pmap-v6.c revision 266160
1/* From: $NetBSD: pmap.c,v 1.148 2004/04/03 04:35:48 bsh Exp $ */
2/*-
3 * Copyright 2011 Semihalf
4 * Copyright 2004 Olivier Houchard.
5 * Copyright 2003 Wasabi Systems, Inc.
6 * All rights reserved.
7 *
8 * Written by Steve C. Woodford for Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *      This product includes software developed for the NetBSD Project by
21 *      Wasabi Systems, Inc.
22 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
23 *    or promote products derived from this software without specific prior
24 *    written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 *
38 * From: FreeBSD: src/sys/arm/arm/pmap.c,v 1.113 2009/07/24 13:50:29
39 */
40
41/*-
42 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
43 * Copyright (c) 2001 Richard Earnshaw
44 * Copyright (c) 2001-2002 Christopher Gilbert
45 * All rights reserved.
46 *
47 * 1. Redistributions of source code must retain the above copyright
48 *    notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 *    notice, this list of conditions and the following disclaimer in the
51 *    documentation and/or other materials provided with the distribution.
52 * 3. The name of the company nor the name of the author may be used to
53 *    endorse or promote products derived from this software without specific
54 *    prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
57 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
58 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
60 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
61 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
62 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 */
68/*-
69 * Copyright (c) 1999 The NetBSD Foundation, Inc.
70 * All rights reserved.
71 *
72 * This code is derived from software contributed to The NetBSD Foundation
73 * by Charles M. Hannum.
74 *
75 * Redistribution and use in source and binary forms, with or without
76 * modification, are permitted provided that the following conditions
77 * are met:
78 * 1. Redistributions of source code must retain the above copyright
79 *    notice, this list of conditions and the following disclaimer.
80 * 2. Redistributions in binary form must reproduce the above copyright
81 *    notice, this list of conditions and the following disclaimer in the
82 *    documentation and/or other materials provided with the distribution.
83 *
84 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
85 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
86 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
87 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
88 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
89 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
90 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
91 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
92 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
93 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
94 * POSSIBILITY OF SUCH DAMAGE.
95 */
96
97/*-
98 * Copyright (c) 1994-1998 Mark Brinicombe.
99 * Copyright (c) 1994 Brini.
100 * All rights reserved.
101 *
102 * This code is derived from software written for Brini by Mark Brinicombe
103 *
104 * Redistribution and use in source and binary forms, with or without
105 * modification, are permitted provided that the following conditions
106 * are met:
107 * 1. Redistributions of source code must retain the above copyright
108 *    notice, this list of conditions and the following disclaimer.
109 * 2. Redistributions in binary form must reproduce the above copyright
110 *    notice, this list of conditions and the following disclaimer in the
111 *    documentation and/or other materials provided with the distribution.
112 * 3. All advertising materials mentioning features or use of this software
113 *    must display the following acknowledgement:
114 *      This product includes software developed by Mark Brinicombe.
115 * 4. The name of the author may not be used to endorse or promote products
116 *    derived from this software without specific prior written permission.
117 *
118 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
119 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
120 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
121 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
122 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
123 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
124 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
125 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
126 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
127 *
128 * RiscBSD kernel project
129 *
130 * pmap.c
131 *
132 * Machine dependant vm stuff
133 *
134 * Created      : 20/09/94
135 */
136
137/*
138 * Special compilation symbols
139 * PMAP_DEBUG           - Build in pmap_debug_level code
140 *
141 * Note that pmap_mapdev() and pmap_unmapdev() are implemented in arm/devmap.c
142*/
143/* Include header files */
144
145#include "opt_vm.h"
146#include "opt_pmap.h"
147
148#include <sys/cdefs.h>
149__FBSDID("$FreeBSD: stable/10/sys/arm/arm/pmap-v6.c 266160 2014-05-15 17:30:16Z ian $");
150#include <sys/param.h>
151#include <sys/systm.h>
152#include <sys/kernel.h>
153#include <sys/ktr.h>
154#include <sys/lock.h>
155#include <sys/proc.h>
156#include <sys/malloc.h>
157#include <sys/msgbuf.h>
158#include <sys/mutex.h>
159#include <sys/vmmeter.h>
160#include <sys/mman.h>
161#include <sys/rwlock.h>
162#include <sys/smp.h>
163#include <sys/sched.h>
164#include <sys/sysctl.h>
165
166#include <vm/vm.h>
167#include <vm/vm_param.h>
168#include <vm/uma.h>
169#include <vm/pmap.h>
170#include <vm/vm_kern.h>
171#include <vm/vm_object.h>
172#include <vm/vm_map.h>
173#include <vm/vm_page.h>
174#include <vm/vm_pageout.h>
175#include <vm/vm_extern.h>
176#include <vm/vm_reserv.h>
177
178#include <machine/md_var.h>
179#include <machine/cpu.h>
180#include <machine/cpufunc.h>
181#include <machine/pcb.h>
182
183#ifdef DEBUG
184extern int last_fault_code;
185#endif
186
187#ifdef PMAP_DEBUG
188#define PDEBUG(_lev_,_stat_) \
189        if (pmap_debug_level >= (_lev_)) \
190                ((_stat_))
191#define dprintf printf
192
193int pmap_debug_level = 0;
194#define PMAP_INLINE
195#else   /* PMAP_DEBUG */
196#define PDEBUG(_lev_,_stat_) /* Nothing */
197#define dprintf(x, arg...)
198#define PMAP_INLINE __inline
199#endif  /* PMAP_DEBUG */
200
201#ifdef PV_STATS
202#define PV_STAT(x)	do { x ; } while (0)
203#else
204#define PV_STAT(x)	do { } while (0)
205#endif
206
207#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
208
209#ifdef ARM_L2_PIPT
210#define pmap_l2cache_wbinv_range(va, pa, size) cpu_l2cache_wbinv_range((pa), (size))
211#define pmap_l2cache_inv_range(va, pa, size) cpu_l2cache_inv_range((pa), (size))
212#else
213#define pmap_l2cache_wbinv_range(va, pa, size) cpu_l2cache_wbinv_range((va), (size))
214#define pmap_l2cache_inv_range(va, pa, size) cpu_l2cache_inv_range((va), (size))
215#endif
216
217extern struct pv_addr systempage;
218
219/*
220 * Internal function prototypes
221 */
222
223static PMAP_INLINE
224struct pv_entry		*pmap_find_pv(struct md_page *, pmap_t, vm_offset_t);
225static void		pmap_free_pv_chunk(struct pv_chunk *pc);
226static void		pmap_free_pv_entry(pmap_t pmap, pv_entry_t pv);
227static pv_entry_t 	pmap_get_pv_entry(pmap_t pmap, boolean_t try);
228static vm_page_t 	pmap_pv_reclaim(pmap_t locked_pmap);
229static boolean_t	pmap_pv_insert_section(pmap_t, vm_offset_t,
230    vm_paddr_t);
231static struct pv_entry	*pmap_remove_pv(struct vm_page *, pmap_t, vm_offset_t);
232static int		pmap_pvh_wired_mappings(struct md_page *, int);
233
234static void		pmap_enter_locked(pmap_t, vm_offset_t, vm_prot_t,
235    vm_page_t, vm_prot_t, boolean_t, int);
236static vm_paddr_t	pmap_extract_locked(pmap_t pmap, vm_offset_t va);
237static void		pmap_alloc_l1(pmap_t);
238static void		pmap_free_l1(pmap_t);
239
240static void		pmap_map_section(pmap_t, vm_offset_t, vm_offset_t,
241    vm_prot_t, boolean_t);
242static void		pmap_promote_section(pmap_t, vm_offset_t);
243static boolean_t	pmap_demote_section(pmap_t, vm_offset_t);
244static boolean_t	pmap_enter_section(pmap_t, vm_offset_t, vm_page_t,
245    vm_prot_t);
246static void		pmap_remove_section(pmap_t, vm_offset_t);
247
248static int		pmap_clearbit(struct vm_page *, u_int);
249
250static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vm_offset_t);
251static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vm_offset_t);
252static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
253static vm_offset_t	kernel_pt_lookup(vm_paddr_t);
254
255static MALLOC_DEFINE(M_VMPMAP, "pmap", "PMAP L1");
256
257vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
258vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
259vm_offset_t pmap_curmaxkvaddr;
260vm_paddr_t kernel_l1pa;
261
262vm_offset_t kernel_vm_end = 0;
263
264vm_offset_t vm_max_kernel_address;
265
266struct pmap kernel_pmap_store;
267
268static pt_entry_t *csrc_pte, *cdst_pte;
269static vm_offset_t csrcp, cdstp;
270static struct mtx cmtx;
271
272static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
273/*
274 * These routines are called when the CPU type is identified to set up
275 * the PTE prototypes, cache modes, etc.
276 *
277 * The variables are always here, just in case LKMs need to reference
278 * them (though, they shouldn't).
279 */
280static void pmap_set_prot(pt_entry_t *pte, vm_prot_t prot, uint8_t user);
281pt_entry_t	pte_l1_s_cache_mode;
282pt_entry_t	pte_l1_s_cache_mode_pt;
283
284pt_entry_t	pte_l2_l_cache_mode;
285pt_entry_t	pte_l2_l_cache_mode_pt;
286
287pt_entry_t	pte_l2_s_cache_mode;
288pt_entry_t	pte_l2_s_cache_mode_pt;
289
290struct msgbuf *msgbufp = 0;
291
292/*
293 * Crashdump maps.
294 */
295static caddr_t crashdumpmap;
296
297extern void bcopy_page(vm_offset_t, vm_offset_t);
298extern void bzero_page(vm_offset_t);
299
300char *_tmppt;
301
302/*
303 * Metadata for L1 translation tables.
304 */
305struct l1_ttable {
306	/* Entry on the L1 Table list */
307	SLIST_ENTRY(l1_ttable) l1_link;
308
309	/* Entry on the L1 Least Recently Used list */
310	TAILQ_ENTRY(l1_ttable) l1_lru;
311
312	/* Track how many domains are allocated from this L1 */
313	volatile u_int l1_domain_use_count;
314
315	/*
316	 * A free-list of domain numbers for this L1.
317	 * We avoid using ffs() and a bitmap to track domains since ffs()
318	 * is slow on ARM.
319	 */
320	u_int8_t l1_domain_first;
321	u_int8_t l1_domain_free[PMAP_DOMAINS];
322
323	/* Physical address of this L1 page table */
324	vm_paddr_t l1_physaddr;
325
326	/* KVA of this L1 page table */
327	pd_entry_t *l1_kva;
328};
329
330/*
331 * Convert a virtual address into its L1 table index. That is, the
332 * index used to locate the L2 descriptor table pointer in an L1 table.
333 * This is basically used to index l1->l1_kva[].
334 *
335 * Each L2 descriptor table represents 1MB of VA space.
336 */
337#define	L1_IDX(va)		(((vm_offset_t)(va)) >> L1_S_SHIFT)
338
339/*
340 * L1 Page Tables are tracked using a Least Recently Used list.
341 *  - New L1s are allocated from the HEAD.
342 *  - Freed L1s are added to the TAIl.
343 *  - Recently accessed L1s (where an 'access' is some change to one of
344 *    the userland pmaps which owns this L1) are moved to the TAIL.
345 */
346static TAILQ_HEAD(, l1_ttable) l1_lru_list;
347/*
348 * A list of all L1 tables
349 */
350static SLIST_HEAD(, l1_ttable) l1_list;
351static struct mtx l1_lru_lock;
352
353/*
354 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
355 *
356 * This is normally 16MB worth L2 page descriptors for any given pmap.
357 * Reference counts are maintained for L2 descriptors so they can be
358 * freed when empty.
359 */
360struct l2_dtable {
361	/* The number of L2 page descriptors allocated to this l2_dtable */
362	u_int l2_occupancy;
363
364	/* List of L2 page descriptors */
365	struct l2_bucket {
366		pt_entry_t *l2b_kva;	/* KVA of L2 Descriptor Table */
367		vm_paddr_t l2b_phys;	/* Physical address of same */
368		u_short l2b_l1idx;	/* This L2 table's L1 index */
369		u_short l2b_occupancy;	/* How many active descriptors */
370	} l2_bucket[L2_BUCKET_SIZE];
371};
372
373/* pmap_kenter_internal flags */
374#define KENTER_CACHE	0x1
375#define KENTER_USER	0x2
376
377/*
378 * Given an L1 table index, calculate the corresponding l2_dtable index
379 * and bucket index within the l2_dtable.
380 */
381#define	L2_IDX(l1idx)		(((l1idx) >> L2_BUCKET_LOG2) & \
382				 (L2_SIZE - 1))
383#define	L2_BUCKET(l1idx)	((l1idx) & (L2_BUCKET_SIZE - 1))
384
385/*
386 * Given a virtual address, this macro returns the
387 * virtual address required to drop into the next L2 bucket.
388 */
389#define	L2_NEXT_BUCKET(va)	(((va) & L1_S_FRAME) + L1_S_SIZE)
390
391/*
392 * We try to map the page tables write-through, if possible.  However, not
393 * all CPUs have a write-through cache mode, so on those we have to sync
394 * the cache when we frob page tables.
395 *
396 * We try to evaluate this at compile time, if possible.  However, it's
397 * not always possible to do that, hence this run-time var.
398 */
399int	pmap_needs_pte_sync;
400
401/*
402 * Macro to determine if a mapping might be resident in the
403 * instruction cache and/or TLB
404 */
405#define	PTE_BEEN_EXECD(pte)  (L2_S_EXECUTABLE(pte) && L2_S_REFERENCED(pte))
406
407/*
408 * Macro to determine if a mapping might be resident in the
409 * data cache and/or TLB
410 */
411#define	PTE_BEEN_REFD(pte)   (L2_S_REFERENCED(pte))
412
413#ifndef PMAP_SHPGPERPROC
414#define PMAP_SHPGPERPROC 200
415#endif
416
417#define pmap_is_current(pm)	((pm) == pmap_kernel() || \
418            curproc->p_vmspace->vm_map.pmap == (pm))
419
420/*
421 * Data for the pv entry allocation mechanism
422 */
423static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
424static int pv_entry_count, pv_entry_max, pv_entry_high_water;
425static struct md_page *pv_table;
426static int shpgperproc = PMAP_SHPGPERPROC;
427
428struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
429int pv_maxchunks;			/* How many chunks we have KVA for */
430vm_offset_t pv_vafree;			/* Freelist stored in the PTE */
431
432static __inline struct pv_chunk *
433pv_to_chunk(pv_entry_t pv)
434{
435
436	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
437}
438
439#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
440
441CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
442CTASSERT(_NPCM == 8);
443CTASSERT(_NPCPV == 252);
444
445#define	PC_FREE0_6	0xfffffffful	/* Free values for index 0 through 6 */
446#define	PC_FREE7	0x0ffffffful	/* Free values for index 7 */
447
448static const uint32_t pc_freemask[_NPCM] = {
449	PC_FREE0_6, PC_FREE0_6, PC_FREE0_6,
450	PC_FREE0_6, PC_FREE0_6, PC_FREE0_6,
451	PC_FREE0_6, PC_FREE7
452};
453
454static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
455
456/* Superpages utilization enabled = 1 / disabled = 0 */
457static int sp_enabled = 0;
458SYSCTL_INT(_vm_pmap, OID_AUTO, sp_enabled, CTLFLAG_RDTUN, &sp_enabled, 0,
459    "Are large page mappings enabled?");
460
461SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
462    "Current number of pv entries");
463
464#ifdef PV_STATS
465static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
466
467SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
468    "Current number of pv entry chunks");
469SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
470    "Current number of pv entry chunks allocated");
471SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
472    "Current number of pv entry chunks frees");
473SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
474    "Number of times tried to get a chunk page but failed.");
475
476static long pv_entry_frees, pv_entry_allocs;
477static int pv_entry_spare;
478
479SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
480    "Current number of pv entry frees");
481SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
482    "Current number of pv entry allocs");
483SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
484    "Current number of spare pv entries");
485#endif
486
487uma_zone_t l2zone;
488static uma_zone_t l2table_zone;
489static vm_offset_t pmap_kernel_l2dtable_kva;
490static vm_offset_t pmap_kernel_l2ptp_kva;
491static vm_paddr_t pmap_kernel_l2ptp_phys;
492static struct rwlock pvh_global_lock;
493
494int l1_mem_types[] = {
495	ARM_L1S_STRONG_ORD,
496	ARM_L1S_DEVICE_NOSHARE,
497	ARM_L1S_DEVICE_SHARE,
498	ARM_L1S_NRML_NOCACHE,
499	ARM_L1S_NRML_IWT_OWT,
500	ARM_L1S_NRML_IWB_OWB,
501	ARM_L1S_NRML_IWBA_OWBA
502};
503
504int l2l_mem_types[] = {
505	ARM_L2L_STRONG_ORD,
506	ARM_L2L_DEVICE_NOSHARE,
507	ARM_L2L_DEVICE_SHARE,
508	ARM_L2L_NRML_NOCACHE,
509	ARM_L2L_NRML_IWT_OWT,
510	ARM_L2L_NRML_IWB_OWB,
511	ARM_L2L_NRML_IWBA_OWBA
512};
513
514int l2s_mem_types[] = {
515	ARM_L2S_STRONG_ORD,
516	ARM_L2S_DEVICE_NOSHARE,
517	ARM_L2S_DEVICE_SHARE,
518	ARM_L2S_NRML_NOCACHE,
519	ARM_L2S_NRML_IWT_OWT,
520	ARM_L2S_NRML_IWB_OWB,
521	ARM_L2S_NRML_IWBA_OWBA
522};
523
524/*
525 * This list exists for the benefit of pmap_map_chunk().  It keeps track
526 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
527 * find them as necessary.
528 *
529 * Note that the data on this list MUST remain valid after initarm() returns,
530 * as pmap_bootstrap() uses it to contruct L2 table metadata.
531 */
532SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
533
534static void
535pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
536{
537	int i;
538
539	l1->l1_kva = l1pt;
540	l1->l1_domain_use_count = 0;
541	l1->l1_domain_first = 0;
542
543	for (i = 0; i < PMAP_DOMAINS; i++)
544		l1->l1_domain_free[i] = i + 1;
545
546	/*
547	 * Copy the kernel's L1 entries to each new L1.
548	 */
549	if (l1pt != pmap_kernel()->pm_l1->l1_kva)
550		memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
551
552	if ((l1->l1_physaddr = pmap_extract(pmap_kernel(), (vm_offset_t)l1pt)) == 0)
553		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
554	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
555	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
556}
557
558static vm_offset_t
559kernel_pt_lookup(vm_paddr_t pa)
560{
561	struct pv_addr *pv;
562
563	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
564		if (pv->pv_pa == pa)
565			return (pv->pv_va);
566	}
567	return (0);
568}
569
570void
571pmap_pte_init_mmu_v6(void)
572{
573
574	if (PTE_PAGETABLE >= 3)
575		pmap_needs_pte_sync = 1;
576	pte_l1_s_cache_mode = l1_mem_types[PTE_CACHE];
577	pte_l2_l_cache_mode = l2l_mem_types[PTE_CACHE];
578	pte_l2_s_cache_mode = l2s_mem_types[PTE_CACHE];
579
580	pte_l1_s_cache_mode_pt = l1_mem_types[PTE_PAGETABLE];
581	pte_l2_l_cache_mode_pt = l2l_mem_types[PTE_PAGETABLE];
582	pte_l2_s_cache_mode_pt = l2s_mem_types[PTE_PAGETABLE];
583
584}
585
586/*
587 * Allocate an L1 translation table for the specified pmap.
588 * This is called at pmap creation time.
589 */
590static void
591pmap_alloc_l1(pmap_t pmap)
592{
593	struct l1_ttable *l1;
594	u_int8_t domain;
595
596	/*
597	 * Remove the L1 at the head of the LRU list
598	 */
599	mtx_lock(&l1_lru_lock);
600	l1 = TAILQ_FIRST(&l1_lru_list);
601	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
602
603	/*
604	 * Pick the first available domain number, and update
605	 * the link to the next number.
606	 */
607	domain = l1->l1_domain_first;
608	l1->l1_domain_first = l1->l1_domain_free[domain];
609
610	/*
611	 * If there are still free domain numbers in this L1,
612	 * put it back on the TAIL of the LRU list.
613	 */
614	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
615		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
616
617	mtx_unlock(&l1_lru_lock);
618
619	/*
620	 * Fix up the relevant bits in the pmap structure
621	 */
622	pmap->pm_l1 = l1;
623	pmap->pm_domain = domain + 1;
624}
625
626/*
627 * Free an L1 translation table.
628 * This is called at pmap destruction time.
629 */
630static void
631pmap_free_l1(pmap_t pmap)
632{
633	struct l1_ttable *l1 = pmap->pm_l1;
634
635	mtx_lock(&l1_lru_lock);
636
637	/*
638	 * If this L1 is currently on the LRU list, remove it.
639	 */
640	if (l1->l1_domain_use_count < PMAP_DOMAINS)
641		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
642
643	/*
644	 * Free up the domain number which was allocated to the pmap
645	 */
646	l1->l1_domain_free[pmap->pm_domain - 1] = l1->l1_domain_first;
647	l1->l1_domain_first = pmap->pm_domain - 1;
648	l1->l1_domain_use_count--;
649
650	/*
651	 * The L1 now must have at least 1 free domain, so add
652	 * it back to the LRU list. If the use count is zero,
653	 * put it at the head of the list, otherwise it goes
654	 * to the tail.
655	 */
656	if (l1->l1_domain_use_count == 0) {
657		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
658	}	else
659		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
660
661	mtx_unlock(&l1_lru_lock);
662}
663
664/*
665 * Returns a pointer to the L2 bucket associated with the specified pmap
666 * and VA, or NULL if no L2 bucket exists for the address.
667 */
668static PMAP_INLINE struct l2_bucket *
669pmap_get_l2_bucket(pmap_t pmap, vm_offset_t va)
670{
671	struct l2_dtable *l2;
672	struct l2_bucket *l2b;
673	u_short l1idx;
674
675	l1idx = L1_IDX(va);
676
677	if ((l2 = pmap->pm_l2[L2_IDX(l1idx)]) == NULL ||
678	    (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
679		return (NULL);
680
681	return (l2b);
682}
683
684/*
685 * Returns a pointer to the L2 bucket associated with the specified pmap
686 * and VA.
687 *
688 * If no L2 bucket exists, perform the necessary allocations to put an L2
689 * bucket/page table in place.
690 *
691 * Note that if a new L2 bucket/page was allocated, the caller *must*
692 * increment the bucket occupancy counter appropriately *before*
693 * releasing the pmap's lock to ensure no other thread or cpu deallocates
694 * the bucket/page in the meantime.
695 */
696static struct l2_bucket *
697pmap_alloc_l2_bucket(pmap_t pmap, vm_offset_t va)
698{
699	struct l2_dtable *l2;
700	struct l2_bucket *l2b;
701	u_short l1idx;
702
703	l1idx = L1_IDX(va);
704
705	PMAP_ASSERT_LOCKED(pmap);
706	rw_assert(&pvh_global_lock, RA_WLOCKED);
707	if ((l2 = pmap->pm_l2[L2_IDX(l1idx)]) == NULL) {
708		/*
709		 * No mapping at this address, as there is
710		 * no entry in the L1 table.
711		 * Need to allocate a new l2_dtable.
