair;
219	int junk;
220	int encoded_size, decoded_size;
221	int rc;
222
223	rc = 0;
224
225	p = nvlist;
226	xdr_int(&p, &junk);
227	xdr_int(&p, &junk);
228
229	pair = p;
230	xdr_int(&p, &encoded_size);
231	xdr_int(&p, &decoded_size);
232	while (encoded_size && decoded_size) {
233		int namelen, pairtype;
234		const char *pairname;
235		int i, found;
236
237		found = 0;
238
239		xdr_int(&p, &namelen);
240		pairname = (const char*) p;
241		p += roundup(namelen, 4);
242		xdr_int(&p, &pairtype);
243
244		for (i = 0; features_for_read[i] != NULL; i++) {
245			if (!memcmp(pairname, features_for_read[i], namelen)) {
246				found = 1;
247				break;
248			}
249		}
250
251		if (!found) {
252			printf("ZFS: unsupported feature: %s\n", pairname);
253			rc = EIO;
254		}
255
256		p = pair + encoded_size;
257
258		pair = p;
259		xdr_int(&p, &encoded_size);
260		xdr_int(&p, &decoded_size);
261	}
262
263	return (rc);
264}
265
266/*
267 * Return the next nvlist in an nvlist array.
268 */
269static const unsigned char *
270nvlist_next(const unsigned char *nvlist)
271{
272	const unsigned char *p, *pair;
273	int junk;
274	int encoded_size, decoded_size;
275
276	p = nvlist;
277	xdr_int(&p, &junk);
278	xdr_int(&p, &junk);
279
280	pair = p;
281	xdr_int(&p, &encoded_size);
282	xdr_int(&p, &decoded_size);
283	while (encoded_size && decoded_size) {
284		p = pair + encoded_size;
285
286		pair = p;
287		xdr_int(&p, &encoded_size);
288		xdr_int(&p, &decoded_size);
289	}
290
291	return p;
292}
293
294#ifdef TEST
295
296static const unsigned char *
297nvlist_print(const unsigned char *nvlist, unsigned int indent)
298{
299	static const char* typenames[] = {
300		"DATA_TYPE_UNKNOWN",
301		"DATA_TYPE_BOOLEAN",
302		"DATA_TYPE_BYTE",
303		"DATA_TYPE_INT16",
304		"DATA_TYPE_UINT16",
305		"DATA_TYPE_INT32",
306		"DATA_TYPE_UINT32",
307		"DATA_TYPE_INT64",
308		"DATA_TYPE_UINT64",
309		"DATA_TYPE_STRING",
310		"DATA_TYPE_BYTE_ARRAY",
311		"DATA_TYPE_INT16_ARRAY",
312		"DATA_TYPE_UINT16_ARRAY",
313		"DATA_TYPE_INT32_ARRAY",
314		"DATA_TYPE_UINT32_ARRAY",
315		"DATA_TYPE_INT64_ARRAY",
316		"DATA_TYPE_UINT64_ARRAY",
317		"DATA_TYPE_STRING_ARRAY",
318		"DATA_TYPE_HRTIME",
319		"DATA_TYPE_NVLIST",
320		"DATA_TYPE_NVLIST_ARRAY",
321		"DATA_TYPE_BOOLEAN_VALUE",
322		"DATA_TYPE_INT8",
323		"DATA_TYPE_UINT8",
324		"DATA_TYPE_BOOLEAN_ARRAY",
325		"DATA_TYPE_INT8_ARRAY",
326		"DATA_TYPE_UINT8_ARRAY"
327	};
328
329	unsigned int i, j;
330	const unsigned char *p, *pair;
331	int junk;
332	int encoded_size, decoded_size;
333
334	p = nvlist;
335	xdr_int(&p, &junk);
336	xdr_int(&p, &junk);
337
338	pair = p;
339	xdr_int(&p, &encoded_size);
340	xdr_int(&p, &decoded_size);
341	while (encoded_size && decoded_size) {
342		int namelen, pairtype, elements;
343		const char *pairname;
344
345		xdr_int(&p, &namelen);
346		pairname = (const char*) p;
347		p += roundup(namelen, 4);
348		xdr_int(&p, &pairtype);
349
350		for (i = 0; i < indent; i++)
351			printf(" ");
352		printf("%s %s", typenames[pairtype], pairname);
353
354		xdr_int(&p, &elements);
355		switch (pairtype) {
356		case DATA_TYPE_UINT64: {
357			uint64_t val;
358			xdr_uint64_t(&p, &val);
359			printf(" = 0x%jx\n", (uintmax_t)val);
360			break;
361		}
362
363		case DATA_TYPE_STRING: {
364			int len;
365			xdr_int(&p, &len);
366			printf(" = \"%s\"\n", p);
367			break;
368		}
369
370		case DATA_TYPE_NVLIST:
371			printf("\n");
372			nvlist_print(p, indent + 1);
373			break;
374
375		case DATA_TYPE_NVLIST_ARRAY:
376			for (j = 0; j < elements; j++) {
377				printf("[%d]\n", j);
378				p = nvlist_print(p, indent + 1);
379				if (j != elements - 1) {
380					for (i = 0; i < indent; i++)
381						printf(" ");
382					printf("%s %s", typenames[pairtype], pairname);
383				}
384			}
385			break;
386
387		default:
388			printf("\n");
389		}
390
391		p = pair + encoded_size;
392
393		pair = p;
394		xdr_int(&p, &encoded_size);
395		xdr_int(&p, &decoded_size);
396	}
397
398	return p;
399}
400
401#endif
402
403static int
404vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf,
405    off_t offset, size_t size)
406{
407	size_t psize;
408	int rc;
409
410	if (!vdev->v_phys_read)
411		return (EIO);
412
413	if (bp) {
414		psize = BP_GET_PSIZE(bp);
415	} else {
416		psize = size;
417	}
418
419	/*printf("ZFS: reading %d bytes at 0x%jx to %p\n", psize, (uintmax_t)offset, buf);*/
420	rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize);
421	if (rc)
422		return (rc);
423	if (bp && zio_checksum_verify(bp, buf))
424		return (EIO);
425
426	return (0);
427}
428
429static int
430vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
431    off_t offset, size_t bytes)
432{
433
434	return (vdev_read_phys(vdev, bp, buf,
435		offset + VDEV_LABEL_START_SIZE, bytes));
436}
437
438
439static int
440vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
441    off_t offset, size_t bytes)
442{
443	vdev_t *kid;
444	int rc;
445
446	rc = EIO;
447	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
448		if (kid->v_state != VDEV_STATE_HEALTHY)
449			continue;
450		rc = kid->v_read(kid, bp, buf, offset, bytes);
451		if (!rc)
452			return (0);
453	}
454
455	return (rc);
456}
457
458static int
459vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
460    off_t offset, size_t bytes)
461{
462	vdev_t *kid;
463
464	/*
465	 * Here we should have two kids:
466	 * First one which is the one we are replacing and we can trust
467	 * only this one to have valid data, but it might not be present.
468	 * Second one is that one we are replacing with. It is most likely
469	 * healthy, but we can't trust it has needed data, so we won't use it.
