pmap.h revision 266337
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * the Systems Programming Group of the University of Utah Computer
7 * Science Department and William Jolitz of UUNET Technologies Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *      This product includes software developed by the University of
20 *      California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 * Derived from hp300 version by Mike Hibler, this version by William
38 * Jolitz uses a recursive map [a pde points to the page directory] to
39 * map the page tables using the pagetables themselves. This is done to
40 * reduce the impact on kernel virtual memory for lots of sparse address
41 * space, and to reduce the cost of memory to each process.
42 *
43 *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
44 *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
45 * 	from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
46 *
47 * $FreeBSD: stable/10/sys/arm/include/pmap.h 266337 2014-05-17 18:53:36Z ian $
48 */
49
50#ifndef _MACHINE_PMAP_H_
51#define _MACHINE_PMAP_H_
52
53#include <machine/pte.h>
54#include <machine/cpuconf.h>
55/*
56 * Pte related macros
57 */
58#if ARM_ARCH_6 || ARM_ARCH_7A
59#ifdef SMP
60#define PTE_NOCACHE	2
61#else
62#define PTE_NOCACHE	1
63#endif
64#define PTE_CACHE	6
65#define PTE_DEVICE	2
66#define PTE_PAGETABLE	6
67#else
68#define PTE_NOCACHE	1
69#define PTE_CACHE	2
70#define PTE_DEVICE	PTE_NOCACHE
71#define PTE_PAGETABLE	3
72#endif
73
74enum mem_type {
75	STRONG_ORD = 0,
76	DEVICE_NOSHARE,
77	DEVICE_SHARE,
78	NRML_NOCACHE,
79	NRML_IWT_OWT,
80	NRML_IWB_OWB,
81	NRML_IWBA_OWBA
82};
83
84#ifndef LOCORE
85
86#include <sys/queue.h>
87#include <sys/_cpuset.h>
88#include <sys/_lock.h>
89#include <sys/_mutex.h>
90
91#define PDESIZE		sizeof(pd_entry_t)	/* for assembly files */
92#define PTESIZE		sizeof(pt_entry_t)	/* for assembly files */
93
94#ifdef _KERNEL
95
96#define vtophys(va)	pmap_kextract((vm_offset_t)(va))
97
98#endif
99
100#define	pmap_page_get_memattr(m)	((m)->md.pv_memattr)
101#define	pmap_page_is_write_mapped(m)	(((m)->aflags & PGA_WRITEABLE) != 0)
102#if (ARM_MMU_V6 + ARM_MMU_V7) > 0
103boolean_t pmap_page_is_mapped(vm_page_t);
104#else
105#define	pmap_page_is_mapped(m)	(!TAILQ_EMPTY(&(m)->md.pv_list))
106#endif
107void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma);
108
109/*
110 * Pmap stuff
111 */
112
113/*
114 * This structure is used to hold a virtual<->physical address
115 * association and is used mostly by bootstrap code
116 */
117struct pv_addr {
118	SLIST_ENTRY(pv_addr) pv_list;
119	vm_offset_t	pv_va;
120	vm_paddr_t	pv_pa;
121};
122
123struct	pv_entry;
124struct	pv_chunk;
125
126struct	md_page {
127	int pvh_attrs;
128	vm_memattr_t	 pv_memattr;
129#if (ARM_MMU_V6 + ARM_MMU_V7) == 0
130	vm_offset_t pv_kva;		/* first kernel VA mapping */
131#endif
132	TAILQ_HEAD(,pv_entry)	pv_list;
133};
134
135struct l1_ttable;
136struct l2_dtable;
137
138
139/*
140 * The number of L2 descriptor tables which can be tracked by an l2_dtable.
141 * A bucket size of 16 provides for 16MB of contiguous virtual address
142 * space per l2_dtable. Most processes will, therefore, require only two or
143 * three of these to map their whole working set.
