machdep.c revision 266274
1/*	$NetBSD: arm32_machdep.c,v 1.44 2004/03/24 15:34:47 atatat Exp $	*/
2
3/*-
4 * Copyright (c) 2004 Olivier Houchard
5 * Copyright (c) 1994-1998 Mark Brinicombe.
6 * Copyright (c) 1994 Brini.
7 * All rights reserved.
8 *
9 * This code is derived from software written for Brini by Mark Brinicombe
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by Mark Brinicombe
22 *	for the NetBSD Project.
23 * 4. The name of the company nor the name of the author may be used to
24 *    endorse or promote products derived from this software without specific
25 *    prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
28 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
29 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
30 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
31 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
32 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
33 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 * Machine dependant functions for kernel setup
40 *
41 * Created      : 17/09/94
42 * Updated	: 18/04/01 updated for new wscons
43 */
44
45#include "opt_compat.h"
46#include "opt_ddb.h"
47#include "opt_platform.h"
48#include "opt_sched.h"
49#include "opt_timer.h"
50
51#include <sys/cdefs.h>
52__FBSDID("$FreeBSD: stable/10/sys/arm/arm/machdep.c 266274 2014-05-16 23:27:18Z ian $");
53
54#include <sys/param.h>
55#include <sys/proc.h>
56#include <sys/systm.h>
57#include <sys/bio.h>
58#include <sys/buf.h>
59#include <sys/bus.h>
60#include <sys/cons.h>
61#include <sys/cpu.h>
62#include <sys/exec.h>
63#include <sys/imgact.h>
64#include <sys/kdb.h>
65#include <sys/kernel.h>
66#include <sys/ktr.h>
67#include <sys/linker.h>
68#include <sys/lock.h>
69#include <sys/malloc.h>
70#include <sys/msgbuf.h>
71#include <sys/mutex.h>
72#include <sys/pcpu.h>
73#include <sys/ptrace.h>
74#include <sys/rwlock.h>
75#include <sys/sched.h>
76#include <sys/signalvar.h>
77#include <sys/syscallsubr.h>
78#include <sys/sysctl.h>
79#include <sys/sysent.h>
80#include <sys/sysproto.h>
81#include <sys/uio.h>
82
83#include <vm/vm.h>
84#include <vm/pmap.h>
85#include <vm/vm_map.h>
86#include <vm/vm_object.h>
87#include <vm/vm_page.h>
88#include <vm/vm_pager.h>
89
90#include <machine/armreg.h>
91#include <machine/atags.h>
92#include <machine/cpu.h>
93#include <machine/devmap.h>
94#include <machine/frame.h>
95#include <machine/intr.h>
96#include <machine/machdep.h>
97#include <machine/md_var.h>
98#include <machine/metadata.h>
99#include <machine/pcb.h>
100#include <machine/physmem.h>
101#include <machine/reg.h>
102#include <machine/trap.h>
103#include <machine/undefined.h>
104#include <machine/vmparam.h>
105#include <machine/sysarch.h>
106
107#ifdef FDT
108#include <dev/fdt/fdt_common.h>
109#include <dev/ofw/openfirm.h>
110#endif
111
112#ifdef DEBUG
113#define	debugf(fmt, args...) printf(fmt, ##args)
114#else
115#define	debugf(fmt, args...)
116#endif
117
118struct pcpu __pcpu[MAXCPU];
119struct pcpu *pcpup = &__pcpu[0];
120
121static struct trapframe proc0_tf;
122uint32_t cpu_reset_address = 0;
123int cold = 1;
124vm_offset_t vector_page;
125
126int (*_arm_memcpy)(void *, void *, int, int) = NULL;
127int (*_arm_bzero)(void *, int, int) = NULL;
128int _min_memcpy_size = 0;
129int _min_bzero_size = 0;
130
131extern int *end;
132#ifdef DDB
133extern vm_offset_t ksym_start, ksym_end;
134#endif
135
136#ifdef FDT
137/*
138 * This is the number of L2 page tables required for covering max
139 * (hypothetical) memsize of 4GB and all kernel mappings (vectors, msgbuf,
140 * stacks etc.), uprounded to be divisible by 4.
