machdep.c revision 266201
1/*	$NetBSD: arm32_machdep.c,v 1.44 2004/03/24 15:34:47 atatat Exp $	*/
2
3/*-
4 * Copyright (c) 2004 Olivier Houchard
5 * Copyright (c) 1994-1998 Mark Brinicombe.
6 * Copyright (c) 1994 Brini.
7 * All rights reserved.
8 *
9 * This code is derived from software written for Brini by Mark Brinicombe
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by Mark Brinicombe
22 *	for the NetBSD Project.
23 * 4. The name of the company nor the name of the author may be used to
24 *    endorse or promote products derived from this software without specific
25 *    prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
28 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
29 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
30 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
31 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
32 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
33 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 * Machine dependant functions for kernel setup
40 *
41 * Created      : 17/09/94
42 * Updated	: 18/04/01 updated for new wscons
43 */
44
45#include "opt_compat.h"
46#include "opt_ddb.h"
47#include "opt_platform.h"
48#include "opt_sched.h"
49#include "opt_timer.h"
50
51#include <sys/cdefs.h>
52__FBSDID("$FreeBSD: stable/10/sys/arm/arm/machdep.c 266201 2014-05-15 22:50:06Z ian $");
53
54#include <sys/param.h>
55#include <sys/proc.h>
56#include <sys/systm.h>
57#include <sys/bio.h>
58#include <sys/buf.h>
59#include <sys/bus.h>
60#include <sys/cons.h>
61#include <sys/cpu.h>
62#include <sys/exec.h>
63#include <sys/imgact.h>
64#include <sys/kdb.h>
65#include <sys/kernel.h>
66#include <sys/ktr.h>
67#include <sys/linker.h>
68#include <sys/lock.h>
69#include <sys/malloc.h>
70#include <sys/msgbuf.h>
71#include <sys/mutex.h>
72#include <sys/pcpu.h>
73#include <sys/ptrace.h>
74#include <sys/rwlock.h>
75#include <sys/sched.h>
76#include <sys/signalvar.h>
77#include <sys/syscallsubr.h>
78#include <sys/sysctl.h>
79#include <sys/sysent.h>
80#include <sys/sysproto.h>
81#include <sys/uio.h>
82
83#include <vm/vm.h>
84#include <vm/pmap.h>
85#include <vm/vm_map.h>
86#include <vm/vm_object.h>
87#include <vm/vm_page.h>
88#include <vm/vm_pager.h>
89
90#include <machine/armreg.h>
91#include <machine/atags.h>
92#include <machine/cpu.h>
93#include <machine/devmap.h>
94#include <machine/frame.h>
95#include <machine/intr.h>
96#include <machine/machdep.h>
97#include <machine/md_var.h>
98#include <machine/metadata.h>
99#include <machine/pcb.h>
100#include <machine/physmem.h>
101#include <machine/reg.h>
102#include <machine/trap.h>
103#include <machine/undefined.h>
104#include <machine/vmparam.h>
105#include <machine/sysarch.h>
106
107#ifdef FDT
108#include <dev/fdt/fdt_common.h>
109#include <dev/ofw/openfirm.h>
110#endif
111
112#ifdef DEBUG
113#define	debugf(fmt, args...) printf(fmt, ##args)
114#else
115#define	debugf(fmt, args...)
116#endif
117
118struct pcpu __pcpu[MAXCPU];
119struct pcpu *pcpup = &__pcpu[0];
120
121static struct trapframe proc0_tf;
122uint32_t cpu_reset_address = 0;
123int cold = 1;
124vm_offset_t vector_page;
125
126int (*_arm_memcpy)(void *, void *, int, int) = NULL;
127int (*_arm_bzero)(void *, int, int) = NULL;
128int _min_memcpy_size = 0;
129int _min_bzero_size = 0;
130
131extern int *end;
132#ifdef DDB
133extern vm_offset_t ksym_start, ksym_end;
134#endif
135
136#ifdef FDT
137/*
138 * This is the number of L2 page tables required for covering max
139 * (hypothetical) memsize of 4GB and all kernel mappings (vectors, msgbuf,
140 * stacks etc.), uprounded to be divisible by 4.