144 */
145#define	L2_BUCKET_LOG2	4
146#define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
147/*
148 * Given the above "L2-descriptors-per-l2_dtable" constant, the number
149 * of l2_dtable structures required to track all possible page descriptors
150 * mappable by an L1 translation table is given by the following constants:
151 */
152#define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
153#define	L2_SIZE		(1 << L2_LOG2)
154
155struct	pmap {
156	struct mtx		pm_mtx;
157	u_int8_t		pm_domain;
158	struct l1_ttable	*pm_l1;
159	struct l2_dtable	*pm_l2[L2_SIZE];
160	cpuset_t		pm_active;	/* active on cpus */
161	struct pmap_statistics	pm_stats;	/* pmap statictics */
162#if (ARM_MMU_V6 + ARM_MMU_V7) != 0
163	TAILQ_HEAD(,pv_chunk)	pm_pvchunk;	/* list of mappings in pmap */
164#else
165	TAILQ_HEAD(,pv_entry)	pm_pvlist;	/* list of mappings in pmap */
166#endif
167};
168
169typedef struct pmap *pmap_t;
170
171#ifdef _KERNEL
172extern struct pmap	kernel_pmap_store;
173#define kernel_pmap	(&kernel_pmap_store)
174#define pmap_kernel() kernel_pmap
175
176#define	PMAP_ASSERT_LOCKED(pmap) \
177				mtx_assert(&(pmap)->pm_mtx, MA_OWNED)
178#define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
179#define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
180#define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
181				    NULL, MTX_DEF | MTX_DUPOK)
182#define	PMAP_OWNED(pmap)	mtx_owned(&(pmap)->pm_mtx)
183#define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
184#define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
185#define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
186#endif
187
188
189/*
190 * For each vm_page_t, there is a list of all currently valid virtual
191 * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
192 */
193typedef struct pv_entry {
194	vm_offset_t     pv_va;          /* virtual address for mapping */
195	TAILQ_ENTRY(pv_entry)   pv_list;
196	int		pv_flags;	/* flags (wired, etc...) */
197#if (ARM_MMU_V6 + ARM_MMU_V7) == 0
198	pmap_t          pv_pmap;        /* pmap where mapping lies */
199	TAILQ_ENTRY(pv_entry)	pv_plist;
200#endif
201} *pv_entry_t;
202
203/*
204 * pv_entries are allocated in chunks per-process.  This avoids the
205 * need to track per-pmap assignments.
206 */
207#define	_NPCM	8
208#define	_NPCPV	252
209
210struct pv_chunk {
211	pmap_t			pc_pmap;
212	TAILQ_ENTRY(pv_chunk)	pc_list;
213	uint32_t		pc_map[_NPCM];	/* bitmap; 1 = free */
214	uint32_t		pc_dummy[3];	/* aligns pv_chunk to 4KB */
215	TAILQ_ENTRY(pv_chunk)	pc_lru;
216	struct pv_entry		pc_pventry[_NPCPV];
217};
218
219#ifdef _KERNEL
220
221boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
222
223/*
224 * virtual address to page table entry and
225 * to physical address. Likewise for alternate address space.
226 * Note: these work recursively, thus vtopte of a pte will give
227 * the corresponding pde that in turn maps it.
228 */
229
230/*
231 * The current top of kernel VM.