141 */
142#define KERNEL_PT_MAX	78
143
144static struct pv_addr kernel_pt_table[KERNEL_PT_MAX];
145
146extern u_int data_abort_handler_address;
147extern u_int prefetch_abort_handler_address;
148extern u_int undefined_handler_address;
149
150vm_paddr_t pmap_pa;
151
152struct pv_addr systempage;
153static struct pv_addr msgbufpv;
154struct pv_addr irqstack;
155struct pv_addr undstack;
156struct pv_addr abtstack;
157static struct pv_addr kernelstack;
158
159#endif
160
161#if defined(LINUX_BOOT_ABI)
162#define LBABI_MAX_BANKS	10
163
164uint32_t board_id;
165struct arm_lbabi_tag *atag_list;
166char linux_command_line[LBABI_MAX_COMMAND_LINE + 1];
167char atags[LBABI_MAX_COMMAND_LINE * 2];
168uint32_t memstart[LBABI_MAX_BANKS];
169uint32_t memsize[LBABI_MAX_BANKS];
170uint32_t membanks;
171#endif
172
173static uint32_t board_revision;
174/* hex representation of uint64_t */
175static char board_serial[32];
176
177SYSCTL_NODE(_hw, OID_AUTO, board, CTLFLAG_RD, 0, "Board attributes");
178SYSCTL_UINT(_hw_board, OID_AUTO, revision, CTLFLAG_RD,
179    &board_revision, 0, "Board revision");
180SYSCTL_STRING(_hw_board, OID_AUTO, serial, CTLFLAG_RD,
181    board_serial, 0, "Board serial");
182
183int vfp_exists;
184SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
185    &vfp_exists, 0, "Floating point support enabled");
186
187void
188board_set_serial(uint64_t serial)
189{
190
191	snprintf(board_serial, sizeof(board_serial)-1,
192		    "%016jx", serial);
193}
194
195void
196board_set_revision(uint32_t revision)
197{
198
199	board_revision = revision;
200}
201
202void
203sendsig(catcher, ksi, mask)
204	sig_t catcher;
205	ksiginfo_t *ksi;
206	sigset_t *mask;
207{
208	struct thread *td;
209	struct proc *p;
210	struct trapframe *tf;
211	struct sigframe *fp, frame;
212	struct sigacts *psp;
213	int onstack;
214	int sig;
215	int code;
216
217	td = curthread;
218	p = td->td_proc;
219	PROC_LOCK_ASSERT(p, MA_OWNED);
220	sig = ksi->ksi_signo;
221	code = ksi->ksi_code;
222	psp = p->p_sigacts;
223	mtx_assert(&psp->ps_mtx, MA_OWNED);
224	tf = td->td_frame;
225	onstack = sigonstack(tf->tf_usr_sp);
226
227	CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
228	    catcher, sig);
229
230	/* Allocate and validate space for the signal handler context. */
231	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !(onstack) &&
232	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
233		fp = (struct sigframe *)(td->td_sigstk.ss_sp +
234		    td->td_sigstk.ss_size);
235#if defined(COMPAT_43)
236		td->td_sigstk.ss_flags |= SS_ONSTACK;
237#endif
238	} else
239		fp = (struct sigframe *)td->td_frame->tf_usr_sp;
240
241	/* make room on the stack */
242	fp--;
243
244	/* make the stack aligned */
245	fp = (struct sigframe *)STACKALIGN(fp);
246	/* Populate the siginfo frame. */
247	get_mcontext(td, &frame.sf_uc.uc_mcontext, 0);
248	frame.sf_si = ksi->ksi_info;
249	frame.sf_uc.uc_sigmask = *mask;
250	frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK )
251	    ? ((onstack) ? SS_ONSTACK : 0) : SS_DISABLE;
252	frame.sf_uc.uc_stack = td->td_sigstk;
253	mtx_unlock(&psp->ps_mtx);
254	PROC_UNLOCK(td->td_proc);
255
256	/* Copy the sigframe out to the user's stack. */
257	if (copyout(&frame, fp, sizeof(*fp)) != 0) {
258		/* Process has trashed its stack. Kill it. */
259		CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp);
260		PROC_LOCK(p);
261		sigexit(td, SIGILL);
262	}
263
264	/* Translate the signal if appropriate. */
265	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
266		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
267
268	/*
269	 * Build context to run handler in.  We invoke the handler
270	 * directly, only returning via the trampoline.  Note the
271	 * trampoline version numbers are coordinated with machine-
272	 * dependent code in libc.
273	 */
274
275	tf->tf_r0 = sig;
276	tf->tf_r1 = (register_t)&fp->sf_si;
277	tf->tf_r2 = (register_t)&fp->sf_uc;
278
279	/* the trampoline uses r5 as the uc address */
280	tf->tf_r5 = (register_t)&fp->sf_uc;
281	tf->tf_pc = (register_t)catcher;
282	tf->tf_usr_sp = (register_t)fp;
283	tf->tf_usr_lr = (register_t)(PS_STRINGS - *(p->p_sysent->sv_szsigcode));
284
285	CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_usr_lr,
286	    tf->tf_usr_sp);
287
288	PROC_LOCK(p);
289	mtx_lock(&psp->ps_mtx);
290}
291
292struct kva_md_info kmi;
293
294/*
295 * arm32_vector_init:
296 *
297 *	Initialize the vector page, and select whether or not to
298 *	relocate the vectors.
299 *
300 *	NOTE: We expect the vector page to be mapped at its expected
301 *	destination.
302 */
303
304extern unsigned int page0[], page0_data[];
305void
306arm_vector_init(vm_offset_t va, int which)
307{
308	unsigned int *vectors = (int *) va;
309	unsigned int *vectors_data = vectors + (page0_data - page0);
310	int vec;
311
312	/*
313	 * Loop through the vectors we're taking over, and copy the
314	 * vector's insn and data word.
315	 */
316	for (vec = 0; vec < ARM_NVEC; vec++) {
317		if ((which & (1 << vec)) == 0) {
318			/* Don't want to take over this vector. */
319			continue;
320		}
321		vectors[vec] = page0[vec];
322		vectors_data[vec] = page0_data[vec];
323	}
324
325	/* Now sync the vectors. */
326	cpu_icache_sync_range(va, (ARM_NVEC * 2) * sizeof(u_int));
327
328	vector_page = va;
329
330	if (va == ARM_VECTORS_HIGH) {
331		/*
332		 * Assume the MD caller knows what it's doing here, and
333		 * really does want the vector page relocated.
334		 *
335		 * Note: This has to be done here (and not just in
336		 * cpu_setup()) because the vector page needs to be
337		 * accessible *before* cpu_startup() is called.
338		 * Think ddb(9) ...
339		 *
340		 * NOTE: If the CPU control register is not readable,
341		 * this will totally fail!  We'll just assume that
342		 * any system that has high vector support has a
343		 * readable CPU control register, for now.  If we
344		 * ever encounter one that does not, we'll have to
345		 * rethink this.
