imx_sdhci.c revision 318198
1/*-
2 * Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 */
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/10/sys/arm/freescale/imx/imx_sdhci.c 318198 2017-05-11 21:01:02Z marius $");
29
30/*
31 * SDHCI driver glue for Freescale i.MX SoC family.
32 *
33 * This supports both eSDHC (earlier SoCs) and uSDHC (more recent SoCs).
34 */
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/types.h>
39#include <sys/bus.h>
40#include <sys/callout.h>
41#include <sys/kernel.h>
42#include <sys/lock.h>
43#include <sys/malloc.h>
44#include <sys/module.h>
45#include <sys/mutex.h>
46#include <sys/resource.h>
47#include <sys/rman.h>
48#include <sys/sysctl.h>
49#include <sys/taskqueue.h>
50#include <sys/time.h>
51
52#include <machine/bus.h>
53#include <machine/resource.h>
54#include <machine/intr.h>
55
56#include <arm/freescale/imx/imx_ccmvar.h>
57
58#include <dev/ofw/ofw_bus.h>
59#include <dev/ofw/ofw_bus_subr.h>
60
61#include <dev/mmc/bridge.h>
62#include <dev/mmc/mmcreg.h>
63#include <dev/mmc/mmcbrvar.h>
64
65#include <dev/sdhci/sdhci.h>
66#include "sdhci_if.h"
67
68struct imx_sdhci_softc {
69	device_t		dev;
70	struct resource *	mem_res;
71	struct resource *	irq_res;
72	void *			intr_cookie;
73	struct sdhci_slot	slot;
74	struct callout		r1bfix_callout;
75	sbintime_t		r1bfix_timeout_at;
76	uint32_t		baseclk_hz;
77	uint32_t		sdclockreg_freq_bits;
78	uint32_t		cmd_and_mode;
79	uint32_t		r1bfix_intmask;
80	uint8_t			r1bfix_type;
81	uint8_t			hwtype;
82	boolean_t		force_card_present;
83};
84
85#define	R1BFIX_NONE	0	/* No fix needed at next interrupt. */
86#define	R1BFIX_NODATA	1	/* Synthesize DATA_END for R1B w/o data. */
87#define	R1BFIX_AC12	2	/* Wait for busy after auto command 12. */
88
89#define	HWTYPE_NONE	0	/* Hardware not recognized/supported. */
90#define	HWTYPE_ESDHC	1	/* imx5x and earlier. */
91#define	HWTYPE_USDHC	2	/* imx6. */
92
93#define	SDHC_WTMK_LVL		0x44	/* Watermark Level register. */
94#define	USDHC_MIX_CONTROL	0x48	/* Mix(ed) Control register. */
95#define	SDHC_VEND_SPEC		0xC0	/* Vendor-specific register. */
96#define	 SDHC_VEND_FRC_SDCLK_ON	(1 <<  8)
97#define	 SDHC_VEND_IPGEN	(1 << 11)
98#define	 SDHC_VEND_HCKEN	(1 << 12)
99#define	 SDHC_VEND_PEREN	(1 << 13)
100
101#define	SDHC_PRES_STATE		0x24
102#define	  SDHC_PRES_CIHB	  (1 <<  0)
103#define	  SDHC_PRES_CDIHB	  (1 <<  1)
104#define	  SDHC_PRES_DLA		  (1 <<  2)
105#define	  SDHC_PRES_SDSTB	  (1 <<  3)
106#define	  SDHC_PRES_IPGOFF	  (1 <<  4)
107#define	  SDHC_PRES_HCKOFF	  (1 <<  5)
108#define	  SDHC_PRES_PEROFF	  (1 <<  6)
109#define	  SDHC_PRES_SDOFF	  (1 <<  7)
110#define	  SDHC_PRES_WTA		  (1 <<  8)
111#define	  SDHC_PRES_RTA		  (1 <<  9)
112#define	  SDHC_PRES_BWEN	  (1 << 10)
113#define	  SDHC_PRES_BREN	  (1 << 11)
114#define	  SDHC_PRES_RTR		  (1 << 12)
115#define	  SDHC_PRES_CINST	  (1 << 16)
116#define	  SDHC_PRES_CDPL	  (1 << 18)
117#define	  SDHC_PRES_WPSPL	  (1 << 19)
118#define	  SDHC_PRES_CLSL	  (1 << 23)
119#define	  SDHC_PRES_DLSL_SHIFT	  24
120#define	  SDHC_PRES_DLSL_MASK	  (0xffU << SDHC_PRES_DLSL_SHIFT)
121
