zfsimpl.c revision 263397
1/*-
2 * Copyright (c) 2007 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/10/sys/boot/zfs/zfsimpl.c 263397 2014-03-19 23:55:03Z delphij $");
29
30/*
31 *	Stand-alone ZFS file reader.
32 */
33
34#include <sys/stat.h>
35#include <sys/stdint.h>
36
37#include "zfsimpl.h"
38#include "zfssubr.c"
39
40
41struct zfsmount {
42	const spa_t	*spa;
43	objset_phys_t	objset;
44	uint64_t	rootobj;
45};
46
47/*
48 * List of all vdevs, chained through v_alllink.
49 */
50static vdev_list_t zfs_vdevs;
51
52 /*
53 * List of ZFS features supported for read
54 */
55static const char *features_for_read[] = {
56	"org.illumos:lz4_compress",
57	"com.delphix:hole_birth",
58	"com.delphix:extensible_dataset",
59	NULL
60};
61
62/*
63 * List of all pools, chained through spa_link.
64 */
65static spa_list_t zfs_pools;
66
67static uint64_t zfs_crc64_table[256];
68static const dnode_phys_t *dnode_cache_obj = 0;
69static uint64_t dnode_cache_bn;
70static char *dnode_cache_buf;
71static char *zap_scratch;
72static char *zfs_temp_buf, *zfs_temp_end, *zfs_temp_ptr;
73
74#define TEMP_SIZE	(1024 * 1024)
75
76static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf);
77static int zfs_get_root(const spa_t *spa, uint64_t *objid);
78static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result);
79
80static void
81zfs_init(void)
82{
83	STAILQ_INIT(&zfs_vdevs);
84	STAILQ_INIT(&zfs_pools);
85
86	zfs_temp_buf = malloc(TEMP_SIZE);
87	zfs_temp_end = zfs_temp_buf + TEMP_SIZE;
88	zfs_temp_ptr = zfs_temp_buf;
89	dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE);
90	zap_scratch = malloc(SPA_MAXBLOCKSIZE);
91
92	zfs_init_crc();
93}
94
95static void *
96zfs_alloc(size_t size)
97{
98	char *ptr;
99
100	if (zfs_temp_ptr + size > zfs_temp_end) {
101		printf("ZFS: out of temporary buffer space\n");
102		for (;;) ;
103	}
104	ptr = zfs_temp_ptr;
105	zfs_temp_ptr += size;
106
107	return (ptr);
108}
109
110static void
111zfs_free(void *ptr, size_t size)
112{
113
114	zfs_temp_ptr -= size;
115	if (zfs_temp_ptr != ptr) {
116		printf("ZFS: zfs_alloc()/zfs_free() mismatch\n");
117		for (;;) ;
118	}
119}
120
121static int
122xdr_int(const unsigned char **xdr, int *ip)
123{
124	*ip = ((*xdr)[0] << 24)
125		| ((*xdr)[1] << 16)
126		| ((*xdr)[2] << 8)
127		| ((*xdr)[3] << 0);
128	(*xdr) += 4;
129	return (0);
130}
131
132static int
133xdr_u_int(const unsigned char **xdr, u_int *ip)
134{
135	*ip = ((*xdr)[0] << 24)
136		| ((*xdr)[1] << 16)
137		| ((*xdr)[2] << 8)
138		| ((*xdr)[3] << 0);
139	(*xdr) += 4;
140	return (0);
141}
142
143static int
144xdr_uint64_t(const unsigned char **xdr, uint64_t *lp)
145{
146	u_int hi, lo;
147
148	xdr_u_int(xdr, &hi);
149	xdr_u_int(xdr, &lo);
150	*lp = (((uint64_t) hi) << 32) | lo;
151	return (0);
152}
153
154static int
155nvlist_find(const unsigned char *nvlist, const char *name, int type,
156	    int* elementsp, void *valuep)
157{
158	const unsigned char *p, *pair;
159	int junk;
160	int encoded_size, decoded_size;
161
162	p = nvlist;
163	xdr_int(&p, &junk);
164	xdr_int(&p, &junk);
165
166	pair = p;
167	xdr_int(&p, &encoded_size);
168	xdr_int(&p, &decoded_size);
169	while (encoded_size && decoded_size) {
170		int namelen, pairtype, elements;
171		const char *pairname;
172
173		xdr_int(&p, &namelen);
174		pairname = (const char*) p;
175		p += roundup(namelen, 4);
176		xdr_int(&p, &pairtype);
177
178		if (!memcmp(name, pairname, namelen) && type == pairtype) {
179			xdr_int(&p, &elements);
180			if (elementsp)
181				*elementsp = elements;
182			if (type == DATA_TYPE_UINT64) {
183				xdr_uint64_t(&p, (uint64_t *) valuep);
184				return (0);
185			} else if (type == DATA_TYPE_STRING) {
186				int len;
187				xdr_int(&p, &len);
188				(*(const char**) valuep) = (const char*) p;
189				return (0);
190			} else if (type == DATA_TYPE_NVLIST
191				   || type == DATA_TYPE_NVLIST_ARRAY) {
192				(*(const unsigned char**) valuep) =
193					 (const unsigned char*) p;
194				return (0);
195			} else {
196				return (EIO);
197			}
198		} else {
199			/*
200			 * Not the pair we are looking for, skip to the next one.
201			 */
202			p = pair + encoded_size;
203		}
204
205		pair = p;
206		xdr_int(&p, &encoded_size);
207		xdr_int(&p, &decoded_size);
208	}
209
210	return (EIO);
211}
212
213static int
214nvlist_check_features_for_read(const unsigned char *nvlist)
215{
216	const unsigned char *p, *pair;
217	int junk;
218	int encoded_size, decoded_size;
219	int rc;
220
221	rc = 0;
222
223	p = nvlist;
224	xdr_int(&p, &junk);
225	xdr_int(&p, &junk);
226
227	pair = p;
228	xdr_int(&p, &encoded_size);
229	xdr_int(&p, &decoded_size);
230	while (encoded_size && decoded_size) {
231		int namelen, pairtype;
232		const char *pairname;
233		int i, found;
234
235		found = 0;
236
237		xdr_int(&p, &namelen);
238		pairname = (const char*) p;
239		p += roundup(namelen, 4);
240		xdr_int(&p, &pairtype);
241
242		for (i = 0; features_for_read[i] != NULL; i++) {
243			if (!memcmp(pairname, features_for_read[i], namelen)) {
244				found = 1;
245				break;
246			}
247		}
248
249		if (!found) {
250			printf("ZFS: unsupported feature: %s\n", pairname);
251			rc = EIO;
252		}
253
254		p = pair + encoded_size;
255
256		pair = p;
257		xdr_int(&p, &encoded_size);
258		xdr_int(&p, &decoded_size);
259	}
260
261	return (rc);
262}
263
264/*
265 * Return the next nvlist in an nvlist array.