712		 */
713		PMAP_UNLOCK(pmap);
714		rw_wunlock(&pvh_global_lock);
715		if ((l2 = uma_zalloc(l2table_zone, M_NOWAIT)) == NULL) {
716			rw_wlock(&pvh_global_lock);
717			PMAP_LOCK(pmap);
718			return (NULL);
719		}
720		rw_wlock(&pvh_global_lock);
721		PMAP_LOCK(pmap);
722		if (pmap->pm_l2[L2_IDX(l1idx)] != NULL) {
723			/*
724			 * Someone already allocated the l2_dtable while
725			 * we were doing the same.
726			 */
727			uma_zfree(l2table_zone, l2);
728			l2 = pmap->pm_l2[L2_IDX(l1idx)];
729		} else {
730			bzero(l2, sizeof(*l2));
731			/*
732			 * Link it into the parent pmap
733			 */
734			pmap->pm_l2[L2_IDX(l1idx)] = l2;
735		}
736	}
737
738	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
739
740	/*
741	 * Fetch pointer to the L2 page table associated with the address.
742	 */
743	if (l2b->l2b_kva == NULL) {
744		pt_entry_t *ptep;
745
746		/*
747		 * No L2 page table has been allocated. Chances are, this
748		 * is because we just allocated the l2_dtable, above.
749		 */
750		PMAP_UNLOCK(pmap);
751		rw_wunlock(&pvh_global_lock);
752		ptep = uma_zalloc(l2zone, M_NOWAIT);
753		rw_wlock(&pvh_global_lock);
754		PMAP_LOCK(pmap);
755		if (l2b->l2b_kva != 0) {
756			/* We lost the race. */
757			uma_zfree(l2zone, ptep);
758			return (l2b);
759		}
760		l2b->l2b_phys = vtophys(ptep);
761		if (ptep == NULL) {
762			/*
763			 * Oops, no more L2 page tables available at this
764			 * time. We may need to deallocate the l2_dtable
765			 * if we allocated a new one above.
766			 */
767			if (l2->l2_occupancy == 0) {
768				pmap->pm_l2[L2_IDX(l1idx)] = NULL;
769				uma_zfree(l2table_zone, l2);
770			}
771			return (NULL);
772		}
773
774		l2->l2_occupancy++;
775		l2b->l2b_kva = ptep;
776		l2b->l2b_l1idx = l1idx;
777	}
778
779	return (l2b);
780}
781
782static PMAP_INLINE void
783pmap_free_l2_ptp(pt_entry_t *l2)
784{
785	uma_zfree(l2zone, l2);
786}
787/*
788 * One or more mappings in the specified L2 descriptor table have just been
789 * invalidated.
790 *
791 * Garbage collect the metadata and descriptor table itself if necessary.
792 *
793 * The pmap lock must be acquired when this is called (not necessary
794 * for the kernel pmap).
795 */
796static void
797pmap_free_l2_bucket(pmap_t pmap, struct l2_bucket *l2b, u_int count)
798{
799	struct l2_dtable *l2;
800	pd_entry_t *pl1pd, l1pd;
801	pt_entry_t *ptep;
802	u_short l1idx;
803
804
805	/*
806	 * Update the bucket's reference count according to how many
807	 * PTEs the caller has just invalidated.
808	 */
809	l2b->l2b_occupancy -= count;
810
811	/*
812	 * Note:
813	 *
814	 * Level 2 page tables allocated to the kernel pmap are never freed
815	 * as that would require checking all Level 1 page tables and
816	 * removing any references to the Level 2 page table. See also the
817	 * comment elsewhere about never freeing bootstrap L2 descriptors.
818	 *
819	 * We make do with just invalidating the mapping in the L2 table.
820	 *
821	 * This isn't really a big deal in practice and, in fact, leads
822	 * to a performance win over time as we don't need to continually
823	 * alloc/free.
824	 */
825	if (l2b->l2b_occupancy > 0 || pmap == pmap_kernel())
826		return;
827
828	/*
829	 * There are no more valid mappings in this level 2 page table.
830	 * Go ahead and NULL-out the pointer in the bucket, then
831	 * free the page table.
832	 */
833	l1idx = l2b->l2b_l1idx;
834	ptep = l2b->l2b_kva;
835	l2b->l2b_kva = NULL;
836
837	pl1pd = &pmap->pm_l1->l1_kva[l1idx];
838
839	/*
840	 * If the L1 slot matches the pmap's domain
841	 * number, then invalidate it.
842	 */
843	l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
844	if (l1pd == (L1_C_DOM(pmap->pm_domain) | L1_TYPE_C)) {
845		*pl1pd = 0;
846		PTE_SYNC(pl1pd);
847	}
848
849	/*
850	 * Release the L2 descriptor table back to the pool cache.
851	 */
852	pmap_free_l2_ptp(ptep);
853
854	/*
855	 * Update the reference count in the associated l2_dtable
856	 */
857	l2 = pmap->pm_l2[L2_IDX(l1idx)];
858	if (--l2->l2_occupancy > 0)
859		return;
860
861	/*
862	 * There are no more valid mappings in any of the Level 1
863	 * slots managed by this l2_dtable. Go ahead and NULL-out
864	 * the pointer in the parent pmap and free the l2_dtable.
865	 */
866	pmap->pm_l2[L2_IDX(l1idx)] = NULL;
867	uma_zfree(l2table_zone, l2);
868}
869
870/*
871 * Pool cache constructors for L2 descriptor tables, metadata and pmap
872 * structures.
873 */
874static int
875pmap_l2ptp_ctor(void *mem, int size, void *arg, int flags)
876{
877	struct l2_bucket *l2b;
878	pt_entry_t *ptep, pte;
879	vm_offset_t va = (vm_offset_t)mem & ~PAGE_MASK;
880
881	/*
882	 * The mappings for these page tables were initially made using
883	 * pmap_kenter() by the pool subsystem. Therefore, the cache-
884	 * mode will not be right for page table mappings. To avoid
885	 * polluting the pmap_kenter() code with a special case for
886	 * page tables, we simply fix up the cache-mode here if it's not
887	 * correct.
888	 */
889	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
890	ptep = &l2b->l2b_kva[l2pte_index(va)];
891	pte = *ptep;
892
893	cpu_idcache_wbinv_range(va, PAGE_SIZE);
894	pmap_l2cache_wbinv_range(va, pte & L2_S_FRAME, PAGE_SIZE);
895	if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
896		/*
897		 * Page tables must have the cache-mode set to
898		 * Write-Thru.
899		 */
900		*ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
901		PTE_SYNC(ptep);
902		cpu_tlb_flushD_SE(va);
903		cpu_cpwait();
904	}
905
906	memset(mem, 0, L2_TABLE_SIZE_REAL);
907	return (0);
908}
909
910/*
911 * Modify pte bits for all ptes corresponding to the given physical address.
912 * We use `maskbits' rather than `clearbits' because we're always passing
913 * constants and the latter would require an extra inversion at run-time.
914 */
915static int
916pmap_clearbit(struct vm_page *m, u_int maskbits)
917{
918	struct l2_bucket *l2b;
919	struct pv_entry *pv, *pve, *next_pv;
920	struct md_page *pvh;
921	pd_entry_t *pl1pd;
922	pt_entry_t *ptep, npte, opte;
923	pmap_t pmap;
924	vm_offset_t va;
925	u_int oflags;
926	int count = 0;
927
928	rw_wlock(&pvh_global_lock);
929	if ((m->flags & PG_FICTITIOUS) != 0)
930		goto small_mappings;
931
932	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
933	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
934		va = pv->pv_va;
935		pmap = PV_PMAP(pv);
936		PMAP_LOCK(pmap);
937		pl1pd = &pmap->pm_l1->l1_kva[L1_IDX(va)];
938		KASSERT((*pl1pd & L1_TYPE_MASK) == L1_S_PROTO,
939		    ("pmap_clearbit: valid section mapping expected"));
940		if ((maskbits & PVF_WRITE) && (pv->pv_flags & PVF_WRITE))
941			(void)pmap_demote_section(pmap, va);
942		else if ((maskbits & PVF_REF) && L1_S_REFERENCED(*pl1pd)) {
943			if (pmap_demote_section(pmap, va)) {
944				if ((pv->pv_flags & PVF_WIRED) == 0) {
945					/*
946					 * Remove the mapping to a single page
947					 * so that a subsequent access may
948					 * repromote. Since the underlying
949					 * l2_bucket is fully populated, this
950					 * removal never frees an entire
951					 * l2_bucket.
952					 */
953					va += (VM_PAGE_TO_PHYS(m) &
954					    L1_S_OFFSET);
955					l2b = pmap_get_l2_bucket(pmap, va);
956					KASSERT(l2b != NULL,
957					    ("pmap_clearbit: no l2 bucket for "
958					     "va 0x%#x, pmap 0x%p", va, pmap));
959					ptep = &l2b->l2b_kva[l2pte_index(va)];
960					*ptep = 0;
961					PTE_SYNC(ptep);
962					pmap_free_l2_bucket(pmap, l2b, 1);
963					pve = pmap_remove_pv(m, pmap, va);
964					KASSERT(pve != NULL, ("pmap_clearbit: "
965					    "no PV entry for managed mapping"));
966					pmap_free_pv_entry(pmap, pve);
967
968				}
969			}
970		} else if ((maskbits & PVF_MOD) && L1_S_WRITABLE(*pl1pd)) {
971			if (pmap_demote_section(pmap, va)) {
972				if ((pv->pv_flags & PVF_WIRED) == 0) {
973					/*
974					 * Write protect the mapping to a
975					 * single page so that a subsequent
976					 * write access may repromote.
977					 */
978					va += (VM_PAGE_TO_PHYS(m) &
979					    L1_S_OFFSET);
980					l2b = pmap_get_l2_bucket(pmap, va);
981					KASSERT(l2b != NULL,
982					    ("pmap_clearbit: no l2 bucket for "
983					     "va 0x%#x, pmap 0x%p", va, pmap));
984					ptep = &l2b->l2b_kva[l2pte_index(va)];
985					if ((*ptep & L2_S_PROTO) != 0) {
986						pve = pmap_find_pv(&m->md,
987						    pmap, va);
988						KASSERT(pve != NULL,
989						    ("pmap_clearbit: no PV "
990						    "entry for managed mapping"));
991						pve->pv_flags &= ~PVF_WRITE;
992						*ptep |= L2_APX;
993						PTE_SYNC(ptep);
994					}
995				}
996			}
997		}
998		PMAP_UNLOCK(pmap);
999	}
1000
1001small_mappings:
1002	if (TAILQ_EMPTY(&m->md.pv_list)) {
1003		rw_wunlock(&pvh_global_lock);
1004		return (0);
1005	}
1006
1007	/*
1008	 * Loop over all current mappings setting/clearing as appropos
1009	 */
1010	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1011		va = pv->pv_va;
1012		pmap = PV_PMAP(pv);
1013		oflags = pv->pv_flags;
1014		pv->pv_flags &= ~maskbits;
1015
1016		PMAP_LOCK(pmap);
1017
1018		l2b = pmap_get_l2_bucket(pmap, va);
1019		KASSERT(l2b != NULL, ("pmap_clearbit: no l2 bucket for "
1020		    "va 0x%#x, pmap 0x%p", va, pmap));
1021
1022		ptep = &l2b->l2b_kva[l2pte_index(va)];
1023		npte = opte = *ptep;
1024
1025		if (maskbits & (PVF_WRITE | PVF_MOD)) {
1026			/* make the pte read only */
1027			npte |= L2_APX;
1028		}
1029
1030		if (maskbits & PVF_REF) {
1031			/*
1032			 * Clear referenced flag in PTE so that we
1033			 * will take a flag fault the next time the mapping
1034			 * is referenced.
1035			 */
1036			npte &= ~L2_S_REF;
1037		}
1038
1039		CTR4(KTR_PMAP,"clearbit: pmap:%p bits:%x pte:%x->%x",
1040		    pmap, maskbits, opte, npte);
1041		if (npte != opte) {
1042			count++;
1043			*ptep = npte;
1044			PTE_SYNC(ptep);
1045			/* Flush the TLB entry if a current pmap. */
1046			if (PTE_BEEN_EXECD(opte))
1047				cpu_tlb_flushID_SE(pv->pv_va);
1048			else if (PTE_BEEN_REFD(opte))
1049				cpu_tlb_flushD_SE(pv->pv_va);
1050		}
1051
1052		PMAP_UNLOCK(pmap);
1053
1054	}
1055
1056	if (maskbits & PVF_WRITE)
1057		vm_page_aflag_clear(m, PGA_WRITEABLE);
1058	rw_wunlock(&pvh_global_lock);
1059	return (count);
1060}
1061
1062/*
1063 * main pv_entry manipulation functions:
1064 *   pmap_enter_pv: enter a mapping onto a vm_page list
1065 *   pmap_remove_pv: remove a mappiing from a vm_page list
1066 *
1067 * NOTE: pmap_enter_pv expects to lock the pvh itself
1068 *       pmap_remove_pv expects the caller to lock the pvh before calling
1069 */
1070
1071/*
1072 * pmap_enter_pv: enter a mapping onto a vm_page's PV list
1073 *
1074 * => caller should hold the proper lock on pvh_global_lock
1075 * => caller should have pmap locked
1076 * => we will (someday) gain the lock on the vm_page's PV list
1077 * => caller should adjust ptp's wire_count before calling
1078 * => caller should not adjust pmap's wire_count
1079 */
1080static void
1081pmap_enter_pv(struct vm_page *m, struct pv_entry *pve, pmap_t pmap,
1082    vm_offset_t va, u_int flags)
1083{
1084
1085	rw_assert(&pvh_global_lock, RA_WLOCKED);
1086
1087	PMAP_ASSERT_LOCKED(pmap);
1088	pve->pv_va = va;
1089	pve->pv_flags = flags;
1090
1091	TAILQ_INSERT_HEAD(&m->md.pv_list, pve, pv_list);
1092	if (pve->pv_flags & PVF_WIRED)
1093		++pmap->pm_stats.wired_count;
1094}
1095
1096/*
1097 *
1098 * pmap_find_pv: Find a pv entry
1099 *
1100 * => caller should hold lock on vm_page
1101 */
1102static PMAP_INLINE struct pv_entry *
1103pmap_find_pv(struct md_page *md, pmap_t pmap, vm_offset_t va)
1104{
1105	struct pv_entry *pv;
1106
1107	rw_assert(&pvh_global_lock, RA_WLOCKED);
1108	TAILQ_FOREACH(pv, &md->pv_list, pv_list)
1109		if (pmap == PV_PMAP(pv) && va == pv->pv_va)
1110			break;
1111
1112	return (pv);
1113}
1114
1115/*
1116 * vector_page_setprot:
1117 *
1118 *	Manipulate the protection of the vector page.
1119 */
1120void
1121vector_page_setprot(int prot)
1122{
1123	struct l2_bucket *l2b;
1124	pt_entry_t *ptep;
1125
1126	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
1127
1128	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
1129	/*
1130	 * Set referenced flag.
1131	 * Vectors' page is always desired
1132	 * to be allowed to reside in TLB.
1133	 */
1134	*ptep |= L2_S_REF;
1135
1136	pmap_set_prot(ptep, prot|VM_PROT_EXECUTE, 0);
1137
1138	cpu_tlb_flushD_SE(vector_page);
1139	cpu_cpwait();
1140}
1141
1142static void
1143pmap_set_prot(pt_entry_t *ptep, vm_prot_t prot, uint8_t user)
1144{
1145
1146	*ptep &= ~(L2_S_PROT_MASK | L2_XN);
1147
1148	if (!(prot & VM_PROT_EXECUTE))
1149		*ptep |= L2_XN;
1150
1151	/* Set defaults first - kernel read access */
1152	*ptep |= L2_APX;
1153	*ptep |= L2_S_PROT_R;
1154	/* Now tune APs as desired */
1155	if (user)
1156		*ptep |= L2_S_PROT_U;
1157
1158	if (prot & VM_PROT_WRITE)
1159		*ptep &= ~(L2_APX);
1160}
1161
1162/*
1163 * pmap_remove_pv: try to remove a mapping from a pv_list
1164 *
1165 * => caller should hold proper lock on pmap_main_lock
1166 * => pmap should be locked
1167 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1168 * => caller should adjust ptp's wire_count and free PTP if needed
1169 * => caller should NOT adjust pmap's wire_count
1170 * => we return the removed pve
1171 */
1172static struct pv_entry *
1173pmap_remove_pv(struct vm_page *m, pmap_t pmap, vm_offset_t va)
1174{
1175	struct pv_entry *pve;
1176
1177	rw_assert(&pvh_global_lock, RA_WLOCKED);
1178	PMAP_ASSERT_LOCKED(pmap);
1179
1180	pve = pmap_find_pv(&m->md, pmap, va);	/* find corresponding pve */
1181	if (pve != NULL) {
1182		TAILQ_REMOVE(&m->md.pv_list, pve, pv_list);
1183		if (pve->pv_flags & PVF_WIRED)
1184			--pmap->pm_stats.wired_count;
1185	}
1186	if (TAILQ_EMPTY(&m->md.pv_list))
1187		vm_page_aflag_clear(m, PGA_WRITEABLE);
1188
1189	return(pve);				/* return removed pve */
1190}
1191
1192/*
1193 *
1194 * pmap_modify_pv: Update pv flags
1195 *
1196 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1197 * => caller should NOT adjust pmap's wire_count
1198 * => we return the old flags
1199 *
1200 * Modify a physical-virtual mapping in the pv table
1201 */
1202static u_int
1203pmap_modify_pv(struct vm_page *m, pmap_t pmap, vm_offset_t va,
1204    u_int clr_mask, u_int set_mask)
1205{
1206	struct pv_entry *npv;
1207	u_int flags, oflags;
1208
1209	PMAP_ASSERT_LOCKED(pmap);
1210	rw_assert(&pvh_global_lock, RA_WLOCKED);
1211	if ((npv = pmap_find_pv(&m->md, pmap, va)) == NULL)
1212		return (0);
1213
1214	/*
1215	 * There is at least one VA mapping this page.
1216	 */
1217	oflags = npv->pv_flags;
1218	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1219
1220	if ((flags ^ oflags) & PVF_WIRED) {
1221		if (flags & PVF_WIRED)
1222			++pmap->pm_stats.wired_count;
1223		else
1224			--pmap->pm_stats.wired_count;
1225	}
1226
1227	return (oflags);
1228}
1229
1230/* Function to set the debug level of the pmap code */
1231#ifdef PMAP_DEBUG
1232void
1233pmap_debug(int level)
1234{
1235	pmap_debug_level = level;
1236	dprintf("pmap_debug: level=%d\n", pmap_debug_level);
1237}
1238#endif  /* PMAP_DEBUG */
1239
1240void
1241pmap_pinit0(struct pmap *pmap)
1242{
1243	PDEBUG(1, printf("pmap_pinit0: pmap = %08x\n", (u_int32_t) pmap));
1244
1245	bcopy(kernel_pmap, pmap, sizeof(*pmap));
1246	bzero(&pmap->pm_mtx, sizeof(pmap->pm_mtx));
1247	PMAP_LOCK_INIT(pmap);
1248	TAILQ_INIT(&pmap->pm_pvchunk);
1249}
1250
1251/*
1252 *	Initialize a vm_page's machine-dependent fields.
1253 */
1254void
1255pmap_page_init(vm_page_t m)
1256{
1257
1258	TAILQ_INIT(&m->md.pv_list);
1259	m->md.pv_memattr = VM_MEMATTR_DEFAULT;
1260}
1261
1262static vm_offset_t
1263pmap_ptelist_alloc(vm_offset_t *head)
1264{
1265	pt_entry_t *pte;
1266	vm_offset_t va;
1267
1268	va = *head;
1269	if (va == 0)
1270		return (va);	/* Out of memory */
1271	pte = vtopte(va);
1272	*head = *pte;
1273	if ((*head & L2_TYPE_MASK) != L2_TYPE_INV)
1274		panic("%s: va is not L2_TYPE_INV!", __func__);
1275	*pte = 0;
1276	return (va);
1277}
1278
1279static void
1280pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
1281{
1282	pt_entry_t *pte;
1283
1284	if ((va & L2_TYPE_MASK) != L2_TYPE_INV)
1285		panic("%s: freeing va that is not L2_TYPE INV!", __func__);
1286	pte = vtopte(va);
1287	*pte = *head;		/* virtual! L2_TYPE is L2_TYPE_INV though */
1288	*head = va;
1289}
1290
1291static void
1292pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
1293{
1294	int i;
1295	vm_offset_t va;
1296
1297	*head = 0;
1298	for (i = npages - 1; i >= 0; i--) {
1299		va = (vm_offset_t)base + i * PAGE_SIZE;
1300		pmap_ptelist_free(head, va);
1301	}
1302}
1303
1304/*
1305 *      Initialize the pmap module.
1306 *      Called by vm_init, to initialize any structures that the pmap
1307 *      system needs to map virtual memory.
1308 */
1309void
1310pmap_init(void)
1311{
1312	vm_size_t s;
1313	int i, pv_npg;
1314
1315	l2zone = uma_zcreate("L2 Table", L2_TABLE_SIZE_REAL, pmap_l2ptp_ctor,
1316	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1317	l2table_zone = uma_zcreate("L2 Table", sizeof(struct l2_dtable), NULL,
1318	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1319
1320	/*
1321	 * Are large page mappings supported and enabled?
1322	 */
1323	TUNABLE_INT_FETCH("vm.pmap.sp_enabled", &sp_enabled);
1324	if (sp_enabled) {
1325		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1326		    ("pmap_init: can't assign to pagesizes[1]"));
1327		pagesizes[1] = NBPDR;
1328	}
1329
1330	/*
1331	 * Calculate the size of the pv head table for superpages.
1332	 */
1333	for (i = 0; phys_avail[i + 1]; i += 2);
1334	pv_npg = round_1mpage(phys_avail[(i - 2) + 1]) / NBPDR;
1335
1336	/*
1337	 * Allocate memory for the pv head table for superpages.
1338	 */
1339	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
1340	s = round_page(s);
1341	pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
1342	    M_WAITOK | M_ZERO);
1343	for (i = 0; i < pv_npg; i++)
1344		TAILQ_INIT(&pv_table[i].pv_list);
1345
1346	/*
1347	 * Initialize the address space for the pv chunks.
1348	 */
1349
1350	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1351	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1352	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1353	pv_entry_max = roundup(pv_entry_max, _NPCPV);
1354	pv_entry_high_water = 9 * (pv_entry_max / 10);
1355
1356	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
1357	pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
1358
1359	if (pv_chunkbase == NULL)
1360		panic("pmap_init: not enough kvm for pv chunks");
1361
1362	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
1363
1364	/*
1365	 * Now it is safe to enable pv_table recording.
1366	 */
1367	PDEBUG(1, printf("pmap_init: done!\n"));
1368}
1369
1370SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
1371	"Max number of PV entries");
1372SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
1373	"Page share factor per proc");
1374
1375static SYSCTL_NODE(_vm_pmap, OID_AUTO, section, CTLFLAG_RD, 0,
1376    "1MB page mapping counters");
1377
1378static u_long pmap_section_demotions;
1379SYSCTL_ULONG(_vm_pmap_section, OID_AUTO, demotions, CTLFLAG_RD,
1380    &pmap_section_demotions, 0, "1MB page demotions");
1381
1382static u_long pmap_section_mappings;
1383SYSCTL_ULONG(_vm_pmap_section, OID_AUTO, mappings, CTLFLAG_RD,
1384    &pmap_section_mappings, 0, "1MB page mappings");
1385
1386static u_long pmap_section_p_failures;
1387SYSCTL_ULONG(_vm_pmap_section, OID_AUTO, p_failures, CTLFLAG_RD,
1388    &pmap_section_p_failures, 0, "1MB page promotion failures");
1389
1390static u_long pmap_section_promotions;
1391SYSCTL_ULONG(_vm_pmap_section, OID_AUTO, promotions, CTLFLAG_RD,
1392    &pmap_section_promotions, 0, "1MB page promotions");
1393
1394int
1395pmap_fault_fixup(pmap_t pmap, vm_offset_t va, vm_prot_t ftype, int user)
1396{
1397	struct l2_dtable *l2;
1398	struct l2_bucket *l2b;
1399	pd_entry_t *pl1pd, l1pd;
1400	pt_entry_t *ptep, pte;
1401	vm_paddr_t pa;
1402	u_int l1idx;
1403	int rv = 0;
1404
1405	l1idx = L1_IDX(va);
1406	rw_wlock(&pvh_global_lock);
1407	PMAP_LOCK(pmap);
1408	/*
1409	 * Check and possibly fix-up L1 section mapping
1410	 * only when superpage mappings are enabled to speed up.
