trap.c revision 266198
1/*	$NetBSD: fault.c,v 1.45 2003/11/20 14:44:36 scw Exp $	*/
2
3/*-
4 * Copyright 2004 Olivier Houchard
5 * Copyright 2003 Wasabi Systems, Inc.
6 * All rights reserved.
7 *
8 * Written by Steve C. Woodford for Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *      This product includes software developed for the NetBSD Project by
21 *      Wasabi Systems, Inc.
22 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
23 *    or promote products derived from this software without specific prior
24 *    written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38/*-
39 * Copyright (c) 1994-1997 Mark Brinicombe.
40 * Copyright (c) 1994 Brini.
41 * All rights reserved.
42 *
43 * This code is derived from software written for Brini by Mark Brinicombe
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 *    notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 *    notice, this list of conditions and the following disclaimer in the
52 *    documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 *    must display the following acknowledgement:
55 *	This product includes software developed by Brini.
56 * 4. The name of the company nor the name of the author may be used to
57 *    endorse or promote products derived from this software without specific
58 *    prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
61 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
62 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
63 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
64 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
65 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
66 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * RiscBSD kernel project
73 *
74 * fault.c
75 *
76 * Fault handlers
77 *
78 * Created      : 28/11/94
79 */
80
81
82#include "opt_ktrace.h"
83
84#include <sys/cdefs.h>
85__FBSDID("$FreeBSD: stable/10/sys/arm/arm/trap.c 266198 2014-05-15 22:03:24Z ian $");
86
87#include <sys/param.h>
88#include <sys/bus.h>
89#include <sys/systm.h>
90#include <sys/proc.h>
91#include <sys/kernel.h>
92#include <sys/lock.h>
93#include <sys/mutex.h>
94#include <sys/syscall.h>
95#include <sys/sysent.h>
96#include <sys/signalvar.h>
97#include <sys/ktr.h>
98#ifdef KTRACE
99#include <sys/uio.h>
100#include <sys/ktrace.h>
101#endif
102#include <sys/ptrace.h>
103#include <sys/pioctl.h>
104
105#include <vm/vm.h>
106#include <vm/pmap.h>
107#include <vm/vm_kern.h>
108#include <vm/vm_map.h>
109#include <vm/vm_extern.h>
110
111#include <machine/armreg.h>
112#include <machine/cpuconf.h>
113#include <machine/vmparam.h>
114#include <machine/frame.h>
115#include <machine/cpu.h>
116#include <machine/intr.h>
117#include <machine/pcb.h>
118#include <machine/proc.h>
119#include <machine/swi.h>
120
121#include <security/audit/audit.h>
122
123#ifdef KDB
124#include <sys/kdb.h>
125#endif
126
127
128void swi_handler(struct trapframe *);
129void undefinedinstruction(struct trapframe *);
130
131#include <machine/disassem.h>
132#include <machine/machdep.h>
133
134extern char fusubailout[];
135
136#ifdef DEBUG
137int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
138#endif
139
140#if defined(CPU_ARM7TDMI)
141/* These CPUs may need data/prefetch abort fixups */
142#define	CPU_ABORT_FIXUP_REQUIRED
143#endif
144
145struct ksig {
146	int signb;
147	u_long code;
148};
149struct data_abort {
150	int (*func)(struct trapframe *, u_int, u_int, struct thread *,
151	    struct ksig *);
152	const char *desc;
153};
154
155static int dab_fatal(struct trapframe *, u_int, u_int, struct thread *,
156    struct ksig *);
157static int dab_align(struct trapframe *, u_int, u_int, struct thread *,
158    struct ksig *);
159static int dab_buserr(struct trapframe *, u_int, u_int, struct thread *,
160    struct ksig *);
161
162static const struct data_abort data_aborts[] = {
163	{dab_fatal,	"Vector Exception"},
164	{dab_align,	"Alignment Fault 1"},
165	{dab_fatal,	"Terminal Exception"},
166	{dab_align,	"Alignment Fault 3"},
167	{dab_buserr,	"External Linefetch Abort (S)"},