266 */
267static const unsigned char *
268nvlist_next(const unsigned char *nvlist)
269{
270	const unsigned char *p, *pair;
271	int junk;
272	int encoded_size, decoded_size;
273
274	p = nvlist;
275	xdr_int(&p, &junk);
276	xdr_int(&p, &junk);
277
278	pair = p;
279	xdr_int(&p, &encoded_size);
280	xdr_int(&p, &decoded_size);
281	while (encoded_size && decoded_size) {
282		p = pair + encoded_size;
283
284		pair = p;
285		xdr_int(&p, &encoded_size);
286		xdr_int(&p, &decoded_size);
287	}
288
289	return p;
290}
291
292#ifdef TEST
293
294static const unsigned char *
295nvlist_print(const unsigned char *nvlist, unsigned int indent)
296{
297	static const char* typenames[] = {
298		"DATA_TYPE_UNKNOWN",
299		"DATA_TYPE_BOOLEAN",
300		"DATA_TYPE_BYTE",
301		"DATA_TYPE_INT16",
302		"DATA_TYPE_UINT16",
303		"DATA_TYPE_INT32",
304		"DATA_TYPE_UINT32",
305		"DATA_TYPE_INT64",
306		"DATA_TYPE_UINT64",
307		"DATA_TYPE_STRING",
308		"DATA_TYPE_BYTE_ARRAY",
309		"DATA_TYPE_INT16_ARRAY",
310		"DATA_TYPE_UINT16_ARRAY",
311		"DATA_TYPE_INT32_ARRAY",
312		"DATA_TYPE_UINT32_ARRAY",
313		"DATA_TYPE_INT64_ARRAY",
314		"DATA_TYPE_UINT64_ARRAY",
315		"DATA_TYPE_STRING_ARRAY",
316		"DATA_TYPE_HRTIME",
317		"DATA_TYPE_NVLIST",
318		"DATA_TYPE_NVLIST_ARRAY",
319		"DATA_TYPE_BOOLEAN_VALUE",
320		"DATA_TYPE_INT8",
321		"DATA_TYPE_UINT8",
322		"DATA_TYPE_BOOLEAN_ARRAY",
323		"DATA_TYPE_INT8_ARRAY",
324		"DATA_TYPE_UINT8_ARRAY"
325	};
326
327	unsigned int i, j;
328	const unsigned char *p, *pair;
329	int junk;
330	int encoded_size, decoded_size;
331
332	p = nvlist;
333	xdr_int(&p, &junk);
334	xdr_int(&p, &junk);
335
336	pair = p;
337	xdr_int(&p, &encoded_size);
338	xdr_int(&p, &decoded_size);
339	while (encoded_size && decoded_size) {
340		int namelen, pairtype, elements;
341		const char *pairname;
342
343		xdr_int(&p, &namelen);
344		pairname = (const char*) p;
345		p += roundup(namelen, 4);
346		xdr_int(&p, &pairtype);
347
348		for (i = 0; i < indent; i++)
349			printf(" ");
350		printf("%s %s", typenames[pairtype], pairname);
351
352		xdr_int(&p, &elements);
353		switch (pairtype) {
354		case DATA_TYPE_UINT64: {
355			uint64_t val;
356			xdr_uint64_t(&p, &val);
357			printf(" = 0x%jx\n", (uintmax_t)val);
358			break;
359		}
360
361		case DATA_TYPE_STRING: {
362			int len;
363			xdr_int(&p, &len);
364			printf(" = \"%s\"\n", p);
365			break;
366		}
367
368		case DATA_TYPE_NVLIST:
369			printf("\n");
370			nvlist_print(p, indent + 1);
371			break;
372
373		case DATA_TYPE_NVLIST_ARRAY:
374			for (j = 0; j < elements; j++) {
375				printf("[%d]\n", j);
376				p = nvlist_print(p, indent + 1);
377				if (j != elements - 1) {
378					for (i = 0; i < indent; i++)
379						printf(" ");
380					printf("%s %s", typenames[pairtype], pairname);
381				}
382			}
383			break;
384
385		default:
386			printf("\n");
387		}
388
389		p = pair + encoded_size;
390
391		pair = p;
392		xdr_int(&p, &encoded_size);
393		xdr_int(&p, &decoded_size);
394	}
395
396	return p;
397}
398
399#endif
400
401static int
402vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf,
403    off_t offset, size_t size)
404{
405	size_t psize;
406	int rc;
407
408	if (!vdev->v_phys_read)
409		return (EIO);
410
411	if (bp) {
412		psize = BP_GET_PSIZE(bp);
413	} else {
414		psize = size;
415	}
416
417	/*printf("ZFS: reading %d bytes at 0x%jx to %p\n", psize, (uintmax_t)offset, buf);*/
418	rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize);
419	if (rc)
420		return (rc);
421	if (bp && zio_checksum_verify(bp, buf))
422		return (EIO);
423
424	return (0);
425}
426
427static int
428vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
429    off_t offset, size_t bytes)
430{
431
432	return (vdev_read_phys(vdev, bp, buf,
433		offset + VDEV_LABEL_START_SIZE, bytes));
434}
435
436
437static int
438vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
439    off_t offset, size_t bytes)
440{
441	vdev_t *kid;
442	int rc;
443
444	rc = EIO;
445	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
446		if (kid->v_state != VDEV_STATE_HEALTHY)
447			continue;
448		rc = kid->v_read(kid, bp, buf, offset, bytes);
449		if (!rc)
450			return (0);
451	}
452
453	return (rc);
454}
455
456static int
457vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
458    off_t offset, size_t bytes)
459{
460	vdev_t *kid;
461
462	/*
463	 * Here we should have two kids:
464	 * First one which is the one we are replacing and we can trust
465	 * only this one to have valid data, but it might not be present.
466	 * Second one is that one we are replacing with. It is most likely
467	 * healthy, but we can't trust it has needed data, so we won't use it.
468	 */
469	kid = STAILQ_FIRST(&vdev->v_children);
470	if (kid == NULL)
471		return (EIO);
472	if (kid->v_state != VDEV_STATE_HEALTHY)
473		return (EIO);
474	return (kid->v_read(kid, bp, buf, offset, bytes));
475}
476
477static vdev_t *
478vdev_find(uint64_t guid)
479{
480	vdev_t *vdev;
481
482	STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink)
483		if (vdev->v_guid == guid)
484			return (vdev);
485
486	return (0);
487}
488
489static vdev_t *
490vdev_create(uint64_t guid, vdev_read_t *read)
491{
492	vdev_t *vdev;
493
494	vdev = malloc(sizeof(vdev_t));
495	memset(vdev, 0, sizeof(vdev_t));
496	STAILQ_INIT(&vdev->v_children);
497	vdev->v_guid = guid;
498	vdev->v_state = VDEV_STATE_OFFLINE;
499	vdev->v_read = read;
500	vdev->v_phys_read = 0;
501	vdev->v_read_priv = 0;
502	STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink);
503
504	return (vdev);
505}
506
507static int
508vdev_init_from_nvlist(const unsigned char *nvlist, vdev_t *pvdev,
509    vdev_t **vdevp, int is_newer)
510{
511	int rc;
512	uint64_t guid, id, ashift, nparity;
513	const char *type;
514	const char *path;
515	vdev_t *vdev, *kid;
516	const unsigned char *kids;
517	int nkids, i, is_new;
518	uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present;
519
520	if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID,
521			DATA_TYPE_UINT64, 0, &guid)
522	    || nvlist_find(nvlist, ZPOOL_CONFIG_ID,
523			   DATA_TYPE_UINT64, 0, &id)
524	    || nvlist_find(nvlist, ZPOOL_CONFIG_TYPE,
525			   DATA_TYPE_STRING, 0, &type)) {
526		printf("ZFS: can't find vdev details\n");
527		return (ENOENT);
528	}
529
530	if (strcmp(type, VDEV_TYPE_MIRROR)
531	    && strcmp(type, VDEV_TYPE_DISK)
532#ifdef ZFS_TEST
533	    && strcmp(type, VDEV_TYPE_FILE)
534#endif
535	    && strcmp(type, VDEV_TYPE_RAIDZ)
536	    && strcmp(type, VDEV_TYPE_REPLACING)) {
537		printf("ZFS: can only boot from disk, mirror, raidz1, raidz2 and raidz3 vdevs\n");
538		return (EIO);
539	}
540
541	is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0;
542
543	nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, 0,
544			&is_offline);
545	nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, 0,
546			&is_removed);
547	nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, 0,
548			&is_faulted);
549	nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64, 0,
550			&is_degraded);
551	nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64, 0,
552			&isnt_present);
553
554	vdev = vdev_find(guid);
555	if (!vdev) {
556		is_new = 1;
557
558		if (!strcmp(type, VDEV_TYPE_MIRROR))
559			vdev = vdev_create(guid, vdev_mirror_read);
560		else if (!strcmp(type, VDEV_TYPE_RAIDZ))
561			vdev = vdev_create(guid, vdev_raidz_read);
562		else if (!strcmp(type, VDEV_TYPE_REPLACING))
563			vdev = vdev_create(guid, vdev_replacing_read);
564		else
565			vdev = vdev_create(guid, vdev_disk_read);
566
567		vdev->v_id = id;
568		vdev->v_top = pvdev != NULL ? pvdev : vdev;
569		if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT,
570			DATA_TYPE_UINT64, 0, &ashift) == 0)
571			vdev->v_ashift = ashift;
572		else
573			vdev->v_ashift = 0;
574		if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY,
575			DATA_TYPE_UINT64, 0, &nparity) == 0)
576			vdev->v_nparity = nparity;
577		else
578			vdev->v_nparity = 0;
579		if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH,
580				DATA_TYPE_STRING, 0, &path) == 0) {
581			if (strncmp(path, "/dev/", 5) == 0)
582				path += 5;
583			vdev->v_name = strdup(path);
584		} else {
585			if (!strcmp(type, "raidz")) {
586				if (vdev->v_nparity == 1)
587					vdev->v_name = "raidz1";
588				else if (vdev->v_nparity == 2)
589					vdev->v_name = "raidz2";
590				else if (vdev->v_nparity == 3)
591					vdev->v_name = "raidz3";
592				else {
593					printf("ZFS: can only boot from disk, mirror, raidz1, raidz2 and raidz3 vdevs\n");
594					return (EIO);
595				}
596			} else {
597				vdev->v_name = strdup(type);
598			}
599		}
600	} else {
601		is_new = 0;
602	}
603
604	if (is_new || is_newer) {
605		/*
606		 * This is either new vdev or we've already seen this vdev,
607		 * but from an older vdev label, so let's refresh its state
608		 * from the newer label.