1411	 */
1412	if (sp_enabled) {
1413		pl1pd = &pmap->pm_l1->l1_kva[l1idx];
1414		l1pd = *pl1pd;
1415		if ((l1pd & L1_TYPE_MASK) == L1_S_PROTO) {
1416			/* Catch an access to the vectors section */
1417			if (l1idx == L1_IDX(vector_page))
1418				goto out;
1419			/*
1420			 * Stay away from the kernel mappings.
1421			 * None of them should fault from L1 entry.
1422			 */
1423			if (pmap == pmap_kernel())
1424				goto out;
1425			/*
1426			 * Catch a forbidden userland access
1427			 */
1428			if (user && !(l1pd & L1_S_PROT_U))
1429				goto out;
1430			/*
1431			 * Superpage is always either mapped read only
1432			 * or it is modified and permitted to be written
1433			 * by default. Therefore, process only reference
1434			 * flag fault and demote page in case of write fault.
1435			 */
1436			if ((ftype & VM_PROT_WRITE) && !L1_S_WRITABLE(l1pd) &&
1437			    L1_S_REFERENCED(l1pd)) {
1438				(void)pmap_demote_section(pmap, va);
1439				goto out;
1440			} else if (!L1_S_REFERENCED(l1pd)) {
1441				/* Mark the page "referenced" */
1442				*pl1pd = l1pd | L1_S_REF;
1443				PTE_SYNC(pl1pd);
1444				goto l1_section_out;
1445			} else
1446				goto out;
1447		}
1448	}
1449	/*
1450	 * If there is no l2_dtable for this address, then the process
1451	 * has no business accessing it.
1452	 *
1453	 * Note: This will catch userland processes trying to access
1454	 * kernel addresses.
1455	 */
1456	l2 = pmap->pm_l2[L2_IDX(l1idx)];
1457	if (l2 == NULL)
1458		goto out;
1459
1460	/*
1461	 * Likewise if there is no L2 descriptor table
1462	 */
1463	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1464	if (l2b->l2b_kva == NULL)
1465		goto out;
1466
1467	/*
1468	 * Check the PTE itself.
1469	 */
1470	ptep = &l2b->l2b_kva[l2pte_index(va)];
1471	pte = *ptep;
1472	if (pte == 0)
1473		goto out;
1474
1475	/*
1476	 * Catch a userland access to the vector page mapped at 0x0
1477	 */
1478	if (user && !(pte & L2_S_PROT_U))
1479		goto out;
1480	if (va == vector_page)
1481		goto out;
1482
1483	pa = l2pte_pa(pte);
1484	CTR5(KTR_PMAP, "pmap_fault_fix: pmap:%p va:%x pte:0x%x ftype:%x user:%x",
1485	    pmap, va, pte, ftype, user);
1486	if ((ftype & VM_PROT_WRITE) && !(L2_S_WRITABLE(pte)) &&
1487	    L2_S_REFERENCED(pte)) {
1488		/*
1489		 * This looks like a good candidate for "page modified"
1490		 * emulation...
1491		 */
1492		struct pv_entry *pv;
1493		struct vm_page *m;
1494
1495		/* Extract the physical address of the page */
1496		if ((m = PHYS_TO_VM_PAGE(pa)) == NULL) {
1497			goto out;
1498		}
1499		/* Get the current flags for this page. */
1500
1501		pv = pmap_find_pv(&m->md, pmap, va);
1502		if (pv == NULL) {
1503			goto out;
1504		}
1505
1506		/*
1507		 * Do the flags say this page is writable? If not then it
1508		 * is a genuine write fault. If yes then the write fault is
1509		 * our fault as we did not reflect the write access in the
1510		 * PTE. Now we know a write has occurred we can correct this
1511		 * and also set the modified bit
1512		 */
1513		if ((pv->pv_flags & PVF_WRITE) == 0) {
1514			goto out;
1515		}
1516
1517		vm_page_dirty(m);
1518
1519		/* Re-enable write permissions for the page */
1520		*ptep = (pte & ~L2_APX);
1521		PTE_SYNC(ptep);
1522		rv = 1;
1523		CTR1(KTR_PMAP, "pmap_fault_fix: new pte:0x%x", *ptep);
1524	} else if (!L2_S_REFERENCED(pte)) {
1525		/*
1526		 * This looks like a good candidate for "page referenced"
1527		 * emulation.
1528		 */
1529		struct pv_entry *pv;
1530		struct vm_page *m;
1531
1532		/* Extract the physical address of the page */
1533		if ((m = PHYS_TO_VM_PAGE(pa)) == NULL)
1534			goto out;
1535		/* Get the current flags for this page. */
1536		pv = pmap_find_pv(&m->md, pmap, va);
1537		if (pv == NULL)
1538			goto out;
1539
1540		vm_page_aflag_set(m, PGA_REFERENCED);
1541
1542		/* Mark the page "referenced" */
1543		*ptep = pte | L2_S_REF;
1544		PTE_SYNC(ptep);
1545		rv = 1;
1546		CTR1(KTR_PMAP, "pmap_fault_fix: new pte:0x%x", *ptep);
1547	}
1548
1549	/*
1550	 * We know there is a valid mapping here, so simply
1551	 * fix up the L1 if necessary.
1552	 */
1553	pl1pd = &pmap->pm_l1->l1_kva[l1idx];
1554	l1pd = l2b->l2b_phys | L1_C_DOM(pmap->pm_domain) | L1_C_PROTO;
1555	if (*pl1pd != l1pd) {
1556		*pl1pd = l1pd;
1557		PTE_SYNC(pl1pd);
1558		rv = 1;
1559	}
1560
1561#ifdef DEBUG
1562	/*
1563	 * If 'rv == 0' at this point, it generally indicates that there is a
1564	 * stale TLB entry for the faulting address. This happens when two or
1565	 * more processes are sharing an L1. Since we don't flush the TLB on
1566	 * a context switch between such processes, we can take domain faults
1567	 * for mappings which exist at the same VA in both processes. EVEN IF
1568	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
1569	 * example.
1570	 *
1571	 * This is extremely likely to happen if pmap_enter() updated the L1
1572	 * entry for a recently entered mapping. In this case, the TLB is
1573	 * flushed for the new mapping, but there may still be TLB entries for
1574	 * other mappings belonging to other processes in the 1MB range
1575	 * covered by the L1 entry.
1576	 *
1577	 * Since 'rv == 0', we know that the L1 already contains the correct
1578	 * value, so the fault must be due to a stale TLB entry.
1579	 *
1580	 * Since we always need to flush the TLB anyway in the case where we
1581	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
1582	 * stale TLB entries dynamically.
1583	 *
1584	 * However, the above condition can ONLY happen if the current L1 is
1585	 * being shared. If it happens when the L1 is unshared, it indicates
1586	 * that other parts of the pmap are not doing their job WRT managing
1587	 * the TLB.
1588	 */
1589	if (rv == 0 && pmap->pm_l1->l1_domain_use_count == 1) {
1590		printf("fixup: pmap %p, va 0x%08x, ftype %d - nothing to do!\n",
1591		    pmap, va, ftype);
1592		printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
1593		    l2, l2b, ptep, pl1pd);
1594		printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
1595		    pte, l1pd, last_fault_code);
1596#ifdef DDB
1597		Debugger();
1598#endif
1599	}
1600#endif
1601
1602l1_section_out:
1603	cpu_tlb_flushID_SE(va);
1604	cpu_cpwait();
1605
1606	rv = 1;
1607
1608out:
1609	rw_wunlock(&pvh_global_lock);
1610	PMAP_UNLOCK(pmap);
1611	return (rv);
1612}
1613
1614void
1615pmap_postinit(void)
1616{
1617	struct l2_bucket *l2b;
1618	struct l1_ttable *l1;
1619	pd_entry_t *pl1pt;
1620	pt_entry_t *ptep, pte;
1621	vm_offset_t va, eva;
1622	u_int loop, needed;
1623
1624	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
1625	needed -= 1;
1626	l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
1627
1628	for (loop = 0; loop < needed; loop++, l1++) {
1629		/* Allocate a L1 page table */
1630		va = (vm_offset_t)contigmalloc(L1_TABLE_SIZE, M_VMPMAP, 0, 0x0,
1631		    0xffffffff, L1_TABLE_SIZE, 0);
1632
1633		if (va == 0)
1634			panic("Cannot allocate L1 KVM");
1635
1636		eva = va + L1_TABLE_SIZE;
1637		pl1pt = (pd_entry_t *)va;
1638
1639		while (va < eva) {
1640				l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1641				ptep = &l2b->l2b_kva[l2pte_index(va)];
1642				pte = *ptep;
1643				pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1644				*ptep = pte;
1645				PTE_SYNC(ptep);
1646				cpu_tlb_flushD_SE(va);
1647
1648				va += PAGE_SIZE;
1649		}
1650		pmap_init_l1(l1, pl1pt);
1651	}
1652#ifdef DEBUG
1653	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
1654	    needed);
1655#endif
1656}
1657
1658/*
1659 * This is used to stuff certain critical values into the PCB where they
1660 * can be accessed quickly from cpu_switch() et al.
1661 */
1662void
1663pmap_set_pcb_pagedir(pmap_t pmap, struct pcb *pcb)
1664{
1665	struct l2_bucket *l2b;
1666
1667	pcb->pcb_pagedir = pmap->pm_l1->l1_physaddr;
1668	pcb->pcb_dacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
1669	    (DOMAIN_CLIENT << (pmap->pm_domain * 2));
1670
1671	if (vector_page < KERNBASE) {
1672		pcb->pcb_pl1vec = &pmap->pm_l1->l1_kva[L1_IDX(vector_page)];
1673		l2b = pmap_get_l2_bucket(pmap, vector_page);
1674		pcb->pcb_l1vec = l2b->l2b_phys | L1_C_PROTO |
1675		    L1_C_DOM(pmap->pm_domain) | L1_C_DOM(PMAP_DOMAIN_KERNEL);
1676	} else
1677		pcb->pcb_pl1vec = NULL;
1678}
1679
1680void
1681pmap_activate(struct thread *td)
1682{
1683	pmap_t pmap;
1684	struct pcb *pcb;
1685
1686	pmap = vmspace_pmap(td->td_proc->p_vmspace);
1687	pcb = td->td_pcb;
1688
1689	critical_enter();
1690	pmap_set_pcb_pagedir(pmap, pcb);
1691
1692	if (td == curthread) {
1693		u_int cur_dacr, cur_ttb;
1694
1695		__asm __volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(cur_ttb));
1696		__asm __volatile("mrc p15, 0, %0, c3, c0, 0" : "=r"(cur_dacr));
1697
1698		cur_ttb &= ~(L1_TABLE_SIZE - 1);
1699
1700		if (cur_ttb == (u_int)pcb->pcb_pagedir &&
1701		    cur_dacr == pcb->pcb_dacr) {
1702			/*
1703			 * No need to switch address spaces.
1704			 */
1705			critical_exit();
1706			return;
1707		}
1708
1709
1710		/*
1711		 * We MUST, I repeat, MUST fix up the L1 entry corresponding
1712		 * to 'vector_page' in the incoming L1 table before switching
1713		 * to it otherwise subsequent interrupts/exceptions (including
1714		 * domain faults!) will jump into hyperspace.
1715		 */
1716		if (pcb->pcb_pl1vec) {
1717			*pcb->pcb_pl1vec = pcb->pcb_l1vec;
1718		}
1719
1720		cpu_domains(pcb->pcb_dacr);
1721		cpu_setttb(pcb->pcb_pagedir);
1722	}
1723	critical_exit();
1724}
1725
1726static int
1727pmap_set_pt_cache_mode(pd_entry_t *kl1, vm_offset_t va)
1728{
1729	pd_entry_t *pdep, pde;
1730	pt_entry_t *ptep, pte;
1731	vm_offset_t pa;
1732	int rv = 0;
1733
1734	/*
1735	 * Make sure the descriptor itself has the correct cache mode
1736	 */
1737	pdep = &kl1[L1_IDX(va)];
1738	pde = *pdep;
1739
1740	if (l1pte_section_p(pde)) {
1741		if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
1742			*pdep = (pde & ~L1_S_CACHE_MASK) |
1743			    pte_l1_s_cache_mode_pt;
1744			PTE_SYNC(pdep);
1745			rv = 1;
1746		}
1747	} else {
1748		pa = (vm_paddr_t)(pde & L1_C_ADDR_MASK);
1749		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
1750		if (ptep == NULL)
1751			panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
1752
1753		ptep = &ptep[l2pte_index(va)];
1754		pte = *ptep;
1755		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1756			*ptep = (pte & ~L2_S_CACHE_MASK) |
1757			    pte_l2_s_cache_mode_pt;
1758			PTE_SYNC(ptep);
1759			rv = 1;
1760		}
1761	}
1762
1763	return (rv);
1764}
1765
1766static void
1767pmap_alloc_specials(vm_offset_t *availp, int pages, vm_offset_t *vap,
1768    pt_entry_t **ptep)
1769{
1770	vm_offset_t va = *availp;
1771	struct l2_bucket *l2b;
1772
1773	if (ptep) {
1774		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1775		if (l2b == NULL)
1776			panic("pmap_alloc_specials: no l2b for 0x%x", va);
1777
1778		*ptep = &l2b->l2b_kva[l2pte_index(va)];
1779	}
1780
1781	*vap = va;
1782	*availp = va + (PAGE_SIZE * pages);
1783}
1784
1785/*
1786 *	Bootstrap the system enough to run with virtual memory.
1787 *
1788 *	On the arm this is called after mapping has already been enabled
1789 *	and just syncs the pmap module with what has already been done.
1790 *	[We can't call it easily with mapping off since the kernel is not
1791 *	mapped with PA == VA, hence we would have to relocate every address
1792 *	from the linked base (virtual) address "KERNBASE" to the actual
1793 *	(physical) address starting relative to 0]
1794 */
1795#define PMAP_STATIC_L2_SIZE 16
1796
1797void
1798pmap_bootstrap(vm_offset_t firstaddr, struct pv_addr *l1pt)
1799{
1800	static struct l1_ttable static_l1;
1801	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
1802	struct l1_ttable *l1 = &static_l1;
1803	struct l2_dtable *l2;
1804	struct l2_bucket *l2b;
1805	pd_entry_t pde;
1806	pd_entry_t *kernel_l1pt = (pd_entry_t *)l1pt->pv_va;
1807	pt_entry_t *ptep;
1808	vm_paddr_t pa;
1809	vm_offset_t va;
1810	vm_size_t size;
1811	int l1idx, l2idx, l2next = 0;
1812
1813	PDEBUG(1, printf("firstaddr = %08x, lastaddr = %08x\n",
1814	    firstaddr, vm_max_kernel_address));
1815
1816	virtual_avail = firstaddr;
1817	kernel_pmap->pm_l1 = l1;
1818	kernel_l1pa = l1pt->pv_pa;
1819
1820	/*
1821	 * Scan the L1 translation table created by initarm() and create
1822	 * the required metadata for all valid mappings found in it.
1823	 */
1824	for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
1825		pde = kernel_l1pt[l1idx];
1826
1827		/*
1828		 * We're only interested in Coarse mappings.
1829		 * pmap_extract() can deal with section mappings without
1830		 * recourse to checking L2 metadata.
1831		 */
1832		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
1833			continue;
1834
1835		/*
1836		 * Lookup the KVA of this L2 descriptor table
1837		 */
1838		pa = (vm_paddr_t)(pde & L1_C_ADDR_MASK);
1839		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
1840
1841		if (ptep == NULL) {
1842			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
1843			    (u_int)l1idx << L1_S_SHIFT, (long unsigned int)pa);
1844		}
1845
1846		/*
1847		 * Fetch the associated L2 metadata structure.
1848		 * Allocate a new one if necessary.
1849		 */
1850		if ((l2 = kernel_pmap->pm_l2[L2_IDX(l1idx)]) == NULL) {
1851			if (l2next == PMAP_STATIC_L2_SIZE)
1852				panic("pmap_bootstrap: out of static L2s");
1853			kernel_pmap->pm_l2[L2_IDX(l1idx)] = l2 =
1854			    &static_l2[l2next++];
1855		}
1856
1857		/*
1858		 * One more L1 slot tracked...
1859		 */
1860		l2->l2_occupancy++;
1861
1862		/*
1863		 * Fill in the details of the L2 descriptor in the
1864		 * appropriate bucket.
1865		 */
1866		l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1867		l2b->l2b_kva = ptep;
1868		l2b->l2b_phys = pa;
1869		l2b->l2b_l1idx = l1idx;
1870
1871		/*
1872		 * Establish an initial occupancy count for this descriptor
1873		 */
1874		for (l2idx = 0;
1875		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1876		    l2idx++) {
1877			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
1878				l2b->l2b_occupancy++;
1879			}
1880		}
1881
1882		/*
1883		 * Make sure the descriptor itself has the correct cache mode.
1884		 * If not, fix it, but whine about the problem. Port-meisters
1885		 * should consider this a clue to fix up their initarm()
1886		 * function. :)
1887		 */
1888		if (pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)ptep)) {
1889			printf("pmap_bootstrap: WARNING! wrong cache mode for "
1890			    "L2 pte @ %p\n", ptep);
1891		}
1892	}
1893
1894
1895	/*
1896	 * Ensure the primary (kernel) L1 has the correct cache mode for
1897	 * a page table. Bitch if it is not correctly set.
1898	 */
1899	for (va = (vm_offset_t)kernel_l1pt;
1900	    va < ((vm_offset_t)kernel_l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
1901		if (pmap_set_pt_cache_mode(kernel_l1pt, va))
1902			printf("pmap_bootstrap: WARNING! wrong cache mode for "
1903			    "primary L1 @ 0x%x\n", va);
1904	}
1905
1906	cpu_dcache_wbinv_all();
1907	cpu_l2cache_wbinv_all();
1908	cpu_tlb_flushID();
1909	cpu_cpwait();
1910
1911	PMAP_LOCK_INIT(kernel_pmap);
1912	CPU_FILL(&kernel_pmap->pm_active);
1913	kernel_pmap->pm_domain = PMAP_DOMAIN_KERNEL;
1914	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
1915
1916	/*
1917	 * Initialize the global pv list lock.
1918	 */
1919	rw_init(&pvh_global_lock, "pmap pv global");
1920
1921	/*
1922	 * Reserve some special page table entries/VA space for temporary
1923	 * mapping of pages.
1924	 */
1925
1926	pmap_alloc_specials(&virtual_avail, 1, &csrcp, &csrc_pte);
1927	pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)csrc_pte);
1928	pmap_alloc_specials(&virtual_avail, 1, &cdstp, &cdst_pte);
1929	pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)cdst_pte);
1930	size = ((vm_max_kernel_address - pmap_curmaxkvaddr) + L1_S_OFFSET) /
1931	    L1_S_SIZE;
1932	pmap_alloc_specials(&virtual_avail,
1933	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
1934	    &pmap_kernel_l2ptp_kva, NULL);
1935
1936	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
1937	pmap_alloc_specials(&virtual_avail,
1938	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
1939	    &pmap_kernel_l2dtable_kva, NULL);
1940
1941	pmap_alloc_specials(&virtual_avail,
1942	    1, (vm_offset_t*)&_tmppt, NULL);
1943	pmap_alloc_specials(&virtual_avail,
1944	    MAXDUMPPGS, (vm_offset_t *)&crashdumpmap, NULL);
1945	SLIST_INIT(&l1_list);
1946	TAILQ_INIT(&l1_lru_list);
1947	mtx_init(&l1_lru_lock, "l1 list lock", NULL, MTX_DEF);
1948	pmap_init_l1(l1, kernel_l1pt);
1949	cpu_dcache_wbinv_all();
1950	cpu_l2cache_wbinv_all();
1951
1952	virtual_avail = round_page(virtual_avail);
1953	virtual_end = vm_max_kernel_address;
1954	kernel_vm_end = pmap_curmaxkvaddr;
1955	mtx_init(&cmtx, "TMP mappings mtx", NULL, MTX_DEF);
1956
1957	pmap_set_pcb_pagedir(kernel_pmap, thread0.td_pcb);
1958}
1959
1960/***************************************************
1961 * Pmap allocation/deallocation routines.
1962 ***************************************************/
1963
1964/*
1965 * Release any resources held by the given physical map.
1966 * Called when a pmap initialized by pmap_pinit is being released.
1967 * Should only be called if the map contains no valid mappings.
1968 */
1969void
1970pmap_release(pmap_t pmap)
1971{
1972	struct pcb *pcb;
1973
1974	cpu_idcache_wbinv_all();
1975	cpu_l2cache_wbinv_all();
1976	cpu_tlb_flushID();
1977	cpu_cpwait();
1978	if (vector_page < KERNBASE) {
1979		struct pcb *curpcb = PCPU_GET(curpcb);
1980		pcb = thread0.td_pcb;
1981		if (pmap_is_current(pmap)) {
1982			/*
1983			 * Frob the L1 entry corresponding to the vector
1984			 * page so that it contains the kernel pmap's domain
1985			 * number. This will ensure pmap_remove() does not
1986			 * pull the current vector page out from under us.
1987			 */
1988			critical_enter();
1989			*pcb->pcb_pl1vec = pcb->pcb_l1vec;
1990			cpu_domains(pcb->pcb_dacr);
1991			cpu_setttb(pcb->pcb_pagedir);
1992			critical_exit();
1993		}
1994		pmap_remove(pmap, vector_page, vector_page + PAGE_SIZE);
1995		/*
1996		 * Make sure cpu_switch(), et al, DTRT. This is safe to do
1997		 * since this process has no remaining mappings of its own.
1998		 */
1999		curpcb->pcb_pl1vec = pcb->pcb_pl1vec;
2000		curpcb->pcb_l1vec = pcb->pcb_l1vec;
2001		curpcb->pcb_dacr = pcb->pcb_dacr;
2002		curpcb->pcb_pagedir = pcb->pcb_pagedir;
2003
2004	}
2005	pmap_free_l1(pmap);
2006
2007	dprintf("pmap_release()\n");
2008}
2009
2010
2011
2012/*
2013 * Helper function for pmap_grow_l2_bucket()
2014 */
2015static __inline int
2016pmap_grow_map(vm_offset_t va, pt_entry_t cache_mode, vm_paddr_t *pap)
2017{
2018	struct l2_bucket *l2b;
2019	pt_entry_t *ptep;
2020	vm_paddr_t pa;
2021	struct vm_page *m;
2022
2023	m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
2024	if (m == NULL)
2025		return (1);
2026	pa = VM_PAGE_TO_PHYS(m);
2027
2028	if (pap)
2029		*pap = pa;
2030
2031	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2032
2033	ptep = &l2b->l2b_kva[l2pte_index(va)];
2034	*ptep = L2_S_PROTO | pa | cache_mode | L2_S_REF;
2035	pmap_set_prot(ptep, VM_PROT_READ | VM_PROT_WRITE, 0);
2036	PTE_SYNC(ptep);
2037
2038	return (0);
2039}
2040
2041/*
2042 * This is the same as pmap_alloc_l2_bucket(), except that it is only
2043 * used by pmap_growkernel().