141 */
142#define KERNEL_PT_MAX	78
143
144static struct pv_addr kernel_pt_table[KERNEL_PT_MAX];
145
146extern u_int data_abort_handler_address;
147extern u_int prefetch_abort_handler_address;
148extern u_int undefined_handler_address;
149
150vm_paddr_t pmap_pa;
151
152struct pv_addr systempage;
153static struct pv_addr msgbufpv;
154struct pv_addr irqstack;
155struct pv_addr undstack;
156struct pv_addr abtstack;
157static struct pv_addr kernelstack;
158
159#endif
160
161#if defined(LINUX_BOOT_ABI)
162#define LBABI_MAX_BANKS	10
163
164uint32_t board_id;
165struct arm_lbabi_tag *atag_list;
166char linux_command_line[LBABI_MAX_COMMAND_LINE + 1];
167char atags[LBABI_MAX_COMMAND_LINE * 2];
168uint32_t memstart[LBABI_MAX_BANKS];
169uint32_t memsize[LBABI_MAX_BANKS];
170uint32_t membanks;
171#endif
172
173static uint32_t board_revision;
174/* hex representation of uint64_t */
175static char board_serial[32];
176
177SYSCTL_NODE(_hw, OID_AUTO, board, CTLFLAG_RD, 0, "Board attributes");
178SYSCTL_UINT(_hw_board, OID_AUTO, revision, CTLFLAG_RD,
179    &board_revision, 0, "Board revision");
180SYSCTL_STRING(_hw_board, OID_AUTO, serial, CTLFLAG_RD,
181    board_serial, 0, "Board serial");
182
183int vfp_exists;
184SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
185    &vfp_exists, 0, "Floating point support enabled");
186
187void
188board_set_serial(uint64_t serial)
189{
190
191	snprintf(board_serial, sizeof(board_serial)-1,
192		    "%016jx", serial);
193}
194
195void
196board_set_revision(uint32_t revision)
197{
198
199	board_revision = revision;
200}
201
202void
203sendsig(catcher, ksi, mask)
204	sig_t catcher;
205	ksiginfo_t *ksi;
206	sigset_t *mask;
207{
208	struct thread *td;
209	struct proc *p;
210	struct trapframe *tf;
211	struct sigframe *fp, frame;
212	struct sigacts *psp;
213	int onstack;
214	int sig;
215	int code;
216
217	td = curthread;
218	p = td->td_proc;
219	PROC_LOCK_ASSERT(p, MA_OWNED);
220	sig = ksi->ksi_signo;
221	code = ksi->ksi_code;
222	psp = p->p_sigacts;
223	mtx_assert(&psp->ps_mtx, MA_OWNED);
224	tf = td->td_frame;
225	onstack = sigonstack(tf->tf_usr_sp);
226
227	CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
228	    catcher, sig);
229
230	/* Allocate and validate space for the signal handler context. */
231	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !(onstack) &&
232	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
233		fp = (struct sigframe *)(td->td_sigstk.ss_sp +
234		    td->td_sigstk.ss_size);
235#if defined(COMPAT_43)
236		td->td_sigstk.ss_flags |= SS_ONSTACK;
237#endif
238	} else
239		fp = (struct sigframe *)td->td_frame->tf_usr_sp;
240
241	/* make room on the stack */
242	fp--;
243
244	/* make the stack aligned */
245	fp = (struct sigframe *)STACKALIGN(fp);
246	/* Populate the siginfo frame. */
247	get_mcontext(td, &frame.sf_uc.uc_mcontext, 0);
248	frame.sf_si = ksi->ksi_info;
249	frame.sf_uc.uc_sigmask = *mask;
250	frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK )
251	    ? ((onstack) ? SS_ONSTACK : 0) : SS_DISABLE;
252	frame.sf_uc.uc_stack = td->td_sigstk;
253	mtx_unlock(&psp->ps_mtx);
254	PROC_UNLOCK(td->td_proc);
255
256	/* Copy the sigframe out to the user's stack. */
257	if (copyout(&frame, fp, sizeof(*fp)) != 0) {
258		/* Process has trashed its stack. Kill it. */
259		CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp);
260		PROC_LOCK(p);
261		sigexit(td, SIGILL);
262	}
263
264	/* Translate the signal if appropriate. */
265	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
266		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
267
268	/*
269	 * Build context to run handler in.  We invoke the handler
270	 * directly, only returning via the trampoline.  Note the
271	 * trampoline version numbers are coordinated with machine-
272	 * dependent code in libc.