609		 */
610		if (is_offline)
611			vdev->v_state = VDEV_STATE_OFFLINE;
612		else if (is_removed)
613			vdev->v_state = VDEV_STATE_REMOVED;
614		else if (is_faulted)
615			vdev->v_state = VDEV_STATE_FAULTED;
616		else if (is_degraded)
617			vdev->v_state = VDEV_STATE_DEGRADED;
618		else if (isnt_present)
619			vdev->v_state = VDEV_STATE_CANT_OPEN;
620	}
621
622	rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN,
623			 DATA_TYPE_NVLIST_ARRAY, &nkids, &kids);
624	/*
625	 * Its ok if we don't have any kids.
626	 */
627	if (rc == 0) {
628		vdev->v_nchildren = nkids;
629		for (i = 0; i < nkids; i++) {
630			rc = vdev_init_from_nvlist(kids, vdev, &kid, is_newer);
631			if (rc)
632				return (rc);
633			if (is_new)
634				STAILQ_INSERT_TAIL(&vdev->v_children, kid,
635						   v_childlink);
636			kids = nvlist_next(kids);
637		}
638	} else {
639		vdev->v_nchildren = 0;
640	}
641
642	if (vdevp)
643		*vdevp = vdev;
644	return (0);
645}
646
647static void
648vdev_set_state(vdev_t *vdev)
649{
650	vdev_t *kid;
651	int good_kids;
652	int bad_kids;
653
654	/*
655	 * A mirror or raidz is healthy if all its kids are healthy. A
656	 * mirror is degraded if any of its kids is healthy; a raidz
657	 * is degraded if at most nparity kids are offline.
658	 */
659	if (STAILQ_FIRST(&vdev->v_children)) {
660		good_kids = 0;
661		bad_kids = 0;
662		STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
663			if (kid->v_state == VDEV_STATE_HEALTHY)
664				good_kids++;
665			else
666				bad_kids++;
667		}
668		if (bad_kids == 0) {
669			vdev->v_state = VDEV_STATE_HEALTHY;
670		} else {
671			if (vdev->v_read == vdev_mirror_read) {
672				if (good_kids) {
673					vdev->v_state = VDEV_STATE_DEGRADED;
674				} else {
675					vdev->v_state = VDEV_STATE_OFFLINE;
676				}
677			} else if (vdev->v_read == vdev_raidz_read) {
678				if (bad_kids > vdev->v_nparity) {
679					vdev->v_state = VDEV_STATE_OFFLINE;
680				} else {
681					vdev->v_state = VDEV_STATE_DEGRADED;
682				}
683			}
684		}
685	}
686}
687
688static spa_t *
689spa_find_by_guid(uint64_t guid)
690{
691	spa_t *spa;
692
693	STAILQ_FOREACH(spa, &zfs_pools, spa_link)
694		if (spa->spa_guid == guid)
695			return (spa);
696
697	return (0);
698}
699
700static spa_t *
701spa_find_by_name(const char *name)
702{
703	spa_t *spa;
704
705	STAILQ_FOREACH(spa, &zfs_pools, spa_link)
706		if (!strcmp(spa->spa_name, name))
707			return (spa);
708
709	return (0);
710}
711
712#ifdef BOOT2
713static spa_t *
714spa_get_primary(void)
715{
716
717	return (STAILQ_FIRST(&zfs_pools));
718}
719
720static vdev_t *
721spa_get_primary_vdev(const spa_t *spa)
722{
723	vdev_t *vdev;
724	vdev_t *kid;
725
726	if (spa == NULL)
727		spa = spa_get_primary();
728	if (spa == NULL)
729		return (NULL);
730	vdev = STAILQ_FIRST(&spa->spa_vdevs);
731	if (vdev == NULL)
732		return (NULL);
733	for (kid = STAILQ_FIRST(&vdev->v_children); kid != NULL;
734	     kid = STAILQ_FIRST(&vdev->v_children))
735		vdev = kid;
736	return (vdev);
737}
738#endif
739
740static spa_t *
741spa_create(uint64_t guid)
742{
743	spa_t *spa;
744
745	spa = malloc(sizeof(spa_t));
746	memset(spa, 0, sizeof(spa_t));
747	STAILQ_INIT(&spa->spa_vdevs);
748	spa->spa_guid = guid;
749	STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link);
750
751	return (spa);
752}
753
754static const char *
755state_name(vdev_state_t state)
756{
757	static const char* names[] = {
758		"UNKNOWN",
759		"CLOSED",
760		"OFFLINE",
761		"REMOVED",
762		"CANT_OPEN",
763		"FAULTED",
764		"DEGRADED",
765		"ONLINE"
766	};
767	return names[state];
768}
769
770#ifdef BOOT2
771
772#define pager_printf printf
773
774#else
775
776static void
777pager_printf(const char *fmt, ...)
778{
779	char line[80];
780	va_list args;
781
782	va_start(args, fmt);
783	vsprintf(line, fmt, args);
784	va_end(args);
785	pager_output(line);
786}
787
788#endif
789
790#define STATUS_FORMAT	"        %s %s\n"
791
792static void
793print_state(int indent, const char *name, vdev_state_t state)
794{
795	int i;
796	char buf[512];
797
798	buf[0] = 0;
799	for (i = 0; i < indent; i++)
800		strcat(buf, "  ");
801	strcat(buf, name);
802	pager_printf(STATUS_FORMAT, buf, state_name(state));
803
804}
805
806static void
807vdev_status(vdev_t *vdev, int indent)
808{
809	vdev_t *kid;
810	print_state(indent, vdev->v_name, vdev->v_state);
811
812	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
813		vdev_status(kid, indent + 1);
814	}
815}
816
817static void
818spa_status(spa_t *spa)
819{
820	static char bootfs[ZFS_MAXNAMELEN];
821	uint64_t rootid;
822	vdev_t *vdev;
823	int good_kids, bad_kids, degraded_kids;
824	vdev_state_t state;
825
826	pager_printf("  pool: %s\n", spa->spa_name);
827	if (zfs_get_root(spa, &rootid) == 0 &&
828	    zfs_rlookup(spa, rootid, bootfs) == 0) {
829		if (bootfs[0] == '\0')
830			pager_printf("bootfs: %s\n", spa->spa_name);
831		else
832			pager_printf("bootfs: %s/%s\n", spa->spa_name, bootfs);
833	}
834	pager_printf("config:\n\n");
835	pager_printf(STATUS_FORMAT, "NAME", "STATE");
836
837	good_kids = 0;
838	degraded_kids = 0;
839	bad_kids = 0;
840	STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) {
841		if (vdev->v_state == VDEV_STATE_HEALTHY)
842			good_kids++;
843		else if (vdev->v_state == VDEV_STATE_DEGRADED)
844			degraded_kids++;
845		else
846			bad_kids++;
847	}
848
849	state = VDEV_STATE_CLOSED;
850	if (good_kids > 0 && (degraded_kids + bad_kids) == 0)
851		state = VDEV_STATE_HEALTHY;
852	else if ((good_kids + degraded_kids) > 0)
853		state = VDEV_STATE_DEGRADED;
854
855	print_state(0, spa->spa_name, state);
856	STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) {
857		vdev_status(vdev, 1);
858	}
859}
860
861static void
862spa_all_status(void)
863{
864	spa_t *spa;
865	int first = 1;
866
867	STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
868		if (!first)
869			pager_printf("\n");
870		first = 0;
871		spa_status(spa);
872	}
873}
874
875static int
876vdev_probe(vdev_phys_read_t *read, void *read_priv, spa_t **spap)
877{
878	vdev_t vtmp;
879	vdev_phys_t *vdev_label = (vdev_phys_t *) zap_scratch;
880	spa_t *spa;
881	vdev_t *vdev, *top_vdev, *pool_vdev;
882	off_t off;
883	blkptr_t bp;
884	const unsigned char *nvlist;
885	uint64_t val;
886	uint64_t guid;
887	uint64_t pool_txg, pool_guid;
888	uint64_t is_log;
889	const char *pool_name;
890	const unsigned char *vdevs;
891	const unsigned char *features;
892	int i, rc, is_newer;
893	char *upbuf;
894	const struct uberblock *up;
895
896	/*
897	 * Load the vdev label and figure out which
898	 * uberblock is most current.