232 */
233extern vm_offset_t pmap_curmaxkvaddr;
234
235struct pcb;
236
237void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
238/* Virtual address to page table entry */
239static __inline pt_entry_t *
240vtopte(vm_offset_t va)
241{
242	pd_entry_t *pdep;
243	pt_entry_t *ptep;
244
245	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
246		return (NULL);
247	return (ptep);
248}
249
250extern vm_paddr_t phys_avail[];
251extern vm_offset_t virtual_avail;
252extern vm_offset_t virtual_end;
253
254void	pmap_bootstrap(vm_offset_t firstaddr, struct pv_addr *l1pt);
255int	pmap_change_attr(vm_offset_t, vm_size_t, int);
256void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
257void	pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa);
258void	pmap_kenter_device(vm_offset_t va, vm_paddr_t pa);
259void	*pmap_kenter_temp(vm_paddr_t pa, int i);
260void 	pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
261vm_paddr_t pmap_kextract(vm_offset_t va);
262void	pmap_kremove(vm_offset_t);
263void	*pmap_mapdev(vm_offset_t, vm_size_t);
264void	pmap_unmapdev(vm_offset_t, vm_size_t);
265vm_page_t	pmap_use_pt(pmap_t, vm_offset_t);
266void	pmap_debug(int);
267#if (ARM_MMU_V6 + ARM_MMU_V7) == 0
268void	pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
269#endif
270void	pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
271vm_size_t	pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
272void
273pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
274    int cache);
275int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
276int pmap_dmap_iscurrent(pmap_t pmap);
277
278/*
279 * Definitions for MMU domains
280 */
281#define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
282#define	PMAP_DOMAIN_KERNEL	0	/* The kernel uses domain #0 */
283
284/*
285 * The new pmap ensures that page-tables are always mapping Write-Thru.
286 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
287 * on every change.
288 *
289 * Unfortunately, not all CPUs have a write-through cache mode.  So we
290 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
291 * and if there is the chance for PTE syncs to be needed, we define
292 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
293 * the code.
294 */
295extern int pmap_needs_pte_sync;
296
297/*
298 * These macros define the various bit masks in the PTE.
299 *
300 * We use these macros since we use different bits on different processor
301 * models.
302 */
303
304#define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
305#define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)|\
306    				L1_S_XSCALE_TEX(TEX_XSCALE_T))
307
308#define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
309#define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X) | \
310    				L2_XSCALE_L_TEX(TEX_XSCALE_T))
311
312#define	L2_S_PROT_U_generic	(L2_AP(AP_U))
313#define	L2_S_PROT_W_generic	(L2_AP(AP_W))
314#define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
315
316#define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
317#define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
318#define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
319
320#define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
321#define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)| \
322    				 L2_XSCALE_T_TEX(TEX_XSCALE_X))