273	 */
274
275	tf->tf_r0 = sig;
276	tf->tf_r1 = (register_t)&fp->sf_si;
277	tf->tf_r2 = (register_t)&fp->sf_uc;
278
279	/* the trampoline uses r5 as the uc address */
280	tf->tf_r5 = (register_t)&fp->sf_uc;
281	tf->tf_pc = (register_t)catcher;
282	tf->tf_usr_sp = (register_t)fp;
283	tf->tf_usr_lr = (register_t)(PS_STRINGS - *(p->p_sysent->sv_szsigcode));
284
285	CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_usr_lr,
286	    tf->tf_usr_sp);
287
288	PROC_LOCK(p);
289	mtx_lock(&psp->ps_mtx);
290}
291
292struct kva_md_info kmi;
293
294/*
295 * arm32_vector_init:
296 *
297 *	Initialize the vector page, and select whether or not to
298 *	relocate the vectors.
299 *
300 *	NOTE: We expect the vector page to be mapped at its expected
301 *	destination.
302 */
303
304extern unsigned int page0[], page0_data[];
305void
306arm_vector_init(vm_offset_t va, int which)
307{
308	unsigned int *vectors = (int *) va;
309	unsigned int *vectors_data = vectors + (page0_data - page0);
310	int vec;
311
312	/*
313	 * Loop through the vectors we're taking over, and copy the
314	 * vector's insn and data word.
315	 */
316	for (vec = 0; vec < ARM_NVEC; vec++) {
317		if ((which & (1 << vec)) == 0) {
318			/* Don't want to take over this vector. */
319			continue;
320		}
321		vectors[vec] = page0[vec];
322		vectors_data[vec] = page0_data[vec];
323	}
324
325	/* Now sync the vectors. */
326	cpu_icache_sync_range(va, (ARM_NVEC * 2) * sizeof(u_int));
327
328	vector_page = va;
329
330	if (va == ARM_VECTORS_HIGH) {
331		/*
332		 * Assume the MD caller knows what it's doing here, and
333		 * really does want the vector page relocated.
334		 *
335		 * Note: This has to be done here (and not just in
336		 * cpu_setup()) because the vector page needs to be
337		 * accessible *before* cpu_startup() is called.
338		 * Think ddb(9) ...
339		 *
340		 * NOTE: If the CPU control register is not readable,
341		 * this will totally fail!  We'll just assume that
342		 * any system that has high vector support has a
343		 * readable CPU control register, for now.  If we
344		 * ever encounter one that does not, we'll have to
345		 * rethink this.
346		 */
347		cpu_control(CPU_CONTROL_VECRELOC, CPU_CONTROL_VECRELOC);
348	}
349}
350
351static void
352cpu_startup(void *dummy)
353{
354	struct pcb *pcb = thread0.td_pcb;
355	const unsigned int mbyte = 1024 * 1024;
356#ifdef ARM_TP_ADDRESS
357#ifndef ARM_CACHE_LOCK_ENABLE
358	vm_page_t m;
359#endif
360#endif
361
362	identify_arm_cpu();
363
364	vm_ksubmap_init(&kmi);
365
366	/*
367	 * Display the RAM layout.