2044 */
2045static __inline struct l2_bucket *
2046pmap_grow_l2_bucket(pmap_t pmap, vm_offset_t va)
2047{
2048	struct l2_dtable *l2;
2049	struct l2_bucket *l2b;
2050	struct l1_ttable *l1;
2051	pd_entry_t *pl1pd;
2052	u_short l1idx;
2053	vm_offset_t nva;
2054
2055	l1idx = L1_IDX(va);
2056
2057	if ((l2 = pmap->pm_l2[L2_IDX(l1idx)]) == NULL) {
2058		/*
2059		 * No mapping at this address, as there is
2060		 * no entry in the L1 table.
2061		 * Need to allocate a new l2_dtable.
2062		 */
2063		nva = pmap_kernel_l2dtable_kva;
2064		if ((nva & PAGE_MASK) == 0) {
2065			/*
2066			 * Need to allocate a backing page
2067			 */
2068			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
2069				return (NULL);
2070		}
2071
2072		l2 = (struct l2_dtable *)nva;
2073		nva += sizeof(struct l2_dtable);
2074
2075		if ((nva & PAGE_MASK) < (pmap_kernel_l2dtable_kva &
2076		    PAGE_MASK)) {
2077			/*
2078			 * The new l2_dtable straddles a page boundary.
2079			 * Map in another page to cover it.
2080			 */
2081			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
2082				return (NULL);
2083		}
2084
2085		pmap_kernel_l2dtable_kva = nva;
2086
2087		/*
2088		 * Link it into the parent pmap
2089		 */
2090		pmap->pm_l2[L2_IDX(l1idx)] = l2;
2091		memset(l2, 0, sizeof(*l2));
2092	}
2093
2094	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
2095
2096	/*
2097	 * Fetch pointer to the L2 page table associated with the address.
2098	 */
2099	if (l2b->l2b_kva == NULL) {
2100		pt_entry_t *ptep;
2101
2102		/*
2103		 * No L2 page table has been allocated. Chances are, this
2104		 * is because we just allocated the l2_dtable, above.
2105		 */
2106		nva = pmap_kernel_l2ptp_kva;
2107		ptep = (pt_entry_t *)nva;
2108		if ((nva & PAGE_MASK) == 0) {
2109			/*
2110			 * Need to allocate a backing page
2111			 */
2112			if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
2113			    &pmap_kernel_l2ptp_phys))
2114				return (NULL);
2115		}
2116		memset(ptep, 0, L2_TABLE_SIZE_REAL);
2117		l2->l2_occupancy++;
2118		l2b->l2b_kva = ptep;
2119		l2b->l2b_l1idx = l1idx;
2120		l2b->l2b_phys = pmap_kernel_l2ptp_phys;
2121
2122		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
2123		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
2124	}
2125
2126	/* Distribute new L1 entry to all other L1s */
2127	SLIST_FOREACH(l1, &l1_list, l1_link) {
2128			pl1pd = &l1->l1_kva[L1_IDX(va)];
2129			*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
2130			    L1_C_PROTO;
2131			PTE_SYNC(pl1pd);
2132	}
2133
2134	return (l2b);
2135}
2136
2137
2138/*
2139 * grow the number of kernel page table entries, if needed
2140 */
2141void
2142pmap_growkernel(vm_offset_t addr)
2143{
2144	pmap_t kpmap = pmap_kernel();
2145
2146	if (addr <= pmap_curmaxkvaddr)
2147		return;		/* we are OK */
2148
2149	/*
2150	 * whoops!   we need to add kernel PTPs
2151	 */
2152
2153	/* Map 1MB at a time */
2154	for (; pmap_curmaxkvaddr < addr; pmap_curmaxkvaddr += L1_S_SIZE)
2155		pmap_grow_l2_bucket(kpmap, pmap_curmaxkvaddr);
2156
2157	/*
2158	 * flush out the cache, expensive but growkernel will happen so
2159	 * rarely
2160	 */
2161	cpu_dcache_wbinv_all();
2162	cpu_l2cache_wbinv_all();
2163	cpu_tlb_flushD();
2164	cpu_cpwait();
2165	kernel_vm_end = pmap_curmaxkvaddr;
2166}
2167
2168/*
2169 * Returns TRUE if the given page is mapped individually or as part of
2170 * a 1MB section.  Otherwise, returns FALSE.
2171 */
2172boolean_t
2173pmap_page_is_mapped(vm_page_t m)
2174{
2175	boolean_t rv;
2176
2177	if ((m->oflags & VPO_UNMANAGED) != 0)
2178		return (FALSE);
2179	rw_wlock(&pvh_global_lock);
2180	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
2181	    ((m->flags & PG_FICTITIOUS) == 0 &&
2182	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
2183	rw_wunlock(&pvh_global_lock);
2184	return (rv);
2185}
2186
2187/*
2188 * Remove all pages from specified address space
2189 * this aids process exit speeds.  Also, this code
2190 * is special cased for current process only, but
2191 * can have the more generic (and slightly slower)
2192 * mode enabled.  This is much faster than pmap_remove
2193 * in the case of running down an entire address space.
2194 */
2195void
2196pmap_remove_pages(pmap_t pmap)
2197{
2198	struct pv_entry *pv;
2199 	struct l2_bucket *l2b = NULL;
2200	struct pv_chunk *pc, *npc;
2201	struct md_page *pvh;
2202	pd_entry_t *pl1pd, l1pd;
2203 	pt_entry_t *ptep;
2204 	vm_page_t m, mt;
2205	vm_offset_t va;
2206	uint32_t inuse, bitmask;
2207	int allfree, bit, field, idx;
2208
2209 	rw_wlock(&pvh_global_lock);
2210 	PMAP_LOCK(pmap);
2211
2212	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
2213		allfree = 1;
2214		for (field = 0; field < _NPCM; field++) {
2215			inuse = ~pc->pc_map[field] & pc_freemask[field];
2216			while (inuse != 0) {
2217				bit = ffs(inuse) - 1;
2218				bitmask = 1ul << bit;
2219				idx = field * sizeof(inuse) * NBBY + bit;
2220				pv = &pc->pc_pventry[idx];
2221				va = pv->pv_va;
2222				inuse &= ~bitmask;
2223				if (pv->pv_flags & PVF_WIRED) {
2224					/* Cannot remove wired pages now. */
2225					allfree = 0;
2226					continue;
2227				}
2228				pl1pd = &pmap->pm_l1->l1_kva[L1_IDX(va)];
2229				l1pd = *pl1pd;
2230				l2b = pmap_get_l2_bucket(pmap, va);
2231				if ((l1pd & L1_TYPE_MASK) == L1_S_PROTO) {
2232					pvh = pa_to_pvh(l1pd & L1_S_FRAME);
2233					TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2234					if (TAILQ_EMPTY(&pvh->pv_list)) {
2235						m = PHYS_TO_VM_PAGE(l1pd & L1_S_FRAME);
2236						KASSERT((vm_offset_t)m >= KERNBASE,
2237						    ("Trying to access non-existent page "
2238						     "va %x l1pd %x", trunc_1mpage(va), l1pd));
2239						for (mt = m; mt < &m[L2_PTE_NUM_TOTAL]; mt++) {
2240							if (TAILQ_EMPTY(&mt->md.pv_list))
2241								vm_page_aflag_clear(mt, PGA_WRITEABLE);
2242						}
2243					}
2244					if (l2b != NULL) {
2245						KASSERT(l2b->l2b_occupancy == L2_PTE_NUM_TOTAL,
2246						    ("pmap_remove_pages: l2_bucket occupancy error"));
2247						pmap_free_l2_bucket(pmap, l2b, L2_PTE_NUM_TOTAL);
2248					}
2249					pmap->pm_stats.resident_count -= L2_PTE_NUM_TOTAL;
2250					*pl1pd = 0;
2251					PTE_SYNC(pl1pd);
2252				} else {
2253					KASSERT(l2b != NULL,
2254					    ("No L2 bucket in pmap_remove_pages"));
2255					ptep = &l2b->l2b_kva[l2pte_index(va)];
2256					m = PHYS_TO_VM_PAGE(l2pte_pa(*ptep));
2257					KASSERT((vm_offset_t)m >= KERNBASE,
2258					    ("Trying to access non-existent page "
2259					     "va %x pte %x", va, *ptep));
2260					TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2261					if (TAILQ_EMPTY(&m->md.pv_list) &&
2262					    (m->flags & PG_FICTITIOUS) == 0) {
2263						pvh = pa_to_pvh(l2pte_pa(*ptep));
2264						if (TAILQ_EMPTY(&pvh->pv_list))
2265							vm_page_aflag_clear(m, PGA_WRITEABLE);
2266					}
2267					*ptep = 0;
2268					PTE_SYNC(ptep);
2269					pmap_free_l2_bucket(pmap, l2b, 1);
2270					pmap->pm_stats.resident_count--;
2271				}
2272
2273				/* Mark free */
2274				PV_STAT(pv_entry_frees++);
2275				PV_STAT(pv_entry_spare++);
2276				pv_entry_count--;
2277				pc->pc_map[field] |= bitmask;
2278			}
2279		}
2280		if (allfree) {
2281			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2282			pmap_free_pv_chunk(pc);
2283		}
2284
2285	}
2286
2287 	rw_wunlock(&pvh_global_lock);
2288 	cpu_tlb_flushID();
2289 	cpu_cpwait();
2290 	PMAP_UNLOCK(pmap);
2291}
2292
2293
2294/***************************************************
2295 * Low level mapping routines.....
2296 ***************************************************/
2297
2298#ifdef ARM_HAVE_SUPERSECTIONS
2299/* Map a super section into the KVA. */
2300
2301void
2302pmap_kenter_supersection(vm_offset_t va, uint64_t pa, int flags)
2303{
2304	pd_entry_t pd = L1_S_PROTO | L1_S_SUPERSEC | (pa & L1_SUP_FRAME) |
2305	    (((pa >> 32) & 0xf) << 20) | L1_S_PROT(PTE_KERNEL,
2306	    VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE) |
2307	    L1_S_DOM(PMAP_DOMAIN_KERNEL);
2308	struct l1_ttable *l1;
2309	vm_offset_t va0, va_end;
2310
2311	KASSERT(((va | pa) & L1_SUP_OFFSET) == 0,
2312	    ("Not a valid super section mapping"));
2313	if (flags & SECTION_CACHE)
2314		pd |= pte_l1_s_cache_mode;
2315	else if (flags & SECTION_PT)
2316		pd |= pte_l1_s_cache_mode_pt;
2317
2318	va0 = va & L1_SUP_FRAME;
2319	va_end = va + L1_SUP_SIZE;
2320	SLIST_FOREACH(l1, &l1_list, l1_link) {
2321		va = va0;
2322		for (; va < va_end; va += L1_S_SIZE) {
2323			l1->l1_kva[L1_IDX(va)] = pd;
2324			PTE_SYNC(&l1->l1_kva[L1_IDX(va)]);
2325		}
2326	}
2327}
2328#endif
2329
2330/* Map a section into the KVA. */
2331
2332void
2333pmap_kenter_section(vm_offset_t va, vm_offset_t pa, int flags)
2334{
2335	pd_entry_t pd = L1_S_PROTO | pa | L1_S_PROT(PTE_KERNEL,
2336	    VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE) | L1_S_REF |
2337	    L1_S_DOM(PMAP_DOMAIN_KERNEL);
2338	struct l1_ttable *l1;
2339
2340	KASSERT(((va | pa) & L1_S_OFFSET) == 0,
2341	    ("Not a valid section mapping"));
2342	if (flags & SECTION_CACHE)
2343		pd |= pte_l1_s_cache_mode;
2344	else if (flags & SECTION_PT)
2345		pd |= pte_l1_s_cache_mode_pt;
2346
2347	SLIST_FOREACH(l1, &l1_list, l1_link) {
2348		l1->l1_kva[L1_IDX(va)] = pd;
2349		PTE_SYNC(&l1->l1_kva[L1_IDX(va)]);
2350	}
2351}
2352
2353/*
2354 * Make a temporary mapping for a physical address.  This is only intended
2355 * to be used for panic dumps.
2356 */
2357void *
2358pmap_kenter_temp(vm_paddr_t pa, int i)
2359{
2360	vm_offset_t va;
2361
2362	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2363	pmap_kenter(va, pa);
2364	return ((void *)crashdumpmap);
2365}
2366
2367/*
2368 * add a wired page to the kva
2369 * note that in order for the mapping to take effect -- you
2370 * should do a invltlb after doing the pmap_kenter...
2371 */
2372static PMAP_INLINE void
2373pmap_kenter_internal(vm_offset_t va, vm_offset_t pa, int flags)
2374{
2375	struct l2_bucket *l2b;
2376	pt_entry_t *ptep;
2377	pt_entry_t opte;
2378
2379	PDEBUG(1, printf("pmap_kenter: va = %08x, pa = %08x\n",
2380	    (uint32_t) va, (uint32_t) pa));
2381
2382
2383	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2384	if (l2b == NULL)
2385		l2b = pmap_grow_l2_bucket(pmap_kernel(), va);
2386	KASSERT(l2b != NULL, ("No L2 Bucket"));
2387
2388	ptep = &l2b->l2b_kva[l2pte_index(va)];
2389	opte = *ptep;
2390	if (l2pte_valid(opte)) {
2391		cpu_tlb_flushD_SE(va);
2392		cpu_cpwait();
2393	} else {
2394		if (opte == 0)
2395			l2b->l2b_occupancy++;
2396	}
2397
2398	if (flags & KENTER_CACHE) {
2399		*ptep = L2_S_PROTO | pa | pte_l2_s_cache_mode | L2_S_REF;
2400		pmap_set_prot(ptep, VM_PROT_READ | VM_PROT_WRITE,
2401		    flags & KENTER_USER);
2402	} else {
2403		*ptep = L2_S_PROTO | pa | L2_S_REF;
2404		pmap_set_prot(ptep, VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
2405		    0);
2406	}
2407
2408	PDEBUG(1, printf("pmap_kenter: pte = %08x, opte = %08x, npte = %08x\n",
2409	    (uint32_t) ptep, opte, *ptep));
2410	PTE_SYNC(ptep);
2411	cpu_cpwait();
2412}
2413
2414void
2415pmap_kenter(vm_offset_t va, vm_paddr_t pa)
2416{
2417	pmap_kenter_internal(va, pa, KENTER_CACHE);
2418}
2419
2420void
2421pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa)
2422{
2423
2424	pmap_kenter_internal(va, pa, 0);
2425}
2426
2427void
2428pmap_kenter_device(vm_offset_t va, vm_paddr_t pa)
2429{
2430
2431	/*
2432	 * XXX - Need a way for kenter_internal to handle PTE_DEVICE mapping as
2433	 * a potentially different thing than PTE_NOCACHE.
2434	 */
2435	pmap_kenter_internal(va, pa, 0);
2436}
2437
2438void
2439pmap_kenter_user(vm_offset_t va, vm_paddr_t pa)
2440{
2441
2442	pmap_kenter_internal(va, pa, KENTER_CACHE|KENTER_USER);
2443	/*
2444	 * Call pmap_fault_fixup now, to make sure we'll have no exception
2445	 * at the first use of the new address, or bad things will happen,
2446	 * as we use one of these addresses in the exception handlers.
2447	 */
2448	pmap_fault_fixup(pmap_kernel(), va, VM_PROT_READ|VM_PROT_WRITE, 1);
2449}
2450
2451vm_paddr_t
2452pmap_kextract(vm_offset_t va)
2453{
2454
2455	if (kernel_vm_end == 0)
2456		return (0);
2457	return (pmap_extract_locked(kernel_pmap, va));
2458}
2459
2460/*
2461 * remove a page from the kernel pagetables
2462 */
2463void
2464pmap_kremove(vm_offset_t va)
2465{
2466	struct l2_bucket *l2b;
2467	pt_entry_t *ptep, opte;
2468
2469	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2470	if (!l2b)
2471		return;
2472	KASSERT(l2b != NULL, ("No L2 Bucket"));
2473	ptep = &l2b->l2b_kva[l2pte_index(va)];
2474	opte = *ptep;
2475	if (l2pte_valid(opte)) {
2476		va = va & ~PAGE_MASK;
2477		cpu_tlb_flushD_SE(va);
2478		cpu_cpwait();
2479		*ptep = 0;
2480		PTE_SYNC(ptep);
2481	}
2482}
2483
2484
2485/*
2486 *	Used to map a range of physical addresses into kernel
2487 *	virtual address space.
2488 *
2489 *	The value passed in '*virt' is a suggested virtual address for
2490 *	the mapping. Architectures which can support a direct-mapped
2491 *	physical to virtual region can return the appropriate address
2492 *	within that region, leaving '*virt' unchanged. Other
2493 *	architectures should map the pages starting at '*virt' and
2494 *	update '*virt' with the first usable address after the mapped
2495 *	region.
2496 */
2497vm_offset_t
2498pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
2499{
2500	vm_offset_t sva = *virt;
2501	vm_offset_t va = sva;
2502
2503	PDEBUG(1, printf("pmap_map: virt = %08x, start = %08x, end = %08x, "
2504	    "prot = %d\n", (uint32_t) *virt, (uint32_t) start, (uint32_t) end,
2505	    prot));
2506
2507	while (start < end) {
2508		pmap_kenter(va, start);
2509		va += PAGE_SIZE;
2510		start += PAGE_SIZE;
2511	}
2512	*virt = va;
2513	return (sva);
2514}
2515
2516/*
2517 * Add a list of wired pages to the kva
2518 * this routine is only used for temporary
2519 * kernel mappings that do not need to have
2520 * page modification or references recorded.
2521 * Note that old mappings are simply written
2522 * over.  The page *must* be wired.
2523 */
2524void
2525pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
2526{
2527	int i;
2528
2529	for (i = 0; i < count; i++) {
2530		pmap_kenter_internal(va, VM_PAGE_TO_PHYS(m[i]),
2531		    KENTER_CACHE);
2532		va += PAGE_SIZE;
2533	}
2534}
2535
2536
2537/*
2538 * this routine jerks page mappings from the
2539 * kernel -- it is meant only for temporary mappings.
2540 */
2541void
2542pmap_qremove(vm_offset_t va, int count)
2543{
2544	int i;
2545
2546	for (i = 0; i < count; i++) {
2547		if (vtophys(va))
2548			pmap_kremove(va);
2549
2550		va += PAGE_SIZE;
2551	}
2552}
2553
2554
2555/*
2556 * pmap_object_init_pt preloads the ptes for a given object
2557 * into the specified pmap.  This eliminates the blast of soft
2558 * faults on process startup and immediately after an mmap.
2559 */
2560void
2561pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
2562    vm_pindex_t pindex, vm_size_t size)
2563{
2564
2565	VM_OBJECT_ASSERT_WLOCKED(object);
2566	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2567	    ("pmap_object_init_pt: non-device object"));
2568}
2569
2570
2571/*
2572 *	pmap_is_prefaultable:
2573 *
2574 *	Return whether or not the specified virtual address is elgible
2575 *	for prefault.
2576 */
2577boolean_t
2578pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2579{
2580	pd_entry_t *pdep;
2581	pt_entry_t *ptep;
2582
2583	if (!pmap_get_pde_pte(pmap, addr, &pdep, &ptep))
2584		return (FALSE);
2585	KASSERT((pdep != NULL && (l1pte_section_p(*pdep) || ptep != NULL)),
2586	    ("Valid mapping but no pte ?"));
2587	if (*pdep != 0 && !l1pte_section_p(*pdep))
2588		if (*ptep == 0)
2589			return (TRUE);
2590	return (FALSE);
2591}
2592
2593/*
2594 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
2595 * Returns TRUE if the mapping exists, else FALSE.
2596 *
2597 * NOTE: This function is only used by a couple of arm-specific modules.
2598 * It is not safe to take any pmap locks here, since we could be right
2599 * in the middle of debugging the pmap anyway...
2600 *
2601 * It is possible for this routine to return FALSE even though a valid
2602 * mapping does exist. This is because we don't lock, so the metadata
2603 * state may be inconsistent.
2604 *
2605 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
2606 * a "section" mapping.
2607 */
2608boolean_t
2609pmap_get_pde_pte(pmap_t pmap, vm_offset_t va, pd_entry_t **pdp,
2610    pt_entry_t **ptp)
2611{
2612	struct l2_dtable *l2;
2613	pd_entry_t *pl1pd, l1pd;
2614	pt_entry_t *ptep;
2615	u_short l1idx;
2616
2617	if (pmap->pm_l1 == NULL)
2618		return (FALSE);
2619
2620	l1idx = L1_IDX(va);
2621	*pdp = pl1pd = &pmap->pm_l1->l1_kva[l1idx];
2622	l1pd = *pl1pd;
2623
2624	if (l1pte_section_p(l1pd)) {
2625		*ptp = NULL;
2626		return (TRUE);
2627	}
2628
2629	if (pmap->pm_l2 == NULL)
2630		return (FALSE);
2631
2632	l2 = pmap->pm_l2[L2_IDX(l1idx)];
2633
2634	if (l2 == NULL ||
2635	    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
2636		return (FALSE);
2637	}
2638
2639	*ptp = &ptep[l2pte_index(va)];
2640	return (TRUE);
2641}
2642
2643/*
2644 *      Routine:        pmap_remove_all
2645 *      Function:
2646 *              Removes this physical page from
2647 *              all physical maps in which it resides.
2648 *              Reflects back modify bits to the pager.
2649 *
2650 *      Notes:
2651 *              Original versions of this routine were very
2652 *              inefficient because they iteratively called
2653 *              pmap_remove (slow...)