323
324#define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
325#define	L1_S_PROTO_xscale	(L1_TYPE_S)
326
327#define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
328#define	L1_C_PROTO_xscale	(L1_TYPE_C)
329
330#define	L2_L_PROTO		(L2_TYPE_L)
331
332#define	L2_S_PROTO_generic	(L2_TYPE_S)
333#define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
334
335/*
336 * User-visible names for the ones that vary with MMU class.
337 */
338#if (ARM_MMU_V6 + ARM_MMU_V7) != 0
339#define	L2_AP(x)	(L2_AP0(x))
340#else
341#define	L2_AP(x)	(L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
342#endif
343
344#if (ARM_MMU_V6 + ARM_MMU_V7) != 0
345/*
346 * AP[2:1] access permissions model:
347 *
348 * AP[2](APX)	- Write Disable
349 * AP[1]	- User Enable
350 * AP[0]	- Reference Flag
351 *
352 * AP[2]     AP[1]     Kernel     User
353 *  0          0        R/W        N
354 *  0          1        R/W       R/W
355 *  1          0         R         N
356 *  1          1         R         R
357 *
358 */
359#define	L2_S_PROT_R		(0)		/* kernel read */
360#define	L2_S_PROT_U		(L2_AP0(2))	/* user read */
361#define L2_S_REF		(L2_AP0(1))	/* reference flag */
362
363#define	L2_S_PROT_MASK		(L2_S_PROT_U|L2_S_PROT_R|L2_APX)
364#define	L2_S_EXECUTABLE(pte)	(!(pte & L2_XN))
365#define	L2_S_WRITABLE(pte)	(!(pte & L2_APX))
366#define	L2_S_REFERENCED(pte)	(!!(pte & L2_S_REF))
367
368#ifndef SMP
369#define	L1_S_CACHE_MASK		(L1_S_TEX_MASK|L1_S_B|L1_S_C)
370#define	L2_L_CACHE_MASK		(L2_L_TEX_MASK|L2_B|L2_C)
371#define	L2_S_CACHE_MASK		(L2_S_TEX_MASK|L2_B|L2_C)
372#else
373#define	L1_S_CACHE_MASK		(L1_S_TEX_MASK|L1_S_B|L1_S_C|L1_SHARED)
374#define	L2_L_CACHE_MASK		(L2_L_TEX_MASK|L2_B|L2_C|L2_SHARED)
375#define	L2_S_CACHE_MASK		(L2_S_TEX_MASK|L2_B|L2_C|L2_SHARED)
376#endif  /* SMP */
377
378#define	L1_S_PROTO		(L1_TYPE_S)
379#define	L1_C_PROTO		(L1_TYPE_C)
380#define	L2_S_PROTO		(L2_TYPE_S)
381
382/*
383 * Promotion to a 1MB (SECTION) mapping requires that the corresponding
384 * 4KB (SMALL) page mappings have identical settings for the following fields:
385 */
386#define	L2_S_PROMOTE		(L2_S_REF | L2_SHARED | L2_S_PROT_MASK | \
387				 L2_XN | L2_S_PROTO)
388
389/*
390 * In order to compare 1MB (SECTION) entry settings with the 4KB (SMALL)
391 * page mapping it is necessary to read and shift appropriate bits from
392 * L1 entry to positions of the corresponding bits in the L2 entry.
393 */
394#define L1_S_DEMOTE(l1pd)	((((l1pd) & L1_S_PROTO) >> 0) | \
395				(((l1pd) & L1_SHARED) >> 6) | \
396				(((l1pd) & L1_S_REF) >> 6) | \
397				(((l1pd) & L1_S_PROT_MASK) >> 6) | \
398				(((l1pd) & L1_S_XN) >> 4))
399
400#ifndef SMP
401#define ARM_L1S_STRONG_ORD	(0)
402#define ARM_L1S_DEVICE_NOSHARE	(L1_S_TEX(2))
403#define ARM_L1S_DEVICE_SHARE	(L1_S_B)
404#define ARM_L1S_NRML_NOCACHE	(L1_S_TEX(1))
405#define ARM_L1S_NRML_IWT_OWT	(L1_S_C)
406#define ARM_L1S_NRML_IWB_OWB	(L1_S_C|L1_S_B)
407#define ARM_L1S_NRML_IWBA_OWBA	(L1_S_TEX(1)|L1_S_C|L1_S_B)
408
409#define ARM_L2L_STRONG_ORD	(0)
410#define ARM_L2L_DEVICE_NOSHARE	(L2_L_TEX(2))
411#define ARM_L2L_DEVICE_SHARE	(L2_B)
412#define ARM_L2L_NRML_NOCACHE	(L2_L_TEX(1))
413#define ARM_L2L_NRML_IWT_OWT	(L2_C)
414#define ARM_L2L_NRML_IWB_OWB	(L2_C|L2_B)
415#define ARM_L2L_NRML_IWBA_OWBA	(L2_L_TEX(1)|L2_C|L2_B)
416