470	 */
471	kid = STAILQ_FIRST(&vdev->v_children);
472	if (kid == NULL)
473		return (EIO);
474	if (kid->v_state != VDEV_STATE_HEALTHY)
475		return (EIO);
476	return (kid->v_read(kid, bp, buf, offset, bytes));
477}
478
479static vdev_t *
480vdev_find(uint64_t guid)
481{
482	vdev_t *vdev;
483
484	STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink)
485		if (vdev->v_guid == guid)
486			return (vdev);
487
488	return (0);
489}
490
491static vdev_t *
492vdev_create(uint64_t guid, vdev_read_t *read)
493{
494	vdev_t *vdev;
495
496	vdev = malloc(sizeof(vdev_t));
497	memset(vdev, 0, sizeof(vdev_t));
498	STAILQ_INIT(&vdev->v_children);
499	vdev->v_guid = guid;
500	vdev->v_state = VDEV_STATE_OFFLINE;
501	vdev->v_read = read;
502	vdev->v_phys_read = 0;
503	vdev->v_read_priv = 0;
504	STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink);
505
506	return (vdev);
507}
508
509static int
510vdev_init_from_nvlist(const unsigned char *nvlist, vdev_t *pvdev,
511    vdev_t **vdevp, int is_newer)
512{
513	int rc;
514	uint64_t guid, id, ashift, nparity;
515	const char *type;
516	const char *path;
517	vdev_t *vdev, *kid;
518	const unsigned char *kids;
519	int nkids, i, is_new;
520	uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present;
521
522	if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID,
523			DATA_TYPE_UINT64, 0, &guid)
524	    || nvlist_find(nvlist, ZPOOL_CONFIG_ID,
525			   DATA_TYPE_UINT64, 0, &id)
526	    || nvlist_find(nvlist, ZPOOL_CONFIG_TYPE,
527			   DATA_TYPE_STRING, 0, &type)) {
528		printf("ZFS: can't find vdev details\n");
529		return (ENOENT);
530	}
531
532	if (strcmp(type, VDEV_TYPE_MIRROR)
533	    && strcmp(type, VDEV_TYPE_DISK)
534#ifdef ZFS_TEST
535	    && strcmp(type, VDEV_TYPE_FILE)
536#endif
537	    && strcmp(type, VDEV_TYPE_RAIDZ)
538	    && strcmp(type, VDEV_TYPE_REPLACING)) {
539		printf("ZFS: can only boot from disk, mirror, raidz1, raidz2 and raidz3 vdevs\n");
540		return (EIO);
541	}
542
543	is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0;
544
545	nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, 0,
546			&is_offline);
547	nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, 0,
548			&is_removed);
549	nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, 0,
550			&is_faulted);
551	nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64, 0,
552			&is_degraded);
553	nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64, 0,
554			&isnt_present);
555
556	vdev = vdev_find(guid);
557	if (!vdev) {
558		is_new = 1;
559
560		if (!strcmp(type, VDEV_TYPE_MIRROR))
561			vdev = vdev_create(guid, vdev_mirror_read);
562		else if (!strcmp(type, VDEV_TYPE_RAIDZ))
563			vdev = vdev_create(guid, vdev_raidz_read);
564		else if (!strcmp(type, VDEV_TYPE_REPLACING))
565			vdev = vdev_create(guid, vdev_replacing_read);
566		else
567			vdev = vdev_create(guid, vdev_disk_read);
568
569		vdev->v_id = id;
570		vdev->v_top = pvdev != NULL ? pvdev : vdev;
571		if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT,
572			DATA_TYPE_UINT64, 0, &ashift) == 0)
573			vdev->v_ashift = ashift;
574		else
575			vdev->v_ashift = 0;
576		if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY,
577			DATA_TYPE_UINT64, 0, &nparity) == 0)
578			vdev->v_nparity = nparity;
579		else
580			vdev->v_nparity = 0;
581		if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH,
582				DATA_TYPE_STRING, 0, &path) == 0) {
583			if (strncmp(path, "/dev/", 5) == 0)
584				path += 5;
585			vdev->v_name = strdup(path);
586		} else {
587			if (!strcmp(type, "raidz")) {
588				if (vdev->v_nparity == 1)
589					vdev->v_name = "raidz1";
590				else if (vdev->v_nparity == 2)
591					vdev->v_name = "raidz2";
592				else if (vdev->v_nparity == 3)
593					vdev->v_name = "raidz3";
594				else {
595					printf("ZFS: can only boot from disk, mirror, raidz1, raidz2 and raidz3 vdevs\n");
596					return (EIO);
597				}
598			} else {
599				vdev->v_name = strdup(type);
600			}
601		}
602	} else {
603		is_new = 0;
604	}
605
606	if (is_new || is_newer) {
607		/*
608		 * This is either new vdev or we've already seen this vdev,
609		 * but from an older vdev label, so let's refresh its state
610		 * from the newer label.
611		 */
612		if (is_offline)
613			vdev->v_state = VDEV_STATE_OFFLINE;
614		else if (is_removed)
615			vdev->v_state = VDEV_STATE_REMOVED;
616		else if (is_faulted)
617			vdev->v_state = VDEV_STATE_FAULTED;
618		else if (is_degraded)
619			vdev->v_state = VDEV_STATE_DEGRADED;
620		else if (isnt_present)
621			vdev->v_state = VDEV_STATE_CANT_OPEN;
622	}
623
624	rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN,
625			 DATA_TYPE_NVLIST_ARRAY, &nkids, &kids);
626	/*
627	 * Its ok if we don't have any kids.
628	 */
629	if (rc == 0) {
630		vdev->v_nchildren = nkids;
631		for (i = 0; i < nkids; i++) {
632			rc = vdev_init_from_nvlist(kids, vdev, &kid, is_newer);
633			if (rc)
634				return (rc);
635			if (is_new)
636				STAILQ_INSERT_TAIL(&vdev->v_children, kid,
637						   v_childlink);
638			kids = nvlist_next(kids);
639		}
640	} else {
641		vdev->v_nchildren = 0;
642	}
643
644	if (vdevp)
645		*vdevp = vdev;
646	return (0);
647}
648
649static void
650vdev_set_state(vdev_t *vdev)
651{
652	vdev_t *kid;
653	int good_kids;
654	int bad_kids;
655
656	/*
657	 * A mirror or raidz is healthy if all its kids are healthy. A
658	 * mirror is degraded if any of its kids is healthy; a raidz
659	 * is degraded if at most nparity kids are offline.