346		 */
347		cpu_control(CPU_CONTROL_VECRELOC, CPU_CONTROL_VECRELOC);
348	}
349}
350
351static void
352cpu_startup(void *dummy)
353{
354	struct pcb *pcb = thread0.td_pcb;
355	const unsigned int mbyte = 1024 * 1024;
356#ifdef ARM_TP_ADDRESS
357#ifndef ARM_CACHE_LOCK_ENABLE
358	vm_page_t m;
359#endif
360#endif
361
362	identify_arm_cpu();
363
364	vm_ksubmap_init(&kmi);
365
366	/*
367	 * Display the RAM layout.
368	 */
369	printf("real memory  = %ju (%ju MB)\n",
370	    (uintmax_t)arm32_ptob(realmem),
371	    (uintmax_t)arm32_ptob(realmem) / mbyte);
372	printf("avail memory = %ju (%ju MB)\n",
373	    (uintmax_t)arm32_ptob(cnt.v_free_count),
374	    (uintmax_t)arm32_ptob(cnt.v_free_count) / mbyte);
375	if (bootverbose) {
376		arm_physmem_print_tables();
377		arm_devmap_print_table();
378	}
379
380	bufinit();
381	vm_pager_bufferinit();
382	pcb->un_32.pcb32_und_sp = (u_int)thread0.td_kstack +
383	    USPACE_UNDEF_STACK_TOP;
384	pcb->un_32.pcb32_sp = (u_int)thread0.td_kstack +
385	    USPACE_SVC_STACK_TOP;
386	vector_page_setprot(VM_PROT_READ);
387	pmap_set_pcb_pagedir(pmap_kernel(), pcb);
388	pmap_postinit();
389#ifdef ARM_TP_ADDRESS
390#ifdef ARM_CACHE_LOCK_ENABLE
391	pmap_kenter_user(ARM_TP_ADDRESS, ARM_TP_ADDRESS);
392	arm_lock_cache_line(ARM_TP_ADDRESS);
393#else
394	m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_ZERO);
395	pmap_kenter_user(ARM_TP_ADDRESS, VM_PAGE_TO_PHYS(m));
396#endif
397	*(uint32_t *)ARM_RAS_START = 0;
398	*(uint32_t *)ARM_RAS_END = 0xffffffff;
399#endif
400}
401
402SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
403
404/*
405 * Flush the D-cache for non-DMA I/O so that the I-cache can
406 * be made coherent later.
407 */
408void
409cpu_flush_dcache(void *ptr, size_t len)
410{
411
412	cpu_dcache_wb_range((uintptr_t)ptr, len);
413#ifdef ARM_L2_PIPT
414	cpu_l2cache_wb_range((uintptr_t)vtophys(ptr), len);
415#else
416	cpu_l2cache_wb_range((uintptr_t)ptr, len);
417#endif
418}
419
420/* Get current clock frequency for the given cpu id. */
421int
422cpu_est_clockrate(int cpu_id, uint64_t *rate)
423{
424
425	return (ENXIO);
426}
427
428void
429cpu_idle(int busy)
430{
431
432	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
433	    busy, curcpu);
434#ifndef NO_EVENTTIMERS
435	if (!busy) {
436		critical_enter();
437		cpu_idleclock();
438	}
439#endif
440	if (!sched_runnable())
441		cpu_sleep(0);
442#ifndef NO_EVENTTIMERS
443	if (!busy) {
444		cpu_activeclock();
445		critical_exit();
446	}
447#endif
448	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
449	    busy, curcpu);
450}
451
452int
453cpu_idle_wakeup(int cpu)
454{
455
456	return (0);
457}
458
459/*
460 * Most ARM platforms don't need to do anything special to init their clocks
461 * (they get intialized during normal device attachment), and by not defining a
462 * cpu_initclocks() function they get this generic one.  Any platform that needs
463 * to do something special can just provide their own implementation, which will
464 * override this one due to the weak linkage.
465 */
466void
467arm_generic_initclocks(void)
468{
469
470#ifndef NO_EVENTTIMERS
471#ifdef SMP
472	if (PCPU_GET(cpuid) == 0)
473		cpu_initclocks_bsp();
474	else
475		cpu_initclocks_ap();
476#else
477	cpu_initclocks_bsp();
478#endif
479#endif
480}
481__weak_reference(arm_generic_initclocks, cpu_initclocks);
482
483int
484fill_regs(struct thread *td, struct reg *regs)
485{
486	struct trapframe *tf = td->td_frame;
487	bcopy(&tf->tf_r0, regs->r, sizeof(regs->r));
488	regs->r_sp = tf->tf_usr_sp;
489	regs->r_lr = tf->tf_usr_lr;
490	regs->r_pc = tf->tf_pc;
491	regs->r_cpsr = tf->tf_spsr;
492	return (0);
493}
494int
495fill_fpregs(struct thread *td, struct fpreg *regs)
496{
497	bzero(regs, sizeof(*regs));
498	return (0);
499}
500
501int
502set_regs(struct thread *td, struct reg *regs)
503{
504	struct trapframe *tf = td->td_frame;
505
506	bcopy(regs->r, &tf->tf_r0, sizeof(regs->r));
507	tf->tf_usr_sp = regs->r_sp;
508	tf->tf_usr_lr = regs->r_lr;
509	tf->tf_pc = regs->r_pc;
510	tf->tf_spsr &=  ~PSR_FLAGS;
511	tf->tf_spsr |= regs->r_cpsr & PSR_FLAGS;
512	return (0);
513}
514
515int
516set_fpregs(struct thread *td, struct fpreg *regs)
517{
518	return (0);
519}
520
521int
522fill_dbregs(struct thread *td, struct dbreg *regs)