899	 */
900	memset(&vtmp, 0, sizeof(vtmp));
901	vtmp.v_phys_read = read;
902	vtmp.v_read_priv = read_priv;
903	off = offsetof(vdev_label_t, vl_vdev_phys);
904	BP_ZERO(&bp);
905	BP_SET_LSIZE(&bp, sizeof(vdev_phys_t));
906	BP_SET_PSIZE(&bp, sizeof(vdev_phys_t));
907	BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
908	BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
909	DVA_SET_OFFSET(BP_IDENTITY(&bp), off);
910	ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
911	if (vdev_read_phys(&vtmp, &bp, vdev_label, off, 0))
912		return (EIO);
913
914	if (vdev_label->vp_nvlist[0] != NV_ENCODE_XDR) {
915		return (EIO);
916	}
917
918	nvlist = (const unsigned char *) vdev_label->vp_nvlist + 4;
919
920	if (nvlist_find(nvlist,
921			ZPOOL_CONFIG_VERSION,
922			DATA_TYPE_UINT64, 0, &val)) {
923		return (EIO);
924	}
925
926	if (!SPA_VERSION_IS_SUPPORTED(val)) {
927		printf("ZFS: unsupported ZFS version %u (should be %u)\n",
928		    (unsigned) val, (unsigned) SPA_VERSION);
929		return (EIO);
930	}
931
932	/* Check ZFS features for read */
933	if (nvlist_find(nvlist,
934			ZPOOL_CONFIG_FEATURES_FOR_READ,
935			DATA_TYPE_NVLIST, 0, &features) == 0
936	    && nvlist_check_features_for_read(features) != 0)
937		return (EIO);
938
939	if (nvlist_find(nvlist,
940			ZPOOL_CONFIG_POOL_STATE,
941			DATA_TYPE_UINT64, 0, &val)) {
942		return (EIO);
943	}
944
945	if (val == POOL_STATE_DESTROYED) {
946		/* We don't boot only from destroyed pools. */
947		return (EIO);
948	}
949
950	if (nvlist_find(nvlist,
951			ZPOOL_CONFIG_POOL_TXG,
952			DATA_TYPE_UINT64, 0, &pool_txg)
953	    || nvlist_find(nvlist,
954			   ZPOOL_CONFIG_POOL_GUID,
955			   DATA_TYPE_UINT64, 0, &pool_guid)
956	    || nvlist_find(nvlist,
957			   ZPOOL_CONFIG_POOL_NAME,
958			   DATA_TYPE_STRING, 0, &pool_name)) {
959		/*
960		 * Cache and spare devices end up here - just ignore
961		 * them.
962		 */
963		/*printf("ZFS: can't find pool details\n");*/
964		return (EIO);
965	}
966
967	is_log = 0;
968	(void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, 0,
969	    &is_log);
970	if (is_log)
971		return (EIO);
972
973	/*
974	 * Create the pool if this is the first time we've seen it.
975	 */
976	spa = spa_find_by_guid(pool_guid);
977	if (!spa) {
978		spa = spa_create(pool_guid);
979		spa->spa_name = strdup(pool_name);
980	}
981	if (pool_txg > spa->spa_txg) {
982		spa->spa_txg = pool_txg;
983		is_newer = 1;
984	} else
985		is_newer = 0;
986
987	/*
988	 * Get the vdev tree and create our in-core copy of it.
989	 * If we already have a vdev with this guid, this must
990	 * be some kind of alias (overlapping slices, dangerously dedicated
991	 * disks etc).
992	 */
993	if (nvlist_find(nvlist,
994			ZPOOL_CONFIG_GUID,
995			DATA_TYPE_UINT64, 0, &guid)) {
996		return (EIO);
997	}
998	vdev = vdev_find(guid);
999	if (vdev && vdev->v_phys_read)	/* Has this vdev already been inited? */
1000		return (EIO);
1001
1002	if (nvlist_find(nvlist,
1003			ZPOOL_CONFIG_VDEV_TREE,
1004			DATA_TYPE_NVLIST, 0, &vdevs)) {
1005		return (EIO);
1006	}
1007
1008	rc = vdev_init_from_nvlist(vdevs, NULL, &top_vdev, is_newer);
1009	if (rc)
1010		return (rc);
1011
1012	/*
1013	 * Add the toplevel vdev to the pool if its not already there.
1014	 */
1015	STAILQ_FOREACH(pool_vdev, &spa->spa_vdevs, v_childlink)
1016		if (top_vdev == pool_vdev)
1017			break;
1018	if (!pool_vdev && top_vdev)
1019		STAILQ_INSERT_TAIL(&spa->spa_vdevs, top_vdev, v_childlink);
1020
1021	/*
1022	 * We should already have created an incomplete vdev for this
1023	 * vdev. Find it and initialise it with our read proc.
1024	 */
1025	vdev = vdev_find(guid);
1026	if (vdev) {
1027		vdev->v_phys_read = read;
1028		vdev->v_read_priv = read_priv;
1029		vdev->v_state = VDEV_STATE_HEALTHY;
1030	} else {
1031		printf("ZFS: inconsistent nvlist contents\n");
1032		return (EIO);
1033	}
1034
1035	/*
1036	 * Re-evaluate top-level vdev state.
1037	 */
1038	vdev_set_state(top_vdev);
1039
1040	/*
1041	 * Ok, we are happy with the pool so far. Lets find
1042	 * the best uberblock and then we can actually access
1043	 * the contents of the pool.