168	{NULL,		"Translation Fault (S)"},
169#if (ARM_MMU_V6 + ARM_MMU_V7) != 0
170	{NULL,		"Translation Flag Fault"},
171#else
172	{dab_buserr,	"External Linefetch Abort (P)"},
173#endif
174	{NULL,		"Translation Fault (P)"},
175	{dab_buserr,	"External Non-Linefetch Abort (S)"},
176	{NULL,		"Domain Fault (S)"},
177	{dab_buserr,	"External Non-Linefetch Abort (P)"},
178	{NULL,		"Domain Fault (P)"},
179	{dab_buserr,	"External Translation Abort (L1)"},
180	{NULL,		"Permission Fault (S)"},
181	{dab_buserr,	"External Translation Abort (L2)"},
182	{NULL,		"Permission Fault (P)"}
183};
184
185/* Determine if a fault came from user mode */
186#define	TRAP_USERMODE(tf)	((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
187
188/* Determine if 'x' is a permission fault */
189#define	IS_PERMISSION_FAULT(x)					\
190	(((1 << ((x) & FAULT_TYPE_MASK)) &			\
191	  ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
192
193static __inline void
194call_trapsignal(struct thread *td, int sig, u_long code)
195{
196	ksiginfo_t ksi;
197
198	ksiginfo_init_trap(&ksi);
199	ksi.ksi_signo = sig;
200	ksi.ksi_code = (int)code;
201	trapsignal(td, &ksi);
202}
203
204static __inline int
205data_abort_fixup(struct trapframe *tf, u_int fsr, u_int far, struct thread *td,
206    struct ksig *ksig)
207{
208#ifdef CPU_ABORT_FIXUP_REQUIRED
209	int error;
210
211	/* Call the cpu specific data abort fixup routine */
212	error = cpu_dataabt_fixup(tf);
213	if (__predict_true(error != ABORT_FIXUP_FAILED))
214		return (error);
215
216	/*
217	 * Oops, couldn't fix up the instruction
218	 */
219	printf("data_abort_fixup: fixup for %s mode data abort failed.\n",
220	    TRAP_USERMODE(tf) ? "user" : "kernel");
221	printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
222	    *((u_int *)tf->tf_pc));
223	disassemble(tf->tf_pc);
224
225	/* Die now if this happened in kernel mode */
226	if (!TRAP_USERMODE(tf))
227		dab_fatal(tf, fsr, far, td, NULL, ksig);
228
229	return (error);
230#else
231	return (ABORT_FIXUP_OK);
232#endif /* CPU_ABORT_FIXUP_REQUIRED */
233}
234
235void
236data_abort_handler(struct trapframe *tf)
237{
238	struct vm_map *map;
239	struct pcb *pcb;
240	struct thread *td;
241	u_int user, far, fsr;
242	vm_prot_t ftype;
243	void *onfault;
244	vm_offset_t va;
245	int error = 0;
246	struct ksig ksig;
247	struct proc *p;
248
249
250	/* Grab FAR/FSR before enabling interrupts */
251	far = cpu_faultaddress();
252	fsr = cpu_faultstatus();
253#if 0
254	printf("data abort: fault address=%p (from pc=%p lr=%p)\n",
255	       (void*)far, (void*)tf->tf_pc, (void*)tf->tf_svc_lr);
256#endif
257
258	/* Update vmmeter statistics */
259#if 0
260	vmexp.traps++;
261#endif
262
263	td = curthread;
264	p = td->td_proc;
265
266	PCPU_INC(cnt.v_trap);
267	/* Data abort came from user mode? */
268	user = TRAP_USERMODE(tf);
269
270	if (user) {
271		td->td_pticks = 0;
272		td->td_frame = tf;
273		if (td->td_ucred != td->td_proc->p_ucred)
274			cred_update_thread(td);
275
276	}
277	/* Grab the current pcb */
278	pcb = td->td_pcb;
279	/* Re-enable interrupts if they were enabled previously */
280	if (td->td_md.md_spinlock_count == 0) {
281		if (__predict_true(tf->tf_spsr & I32_bit) == 0)
282			enable_interrupts(I32_bit);
283		if (__predict_true(tf->tf_spsr & F32_bit) == 0)
284			enable_interrupts(F32_bit);
285	}
286
287
288	/* Invoke the appropriate handler, if necessary */
289	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
290		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
291		    td, &ksig)) {
292			goto do_trapsignal;
293		}
294		goto out;
295	}
296
297	/*
298	 * At this point, we're dealing with one of the following data aborts:
299	 *
300	 *  FAULT_TRANS_S  - Translation -- Section
301	 *  FAULT_TRANS_P  - Translation -- Page
302	 *  FAULT_DOMAIN_S - Domain -- Section
303	 *  FAULT_DOMAIN_P - Domain -- Page
304	 *  FAULT_PERM_S   - Permission -- Section
305	 *  FAULT_PERM_P   - Permission -- Page
306	 *
307	 * These are the main virtual memory-related faults signalled by
308	 * the MMU.