122#define	SDHC_PROT_CTRL		0x28
123#define	 SDHC_PROT_LED		(1 << 0)
124#define	 SDHC_PROT_WIDTH_1BIT	(0 << 1)
125#define	 SDHC_PROT_WIDTH_4BIT	(1 << 1)
126#define	 SDHC_PROT_WIDTH_8BIT	(2 << 1)
127#define	 SDHC_PROT_WIDTH_MASK	(3 << 1)
128#define	 SDHC_PROT_D3CD		(1 << 3)
129#define	 SDHC_PROT_EMODE_BIG	(0 << 4)
130#define	 SDHC_PROT_EMODE_HALF	(1 << 4)
131#define	 SDHC_PROT_EMODE_LITTLE	(2 << 4)
132#define	 SDHC_PROT_EMODE_MASK	(3 << 4)
133#define	 SDHC_PROT_SDMA		(0 << 8)
134#define	 SDHC_PROT_ADMA1	(1 << 8)
135#define	 SDHC_PROT_ADMA2	(2 << 8)
136#define	 SDHC_PROT_ADMA264	(3 << 8)
137#define	 SDHC_PROT_DMA_MASK	(3 << 8)
138#define	 SDHC_PROT_CDTL		(1 << 6)
139#define	 SDHC_PROT_CDSS		(1 << 7)
140
141#define	SDHC_INT_STATUS		0x30
142
143#define	SDHC_CLK_IPGEN		(1 << 0)
144#define	SDHC_CLK_HCKEN		(1 << 1)
145#define	SDHC_CLK_PEREN		(1 << 2)
146#define	SDHC_CLK_DIVISOR_MASK	0x000000f0
147#define	SDHC_CLK_DIVISOR_SHIFT	4
148#define	SDHC_CLK_PRESCALE_MASK	0x0000ff00
149#define	SDHC_CLK_PRESCALE_SHIFT	8
150
151static struct ofw_compat_data compat_data[] = {
152	{"fsl,imx6q-usdhc",	HWTYPE_USDHC},
153	{"fsl,imx6sl-usdhc",	HWTYPE_USDHC},
154	{"fsl,imx53-esdhc",	HWTYPE_ESDHC},
155	{"fsl,imx51-esdhc",	HWTYPE_ESDHC},
156	{NULL,			HWTYPE_NONE},
157};;
158
159static void imx_sdhc_set_clock(struct imx_sdhci_softc *sc, int enable);
160static void imx_sdhci_r1bfix_func(void *arg);
161
162static inline uint32_t
163RD4(struct imx_sdhci_softc *sc, bus_size_t off)
164{
165
166	return (bus_read_4(sc->mem_res, off));
167}
168
169static inline void
170WR4(struct imx_sdhci_softc *sc, bus_size_t off, uint32_t val)
171{
172
173	bus_write_4(sc->mem_res, off, val);
174}
175
176static uint8_t
177imx_sdhci_read_1(device_t dev, struct sdhci_slot *slot, bus_size_t off)
178{
179	struct imx_sdhci_softc *sc = device_get_softc(dev);
180	uint32_t val32, wrk32;
181
182	/*
183	 * Most of the things in the standard host control register are in the
184	 * hardware's wider protocol control register, but some of the bits are
185	 * moved around.
186	 */
187	if (off == SDHCI_HOST_CONTROL) {
188		wrk32 = RD4(sc, SDHC_PROT_CTRL);
189                val32 = wrk32 & (SDHCI_CTRL_LED | SDHCI_CTRL_CARD_DET |
190		    SDHCI_CTRL_FORCE_CARD);
191		switch (wrk32 & SDHC_PROT_WIDTH_MASK) {
192		case SDHC_PROT_WIDTH_1BIT:
193			/* Value is already 0. */
194			break;
195		case SDHC_PROT_WIDTH_4BIT:
196			val32 |= SDHCI_CTRL_4BITBUS;
197			break;
198		case SDHC_PROT_WIDTH_8BIT:
199			val32 |= SDHCI_CTRL_8BITBUS;
200			break;
201		}
202		switch (wrk32 & SDHC_PROT_DMA_MASK) {
203		case SDHC_PROT_SDMA:
204			/* Value is already 0. */
205			break;
206		case SDHC_PROT_ADMA1:
207                        /* This value is deprecated, should never appear. */
208			break;
209		case SDHC_PROT_ADMA2:
210			val32 |= SDHCI_CTRL_ADMA2;
211			break;
212		case SDHC_PROT_ADMA264:
213			val32 |= SDHCI_CTRL_ADMA264;
214			break;
215		}
216		return val32;
217	}
218
219	/*
220	 * XXX can't find the bus power on/off knob.  For now we have to say the
221	 * power is always on and always set to the same voltage.