523{
524	return (0);
525}
526int
527set_dbregs(struct thread *td, struct dbreg *regs)
528{
529	return (0);
530}
531
532
533static int
534ptrace_read_int(struct thread *td, vm_offset_t addr, u_int32_t *v)
535{
536	struct iovec iov;
537	struct uio uio;
538
539	PROC_LOCK_ASSERT(td->td_proc, MA_NOTOWNED);
540	iov.iov_base = (caddr_t) v;
541	iov.iov_len = sizeof(u_int32_t);
542	uio.uio_iov = &iov;
543	uio.uio_iovcnt = 1;
544	uio.uio_offset = (off_t)addr;
545	uio.uio_resid = sizeof(u_int32_t);
546	uio.uio_segflg = UIO_SYSSPACE;
547	uio.uio_rw = UIO_READ;
548	uio.uio_td = td;
549	return proc_rwmem(td->td_proc, &uio);
550}
551
552static int
553ptrace_write_int(struct thread *td, vm_offset_t addr, u_int32_t v)
554{
555	struct iovec iov;
556	struct uio uio;
557
558	PROC_LOCK_ASSERT(td->td_proc, MA_NOTOWNED);
559	iov.iov_base = (caddr_t) &v;
560	iov.iov_len = sizeof(u_int32_t);
561	uio.uio_iov = &iov;
562	uio.uio_iovcnt = 1;
563	uio.uio_offset = (off_t)addr;
564	uio.uio_resid = sizeof(u_int32_t);
565	uio.uio_segflg = UIO_SYSSPACE;
566	uio.uio_rw = UIO_WRITE;
567	uio.uio_td = td;
568	return proc_rwmem(td->td_proc, &uio);
569}
570
571int
572ptrace_single_step(struct thread *td)
573{
574	struct proc *p;
575	int error;
576
577	KASSERT(td->td_md.md_ptrace_instr == 0,
578	 ("Didn't clear single step"));
579	p = td->td_proc;
580	PROC_UNLOCK(p);
581	error = ptrace_read_int(td, td->td_frame->tf_pc + 4,
582	    &td->td_md.md_ptrace_instr);
583	if (error)
584		goto out;
585	error = ptrace_write_int(td, td->td_frame->tf_pc + 4,
586	    PTRACE_BREAKPOINT);
587	if (error)
588		td->td_md.md_ptrace_instr = 0;
589	td->td_md.md_ptrace_addr = td->td_frame->tf_pc + 4;
590out:
591	PROC_LOCK(p);
592	return (error);
593}
594
595int
596ptrace_clear_single_step(struct thread *td)
597{
598	struct proc *p;
599
600	if (td->td_md.md_ptrace_instr) {
601		p = td->td_proc;
602		PROC_UNLOCK(p);
603		ptrace_write_int(td, td->td_md.md_ptrace_addr,
604		    td->td_md.md_ptrace_instr);
605		PROC_LOCK(p);
606		td->td_md.md_ptrace_instr = 0;
607	}
608	return (0);
609}
610
611int
612ptrace_set_pc(struct thread *td, unsigned long addr)
613{
614	td->td_frame->tf_pc = addr;
615	return (0);
616}
617
618void
619cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
620{
621}
622
623void
624spinlock_enter(void)
625{
626	struct thread *td;
627	register_t cspr;
628
629	td = curthread;
630	if (td->td_md.md_spinlock_count == 0) {
631		cspr = disable_interrupts(I32_bit | F32_bit);
632		td->td_md.md_spinlock_count = 1;
633		td->td_md.md_saved_cspr = cspr;
634	} else
635		td->td_md.md_spinlock_count++;
636	critical_enter();
637}
638
639void
640spinlock_exit(void)
641{
642	struct thread *td;
643	register_t cspr;
644
645	td = curthread;
646	critical_exit();
647	cspr = td->td_md.md_saved_cspr;
648	td->td_md.md_spinlock_count--;
649	if (td->td_md.md_spinlock_count == 0)
650		restore_interrupts(cspr);
651}
652
653/*
654 * Clear registers on exec
655 */
656void
657exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
658{
659	struct trapframe *tf = td->td_frame;
660
661	memset(tf, 0, sizeof(*tf));
662	tf->tf_usr_sp = stack;
663	tf->tf_usr_lr = imgp->entry_addr;
664	tf->tf_svc_lr = 0x77777777;
665	tf->tf_pc = imgp->entry_addr;
666	tf->tf_spsr = PSR_USR32_MODE;
667}
668
669/*
670 * Get machine context.
671 */
672int
673get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
674{
675	struct trapframe *tf = td->td_frame;
676	__greg_t *gr = mcp->__gregs;
677
678	if (clear_ret & GET_MC_CLEAR_RET)
679		gr[_REG_R0] = 0;
680	else
681		gr[_REG_R0]   = tf->tf_r0;
682	gr[_REG_R1]   = tf->tf_r1;
683	gr[_REG_R2]   = tf->tf_r2;
684	gr[_REG_R3]   = tf->tf_r3;
685	gr[_REG_R4]   = tf->tf_r4;
686	gr[_REG_R5]   = tf->tf_r5;
687	gr[_REG_R6]   = tf->tf_r6;
688	gr[_REG_R7]   = tf->tf_r7;
689	gr[_REG_R8]   = tf->tf_r8;
690	gr[_REG_R9]   = tf->tf_r9;
691	gr[_REG_R10]  = tf->tf_r10;
692	gr[_REG_R11]  = tf->tf_r11;
693	gr[_REG_R12]  = tf->tf_r12;
694	gr[_REG_SP]   = tf->tf_usr_sp;
695	gr[_REG_LR]   = tf->tf_usr_lr;
696	gr[_REG_PC]   = tf->tf_pc;
697	gr[_REG_CPSR] = tf->tf_spsr;
698
699	return (0);
700}
701
702/*
703 * Set machine context.
704 *
705 * However, we don't set any but the user modifiable flags, and we won't
706 * touch the cs selector.