1044	 */
1045	upbuf = zfs_alloc(VDEV_UBERBLOCK_SIZE(vdev));
1046	up = (const struct uberblock *)upbuf;
1047	for (i = 0;
1048	     i < VDEV_UBERBLOCK_COUNT(vdev);
1049	     i++) {
1050		off = VDEV_UBERBLOCK_OFFSET(vdev, i);
1051		BP_ZERO(&bp);
1052		DVA_SET_OFFSET(&bp.blk_dva[0], off);
1053		BP_SET_LSIZE(&bp, VDEV_UBERBLOCK_SIZE(vdev));
1054		BP_SET_PSIZE(&bp, VDEV_UBERBLOCK_SIZE(vdev));
1055		BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
1056		BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
1057		ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
1058
1059		if (vdev_read_phys(vdev, &bp, upbuf, off, 0))
1060			continue;
1061
1062		if (up->ub_magic != UBERBLOCK_MAGIC)
1063			continue;
1064		if (up->ub_txg < spa->spa_txg)
1065			continue;
1066		if (up->ub_txg > spa->spa_uberblock.ub_txg) {
1067			spa->spa_uberblock = *up;
1068		} else if (up->ub_txg == spa->spa_uberblock.ub_txg) {
1069			if (up->ub_timestamp > spa->spa_uberblock.ub_timestamp)
1070				spa->spa_uberblock = *up;
1071		}
1072	}
1073	zfs_free(upbuf, VDEV_UBERBLOCK_SIZE(vdev));
1074
1075	if (spap)
1076		*spap = spa;
1077	return (0);
1078}
1079
1080static int
1081ilog2(int n)
1082{
1083	int v;
1084
1085	for (v = 0; v < 32; v++)
1086		if (n == (1 << v))
1087			return v;
1088	return -1;
1089}
1090
1091static int
1092zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf)
1093{
1094	blkptr_t gbh_bp;
1095	zio_gbh_phys_t zio_gb;
1096	char *pbuf;
1097	int i;
1098
1099	/* Artificial BP for gang block header. */
1100	gbh_bp = *bp;
1101	BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
1102	BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
1103	BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER);
1104	BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF);
1105	for (i = 0; i < SPA_DVAS_PER_BP; i++)
1106		DVA_SET_GANG(&gbh_bp.blk_dva[i], 0);
1107
1108	/* Read gang header block using the artificial BP. */
1109	if (zio_read(spa, &gbh_bp, &zio_gb))
1110		return (EIO);
1111
1112	pbuf = buf;
1113	for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
1114		blkptr_t *gbp = &zio_gb.zg_blkptr[i];
1115
1116		if (BP_IS_HOLE(gbp))
1117			continue;
1118		if (zio_read(spa, gbp, pbuf))
1119			return (EIO);
1120		pbuf += BP_GET_PSIZE(gbp);
1121	}
1122
1123	if (zio_checksum_verify(bp, buf))
1124		return (EIO);
1125	return (0);
1126}
1127
1128static int
1129zio_read(const spa_t *spa, const blkptr_t *bp, void *buf)
1130{
1131	int cpfunc = BP_GET_COMPRESS(bp);
1132	uint64_t align, size;
1133	void *pbuf;
1134	int i, error;
1135
1136	error = EIO;
1137
1138	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
1139		const dva_t *dva = &bp->blk_dva[i];
1140		vdev_t *vdev;
1141		int vdevid;
1142		off_t offset;
1143
1144		if (!dva->dva_word[0] && !dva->dva_word[1])
1145			continue;
1146
1147		vdevid = DVA_GET_VDEV(dva);
1148		offset = DVA_GET_OFFSET(dva);
1149		STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) {
1150			if (vdev->v_id == vdevid)
1151				break;
1152		}
1153		if (!vdev || !vdev->v_read)
1154			continue;
1155
1156		size = BP_GET_PSIZE(bp);
1157		if (vdev->v_read == vdev_raidz_read) {
1158			align = 1ULL << vdev->v_top->v_ashift;
1159			if (P2PHASE(size, align) != 0)
1160				size = P2ROUNDUP(size, align);
1161		}
1162		if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF)
1163			pbuf = zfs_alloc(size);
1164		else
1165			pbuf = buf;
1166
1167		if (DVA_GET_GANG(dva))
1168			error = zio_read_gang(spa, bp, pbuf);
1169		else
1170			error = vdev->v_read(vdev, bp, pbuf, offset, size);
1171		if (error == 0) {
1172			if (cpfunc != ZIO_COMPRESS_OFF)
1173				error = zio_decompress_data(cpfunc, pbuf,
1174				    BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp));
1175			else if (size != BP_GET_PSIZE(bp))
1176				bcopy(pbuf, buf, BP_GET_PSIZE(bp));
1177		}
1178		if (buf != pbuf)
1179			zfs_free(pbuf, size);
1180		if (error == 0)
1181			break;
1182	}
1183	if (error != 0)
1184		printf("ZFS: i/o error - all block copies unavailable\n");
1185	return (error);
1186}
1187
1188static int
1189dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset, void *buf, size_t buflen)
1190{
1191	int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
1192	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
1193	int nlevels = dnode->dn_nlevels;
1194	int i, rc;
1195
1196	/*
1197	 * Note: bsize may not be a power of two here so we need to do an
1198	 * actual divide rather than a bitshift.
1199	 */
1200	while (buflen > 0) {
1201		uint64_t bn = offset / bsize;
1202		int boff = offset % bsize;
1203		int ibn;
1204		const blkptr_t *indbp;
1205		blkptr_t bp;
1206
1207		if (bn > dnode->dn_maxblkid)
1208			return (EIO);
1209
1210		if (dnode == dnode_cache_obj && bn == dnode_cache_bn)
1211			goto cached;
1212
1213		indbp = dnode->dn_blkptr;
1214		for (i = 0; i < nlevels; i++) {
1215			/*
1216			 * Copy the bp from the indirect array so that
1217			 * we can re-use the scratch buffer for multi-level
1218			 * objects.
1219			 */
1220			ibn = bn >> ((nlevels - i - 1) * ibshift);
1221			ibn &= ((1 << ibshift) - 1);
1222			bp = indbp[ibn];
1223			rc = zio_read(spa, &bp, dnode_cache_buf);
1224			if (rc)
1225				return (rc);
1226			indbp = (const blkptr_t *) dnode_cache_buf;
1227		}
1228		dnode_cache_obj = dnode;
1229		dnode_cache_bn = bn;
1230	cached:
1231
1232		/*
1233		 * The buffer contains our data block. Copy what we
1234		 * need from it and loop.
1235		 */
1236		i = bsize - boff;
1237		if (i > buflen) i = buflen;
1238		memcpy(buf, &dnode_cache_buf[boff], i);
1239		buf = ((char*) buf) + i;
1240		offset += i;
1241		buflen -= i;
1242	}
1243
1244	return (0);
1245}
1246
1247/*
1248 * Lookup a value in a microzap directory. Assumes that the zap
1249 * scratch buffer contains the directory contents.
1250 */
1251static int
1252mzap_lookup(const dnode_phys_t *dnode, const char *name, uint64_t *value)
1253{
1254	const mzap_phys_t *mz;
1255	const mzap_ent_phys_t *mze;
1256	size_t size;
1257	int chunks, i;
1258
1259	/*
1260	 * Microzap objects use exactly one block. Read the whole
1261	 * thing.
1262	 */
1263	size = dnode->dn_datablkszsec * 512;
1264
1265	mz = (const mzap_phys_t *) zap_scratch;
1266	chunks = size / MZAP_ENT_LEN - 1;
1267
1268	for (i = 0; i < chunks; i++) {
1269		mze = &mz->mz_chunk[i];
1270		if (!strcmp(mze->mze_name, name)) {
1271			*value = mze->mze_value;
1272			return (0);
1273		}
1274	}
1275
1276	return (ENOENT);
1277}
1278
1279/*
1280 * Compare a name with a zap leaf entry. Return non-zero if the name
1281 * matches.
1282 */
1283static int
1284fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, const char *name)
1285{
1286	size_t namelen;
1287	const zap_leaf_chunk_t *nc;
1288	const char *p;
1289
1290	namelen = zc->l_entry.le_name_numints;
1291
1292	nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
1293	p = name;
1294	while (namelen > 0) {
1295		size_t len;
1296		len = namelen;
1297		if (len > ZAP_LEAF_ARRAY_BYTES)
1298			len = ZAP_LEAF_ARRAY_BYTES;
1299		if (memcmp(p, nc->l_array.la_array, len))
1300			return (0);
1301		p += len;
1302		namelen -= len;
1303		nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
1304	}
1305
1306	return 1;
1307}
1308
1309/*
1310 * Extract a uint64_t value from a zap leaf entry.