222	 */
223	if (off == SDHCI_POWER_CONTROL) {
224                return (SDHCI_POWER_ON | SDHCI_POWER_300);
225	}
226
227
228	return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xff);
229}
230
231static uint16_t
232imx_sdhci_read_2(device_t dev, struct sdhci_slot *slot, bus_size_t off)
233{
234	struct imx_sdhci_softc *sc = device_get_softc(dev);
235	uint32_t val32, wrk32;
236
237	if (sc->hwtype == HWTYPE_USDHC) {
238		/*
239		 * The USDHC hardware has nothing in the version register, but
240		 * it's v3 compatible with all our translation code.
241		 */
242		if (off == SDHCI_HOST_VERSION) {
243			return (SDHCI_SPEC_300 << SDHCI_SPEC_VER_SHIFT);
244		}
245		/*
246		 * The USDHC hardware moved the transfer mode bits to the mixed
247		 * control register, fetch them from there.
248		 */
249		if (off == SDHCI_TRANSFER_MODE)
250			return (RD4(sc, USDHC_MIX_CONTROL) & 0x37);
251
252	} else if (sc->hwtype == HWTYPE_ESDHC) {
253
254		/*
255		 * The ESDHC hardware has the typical 32-bit combined "command
256		 * and mode" register that we have to cache so that command
257		 * isn't written until after mode.  On a read, just retrieve the
258		 * cached values last written.
259		 */
260		if (off == SDHCI_TRANSFER_MODE) {
261			return (sc->cmd_and_mode >> 16);
262		} else if (off == SDHCI_COMMAND_FLAGS) {
263			return (sc->cmd_and_mode & 0x0000ffff);
264		}
265	}
266
267	/*
268	 * This hardware only manages one slot.  Synthesize a slot interrupt
269	 * status register... if there are any enabled interrupts active they
270	 * must be coming from our one and only slot.
271	 */
272	if (off == SDHCI_SLOT_INT_STATUS) {
273		val32  = RD4(sc, SDHCI_INT_STATUS);
274		val32 &= RD4(sc, SDHCI_SIGNAL_ENABLE);
275		return (val32 ? 1 : 0);
276	}
277
278	/*
279	 * The clock enable bit is in the vendor register and the clock-stable
280	 * bit is in the present state register.  Transcribe them as if they
281	 * were in the clock control register where they should be.
282	 * XXX Is it important that we distinguish between "internal" and "card"
283	 * clocks?  Probably not; transcribe the card clock status to both bits.
284	 */
285	if (off == SDHCI_CLOCK_CONTROL) {
286		val32 = 0;
287		wrk32 = RD4(sc, SDHC_VEND_SPEC);
288		if (wrk32 & SDHC_VEND_FRC_SDCLK_ON)
289			val32 |= SDHCI_CLOCK_INT_EN | SDHCI_CLOCK_CARD_EN;
290		wrk32 = RD4(sc, SDHC_PRES_STATE);
291		if (wrk32 & SDHC_PRES_SDSTB)
292			val32 |= SDHCI_CLOCK_INT_STABLE;
293		val32 |= sc->sdclockreg_freq_bits;
294		return (val32);
295	}
296
297	return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xffff);
298}
299
300static uint32_t
301imx_sdhci_read_4(device_t dev, struct sdhci_slot *slot, bus_size_t off)
302{
303	struct imx_sdhci_softc *sc = device_get_softc(dev);
304	uint32_t val32, wrk32;
305
306	val32 = RD4(sc, off);
307
308	/*
309	 * The hardware leaves the base clock frequency out of the capabilities
310	 * register; fill it in.  The timeout clock is the same as the active
311	 * output sdclock; we indicate that with a quirk setting so don't
312	 * populate the timeout frequency bits.
313	 *
314	 * XXX Turn off (for now) features the hardware can do but this driver
315	 * doesn't yet handle (1.8v, suspend/resume, etc).