368	 */
369	printf("real memory  = %ju (%ju MB)\n",
370	    (uintmax_t)arm32_ptob(realmem),
371	    (uintmax_t)arm32_ptob(realmem) / mbyte);
372	printf("avail memory = %ju (%ju MB)\n",
373	    (uintmax_t)arm32_ptob(cnt.v_free_count),
374	    (uintmax_t)arm32_ptob(cnt.v_free_count) / mbyte);
375	if (bootverbose) {
376		arm_physmem_print_tables();
377		arm_devmap_print_table();
378	}
379
380	bufinit();
381	vm_pager_bufferinit();
382	pcb->un_32.pcb32_und_sp = (u_int)thread0.td_kstack +
383	    USPACE_UNDEF_STACK_TOP;
384	pcb->un_32.pcb32_sp = (u_int)thread0.td_kstack +
385	    USPACE_SVC_STACK_TOP;
386	vector_page_setprot(VM_PROT_READ);
387	pmap_set_pcb_pagedir(pmap_kernel(), pcb);
388	pmap_postinit();
389#ifdef ARM_TP_ADDRESS
390#ifdef ARM_CACHE_LOCK_ENABLE
391	pmap_kenter_user(ARM_TP_ADDRESS, ARM_TP_ADDRESS);
392	arm_lock_cache_line(ARM_TP_ADDRESS);
393#else
394	m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_ZERO);
395	pmap_kenter_user(ARM_TP_ADDRESS, VM_PAGE_TO_PHYS(m));
396#endif
397	*(uint32_t *)ARM_RAS_START = 0;
398	*(uint32_t *)ARM_RAS_END = 0xffffffff;
399#endif
400}
401
402SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
403
404/*
405 * Flush the D-cache for non-DMA I/O so that the I-cache can
406 * be made coherent later.
407 */
408void
409cpu_flush_dcache(void *ptr, size_t len)
410{
411
412	cpu_dcache_wb_range((uintptr_t)ptr, len);
413	cpu_l2cache_wb_range((uintptr_t)ptr, len);
414}
415
416/* Get current clock frequency for the given cpu id. */
417int
418cpu_est_clockrate(int cpu_id, uint64_t *rate)
419{
420
421	return (ENXIO);
422}
423
424void
425cpu_idle(int busy)
426{
427
428	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
429	    busy, curcpu);
430#ifndef NO_EVENTTIMERS
431	if (!busy) {
432		critical_enter();
433		cpu_idleclock();
434	}
435#endif
436	if (!sched_runnable())
437		cpu_sleep(0);
438#ifndef NO_EVENTTIMERS
439	if (!busy) {
440		cpu_activeclock();
441		critical_exit();
442	}
443#endif
444	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
445	    busy, curcpu);
446}
447
448int
449cpu_idle_wakeup(int cpu)
450{
451
452	return (0);
453}
454
455int
456fill_regs(struct thread *td, struct reg *regs)
457{
458	struct trapframe *tf = td->td_frame;
459	bcopy(&tf->tf_r0, regs->r, sizeof(regs->r));
460	regs->r_sp = tf->tf_usr_sp;
461	regs->r_lr = tf->tf_usr_lr;
462	regs->r_pc = tf->tf_pc;
463	regs->r_cpsr = tf->tf_spsr;
464	return (0);
465}
466int
467fill_fpregs(struct thread *td, struct fpreg *regs)
468{
469	bzero(regs, sizeof(*regs));
470	return (0);
471}
472
473int
474set_regs(struct thread *td, struct reg *regs)
475{
476	struct trapframe *tf = td->td_frame;
477
478	bcopy(regs->r, &tf->tf_r0, sizeof(regs->r));
479	tf->tf_usr_sp = regs->r_sp;
480	tf->tf_usr_lr = regs->r_lr;
481	tf->tf_pc = regs->r_pc;
482	tf->tf_spsr &=  ~PSR_FLAGS;
483	tf->tf_spsr |= regs->r_cpsr & PSR_FLAGS;
484	return (0);
485}
486
487int
488set_fpregs(struct thread *td, struct fpreg *regs)
489{
490	return (0);
491}
492
493int
494fill_dbregs(struct thread *td, struct dbreg *regs)
495{
496	return (0);
497}
498int
499set_dbregs(struct thread *td, struct dbreg *regs)
500{
501	return (0);
502}
503
504