309	 */
310
311	/* fusubailout is used by [fs]uswintr to avoid page faulting */
312	if (__predict_false(pcb->pcb_onfault == fusubailout)) {
313		tf->tf_r0 = EFAULT;
314		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
315		return;
316	}
317
318	/*
319	 * Make sure the Program Counter is sane. We could fall foul of
320	 * someone executing Thumb code, in which case the PC might not
321	 * be word-aligned. This would cause a kernel alignment fault
322	 * further down if we have to decode the current instruction.
323	 * XXX: It would be nice to be able to support Thumb at some point.
324	 */
325	if (__predict_false((tf->tf_pc & 3) != 0)) {
326		if (user) {
327			/*
328			 * Give the user an illegal instruction signal.
329			 */
330			/* Deliver a SIGILL to the process */
331			ksig.signb = SIGILL;
332			ksig.code = 0;
333			goto do_trapsignal;
334		}
335
336		/*
337		 * The kernel never executes Thumb code.
338		 */
339		printf("\ndata_abort_fault: Misaligned Kernel-mode "
340		    "Program Counter\n");
341		dab_fatal(tf, fsr, far, td, &ksig);
342	}
343
344	/* See if the cpu state needs to be fixed up */
345	switch (data_abort_fixup(tf, fsr, far, td, &ksig)) {
346	case ABORT_FIXUP_RETURN:
347		return;
348	case ABORT_FIXUP_FAILED:
349		/* Deliver a SIGILL to the process */
350		ksig.signb = SIGILL;
351		ksig.code = 0;
352		goto do_trapsignal;
353	default:
354		break;
355	}
356
357	va = trunc_page((vm_offset_t)far);
358
359	/*
360	 * It is only a kernel address space fault iff:
361	 *	1. user == 0  and
362	 *	2. pcb_onfault not set or
363	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
364	 */
365	if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
366	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
367	    __predict_true((pcb->pcb_onfault == NULL ||
368	     (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
369		map = kernel_map;
370
371		/* Was the fault due to the FPE/IPKDB ? */
372		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
373
374			/*
375			 * Force exit via userret()
376			 * This is necessary as the FPE is an extension to
377			 * userland that actually runs in a priveledged mode
378			 * but uses USR mode permissions for its accesses.
379			 */
380			user = 1;
381			ksig.signb = SIGSEGV;
382			ksig.code = 0;
383			goto do_trapsignal;
384		}
385	} else {
386		map = &td->td_proc->p_vmspace->vm_map;
387	}
388
389	/*
390	 * We need to know whether the page should be mapped as R or R/W.  On
391	 * armv6 and later the fault status register indicates whether the
392	 * access was a read or write.  Prior to armv6, we know that a
393	 * permission fault can only be the result of a write to a read-only
394	 * location, so we can deal with those quickly.  Otherwise we need to
395	 * disassemble the faulting instruction to determine if it was a write.