2654 */
2655void
2656pmap_remove_all(vm_page_t m)
2657{
2658	struct md_page *pvh;
2659	pv_entry_t pv;
2660	pmap_t pmap;
2661	pt_entry_t *ptep;
2662	struct l2_bucket *l2b;
2663	boolean_t flush = FALSE;
2664	pmap_t curpmap;
2665	u_int is_exec = 0;
2666
2667	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2668	    ("pmap_remove_all: page %p is not managed", m));
2669	rw_wlock(&pvh_global_lock);
2670	if ((m->flags & PG_FICTITIOUS) != 0)
2671		goto small_mappings;
2672	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2673	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
2674		pmap = PV_PMAP(pv);
2675		PMAP_LOCK(pmap);
2676		pd_entry_t *pl1pd;
2677		pl1pd = &pmap->pm_l1->l1_kva[L1_IDX(pv->pv_va)];
2678		KASSERT((*pl1pd & L1_TYPE_MASK) == L1_S_PROTO,
2679		    ("pmap_remove_all: valid section mapping expected"));
2680		(void)pmap_demote_section(pmap, pv->pv_va);
2681		PMAP_UNLOCK(pmap);
2682	}
2683small_mappings:
2684	curpmap = vmspace_pmap(curproc->p_vmspace);
2685	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2686		pmap = PV_PMAP(pv);
2687		if (flush == FALSE && (pmap == curpmap ||
2688		    pmap == pmap_kernel()))
2689			flush = TRUE;
2690
2691		PMAP_LOCK(pmap);
2692		l2b = pmap_get_l2_bucket(pmap, pv->pv_va);
2693		KASSERT(l2b != NULL, ("No l2 bucket"));
2694		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2695		is_exec |= PTE_BEEN_EXECD(*ptep);
2696		*ptep = 0;
2697		if (pmap_is_current(pmap))
2698			PTE_SYNC(ptep);
2699		pmap_free_l2_bucket(pmap, l2b, 1);
2700		pmap->pm_stats.resident_count--;
2701		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2702		if (pv->pv_flags & PVF_WIRED)
2703			pmap->pm_stats.wired_count--;
2704		pmap_free_pv_entry(pmap, pv);
2705		PMAP_UNLOCK(pmap);
2706	}
2707
2708	if (flush) {
2709		if (is_exec)
2710			cpu_tlb_flushID();
2711		else
2712			cpu_tlb_flushD();
2713	}
2714	vm_page_aflag_clear(m, PGA_WRITEABLE);
2715	rw_wunlock(&pvh_global_lock);
2716}
2717
2718int
2719pmap_change_attr(vm_offset_t sva, vm_size_t len, int mode)
2720{
2721	vm_offset_t base, offset, tmpva;
2722	vm_size_t size;
2723	struct l2_bucket *l2b;
2724	pt_entry_t *ptep, pte;
2725	vm_offset_t next_bucket;
2726
2727	PMAP_LOCK(kernel_pmap);
2728
2729	base = trunc_page(sva);
2730	offset = sva & PAGE_MASK;
2731	size = roundup(offset + len, PAGE_SIZE);
2732
2733#ifdef checkit
2734	/*
2735	 * Only supported on kernel virtual addresses, including the direct
2736	 * map but excluding the recursive map.
2737	 */
2738	if (base < DMAP_MIN_ADDRESS) {
2739		PMAP_UNLOCK(kernel_pmap);
2740		return (EINVAL);
2741	}
2742#endif
2743	for (tmpva = base; tmpva < base + size; ) {
2744		next_bucket = L2_NEXT_BUCKET(tmpva);
2745		if (next_bucket > base + size)
2746			next_bucket = base + size;
2747
2748		l2b = pmap_get_l2_bucket(kernel_pmap, tmpva);
2749		if (l2b == NULL) {
2750			tmpva = next_bucket;
2751			continue;
2752		}
2753
2754		ptep = &l2b->l2b_kva[l2pte_index(tmpva)];
2755
2756		if (*ptep == 0) {
2757			PMAP_UNLOCK(kernel_pmap);
2758			return(EINVAL);
2759		}
2760
2761		pte = *ptep &~ L2_S_CACHE_MASK;
2762		cpu_idcache_wbinv_range(tmpva, PAGE_SIZE);
2763		pmap_l2cache_wbinv_range(tmpva, pte & L2_S_FRAME, PAGE_SIZE);
2764		*ptep = pte;
2765		cpu_tlb_flushID_SE(tmpva);
2766
2767		dprintf("%s: for va:%x ptep:%x pte:%x\n",
2768		    __func__, tmpva, (uint32_t)ptep, pte);
2769		tmpva += PAGE_SIZE;
2770	}
2771
2772	PMAP_UNLOCK(kernel_pmap);
2773
2774	return (0);
2775}
2776
2777/*
2778 *	Set the physical protection on the
2779 *	specified range of this map as requested.
2780 */
2781void
2782pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2783{
2784	struct l2_bucket *l2b;
2785	struct md_page *pvh;
2786	struct pv_entry *pve;
2787	pd_entry_t *pl1pd, l1pd;
2788	pt_entry_t *ptep, pte;
2789	vm_offset_t next_bucket;
2790	u_int is_exec, is_refd;
2791	int flush;
2792
2793	if ((prot & VM_PROT_READ) == 0) {
2794		pmap_remove(pmap, sva, eva);
2795		return;
2796	}
2797
2798	if (prot & VM_PROT_WRITE) {
2799		/*
2800		 * If this is a read->write transition, just ignore it and let
2801		 * vm_fault() take care of it later.
2802		 */
2803		return;
2804	}
2805
2806	rw_wlock(&pvh_global_lock);
2807	PMAP_LOCK(pmap);
2808
2809	/*
2810	 * OK, at this point, we know we're doing write-protect operation.
2811	 * If the pmap is active, write-back the range.
2812	 */
2813
2814	flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
2815	is_exec = is_refd = 0;
2816
2817	while (sva < eva) {
2818		next_bucket = L2_NEXT_BUCKET(sva);
2819		/*
2820		 * Check for large page.
2821		 */
2822		pl1pd = &pmap->pm_l1->l1_kva[L1_IDX(sva)];
2823		l1pd = *pl1pd;
2824		if ((l1pd & L1_TYPE_MASK) == L1_S_PROTO) {
2825			KASSERT(pmap != pmap_kernel(),
2826			    ("pmap_protect: trying to modify "
2827			    "kernel section protections"));
2828			/*
2829			 * Are we protecting the entire large page? If not,
2830			 * demote the mapping and fall through.
2831			 */
2832			if (sva + L1_S_SIZE == L2_NEXT_BUCKET(sva) &&
2833			    eva >= L2_NEXT_BUCKET(sva)) {
2834				l1pd &= ~(L1_S_PROT_MASK | L1_S_XN);
2835				if (!(prot & VM_PROT_EXECUTE))
2836					*pl1pd |= L1_S_XN;
2837				/*
2838				 * At this point we are always setting
2839				 * write-protect bit.
2840				 */
2841				l1pd |= L1_S_APX;
2842				/* All managed superpages are user pages. */
2843				l1pd |= L1_S_PROT_U;
2844				*pl1pd = l1pd;
2845				PTE_SYNC(pl1pd);
2846				pvh = pa_to_pvh(l1pd & L1_S_FRAME);
2847				pve = pmap_find_pv(pvh, pmap,
2848				    trunc_1mpage(sva));
2849				pve->pv_flags &= ~PVF_WRITE;
2850				sva = next_bucket;
2851				continue;
2852			} else if (!pmap_demote_section(pmap, sva)) {
2853				/* The large page mapping was destroyed. */
2854				sva = next_bucket;
2855				continue;
2856			}
2857		}
2858		if (next_bucket > eva)
2859			next_bucket = eva;
2860		l2b = pmap_get_l2_bucket(pmap, sva);
2861		if (l2b == NULL) {
2862			sva = next_bucket;
2863			continue;
2864		}
2865
2866		ptep = &l2b->l2b_kva[l2pte_index(sva)];
2867
2868		while (sva < next_bucket) {
2869			if ((pte = *ptep) != 0 && L2_S_WRITABLE(pte)) {
2870				struct vm_page *m;
2871
2872				m = PHYS_TO_VM_PAGE(l2pte_pa(pte));
2873				pmap_set_prot(ptep, prot,
2874				    !(pmap == pmap_kernel()));
2875				PTE_SYNC(ptep);
2876
2877				pmap_modify_pv(m, pmap, sva, PVF_WRITE, 0);
2878
2879				if (flush >= 0) {
2880					flush++;
2881					is_exec |= PTE_BEEN_EXECD(pte);
2882					is_refd |= PTE_BEEN_REFD(pte);
2883				} else {
2884					if (PTE_BEEN_EXECD(pte))
2885						cpu_tlb_flushID_SE(sva);
2886					else if (PTE_BEEN_REFD(pte))
2887						cpu_tlb_flushD_SE(sva);
2888				}
2889			}
2890
2891			sva += PAGE_SIZE;
2892			ptep++;
2893		}
2894	}
2895
2896
2897	if (flush) {
2898		if (is_exec)
2899			cpu_tlb_flushID();
2900		else
2901		if (is_refd)
2902			cpu_tlb_flushD();
2903	}
2904	rw_wunlock(&pvh_global_lock);
2905
2906	PMAP_UNLOCK(pmap);
2907}
2908
2909
2910/*
2911 *	Insert the given physical page (p) at
2912 *	the specified virtual address (v) in the
2913 *	target physical map with the protection requested.
2914 *
2915 *	If specified, the page will be wired down, meaning
2916 *	that the related pte can not be reclaimed.
2917 *
2918 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2919 *	or lose information.  That is, this routine must actually
2920 *	insert this page into the given map NOW.
2921 */
2922
2923void
2924pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2925    vm_prot_t prot, boolean_t wired)
2926{
2927
2928	rw_wlock(&pvh_global_lock);
2929	PMAP_LOCK(pmap);
2930	pmap_enter_locked(pmap, va, access, m, prot, wired, M_WAITOK);
2931	PMAP_UNLOCK(pmap);
2932	rw_wunlock(&pvh_global_lock);
2933}
2934
2935/*
2936 *	The pvh global and pmap locks must be held.
2937 */
2938static void
2939pmap_enter_locked(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2940    vm_prot_t prot, boolean_t wired, int flags)
2941{
2942	struct l2_bucket *l2b = NULL;
2943	struct vm_page *om;
2944	struct pv_entry *pve = NULL;
2945	pd_entry_t *pl1pd, l1pd;
2946	pt_entry_t *ptep, npte, opte;
2947	u_int nflags;
2948	u_int is_exec, is_refd;
2949	vm_paddr_t pa;
2950	u_char user;
2951
2952	PMAP_ASSERT_LOCKED(pmap);
2953	rw_assert(&pvh_global_lock, RA_WLOCKED);
2954	if (va == vector_page) {
2955		pa = systempage.pv_pa;
2956		m = NULL;
2957	} else {
2958		KASSERT((m->oflags & VPO_UNMANAGED) != 0 ||
2959		    vm_page_xbusied(m) || (flags & M_NOWAIT) != 0,
2960		    ("pmap_enter_locked: page %p is not busy", m));
2961		pa = VM_PAGE_TO_PHYS(m);
2962	}
2963
2964	pl1pd = &pmap->pm_l1->l1_kva[L1_IDX(va)];
2965	if ((*pl1pd & L1_TYPE_MASK) == L1_S_PROTO)
2966		panic("pmap_enter_locked: attempt pmap_enter_on 1MB page");
2967
2968	user = 0;
2969	/*
2970	 * Make sure userland mappings get the right permissions
2971	 */
2972	if (pmap != pmap_kernel() && va != vector_page)
2973		user = 1;
2974
2975	nflags = 0;
2976
2977	if (prot & VM_PROT_WRITE)
2978		nflags |= PVF_WRITE;
2979	if (wired)
2980		nflags |= PVF_WIRED;
2981
2982	PDEBUG(1, printf("pmap_enter: pmap = %08x, va = %08x, m = %08x, "
2983	    "prot = %x, wired = %x\n", (uint32_t) pmap, va, (uint32_t) m,
2984	    prot, wired));
2985
2986	if (pmap == pmap_kernel()) {
2987		l2b = pmap_get_l2_bucket(pmap, va);
2988		if (l2b == NULL)
2989			l2b = pmap_grow_l2_bucket(pmap, va);
2990	} else {
2991do_l2b_alloc:
2992		l2b = pmap_alloc_l2_bucket(pmap, va);
2993		if (l2b == NULL) {
2994			if (flags & M_WAITOK) {
2995				PMAP_UNLOCK(pmap);
2996				rw_wunlock(&pvh_global_lock);
2997				VM_WAIT;
2998				rw_wlock(&pvh_global_lock);
2999				PMAP_LOCK(pmap);
3000				goto do_l2b_alloc;
3001			}
3002			return;
3003		}
3004	}
3005
3006	ptep = &l2b->l2b_kva[l2pte_index(va)];
3007
3008	opte = *ptep;
3009	npte = pa;
3010	is_exec = is_refd = 0;
3011
3012	if (opte) {
3013		if (l2pte_pa(opte) == pa) {
3014			/*
3015			 * We're changing the attrs of an existing mapping.
3016			 */
3017			if (m != NULL)
3018				pmap_modify_pv(m, pmap, va,
3019				    PVF_WRITE | PVF_WIRED, nflags);
3020			is_exec |= PTE_BEEN_EXECD(opte);
3021			is_refd |= PTE_BEEN_REFD(opte);
3022			goto validate;
3023		}
3024		if ((om = PHYS_TO_VM_PAGE(l2pte_pa(opte)))) {
3025			/*
3026			 * Replacing an existing mapping with a new one.
3027			 * It is part of our managed memory so we
3028			 * must remove it from the PV list
3029			 */
3030			if ((pve = pmap_remove_pv(om, pmap, va))) {
3031				is_exec |= PTE_BEEN_EXECD(opte);
3032				is_refd |= PTE_BEEN_REFD(opte);
3033
3034				if (m && ((m->oflags & VPO_UNMANAGED)))
3035					pmap_free_pv_entry(pmap, pve);
3036			}
3037		}
3038
3039	} else {
3040		/*
3041		 * Keep the stats up to date
3042		 */
3043		l2b->l2b_occupancy++;
3044		pmap->pm_stats.resident_count++;
3045	}
3046
3047	/*
3048	 * Enter on the PV list if part of our managed memory.
3049	 */
3050	if ((m && !(m->oflags & VPO_UNMANAGED))) {
3051		if ((!pve) && (pve = pmap_get_pv_entry(pmap, FALSE)) == NULL)
3052			panic("pmap_enter: no pv entries");
3053
3054		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3055		("pmap_enter: managed mapping within the clean submap"));
3056		KASSERT(pve != NULL, ("No pv"));
3057		pmap_enter_pv(m, pve, pmap, va, nflags);
3058	}
3059
3060validate:
3061	/* Make the new PTE valid */
3062	npte |= L2_S_PROTO;
3063#ifdef SMP
3064	npte |= L2_SHARED;
3065#endif
3066	/* Set defaults first - kernel read access */
3067	npte |= L2_APX;
3068	npte |= L2_S_PROT_R;
3069	/* Set "referenced" flag */
3070	npte |= L2_S_REF;
3071
3072	/* Now tune APs as desired */
3073	if (user)
3074		npte |= L2_S_PROT_U;
3075	/*
3076	 * If this is not a vector_page
3077	 * then continue setting mapping parameters
3078	 */
3079	if (m != NULL) {
3080		if ((m->oflags & VPO_UNMANAGED) == 0) {
3081			if (prot & (VM_PROT_ALL)) {
3082				vm_page_aflag_set(m, PGA_REFERENCED);
3083			} else {
3084				/*
3085				 * Need to do page referenced emulation.
3086				 */
3087				npte &= ~L2_S_REF;
3088			}
3089		}
3090
3091		if (prot & VM_PROT_WRITE) {
3092			if ((m->oflags & VPO_UNMANAGED) == 0) {
3093				vm_page_aflag_set(m, PGA_WRITEABLE);
3094				/*
3095				 * XXX: Skip modified bit emulation for now.
3096				 *	The emulation reveals problems
3097				 *	that result in random failures
3098				 *	during memory allocation on some
3099				 *	platforms.
3100				 *	Therefore, the page is marked RW
3101				 *	immediately.
3102				 */
3103				npte &= ~(L2_APX);
3104				vm_page_dirty(m);
3105			} else
3106				npte &= ~(L2_APX);
3107		}
3108		if (!(prot & VM_PROT_EXECUTE))
3109			npte |= L2_XN;
3110
3111		if (m->md.pv_memattr != VM_MEMATTR_UNCACHEABLE)
3112			npte |= pte_l2_s_cache_mode;
3113	}
3114
3115	CTR5(KTR_PMAP,"enter: pmap:%p va:%x prot:%x pte:%x->%x",
3116	    pmap, va, prot, opte, npte);
3117	/*
3118	 * If this is just a wiring change, the two PTEs will be
3119	 * identical, so there's no need to update the page table.
3120	 */
3121	if (npte != opte) {
3122		boolean_t is_cached = pmap_is_current(pmap);
3123
3124		*ptep = npte;
3125		PTE_SYNC(ptep);
3126		if (is_cached) {
3127			/*
3128			 * We only need to frob the cache/tlb if this pmap
3129			 * is current
3130			 */
3131			if (L1_IDX(va) != L1_IDX(vector_page) &&
3132			    l2pte_valid(npte)) {
3133				/*
3134				 * This mapping is likely to be accessed as
3135				 * soon as we return to userland. Fix up the
3136				 * L1 entry to avoid taking another
3137				 * page/domain fault.
3138				 */
3139				l1pd = l2b->l2b_phys |
3140				    L1_C_DOM(pmap->pm_domain) | L1_C_PROTO;
3141				if (*pl1pd != l1pd) {
3142					*pl1pd = l1pd;
3143					PTE_SYNC(pl1pd);
3144				}
3145			}
3146		}
3147
3148		if (is_exec)
3149			cpu_tlb_flushID_SE(va);
3150		else if (is_refd)
3151			cpu_tlb_flushD_SE(va);
3152	}
3153
3154	if ((pmap != pmap_kernel()) && (pmap == &curproc->p_vmspace->vm_pmap))
3155		cpu_icache_sync_range(va, PAGE_SIZE);
3156	/*
3157	 * If both the l2b_occupancy and the reservation are fully
3158	 * populated, then attempt promotion.
3159	 */
3160	if ((l2b->l2b_occupancy == L2_PTE_NUM_TOTAL) &&
3161	    sp_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
3162	    vm_reserv_level_iffullpop(m) == 0)
3163		pmap_promote_section(pmap, va);
3164}
3165
3166/*
3167 * Maps a sequence of resident pages belonging to the same object.
3168 * The sequence begins with the given page m_start.  This page is
3169 * mapped at the given virtual address start.  Each subsequent page is
3170 * mapped at a virtual address that is offset from start by the same
3171 * amount as the page is offset from m_start within the object.  The
3172 * last page in the sequence is the page with the largest offset from
3173 * m_start that can be mapped at a virtual address less than the given
3174 * virtual address end.  Not every virtual page between start and end
3175 * is mapped; only those for which a resident page exists with the
3176 * corresponding offset from m_start are mapped.
3177 */
3178void
3179pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3180    vm_page_t m_start, vm_prot_t prot)
3181{
3182	vm_offset_t va;
3183	vm_page_t m;
3184	vm_pindex_t diff, psize;
3185	vm_prot_t access;
3186
3187	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3188
3189	psize = atop(end - start);
3190	m = m_start;
3191	access = prot = prot & (VM_PROT_READ | VM_PROT_EXECUTE);
3192	rw_wlock(&pvh_global_lock);
3193	PMAP_LOCK(pmap);
3194	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3195		va = start + ptoa(diff);
3196		if ((va & L1_S_OFFSET) == 0 && L2_NEXT_BUCKET(va) <= end &&
3197		    (VM_PAGE_TO_PHYS(m) & L1_S_OFFSET) == 0 &&
3198		    sp_enabled && vm_reserv_level_iffullpop(m) == 0 &&
3199		    pmap_enter_section(pmap, va, m, prot))
3200			m = &m[L1_S_SIZE / PAGE_SIZE - 1];
3201		else
3202			pmap_enter_locked(pmap, va, access, m, prot,
3203			    FALSE, M_NOWAIT);
3204		m = TAILQ_NEXT(m, listq);
3205	}
3206	PMAP_UNLOCK(pmap);
3207	rw_wunlock(&pvh_global_lock);
3208}
3209
3210/*
3211 * this code makes some *MAJOR* assumptions:
3212 * 1. Current pmap & pmap exists.
3213 * 2. Not wired.
3214 * 3. Read access.
3215 * 4. No page table pages.
3216 * but is *MUCH* faster than pmap_enter...
3217 */
3218
3219void
3220pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3221{
3222	vm_prot_t access;
3223
3224	access = prot = prot & (VM_PROT_READ | VM_PROT_EXECUTE);
3225	rw_wlock(&pvh_global_lock);
3226	PMAP_LOCK(pmap);
3227	pmap_enter_locked(pmap, va, access, m, prot, FALSE, M_NOWAIT);
3228	PMAP_UNLOCK(pmap);
3229	rw_wunlock(&pvh_global_lock);
3230}
3231
3232/*
3233 *	Routine:	pmap_change_wiring
3234 *	Function:	Change the wiring attribute for a map/virtual-address
3235 *			pair.
3236 *	In/out conditions:
3237 *			The mapping must already exist in the pmap.
3238 */
3239void
3240pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3241{
3242	struct l2_bucket *l2b;
3243	struct md_page *pvh;
3244	struct pv_entry *pve;
3245	pd_entry_t *pl1pd, l1pd;
3246	pt_entry_t *ptep, pte;
3247	vm_page_t m;
3248
3249	rw_wlock(&pvh_global_lock);
3250	PMAP_LOCK(pmap);
3251	pl1pd = &pmap->pm_l1->l1_kva[L1_IDX(va)];
3252	l1pd = *pl1pd;
3253	if ((l1pd & L1_TYPE_MASK) == L1_S_PROTO) {
3254		m = PHYS_TO_VM_PAGE(l1pd & L1_S_FRAME);
3255		KASSERT((m != NULL) && ((m->oflags & VPO_UNMANAGED) == 0),
3256		    ("pmap_change_wiring: unmanaged superpage should not "
3257		     "be changed"));
3258		KASSERT(pmap != pmap_kernel(),
3259		    ("pmap_change_wiring: managed kernel superpage "
3260		     "should not exist"));
3261		pvh = pa_to_pvh(l1pd & L1_S_FRAME);
3262		pve = pmap_find_pv(pvh, pmap, trunc_1mpage(va));
3263		if (!wired != ((pve->pv_flags & PVF_WIRED) == 0)) {
3264			if (!pmap_demote_section(pmap, va))
3265				panic("pmap_change_wiring: demotion failed");
3266		} else
3267			goto out;
3268	}
3269	l2b = pmap_get_l2_bucket(pmap, va);
3270	KASSERT(l2b, ("No l2b bucket in pmap_change_wiring"));
3271	ptep = &l2b->l2b_kva[l2pte_index(va)];
3272	pte = *ptep;
3273	m = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3274	if (m != NULL)
3275		pmap_modify_pv(m, pmap, va, PVF_WIRED,
3276		    wired == TRUE ? PVF_WIRED : 0);
3277out:
3278	rw_wunlock(&pvh_global_lock);
3279	PMAP_UNLOCK(pmap);
3280}
3281
3282
3283/*
3284 *	Copy the range specified by src_addr/len
3285 *	from the source map to the range dst_addr/len
3286 *	in the destination map.
3287 *
3288 *	This routine is only advisory and need not do anything.
3289 */
3290void
3291pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
3292    vm_size_t len, vm_offset_t src_addr)
3293{
3294}
3295
3296
3297/*
3298 *	Routine:	pmap_extract
3299 *	Function:
3300 *		Extract the physical page address associated
3301 *		with the given map/virtual_address pair.
3302 */
3303vm_paddr_t
3304pmap_extract(pmap_t pmap, vm_offset_t va)
3305{
3306	vm_paddr_t pa;
3307
3308	if (kernel_vm_end != 0)
3309		PMAP_LOCK(pmap);
3310	pa = pmap_extract_locked(pmap, va);
3311	if (kernel_vm_end != 0)
3312		PMAP_UNLOCK(pmap);
3313	return (pa);
3314}
3315
3316static vm_paddr_t
3317pmap_extract_locked(pmap_t pmap, vm_offset_t va)
3318{
3319	struct l2_dtable *l2;
3320	pd_entry_t l1pd;
3321	pt_entry_t *ptep, pte;
3322	vm_paddr_t pa;
3323	u_int l1idx;
3324
3325	if (kernel_vm_end != 0 && pmap != kernel_pmap)
3326		PMAP_ASSERT_LOCKED(pmap);
3327	l1idx = L1_IDX(va);
3328	l1pd = pmap->pm_l1->l1_kva[l1idx];
3329	if (l1pte_section_p(l1pd)) {
3330		/*
3331		 * These should only happen for the kernel pmap.