660	 */
661	if (STAILQ_FIRST(&vdev->v_children)) {
662		good_kids = 0;
663		bad_kids = 0;
664		STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
665			if (kid->v_state == VDEV_STATE_HEALTHY)
666				good_kids++;
667			else
668				bad_kids++;
669		}
670		if (bad_kids == 0) {
671			vdev->v_state = VDEV_STATE_HEALTHY;
672		} else {
673			if (vdev->v_read == vdev_mirror_read) {
674				if (good_kids) {
675					vdev->v_state = VDEV_STATE_DEGRADED;
676				} else {
677					vdev->v_state = VDEV_STATE_OFFLINE;
678				}
679			} else if (vdev->v_read == vdev_raidz_read) {
680				if (bad_kids > vdev->v_nparity) {
681					vdev->v_state = VDEV_STATE_OFFLINE;
682				} else {
683					vdev->v_state = VDEV_STATE_DEGRADED;
684				}
685			}
686		}
687	}
688}
689
690static spa_t *
691spa_find_by_guid(uint64_t guid)
692{
693	spa_t *spa;
694
695	STAILQ_FOREACH(spa, &zfs_pools, spa_link)
696		if (spa->spa_guid == guid)
697			return (spa);
698
699	return (0);
700}
701
702static spa_t *
703spa_find_by_name(const char *name)
704{
705	spa_t *spa;
706
707	STAILQ_FOREACH(spa, &zfs_pools, spa_link)
708		if (!strcmp(spa->spa_name, name))
709			return (spa);
710
711	return (0);
712}
713
714#ifdef BOOT2
715static spa_t *
716spa_get_primary(void)
717{
718
719	return (STAILQ_FIRST(&zfs_pools));
720}
721
722static vdev_t *
723spa_get_primary_vdev(const spa_t *spa)
724{
725	vdev_t *vdev;
726	vdev_t *kid;
727
728	if (spa == NULL)
729		spa = spa_get_primary();
730	if (spa == NULL)
731		return (NULL);
732	vdev = STAILQ_FIRST(&spa->spa_vdevs);
733	if (vdev == NULL)
734		return (NULL);
735	for (kid = STAILQ_FIRST(&vdev->v_children); kid != NULL;
736	     kid = STAILQ_FIRST(&vdev->v_children))
737		vdev = kid;
738	return (vdev);
739}
740#endif
741
742static spa_t *
743spa_create(uint64_t guid)
744{
745	spa_t *spa;
746
747	spa = malloc(sizeof(spa_t));
748	memset(spa, 0, sizeof(spa_t));
749	STAILQ_INIT(&spa->spa_vdevs);
750	spa->spa_guid = guid;
751	STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link);
752
753	return (spa);
754}
755
756static const char *
757state_name(vdev_state_t state)
758{
759	static const char* names[] = {
760		"UNKNOWN",
761		"CLOSED",
762		"OFFLINE",
763		"REMOVED",
764		"CANT_OPEN",
765		"FAULTED",
766		"DEGRADED",
767		"ONLINE"
768	};
769	return names[state];
770}
771
772#ifdef BOOT2
773
774#define pager_printf printf
775
776#else
777
778static void
779pager_printf(const char *fmt, ...)
780{
781	char line[80];
782	va_list args;
783
784	va_start(args, fmt);
785	vsprintf(line, fmt, args);
786	va_end(args);
787	pager_output(line);
788}
789
790#endif
791
792#define STATUS_FORMAT	"        %s %s\n"
793
794static void
795print_state(int indent, const char *name, vdev_state_t state)
796{
797	int i;
798	char buf[512];
799
800	buf[0] = 0;
801	for (i = 0; i < indent; i++)
802		strcat(buf, "  ");
803	strcat(buf, name);
804	pager_printf(STATUS_FORMAT, buf, state_name(state));
805
806}
807
808static void
809vdev_status(vdev_t *vdev, int indent)
810{
811	vdev_t *kid;
812	print_state(indent, vdev->v_name, vdev->v_state);
813
814	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
815		vdev_status(kid, indent + 1);
816	}
817}
818
819static void
820spa_status(spa_t *spa)
821{
822	static char bootfs[ZFS_MAXNAMELEN];
823	uint64_t rootid;
824	vdev_t *vdev;
825	int good_kids, bad_kids, degraded_kids;
826	vdev_state_t state;
827
828	pager_printf("  pool: %s\n", spa->spa_name);
829	if (zfs_get_root(spa, &rootid) == 0 &&
830	    zfs_rlookup(spa, rootid, bootfs) == 0) {
831		if (bootfs[0] == '\0')
832			pager_printf("bootfs: %s\n", spa->spa_name);
833		else
834			pager_printf("bootfs: %s/%s\n", spa->spa_name, bootfs);
835	}
836	pager_printf("config:\n\n");
837	pager_printf(STATUS_FORMAT, "NAME", "STATE");
838
839	good_kids = 0;
840	degraded_kids = 0;
841	bad_kids = 0;
842	STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) {
843		if (vdev->v_state == VDEV_STATE_HEALTHY)
844			good_kids++;
845		else if (vdev->v_state == VDEV_STATE_DEGRADED)
846			degraded_kids++;
847		else
848			bad_kids++;
849	}
850
851	state = VDEV_STATE_CLOSED;
852	if (good_kids > 0 && (degraded_kids + bad_kids) == 0)
853		state = VDEV_STATE_HEALTHY;
854	else if ((good_kids + degraded_kids) > 0)
855		state = VDEV_STATE_DEGRADED;
856
857	print_state(0, spa->spa_name, state);
858	STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) {
859		vdev_status(vdev, 1);
860	}
861}
862
863static void
864spa_all_status(void)
865{
866	spa_t *spa;
867	int first = 1;
868
869	STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
870		if (!first)
871			pager_printf("\n");
872		first = 0;
873		spa_status(spa);
874	}
875}
876
877static int
878vdev_probe(vdev_phys_read_t *read, void *read_priv, spa_t **spap)
879{
880	vdev_t vtmp;
881	vdev_phys_t *vdev_label = (vdev_phys_t *) zap_scratch;
882	spa_t *spa;
883	vdev_t *vdev, *top_vdev, *pool_vdev;
884	off_t off;
885	blkptr_t bp;
886	const unsigned char *nvlist;
887	uint64_t val;
888	uint64_t guid;
889	uint64_t pool_txg, pool_guid;
890	uint64_t is_log;
891	const char *pool_name;
892	const unsigned char *vdevs;
893	const unsigned char *features;
894	int i, rc, is_newer;
895	char *upbuf;
896	const struct uberblock *up;
897
898	/*
899	 * Load the vdev label and figure out which
900	 * uberblock is most current.
901	 */
902	memset(&vtmp, 0, sizeof(vtmp));
903	vtmp.v_phys_read = read;
904	vtmp.v_read_priv = read_priv;
905	off = offsetof(vdev_label_t, vl_vdev_phys);
906	BP_ZERO(&bp);
907	BP_SET_LSIZE(&bp, sizeof(vdev_phys_t));
908	BP_SET_PSIZE(&bp, sizeof(vdev_phys_t));
909	BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
910	BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
911	DVA_SET_OFFSET(BP_IDENTITY(&bp), off);
912	ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
913	if (vdev_read_phys(&vtmp, &bp, vdev_label, off, 0))
914		return (EIO);
915
916	if (vdev_label->vp_nvlist[0] != NV_ENCODE_XDR) {
917		return (EIO);
918	}
919
920	nvlist = (const unsigned char *) vdev_label->vp_nvlist + 4;
921
922	if (nvlist_find(nvlist,
923			ZPOOL_CONFIG_VERSION,
924			DATA_TYPE_UINT64, 0, &val)) {
925		return (EIO);
926	}
927
928	if (!SPA_VERSION_IS_SUPPORTED(val)) {
929		printf("ZFS: unsupported ZFS version %u (should be %u)\n",
930		    (unsigned) val, (unsigned) SPA_VERSION);
931		return (EIO);
932	}
933
934	/* Check ZFS features for read */
935	if (nvlist_find(nvlist,
936			ZPOOL_CONFIG_FEATURES_FOR_READ,
937			DATA_TYPE_NVLIST, 0, &features) == 0
938	    && nvlist_check_features_for_read(features) != 0)
939		return (EIO);
940
941	if (nvlist_find(nvlist,
942			ZPOOL_CONFIG_POOL_STATE,
943			DATA_TYPE_UINT64, 0, &val)) {
944		return (EIO);
945	}
946
947	if (val == POOL_STATE_DESTROYED) {
948		/* We don't boot only from destroyed pools. */
949		return (EIO);
950	}
951
952	if (nvlist_find(nvlist,
953			ZPOOL_CONFIG_POOL_TXG,
954			DATA_TYPE_UINT64, 0, &pool_txg)
955	    || nvlist_find(nvlist,
956			   ZPOOL_CONFIG_POOL_GUID,
957			   DATA_TYPE_UINT64, 0, &pool_guid)
958	    || nvlist_find(nvlist,
959			   ZPOOL_CONFIG_POOL_NAME,
960			   DATA_TYPE_STRING, 0, &pool_name)) {
961		/*
962		 * Cache and spare devices end up here - just ignore
963		 * them.