396	 */
397#if ARM_ARCH_6 || ARM_ARCH_7A
398	ftype = (fsr & FAULT_WNR) ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
399#else
400	if (IS_PERMISSION_FAULT(fsr))
401		ftype = VM_PROT_WRITE;
402	else {
403		u_int insn = ReadWord(tf->tf_pc);
404
405		if (((insn & 0x0c100000) == 0x04000000) ||	/* STR/STRB */
406		    ((insn & 0x0e1000b0) == 0x000000b0) ||	/* STRH/STRD */
407		    ((insn & 0x0a100000) == 0x08000000)) {	/* STM/CDT */
408			ftype = VM_PROT_WRITE;
409		} else {
410			if ((insn & 0x0fb00ff0) == 0x01000090)	/* SWP */
411				ftype = VM_PROT_READ | VM_PROT_WRITE;
412			else
413				ftype = VM_PROT_READ;
414		}
415	}
416#endif
417
418	/*
419	 * See if the fault is as a result of ref/mod emulation,
420	 * or domain mismatch.
421	 */
422#ifdef DEBUG
423	last_fault_code = fsr;
424#endif
425	if (pmap_fault_fixup(vmspace_pmap(td->td_proc->p_vmspace), va, ftype,
426	    user)) {
427		goto out;
428	}
429
430	onfault = pcb->pcb_onfault;
431	pcb->pcb_onfault = NULL;
432	if (map != kernel_map) {
433		PROC_LOCK(p);
434		p->p_lock++;
435		PROC_UNLOCK(p);
436	}
437	error = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
438	pcb->pcb_onfault = onfault;
439
440	if (map != kernel_map) {
441		PROC_LOCK(p);
442		p->p_lock--;
443		PROC_UNLOCK(p);
444	}
445	if (__predict_true(error == 0))
446		goto out;
447	if (user == 0) {
448		if (pcb->pcb_onfault) {
449			tf->tf_r0 = error;
450			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
451			return;
452		}
453
454		printf("\nvm_fault(%p, %x, %x, 0) -> %x\n", map, va, ftype,
455		    error);
456		dab_fatal(tf, fsr, far, td, &ksig);
457	}
458
459
460	if (error == ENOMEM) {
461		printf("VM: pid %d (%s), uid %d killed: "
462		    "out of swap\n", td->td_proc->p_pid, td->td_name,
463		    (td->td_proc->p_ucred) ?
464		     td->td_proc->p_ucred->cr_uid : -1);
465		ksig.signb = SIGKILL;
466	} else {
467		ksig.signb = SIGSEGV;
468	}
469	ksig.code = 0;
470do_trapsignal:
471	call_trapsignal(td, ksig.signb, ksig.code);
472out:
473	/* If returning to user mode, make sure to invoke userret() */
474	if (user)
475		userret(td, tf);
476}
477
478/*
479 * dab_fatal() handles the following data aborts:
480 *
481 *  FAULT_WRTBUF_0 - Vector Exception
482 *  FAULT_WRTBUF_1 - Terminal Exception
483 *
484 * We should never see these on a properly functioning system.
485 *
486 * This function is also called by the other handlers if they
487 * detect a fatal problem.