316	 */
317	if (off == SDHCI_CAPABILITIES) {
318		val32 &= ~SDHCI_CAN_VDD_180;
319		val32 &= ~SDHCI_CAN_DO_SUSPEND;
320		val32 |= SDHCI_CAN_DO_8BITBUS;
321		val32 |= (sc->baseclk_hz / 1000000) << SDHCI_CLOCK_BASE_SHIFT;
322		return (val32);
323	}
324
325	/*
326	 * The hardware moves bits around in the present state register to make
327	 * room for all 8 data line state bits.  To translate, mask out all the
328	 * bits which are not in the same position in both registers (this also
329	 * masks out some freescale-specific bits in locations defined as
330	 * reserved by sdhci), then shift the data line and retune request bits
331	 * down to their standard locations.
332	 */
333	if (off == SDHCI_PRESENT_STATE) {
334		wrk32 = val32;
335		val32 &= 0x000F0F07;
336		val32 |= (wrk32 >> 4) & SDHCI_STATE_DAT_MASK;
337		val32 |= (wrk32 >> 9) & SDHCI_RETUNE_REQUEST;
338		if (sc->force_card_present)
339			val32 |= SDHCI_CARD_PRESENT;
340		return (val32);
341	}
342
343	/*
344	 * imx_sdhci_intr() can synthesize a DATA_END interrupt following a
345	 * command with an R1B response, mix it into the hardware status.
346	 */
347	if (off == SDHCI_INT_STATUS) {
348		return (val32 | sc->r1bfix_intmask);
349	}
350
351	return val32;
352}
353
354static void
355imx_sdhci_read_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
356    uint32_t *data, bus_size_t count)
357{
358	struct imx_sdhci_softc *sc = device_get_softc(dev);
359
360	bus_read_multi_4(sc->mem_res, off, data, count);
361}
362
363static void
364imx_sdhci_write_1(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint8_t val)
365{
366	struct imx_sdhci_softc *sc = device_get_softc(dev);
367	uint32_t val32;
368
369	/*
370	 * Most of the things in the standard host control register are in the
371	 * hardware's wider protocol control register, but some of the bits are
372	 * moved around.
373	 */
374	if (off == SDHCI_HOST_CONTROL) {
375		val32 = RD4(sc, SDHC_PROT_CTRL);
376		val32 &= ~(SDHC_PROT_LED | SDHC_PROT_DMA_MASK |
377		    SDHC_PROT_WIDTH_MASK | SDHC_PROT_CDTL | SDHC_PROT_CDSS);
378		val32 |= (val & SDHCI_CTRL_LED);
379		if (val & SDHCI_CTRL_8BITBUS)
380			val32 |= SDHC_PROT_WIDTH_8BIT;
381		else
382			val32 |= (val & SDHCI_CTRL_4BITBUS);
383		val32 |= (val & (SDHCI_CTRL_SDMA | SDHCI_CTRL_ADMA2)) << 4;
384		val32 |= (val & (SDHCI_CTRL_CARD_DET | SDHCI_CTRL_FORCE_CARD));
385		WR4(sc, SDHC_PROT_CTRL, val32);
386		return;
387	}
388
389	/* XXX I can't find the bus power on/off knob; do nothing. */
390	if (off == SDHCI_POWER_CONTROL) {
391		return;
392	}
393
394	val32 = RD4(sc, off & ~3);
395	val32 &= ~(0xff << (off & 3) * 8);
396	val32 |= (val << (off & 3) * 8);
397
398	WR4(sc, off & ~3, val32);
399}
400
401static void
402imx_sdhci_write_2(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint16_t val)
403{
404	struct imx_sdhci_softc *sc = device_get_softc(dev);
405	uint32_t val32;
406
407	/* The USDHC hardware moved the transfer mode bits to mixed control. */
408	if (sc->hwtype == HWTYPE_USDHC) {
409		if (off == SDHCI_TRANSFER_MODE) {
410			val32 = RD4(sc, USDHC_MIX_CONTROL);
411			val32 &= ~0x3f;
412			val32 |= val & 0x37;
413			// XXX acmd23 not supported here (or by sdhci driver)
414			WR4(sc, USDHC_MIX_CONTROL, val32);
415			return;
416		}
417	}
418
419	/*
420	 * The clock control stuff is complex enough to have its own routine
421	 * that can both change speeds and en/disable the clock output. Also,
422	 * save the register bits in SDHCI format so that we can play them back
423	 * in the read2 routine without complex decoding.