964		 */
965		/*printf("ZFS: can't find pool details\n");*/
966		return (EIO);
967	}
968
969	is_log = 0;
970	(void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, 0,
971	    &is_log);
972	if (is_log)
973		return (EIO);
974
975	/*
976	 * Create the pool if this is the first time we've seen it.
977	 */
978	spa = spa_find_by_guid(pool_guid);
979	if (!spa) {
980		spa = spa_create(pool_guid);
981		spa->spa_name = strdup(pool_name);
982	}
983	if (pool_txg > spa->spa_txg) {
984		spa->spa_txg = pool_txg;
985		is_newer = 1;
986	} else
987		is_newer = 0;
988
989	/*
990	 * Get the vdev tree and create our in-core copy of it.
991	 * If we already have a vdev with this guid, this must
992	 * be some kind of alias (overlapping slices, dangerously dedicated
993	 * disks etc).
994	 */
995	if (nvlist_find(nvlist,
996			ZPOOL_CONFIG_GUID,
997			DATA_TYPE_UINT64, 0, &guid)) {
998		return (EIO);
999	}
1000	vdev = vdev_find(guid);
1001	if (vdev && vdev->v_phys_read)	/* Has this vdev already been inited? */
1002		return (EIO);
1003
1004	if (nvlist_find(nvlist,
1005			ZPOOL_CONFIG_VDEV_TREE,
1006			DATA_TYPE_NVLIST, 0, &vdevs)) {
1007		return (EIO);
1008	}
1009
1010	rc = vdev_init_from_nvlist(vdevs, NULL, &top_vdev, is_newer);
1011	if (rc)
1012		return (rc);
1013
1014	/*
1015	 * Add the toplevel vdev to the pool if its not already there.
1016	 */
1017	STAILQ_FOREACH(pool_vdev, &spa->spa_vdevs, v_childlink)
1018		if (top_vdev == pool_vdev)
1019			break;
1020	if (!pool_vdev && top_vdev)
1021		STAILQ_INSERT_TAIL(&spa->spa_vdevs, top_vdev, v_childlink);
1022
1023	/*
1024	 * We should already have created an incomplete vdev for this
1025	 * vdev. Find it and initialise it with our read proc.
1026	 */
1027	vdev = vdev_find(guid);
1028	if (vdev) {
1029		vdev->v_phys_read = read;
1030		vdev->v_read_priv = read_priv;
1031		vdev->v_state = VDEV_STATE_HEALTHY;
1032	} else {
1033		printf("ZFS: inconsistent nvlist contents\n");
1034		return (EIO);
1035	}
1036
1037	/*
1038	 * Re-evaluate top-level vdev state.
1039	 */
1040	vdev_set_state(top_vdev);
1041
1042	/*
1043	 * Ok, we are happy with the pool so far. Lets find
1044	 * the best uberblock and then we can actually access
1045	 * the contents of the pool.
1046	 */
1047	upbuf = zfs_alloc(VDEV_UBERBLOCK_SIZE(vdev));
1048	up = (const struct uberblock *)upbuf;
1049	for (i = 0;
1050	     i < VDEV_UBERBLOCK_COUNT(vdev);
1051	     i++) {
1052		off = VDEV_UBERBLOCK_OFFSET(vdev, i);
1053		BP_ZERO(&bp);
1054		DVA_SET_OFFSET(&bp.blk_dva[0], off);
1055		BP_SET_LSIZE(&bp, VDEV_UBERBLOCK_SIZE(vdev));
1056		BP_SET_PSIZE(&bp, VDEV_UBERBLOCK_SIZE(vdev));
1057		BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
1058		BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
1059		ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
1060
1061		if (vdev_read_phys(vdev, &bp, upbuf, off, 0))
1062			continue;
1063
1064		if (up->ub_magic != UBERBLOCK_MAGIC)
1065			continue;
1066		if (up->ub_txg < spa->spa_txg)
1067			continue;
1068		if (up->ub_txg > spa->spa_uberblock.ub_txg) {
1069			spa->spa_uberblock = *up;
1070		} else if (up->ub_txg == spa->spa_uberblock.ub_txg) {
1071			if (up->ub_timestamp > spa->spa_uberblock.ub_timestamp)
1072				spa->spa_uberblock = *up;
1073		}
1074	}
1075	zfs_free(upbuf, VDEV_UBERBLOCK_SIZE(vdev));
1076
1077	if (spap)
1078		*spap = spa;
1079	return (0);
1080}
1081
1082static int
1083ilog2(int n)
1084{
1085	int v;
1086
1087	for (v = 0; v < 32; v++)
1088		if (n == (1 << v))
1089			return v;
1090	return -1;
1091}
1092
1093static int
1094zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf)
1095{
1096	blkptr_t gbh_bp;
1097	zio_gbh_phys_t zio_gb;
1098	char *pbuf;
1099	int i;
1100
1101	/* Artificial BP for gang block header. */
1102	gbh_bp = *bp;
1103	BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
1104	BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
1105	BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER);
1106	BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF);
1107	for (i = 0; i < SPA_DVAS_PER_BP; i++)
1108		DVA_SET_GANG(&gbh_bp.blk_dva[i], 0);
1109
1110	/* Read gang header block using the artificial BP. */
1111	if (zio_read(spa, &gbh_bp, &zio_gb))
1112		return (EIO);
1113
1114	pbuf = buf;
1115	for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
1116		blkptr_t *gbp = &zio_gb.zg_blkptr[i];
1117
1118		if (BP_IS_HOLE(gbp))
1119			continue;
1120		if (zio_read(spa, gbp, pbuf))
1121			return (EIO);
1122		pbuf += BP_GET_PSIZE(gbp);
1123	}
1124
1125	if (zio_checksum_verify(bp, buf))
1126		return (EIO);
1127	return (0);
1128}
1129
1130static int
1131zio_read(const spa_t *spa, const blkptr_t *bp, void *buf)
1132{
1133	int cpfunc = BP_GET_COMPRESS(bp);
1134	uint64_t align, size;
1135	void *pbuf;
1136	int i, error;
1137
1138	/*
1139	 * Process data embedded in block pointer
1140	 */
1141	if (BP_IS_EMBEDDED(bp)) {
1142		ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
1143
1144		size = BPE_GET_PSIZE(bp);
1145		ASSERT(size <= BPE_PAYLOAD_SIZE);
1146
1147		if (cpfunc != ZIO_COMPRESS_OFF)
1148			pbuf = zfs_alloc(size);
1149		else
1150			pbuf = buf;
1151
1152		decode_embedded_bp_compressed(bp, pbuf);
1153		error = 0;
1154
1155		if (cpfunc != ZIO_COMPRESS_OFF) {
1156			error = zio_decompress_data(cpfunc, pbuf,
1157			    size, buf, BP_GET_LSIZE(bp));
1158			zfs_free(pbuf, size);
1159		}
1160		if (error != 0)
1161			printf("ZFS: i/o error - unable to decompress block pointer data, error %d\n",
1162			    error);
1163		return (error);
1164	}
1165
1166	error = EIO;
1167
1168	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
1169		const dva_t *dva = &bp->blk_dva[i];
1170		vdev_t *vdev;
1171		int vdevid;
1172		off_t offset;
1173
1174		if (!dva->dva_word[0] && !dva->dva_word[1])
1175			continue;
1176
1177		vdevid = DVA_GET_VDEV(dva);
1178		offset = DVA_GET_OFFSET(dva);
1179		STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) {
1180			if (vdev->v_id == vdevid)
1181				break;
1182		}
1183		if (!vdev || !vdev->v_read)
1184			continue;
1185
1186		size = BP_GET_PSIZE(bp);
1187		if (vdev->v_read == vdev_raidz_read) {
1188			align = 1ULL << vdev->v_top->v_ashift;
1189			if (P2PHASE(size, align) != 0)
1190				size = P2ROUNDUP(size, align);
1191		}
1192		if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF)
1193			pbuf = zfs_alloc(size);
1194		else
1195			pbuf = buf;
1196
1197		if (DVA_GET_GANG(dva))
1198			error = zio_read_gang(spa, bp, pbuf);
1199		else
1200			error = vdev->v_read(vdev, bp, pbuf, offset, size);
1201		if (error == 0) {
1202			if (cpfunc != ZIO_COMPRESS_OFF)
1203				error = zio_decompress_data(cpfunc, pbuf,
1204				    BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp));
1205			else if (size != BP_GET_PSIZE(bp))
1206				bcopy(pbuf, buf, BP_GET_PSIZE(bp));
1207		}
1208		if (buf != pbuf)
1209			zfs_free(pbuf, size);
1210		if (error == 0)
1211			break;
1212	}
1213	if (error != 0)
1214		printf("ZFS: i/o error - all block copies unavailable\n");
1215	return (error);
1216}
1217
1218static int
1219dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset, void *buf, size_t buflen)
1220{
1221	int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
1222	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
1223	int nlevels = dnode->dn_nlevels;
1224	int i, rc;
1225
1226	if (bsize > SPA_MAXBLOCKSIZE) {
1227		printf("ZFS: I/O error - blocks larger than 128K are not supported\n");
1228		return (EIO);
1229	}
1230
1231	/*
1232	 * Note: bsize may not be a power of two here so we need to do an
1233	 * actual divide rather than a bitshift.