707 */
708int
709set_mcontext(struct thread *td, const mcontext_t *mcp)
710{
711	struct trapframe *tf = td->td_frame;
712	const __greg_t *gr = mcp->__gregs;
713
714	tf->tf_r0 = gr[_REG_R0];
715	tf->tf_r1 = gr[_REG_R1];
716	tf->tf_r2 = gr[_REG_R2];
717	tf->tf_r3 = gr[_REG_R3];
718	tf->tf_r4 = gr[_REG_R4];
719	tf->tf_r5 = gr[_REG_R5];
720	tf->tf_r6 = gr[_REG_R6];
721	tf->tf_r7 = gr[_REG_R7];
722	tf->tf_r8 = gr[_REG_R8];
723	tf->tf_r9 = gr[_REG_R9];
724	tf->tf_r10 = gr[_REG_R10];
725	tf->tf_r11 = gr[_REG_R11];
726	tf->tf_r12 = gr[_REG_R12];
727	tf->tf_usr_sp = gr[_REG_SP];
728	tf->tf_usr_lr = gr[_REG_LR];
729	tf->tf_pc = gr[_REG_PC];
730	tf->tf_spsr = gr[_REG_CPSR];
731
732	return (0);
733}
734
735/*
736 * MPSAFE
737 */
738int
739sys_sigreturn(td, uap)
740	struct thread *td;
741	struct sigreturn_args /* {
742		const struct __ucontext *sigcntxp;
743	} */ *uap;
744{
745	ucontext_t uc;
746	int spsr;
747
748	if (uap == NULL)
749		return (EFAULT);
750	if (copyin(uap->sigcntxp, &uc, sizeof(uc)))
751		return (EFAULT);
752	/*
753	 * Make sure the processor mode has not been tampered with and
754	 * interrupts have not been disabled.
755	 */
756	spsr = uc.uc_mcontext.__gregs[_REG_CPSR];
757	if ((spsr & PSR_MODE) != PSR_USR32_MODE ||
758	    (spsr & (I32_bit | F32_bit)) != 0)
759		return (EINVAL);
760		/* Restore register context. */
761	set_mcontext(td, &uc.uc_mcontext);
762
763	/* Restore signal mask. */
764	kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
765
766	return (EJUSTRETURN);
767}
768
769
770/*
771 * Construct a PCB from a trapframe. This is called from kdb_trap() where
772 * we want to start a backtrace from the function that caused us to enter
773 * the debugger. We have the context in the trapframe, but base the trace
774 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
775 * enough for a backtrace.
776 */
777void
778makectx(struct trapframe *tf, struct pcb *pcb)
779{
780	pcb->un_32.pcb32_r8 = tf->tf_r8;
781	pcb->un_32.pcb32_r9 = tf->tf_r9;
782	pcb->un_32.pcb32_r10 = tf->tf_r10;
783	pcb->un_32.pcb32_r11 = tf->tf_r11;
784	pcb->un_32.pcb32_r12 = tf->tf_r12;
785	pcb->un_32.pcb32_pc = tf->tf_pc;
786	pcb->un_32.pcb32_lr = tf->tf_usr_lr;
787	pcb->un_32.pcb32_sp = tf->tf_usr_sp;
788}
789
790/*
791 * Fake up a boot descriptor table
792 */
793vm_offset_t
794fake_preload_metadata(struct arm_boot_params *abp __unused)
795{
796#ifdef DDB
797	vm_offset_t zstart = 0, zend = 0;
798#endif
799	vm_offset_t lastaddr;
800	int i = 0;
801	static uint32_t fake_preload[35];
802
803	fake_preload[i++] = MODINFO_NAME;
804	fake_preload[i++] = strlen("kernel") + 1;
805	strcpy((char*)&fake_preload[i++], "kernel");
806	i += 1;
807	fake_preload[i++] = MODINFO_TYPE;
808	fake_preload[i++] = strlen("elf kernel") + 1;
809	strcpy((char*)&fake_preload[i++], "elf kernel");
810	i += 2;
811	fake_preload[i++] = MODINFO_ADDR;
812	fake_preload[i++] = sizeof(vm_offset_t);
813	fake_preload[i++] = KERNVIRTADDR;
814	fake_preload[i++] = MODINFO_SIZE;
815	fake_preload[i++] = sizeof(uint32_t);
816	fake_preload[i++] = (uint32_t)&end - KERNVIRTADDR;
817#ifdef DDB
818	if (*(uint32_t *)KERNVIRTADDR == MAGIC_TRAMP_NUMBER) {
819		fake_preload[i++] = MODINFO_METADATA|MODINFOMD_SSYM;
820		fake_preload[i++] = sizeof(vm_offset_t);
821		fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 4);
822		fake_preload[i++] = MODINFO_METADATA|MODINFOMD_ESYM;
823		fake_preload[i++] = sizeof(vm_offset_t);
824		fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 8);
825		lastaddr = *(uint32_t *)(KERNVIRTADDR + 8);
826		zend = lastaddr;
827		zstart = *(uint32_t *)(KERNVIRTADDR + 4);
828		ksym_start = zstart;
829		ksym_end = zend;
830	} else
831#endif
832		lastaddr = (vm_offset_t)&end;
833	fake_preload[i++] = 0;
834	fake_preload[i] = 0;
835	preload_metadata = (void *)fake_preload;
836
837	return (lastaddr);
838}
839
840void
841pcpu0_init(void)
842{
843#if ARM_ARCH_6 || ARM_ARCH_7A || defined(CPU_MV_PJ4B)
844	set_curthread(&thread0);
845#endif
846	pcpu_init(pcpup, 0, sizeof(struct pcpu));
847	PCPU_SET(curthread, &thread0);
848#ifdef VFP
849	PCPU_SET(cpu, 0);
850#endif
851}
852
853#if defined(LINUX_BOOT_ABI)
854vm_offset_t
855linux_parse_boot_param(struct arm_boot_params *abp)
856{
857	struct arm_lbabi_tag *walker;
858	uint32_t revision;
859	uint64_t serial;
860
861	/*
862	 * Linux boot ABI: r0 = 0, r1 is the board type (!= 0) and r2
863	 * is atags or dtb pointer.  If all of these aren't satisfied,
864	 * then punt.