417#define ARM_L2S_STRONG_ORD	(0)
418#define ARM_L2S_DEVICE_NOSHARE	(L2_S_TEX(2))
419#define ARM_L2S_DEVICE_SHARE	(L2_B)
420#define ARM_L2S_NRML_NOCACHE	(L2_S_TEX(1))
421#define ARM_L2S_NRML_IWT_OWT	(L2_C)
422#define ARM_L2S_NRML_IWB_OWB	(L2_C|L2_B)
423#define ARM_L2S_NRML_IWBA_OWBA	(L2_S_TEX(1)|L2_C|L2_B)
424#else
425#define ARM_L1S_STRONG_ORD	(0)
426#define ARM_L1S_DEVICE_NOSHARE	(L1_S_TEX(2))
427#define ARM_L1S_DEVICE_SHARE	(L1_S_B)
428#define ARM_L1S_NRML_NOCACHE	(L1_S_TEX(1)|L1_SHARED)
429#define ARM_L1S_NRML_IWT_OWT	(L1_S_C|L1_SHARED)
430#define ARM_L1S_NRML_IWB_OWB	(L1_S_C|L1_S_B|L1_SHARED)
431#define ARM_L1S_NRML_IWBA_OWBA	(L1_S_TEX(1)|L1_S_C|L1_S_B|L1_SHARED)
432
433#define ARM_L2L_STRONG_ORD	(0)
434#define ARM_L2L_DEVICE_NOSHARE	(L2_L_TEX(2))
435#define ARM_L2L_DEVICE_SHARE	(L2_B)
436#define ARM_L2L_NRML_NOCACHE	(L2_L_TEX(1)|L2_SHARED)
437#define ARM_L2L_NRML_IWT_OWT	(L2_C|L2_SHARED)
438#define ARM_L2L_NRML_IWB_OWB	(L2_C|L2_B|L2_SHARED)
439#define ARM_L2L_NRML_IWBA_OWBA	(L2_L_TEX(1)|L2_C|L2_B|L2_SHARED)
440
441#define ARM_L2S_STRONG_ORD	(0)
442#define ARM_L2S_DEVICE_NOSHARE	(L2_S_TEX(2))
443#define ARM_L2S_DEVICE_SHARE	(L2_B)
444#define ARM_L2S_NRML_NOCACHE	(L2_S_TEX(1)|L2_SHARED)
445#define ARM_L2S_NRML_IWT_OWT	(L2_C|L2_SHARED)
446#define ARM_L2S_NRML_IWB_OWB	(L2_C|L2_B|L2_SHARED)
447#define ARM_L2S_NRML_IWBA_OWBA	(L2_S_TEX(1)|L2_C|L2_B|L2_SHARED)
448#endif /* SMP */
449
450#elif ARM_NMMUS > 1
451/* More than one MMU class configured; use variables. */
452#define	L2_S_PROT_U		pte_l2_s_prot_u
453#define	L2_S_PROT_W		pte_l2_s_prot_w
454#define	L2_S_PROT_MASK		pte_l2_s_prot_mask
455
456#define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
457#define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
458#define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
459
460#define	L1_S_PROTO		pte_l1_s_proto
461#define	L1_C_PROTO		pte_l1_c_proto
462#define	L2_S_PROTO		pte_l2_s_proto
463
464#elif ARM_MMU_GENERIC != 0
465#define	L2_S_PROT_U		L2_S_PROT_U_generic
466#define	L2_S_PROT_W		L2_S_PROT_W_generic
467#define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
468
469#define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
470#define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
471#define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
472
473#define	L1_S_PROTO		L1_S_PROTO_generic
474#define	L1_C_PROTO		L1_C_PROTO_generic
475#define	L2_S_PROTO		L2_S_PROTO_generic
476
477#elif ARM_MMU_XSCALE == 1
478#define	L2_S_PROT_U		L2_S_PROT_U_xscale
479#define	L2_S_PROT_W		L2_S_PROT_W_xscale
480#define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
481
482#define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
483#define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
484#define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
485
486#define	L1_S_PROTO		L1_S_PROTO_xscale
487#define	L1_C_PROTO		L1_C_PROTO_xscale
488#define	L2_S_PROTO		L2_S_PROTO_xscale
489
490#endif /* ARM_NMMUS > 1 */
491
492#if defined(CPU_XSCALE_81342) || ARM_ARCH_6 || ARM_ARCH_7A
493#define PMAP_NEEDS_PTE_SYNC	1
494#define PMAP_INCLUDE_PTE_SYNC
495#else
496#define	PMAP_NEEDS_PTE_SYNC	0
497#endif
498
499/*
500 * These macros return various bits based on kernel/user and protection.
501 * Note that the compiler will usually fold these at compile time.