1234	 */
1235	while (buflen > 0) {
1236		uint64_t bn = offset / bsize;
1237		int boff = offset % bsize;
1238		int ibn;
1239		const blkptr_t *indbp;
1240		blkptr_t bp;
1241
1242		if (bn > dnode->dn_maxblkid)
1243			return (EIO);
1244
1245		if (dnode == dnode_cache_obj && bn == dnode_cache_bn)
1246			goto cached;
1247
1248		indbp = dnode->dn_blkptr;
1249		for (i = 0; i < nlevels; i++) {
1250			/*
1251			 * Copy the bp from the indirect array so that
1252			 * we can re-use the scratch buffer for multi-level
1253			 * objects.
1254			 */
1255			ibn = bn >> ((nlevels - i - 1) * ibshift);
1256			ibn &= ((1 << ibshift) - 1);
1257			bp = indbp[ibn];
1258			rc = zio_read(spa, &bp, dnode_cache_buf);
1259			if (rc)
1260				return (rc);
1261			indbp = (const blkptr_t *) dnode_cache_buf;
1262		}
1263		dnode_cache_obj = dnode;
1264		dnode_cache_bn = bn;
1265	cached:
1266
1267		/*
1268		 * The buffer contains our data block. Copy what we
1269		 * need from it and loop.
1270		 */
1271		i = bsize - boff;
1272		if (i > buflen) i = buflen;
1273		memcpy(buf, &dnode_cache_buf[boff], i);
1274		buf = ((char*) buf) + i;
1275		offset += i;
1276		buflen -= i;
1277	}
1278
1279	return (0);
1280}
1281
1282/*
1283 * Lookup a value in a microzap directory. Assumes that the zap
1284 * scratch buffer contains the directory contents.
1285 */
1286static int
1287mzap_lookup(const dnode_phys_t *dnode, const char *name, uint64_t *value)
1288{
1289	const mzap_phys_t *mz;
1290	const mzap_ent_phys_t *mze;
1291	size_t size;
1292	int chunks, i;
1293
1294	/*
1295	 * Microzap objects use exactly one block. Read the whole
1296	 * thing.
1297	 */
1298	size = dnode->dn_datablkszsec * 512;
1299
1300	mz = (const mzap_phys_t *) zap_scratch;
1301	chunks = size / MZAP_ENT_LEN - 1;
1302
1303	for (i = 0; i < chunks; i++) {
1304		mze = &mz->mz_chunk[i];
1305		if (!strcmp(mze->mze_name, name)) {
1306			*value = mze->mze_value;
1307			return (0);
1308		}
1309	}
1310
1311	return (ENOENT);
1312}
1313
1314/*
1315 * Compare a name with a zap leaf entry. Return non-zero if the name
1316 * matches.
1317 */
1318static int
1319fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, const char *name)
1320{
1321	size_t namelen;
1322	const zap_leaf_chunk_t *nc;
1323	const char *p;
1324
1325	namelen = zc->l_entry.le_name_numints;
1326
1327	nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
1328	p = name;
1329	while (namelen > 0) {
1330		size_t len;
1331		len = namelen;
1332		if (len > ZAP_LEAF_ARRAY_BYTES)
1333			len = ZAP_LEAF_ARRAY_BYTES;
1334		if (memcmp(p, nc->l_array.la_array, len))
1335			return (0);
1336		p += len;
1337		namelen -= len;
1338		nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
1339	}
1340
1341	return 1;
1342}
1343
1344/*
1345 * Extract a uint64_t value from a zap leaf entry.
1346 */
1347static uint64_t
1348fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc)
1349{
1350	const zap_leaf_chunk_t *vc;
1351	int i;
1352	uint64_t value;
1353	const uint8_t *p;
1354
1355	vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk);
1356	for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) {
1357		value = (value << 8) | p[i];
1358	}
1359
1360	return value;
1361}
1362
1363/*
1364 * Lookup a value in a fatzap directory. Assumes that the zap scratch
1365 * buffer contains the directory header.
1366 */
1367static int
1368fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, uint64_t *value)
1369{
1370	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
1371	zap_phys_t zh = *(zap_phys_t *) zap_scratch;
1372	fat_zap_t z;
1373	uint64_t *ptrtbl;
1374	uint64_t hash;
1375	int rc;
1376
1377	if (zh.zap_magic != ZAP_MAGIC)
1378		return (EIO);
1379
1380	z.zap_block_shift = ilog2(bsize);
1381	z.zap_phys = (zap_phys_t *) zap_scratch;
1382
1383	/*
1384	 * Figure out where the pointer table is and read it in if necessary.
1385	 */
1386	if (zh.zap_ptrtbl.zt_blk) {
1387		rc = dnode_read(spa, dnode, zh.zap_ptrtbl.zt_blk * bsize,
1388			       zap_scratch, bsize);
1389		if (rc)
1390			return (rc);
1391		ptrtbl = (uint64_t *) zap_scratch;
1392	} else {
1393		ptrtbl = &ZAP_EMBEDDED_PTRTBL_ENT(&z, 0);
1394	}
1395
1396	hash = zap_hash(zh.zap_salt, name);
1397
1398	zap_leaf_t zl;
1399	zl.l_bs = z.zap_block_shift;
1400
1401	off_t off = ptrtbl[hash >> (64 - zh.zap_ptrtbl.zt_shift)] << zl.l_bs;
1402	zap_leaf_chunk_t *zc;
1403
1404	rc = dnode_read(spa, dnode, off, zap_scratch, bsize);
1405	if (rc)
1406		return (rc);
1407
1408	zl.l_phys = (zap_leaf_phys_t *) zap_scratch;
1409
1410	/*
1411	 * Make sure this chunk matches our hash.