424	 */
425	if (off == SDHCI_CLOCK_CONTROL) {
426		sc->sdclockreg_freq_bits = val & 0xffc0;
427		if (val & SDHCI_CLOCK_CARD_EN) {
428			imx_sdhc_set_clock(sc, true);
429		} else {
430			imx_sdhc_set_clock(sc, false);
431		}
432		return;
433	}
434
435	/*
436	 * Figure out whether we need to check the DAT0 line for busy status at
437	 * interrupt time.  The controller should be doing this, but for some
438	 * reason it doesn't.  There are two cases:
439	 *  - R1B response with no data transfer should generate a DATA_END (aka
440	 *    TRANSFER_COMPLETE) interrupt after waiting for busy, but if
441	 *    there's no data transfer there's no DATA_END interrupt.  This is
442	 *    documented; they seem to think it's a feature.
443	 *  - R1B response after Auto-CMD12 appears to not work, even though
444	 *    there's a control bit for it (bit 3) in the vendor register.
445	 * When we're starting a command that needs a manual DAT0 line check at
446	 * interrupt time, we leave ourselves a note in r1bfix_type so that we
447	 * can do the extra work in imx_sdhci_intr().
448	 */
449	if (off == SDHCI_COMMAND_FLAGS) {
450		if (val & SDHCI_CMD_DATA) {
451			const uint32_t MBAUTOCMD = SDHCI_TRNS_ACMD12 | SDHCI_TRNS_MULTI;
452			val32 = RD4(sc, USDHC_MIX_CONTROL);
453			if ((val32 & MBAUTOCMD) == MBAUTOCMD)
454				sc->r1bfix_type = R1BFIX_AC12;
455		} else {
456			if ((val & SDHCI_CMD_RESP_MASK) == SDHCI_CMD_RESP_SHORT_BUSY) {
457				WR4(sc, SDHCI_INT_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
458				WR4(sc, SDHCI_SIGNAL_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
459				sc->r1bfix_type = R1BFIX_NODATA;
460			}
461		}
462	}
463
464	val32 = RD4(sc, off & ~3);
465	val32 &= ~(0xffff << (off & 3) * 8);
466	val32 |= ((val & 0xffff) << (off & 3) * 8);
467	WR4(sc, off & ~3, val32);
468}
469
470static void
471imx_sdhci_write_4(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint32_t val)
472{
473	struct imx_sdhci_softc *sc = device_get_softc(dev);
474
475	/* Clear synthesized interrupts, then pass the value to the hardware. */
476	if (off == SDHCI_INT_STATUS) {
477		sc->r1bfix_intmask &= ~val;
478	}
479
480	WR4(sc, off, val);
481}
482
483static void
484imx_sdhci_write_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
485    uint32_t *data, bus_size_t count)
486{
487	struct imx_sdhci_softc *sc = device_get_softc(dev);
488
489	bus_write_multi_4(sc->mem_res, off, data, count);
490}
491
492static void
493imx_sdhc_set_clock(struct imx_sdhci_softc *sc, int enable)
494{
495	uint32_t divisor, enable_bits, enable_reg, freq, prescale, val32;
496
497	if (sc->hwtype == HWTYPE_ESDHC) {
498		divisor = (sc->sdclockreg_freq_bits >> SDHCI_DIVIDER_SHIFT) &
499		    SDHCI_DIVIDER_MASK;
500		enable_reg = SDHCI_CLOCK_CONTROL;
501		enable_bits = SDHC_CLK_IPGEN | SDHC_CLK_HCKEN |
502		    SDHC_CLK_PEREN;
503	} else {
504		divisor = (sc->sdclockreg_freq_bits >> SDHCI_DIVIDER_SHIFT) &
505		    SDHCI_DIVIDER_MASK;
506		divisor |= ((sc->sdclockreg_freq_bits >>
507		    SDHCI_DIVIDER_HI_SHIFT) &
508		    SDHCI_DIVIDER_HI_MASK) << SDHCI_DIVIDER_MASK_LEN;
509		enable_reg = SDHCI_CLOCK_CONTROL;
510		enable_bits = SDHC_VEND_IPGEN | SDHC_VEND_HCKEN |
511		   SDHC_VEND_PEREN;
512	}
513
514	WR4(sc, SDHC_VEND_SPEC,