1311 */
1312static uint64_t
1313fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc)
1314{
1315	const zap_leaf_chunk_t *vc;
1316	int i;
1317	uint64_t value;
1318	const uint8_t *p;
1319
1320	vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk);
1321	for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) {
1322		value = (value << 8) | p[i];
1323	}
1324
1325	return value;
1326}
1327
1328/*
1329 * Lookup a value in a fatzap directory. Assumes that the zap scratch
1330 * buffer contains the directory header.
1331 */
1332static int
1333fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, uint64_t *value)
1334{
1335	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
1336	zap_phys_t zh = *(zap_phys_t *) zap_scratch;
1337	fat_zap_t z;
1338	uint64_t *ptrtbl;
1339	uint64_t hash;
1340	int rc;
1341
1342	if (zh.zap_magic != ZAP_MAGIC)
1343		return (EIO);
1344
1345	z.zap_block_shift = ilog2(bsize);
1346	z.zap_phys = (zap_phys_t *) zap_scratch;
1347
1348	/*
1349	 * Figure out where the pointer table is and read it in if necessary.
1350	 */
1351	if (zh.zap_ptrtbl.zt_blk) {
1352		rc = dnode_read(spa, dnode, zh.zap_ptrtbl.zt_blk * bsize,
1353			       zap_scratch, bsize);
1354		if (rc)
1355			return (rc);
1356		ptrtbl = (uint64_t *) zap_scratch;
1357	} else {
1358		ptrtbl = &ZAP_EMBEDDED_PTRTBL_ENT(&z, 0);
1359	}
1360
1361	hash = zap_hash(zh.zap_salt, name);
1362
1363	zap_leaf_t zl;
1364	zl.l_bs = z.zap_block_shift;
1365
1366	off_t off = ptrtbl[hash >> (64 - zh.zap_ptrtbl.zt_shift)] << zl.l_bs;
1367	zap_leaf_chunk_t *zc;
1368
1369	rc = dnode_read(spa, dnode, off, zap_scratch, bsize);
1370	if (rc)
1371		return (rc);
1372
1373	zl.l_phys = (zap_leaf_phys_t *) zap_scratch;
1374
1375	/*
1376	 * Make sure this chunk matches our hash.
1377	 */
1378	if (zl.l_phys->l_hdr.lh_prefix_len > 0
1379	    && zl.l_phys->l_hdr.lh_prefix
1380	    != hash >> (64 - zl.l_phys->l_hdr.lh_prefix_len))
1381		return (ENOENT);
1382
1383	/*
1384	 * Hash within the chunk to find our entry.
1385	 */
1386	int shift = (64 - ZAP_LEAF_HASH_SHIFT(&zl) - zl.l_phys->l_hdr.lh_prefix_len);
1387	int h = (hash >> shift) & ((1 << ZAP_LEAF_HASH_SHIFT(&zl)) - 1);
1388	h = zl.l_phys->l_hash[h];
1389	if (h == 0xffff)
1390		return (ENOENT);
1391	zc = &ZAP_LEAF_CHUNK(&zl, h);
1392	while (zc->l_entry.le_hash != hash) {
1393		if (zc->l_entry.le_next == 0xffff) {
1394			zc = 0;
1395			break;
1396		}
1397		zc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_next);
1398	}
1399	if (fzap_name_equal(&zl, zc, name)) {
1400		if (zc->l_entry.le_value_intlen * zc->l_entry.le_value_numints > 8)
1401			return (E2BIG);
1402		*value = fzap_leaf_value(&zl, zc);
1403		return (0);
1404	}
1405
1406	return (ENOENT);
1407}
1408
1409/*
1410 * Lookup a name in a zap object and return its value as a uint64_t.
1411 */
1412static int
1413zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, uint64_t *value)
1414{
1415	int rc;
1416	uint64_t zap_type;
1417	size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
1418
1419	rc = dnode_read(spa, dnode, 0, zap_scratch, size);
1420	if (rc)
1421		return (rc);
1422
1423	zap_type = *(uint64_t *) zap_scratch;
1424	if (zap_type == ZBT_MICRO)
1425		return mzap_lookup(dnode, name, value);
1426	else if (zap_type == ZBT_HEADER)
1427		return fzap_lookup(spa, dnode, name, value);
1428	printf("ZFS: invalid zap_type=%d\n", (int)zap_type);
1429	return (EIO);
1430}
1431
1432/*
1433 * List a microzap directory. Assumes that the zap scratch buffer contains
1434 * the directory contents.
1435 */
1436static int
1437mzap_list(const dnode_phys_t *dnode)
1438{
1439	const mzap_phys_t *mz;
1440	const mzap_ent_phys_t *mze;
1441	size_t size;
1442	int chunks, i;
1443
1444	/*
1445	 * Microzap objects use exactly one block. Read the whole
1446	 * thing.
1447	 */
1448	size = dnode->dn_datablkszsec * 512;
1449	mz = (const mzap_phys_t *) zap_scratch;
1450	chunks = size / MZAP_ENT_LEN - 1;
1451
1452	for (i = 0; i < chunks; i++) {
1453		mze = &mz->mz_chunk[i];
1454		if (mze->mze_name[0])
1455			//printf("%-32s 0x%jx\n", mze->mze_name, (uintmax_t)mze->mze_value);
1456			printf("%s\n", mze->mze_name);
1457	}
1458
1459	return (0);
1460}
1461
1462/*
1463 * List a fatzap directory. Assumes that the zap scratch buffer contains
1464 * the directory header.
1465 */
1466static int
1467fzap_list(const spa_t *spa, const dnode_phys_t *dnode)
1468{
1469	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
1470	zap_phys_t zh = *(zap_phys_t *) zap_scratch;
1471	fat_zap_t z;
1472	int i, j;
1473
1474	if (zh.zap_magic != ZAP_MAGIC)
1475		return (EIO);
1476
1477	z.zap_block_shift = ilog2(bsize);
1478	z.zap_phys = (zap_phys_t *) zap_scratch;
1479
1480	/*
1481	 * This assumes that the leaf blocks start at block 1. The
1482	 * documentation isn't exactly clear on this.
1483	 */
1484	zap_leaf_t zl;
1485	zl.l_bs = z.zap_block_shift;
1486	for (i = 0; i < zh.zap_num_leafs; i++) {
1487		off_t off = (i + 1) << zl.l_bs;
1488		char name[256], *p;
1489		uint64_t value;
1490
1491		if (dnode_read(spa, dnode, off, zap_scratch, bsize))
1492			return (EIO);
1493
1494		zl.l_phys = (zap_leaf_phys_t *) zap_scratch;
1495
1496		for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
1497			zap_leaf_chunk_t *zc, *nc;
1498			int namelen;
1499
1500			zc = &ZAP_LEAF_CHUNK(&zl, j);
1501			if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
1502				continue;
1503			namelen = zc->l_entry.le_name_numints;
1504			if (namelen > sizeof(name))
1505				namelen = sizeof(name);
1506
1507			/*
1508			 * Paste the name back together.
1509			 */
1510			nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
1511			p = name;
1512			while (namelen > 0) {
1513				int len;
1514				len = namelen;
1515				if (len > ZAP_LEAF_ARRAY_BYTES)
1516					len = ZAP_LEAF_ARRAY_BYTES;
1517				memcpy(p, nc->l_array.la_array, len);
1518				p += len;
1519				namelen -= len;
1520				nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
1521			}
1522
1523			/*
1524			 * Assume the first eight bytes of the value are
1525			 * a uint64_t.
1526			 */
1527			value = fzap_leaf_value(&zl, zc);
1528
1529			//printf("%s 0x%jx\n", name, (uintmax_t)value);
1530			printf("%s\n", name);
1531		}
1532	}
1533
1534	return (0);
1535}
1536
1537/*
1538 * List a zap directory.