488 *
489 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
490 */
491static int
492dab_fatal(struct trapframe *tf, u_int fsr, u_int far, struct thread *td,
493    struct ksig *ksig)
494{
495	const char *mode;
496
497	mode = TRAP_USERMODE(tf) ? "user" : "kernel";
498
499	disable_interrupts(I32_bit|F32_bit);
500	if (td != NULL) {
501		printf("Fatal %s mode data abort: '%s'\n", mode,
502		    data_aborts[fsr & FAULT_TYPE_MASK].desc);
503		printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
504		if ((fsr & FAULT_IMPRECISE) == 0)
505			printf("%08x, ", far);
506		else
507			printf("Invalid,  ");
508		printf("spsr=%08x\n", tf->tf_spsr);
509	} else {
510		printf("Fatal %s mode prefetch abort at 0x%08x\n",
511		    mode, tf->tf_pc);
512		printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
513	}
514
515	printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
516	    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
517	printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
518	    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
519	printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
520	    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
521	printf("r12=%08x, ", tf->tf_r12);
522
523	if (TRAP_USERMODE(tf))
524		printf("usp=%08x, ulr=%08x",
525		    tf->tf_usr_sp, tf->tf_usr_lr);
526	else
527		printf("ssp=%08x, slr=%08x",
528		    tf->tf_svc_sp, tf->tf_svc_lr);
529	printf(", pc =%08x\n\n", tf->tf_pc);
530
531#ifdef KDB
532	if (debugger_on_panic || kdb_active)
533		if (kdb_trap(fsr, 0, tf))
534			return (0);
535#endif
536	panic("Fatal abort");
537	/*NOTREACHED*/
538}
539
540/*
541 * dab_align() handles the following data aborts:
542 *
543 *  FAULT_ALIGN_0 - Alignment fault
544 *  FAULT_ALIGN_1 - Alignment fault
545 *
546 * These faults are fatal if they happen in kernel mode. Otherwise, we
547 * deliver a bus error to the process.
548 */
549static int
550dab_align(struct trapframe *tf, u_int fsr, u_int far, struct thread *td,
551    struct ksig *ksig)
552{
553
554	/* Alignment faults are always fatal if they occur in kernel mode */
555	if (!TRAP_USERMODE(tf)) {
556		if (!td || !td->td_pcb->pcb_onfault)
557			dab_fatal(tf, fsr, far, td, ksig);
558		tf->tf_r0 = EFAULT;
559		tf->tf_pc = (int)td->td_pcb->pcb_onfault;
560		return (0);
561	}
562
563	/* pcb_onfault *must* be NULL at this point */
564
565	/* See if the cpu state needs to be fixed up */
566	(void) data_abort_fixup(tf, fsr, far, td, ksig);
567
568	/* Deliver a bus error signal to the process */
569	ksig->code = 0;
570	ksig->signb = SIGBUS;
571	td->td_frame = tf;
572
573	return (1);
574}
575
576/*
577 * dab_buserr() handles the following data aborts:
578 *
579 *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
580 *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
581 *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
582 *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
583 *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
584 *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
585 *
586 * If pcb_onfault is set, flag the fault and return to the handler.
587 * If the fault occurred in user mode, give the process a SIGBUS.
588 *
589 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
590 * can be flagged as imprecise in the FSR. This causes a real headache
591 * since some of the machine state is lost. In this case, tf->tf_pc
592 * may not actually point to the offending instruction. In fact, if
593 * we've taken a double abort fault, it generally points somewhere near
594 * the top of "data_abort_entry" in exception.S.
595 *
596 * In all other cases, these data aborts are considered fatal.
597 */
598static int
599dab_buserr(struct trapframe *tf, u_int fsr, u_int far, struct thread *td,
600    struct ksig *ksig)
601{
602	struct pcb *pcb = td->td_pcb;
603
604#ifdef __XSCALE__
605	if ((fsr & FAULT_IMPRECISE) != 0 &&
606	    (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
607		/*
608		 * Oops, an imprecise, double abort fault. We've lost the
609		 * r14_abt/spsr_abt values corresponding to the original
610		 * abort, and the spsr saved in the trapframe indicates
611		 * ABT mode.
612		 */
613		tf->tf_spsr &= ~PSR_MODE;
614
615		/*
616		 * We use a simple heuristic to determine if the double abort
617		 * happened as a result of a kernel or user mode access.
618		 * If the current trapframe is at the top of the kernel stack,
619		 * the fault _must_ have come from user mode.