505static int
506ptrace_read_int(struct thread *td, vm_offset_t addr, u_int32_t *v)
507{
508	struct iovec iov;
509	struct uio uio;
510
511	PROC_LOCK_ASSERT(td->td_proc, MA_NOTOWNED);
512	iov.iov_base = (caddr_t) v;
513	iov.iov_len = sizeof(u_int32_t);
514	uio.uio_iov = &iov;
515	uio.uio_iovcnt = 1;
516	uio.uio_offset = (off_t)addr;
517	uio.uio_resid = sizeof(u_int32_t);
518	uio.uio_segflg = UIO_SYSSPACE;
519	uio.uio_rw = UIO_READ;
520	uio.uio_td = td;
521	return proc_rwmem(td->td_proc, &uio);
522}
523
524static int
525ptrace_write_int(struct thread *td, vm_offset_t addr, u_int32_t v)
526{
527	struct iovec iov;
528	struct uio uio;
529
530	PROC_LOCK_ASSERT(td->td_proc, MA_NOTOWNED);
531	iov.iov_base = (caddr_t) &v;
532	iov.iov_len = sizeof(u_int32_t);
533	uio.uio_iov = &iov;
534	uio.uio_iovcnt = 1;
535	uio.uio_offset = (off_t)addr;
536	uio.uio_resid = sizeof(u_int32_t);
537	uio.uio_segflg = UIO_SYSSPACE;
538	uio.uio_rw = UIO_WRITE;
539	uio.uio_td = td;
540	return proc_rwmem(td->td_proc, &uio);
541}
542
543int
544ptrace_single_step(struct thread *td)
545{
546	struct proc *p;
547	int error;
548
549	KASSERT(td->td_md.md_ptrace_instr == 0,
550	 ("Didn't clear single step"));
551	p = td->td_proc;
552	PROC_UNLOCK(p);
553	error = ptrace_read_int(td, td->td_frame->tf_pc + 4,
554	    &td->td_md.md_ptrace_instr);
555	if (error)
556		goto out;
557	error = ptrace_write_int(td, td->td_frame->tf_pc + 4,
558	    PTRACE_BREAKPOINT);
559	if (error)
560		td->td_md.md_ptrace_instr = 0;
561	td->td_md.md_ptrace_addr = td->td_frame->tf_pc + 4;
562out:
563	PROC_LOCK(p);
564	return (error);
565}
566
567int
568ptrace_clear_single_step(struct thread *td)
569{
570	struct proc *p;
571
572	if (td->td_md.md_ptrace_instr) {
573		p = td->td_proc;
574		PROC_UNLOCK(p);
575		ptrace_write_int(td, td->td_md.md_ptrace_addr,
576		    td->td_md.md_ptrace_instr);
577		PROC_LOCK(p);
578		td->td_md.md_ptrace_instr = 0;
579	}
580	return (0);
581}
582
583int
584ptrace_set_pc(struct thread *td, unsigned long addr)
585{
586	td->td_frame->tf_pc = addr;
587	return (0);
588}
589
590void
591cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
592{
593}
594
595void
596spinlock_enter(void)
597{
598	struct thread *td;
599	register_t cspr;
600
601	td = curthread;
602	if (td->td_md.md_spinlock_count == 0) {
603		cspr = disable_interrupts(I32_bit | F32_bit);
604		td->td_md.md_spinlock_count = 1;
605		td->td_md.md_saved_cspr = cspr;
606	} else
607		td->td_md.md_spinlock_count++;
608	critical_enter();
609}
610
611void
612spinlock_exit(void)
613{
614	struct thread *td;
615	register_t cspr;
616
617	td = curthread;
618	critical_exit();
619	cspr = td->td_md.md_saved_cspr;
620	td->td_md.md_spinlock_count--;
621	if (td->td_md.md_spinlock_count == 0)
622		restore_interrupts(cspr);
623}
624
625/*
626 * Clear registers on exec
627 */
628void
629exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
630{
631	struct trapframe *tf = td->td_frame;
632
633	memset(tf, 0, sizeof(*tf));
634	tf->tf_usr_sp = stack;
635	tf->tf_usr_lr = imgp->entry_addr;
636	tf->tf_svc_lr = 0x77777777;
637	tf->tf_pc = imgp->entry_addr;
638	tf->tf_spsr = PSR_USR32_MODE;
639}
640
641/*
642 * Get machine context.