502 */
503#if (ARM_MMU_V6 + ARM_MMU_V7) == 0
504
505#define	L1_S_PROT_U		(L1_S_AP(AP_U))
506#define	L1_S_PROT_W		(L1_S_AP(AP_W))
507#define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
508#define	L1_S_WRITABLE(pd)	((pd) & L1_S_PROT_W)
509
510#define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
511				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
512
513#define	L2_L_PROT_U		(L2_AP(AP_U))
514#define	L2_L_PROT_W		(L2_AP(AP_W))
515#define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
516
517#define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
518				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
519
520#define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
521				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
522#else
523#define	L1_S_PROT_U		(L1_S_AP(AP_U))
524#define	L1_S_PROT_W		(L1_S_APX)		/* Write disable */
525#define	L1_S_PROT_MASK		(L1_S_PROT_W|L1_S_PROT_U)
526#define	L1_S_REF		(L1_S_AP(AP_REF))	/* Reference flag */
527#define	L1_S_WRITABLE(pd)	(!((pd) & L1_S_PROT_W))
528#define	L1_S_EXECUTABLE(pd)	(!((pd) & L1_S_XN))
529#define	L1_S_REFERENCED(pd)	((pd) & L1_S_REF)
530
531#define	L1_S_PROT(ku, pr)	(((((ku) == PTE_KERNEL) ? 0 : L1_S_PROT_U) | \
532				 (((pr) & VM_PROT_WRITE) ? 0 : L1_S_PROT_W) | \
533				 (((pr) & VM_PROT_EXECUTE) ? 0 : L1_S_XN)))
534
535#define	L2_L_PROT_MASK		(L2_APX|L2_AP0(0x3))
536#define	L2_L_PROT(ku, pr)	(L2_L_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
537				 (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
538
539#define	L2_S_PROT(ku, pr)	(L2_S_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
540				 (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
541
542#endif
543
544/*
545 * Macros to test if a mapping is mappable with an L1 Section mapping
546 * or an L2 Large Page mapping.
547 */
548#define	L1_S_MAPPABLE_P(va, pa, size)					\
549	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
550
551#define	L2_L_MAPPABLE_P(va, pa, size)					\
552	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
553
554/*
555 * Provide a fallback in case we were not able to determine it at
556 * compile-time.
557 */
558#ifndef PMAP_NEEDS_PTE_SYNC
559#define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
560#define	PMAP_INCLUDE_PTE_SYNC
561#endif
562
563#ifdef ARM_L2_PIPT
564#define _sync_l2(pte, size) 	cpu_l2cache_wb_range(vtophys(pte), size)
565#else
566#define _sync_l2(pte, size) 	cpu_l2cache_wb_range(pte, size)
567#endif
568
569#define	PTE_SYNC(pte)							\
570do {									\
571	if (PMAP_NEEDS_PTE_SYNC) {					\
572		cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
573		cpu_drain_writebuf();					\
574		_sync_l2((vm_offset_t)(pte), sizeof(pt_entry_t));\
575	} else								\
576		cpu_drain_writebuf();					\
577} while (/*CONSTCOND*/0)
578
579#define	PTE_SYNC_RANGE(pte, cnt)					\
580do {									\
581	if (PMAP_NEEDS_PTE_SYNC) {					\
582		cpu_dcache_wb_range((vm_offset_t)(pte),			\
583		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
584		cpu_drain_writebuf();					\
585		_sync_l2((vm_offset_t)(pte),		 		\
586		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
587	} else								\
588		cpu_drain_writebuf();					\
589} while (/*CONSTCOND*/0)
590
591extern pt_entry_t		pte_l1_s_cache_mode;
592extern pt_entry_t		pte_l1_s_cache_mask;
593
594extern pt_entry_t		pte_l2_l_cache_mode;
595extern pt_entry_t		pte_l2_l_cache_mask;
596
597extern pt_entry_t		pte_l2_s_cache_mode;
598extern pt_entry_t		pte_l2_s_cache_mask;
599
600extern pt_entry_t		pte_l1_s_cache_mode_pt;
601extern pt_entry_t		pte_l2_l_cache_mode_pt;
602extern pt_entry_t		pte_l2_s_cache_mode_pt;
603
604extern pt_entry_t		pte_l2_s_prot_u;
605extern pt_entry_t		pte_l2_s_prot_w;
606extern pt_entry_t		pte_l2_s_prot_mask;
607