3332		 */
3333		KASSERT(pmap == kernel_pmap, ("unexpected section"));
3334		/* XXX: what to do about the bits > 32 ? */
3335		if (l1pd & L1_S_SUPERSEC)
3336			pa = (l1pd & L1_SUP_FRAME) | (va & L1_SUP_OFFSET);
3337		else
3338			pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3339	} else {
3340		/*
3341		 * Note that we can't rely on the validity of the L1
3342		 * descriptor as an indication that a mapping exists.
3343		 * We have to look it up in the L2 dtable.
3344		 */
3345		l2 = pmap->pm_l2[L2_IDX(l1idx)];
3346		if (l2 == NULL ||
3347		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL)
3348			return (0);
3349		pte = ptep[l2pte_index(va)];
3350		if (pte == 0)
3351			return (0);
3352		switch (pte & L2_TYPE_MASK) {
3353		case L2_TYPE_L:
3354			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3355			break;
3356		default:
3357			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3358			break;
3359		}
3360	}
3361	return (pa);
3362}
3363
3364/*
3365 * Atomically extract and hold the physical page with the given
3366 * pmap and virtual address pair if that mapping permits the given
3367 * protection.
3368 *
3369 */
3370vm_page_t
3371pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3372{
3373	struct l2_dtable *l2;
3374	pd_entry_t l1pd;
3375	pt_entry_t *ptep, pte;
3376	vm_paddr_t pa, paddr;
3377	vm_page_t m = NULL;
3378	u_int l1idx;
3379	l1idx = L1_IDX(va);
3380	paddr = 0;
3381
3382	PMAP_LOCK(pmap);
3383retry:
3384	l1pd = pmap->pm_l1->l1_kva[l1idx];
3385	if (l1pte_section_p(l1pd)) {
3386		/* XXX: what to do about the bits > 32 ? */
3387		if (l1pd & L1_S_SUPERSEC)
3388			pa = (l1pd & L1_SUP_FRAME) | (va & L1_SUP_OFFSET);
3389		else
3390			pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3391		if (vm_page_pa_tryrelock(pmap, pa & PG_FRAME, &paddr))
3392			goto retry;
3393		if (L1_S_WRITABLE(l1pd) || (prot & VM_PROT_WRITE) == 0) {
3394			m = PHYS_TO_VM_PAGE(pa);
3395			vm_page_hold(m);
3396		}
3397	} else {
3398		/*
3399		 * Note that we can't rely on the validity of the L1
3400		 * descriptor as an indication that a mapping exists.
3401		 * We have to look it up in the L2 dtable.
3402		 */
3403		l2 = pmap->pm_l2[L2_IDX(l1idx)];
3404
3405		if (l2 == NULL ||
3406		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3407			PMAP_UNLOCK(pmap);
3408			return (NULL);
3409		}
3410
3411		ptep = &ptep[l2pte_index(va)];
3412		pte = *ptep;
3413
3414		if (pte == 0) {
3415			PMAP_UNLOCK(pmap);
3416			return (NULL);
3417		} else if ((prot & VM_PROT_WRITE) && (pte & L2_APX)) {
3418			PMAP_UNLOCK(pmap);
3419			return (NULL);
3420		} else {
3421			switch (pte & L2_TYPE_MASK) {
3422			case L2_TYPE_L:
3423				panic("extract and hold section mapping");
3424				break;
3425			default:
3426				pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3427				break;
3428			}
3429			if (vm_page_pa_tryrelock(pmap, pa & PG_FRAME, &paddr))
3430				goto retry;
3431			m = PHYS_TO_VM_PAGE(pa);
3432			vm_page_hold(m);
3433		}
3434
3435	}
3436
3437	PMAP_UNLOCK(pmap);
3438	PA_UNLOCK_COND(paddr);
3439	return (m);
3440}
3441
3442/*
3443 * Initialize a preallocated and zeroed pmap structure,
3444 * such as one in a vmspace structure.
3445 */
3446
3447int
3448pmap_pinit(pmap_t pmap)
3449{
3450	PDEBUG(1, printf("pmap_pinit: pmap = %08x\n", (uint32_t) pmap));
3451
3452	pmap_alloc_l1(pmap);
3453	bzero(pmap->pm_l2, sizeof(pmap->pm_l2));
3454
3455	CPU_ZERO(&pmap->pm_active);
3456
3457	TAILQ_INIT(&pmap->pm_pvchunk);
3458	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
3459	pmap->pm_stats.resident_count = 1;
3460	if (vector_page < KERNBASE) {
3461		pmap_enter(pmap, vector_page,
3462		    VM_PROT_READ, PHYS_TO_VM_PAGE(systempage.pv_pa),
3463		    VM_PROT_READ, 1);
3464	}
3465	return (1);
3466}
3467
3468
3469/***************************************************
3470 * Superpage management routines.
3471 ***************************************************/
3472
3473static PMAP_INLINE struct pv_entry *
3474pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3475{
3476	pv_entry_t pv;
3477
3478	rw_assert(&pvh_global_lock, RA_WLOCKED);
3479
3480	pv = pmap_find_pv(pvh, pmap, va);
3481	if (pv != NULL)
3482		TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
3483
3484	return (pv);
3485}
3486
3487static void
3488pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3489{
3490	pv_entry_t pv;
3491
3492	pv = pmap_pvh_remove(pvh, pmap, va);
3493	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
3494	pmap_free_pv_entry(pmap, pv);
3495}
3496
3497static boolean_t
3498pmap_pv_insert_section(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3499{
3500	struct md_page *pvh;
3501	pv_entry_t pv;
3502
3503	rw_assert(&pvh_global_lock, RA_WLOCKED);
3504	if (pv_entry_count < pv_entry_high_water &&
3505	    (pv = pmap_get_pv_entry(pmap, TRUE)) != NULL) {
3506		pv->pv_va = va;
3507		pvh = pa_to_pvh(pa);
3508		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
3509		return (TRUE);
3510	} else
3511		return (FALSE);
3512}
3513
3514/*
3515 * Create the pv entries for each of the pages within a superpage.
3516 */
3517static void
3518pmap_pv_demote_section(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3519{
3520	struct md_page *pvh;
3521	pv_entry_t pve, pv;
3522	vm_offset_t va_last;
3523	vm_page_t m;
3524
3525	rw_assert(&pvh_global_lock, RA_WLOCKED);
3526	KASSERT((pa & L1_S_OFFSET) == 0,
3527	    ("pmap_pv_demote_section: pa is not 1mpage aligned"));
3528
3529	/*
3530	 * Transfer the 1mpage's pv entry for this mapping to the first
3531	 * page's pv list.
3532	 */
3533	pvh = pa_to_pvh(pa);
3534	va = trunc_1mpage(va);
3535	pv = pmap_pvh_remove(pvh, pmap, va);
3536	KASSERT(pv != NULL, ("pmap_pv_demote_section: pv not found"));
3537	m = PHYS_TO_VM_PAGE(pa);
3538	TAILQ_INSERT_HEAD(&m->md.pv_list, pv, pv_list);
3539	/* Instantiate the remaining pv entries. */
3540	va_last = L2_NEXT_BUCKET(va) - PAGE_SIZE;
3541	do {
3542		m++;
3543		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3544		    ("pmap_pv_demote_section: page %p is not managed", m));
3545		va += PAGE_SIZE;
3546		pve = pmap_get_pv_entry(pmap, FALSE);
3547		pmap_enter_pv(m, pve, pmap, va, pv->pv_flags);
3548	} while (va < va_last);
3549}
3550
3551static void
3552pmap_pv_promote_section(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3553{
3554	struct md_page *pvh;
3555	pv_entry_t pv;
3556	vm_offset_t va_last;
3557	vm_page_t m;
3558
3559	rw_assert(&pvh_global_lock, RA_WLOCKED);
3560	KASSERT((pa & L1_S_OFFSET) == 0,
3561	    ("pmap_pv_promote_section: pa is not 1mpage aligned"));
3562
3563	/*
3564	 * Transfer the first page's pv entry for this mapping to the
3565	 * 1mpage's pv list.  Aside from avoiding the cost of a call
3566	 * to get_pv_entry(), a transfer avoids the possibility that
3567	 * get_pv_entry() calls pmap_pv_reclaim() and that pmap_pv_reclaim()
3568	 * removes one of the mappings that is being promoted.
3569	 */
3570	m = PHYS_TO_VM_PAGE(pa);
3571	va = trunc_1mpage(va);
3572	pv = pmap_pvh_remove(&m->md, pmap, va);
3573	KASSERT(pv != NULL, ("pmap_pv_promote_section: pv not found"));
3574	pvh = pa_to_pvh(pa);
3575	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
3576	/* Free the remaining pv entries in the newly mapped section pages */
3577	va_last = L2_NEXT_BUCKET(va) - PAGE_SIZE;
3578	do {
3579		m++;
3580		va += PAGE_SIZE;
3581		/*
3582		 * Don't care the flags, first pv contains sufficient
3583		 * information for all of the pages so nothing is really lost.
3584		 */
3585		pmap_pvh_free(&m->md, pmap, va);
3586	} while (va < va_last);
3587}
3588
3589/*
3590 * Tries to create a 1MB page mapping.  Returns TRUE if successful and
3591 * FALSE otherwise.  Fails if (1) page is unmanageg, kernel pmap or vectors
3592 * page, (2) a mapping already exists at the specified virtual address, or
3593 * (3) a pv entry cannot be allocated without reclaiming another pv entry.
3594 */
3595static boolean_t
3596pmap_enter_section(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3597{
3598	pd_entry_t *pl1pd;
3599	vm_offset_t pa;
3600	struct l2_bucket *l2b;
3601
3602	rw_assert(&pvh_global_lock, RA_WLOCKED);
3603	PMAP_ASSERT_LOCKED(pmap);
3604
3605	/* Skip kernel, vectors page and unmanaged mappings */
3606	if ((pmap == pmap_kernel()) || (L1_IDX(va) == L1_IDX(vector_page)) ||
3607	    ((m->oflags & VPO_UNMANAGED) != 0)) {
3608		CTR2(KTR_PMAP, "pmap_enter_section: failure for va %#lx"
3609		    " in pmap %p", va, pmap);
3610		return (FALSE);
3611	}
3612	/*
3613	 * Check whether this is a valid section superpage entry or
3614	 * there is a l2_bucket associated with that L1 page directory.
3615	 */
3616	va = trunc_1mpage(va);
3617	pl1pd = &pmap->pm_l1->l1_kva[L1_IDX(va)];
3618	l2b = pmap_get_l2_bucket(pmap, va);
3619	if ((*pl1pd & L1_S_PROTO) || (l2b != NULL)) {
3620		CTR2(KTR_PMAP, "pmap_enter_section: failure for va %#lx"
3621		    " in pmap %p", va, pmap);
3622		return (FALSE);
3623	}
3624	pa = VM_PAGE_TO_PHYS(m);
3625	/*
3626	 * Abort this mapping if its PV entry could not be created.
3627	 */
3628	if (!pmap_pv_insert_section(pmap, va, VM_PAGE_TO_PHYS(m))) {
3629		CTR2(KTR_PMAP, "pmap_enter_section: failure for va %#lx"
3630		    " in pmap %p", va, pmap);
3631		return (FALSE);
3632	}
3633	/*
3634	 * Increment counters.
3635	 */
3636	pmap->pm_stats.resident_count += L2_PTE_NUM_TOTAL;
3637	/*
3638	 * Despite permissions, mark the superpage read-only.
3639	 */
3640	prot &= ~VM_PROT_WRITE;
3641	/*
3642	 * Map the superpage.
3643	 */
3644	pmap_map_section(pmap, va, pa, prot, FALSE);
3645
3646	pmap_section_mappings++;
3647	CTR2(KTR_PMAP, "pmap_enter_section: success for va %#lx"
3648	    " in pmap %p", va, pmap);
3649	return (TRUE);
3650}
3651
3652/*
3653 * pmap_remove_section: do the things to unmap a superpage in a process
3654 */
3655static void
3656pmap_remove_section(pmap_t pmap, vm_offset_t sva)
3657{
3658	struct md_page *pvh;
3659	struct l2_bucket *l2b;
3660	pd_entry_t *pl1pd, l1pd;
3661	vm_offset_t eva, va;
3662	vm_page_t m;
3663
3664	PMAP_ASSERT_LOCKED(pmap);
3665	if ((pmap == pmap_kernel()) || (L1_IDX(sva) == L1_IDX(vector_page)))
3666		return;
3667
3668	KASSERT((sva & L1_S_OFFSET) == 0,
3669	    ("pmap_remove_section: sva is not 1mpage aligned"));
3670
3671	pl1pd = &pmap->pm_l1->l1_kva[L1_IDX(sva)];
3672	l1pd = *pl1pd;
3673
3674	m = PHYS_TO_VM_PAGE(l1pd & L1_S_FRAME);
3675	KASSERT((m != NULL && ((m->oflags & VPO_UNMANAGED) == 0)),
3676	    ("pmap_remove_section: no corresponding vm_page or "
3677	    "page unmanaged"));
3678
3679	pmap->pm_stats.resident_count -= L2_PTE_NUM_TOTAL;
3680	pvh = pa_to_pvh(l1pd & L1_S_FRAME);
3681	pmap_pvh_free(pvh, pmap, sva);
3682	eva = L2_NEXT_BUCKET(sva);
3683	for (va = sva, m = PHYS_TO_VM_PAGE(l1pd & L1_S_FRAME);
3684	    va < eva; va += PAGE_SIZE, m++) {
3685		/*
3686		 * Mark base pages referenced but skip marking them dirty.
3687		 * If the superpage is writeable, hence all base pages were
3688		 * already marked as dirty in pmap_fault_fixup() before
3689		 * promotion. Reference bit however, might not have been set
3690		 * for each base page when the superpage was created at once,
3691		 * not as a result of promotion.
3692		 */
3693		if (L1_S_REFERENCED(l1pd))
3694			vm_page_aflag_set(m, PGA_REFERENCED);
3695		if (TAILQ_EMPTY(&m->md.pv_list) &&
3696		    TAILQ_EMPTY(&pvh->pv_list))
3697			vm_page_aflag_clear(m, PGA_WRITEABLE);
3698	}
3699
3700	l2b = pmap_get_l2_bucket(pmap, sva);
3701	if (l2b != NULL) {
3702		KASSERT(l2b->l2b_occupancy == L2_PTE_NUM_TOTAL,
3703		    ("pmap_remove_section: l2_bucket occupancy error"));
3704		pmap_free_l2_bucket(pmap, l2b, L2_PTE_NUM_TOTAL);
3705		/*
3706		 * Now invalidate L1 slot as it was not invalidated in
3707		 * pmap_free_l2_bucket() due to L1_TYPE mismatch.
3708		 */
3709		*pl1pd = 0;
3710		PTE_SYNC(pl1pd);
3711	}
3712}
3713
3714/*
3715 * Tries to promote the 256, contiguous 4KB page mappings that are
3716 * within a single l2_bucket to a single 1MB section mapping.
3717 * For promotion to occur, two conditions must be met: (1) the 4KB page
3718 * mappings must map aligned, contiguous physical memory and (2) the 4KB page
3719 * mappings must have identical characteristics.
3720 */
3721static void
3722pmap_promote_section(pmap_t pmap, vm_offset_t va)
3723{
3724	pt_entry_t *firstptep, firstpte, oldpte, pa, *pte;
3725	vm_page_t m, oldm;
3726	vm_offset_t first_va, old_va;
3727	struct l2_bucket *l2b = NULL;
3728	vm_prot_t prot;
3729	struct pv_entry *pve, *first_pve;
3730
3731	PMAP_ASSERT_LOCKED(pmap);
3732
3733	prot = VM_PROT_ALL;
3734	/*
3735	 * Skip promoting kernel pages. This is justified by following:
3736	 * 1. Kernel is already mapped using section mappings in each pmap
3737	 * 2. Managed mappings within the kernel are not to be promoted anyway
3738	 */
3739	if (pmap == pmap_kernel()) {
3740		pmap_section_p_failures++;
3741		CTR2(KTR_PMAP, "pmap_promote_section: failure for va %#x"
3742		    " in pmap %p", va, pmap);
3743		return;
3744	}
3745	/* Do not attemp to promote vectors pages */
3746	if (L1_IDX(va) == L1_IDX(vector_page)) {
3747		pmap_section_p_failures++;
3748		CTR2(KTR_PMAP, "pmap_promote_section: failure for va %#x"
3749		    " in pmap %p", va, pmap);
3750		return;
3751	}
3752	/*
3753	 * Examine the first PTE in the specified l2_bucket. Abort if this PTE
3754	 * is either invalid, unused, or does not map the first 4KB physical
3755	 * page within 1MB page.
3756	 */
3757	first_va = trunc_1mpage(va);
3758	l2b = pmap_get_l2_bucket(pmap, first_va);
3759	KASSERT(l2b != NULL, ("pmap_promote_section: trying to promote "
3760	    "not existing l2 bucket"));
3761	firstptep = &l2b->l2b_kva[0];
3762
3763	firstpte = *firstptep;
3764	if ((l2pte_pa(firstpte) & L1_S_OFFSET) != 0) {
3765		pmap_section_p_failures++;
3766		CTR2(KTR_PMAP, "pmap_promote_section: failure for va %#x"
3767		    " in pmap %p", va, pmap);
3768		return;
3769	}
3770
3771	if ((firstpte & (L2_S_PROTO | L2_S_REF)) != (L2_S_PROTO | L2_S_REF)) {
3772		pmap_section_p_failures++;
3773		CTR2(KTR_PMAP, "pmap_promote_section: failure for va %#x"
3774		    " in pmap %p", va, pmap);
3775		return;
3776	}
3777	/*
3778	 * ARM uses pv_entry to mark particular mapping WIRED so don't promote
3779	 * unmanaged pages since it is impossible to determine, whether the
3780	 * page is wired or not if there is no corresponding pv_entry.
3781	 */
3782	m = PHYS_TO_VM_PAGE(l2pte_pa(firstpte));
3783	if (m && ((m->oflags & VPO_UNMANAGED) != 0)) {
3784		pmap_section_p_failures++;
3785		CTR2(KTR_PMAP, "pmap_promote_section: failure for va %#x"
3786		    " in pmap %p", va, pmap);
3787		return;
3788	}
3789	first_pve = pmap_find_pv(&m->md, pmap, first_va);
3790	/*
3791	 * PTE is modified only on write due to modified bit
3792	 * emulation. If the entry is referenced and writable
3793	 * then it is modified and we don't clear write enable.
3794	 * Otherwise, writing is disabled in PTE anyway and
3795	 * we just configure protections for the section mapping
3796	 * that is going to be created.
3797	 */
3798	if (!L2_S_WRITABLE(firstpte) && (first_pve->pv_flags & PVF_WRITE)) {
3799		first_pve->pv_flags &= ~PVF_WRITE;
3800		prot &= ~VM_PROT_WRITE;
3801	}
3802
3803	if (!L2_S_EXECUTABLE(firstpte))
3804		prot &= ~VM_PROT_EXECUTE;
3805
3806	/*
3807	 * Examine each of the other PTEs in the specified l2_bucket.
3808	 * Abort if this PTE maps an unexpected 4KB physical page or
3809	 * does not have identical characteristics to the first PTE.
3810	 */
3811	pa = l2pte_pa(firstpte) + ((L2_PTE_NUM_TOTAL - 1) * PAGE_SIZE);
3812	old_va = L2_NEXT_BUCKET(first_va) - PAGE_SIZE;
3813
3814	for (pte = (firstptep + L2_PTE_NUM_TOTAL - 1); pte > firstptep; pte--) {
3815		oldpte = *pte;
3816		if (l2pte_pa(oldpte) != pa) {
3817			pmap_section_p_failures++;
3818			CTR2(KTR_PMAP, "pmap_promote_section: failure for "
3819			    "va %#x in pmap %p", va, pmap);
3820			return;
3821		}
3822		if ((oldpte & L2_S_PROMOTE) != (firstpte & L2_S_PROMOTE)) {
3823			pmap_section_p_failures++;
3824			CTR2(KTR_PMAP, "pmap_promote_section: failure for "
3825			    "va %#x in pmap %p", va, pmap);
3826			return;
3827		}
3828		oldm = PHYS_TO_VM_PAGE(l2pte_pa(oldpte));
3829		if (oldm && ((oldm->oflags & VPO_UNMANAGED) != 0)) {
3830			pmap_section_p_failures++;
3831			CTR2(KTR_PMAP, "pmap_promote_section: failure for "
3832			    "va %#x in pmap %p", va, pmap);
3833			return;
3834		}
3835
3836		pve = pmap_find_pv(&oldm->md, pmap, old_va);
3837		if (pve == NULL) {
3838			pmap_section_p_failures++;
3839			CTR2(KTR_PMAP, "pmap_promote_section: failure for "
3840			    "va %#x old_va  %x - no pve", va, old_va);
3841			return;
3842		}
3843
3844		if (!L2_S_WRITABLE(oldpte) && (pve->pv_flags & PVF_WRITE))
3845			pve->pv_flags &= ~PVF_WRITE;
3846
3847		old_va -= PAGE_SIZE;
3848		pa -= PAGE_SIZE;
3849	}
3850	/*
3851	 * Promote the pv entries.
3852	 */
3853	pmap_pv_promote_section(pmap, first_va, l2pte_pa(firstpte));
3854	/*
3855	 * Map the superpage.
3856	 */
3857	pmap_map_section(pmap, first_va, l2pte_pa(firstpte), prot, TRUE);
3858	pmap_section_promotions++;
3859	CTR2(KTR_PMAP, "pmap_promote_section: success for va %#x"
3860	    " in pmap %p", first_va, pmap);
3861}
3862
3863/*
3864 * Fills a l2_bucket with mappings to consecutive physical pages.
3865 */
3866static void
3867pmap_fill_l2b(struct l2_bucket *l2b, pt_entry_t newpte)
3868{
3869	pt_entry_t *ptep;
3870	int i;
3871
3872	for (i = 0; i < L2_PTE_NUM_TOTAL; i++) {
3873		ptep = &l2b->l2b_kva[i];
3874		*ptep = newpte;
3875		PTE_SYNC(ptep);
3876
3877		newpte += PAGE_SIZE;
3878	}
3879
3880	l2b->l2b_occupancy = L2_PTE_NUM_TOTAL;
3881}
3882
3883/*
3884 * Tries to demote a 1MB section mapping. If demotion fails, the
3885 * 1MB section mapping is invalidated.
3886 */
3887static boolean_t
3888pmap_demote_section(pmap_t pmap, vm_offset_t va)
3889{
3890	struct l2_bucket *l2b;
3891	struct pv_entry *l1pdpve;
3892	struct md_page *pvh;
3893	pd_entry_t *pl1pd, l1pd;
3894	pt_entry_t *firstptep, newpte;
3895	vm_offset_t pa;
3896	vm_page_t m;
3897
3898	PMAP_ASSERT_LOCKED(pmap);
3899	/*
3900	 * According to assumptions described in pmap_promote_section,
3901	 * kernel is and always should be mapped using 1MB section mappings.
3902	 * What more, managed kernel pages were not to be promoted.