515	    RD4(sc, SDHC_VEND_SPEC) & ~SDHC_VEND_FRC_SDCLK_ON);
516	WR4(sc, enable_reg, RD4(sc, enable_reg) & ~enable_bits);
517
518	if (!enable)
519		return;
520
521	if (divisor == 0)
522		freq = sc->baseclk_hz;
523	else
524		freq = sc->baseclk_hz / (2 * divisor);
525
526	for (prescale = 2; freq < sc->baseclk_hz / (prescale * 16);)
527		prescale <<= 1;
528
529	for (divisor = 1; freq < sc->baseclk_hz / (prescale * divisor);)
530		++divisor;
531
532#ifdef DEBUG
533	device_printf(sc->dev,
534	    "desired SD freq: %d, actual: %d; base %d prescale %d divisor %d\n",
535	    freq, sc->baseclk_hz / (prescale * divisor), sc->baseclk_hz,
536	    prescale, divisor);
537#endif
538
539	prescale >>= 1;
540	divisor -= 1;
541
542	val32 = RD4(sc, SDHCI_CLOCK_CONTROL);
543	val32 &= ~SDHC_CLK_DIVISOR_MASK;
544	val32 |= divisor << SDHC_CLK_DIVISOR_SHIFT;
545	val32 &= ~SDHC_CLK_PRESCALE_MASK;
546	val32 |= prescale << SDHC_CLK_PRESCALE_SHIFT;
547	WR4(sc, SDHCI_CLOCK_CONTROL, val32);
548
549	WR4(sc, enable_reg, RD4(sc, enable_reg) | enable_bits);
550	WR4(sc, SDHC_VEND_SPEC,
551	    RD4(sc, SDHC_VEND_SPEC) | SDHC_VEND_FRC_SDCLK_ON);
552}
553
554static boolean_t
555imx_sdhci_r1bfix_is_wait_done(struct imx_sdhci_softc *sc)
556{
557	uint32_t inhibit;
558
559	mtx_assert(&sc->slot.mtx, MA_OWNED);
560
561	/*
562	 * Check the DAT0 line status using both the DLA (data line active) and
563	 * CDIHB (data inhibit) bits in the present state register.  In theory
564	 * just DLA should do the trick,  but in practice it takes both.  If the
565	 * DAT0 line is still being held and we're not yet beyond the timeout
566	 * point, just schedule another callout to check again later.
567	 */
568	inhibit = RD4(sc, SDHC_PRES_STATE) & (SDHC_PRES_DLA | SDHC_PRES_CDIHB);
569
570	if (inhibit && getsbinuptime() < sc->r1bfix_timeout_at) {
571		callout_reset_sbt(&sc->r1bfix_callout, SBT_1MS, 0,
572		    imx_sdhci_r1bfix_func, sc, 0);
573		return (false);
574	}
575
576	/*
577	 * If we reach this point with the inhibit bits still set, we've got a
578	 * timeout, synthesize a DATA_TIMEOUT interrupt.  Otherwise the DAT0
579	 * line has been released, and we synthesize a DATA_END, and if the type
580	 * of fix needed was on a command-without-data we also now add in the
581	 * original INT_RESPONSE that we suppressed earlier.
582	 */
583	if (inhibit)
584		sc->r1bfix_intmask |= SDHCI_INT_DATA_TIMEOUT;
585	else {
586		sc->r1bfix_intmask |= SDHCI_INT_DATA_END;
587		if (sc->r1bfix_type == R1BFIX_NODATA)
588			sc->r1bfix_intmask |= SDHCI_INT_RESPONSE;
589	}
590
591	sc->r1bfix_type = R1BFIX_NONE;
592	return (true);
593}
594
595static void
596imx_sdhci_r1bfix_func(void * arg)
597{
598	struct imx_sdhci_softc *sc = arg;
599	boolean_t r1bwait_done;
600
601	mtx_lock(&sc->slot.mtx);
602	r1bwait_done = imx_sdhci_r1bfix_is_wait_done(sc);
603	mtx_unlock(&sc->slot.mtx);
604	if (r1bwait_done)
605		sdhci_generic_intr(&sc->slot);
606}
607
608static void
609imx_sdhci_intr(void *arg)
610{
611	struct imx_sdhci_softc *sc = arg;
612	uint32_t intmask;
613
614	mtx_lock(&sc->slot.mtx);
615
616	/*
617	 * Manually check the DAT0 line for R1B response types that the
618	 * controller fails to handle properly.  The controller asserts the done
619	 * interrupt while the card is still asserting busy with the DAT0 line.