620		 */
621		if (tf != ((struct trapframe *)pcb->un_32.pcb32_sp) - 1) {
622			/*
623			 * Kernel mode. We're either about to die a
624			 * spectacular death, or pcb_onfault will come
625			 * to our rescue. Either way, the current value
626			 * of tf->tf_pc is irrelevant.
627			 */
628			tf->tf_spsr |= PSR_SVC32_MODE;
629			if (pcb->pcb_onfault == NULL)
630				printf("\nKernel mode double abort!\n");
631		} else {
632			/*
633			 * User mode. We've lost the program counter at the
634			 * time of the fault (not that it was accurate anyway;
635			 * it's not called an imprecise fault for nothing).
636			 * About all we can do is copy r14_usr to tf_pc and
637			 * hope for the best. The process is about to get a
638			 * SIGBUS, so it's probably history anyway.
639			 */
640			tf->tf_spsr |= PSR_USR32_MODE;
641			tf->tf_pc = tf->tf_usr_lr;
642		}
643	}
644
645	/* FAR is invalid for imprecise exceptions */
646	if ((fsr & FAULT_IMPRECISE) != 0)
647		far = 0;
648#endif /* __XSCALE__ */
649
650	if (pcb->pcb_onfault) {
651		tf->tf_r0 = EFAULT;
652		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
653		return (0);
654	}
655
656	/* See if the cpu state needs to be fixed up */
657	(void) data_abort_fixup(tf, fsr, far, td, ksig);
658
659	/*
660	 * At this point, if the fault happened in kernel mode, we're toast
661	 */
662	if (!TRAP_USERMODE(tf))
663		dab_fatal(tf, fsr, far, td, ksig);
664
665	/* Deliver a bus error signal to the process */
666	ksig->signb = SIGBUS;
667	ksig->code = 0;
668	td->td_frame = tf;
669
670	return (1);
671}
672
673static __inline int
674prefetch_abort_fixup(struct trapframe *tf, struct ksig *ksig)
675{
676#ifdef CPU_ABORT_FIXUP_REQUIRED
677	int error;
678
679	/* Call the cpu specific prefetch abort fixup routine */
680	error = cpu_prefetchabt_fixup(tf);
681	if (__predict_true(error != ABORT_FIXUP_FAILED))
682		return (error);
683
684	/*
685	 * Oops, couldn't fix up the instruction
686	 */
687	printf(
688	    "prefetch_abort_fixup: fixup for %s mode prefetch abort failed.\n",
689	    TRAP_USERMODE(tf) ? "user" : "kernel");
690	printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
691	    *((u_int *)tf->tf_pc));
692	disassemble(tf->tf_pc);
693
694	/* Die now if this happened in kernel mode */
695	if (!TRAP_USERMODE(tf))
696		dab_fatal(tf, 0, tf->tf_pc, NULL, ksig);
697
698	return (error);
699#else
700	return (ABORT_FIXUP_OK);
701#endif /* CPU_ABORT_FIXUP_REQUIRED */
702}
703
704/*
705 * void prefetch_abort_handler(struct trapframe *tf)
706 *
707 * Abort handler called when instruction execution occurs at
708 * a non existent or restricted (access permissions) memory page.
709 * If the address is invalid and we were in SVC mode then panic as
710 * the kernel should never prefetch abort.
711 * If the address is invalid and the page is mapped then the user process
712 * does no have read permission so send it a signal.
713 * Otherwise fault the page in and try again.