643 */
644int
645get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
646{
647	struct trapframe *tf = td->td_frame;
648	__greg_t *gr = mcp->__gregs;
649
650	if (clear_ret & GET_MC_CLEAR_RET)
651		gr[_REG_R0] = 0;
652	else
653		gr[_REG_R0]   = tf->tf_r0;
654	gr[_REG_R1]   = tf->tf_r1;
655	gr[_REG_R2]   = tf->tf_r2;
656	gr[_REG_R3]   = tf->tf_r3;
657	gr[_REG_R4]   = tf->tf_r4;
658	gr[_REG_R5]   = tf->tf_r5;
659	gr[_REG_R6]   = tf->tf_r6;
660	gr[_REG_R7]   = tf->tf_r7;
661	gr[_REG_R8]   = tf->tf_r8;
662	gr[_REG_R9]   = tf->tf_r9;
663	gr[_REG_R10]  = tf->tf_r10;
664	gr[_REG_R11]  = tf->tf_r11;
665	gr[_REG_R12]  = tf->tf_r12;
666	gr[_REG_SP]   = tf->tf_usr_sp;
667	gr[_REG_LR]   = tf->tf_usr_lr;
668	gr[_REG_PC]   = tf->tf_pc;
669	gr[_REG_CPSR] = tf->tf_spsr;
670
671	return (0);
672}
673
674/*
675 * Set machine context.
676 *
677 * However, we don't set any but the user modifiable flags, and we won't
678 * touch the cs selector.
679 */
680int
681set_mcontext(struct thread *td, const mcontext_t *mcp)
682{
683	struct trapframe *tf = td->td_frame;
684	const __greg_t *gr = mcp->__gregs;
685
686	tf->tf_r0 = gr[_REG_R0];
687	tf->tf_r1 = gr[_REG_R1];
688	tf->tf_r2 = gr[_REG_R2];
689	tf->tf_r3 = gr[_REG_R3];
690	tf->tf_r4 = gr[_REG_R4];
691	tf->tf_r5 = gr[_REG_R5];
692	tf->tf_r6 = gr[_REG_R6];
693	tf->tf_r7 = gr[_REG_R7];
694	tf->tf_r8 = gr[_REG_R8];
695	tf->tf_r9 = gr[_REG_R9];
696	tf->tf_r10 = gr[_REG_R10];
697	tf->tf_r11 = gr[_REG_R11];
698	tf->tf_r12 = gr[_REG_R12];
699	tf->tf_usr_sp = gr[_REG_SP];
700	tf->tf_usr_lr = gr[_REG_LR];
701	tf->tf_pc = gr[_REG_PC];
702	tf->tf_spsr = gr[_REG_CPSR];
703
704	return (0);
705}
706
707/*
708 * MPSAFE
709 */
710int
711sys_sigreturn(td, uap)
712	struct thread *td;
713	struct sigreturn_args /* {
714		const struct __ucontext *sigcntxp;
715	} */ *uap;
716{
717	struct sigframe sf;
718	struct trapframe *tf;
719	int spsr;
720
721	if (uap == NULL)
722		return (EFAULT);
723	if (copyin(uap->sigcntxp, &sf, sizeof(sf)))
724		return (EFAULT);
725	/*
726	 * Make sure the processor mode has not been tampered with and
727	 * interrupts have not been disabled.
728	 */
729	spsr = sf.sf_uc.uc_mcontext.__gregs[_REG_CPSR];
730	if ((spsr & PSR_MODE) != PSR_USR32_MODE ||
731	    (spsr & (I32_bit | F32_bit)) != 0)
732		return (EINVAL);
733		/* Restore register context. */
734	tf = td->td_frame;
735	set_mcontext(td, &sf.sf_uc.uc_mcontext);
736
737	/* Restore signal mask. */
738	kern_sigprocmask(td, SIG_SETMASK, &sf.sf_uc.uc_sigmask, NULL, 0);
739
740	return (EJUSTRETURN);
741}
742
743
744/*
745 * Construct a PCB from a trapframe. This is called from kdb_trap() where
746 * we want to start a backtrace from the function that caused us to enter
747 * the debugger. We have the context in the trapframe, but base the trace
748 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
749 * enough for a backtrace.