1412	 */
1413	if (zl.l_phys->l_hdr.lh_prefix_len > 0
1414	    && zl.l_phys->l_hdr.lh_prefix
1415	    != hash >> (64 - zl.l_phys->l_hdr.lh_prefix_len))
1416		return (ENOENT);
1417
1418	/*
1419	 * Hash within the chunk to find our entry.
1420	 */
1421	int shift = (64 - ZAP_LEAF_HASH_SHIFT(&zl) - zl.l_phys->l_hdr.lh_prefix_len);
1422	int h = (hash >> shift) & ((1 << ZAP_LEAF_HASH_SHIFT(&zl)) - 1);
1423	h = zl.l_phys->l_hash[h];
1424	if (h == 0xffff)
1425		return (ENOENT);
1426	zc = &ZAP_LEAF_CHUNK(&zl, h);
1427	while (zc->l_entry.le_hash != hash) {
1428		if (zc->l_entry.le_next == 0xffff) {
1429			zc = 0;
1430			break;
1431		}
1432		zc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_next);
1433	}
1434	if (fzap_name_equal(&zl, zc, name)) {
1435		if (zc->l_entry.le_value_intlen * zc->l_entry.le_value_numints > 8)
1436			return (E2BIG);
1437		*value = fzap_leaf_value(&zl, zc);
1438		return (0);
1439	}
1440
1441	return (ENOENT);
1442}
1443
1444/*
1445 * Lookup a name in a zap object and return its value as a uint64_t.
1446 */
1447static int
1448zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, uint64_t *value)
1449{
1450	int rc;
1451	uint64_t zap_type;
1452	size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
1453
1454	rc = dnode_read(spa, dnode, 0, zap_scratch, size);
1455	if (rc)
1456		return (rc);
1457
1458	zap_type = *(uint64_t *) zap_scratch;
1459	if (zap_type == ZBT_MICRO)
1460		return mzap_lookup(dnode, name, value);
1461	else if (zap_type == ZBT_HEADER)
1462		return fzap_lookup(spa, dnode, name, value);
1463	printf("ZFS: invalid zap_type=%d\n", (int)zap_type);
1464	return (EIO);
1465}
1466
1467/*
1468 * List a microzap directory. Assumes that the zap scratch buffer contains
1469 * the directory contents.
1470 */
1471static int
1472mzap_list(const dnode_phys_t *dnode)
1473{
1474	const mzap_phys_t *mz;
1475	const mzap_ent_phys_t *mze;
1476	size_t size;
1477	int chunks, i;
1478
1479	/*
1480	 * Microzap objects use exactly one block. Read the whole
1481	 * thing.
1482	 */
1483	size = dnode->dn_datablkszsec * 512;
1484	mz = (const mzap_phys_t *) zap_scratch;
1485	chunks = size / MZAP_ENT_LEN - 1;
1486
1487	for (i = 0; i < chunks; i++) {
1488		mze = &mz->mz_chunk[i];
1489		if (mze->mze_name[0])
1490			//printf("%-32s 0x%jx\n", mze->mze_name, (uintmax_t)mze->mze_value);
1491			printf("%s\n", mze->mze_name);
1492	}
1493
1494	return (0);
1495}
1496
1497/*
1498 * List a fatzap directory. Assumes that the zap scratch buffer contains
1499 * the directory header.
1500 */
1501static int
1502fzap_list(const spa_t *spa, const dnode_phys_t *dnode)
1503{
1504	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
1505	zap_phys_t zh = *(zap_phys_t *) zap_scratch;
1506	fat_zap_t z;
1507	int i, j;
1508
1509	if (zh.zap_magic != ZAP_MAGIC)
1510		return (EIO);
1511
1512	z.zap_block_shift = ilog2(bsize);
1513	z.zap_phys = (zap_phys_t *) zap_scratch;
1514
1515	/*
1516	 * This assumes that the leaf blocks start at block 1. The
1517	 * documentation isn't exactly clear on this.
1518	 */
1519	zap_leaf_t zl;
1520	zl.l_bs = z.zap_block_shift;
1521	for (i = 0; i < zh.zap_num_leafs; i++) {
1522		off_t off = (i + 1) << zl.l_bs;
1523		char name[256], *p;
1524		uint64_t value;
1525
1526		if (dnode_read(spa, dnode, off, zap_scratch, bsize))
1527			return (EIO);
1528
1529		zl.l_phys = (zap_leaf_phys_t *) zap_scratch;
1530
1531		for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
1532			zap_leaf_chunk_t *zc, *nc;
1533			int namelen;
1534
1535			zc = &ZAP_LEAF_CHUNK(&zl, j);
1536			if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
1537				continue;
1538			namelen = zc->l_entry.le_name_numints;
1539			if (namelen > sizeof(name))
1540				namelen = sizeof(name);
1541
1542			/*
1543			 * Paste the name back together.
1544			 */
1545			nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
1546			p = name;
1547			while (namelen > 0) {
1548				int len;
1549				len = namelen;
1550				if (len > ZAP_LEAF_ARRAY_BYTES)
1551					len = ZAP_LEAF_ARRAY_BYTES;
1552				memcpy(p, nc->l_array.la_array, len);
1553				p += len;
1554				namelen -= len;
1555				nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
1556			}
1557
1558			/*
1559			 * Assume the first eight bytes of the value are
1560			 * a uint64_t.
1561			 */
1562			value = fzap_leaf_value(&zl, zc);
1563
1564			//printf("%s 0x%jx\n", name, (uintmax_t)value);
1565			printf("%s\n", name);
1566		}
1567	}
1568
1569	return (0);
1570}
1571
1572/*
1573 * List a zap directory.
1574 */
1575static int
1576zap_list(const spa_t *spa, const dnode_phys_t *dnode)
1577{
1578	uint64_t zap_type;
1579	size_t size = dnode->dn_datablkszsec * 512;
1580
1581	if (dnode_read(spa, dnode, 0, zap_scratch, size))
1582		return (EIO);
1583
1584	zap_type = *(uint64_t *) zap_scratch;
1585	if (zap_type == ZBT_MICRO)
1586		return mzap_list(dnode);
1587	else
1588		return fzap_list(spa, dnode);
1589}
1590
1591static int
1592objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum, dnode_phys_t *dnode)
1593{
1594	off_t offset;
1595
1596	offset = objnum * sizeof(dnode_phys_t);
1597	return dnode_read(spa, &os->os_meta_dnode, offset,
1598		dnode, sizeof(dnode_phys_t));
1599}
1600
1601static int
1602mzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value)
1603{
1604	const mzap_phys_t *mz;
1605	const mzap_ent_phys_t *mze;
1606	size_t size;
1607	int chunks, i;
1608
1609	/*
1610	 * Microzap objects use exactly one block. Read the whole
1611	 * thing.