714 */
715void
716prefetch_abort_handler(struct trapframe *tf)
717{
718	struct thread *td;
719	struct proc * p;
720	struct vm_map *map;
721	vm_offset_t fault_pc, va;
722	int error = 0;
723	struct ksig ksig;
724
725
726#if 0
727	/* Update vmmeter statistics */
728	uvmexp.traps++;
729#endif
730#if 0
731	printf("prefetch abort handler: %p %p\n", (void*)tf->tf_pc,
732	    (void*)tf->tf_usr_lr);
733#endif
734
735 	td = curthread;
736	p = td->td_proc;
737	PCPU_INC(cnt.v_trap);
738
739	if (TRAP_USERMODE(tf)) {
740		td->td_frame = tf;
741		if (td->td_ucred != td->td_proc->p_ucred)
742			cred_update_thread(td);
743	}
744	fault_pc = tf->tf_pc;
745	if (td->td_md.md_spinlock_count == 0) {
746		if (__predict_true(tf->tf_spsr & I32_bit) == 0)
747			enable_interrupts(I32_bit);
748		if (__predict_true(tf->tf_spsr & F32_bit) == 0)
749			enable_interrupts(F32_bit);
750	}
751
752	/* See if the cpu state needs to be fixed up */
753	switch (prefetch_abort_fixup(tf, &ksig)) {
754	case ABORT_FIXUP_RETURN:
755		return;
756	case ABORT_FIXUP_FAILED:
757		/* Deliver a SIGILL to the process */
758		ksig.signb = SIGILL;
759		ksig.code = 0;
760		td->td_frame = tf;
761		goto do_trapsignal;
762	default:
763		break;
764	}
765
766	/* Prefetch aborts cannot happen in kernel mode */
767	if (__predict_false(!TRAP_USERMODE(tf)))
768		dab_fatal(tf, 0, tf->tf_pc, NULL, &ksig);
769	td->td_pticks = 0;
770
771
772	/* Ok validate the address, can only execute in USER space */
773	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
774	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
775		ksig.signb = SIGSEGV;
776		ksig.code = 0;
777		goto do_trapsignal;
778	}
779
780	map = &td->td_proc->p_vmspace->vm_map;
781	va = trunc_page(fault_pc);
782
783	/*
784	 * See if the pmap can handle this fault on its own...
785	 */
786#ifdef DEBUG
787	last_fault_code = -1;
788#endif
789	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1))
790		goto out;
791
792	if (map != kernel_map) {
793		PROC_LOCK(p);
794		p->p_lock++;
795		PROC_UNLOCK(p);
796	}
797
798	error = vm_fault(map, va, VM_PROT_READ | VM_PROT_EXECUTE,
799	    VM_FAULT_NORMAL);
800	if (map != kernel_map) {
801		PROC_LOCK(p);
802		p->p_lock--;
803		PROC_UNLOCK(p);
804	}
805
806	if (__predict_true(error == 0))
807		goto out;
808
809	if (error == ENOMEM) {
810		printf("VM: pid %d (%s), uid %d killed: "
811		    "out of swap\n", td->td_proc->p_pid, td->td_name,
812		    (td->td_proc->p_ucred) ?
813		     td->td_proc->p_ucred->cr_uid : -1);
814		ksig.signb = SIGKILL;
815	} else {
816		ksig.signb = SIGSEGV;
817	}
818	ksig.code = 0;
819
820do_trapsignal:
821	call_trapsignal(td, ksig.signb, ksig.code);
822
823out:
824	userret(td, tf);
825
826}
827
828extern int badaddr_read_1(const uint8_t *, uint8_t *);
829extern int badaddr_read_2(const uint16_t *, uint16_t *);
830extern int badaddr_read_4(const uint32_t *, uint32_t *);
831/*
832 * Tentatively read an 8, 16, or 32-bit value from 'addr'.
833 * If the read succeeds, the value is written to 'rptr' and zero is returned.
834 * Else, return EFAULT.