865	 */
866	if (!(abp->abp_r0 == 0 && abp->abp_r1 != 0 && abp->abp_r2 != 0))
867		return 0;
868
869	board_id = abp->abp_r1;
870	walker = (struct arm_lbabi_tag *)
871	    (abp->abp_r2 + KERNVIRTADDR - abp->abp_physaddr);
872
873	/* xxx - Need to also look for binary device tree */
874	if (ATAG_TAG(walker) != ATAG_CORE)
875		return 0;
876
877	atag_list = walker;
878	while (ATAG_TAG(walker) != ATAG_NONE) {
879		switch (ATAG_TAG(walker)) {
880		case ATAG_CORE:
881			break;
882		case ATAG_MEM:
883			arm_physmem_hardware_region(walker->u.tag_mem.start,
884			    walker->u.tag_mem.size);
885			break;
886		case ATAG_INITRD2:
887			break;
888		case ATAG_SERIAL:
889			serial = walker->u.tag_sn.low |
890			    ((uint64_t)walker->u.tag_sn.high << 32);
891			board_set_serial(serial);
892			break;
893		case ATAG_REVISION:
894			revision = walker->u.tag_rev.rev;
895			board_set_revision(revision);
896			break;
897		case ATAG_CMDLINE:
898			/* XXX open question: Parse this for boothowto? */
899			bcopy(walker->u.tag_cmd.command, linux_command_line,
900			      ATAG_SIZE(walker));
901			break;
902		default:
903			break;
904		}
905		walker = ATAG_NEXT(walker);
906	}
907
908	/* Save a copy for later */
909	bcopy(atag_list, atags,
910	    (char *)walker - (char *)atag_list + ATAG_SIZE(walker));
911
912	return fake_preload_metadata(abp);
913}
914#endif
915
916#if defined(FREEBSD_BOOT_LOADER)
917vm_offset_t
918freebsd_parse_boot_param(struct arm_boot_params *abp)
919{
920	vm_offset_t lastaddr = 0;
921	void *mdp;
922	void *kmdp;
923
924	/*
925	 * Mask metadata pointer: it is supposed to be on page boundary. If
926	 * the first argument (mdp) doesn't point to a valid address the
927	 * bootloader must have passed us something else than the metadata
928	 * ptr, so we give up.  Also give up if we cannot find metadta section
929	 * the loader creates that we get all this data out of.
930	 */
931
932	if ((mdp = (void *)(abp->abp_r0 & ~PAGE_MASK)) == NULL)
933		return 0;
934	preload_metadata = mdp;
935	kmdp = preload_search_by_type("elf kernel");
936	if (kmdp == NULL)
937		return 0;
938
939	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
940	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
941	lastaddr = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
942#ifdef DDB
943	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
944	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
945#endif
946	preload_addr_relocate = KERNVIRTADDR - abp->abp_physaddr;
947	return lastaddr;
948}
949#endif
950
951vm_offset_t
952default_parse_boot_param(struct arm_boot_params *abp)
953{
954	vm_offset_t lastaddr;
955
956#if defined(LINUX_BOOT_ABI)
957	if ((lastaddr = linux_parse_boot_param(abp)) != 0)
958		return lastaddr;
959#endif
960#if defined(FREEBSD_BOOT_LOADER)
961	if ((lastaddr = freebsd_parse_boot_param(abp)) != 0)
962		return lastaddr;
963#endif
964	/* Fall back to hardcoded metadata. */
965	lastaddr = fake_preload_metadata(abp);
966
967	return lastaddr;
968}
969
970/*
971 * Stub version of the boot parameter parsing routine.  We are
972 * called early in initarm, before even VM has been initialized.
973 * This routine needs to preserve any data that the boot loader
974 * has passed in before the kernel starts to grow past the end
975 * of the BSS, traditionally the place boot-loaders put this data.
976 *
977 * Since this is called so early, things that depend on the vm system
978 * being setup (including access to some SoC's serial ports), about
979 * all that can be done in this routine is to copy the arguments.
980 *
981 * This is the default boot parameter parsing routine.  Individual
982 * kernels/boards can override this weak function with one of their
983 * own.  We just fake metadata...