750 */
751void
752makectx(struct trapframe *tf, struct pcb *pcb)
753{
754	pcb->un_32.pcb32_r8 = tf->tf_r8;
755	pcb->un_32.pcb32_r9 = tf->tf_r9;
756	pcb->un_32.pcb32_r10 = tf->tf_r10;
757	pcb->un_32.pcb32_r11 = tf->tf_r11;
758	pcb->un_32.pcb32_r12 = tf->tf_r12;
759	pcb->un_32.pcb32_pc = tf->tf_pc;
760	pcb->un_32.pcb32_lr = tf->tf_usr_lr;
761	pcb->un_32.pcb32_sp = tf->tf_usr_sp;
762}
763
764/*
765 * Fake up a boot descriptor table
766 */
767vm_offset_t
768fake_preload_metadata(struct arm_boot_params *abp __unused)
769{
770#ifdef DDB
771	vm_offset_t zstart = 0, zend = 0;
772#endif
773	vm_offset_t lastaddr;
774	int i = 0;
775	static uint32_t fake_preload[35];
776
777	fake_preload[i++] = MODINFO_NAME;
778	fake_preload[i++] = strlen("kernel") + 1;
779	strcpy((char*)&fake_preload[i++], "kernel");
780	i += 1;
781	fake_preload[i++] = MODINFO_TYPE;
782	fake_preload[i++] = strlen("elf kernel") + 1;
783	strcpy((char*)&fake_preload[i++], "elf kernel");
784	i += 2;
785	fake_preload[i++] = MODINFO_ADDR;
786	fake_preload[i++] = sizeof(vm_offset_t);
787	fake_preload[i++] = KERNVIRTADDR;
788	fake_preload[i++] = MODINFO_SIZE;
789	fake_preload[i++] = sizeof(uint32_t);
790	fake_preload[i++] = (uint32_t)&end - KERNVIRTADDR;
791#ifdef DDB
792	if (*(uint32_t *)KERNVIRTADDR == MAGIC_TRAMP_NUMBER) {
793		fake_preload[i++] = MODINFO_METADATA|MODINFOMD_SSYM;
794		fake_preload[i++] = sizeof(vm_offset_t);
795		fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 4);
796		fake_preload[i++] = MODINFO_METADATA|MODINFOMD_ESYM;
797		fake_preload[i++] = sizeof(vm_offset_t);
798		fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 8);
799		lastaddr = *(uint32_t *)(KERNVIRTADDR + 8);
800		zend = lastaddr;
801		zstart = *(uint32_t *)(KERNVIRTADDR + 4);
802		ksym_start = zstart;
803		ksym_end = zend;
804	} else
805#endif
806		lastaddr = (vm_offset_t)&end;
807	fake_preload[i++] = 0;
808	fake_preload[i] = 0;
809	preload_metadata = (void *)fake_preload;
810
811	return (lastaddr);
812}
813
814void
815pcpu0_init(void)
816{
817#if ARM_ARCH_6 || ARM_ARCH_7A || defined(CPU_MV_PJ4B)
818	set_curthread(&thread0);
819#endif
820	pcpu_init(pcpup, 0, sizeof(struct pcpu));
821	PCPU_SET(curthread, &thread0);
822#ifdef VFP
823	PCPU_SET(cpu, 0);
824#endif
825}
826
827#if defined(LINUX_BOOT_ABI)
828vm_offset_t
829linux_parse_boot_param(struct arm_boot_params *abp)
830{
831	struct arm_lbabi_tag *walker;
832	uint32_t revision;
833	uint64_t serial;
834
835	/*
836	 * Linux boot ABI: r0 = 0, r1 is the board type (!= 0) and r2
837	 * is atags or dtb pointer.  If all of these aren't satisfied,
838	 * then punt.