835 */
836int
837badaddr_read(void *addr, size_t size, void *rptr)
838{
839	union {
840		uint8_t v1;
841		uint16_t v2;
842		uint32_t v4;
843	} u;
844	int rv;
845
846	cpu_drain_writebuf();
847
848	/* Read from the test address. */
849	switch (size) {
850	case sizeof(uint8_t):
851		rv = badaddr_read_1(addr, &u.v1);
852		if (rv == 0 && rptr)
853			*(uint8_t *) rptr = u.v1;
854		break;
855
856	case sizeof(uint16_t):
857		rv = badaddr_read_2(addr, &u.v2);
858		if (rv == 0 && rptr)
859			*(uint16_t *) rptr = u.v2;
860		break;
861
862	case sizeof(uint32_t):
863		rv = badaddr_read_4(addr, &u.v4);
864		if (rv == 0 && rptr)
865			*(uint32_t *) rptr = u.v4;
866		break;
867
868	default:
869		panic("badaddr: invalid size (%lu)", (u_long) size);
870	}
871
872	/* Return EFAULT if the address was invalid, else zero */
873	return (rv);
874}
875
876int
877cpu_fetch_syscall_args(struct thread *td, struct syscall_args *sa)
878{
879	struct proc *p;
880	register_t *ap;
881	int error;
882
883#ifdef __ARM_EABI__
884	sa->code = td->td_frame->tf_r7;
885#else
886	sa->code = sa->insn & 0x000fffff;
887#endif
888	ap = &td->td_frame->tf_r0;
889	if (sa->code == SYS_syscall) {
890		sa->code = *ap++;
891		sa->nap--;
892	} else if (sa->code == SYS___syscall) {
893		sa->code = ap[_QUAD_LOWWORD];
894		sa->nap -= 2;
895		ap += 2;
896	}
897	p = td->td_proc;
898	if (p->p_sysent->sv_mask)
899		sa->code &= p->p_sysent->sv_mask;
900	if (sa->code >= p->p_sysent->sv_size)
901		sa->callp = &p->p_sysent->sv_table[0];
902	else
903		sa->callp = &p->p_sysent->sv_table[sa->code];
904	sa->narg = sa->callp->sy_narg;
905	error = 0;
906	memcpy(sa->args, ap, sa->nap * sizeof(register_t));
907	if (sa->narg > sa->nap) {
908		error = copyin((void *)td->td_frame->tf_usr_sp, sa->args +
909		    sa->nap, (sa->narg - sa->nap) * sizeof(register_t));
910	}
911	if (error == 0) {
912		td->td_retval[0] = 0;
913		td->td_retval[1] = 0;
914	}
915	return (error);
916}
917
918#include "../../kern/subr_syscall.c"
919
920static void
921syscall(struct thread *td, struct trapframe *frame)
922{
923	struct syscall_args sa;
924	int error;
925
926#ifndef __ARM_EABI__
927	sa.insn = *(uint32_t *)(frame->tf_pc - INSN_SIZE);
928	switch (sa.insn & SWI_OS_MASK) {
929	case 0: /* XXX: we need our own one. */
930		break;
931	default:
932		call_trapsignal(td, SIGILL, 0);
933		userret(td, frame);
934		return;
935	}
936#endif
937	sa.nap = 4;
938
939	error = syscallenter(td, &sa);
940	KASSERT(error != 0 || td->td_ar == NULL,
941	    ("returning from syscall with td_ar set!"));
942	syscallret(td, error, &sa);
943}
944
945void
946swi_handler(struct trapframe *frame)
947{
948	struct thread *td = curthread;
949
950	td->td_frame = frame;
951
952	td->td_pticks = 0;
953	/*
954      	 * Make sure the program counter is correctly aligned so we
955	 * don't take an alignment fault trying to read the opcode.
956	 */
957	if (__predict_false(((frame->tf_pc - INSN_SIZE) & 3) != 0)) {
958		call_trapsignal(td, SIGILL, 0);
959		userret(td, frame);
960		return;
961	}
962	/*
963	 * Enable interrupts if they were enabled before the exception.
964	 * Since all syscalls *should* come from user mode it will always
965	 * be safe to enable them, but check anyway.
966	 */
967	if (td->td_md.md_spinlock_count == 0) {
968		if (__predict_true(frame->tf_spsr & I32_bit) == 0)
969			enable_interrupts(I32_bit);
970		if (__predict_true(frame->tf_spsr & F32_bit) == 0)
971			enable_interrupts(F32_bit);
972	}
973
974	syscall(td, frame);
975}
976
977