620	 *
621	 * We check DAT0 immediately because most of the time, especially on a
622	 * read, the card will actually be done by time we get here.  If it's
623	 * not, then the wait_done routine will schedule a callout to re-check
624	 * periodically until it is done.  In that case we clear the interrupt
625	 * out of the hardware now so that we can present it later when the DAT0
626	 * line is released.
627	 *
628	 * If we need to wait for the the DAT0 line to be released, we set up a
629	 * timeout point 250ms in the future.  This number comes from the SD
630	 * spec, which allows a command to take that long.  In the real world,
631	 * cards tend to take 10-20ms for a long-running command such as a write
632	 * or erase that spans two pages.
633	 */
634	switch (sc->r1bfix_type) {
635	case R1BFIX_NODATA:
636		intmask = RD4(sc, SDHC_INT_STATUS) & SDHCI_INT_RESPONSE;
637		break;
638	case R1BFIX_AC12:
639		intmask = RD4(sc, SDHC_INT_STATUS) & SDHCI_INT_DATA_END;
640		break;
641	default:
642		intmask = 0;
643		break;
644	}
645	if (intmask) {
646		sc->r1bfix_timeout_at = getsbinuptime() + 250 * SBT_1MS;
647		if (!imx_sdhci_r1bfix_is_wait_done(sc)) {
648			WR4(sc, SDHC_INT_STATUS, intmask);
649			bus_barrier(sc->mem_res, SDHC_INT_STATUS, 4,
650			    BUS_SPACE_BARRIER_WRITE);
651		}
652	}
653
654	mtx_unlock(&sc->slot.mtx);
655	sdhci_generic_intr(&sc->slot);
656}
657
658static int
659imx_sdhci_get_ro(device_t bus, device_t child)
660{
661
662	return (false);
663}
664
665static int
666imx_sdhci_detach(device_t dev)
667{
668
669	return (EBUSY);
670}
671
672static int
673imx_sdhci_attach(device_t dev)
674{
675	struct imx_sdhci_softc *sc = device_get_softc(dev);
676	int rid, err;
677	phandle_t node;
678
679	sc->dev = dev;
680
681	sc->hwtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
682	if (sc->hwtype == HWTYPE_NONE)
683		panic("Impossible: not compatible in imx_sdhci_attach()");
684
685	rid = 0;
686	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
687	    RF_ACTIVE);
688	if (!sc->mem_res) {
689		device_printf(dev, "cannot allocate memory window\n");
690		err = ENXIO;
691		goto fail;
692	}
693
694	rid = 0;
695	sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
696	    RF_ACTIVE);
697	if (!sc->irq_res) {
698		device_printf(dev, "cannot allocate interrupt\n");
699		err = ENXIO;
700		goto fail;
701	}
702
703	if (bus_setup_intr(dev, sc->irq_res, INTR_TYPE_BIO | INTR_MPSAFE,
704	    NULL, imx_sdhci_intr, sc, &sc->intr_cookie)) {
705		device_printf(dev, "cannot setup interrupt handler\n");
706		err = ENXIO;
707		goto fail;
708	}
709
710	sc->slot.quirks |= SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK;
711
712	/*
713	 * DMA is not really broken, I just haven't implemented it yet.
714	 */
715	sc->slot.quirks |= SDHCI_QUIRK_BROKEN_DMA;
716
717	/*
718	 * Set the buffer watermark level to 128 words (512 bytes) for both read
719	 * and write.  The hardware has a restriction that when the read or
720	 * write ready status is asserted, that means you can read exactly the
721	 * number of words set in the watermark register before you have to
722	 * re-check the status and potentially wait for more data.  The main
723	 * sdhci driver provides no hook for doing status checking on less than
724	 * a full block boundary, so we set the watermark level to be a full
725	 * block.  Reads and writes where the block size is less than the
726	 * watermark size will work correctly too, no need to change the
727	 * watermark for different size blocks.  However, 128 is the maximum
728	 * allowed for the watermark, so PIO is limitted to 512 byte blocks
729	 * (which works fine for SD cards, may be a problem for SDIO some day).
730	 *
731	 * XXX need named constants for this stuff.
732	 */
733	WR4(sc, SDHC_WTMK_LVL, 0x08800880);
734
735	sc->baseclk_hz = imx_ccm_sdhci_hz();
736
737	/*
738	 * If the slot is flagged with the non-removable property, set our flag
739	 * to always force the SDHCI_CARD_PRESENT bit on.