3903	 */
3904	KASSERT(pmap != pmap_kernel() && L1_IDX(va) != L1_IDX(vector_page),
3905	    ("pmap_demote_section: forbidden section mapping"));
3906
3907	va = trunc_1mpage(va);
3908	pl1pd = &pmap->pm_l1->l1_kva[L1_IDX(va)];
3909	l1pd = *pl1pd;
3910	KASSERT((l1pd & L1_TYPE_MASK) == L1_S_PROTO,
3911	    ("pmap_demote_section: not section or invalid section"));
3912
3913	pa = l1pd & L1_S_FRAME;
3914	m = PHYS_TO_VM_PAGE(pa);
3915	KASSERT((m != NULL && (m->oflags & VPO_UNMANAGED) == 0),
3916	    ("pmap_demote_section: no vm_page for selected superpage or"
3917	     "unmanaged"));
3918
3919	pvh = pa_to_pvh(pa);
3920	l1pdpve = pmap_find_pv(pvh, pmap, va);
3921	KASSERT(l1pdpve != NULL, ("pmap_demote_section: no pv entry for "
3922	    "managed page"));
3923
3924	l2b = pmap_get_l2_bucket(pmap, va);
3925	if (l2b == NULL) {
3926		KASSERT((l1pdpve->pv_flags & PVF_WIRED) == 0,
3927		    ("pmap_demote_section: No l2_bucket for wired mapping"));
3928		/*
3929		 * Invalidate the 1MB section mapping and return
3930		 * "failure" if the mapping was never accessed or the
3931		 * allocation of the new l2_bucket fails.
3932		 */
3933		if (!L1_S_REFERENCED(l1pd) ||
3934		    (l2b = pmap_alloc_l2_bucket(pmap, va)) == NULL) {
3935			/* Unmap and invalidate superpage. */
3936			pmap_remove_section(pmap, trunc_1mpage(va));
3937			CTR2(KTR_PMAP, "pmap_demote_section: failure for "
3938			    "va %#x in pmap %p", va, pmap);
3939			return (FALSE);
3940		}
3941	}
3942
3943	/*
3944	 * Now we should have corresponding l2_bucket available.
3945	 * Let's process it to recreate 256 PTEs for each base page
3946	 * within superpage.
3947	 */
3948	newpte = pa | L1_S_DEMOTE(l1pd);
3949	if (m->md.pv_memattr != VM_MEMATTR_UNCACHEABLE)
3950		newpte |= pte_l2_s_cache_mode;
3951
3952	/*
3953	 * If the l2_bucket is new, initialize it.
3954	 */
3955	if (l2b->l2b_occupancy == 0)
3956		pmap_fill_l2b(l2b, newpte);
3957	else {
3958		firstptep = &l2b->l2b_kva[0];
3959		KASSERT(l2pte_pa(*firstptep) == (pa),
3960		    ("pmap_demote_section: firstpte and newpte map different "
3961		     "physical addresses"));
3962		/*
3963		 * If the mapping has changed attributes, update the page table
3964		 * entries.
3965		 */
3966		if ((*firstptep & L2_S_PROMOTE) != (L1_S_DEMOTE(l1pd)))
3967			pmap_fill_l2b(l2b, newpte);
3968	}
3969	/* Demote PV entry */
3970	pmap_pv_demote_section(pmap, va, pa);
3971
3972	/* Now fix-up L1 */
3973	l1pd = l2b->l2b_phys | L1_C_DOM(pmap->pm_domain) | L1_C_PROTO;
3974	*pl1pd = l1pd;
3975	PTE_SYNC(pl1pd);
3976
3977	pmap_section_demotions++;
3978	CTR2(KTR_PMAP, "pmap_demote_section: success for va %#x"
3979	    " in pmap %p", va, pmap);
3980	return (TRUE);
3981}
3982
3983/***************************************************
3984 * page management routines.
3985 ***************************************************/
3986
3987/*
3988 * We are in a serious low memory condition.  Resort to
3989 * drastic measures to free some pages so we can allocate
3990 * another pv entry chunk.
3991 */
3992static vm_page_t
3993pmap_pv_reclaim(pmap_t locked_pmap)
3994{
3995	struct pch newtail;
3996	struct pv_chunk *pc;
3997	struct l2_bucket *l2b = NULL;
3998	pmap_t pmap;
3999	pd_entry_t *pl1pd;
4000	pt_entry_t *ptep;
4001	pv_entry_t pv;
4002	vm_offset_t va;
4003	vm_page_t free, m, m_pc;
4004	uint32_t inuse;
4005	int bit, field, freed, idx;
4006
4007	PMAP_ASSERT_LOCKED(locked_pmap);
4008	pmap = NULL;
4009	free = m_pc = NULL;
4010	TAILQ_INIT(&newtail);
4011	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
4012	    free == NULL)) {
4013		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
4014		if (pmap != pc->pc_pmap) {
4015			if (pmap != NULL) {
4016				cpu_tlb_flushID();
4017				cpu_cpwait();
4018				if (pmap != locked_pmap)
4019					PMAP_UNLOCK(pmap);
4020			}
4021			pmap = pc->pc_pmap;
4022			/* Avoid deadlock and lock recursion. */
4023			if (pmap > locked_pmap)
4024				PMAP_LOCK(pmap);
4025			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
4026				pmap = NULL;
4027				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
4028				continue;
4029			}
4030		}
4031
4032		/*
4033		 * Destroy every non-wired, 4 KB page mapping in the chunk.
4034		 */
4035		freed = 0;
4036		for (field = 0; field < _NPCM; field++) {
4037			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
4038			    inuse != 0; inuse &= ~(1UL << bit)) {
4039				bit = ffs(inuse) - 1;
4040				idx = field * sizeof(inuse) * NBBY + bit;
4041				pv = &pc->pc_pventry[idx];
4042				va = pv->pv_va;
4043
4044				pl1pd = &pmap->pm_l1->l1_kva[L1_IDX(va)];
4045				if ((*pl1pd & L1_TYPE_MASK) == L1_S_PROTO)
4046					continue;
4047				if (pv->pv_flags & PVF_WIRED)
4048					continue;
4049
4050				l2b = pmap_get_l2_bucket(pmap, va);
4051				KASSERT(l2b != NULL, ("No l2 bucket"));
4052				ptep = &l2b->l2b_kva[l2pte_index(va)];
4053				m = PHYS_TO_VM_PAGE(l2pte_pa(*ptep));
4054				KASSERT((vm_offset_t)m >= KERNBASE,
4055				    ("Trying to access non-existent page "
4056				     "va %x pte %x", va, *ptep));
4057				*ptep = 0;
4058				PTE_SYNC(ptep);
4059				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4060				if (TAILQ_EMPTY(&m->md.pv_list))
4061					vm_page_aflag_clear(m, PGA_WRITEABLE);
4062				pc->pc_map[field] |= 1UL << bit;
4063				freed++;
4064			}
4065		}
4066
4067		if (freed == 0) {
4068			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
4069			continue;
4070		}
4071		/* Every freed mapping is for a 4 KB page. */
4072		pmap->pm_stats.resident_count -= freed;
4073		PV_STAT(pv_entry_frees += freed);
4074		PV_STAT(pv_entry_spare += freed);
4075		pv_entry_count -= freed;
4076		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4077		for (field = 0; field < _NPCM; field++)
4078			if (pc->pc_map[field] != pc_freemask[field]) {
4079				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
4080				    pc_list);
4081				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
4082
4083				/*
4084				 * One freed pv entry in locked_pmap is
4085				 * sufficient.
4086				 */
4087				if (pmap == locked_pmap)
4088					goto out;
4089				break;
4090			}
4091		if (field == _NPCM) {
4092			PV_STAT(pv_entry_spare -= _NPCPV);
4093			PV_STAT(pc_chunk_count--);
4094			PV_STAT(pc_chunk_frees++);
4095			/* Entire chunk is free; return it. */
4096			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
4097			pmap_qremove((vm_offset_t)pc, 1);
4098			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
4099			break;
4100		}
4101	}
4102out:
4103	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
4104	if (pmap != NULL) {
4105		cpu_tlb_flushID();
4106		cpu_cpwait();
4107		if (pmap != locked_pmap)
4108			PMAP_UNLOCK(pmap);
4109	}
4110	return (m_pc);
4111}
4112
4113/*
4114 * free the pv_entry back to the free list
4115 */
4116static void
4117pmap_free_pv_entry(pmap_t pmap, pv_entry_t pv)
4118{
4119	struct pv_chunk *pc;
4120	int bit, field, idx;
4121
4122	rw_assert(&pvh_global_lock, RA_WLOCKED);
4123	PMAP_ASSERT_LOCKED(pmap);
4124	PV_STAT(pv_entry_frees++);
4125	PV_STAT(pv_entry_spare++);
4126	pv_entry_count--;
4127	pc = pv_to_chunk(pv);
4128	idx = pv - &pc->pc_pventry[0];
4129	field = idx / (sizeof(u_long) * NBBY);
4130	bit = idx % (sizeof(u_long) * NBBY);
4131	pc->pc_map[field] |= 1ul << bit;
4132	for (idx = 0; idx < _NPCM; idx++)
4133		if (pc->pc_map[idx] != pc_freemask[idx]) {
4134			/*
4135			 * 98% of the time, pc is already at the head of the
4136			 * list.  If it isn't already, move it to the head.
4137			 */
4138			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
4139			    pc)) {
4140				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4141				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
4142				    pc_list);
4143			}
4144			return;
4145		}
4146	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4147	pmap_free_pv_chunk(pc);
4148}
4149
4150static void
4151pmap_free_pv_chunk(struct pv_chunk *pc)
4152{
4153	vm_page_t m;
4154
4155	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
4156	PV_STAT(pv_entry_spare -= _NPCPV);
4157	PV_STAT(pc_chunk_count--);
4158	PV_STAT(pc_chunk_frees++);
4159	/* entire chunk is free, return it */
4160	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
4161	pmap_qremove((vm_offset_t)pc, 1);
4162	vm_page_unwire(m, 0);
4163	vm_page_free(m);
4164	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
4165
4166}
4167
4168static pv_entry_t
4169pmap_get_pv_entry(pmap_t pmap, boolean_t try)
4170{
4171	static const struct timeval printinterval = { 60, 0 };
4172	static struct timeval lastprint;
4173	struct pv_chunk *pc;
4174	pv_entry_t pv;
4175	vm_page_t m;
4176	int bit, field, idx;
4177
4178	rw_assert(&pvh_global_lock, RA_WLOCKED);
4179	PMAP_ASSERT_LOCKED(pmap);
4180	PV_STAT(pv_entry_allocs++);
4181	pv_entry_count++;
4182
4183	if (pv_entry_count > pv_entry_high_water)
4184		if (ratecheck(&lastprint, &printinterval))
4185			printf("%s: Approaching the limit on PV entries.\n",
4186			    __func__);
4187retry:
4188	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
4189	if (pc != NULL) {
4190		for (field = 0; field < _NPCM; field++) {
4191			if (pc->pc_map[field]) {
4192				bit = ffs(pc->pc_map[field]) - 1;
4193				break;
4194			}
4195		}
4196		if (field < _NPCM) {
4197			idx = field * sizeof(pc->pc_map[field]) * NBBY + bit;
4198			pv = &pc->pc_pventry[idx];
4199			pc->pc_map[field] &= ~(1ul << bit);
4200			/* If this was the last item, move it to tail */
4201			for (field = 0; field < _NPCM; field++)
4202				if (pc->pc_map[field] != 0) {
4203					PV_STAT(pv_entry_spare--);
4204					return (pv);	/* not full, return */
4205				}
4206			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4207			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
4208			PV_STAT(pv_entry_spare--);
4209			return (pv);
4210		}
4211	}
4212	/*
4213	 * Access to the ptelist "pv_vafree" is synchronized by the pvh
4214	 * global lock.  If "pv_vafree" is currently non-empty, it will
4215	 * remain non-empty until pmap_ptelist_alloc() completes.
4216	 */
4217	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
4218	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
4219		if (try) {
4220			pv_entry_count--;
4221			PV_STAT(pc_chunk_tryfail++);
4222			return (NULL);
4223		}
4224		m = pmap_pv_reclaim(pmap);
4225		if (m == NULL)
4226			goto retry;
4227	}
4228	PV_STAT(pc_chunk_count++);
4229	PV_STAT(pc_chunk_allocs++);
4230	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
4231	pmap_qenter((vm_offset_t)pc, &m, 1);
4232	pc->pc_pmap = pmap;
4233	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
4234	for (field = 1; field < _NPCM; field++)
4235		pc->pc_map[field] = pc_freemask[field];
4236	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
4237	pv = &pc->pc_pventry[0];
4238	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
4239	PV_STAT(pv_entry_spare += _NPCPV - 1);
4240	return (pv);
4241}
4242
4243/*
4244 *	Remove the given range of addresses from the specified map.
4245 *
4246 *	It is assumed that the start and end are properly
4247 *	rounded to the page size.
4248 */
4249#define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
4250void
4251pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4252{
4253	struct l2_bucket *l2b;
4254	vm_offset_t next_bucket;
4255	pd_entry_t *pl1pd, l1pd;
4256	pt_entry_t *ptep;
4257	u_int total;
4258	u_int mappings, is_exec, is_refd;
4259	int flushall = 0;
4260
4261
4262	/*
4263	 * we lock in the pmap => pv_head direction
4264	 */
4265
4266	rw_wlock(&pvh_global_lock);
4267	PMAP_LOCK(pmap);
4268	total = 0;
4269	while (sva < eva) {
4270		/*
4271		 * Check for large page.
4272		 */
4273		pl1pd = &pmap->pm_l1->l1_kva[L1_IDX(sva)];
4274		l1pd = *pl1pd;
4275		if ((l1pd & L1_TYPE_MASK) == L1_S_PROTO) {
4276			KASSERT((l1pd & L1_S_DOM_MASK) !=
4277			    L1_S_DOM(PMAP_DOMAIN_KERNEL), ("pmap_remove: "
4278			    "Trying to remove kernel section mapping"));
4279			/*
4280			 * Are we removing the entire large page?  If not,
4281			 * demote the mapping and fall through.
4282			 */
4283			if (sva + L1_S_SIZE == L2_NEXT_BUCKET(sva) &&
4284			    eva >= L2_NEXT_BUCKET(sva)) {
4285				pmap_remove_section(pmap, sva);
4286				sva = L2_NEXT_BUCKET(sva);
4287				continue;
4288			} else if (!pmap_demote_section(pmap, sva)) {
4289				/* The large page mapping was destroyed. */
4290				sva = L2_NEXT_BUCKET(sva);
4291				continue;
4292			}
4293		}
4294		/*
4295		 * Do one L2 bucket's worth at a time.
4296		 */
4297		next_bucket = L2_NEXT_BUCKET(sva);
4298		if (next_bucket > eva)
4299			next_bucket = eva;
4300
4301		l2b = pmap_get_l2_bucket(pmap, sva);
4302		if (l2b == NULL) {
4303			sva = next_bucket;
4304			continue;
4305		}
4306
4307		ptep = &l2b->l2b_kva[l2pte_index(sva)];
4308		mappings = 0;
4309
4310		while (sva < next_bucket) {
4311			struct vm_page *m;
4312			pt_entry_t pte;
4313			vm_paddr_t pa;
4314
4315			pte = *ptep;
4316
4317			if (pte == 0) {
4318				/*
4319				 * Nothing here, move along
4320				 */
4321				sva += PAGE_SIZE;
4322				ptep++;
4323				continue;
4324			}
4325
4326			pmap->pm_stats.resident_count--;
4327			pa = l2pte_pa(pte);
4328			is_exec = 0;
4329			is_refd = 1;
4330
4331			/*
4332			 * Update flags. In a number of circumstances,
4333			 * we could cluster a lot of these and do a
4334			 * number of sequential pages in one go.
4335			 */
4336			if ((m = PHYS_TO_VM_PAGE(pa)) != NULL) {
4337				struct pv_entry *pve;
4338
4339				pve = pmap_remove_pv(m, pmap, sva);
4340				if (pve) {
4341					is_exec = PTE_BEEN_EXECD(pte);
4342					is_refd = PTE_BEEN_REFD(pte);
4343					pmap_free_pv_entry(pmap, pve);
4344				}
4345			}
4346
4347			if (pmap_is_current(pmap)) {
4348				total++;
4349				if (total < PMAP_REMOVE_CLEAN_LIST_SIZE) {
4350					if (is_exec)
4351						cpu_tlb_flushID_SE(sva);
4352					else if (is_refd)
4353						cpu_tlb_flushD_SE(sva);
4354				} else if (total == PMAP_REMOVE_CLEAN_LIST_SIZE)
4355					flushall = 1;
4356			}
4357			*ptep = 0;
4358			PTE_SYNC(ptep);
4359
4360			sva += PAGE_SIZE;
4361			ptep++;
4362			mappings++;
4363		}
4364
4365		pmap_free_l2_bucket(pmap, l2b, mappings);
4366	}
4367
4368	rw_wunlock(&pvh_global_lock);
4369	if (flushall)
4370		cpu_tlb_flushID();
4371	PMAP_UNLOCK(pmap);
4372}
4373
4374/*
4375 * pmap_zero_page()
4376 *
4377 * Zero a given physical page by mapping it at a page hook point.
4378 * In doing the zero page op, the page we zero is mapped cachable, as with
4379 * StrongARM accesses to non-cached pages are non-burst making writing
4380 * _any_ bulk data very slow.
4381 */
4382static void
4383pmap_zero_page_gen(vm_page_t m, int off, int size)
4384{
4385
4386	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
4387	if (!TAILQ_EMPTY(&m->md.pv_list))
4388		panic("pmap_zero_page: page has mappings");
4389
4390	mtx_lock(&cmtx);
4391	/*
4392	 * Hook in the page, zero it, invalidate the TLB as needed.
4393	 *
4394	 * Note the temporary zero-page mapping must be a non-cached page in
4395	 * order to work without corruption when write-allocate is enabled.
4396	 */
4397	*cdst_pte = L2_S_PROTO | phys | pte_l2_s_cache_mode | L2_S_REF;
4398	pmap_set_prot(cdst_pte, VM_PROT_WRITE, 0);
4399	PTE_SYNC(cdst_pte);
4400	cpu_tlb_flushD_SE(cdstp);
4401	cpu_cpwait();
4402	if (off || size != PAGE_SIZE)
4403		bzero((void *)(cdstp + off), size);
4404	else
4405		bzero_page(cdstp);
4406
4407	/*
4408	 * Although aliasing is not possible if we use
4409	 * cdstp temporary mappings with memory that
4410	 * will be mapped later as non-cached or with write-through
4411	 * caches we might end up overwriting it when calling wbinv_all
4412	 * So make sure caches are clean after copy operation
4413	 */
4414	cpu_idcache_wbinv_range(cdstp, size);
4415	pmap_l2cache_wbinv_range(cdstp, phys, size);
4416
4417	mtx_unlock(&cmtx);
4418}
4419
4420/*
4421 *	pmap_zero_page zeros the specified hardware page by mapping
4422 *	the page into KVM and using bzero to clear its contents.
4423 */
4424void
4425pmap_zero_page(vm_page_t m)
4426{
4427	pmap_zero_page_gen(m, 0, PAGE_SIZE);
4428}
4429
4430
4431/*
4432 *	pmap_zero_page_area zeros the specified hardware page by mapping
4433 *	the page into KVM and using bzero to clear its contents.
4434 *
4435 *	off and size may not cover an area beyond a single hardware page.
4436 */
4437void
4438pmap_zero_page_area(vm_page_t m, int off, int size)
4439{
4440
4441	pmap_zero_page_gen(m, off, size);
4442}
4443
4444
4445/*
4446 *	pmap_zero_page_idle zeros the specified hardware page by mapping
4447 *	the page into KVM and using bzero to clear its contents.  This
4448 *	is intended to be called from the vm_pagezero process only and
4449 *	outside of Giant.
4450 */
4451void
4452pmap_zero_page_idle(vm_page_t m)
4453{
4454
4455	pmap_zero_page(m);
4456}
4457
4458/*
4459 *	pmap_copy_page copies the specified (machine independent)
4460 *	page by mapping the page into virtual memory and using
4461 *	bcopy to copy the page, one machine dependent page at a
4462 *	time.
4463 */
4464
4465/*
4466 * pmap_copy_page()
4467 *
4468 * Copy one physical page into another, by mapping the pages into
4469 * hook points. The same comment regarding cachability as in
4470 * pmap_zero_page also applies here.
4471 */
4472void
4473pmap_copy_page_generic(vm_paddr_t src, vm_paddr_t dst)
4474{
4475	/*
4476	 * Hold the source page's lock for the duration of the copy
4477	 * so that no other mappings can be created while we have a
4478	 * potentially aliased mapping.
4479	 * Map the pages into the page hook points, copy them, and purge
4480	 * the cache for the appropriate page. Invalidate the TLB
4481	 * as required.
4482	 */
4483	mtx_lock(&cmtx);
4484
4485	/* For ARMv6 using System bit is deprecated and mapping with AP
4486	 * bits set to 0x0 makes page not accessible. csrc_pte is mapped
4487	 * read/write until proper mapping defines are created for ARMv6.
4488	 */
4489	*csrc_pte = L2_S_PROTO | src | pte_l2_s_cache_mode | L2_S_REF;
4490	pmap_set_prot(csrc_pte, VM_PROT_READ, 0);
4491	PTE_SYNC(csrc_pte);
4492
4493	*cdst_pte = L2_S_PROTO | dst | pte_l2_s_cache_mode | L2_S_REF;
4494	pmap_set_prot(cdst_pte, VM_PROT_READ | VM_PROT_WRITE, 0);
4495	PTE_SYNC(cdst_pte);
4496
4497	cpu_tlb_flushD_SE(csrcp);
4498	cpu_tlb_flushD_SE(cdstp);
4499	cpu_cpwait();
4500
4501	/*
4502	 * Although aliasing is not possible if we use
4503	 * cdstp temporary mappings with memory that
4504	 * will be mapped later as non-cached or with write-through
4505	 * caches we might end up overwriting it when calling wbinv_all
4506	 * So make sure caches are clean after copy operation
4507	 */
4508	bcopy_page(csrcp, cdstp);
4509
4510	cpu_idcache_wbinv_range(cdstp, PAGE_SIZE);
4511	pmap_l2cache_wbinv_range(cdstp, dst, PAGE_SIZE);
4512
4513	mtx_unlock(&cmtx);
4514}
4515
4516int unmapped_buf_allowed = 1;
4517
4518void
4519pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
4520    vm_offset_t b_offset, int xfersize)
4521{
4522	vm_page_t a_pg, b_pg;
4523	vm_offset_t a_pg_offset, b_pg_offset;
4524	int cnt;
4525
4526	mtx_lock(&cmtx);
4527	while (xfersize > 0) {
4528		a_pg = ma[a_offset >> PAGE_SHIFT];
4529		a_pg_offset = a_offset & PAGE_MASK;
4530		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
4531		b_pg = mb[b_offset >> PAGE_SHIFT];
4532		b_pg_offset = b_offset & PAGE_MASK;
4533		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
4534		*csrc_pte = L2_S_PROTO | VM_PAGE_TO_PHYS(a_pg) |
4535		    pte_l2_s_cache_mode | L2_S_REF;
4536		pmap_set_prot(csrc_pte, VM_PROT_READ, 0);
4537		PTE_SYNC(csrc_pte);
4538		*cdst_pte = L2_S_PROTO | VM_PAGE_TO_PHYS(b_pg) |
4539		    pte_l2_s_cache_mode | L2_S_REF;
4540		pmap_set_prot(cdst_pte, VM_PROT_READ | VM_PROT_WRITE, 0);
4541		PTE_SYNC(cdst_pte);
4542		cpu_tlb_flushD_SE(csrcp);
4543		cpu_tlb_flushD_SE(cdstp);
4544		cpu_cpwait();
4545		bcopy((char *)csrcp + a_pg_offset, (char *)cdstp + b_pg_offset,
4546		    cnt);
4547		cpu_idcache_wbinv_range(cdstp + b_pg_offset, cnt);
4548		pmap_l2cache_wbinv_range(cdstp + b_pg_offset,
4549		    VM_PAGE_TO_PHYS(b_pg) + b_pg_offset, cnt);
4550		xfersize -= cnt;
4551		a_offset += cnt;
4552		b_offset += cnt;
4553	}
4554	mtx_unlock(&cmtx);
4555}
4556
4557void
4558pmap_copy_page(vm_page_t src, vm_page_t dst)
4559{
4560
4561	if (_arm_memcpy && PAGE_SIZE >= _min_memcpy_size &&
4562	    _arm_memcpy((void *)VM_PAGE_TO_PHYS(dst),
4563	    (void *)VM_PAGE_TO_PHYS(src), PAGE_SIZE, IS_PHYSICAL) == 0)
4564		return;
4565
4566	pmap_copy_page_generic(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
4567}
4568
4569/*
4570 * this routine returns true if a physical page resides
4571 * in the given pmap.