984 */
985__weak_reference(default_parse_boot_param, parse_boot_param);
986
987/*
988 * Initialize proc0
989 */
990void
991init_proc0(vm_offset_t kstack)
992{
993	proc_linkup0(&proc0, &thread0);
994	thread0.td_kstack = kstack;
995	thread0.td_pcb = (struct pcb *)
996		(thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
997	thread0.td_pcb->pcb_flags = 0;
998	thread0.td_frame = &proc0_tf;
999	pcpup->pc_curpcb = thread0.td_pcb;
1000}
1001
1002void
1003set_stackptrs(int cpu)
1004{
1005
1006	set_stackptr(PSR_IRQ32_MODE,
1007	    irqstack.pv_va + ((IRQ_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
1008	set_stackptr(PSR_ABT32_MODE,
1009	    abtstack.pv_va + ((ABT_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
1010	set_stackptr(PSR_UND32_MODE,
1011	    undstack.pv_va + ((UND_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
1012}
1013
1014#ifdef FDT
1015static char *
1016kenv_next(char *cp)
1017{
1018
1019	if (cp != NULL) {
1020		while (*cp != 0)
1021			cp++;
1022		cp++;
1023		if (*cp == 0)
1024			cp = NULL;
1025	}
1026	return (cp);
1027}
1028
1029static void
1030print_kenv(void)
1031{
1032	int len;
1033	char *cp;
1034
1035	debugf("loader passed (static) kenv:\n");
1036	if (kern_envp == NULL) {
1037		debugf(" no env, null ptr\n");
1038		return;
1039	}
1040	debugf(" kern_envp = 0x%08x\n", (uint32_t)kern_envp);
1041
1042	len = 0;
1043	for (cp = kern_envp; cp != NULL; cp = kenv_next(cp))
1044		debugf(" %x %s\n", (uint32_t)cp, cp);
1045}
1046
1047void *
1048initarm(struct arm_boot_params *abp)
1049{
1050	struct mem_region mem_regions[FDT_MEM_REGIONS];
1051	struct pv_addr kernel_l1pt;
1052	struct pv_addr dpcpu;
1053	vm_offset_t dtbp, freemempos, l2_start, lastaddr;
1054	uint32_t memsize, l2size;
1055	char *env;
1056	void *kmdp;
1057	u_int l1pagetable;
1058	int i, j, err_devmap, mem_regions_sz;
1059
1060	lastaddr = parse_boot_param(abp);
1061	arm_physmem_kernaddr = abp->abp_physaddr;
1062
1063	memsize = 0;
1064	set_cpufuncs();
1065
1066	/*
1067	 * Find the dtb passed in by the boot loader.
1068	 */
1069	kmdp = preload_search_by_type("elf kernel");
1070	if (kmdp != NULL)
1071		dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
1072	else
1073		dtbp = (vm_offset_t)NULL;
1074
1075#if defined(FDT_DTB_STATIC)
1076	/*
1077	 * In case the device tree blob was not retrieved (from metadata) try
1078	 * to use the statically embedded one.
1079	 */
1080	if (dtbp == (vm_offset_t)NULL)
1081		dtbp = (vm_offset_t)&fdt_static_dtb;
1082#endif
1083
1084	if (OF_install(OFW_FDT, 0) == FALSE)
1085		panic("Cannot install FDT");
1086
1087	if (OF_init((void *)dtbp) != 0)
1088		panic("OF_init failed with the found device tree");
1089
1090	/* Grab physical memory regions information from device tree. */
1091	if (fdt_get_mem_regions(mem_regions, &mem_regions_sz, &memsize) != 0)
1092		panic("Cannot get physical memory regions");
1093	arm_physmem_hardware_regions(mem_regions, mem_regions_sz);
1094
1095	/* Grab reserved memory regions information from device tree. */
1096	if (fdt_get_reserved_regions(mem_regions, &mem_regions_sz) == 0)
1097		arm_physmem_exclude_regions(mem_regions, mem_regions_sz,
1098		    EXFLAG_NODUMP | EXFLAG_NOALLOC);
1099
1100	/* Platform-specific initialisation */
1101	initarm_early_init();
1102
1103	pcpu0_init();
1104
1105	/* Do basic tuning, hz etc */
1106	init_param1();
1107
1108	/* Calculate number of L2 tables needed for mapping vm_page_array */
1109	l2size = (memsize / PAGE_SIZE) * sizeof(struct vm_page);
1110	l2size = (l2size >> L1_S_SHIFT) + 1;
1111
1112	/*
1113	 * Add one table for end of kernel map, one for stacks, msgbuf and
1114	 * L1 and L2 tables map and one for vectors map.
1115	 */
1116	l2size += 3;
1117
1118	/* Make it divisible by 4 */
1119	l2size = (l2size + 3) & ~3;
1120
1121	freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
1122
1123	/* Define a macro to simplify memory allocation */
1124#define valloc_pages(var, np)						\
1125	alloc_pages((var).pv_va, (np));					\
1126	(var).pv_pa = (var).pv_va + (abp->abp_physaddr - KERNVIRTADDR);
1127
1128#define alloc_pages(var, np)						\
1129	(var) = freemempos;						\
1130	freemempos += (np * PAGE_SIZE);					\
1131	memset((char *)(var), 0, ((np) * PAGE_SIZE));
1132
1133	while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
1134		freemempos += PAGE_SIZE;
1135	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
1136
1137	for (i = 0, j = 0; i < l2size; ++i) {
1138		if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
1139			valloc_pages(kernel_pt_table[i],
1140			    L2_TABLE_SIZE / PAGE_SIZE);
1141			j = i;
1142		} else {
1143			kernel_pt_table[i].pv_va = kernel_pt_table[j].pv_va +
1144			    L2_TABLE_SIZE_REAL * (i - j);
1145			kernel_pt_table[i].pv_pa =
1146			    kernel_pt_table[i].pv_va - KERNVIRTADDR +
1147			    abp->abp_physaddr;
1148
1149		}
1150	}
1151	/*
1152	 * Allocate a page for the system page mapped to 0x00000000
1153	 * or 0xffff0000. This page will just contain the system vectors
1154	 * and can be shared by all processes.
1155	 */
1156	valloc_pages(systempage, 1);
1157
1158	/* Allocate dynamic per-cpu area. */
1159	valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
1160	dpcpu_init((void *)dpcpu.pv_va, 0);
1161
1162	/* Allocate stacks for all modes */
1163	valloc_pages(irqstack, IRQ_STACK_SIZE * MAXCPU);
1164	valloc_pages(abtstack, ABT_STACK_SIZE * MAXCPU);
1165	valloc_pages(undstack, UND_STACK_SIZE * MAXCPU);
1166	valloc_pages(kernelstack, KSTACK_PAGES * MAXCPU);
1167	valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
1168
1169	/*
1170	 * Now we start construction of the L1 page table
1171	 * We start by mapping the L2 page tables into the L1.