1539 */
1540static int
1541zap_list(const spa_t *spa, const dnode_phys_t *dnode)
1542{
1543	uint64_t zap_type;
1544	size_t size = dnode->dn_datablkszsec * 512;
1545
1546	if (dnode_read(spa, dnode, 0, zap_scratch, size))
1547		return (EIO);
1548
1549	zap_type = *(uint64_t *) zap_scratch;
1550	if (zap_type == ZBT_MICRO)
1551		return mzap_list(dnode);
1552	else
1553		return fzap_list(spa, dnode);
1554}
1555
1556static int
1557objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum, dnode_phys_t *dnode)
1558{
1559	off_t offset;
1560
1561	offset = objnum * sizeof(dnode_phys_t);
1562	return dnode_read(spa, &os->os_meta_dnode, offset,
1563		dnode, sizeof(dnode_phys_t));
1564}
1565
1566static int
1567mzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value)
1568{
1569	const mzap_phys_t *mz;
1570	const mzap_ent_phys_t *mze;
1571	size_t size;
1572	int chunks, i;
1573
1574	/*
1575	 * Microzap objects use exactly one block. Read the whole
1576	 * thing.
1577	 */
1578	size = dnode->dn_datablkszsec * 512;
1579
1580	mz = (const mzap_phys_t *) zap_scratch;
1581	chunks = size / MZAP_ENT_LEN - 1;
1582
1583	for (i = 0; i < chunks; i++) {
1584		mze = &mz->mz_chunk[i];
1585		if (value == mze->mze_value) {
1586			strcpy(name, mze->mze_name);
1587			return (0);
1588		}
1589	}
1590
1591	return (ENOENT);
1592}
1593
1594static void
1595fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name)
1596{
1597	size_t namelen;
1598	const zap_leaf_chunk_t *nc;
1599	char *p;
1600
1601	namelen = zc->l_entry.le_name_numints;
1602
1603	nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
1604	p = name;
1605	while (namelen > 0) {
1606		size_t len;
1607		len = namelen;
1608		if (len > ZAP_LEAF_ARRAY_BYTES)
1609			len = ZAP_LEAF_ARRAY_BYTES;
1610		memcpy(p, nc->l_array.la_array, len);
1611		p += len;
1612		namelen -= len;
1613		nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
1614	}
1615
1616	*p = '\0';
1617}
1618
1619static int
1620fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value)
1621{
1622	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
1623	zap_phys_t zh = *(zap_phys_t *) zap_scratch;
1624	fat_zap_t z;
1625	int i, j;
1626
1627	if (zh.zap_magic != ZAP_MAGIC)
1628		return (EIO);
1629
1630	z.zap_block_shift = ilog2(bsize);
1631	z.zap_phys = (zap_phys_t *) zap_scratch;
1632
1633	/*
1634	 * This assumes that the leaf blocks start at block 1. The
1635	 * documentation isn't exactly clear on this.
1636	 */
1637	zap_leaf_t zl;
1638	zl.l_bs = z.zap_block_shift;
1639	for (i = 0; i < zh.zap_num_leafs; i++) {
1640		off_t off = (i + 1) << zl.l_bs;
1641
1642		if (dnode_read(spa, dnode, off, zap_scratch, bsize))
1643			return (EIO);
1644
1645		zl.l_phys = (zap_leaf_phys_t *) zap_scratch;
1646
1647		for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
1648			zap_leaf_chunk_t *zc;
1649
1650			zc = &ZAP_LEAF_CHUNK(&zl, j);
1651			if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
1652				continue;
1653			if (zc->l_entry.le_value_intlen != 8 ||
1654			    zc->l_entry.le_value_numints != 1)
1655				continue;
1656
1657			if (fzap_leaf_value(&zl, zc) == value) {
1658				fzap_name_copy(&zl, zc, name);
1659				return (0);
1660			}
1661		}
1662	}
1663
1664	return (ENOENT);
1665}
1666
1667static int
1668zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value)
1669{
1670	int rc;
1671	uint64_t zap_type;
1672	size_t size = dnode->dn_datablkszsec * 512;
1673
1674	rc = dnode_read(spa, dnode, 0, zap_scratch, size);
1675	if (rc)
1676		return (rc);
1677
1678	zap_type = *(uint64_t *) zap_scratch;
1679	if (zap_type == ZBT_MICRO)
1680		return mzap_rlookup(spa, dnode, name, value);
1681	else
1682		return fzap_rlookup(spa, dnode, name, value);
1683}
1684
1685static int
1686zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result)
1687{
1688	char name[256];
1689	char component[256];
1690	uint64_t dir_obj, parent_obj, child_dir_zapobj;
1691	dnode_phys_t child_dir_zap, dataset, dir, parent;
1692	dsl_dir_phys_t *dd;
1693	dsl_dataset_phys_t *ds;
1694	char *p;
1695	int len;
1696
1697	p = &name[sizeof(name) - 1];
1698	*p = '\0';
1699
1700	if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
1701		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
1702		return (EIO);
1703	}
1704	ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
1705	dir_obj = ds->ds_dir_obj;
1706
1707	for (;;) {
1708		if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0)
1709			return (EIO);
1710		dd = (dsl_dir_phys_t *)&dir.dn_bonus;
1711
1712		/* Actual loop condition. */
1713		parent_obj  = dd->dd_parent_obj;
1714		if (parent_obj == 0)
1715			break;
1716
1717		if (objset_get_dnode(spa, &spa->spa_mos, parent_obj, &parent) != 0)
1718			return (EIO);
1719		dd = (dsl_dir_phys_t *)&parent.dn_bonus;
1720		child_dir_zapobj = dd->dd_child_dir_zapobj;
1721		if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0)
1722			return (EIO);
1723		if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0)
1724			return (EIO);
1725
1726		len = strlen(component);
1727		p -= len;
1728		memcpy(p, component, len);
1729		--p;
1730		*p = '/';
1731
1732		/* Actual loop iteration. */
1733		dir_obj = parent_obj;
1734	}
1735
1736	if (*p != '\0')
1737		++p;
1738	strcpy(result, p);
1739
1740	return (0);
1741}
1742
1743static int
1744zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum)
1745{
1746	char element[256];
1747	uint64_t dir_obj, child_dir_zapobj;
1748	dnode_phys_t child_dir_zap, dir;
1749	dsl_dir_phys_t *dd;
1750	const char *p, *q;
1751
1752	if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir))
1753		return (EIO);
1754	if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, &dir_obj))
1755		return (EIO);
1756
1757	p = name;
1758	for (;;) {
1759		if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir))
1760			return (EIO);
1761		dd = (dsl_dir_phys_t *)&dir.dn_bonus;
1762
1763		while (*p == '/')
1764			p++;
1765		/* Actual loop condition #1. */
1766		if (*p == '\0')
1767			break;
1768
1769		q = strchr(p, '/');
1770		if (q) {
1771			memcpy(element, p, q - p);
1772			element[q - p] = '\0';
1773			p = q + 1;
1774		} else {
1775			strcpy(element, p);
1776			p += strlen(p);
1777		}
1778
1779		child_dir_zapobj = dd->dd_child_dir_zapobj;
1780		if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0)
1781			return (EIO);
1782
1783		/* Actual loop condition #2. */
1784		if (zap_lookup(spa, &child_dir_zap, element, &dir_obj) != 0)
1785			return (ENOENT);
1786	}
1787
1788	*objnum = dd->dd_head_dataset_obj;
1789	return (0);
1790}
1791
1792#ifndef BOOT2
1793static int
1794zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/)
1795{
1796	uint64_t dir_obj, child_dir_zapobj;
1797	dnode_phys_t child_dir_zap, dir, dataset;
1798	dsl_dataset_phys_t *ds;
1799	dsl_dir_phys_t *dd;
1800
1801	if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
1802		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
1803		return (EIO);
1804	}
1805	ds = (dsl_dataset_phys_t *) &dataset.dn_bonus;
1806	dir_obj = ds->ds_dir_obj;
1807
1808	if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) {
1809		printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
1810		return (EIO);
1811	}
1812	dd = (dsl_dir_phys_t *)&dir.dn_bonus;
1813
1814	child_dir_zapobj = dd->dd_child_dir_zapobj;
1815	if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) {
1816		printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
1817		return (EIO);
1818	}
1819
1820	return (zap_list(spa, &child_dir_zap) != 0);
1821}
1822#endif
1823
1824/*
1825 * Find the object set given the object number of its dataset object
1826 * and return its details in *objset
1827 */
1828static int
1829zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset)
1830{
1831	dnode_phys_t dataset;
1832	dsl_dataset_phys_t *ds;
1833
1834	if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
1835		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
1836		return (EIO);
1837	}
1838
1839	ds = (dsl_dataset_phys_t *) &dataset.dn_bonus;
1840	if (zio_read(spa, &ds->ds_bp, objset)) {
1841		printf("ZFS: can't read object set for dataset %ju\n",
1842		    (uintmax_t)objnum);
1843		return (EIO);
1844	}
1845
1846	return (0);
1847}
1848
1849/*
1850 * Find the object set pointed to by the BOOTFS property or the root
1851 * dataset if there is none and return its details in *objset
1852 */
1853static int
1854zfs_get_root(const spa_t *spa, uint64_t *objid)
1855{
1856	dnode_phys_t dir, propdir;
1857	uint64_t props, bootfs, root;
1858
1859	*objid = 0;
1860
1861	/*
1862	 * Start with the MOS directory object.