1612	 */
1613	size = dnode->dn_datablkszsec * 512;
1614
1615	mz = (const mzap_phys_t *) zap_scratch;
1616	chunks = size / MZAP_ENT_LEN - 1;
1617
1618	for (i = 0; i < chunks; i++) {
1619		mze = &mz->mz_chunk[i];
1620		if (value == mze->mze_value) {
1621			strcpy(name, mze->mze_name);
1622			return (0);
1623		}
1624	}
1625
1626	return (ENOENT);
1627}
1628
1629static void
1630fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name)
1631{
1632	size_t namelen;
1633	const zap_leaf_chunk_t *nc;
1634	char *p;
1635
1636	namelen = zc->l_entry.le_name_numints;
1637
1638	nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
1639	p = name;
1640	while (namelen > 0) {
1641		size_t len;
1642		len = namelen;
1643		if (len > ZAP_LEAF_ARRAY_BYTES)
1644			len = ZAP_LEAF_ARRAY_BYTES;
1645		memcpy(p, nc->l_array.la_array, len);
1646		p += len;
1647		namelen -= len;
1648		nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
1649	}
1650
1651	*p = '\0';
1652}
1653
1654static int
1655fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value)
1656{
1657	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
1658	zap_phys_t zh = *(zap_phys_t *) zap_scratch;
1659	fat_zap_t z;
1660	int i, j;
1661
1662	if (zh.zap_magic != ZAP_MAGIC)
1663		return (EIO);
1664
1665	z.zap_block_shift = ilog2(bsize);
1666	z.zap_phys = (zap_phys_t *) zap_scratch;
1667
1668	/*
1669	 * This assumes that the leaf blocks start at block 1. The
1670	 * documentation isn't exactly clear on this.
1671	 */
1672	zap_leaf_t zl;
1673	zl.l_bs = z.zap_block_shift;
1674	for (i = 0; i < zh.zap_num_leafs; i++) {
1675		off_t off = (i + 1) << zl.l_bs;
1676
1677		if (dnode_read(spa, dnode, off, zap_scratch, bsize))
1678			return (EIO);
1679
1680		zl.l_phys = (zap_leaf_phys_t *) zap_scratch;
1681
1682		for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
1683			zap_leaf_chunk_t *zc;
1684
1685			zc = &ZAP_LEAF_CHUNK(&zl, j);
1686			if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
1687				continue;
1688			if (zc->l_entry.le_value_intlen != 8 ||
1689			    zc->l_entry.le_value_numints != 1)
1690				continue;
1691
1692			if (fzap_leaf_value(&zl, zc) == value) {
1693				fzap_name_copy(&zl, zc, name);
1694				return (0);
1695			}
1696		}
1697	}
1698
1699	return (ENOENT);
1700}
1701
1702static int
1703zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value)
1704{
1705	int rc;
1706	uint64_t zap_type;
1707	size_t size = dnode->dn_datablkszsec * 512;
1708
1709	rc = dnode_read(spa, dnode, 0, zap_scratch, size);
1710	if (rc)
1711		return (rc);
1712
1713	zap_type = *(uint64_t *) zap_scratch;
1714	if (zap_type == ZBT_MICRO)
1715		return mzap_rlookup(spa, dnode, name, value);
1716	else
1717		return fzap_rlookup(spa, dnode, name, value);
1718}
1719
1720static int
1721zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result)
1722{
1723	char name[256];
1724	char component[256];
1725	uint64_t dir_obj, parent_obj, child_dir_zapobj;
1726	dnode_phys_t child_dir_zap, dataset, dir, parent;
1727	dsl_dir_phys_t *dd;
1728	dsl_dataset_phys_t *ds;
1729	char *p;
1730	int len;
1731
1732	p = &name[sizeof(name) - 1];
1733	*p = '\0';
1734
1735	if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
1736		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
1737		return (EIO);
1738	}
1739	ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
1740	dir_obj = ds->ds_dir_obj;
1741
1742	for (;;) {
1743		if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0)
1744			return (EIO);
1745		dd = (dsl_dir_phys_t *)&dir.dn_bonus;
1746
1747		/* Actual loop condition. */
1748		parent_obj  = dd->dd_parent_obj;
1749		if (parent_obj == 0)
1750			break;
1751
1752		if (objset_get_dnode(spa, &spa->spa_mos, parent_obj, &parent) != 0)
1753			return (EIO);
1754		dd = (dsl_dir_phys_t *)&parent.dn_bonus;
1755		child_dir_zapobj = dd->dd_child_dir_zapobj;
1756		if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0)
1757			return (EIO);
1758		if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0)
1759			return (EIO);
1760
1761		len = strlen(component);
1762		p -= len;
1763		memcpy(p, component, len);
1764		--p;
1765		*p = '/';
1766
1767		/* Actual loop iteration. */
1768		dir_obj = parent_obj;
1769	}
1770
1771	if (*p != '\0')
1772		++p;
1773	strcpy(result, p);
1774
1775	return (0);
1776}
1777
1778static int
1779zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum)
1780{
1781	char element[256];
1782	uint64_t dir_obj, child_dir_zapobj;
1783	dnode_phys_t child_dir_zap, dir;
1784	dsl_dir_phys_t *dd;
1785	const char *p, *q;
1786
1787	if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir))
1788		return (EIO);
1789	if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, &dir_obj))
1790		return (EIO);
1791
1792	p = name;
1793	for (;;) {
1794		if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir))
1795			return (EIO);
1796		dd = (dsl_dir_phys_t *)&dir.dn_bonus;
1797
1798		while (*p == '/')
1799			p++;
1800		/* Actual loop condition #1. */
1801		if (*p == '\0')
1802			break;
1803
1804		q = strchr(p, '/');
1805		if (q) {
1806			memcpy(element, p, q - p);
1807			element[q - p] = '\0';
1808			p = q + 1;
1809		} else {
1810			strcpy(element, p);
1811			p += strlen(p);
1812		}
1813
1814		child_dir_zapobj = dd->dd_child_dir_zapobj;
1815		if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0)
1816			return (EIO);
1817
1818		/* Actual loop condition #2. */
1819		if (zap_lookup(spa, &child_dir_zap, element, &dir_obj) != 0)
1820			return (ENOENT);
1821	}
1822
1823	*objnum = dd->dd_head_dataset_obj;
1824	return (0);
1825}
1826
1827#ifndef BOOT2
1828static int
1829zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/)
1830{
1831	uint64_t dir_obj, child_dir_zapobj;
1832	dnode_phys_t child_dir_zap, dir, dataset;
1833	dsl_dataset_phys_t *ds;
1834	dsl_dir_phys_t *dd;
1835
1836	if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
1837		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
1838		return (EIO);
1839	}
1840	ds = (dsl_dataset_phys_t *) &dataset.dn_bonus;
1841	dir_obj = ds->ds_dir_obj;
1842
1843	if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) {
1844		printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
1845		return (EIO);
1846	}
1847	dd = (dsl_dir_phys_t *)&dir.dn_bonus;
1848
1849	child_dir_zapobj = dd->dd_child_dir_zapobj;
1850	if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) {
1851		printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
1852		return (EIO);
1853	}
1854
1855	return (zap_list(spa, &child_dir_zap) != 0);
1856}
1857#endif
1858
1859/*
1860 * Find the object set given the object number of its dataset object
1861 * and return its details in *objset
1862 */
1863static int
1864zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset)
1865{
1866	dnode_phys_t dataset;
1867	dsl_dataset_phys_t *ds;
1868
1869	if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
1870		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
1871		return (EIO);
1872	}
1873
1874	ds = (dsl_dataset_phys_t *) &dataset.dn_bonus;
1875	if (zio_read(spa, &ds->ds_bp, objset)) {
1876		printf("ZFS: can't read object set for dataset %ju\n",
1877		    (uintmax_t)objnum);
1878		return (EIO);
1879	}
1880
1881	return (0);
1882}
1883
1884/*
1885 * Find the object set pointed to by the BOOTFS property or the root
1886 * dataset if there is none and return its details in *objset
1887 */
1888static int
1889zfs_get_root(const spa_t *spa, uint64_t *objid)
1890{
1891	dnode_phys_t dir, propdir;
1892	uint64_t props, bootfs, root;
1893
1894	*objid = 0;
1895
1896	/*
1897	 * Start with the MOS directory object.