1172	 * This means that we can replace L1 mappings later on if necessary
1173	 */
1174	l1pagetable = kernel_l1pt.pv_va;
1175
1176	/*
1177	 * Try to map as much as possible of kernel text and data using
1178	 * 1MB section mapping and for the rest of initial kernel address
1179	 * space use L2 coarse tables.
1180	 *
1181	 * Link L2 tables for mapping remainder of kernel (modulo 1MB)
1182	 * and kernel structures
1183	 */
1184	l2_start = lastaddr & ~(L1_S_OFFSET);
1185	for (i = 0 ; i < l2size - 1; i++)
1186		pmap_link_l2pt(l1pagetable, l2_start + i * L1_S_SIZE,
1187		    &kernel_pt_table[i]);
1188
1189	pmap_curmaxkvaddr = l2_start + (l2size - 1) * L1_S_SIZE;
1190
1191	/* Map kernel code and data */
1192	pmap_map_chunk(l1pagetable, KERNVIRTADDR, abp->abp_physaddr,
1193	   (((uint32_t)(lastaddr) - KERNVIRTADDR) + PAGE_MASK) & ~PAGE_MASK,
1194	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1195
1196	/* Map L1 directory and allocated L2 page tables */
1197	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
1198	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1199
1200	pmap_map_chunk(l1pagetable, kernel_pt_table[0].pv_va,
1201	    kernel_pt_table[0].pv_pa,
1202	    L2_TABLE_SIZE_REAL * l2size,
1203	    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1204
1205	/* Map allocated DPCPU, stacks and msgbuf */
1206	pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa,
1207	    freemempos - dpcpu.pv_va,
1208	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1209
1210	/* Link and map the vector page */
1211	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
1212	    &kernel_pt_table[l2size - 1]);
1213	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
1214	    VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
1215
1216	/* Establish static device mappings. */
1217	err_devmap = initarm_devmap_init();
1218	arm_devmap_bootstrap(l1pagetable, NULL);
1219	vm_max_kernel_address = initarm_lastaddr();
1220
1221	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) | DOMAIN_CLIENT);
1222	pmap_pa = kernel_l1pt.pv_pa;
1223	setttb(kernel_l1pt.pv_pa);
1224	cpu_tlb_flushID();
1225	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2));
1226
1227	/*
1228	 * Now that proper page tables are installed, call cpu_setup() to enable
1229	 * instruction and data caches and other chip-specific features.
1230	 */
1231	cpu_setup("");
1232
1233	/*
1234	 * Only after the SOC registers block is mapped we can perform device
1235	 * tree fixups, as they may attempt to read parameters from hardware.
1236	 */
1237	OF_interpret("perform-fixup", 0);
1238
1239	initarm_gpio_init();
1240
1241	cninit();
1242
1243	debugf("initarm: console initialized\n");
1244	debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp);
1245	debugf(" boothowto = 0x%08x\n", boothowto);
1246	debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
1247	print_kenv();
1248
1249	env = getenv("kernelname");
1250	if (env != NULL)
1251		strlcpy(kernelname, env, sizeof(kernelname));
1252
1253	if (err_devmap != 0)
1254		printf("WARNING: could not fully configure devmap, error=%d\n",
1255		    err_devmap);
1256
1257	initarm_late_init();
1258
1259	/*
1260	 * Pages were allocated during the secondary bootstrap for the
1261	 * stacks for different CPU modes.
1262	 * We must now set the r13 registers in the different CPU modes to
1263	 * point to these stacks.
1264	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
1265	 * of the stack memory.
1266	 */
1267	cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
1268
1269	set_stackptrs(0);
1270
1271	/*
1272	 * We must now clean the cache again....
1273	 * Cleaning may be done by reading new data to displace any
1274	 * dirty data in the cache. This will have happened in setttb()
1275	 * but since we are boot strapping the addresses used for the read
1276	 * may have just been remapped and thus the cache could be out
1277	 * of sync. A re-clean after the switch will cure this.
1278	 * After booting there are no gross relocations of the kernel thus
1279	 * this problem will not occur after initarm().
1280	 */
1281	cpu_idcache_wbinv_all();
1282
1283	/* Set stack for exception handlers */
1284	data_abort_handler_address = (u_int)data_abort_handler;
1285	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
1286	undefined_handler_address = (u_int)undefinedinstruction_bounce;
1287	undefined_init();
1288
1289	init_proc0(kernelstack.pv_va);
1290
1291	arm_intrnames_init();
1292	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
1293	pmap_bootstrap(freemempos, &kernel_l1pt);
1294	msgbufp = (void *)msgbufpv.pv_va;
1295	msgbufinit(msgbufp, msgbufsize);
1296	mutex_init();
1297
1298	/*
1299	 * Exclude the kernel (and all the things we allocated which immediately
1300	 * follow the kernel) from the VM allocation pool but not from crash
1301	 * dumps.  virtual_avail is a global variable which tracks the kva we've
1302	 * "allocated" while setting up pmaps.
1303	 *
1304	 * Prepare the list of physical memory available to the vm subsystem.
1305	 */
1306	arm_physmem_exclude_region(abp->abp_physaddr,
1307	    (virtual_avail - KERNVIRTADDR), EXFLAG_NOALLOC);
1308	arm_physmem_init_kernel_globals();
1309
1310	init_param2(physmem);
1311	kdb_init();
1312
1313	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
1314	    sizeof(struct pcb)));
1315}
1316#endif
1317