608extern pt_entry_t		pte_l1_s_proto;
609extern pt_entry_t		pte_l1_c_proto;
610extern pt_entry_t		pte_l2_s_proto;
611
612extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
613extern void (*pmap_copy_page_offs_func)(vm_paddr_t a_phys,
614    vm_offset_t a_offs, vm_paddr_t b_phys, vm_offset_t b_offs, int cnt);
615extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
616
617#if (ARM_MMU_GENERIC + ARM_MMU_V6 + ARM_MMU_V7) != 0 || defined(CPU_XSCALE_81342)
618void	pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
619void	pmap_zero_page_generic(vm_paddr_t, int, int);
620
621void	pmap_pte_init_generic(void);
622#if defined(CPU_ARM9)
623void	pmap_pte_init_arm9(void);
624#endif /* CPU_ARM9 */
625#if defined(CPU_ARM10)
626void	pmap_pte_init_arm10(void);
627#endif /* CPU_ARM10 */
628#if (ARM_MMU_V6 + ARM_MMU_V7) != 0
629void	pmap_pte_init_mmu_v6(void);
630#endif /* (ARM_MMU_V6 + ARM_MMU_V7) != 0 */
631#endif /* (ARM_MMU_GENERIC + ARM_MMU_V6 + ARM_MMU_V7) != 0 */
632
633#if ARM_MMU_XSCALE == 1
634void	pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
635void	pmap_zero_page_xscale(vm_paddr_t, int, int);
636
637void	pmap_pte_init_xscale(void);
638
639void	xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
640
641void	pmap_use_minicache(vm_offset_t, vm_size_t);
642#endif /* ARM_MMU_XSCALE == 1 */
643#if defined(CPU_XSCALE_81342)
644#define ARM_HAVE_SUPERSECTIONS
645#endif
646
647#define PTE_KERNEL	0
648#define PTE_USER	1
649#define	l1pte_valid(pde)	((pde) != 0)
650#define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
651#define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
652#define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
653
654#define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
655#define	l2pte_valid(pte)	((pte) != 0)
656#define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
657#define l2pte_minidata(pte)	(((pte) & \
658				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
659				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
660
661/* L1 and L2 page table macros */
662#define pmap_pde_v(pde)		l1pte_valid(*(pde))
663#define pmap_pde_section(pde)	l1pte_section_p(*(pde))
664#define pmap_pde_page(pde)	l1pte_page_p(*(pde))
665#define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
666
667#define	pmap_pte_v(pte)		l2pte_valid(*(pte))
668#define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
669
670/*
671 * Flags that indicate attributes of pages or mappings of pages.
672 *
673 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
674 * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
675 * pv_entry's for each page.  They live in the same "namespace" so
676 * that we can clear multiple attributes at a time.
677 *
678 * Note the "non-cacheable" flag generally means the page has
679 * multiple mappings in a given address space.
680 */
681#define	PVF_MOD		0x01		/* page is modified */
682#define	PVF_REF		0x02		/* page is referenced */
683#define	PVF_WIRED	0x04		/* mapping is wired */
684#define	PVF_WRITE	0x08		/* mapping is writable */
685#define	PVF_EXEC	0x10		/* mapping is executable */
686#define	PVF_NC		0x20		/* mapping is non-cacheable */
687#define	PVF_MWC		0x40		/* mapping is used multiple times in userland */
688#define	PVF_UNMAN	0x80		/* mapping is unmanaged */
689
690void vector_page_setprot(int);
691
692#define SECTION_CACHE	0x1
693#define SECTION_PT	0x2
694void	pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags);
695#ifdef ARM_HAVE_SUPERSECTIONS
696void	pmap_kenter_supersection(vm_offset_t, uint64_t, int flags);
697#endif
698
699extern char *_tmppt;
700
701void	pmap_postinit(void);
702
703extern vm_paddr_t dump_avail[];
704#endif	/* _KERNEL */
705
706#endif	/* !LOCORE */
707
708#endif	/* !_MACHINE_PMAP_H_ */
709