1898	 */
1899	if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir)) {
1900		printf("ZFS: can't read MOS object directory\n");
1901		return (EIO);
1902	}
1903
1904	/*
1905	 * Lookup the pool_props and see if we can find a bootfs.
1906	 */
1907	if (zap_lookup(spa, &dir, DMU_POOL_PROPS, &props) == 0
1908	     && objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0
1909	     && zap_lookup(spa, &propdir, "bootfs", &bootfs) == 0
1910	     && bootfs != 0)
1911	{
1912		*objid = bootfs;
1913		return (0);
1914	}
1915	/*
1916	 * Lookup the root dataset directory
1917	 */
1918	if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, &root)
1919	    || objset_get_dnode(spa, &spa->spa_mos, root, &dir)) {
1920		printf("ZFS: can't find root dsl_dir\n");
1921		return (EIO);
1922	}
1923
1924	/*
1925	 * Use the information from the dataset directory's bonus buffer
1926	 * to find the dataset object and from that the object set itself.
1927	 */
1928	dsl_dir_phys_t *dd = (dsl_dir_phys_t *) &dir.dn_bonus;
1929	*objid = dd->dd_head_dataset_obj;
1930	return (0);
1931}
1932
1933static int
1934zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount)
1935{
1936
1937	mount->spa = spa;
1938
1939	/*
1940	 * Find the root object set if not explicitly provided
1941	 */
1942	if (rootobj == 0 && zfs_get_root(spa, &rootobj)) {
1943		printf("ZFS: can't find root filesystem\n");
1944		return (EIO);
1945	}
1946
1947	if (zfs_mount_dataset(spa, rootobj, &mount->objset)) {
1948		printf("ZFS: can't open root filesystem\n");
1949		return (EIO);
1950	}
1951
1952	mount->rootobj = rootobj;
1953
1954	return (0);
1955}
1956
1957static int
1958zfs_spa_init(spa_t *spa)
1959{
1960
1961	if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) {
1962		printf("ZFS: can't read MOS of pool %s\n", spa->spa_name);
1963		return (EIO);
1964	}
1965	if (spa->spa_mos.os_type != DMU_OST_META) {
1966		printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name);
1967		return (EIO);
1968	}
1969	return (0);
1970}
1971
1972static int
1973zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb)
1974{
1975
1976	if (dn->dn_bonustype != DMU_OT_SA) {
1977		znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus;
1978
1979		sb->st_mode = zp->zp_mode;
1980		sb->st_uid = zp->zp_uid;
1981		sb->st_gid = zp->zp_gid;
1982		sb->st_size = zp->zp_size;
1983	} else {
1984		sa_hdr_phys_t *sahdrp;
1985		int hdrsize;
1986		size_t size = 0;
1987		void *buf = NULL;
1988
1989		if (dn->dn_bonuslen != 0)
1990			sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
1991		else {
1992			if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) {
1993				blkptr_t *bp = &dn->dn_spill;
1994				int error;
1995
1996				size = BP_GET_LSIZE(bp);
1997				buf = zfs_alloc(size);
1998				error = zio_read(spa, bp, buf);
1999				if (error != 0) {
2000					zfs_free(buf, size);
2001					return (error);
2002				}
2003				sahdrp = buf;
2004			} else {
2005				return (EIO);
2006			}
2007		}
2008		hdrsize = SA_HDR_SIZE(sahdrp);
2009		sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize +
2010		    SA_MODE_OFFSET);
2011		sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize +
2012		    SA_UID_OFFSET);
2013		sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize +
2014		    SA_GID_OFFSET);
2015		sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize +
2016		    SA_SIZE_OFFSET);
2017		if (buf != NULL)
2018			zfs_free(buf, size);
2019	}
2020
2021	return (0);
2022}
2023
2024/*
2025 * Lookup a file and return its dnode.
2026 */
2027static int
2028zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode)
2029{
2030	int rc;
2031	uint64_t objnum, rootnum, parentnum;
2032	const spa_t *spa;
2033	dnode_phys_t dn;
2034	const char *p, *q;
2035	char element[256];
2036	char path[1024];
2037	int symlinks_followed = 0;
2038	struct stat sb;
2039
2040	spa = mount->spa;
2041	if (mount->objset.os_type != DMU_OST_ZFS) {
2042		printf("ZFS: unexpected object set type %ju\n",
2043		    (uintmax_t)mount->objset.os_type);
2044		return (EIO);
2045	}
2046
2047	/*
2048	 * Get the root directory dnode.
2049	 */
2050	rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn);
2051	if (rc)
2052		return (rc);
2053
2054	rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, &rootnum);
2055	if (rc)
2056		return (rc);
2057
2058	rc = objset_get_dnode(spa, &mount->objset, rootnum, &dn);
2059	if (rc)
2060		return (rc);
2061
2062	objnum = rootnum;
2063	p = upath;
2064	while (p && *p) {
2065		while (*p == '/')
2066			p++;
2067		if (!*p)
2068			break;
2069		q = strchr(p, '/');
2070		if (q) {
2071			memcpy(element, p, q - p);
2072			element[q - p] = 0;
2073			p = q;
2074		} else {
2075			strcpy(element, p);
2076			p = 0;
2077		}
2078
2079		rc = zfs_dnode_stat(spa, &dn, &sb);
2080		if (rc)
2081			return (rc);
2082		if (!S_ISDIR(sb.st_mode))
2083			return (ENOTDIR);
2084
2085		parentnum = objnum;
2086		rc = zap_lookup(spa, &dn, element, &objnum);
2087		if (rc)
2088			return (rc);
2089		objnum = ZFS_DIRENT_OBJ(objnum);
2090
2091		rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
2092		if (rc)
2093			return (rc);
2094
2095		/*
2096		 * Check for symlink.
2097		 */
2098		rc = zfs_dnode_stat(spa, &dn, &sb);
2099		if (rc)
2100			return (rc);
2101		if (S_ISLNK(sb.st_mode)) {
2102			if (symlinks_followed > 10)
2103				return (EMLINK);
2104			symlinks_followed++;
2105
2106			/*
2107			 * Read the link value and copy the tail of our
2108			 * current path onto the end.
2109			 */
2110			if (p)
2111				strcpy(&path[sb.st_size], p);
2112			else
2113				path[sb.st_size] = 0;
2114			if (sb.st_size + sizeof(znode_phys_t) <= dn.dn_bonuslen) {
2115				memcpy(path, &dn.dn_bonus[sizeof(znode_phys_t)],
2116					sb.st_size);
2117			} else {
2118				rc = dnode_read(spa, &dn, 0, path, sb.st_size);
2119				if (rc)
2120					return (rc);
2121			}
2122
2123			/*
2124			 * Restart with the new path, starting either at
2125			 * the root or at the parent depending whether or
2126			 * not the link is relative.
2127			 */
2128			p = path;
2129			if (*p == '/')
2130				objnum = rootnum;
2131			else
2132				objnum = parentnum;
2133			objset_get_dnode(spa, &mount->objset, objnum, &dn);
2134		}
2135	}
2136
2137	*dnode = dn;
2138	return (0);
2139}
2140