740	 *
741	 * XXX Workaround for gpio-based card detect...
742	 *
743	 * We don't have gpio support yet.  If there's a cd-gpios property just
744	 * force the SDHCI_CARD_PRESENT bit on for now.  If there isn't really a
745	 * card there it will fail to probe at the mmc layer and nothing bad
746	 * happens except instantiating an mmcN device for an empty slot.
747	 */
748	node = ofw_bus_get_node(dev);
749	if (OF_hasprop(node, "non-removable"))
750		sc->force_card_present = true;
751	else if (OF_hasprop(node, "cd-gpios")) {
752		/* XXX put real gpio hookup here. */
753		sc->force_card_present = true;
754	}
755
756	callout_init(&sc->r1bfix_callout, true);
757	sdhci_init_slot(dev, &sc->slot, 0);
758
759	bus_generic_probe(dev);
760	bus_generic_attach(dev);
761
762	sdhci_start_slot(&sc->slot);
763
764	return (0);
765
766fail:
767	if (sc->intr_cookie)
768		bus_teardown_intr(dev, sc->irq_res, sc->intr_cookie);
769	if (sc->irq_res)
770		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq_res);
771	if (sc->mem_res)
772		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res);
773
774	return (err);
775}
776
777static int
778imx_sdhci_probe(device_t dev)
779{
780
781        if (!ofw_bus_status_okay(dev))
782		return (ENXIO);
783
784	switch (ofw_bus_search_compatible(dev, compat_data)->ocd_data) {
785	case HWTYPE_ESDHC:
786		device_set_desc(dev, "Freescale eSDHC controller");
787		return (BUS_PROBE_DEFAULT);
788	case HWTYPE_USDHC:
789		device_set_desc(dev, "Freescale uSDHC controller");
790		return (BUS_PROBE_DEFAULT);
791	default:
792		break;
793	}
794	return (ENXIO);
795}
796
797static device_method_t imx_sdhci_methods[] = {
798	/* Device interface */
799	DEVMETHOD(device_probe,		imx_sdhci_probe),
800	DEVMETHOD(device_attach,	imx_sdhci_attach),
801	DEVMETHOD(device_detach,	imx_sdhci_detach),
802
803	/* Bus interface */
804	DEVMETHOD(bus_read_ivar,	sdhci_generic_read_ivar),
805	DEVMETHOD(bus_write_ivar,	sdhci_generic_write_ivar),
806	DEVMETHOD(bus_print_child,	bus_generic_print_child),
807
808	/* MMC bridge interface */
809	DEVMETHOD(mmcbr_update_ios,	sdhci_generic_update_ios),
810	DEVMETHOD(mmcbr_request,	sdhci_generic_request),
811	DEVMETHOD(mmcbr_get_ro,		imx_sdhci_get_ro),
812	DEVMETHOD(mmcbr_acquire_host,	sdhci_generic_acquire_host),
813	DEVMETHOD(mmcbr_release_host,	sdhci_generic_release_host),
814
815	/* SDHCI registers accessors */
816	DEVMETHOD(sdhci_read_1,		imx_sdhci_read_1),
817	DEVMETHOD(sdhci_read_2,		imx_sdhci_read_2),
818	DEVMETHOD(sdhci_read_4,		imx_sdhci_read_4),
819	DEVMETHOD(sdhci_read_multi_4,	imx_sdhci_read_multi_4),
820	DEVMETHOD(sdhci_write_1,	imx_sdhci_write_1),
821	DEVMETHOD(sdhci_write_2,	imx_sdhci_write_2),
822	DEVMETHOD(sdhci_write_4,	imx_sdhci_write_4),
823	DEVMETHOD(sdhci_write_multi_4,	imx_sdhci_write_multi_4),
824
825	{ 0, 0 }
826};
827
828static devclass_t imx_sdhci_devclass;
829
830static driver_t imx_sdhci_driver = {
831	"sdhci_imx",
832	imx_sdhci_methods,
833	sizeof(struct imx_sdhci_softc),
834};
835
836DRIVER_MODULE(sdhci_imx, simplebus, imx_sdhci_driver, imx_sdhci_devclass, 0, 0);
837MODULE_DEPEND(sdhci_imx, sdhci, 1, 1, 1);
838DRIVER_MODULE(mmc, sdhci_imx, mmc_driver, mmc_devclass, NULL, NULL);
839MODULE_DEPEND(sdhci_imx, mmc, 1, 1, 1);
840