4572 */
4573boolean_t
4574pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4575{
4576	struct md_page *pvh;
4577	pv_entry_t pv;
4578	int loops = 0;
4579	boolean_t rv;
4580
4581	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4582	    ("pmap_page_exists_quick: page %p is not managed", m));
4583	rv = FALSE;
4584	rw_wlock(&pvh_global_lock);
4585	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4586		if (PV_PMAP(pv) == pmap) {
4587			rv = TRUE;
4588			break;
4589		}
4590		loops++;
4591		if (loops >= 16)
4592			break;
4593	}
4594	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4595		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4596		TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4597			if (PV_PMAP(pv) == pmap) {
4598				rv = TRUE;
4599				break;
4600			}
4601			loops++;
4602			if (loops >= 16)
4603				break;
4604		}
4605	}
4606	rw_wunlock(&pvh_global_lock);
4607	return (rv);
4608}
4609
4610/*
4611 *	pmap_page_wired_mappings:
4612 *
4613 *	Return the number of managed mappings to the given physical page
4614 *	that are wired.
4615 */
4616int
4617pmap_page_wired_mappings(vm_page_t m)
4618{
4619	int count;
4620
4621	count = 0;
4622	if ((m->oflags & VPO_UNMANAGED) != 0)
4623		return (count);
4624	rw_wlock(&pvh_global_lock);
4625	count = pmap_pvh_wired_mappings(&m->md, count);
4626	if ((m->flags & PG_FICTITIOUS) == 0) {
4627	    count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
4628	        count);
4629	}
4630	rw_wunlock(&pvh_global_lock);
4631	return (count);
4632}
4633
4634/*
4635 *	pmap_pvh_wired_mappings:
4636 *
4637 *	Return the updated number "count" of managed mappings that are wired.
4638 */
4639static int
4640pmap_pvh_wired_mappings(struct md_page *pvh, int count)
4641{
4642	pv_entry_t pv;
4643
4644	rw_assert(&pvh_global_lock, RA_WLOCKED);
4645	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4646		if ((pv->pv_flags & PVF_WIRED) != 0)
4647			count++;
4648	}
4649	return (count);
4650}
4651
4652/*
4653 * Returns TRUE if any of the given mappings were referenced and FALSE
4654 * otherwise.  Both page and section mappings are supported.
4655 */
4656static boolean_t
4657pmap_is_referenced_pvh(struct md_page *pvh)
4658{
4659	struct l2_bucket *l2b;
4660	pv_entry_t pv;
4661	pd_entry_t *pl1pd;
4662	pt_entry_t *ptep;
4663	pmap_t pmap;
4664	boolean_t rv;
4665
4666	rw_assert(&pvh_global_lock, RA_WLOCKED);
4667	rv = FALSE;
4668	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4669		pmap = PV_PMAP(pv);
4670		PMAP_LOCK(pmap);
4671		pl1pd = &pmap->pm_l1->l1_kva[L1_IDX(pv->pv_va)];
4672		if ((*pl1pd & L1_TYPE_MASK) == L1_S_PROTO)
4673			rv = L1_S_REFERENCED(*pl1pd);
4674		else {
4675			l2b = pmap_get_l2_bucket(pmap, pv->pv_va);
4676			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
4677			rv = L2_S_REFERENCED(*ptep);
4678		}
4679		PMAP_UNLOCK(pmap);
4680		if (rv)
4681			break;
4682	}
4683	return (rv);
4684}
4685
4686/*
4687 *	pmap_is_referenced:
4688 *
4689 *	Return whether or not the specified physical page was referenced
4690 *	in any physical maps.
4691 */
4692boolean_t
4693pmap_is_referenced(vm_page_t m)
4694{
4695	boolean_t rv;
4696
4697	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4698	    ("pmap_is_referenced: page %p is not managed", m));
4699	rw_wlock(&pvh_global_lock);
4700	rv = pmap_is_referenced_pvh(&m->md) ||
4701	    ((m->flags & PG_FICTITIOUS) == 0 &&
4702	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4703	rw_wunlock(&pvh_global_lock);
4704	return (rv);
4705}
4706
4707/*
4708 *	pmap_ts_referenced:
4709 *
4710 *	Return the count of reference bits for a page, clearing all of them.
4711 */
4712int
4713pmap_ts_referenced(vm_page_t m)
4714{
4715
4716	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4717	    ("pmap_ts_referenced: page %p is not managed", m));
4718	return (pmap_clearbit(m, PVF_REF));
4719}
4720
4721/*
4722 * Returns TRUE if any of the given mappings were used to modify
4723 * physical memory. Otherwise, returns FALSE. Both page and 1MB section
4724 * mappings are supported.
4725 */
4726static boolean_t
4727pmap_is_modified_pvh(struct md_page *pvh)
4728{
4729	pd_entry_t *pl1pd;
4730	struct l2_bucket *l2b;
4731	pv_entry_t pv;
4732	pt_entry_t *ptep;
4733	pmap_t pmap;
4734	boolean_t rv;
4735
4736	rw_assert(&pvh_global_lock, RA_WLOCKED);
4737	rv = FALSE;
4738
4739	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4740		pmap = PV_PMAP(pv);
4741		PMAP_LOCK(pmap);
4742		pl1pd = &pmap->pm_l1->l1_kva[L1_IDX(pv->pv_va)];
4743		if ((*pl1pd & L1_TYPE_MASK) == L1_S_PROTO)
4744			rv = L1_S_WRITABLE(*pl1pd);
4745		else {
4746			l2b = pmap_get_l2_bucket(pmap, pv->pv_va);
4747			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
4748			rv = L2_S_WRITABLE(*ptep);
4749		}
4750		PMAP_UNLOCK(pmap);
4751		if (rv)
4752			break;
4753	}
4754
4755	return (rv);
4756}
4757
4758boolean_t
4759pmap_is_modified(vm_page_t m)
4760{
4761	boolean_t rv;
4762
4763	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4764	    ("pmap_is_modified: page %p is not managed", m));
4765	/*
4766	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4767	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
4768	 * is clear, no PTEs can have APX cleared.
4769	 */
4770	VM_OBJECT_ASSERT_WLOCKED(m->object);
4771	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
4772		return (FALSE);
4773	rw_wlock(&pvh_global_lock);
4774	rv = pmap_is_modified_pvh(&m->md) ||
4775	    ((m->flags & PG_FICTITIOUS) == 0 &&
4776	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4777	rw_wunlock(&pvh_global_lock);
4778	return (rv);
4779}
4780
4781/*
4782 *	Apply the given advice to the specified range of addresses within the
4783 *	given pmap.  Depending on the advice, clear the referenced and/or
4784 *	modified flags in each mapping.
4785 */
4786void
4787pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
4788{
4789	struct l2_bucket *l2b;
4790	struct pv_entry *pve;
4791	pd_entry_t *pl1pd, l1pd;
4792	pt_entry_t *ptep, opte, pte;
4793	vm_offset_t next_bucket;
4794	vm_page_t m;
4795
4796	if (advice != MADV_DONTNEED && advice != MADV_FREE)
4797		return;
4798	rw_wlock(&pvh_global_lock);
4799	PMAP_LOCK(pmap);
4800	for (; sva < eva; sva = next_bucket) {
4801		next_bucket = L2_NEXT_BUCKET(sva);
4802		if (next_bucket < sva)
4803			next_bucket = eva;
4804		pl1pd = &pmap->pm_l1->l1_kva[L1_IDX(sva)];
4805		l1pd = *pl1pd;
4806		if ((l1pd & L1_TYPE_MASK) == L1_S_PROTO) {
4807			if (pmap == pmap_kernel())
4808				continue;
4809			if (!pmap_demote_section(pmap, sva)) {
4810				/*
4811				 * The large page mapping was destroyed.
4812				 */
4813				continue;
4814			}
4815			/*
4816			 * Unless the page mappings are wired, remove the
4817			 * mapping to a single page so that a subsequent
4818			 * access may repromote. Since the underlying
4819			 * l2_bucket is fully populated, this removal
4820			 * never frees an entire l2_bucket.
4821			 */
4822			l2b = pmap_get_l2_bucket(pmap, sva);
4823			KASSERT(l2b != NULL,
4824			    ("pmap_advise: no l2 bucket for "
4825			     "va 0x%#x, pmap 0x%p", sva, pmap));
4826			ptep = &l2b->l2b_kva[l2pte_index(sva)];
4827			opte = *ptep;
4828			m = PHYS_TO_VM_PAGE(l2pte_pa(*ptep));
4829			KASSERT(m != NULL,
4830			    ("pmap_advise: no vm_page for demoted superpage"));
4831			pve = pmap_find_pv(&m->md, pmap, sva);
4832			KASSERT(pve != NULL,
4833			    ("pmap_advise: no PV entry for managed mapping"));
4834			if ((pve->pv_flags & PVF_WIRED) == 0) {
4835				pmap_free_l2_bucket(pmap, l2b, 1);
4836				pve = pmap_remove_pv(m, pmap, sva);
4837				pmap_free_pv_entry(pmap, pve);
4838				*ptep = 0;
4839				PTE_SYNC(ptep);
4840				if (pmap_is_current(pmap)) {
4841					if (PTE_BEEN_EXECD(opte))
4842						cpu_tlb_flushID_SE(sva);
4843					else if (PTE_BEEN_REFD(opte))
4844						cpu_tlb_flushD_SE(sva);
4845				}
4846			}
4847		}
4848		if (next_bucket > eva)
4849			next_bucket = eva;
4850		l2b = pmap_get_l2_bucket(pmap, sva);
4851		if (l2b == NULL)
4852			continue;
4853		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
4854		    sva != next_bucket; ptep++, sva += PAGE_SIZE) {
4855			opte = pte = *ptep;
4856			if ((opte & L2_S_PROTO) == 0)
4857				continue;
4858			m = PHYS_TO_VM_PAGE(l2pte_pa(opte));
4859			if (m == NULL || (m->oflags & VPO_UNMANAGED) != 0)
4860				continue;
4861			else if (L2_S_WRITABLE(opte)) {
4862				if (advice == MADV_DONTNEED) {
4863					/*
4864					 * Don't need to mark the page
4865					 * dirty as it was already marked as
4866					 * such in pmap_fault_fixup() or
4867					 * pmap_enter_locked().
4868					 * Just clear the state.
4869					 */
4870				} else
4871					pte |= L2_APX;
4872
4873				pte &= ~L2_S_REF;
4874				*ptep = pte;
4875				PTE_SYNC(ptep);
4876			} else if (L2_S_REFERENCED(opte)) {
4877				pte &= ~L2_S_REF;
4878				*ptep = pte;
4879				PTE_SYNC(ptep);
4880			} else
4881				continue;
4882			if (pmap_is_current(pmap)) {
4883				if (PTE_BEEN_EXECD(opte))
4884					cpu_tlb_flushID_SE(sva);
4885				else if (PTE_BEEN_REFD(opte))
4886					cpu_tlb_flushD_SE(sva);
4887			}
4888		}
4889	}
4890	rw_wunlock(&pvh_global_lock);
4891	PMAP_UNLOCK(pmap);
4892}
4893
4894/*
4895 *	Clear the modify bits on the specified physical page.
4896 */
4897void
4898pmap_clear_modify(vm_page_t m)
4899{
4900
4901	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4902	    ("pmap_clear_modify: page %p is not managed", m));
4903	VM_OBJECT_ASSERT_WLOCKED(m->object);
4904	KASSERT(!vm_page_xbusied(m),
4905	    ("pmap_clear_modify: page %p is exclusive busied", m));
4906
4907	/*
4908	 * If the page is not PGA_WRITEABLE, then no mappings can be modified.
4909	 * If the object containing the page is locked and the page is not
4910	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
4911	 */
4912	if ((m->aflags & PGA_WRITEABLE) == 0)
4913		return;
4914	if (pmap_is_modified(m))
4915		pmap_clearbit(m, PVF_MOD);
4916}
4917
4918
4919/*
4920 * Clear the write and modified bits in each of the given page's mappings.
4921 */
4922void
4923pmap_remove_write(vm_page_t m)
4924{
4925	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4926	    ("pmap_remove_write: page %p is not managed", m));
4927
4928	/*
4929	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4930	 * set by another thread while the object is locked.  Thus,
4931	 * if PGA_WRITEABLE is clear, no page table entries need updating.
4932	 */
4933	VM_OBJECT_ASSERT_WLOCKED(m->object);
4934	if (vm_page_xbusied(m) || (m->aflags & PGA_WRITEABLE) != 0)
4935		pmap_clearbit(m, PVF_WRITE);
4936}
4937
4938
4939/*
4940 * perform the pmap work for mincore
4941 */
4942int
4943pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4944{
4945	struct l2_bucket *l2b;
4946	pd_entry_t *pl1pd, l1pd;
4947	pt_entry_t *ptep, pte;
4948	vm_paddr_t pa;
4949	vm_page_t m;
4950	int val;
4951	boolean_t managed;
4952
4953	PMAP_LOCK(pmap);
4954retry:
4955	pl1pd = &pmap->pm_l1->l1_kva[L1_IDX(addr)];
4956	l1pd = *pl1pd;
4957	if ((l1pd & L1_TYPE_MASK) == L1_S_PROTO) {
4958		pa = (l1pd & L1_S_FRAME);
4959		val = MINCORE_SUPER | MINCORE_INCORE;
4960		if (L1_S_WRITABLE(l1pd))
4961			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4962		managed = FALSE;
4963		m = PHYS_TO_VM_PAGE(pa);
4964		if (m != NULL && (m->oflags & VPO_UNMANAGED) == 0)
4965			managed = TRUE;
4966		if (managed) {
4967			if (L1_S_REFERENCED(l1pd))
4968				val |= MINCORE_REFERENCED |
4969				    MINCORE_REFERENCED_OTHER;
4970		}
4971	} else {
4972		l2b = pmap_get_l2_bucket(pmap, addr);
4973		if (l2b == NULL) {
4974			val = 0;
4975			goto out;
4976		}
4977		ptep = &l2b->l2b_kva[l2pte_index(addr)];
4978		pte = *ptep;
4979		if (!l2pte_valid(pte)) {
4980			val = 0;
4981			goto out;
4982		}
4983		val = MINCORE_INCORE;
4984		if (L2_S_WRITABLE(pte))
4985			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4986		managed = FALSE;
4987		pa = l2pte_pa(pte);
4988		m = PHYS_TO_VM_PAGE(pa);
4989		if (m != NULL && (m->oflags & VPO_UNMANAGED) == 0)
4990			managed = TRUE;
4991		if (managed) {
4992			if (L2_S_REFERENCED(pte))
4993				val |= MINCORE_REFERENCED |
4994				    MINCORE_REFERENCED_OTHER;
4995		}
4996	}
4997	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
4998	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
4999		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
5000		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
5001			goto retry;
5002	} else
5003out:
5004		PA_UNLOCK_COND(*locked_pa);
5005	PMAP_UNLOCK(pmap);
5006	return (val);
5007}
5008
5009void
5010pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t sz)
5011{
5012}
5013
5014/*
5015 *	Increase the starting virtual address of the given mapping if a
5016 *	different alignment might result in more superpage mappings.
5017 */
5018void
5019pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
5020    vm_offset_t *addr, vm_size_t size)
5021{
5022}
5023
5024/*
5025 * pmap_map_section:
5026 *
5027 *	Create a single section mapping.
5028 */
5029void
5030pmap_map_section(pmap_t pmap, vm_offset_t va, vm_offset_t pa, vm_prot_t prot,
5031    boolean_t ref)
5032{
5033	pd_entry_t *pl1pd, l1pd;
5034	pd_entry_t fl;
5035
5036	KASSERT(((va | pa) & L1_S_OFFSET) == 0,
5037	    ("Not a valid section mapping"));
5038
5039	fl = pte_l1_s_cache_mode;
5040
5041	pl1pd = &pmap->pm_l1->l1_kva[L1_IDX(va)];
5042	l1pd = L1_S_PROTO | pa | L1_S_PROT(PTE_USER, prot) | fl |
5043	    L1_S_DOM(pmap->pm_domain);
5044
5045	/* Mark page referenced if this section is a result of a promotion. */
5046	if (ref == TRUE)
5047		l1pd |= L1_S_REF;
5048#ifdef SMP
5049	l1pd |= L1_SHARED;
5050#endif
5051	*pl1pd = l1pd;
5052	PTE_SYNC(pl1pd);
5053}
5054
5055/*
5056 * pmap_link_l2pt:
5057 *
5058 *	Link the L2 page table specified by l2pv.pv_pa into the L1
5059 *	page table at the slot for "va".
5060 */
5061void
5062pmap_link_l2pt(vm_offset_t l1pt, vm_offset_t va, struct pv_addr *l2pv)
5063{
5064	pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
5065	u_int slot = va >> L1_S_SHIFT;
5066
5067	proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
5068
5069#ifdef VERBOSE_INIT_ARM
5070	printf("pmap_link_l2pt: pa=0x%x va=0x%x\n", l2pv->pv_pa, l2pv->pv_va);
5071#endif
5072
5073	pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
5074	PTE_SYNC(&pde[slot]);
5075
5076	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
5077
5078}
5079
5080/*
5081 * pmap_map_entry
5082 *
5083 *	Create a single page mapping.
5084 */
5085void
5086pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
5087    int cache)
5088{
5089	pd_entry_t *pde = (pd_entry_t *) l1pt;
5090	pt_entry_t fl;
5091	pt_entry_t *ptep;
5092
5093	KASSERT(((va | pa) & PAGE_MASK) == 0, ("ouin"));
5094
5095	fl = l2s_mem_types[cache];
5096
5097	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5098		panic("pmap_map_entry: no L2 table for VA 0x%08x", va);
5099
5100	ptep = (pt_entry_t *)kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5101
5102	if (ptep == NULL)
5103		panic("pmap_map_entry: can't find L2 table for VA 0x%08x", va);
5104
5105	ptep[l2pte_index(va)] = L2_S_PROTO | pa | fl | L2_S_REF;
5106	pmap_set_prot(&ptep[l2pte_index(va)], prot, 0);
5107	PTE_SYNC(&ptep[l2pte_index(va)]);
5108}
5109
5110/*
5111 * pmap_map_chunk:
5112 *
5113 *	Map a chunk of memory using the most efficient mappings
5114 *	possible (section. large page, small page) into the
5115 *	provided L1 and L2 tables at the specified virtual address.
5116 */
5117vm_size_t
5118pmap_map_chunk(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa,
5119    vm_size_t size, int prot, int type)
5120{
5121	pd_entry_t *pde = (pd_entry_t *) l1pt;
5122	pt_entry_t *ptep, f1, f2s, f2l;
5123	vm_size_t resid;
5124	int i;
5125
5126	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
5127
5128	if (l1pt == 0)
5129		panic("pmap_map_chunk: no L1 table provided");
5130
5131#ifdef VERBOSE_INIT_ARM
5132	printf("pmap_map_chunk: pa=0x%x va=0x%x size=0x%x resid=0x%x "
5133	    "prot=0x%x type=%d\n", pa, va, size, resid, prot, type);
5134#endif
5135
5136	f1 = l1_mem_types[type];
5137	f2l = l2l_mem_types[type];
5138	f2s = l2s_mem_types[type];
5139
5140	size = resid;
5141
5142	while (resid > 0) {
5143		/* See if we can use a section mapping. */
5144		if (L1_S_MAPPABLE_P(va, pa, resid)) {
5145#ifdef VERBOSE_INIT_ARM
5146			printf("S");
5147#endif
5148			pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5149			    L1_S_PROT(PTE_KERNEL, prot | VM_PROT_EXECUTE) |
5150			    f1 | L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_S_REF;
5151			PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5152			va += L1_S_SIZE;
5153			pa += L1_S_SIZE;
5154			resid -= L1_S_SIZE;
5155			continue;
5156		}
5157
5158		/*
5159		 * Ok, we're going to use an L2 table.  Make sure
5160		 * one is actually in the corresponding L1 slot
5161		 * for the current VA.
5162		 */
5163		if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5164			panic("pmap_map_chunk: no L2 table for VA 0x%08x", va);
5165
5166		ptep = (pt_entry_t *) kernel_pt_lookup(
5167		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5168		if (ptep == NULL)
5169			panic("pmap_map_chunk: can't find L2 table for VA"
5170			    "0x%08x", va);
5171		/* See if we can use a L2 large page mapping. */
5172		if (L2_L_MAPPABLE_P(va, pa, resid)) {
5173#ifdef VERBOSE_INIT_ARM
5174			printf("L");
5175#endif
5176			for (i = 0; i < 16; i++) {
5177				ptep[l2pte_index(va) + i] =
5178				    L2_L_PROTO | pa |
5179				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
5180				PTE_SYNC(&ptep[l2pte_index(va) + i]);
5181			}
5182			va += L2_L_SIZE;
5183			pa += L2_L_SIZE;
5184			resid -= L2_L_SIZE;
5185			continue;
5186		}
5187
5188		/* Use a small page mapping. */
5189#ifdef VERBOSE_INIT_ARM
5190		printf("P");
5191#endif
5192		ptep[l2pte_index(va)] = L2_S_PROTO | pa | f2s | L2_S_REF;
5193		pmap_set_prot(&ptep[l2pte_index(va)], prot, 0);
5194		PTE_SYNC(&ptep[l2pte_index(va)]);
5195		va += PAGE_SIZE;
5196		pa += PAGE_SIZE;
5197		resid -= PAGE_SIZE;
5198	}
5199#ifdef VERBOSE_INIT_ARM
5200	printf("\n");
5201#endif
5202	return (size);
5203
5204}
5205
5206int
5207pmap_dmap_iscurrent(pmap_t pmap)
5208{
5209	return(pmap_is_current(pmap));
5210}
5211
5212void
5213pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5214{
5215	/*
5216	 * Remember the memattr in a field that gets used to set the appropriate
5217	 * bits in the PTEs as mappings are established.
5218	 */
5219	m->md.pv_memattr = ma;
5220
5221	/*
5222	 * It appears that this function can only be called before any mappings
5223	 * for the page are established on ARM.  If this ever changes, this code
5224	 * will need to walk the pv_list and make each of the existing mappings
5225	 * uncacheable, being careful to sync caches and PTEs (and maybe
5226	 * invalidate TLB?) for any current mapping it modifies.
5227	 */
5228	if (TAILQ_FIRST(&m->md.pv_list) != NULL)
5229		panic("Can't change memattr on page with existing mappings");
5230}
5231