1863	 */
1864	if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir)) {
1865		printf("ZFS: can't read MOS object directory\n");
1866		return (EIO);
1867	}
1868
1869	/*
1870	 * Lookup the pool_props and see if we can find a bootfs.
1871	 */
1872	if (zap_lookup(spa, &dir, DMU_POOL_PROPS, &props) == 0
1873	     && objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0
1874	     && zap_lookup(spa, &propdir, "bootfs", &bootfs) == 0
1875	     && bootfs != 0)
1876	{
1877		*objid = bootfs;
1878		return (0);
1879	}
1880	/*
1881	 * Lookup the root dataset directory
1882	 */
1883	if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, &root)
1884	    || objset_get_dnode(spa, &spa->spa_mos, root, &dir)) {
1885		printf("ZFS: can't find root dsl_dir\n");
1886		return (EIO);
1887	}
1888
1889	/*
1890	 * Use the information from the dataset directory's bonus buffer
1891	 * to find the dataset object and from that the object set itself.
1892	 */
1893	dsl_dir_phys_t *dd = (dsl_dir_phys_t *) &dir.dn_bonus;
1894	*objid = dd->dd_head_dataset_obj;
1895	return (0);
1896}
1897
1898static int
1899zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount)
1900{
1901
1902	mount->spa = spa;
1903
1904	/*
1905	 * Find the root object set if not explicitly provided
1906	 */
1907	if (rootobj == 0 && zfs_get_root(spa, &rootobj)) {
1908		printf("ZFS: can't find root filesystem\n");
1909		return (EIO);
1910	}
1911
1912	if (zfs_mount_dataset(spa, rootobj, &mount->objset)) {
1913		printf("ZFS: can't open root filesystem\n");
1914		return (EIO);
1915	}
1916
1917	mount->rootobj = rootobj;
1918
1919	return (0);
1920}
1921
1922static int
1923zfs_spa_init(spa_t *spa)
1924{
1925
1926	if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) {
1927		printf("ZFS: can't read MOS of pool %s\n", spa->spa_name);
1928		return (EIO);
1929	}
1930	if (spa->spa_mos.os_type != DMU_OST_META) {
1931		printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name);
1932		return (EIO);
1933	}
1934	return (0);
1935}
1936
1937static int
1938zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb)
1939{
1940
1941	if (dn->dn_bonustype != DMU_OT_SA) {
1942		znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus;
1943
1944		sb->st_mode = zp->zp_mode;
1945		sb->st_uid = zp->zp_uid;
1946		sb->st_gid = zp->zp_gid;
1947		sb->st_size = zp->zp_size;
1948	} else {
1949		sa_hdr_phys_t *sahdrp;
1950		int hdrsize;
1951		size_t size = 0;
1952		void *buf = NULL;
1953
1954		if (dn->dn_bonuslen != 0)
1955			sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
1956		else {
1957			if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) {
1958				blkptr_t *bp = &dn->dn_spill;
1959				int error;
1960
1961				size = BP_GET_LSIZE(bp);
1962				buf = zfs_alloc(size);
1963				error = zio_read(spa, bp, buf);
1964				if (error != 0) {
1965					zfs_free(buf, size);
1966					return (error);
1967				}
1968				sahdrp = buf;
1969			} else {
1970				return (EIO);
1971			}
1972		}
1973		hdrsize = SA_HDR_SIZE(sahdrp);
1974		sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize +
1975		    SA_MODE_OFFSET);
1976		sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize +
1977		    SA_UID_OFFSET);
1978		sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize +
1979		    SA_GID_OFFSET);
1980		sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize +
1981		    SA_SIZE_OFFSET);
1982		if (buf != NULL)
1983			zfs_free(buf, size);
1984	}
1985
1986	return (0);
1987}
1988
1989/*
1990 * Lookup a file and return its dnode.
1991 */
1992static int
1993zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode)
1994{
1995	int rc;
1996	uint64_t objnum, rootnum, parentnum;
1997	const spa_t *spa;
1998	dnode_phys_t dn;
1999	const char *p, *q;
2000	char element[256];
2001	char path[1024];
2002	int symlinks_followed = 0;
2003	struct stat sb;
2004
2005	spa = mount->spa;
2006	if (mount->objset.os_type != DMU_OST_ZFS) {
2007		printf("ZFS: unexpected object set type %ju\n",
2008		    (uintmax_t)mount->objset.os_type);
2009		return (EIO);
2010	}
2011
2012	/*
2013	 * Get the root directory dnode.
2014	 */
2015	rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn);
2016	if (rc)
2017		return (rc);
2018
2019	rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, &rootnum);
2020	if (rc)
2021		return (rc);
2022
2023	rc = objset_get_dnode(spa, &mount->objset, rootnum, &dn);
2024	if (rc)
2025		return (rc);
2026
2027	objnum = rootnum;
2028	p = upath;
2029	while (p && *p) {
2030		while (*p == '/')
2031			p++;
2032		if (!*p)
2033			break;
2034		q = strchr(p, '/');
2035		if (q) {
2036			memcpy(element, p, q - p);
2037			element[q - p] = 0;
2038			p = q;
2039		} else {
2040			strcpy(element, p);
2041			p = 0;
2042		}
2043
2044		rc = zfs_dnode_stat(spa, &dn, &sb);
2045		if (rc)
2046			return (rc);
2047		if (!S_ISDIR(sb.st_mode))
2048			return (ENOTDIR);
2049
2050		parentnum = objnum;
2051		rc = zap_lookup(spa, &dn, element, &objnum);
2052		if (rc)
2053			return (rc);
2054		objnum = ZFS_DIRENT_OBJ(objnum);
2055
2056		rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
2057		if (rc)
2058			return (rc);
2059
2060		/*
2061		 * Check for symlink.
2062		 */
2063		rc = zfs_dnode_stat(spa, &dn, &sb);
2064		if (rc)
2065			return (rc);
2066		if (S_ISLNK(sb.st_mode)) {
2067			if (symlinks_followed > 10)
2068				return (EMLINK);
2069			symlinks_followed++;
2070
2071			/*
2072			 * Read the link value and copy the tail of our
2073			 * current path onto the end.
2074			 */
2075			if (p)
2076				strcpy(&path[sb.st_size], p);
2077			else
2078				path[sb.st_size] = 0;
2079			if (sb.st_size + sizeof(znode_phys_t) <= dn.dn_bonuslen) {
2080				memcpy(path, &dn.dn_bonus[sizeof(znode_phys_t)],
2081					sb.st_size);
2082			} else {
2083				rc = dnode_read(spa, &dn, 0, path, sb.st_size);
2084				if (rc)
2085					return (rc);
2086			}
2087
2088			/*
2089			 * Restart with the new path, starting either at
2090			 * the root or at the parent depending whether or
2091			 * not the link is relative.
2092			 */
2093			p = path;
2094			if (*p == '/')
2095				objnum = rootnum;
2096			else
2097				objnum = parentnum;
2098			objset_get_dnode(spa, &mount->objset, objnum, &dn);
2099		}
2100	}
2101
2102	*dnode = dn;
2103	return (0);
2104}
2105