839	 */
840	if (!(abp->abp_r0 == 0 && abp->abp_r1 != 0 && abp->abp_r2 != 0))
841		return 0;
842
843	board_id = abp->abp_r1;
844	walker = (struct arm_lbabi_tag *)
845	    (abp->abp_r2 + KERNVIRTADDR - abp->abp_physaddr);
846
847	/* xxx - Need to also look for binary device tree */
848	if (ATAG_TAG(walker) != ATAG_CORE)
849		return 0;
850
851	atag_list = walker;
852	while (ATAG_TAG(walker) != ATAG_NONE) {
853		switch (ATAG_TAG(walker)) {
854		case ATAG_CORE:
855			break;
856		case ATAG_MEM:
857			arm_physmem_hardware_region(walker->u.tag_mem.start,
858			    walker->u.tag_mem.size);
859			break;
860		case ATAG_INITRD2:
861			break;
862		case ATAG_SERIAL:
863			serial = walker->u.tag_sn.low |
864			    ((uint64_t)walker->u.tag_sn.high << 32);
865			board_set_serial(serial);
866			break;
867		case ATAG_REVISION:
868			revision = walker->u.tag_rev.rev;
869			board_set_revision(revision);
870			break;
871		case ATAG_CMDLINE:
872			/* XXX open question: Parse this for boothowto? */
873			bcopy(walker->u.tag_cmd.command, linux_command_line,
874			      ATAG_SIZE(walker));
875			break;
876		default:
877			break;
878		}
879		walker = ATAG_NEXT(walker);
880	}
881
882	/* Save a copy for later */
883	bcopy(atag_list, atags,
884	    (char *)walker - (char *)atag_list + ATAG_SIZE(walker));
885
886	return fake_preload_metadata(abp);
887}
888#endif
889
890#if defined(FREEBSD_BOOT_LOADER)
891vm_offset_t
892freebsd_parse_boot_param(struct arm_boot_params *abp)
893{
894	vm_offset_t lastaddr = 0;
895	void *mdp;
896	void *kmdp;
897
898	/*
899	 * Mask metadata pointer: it is supposed to be on page boundary. If
900	 * the first argument (mdp) doesn't point to a valid address the
901	 * bootloader must have passed us something else than the metadata
902	 * ptr, so we give up.  Also give up if we cannot find metadta section
903	 * the loader creates that we get all this data out of.
904	 */
905
906	if ((mdp = (void *)(abp->abp_r0 & ~PAGE_MASK)) == NULL)
907		return 0;
908	preload_metadata = mdp;
909	kmdp = preload_search_by_type("elf kernel");
910	if (kmdp == NULL)
911		return 0;
912
913	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
914	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
915	lastaddr = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
916#ifdef DDB
917	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
918	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
919#endif
920	preload_addr_relocate = KERNVIRTADDR - abp->abp_physaddr;
921	return lastaddr;
922}
923#endif
924
925vm_offset_t
926default_parse_boot_param(struct arm_boot_params *abp)
927{
928	vm_offset_t lastaddr;
929
930#if defined(LINUX_BOOT_ABI)
931	if ((lastaddr = linux_parse_boot_param(abp)) != 0)
932		return lastaddr;
933#endif
934#if defined(FREEBSD_BOOT_LOADER)
935	if ((lastaddr = freebsd_parse_boot_param(abp)) != 0)
936		return lastaddr;
937#endif
938	/* Fall back to hardcoded metadata. */
939	lastaddr = fake_preload_metadata(abp);
940
941	return lastaddr;
942}
943
944/*
945 * Stub version of the boot parameter parsing routine.  We are
946 * called early in initarm, before even VM has been initialized.
947 * This routine needs to preserve any data that the boot loader
948 * has passed in before the kernel starts to grow past the end
949 * of the BSS, traditionally the place boot-loaders put this data.
950 *
951 * Since this is called so early, things that depend on the vm system
952 * being setup (including access to some SoC's serial ports), about
953 * all that can be done in this routine is to copy the arguments.
954 *
955 * This is the default boot parameter parsing routine.  Individual
956 * kernels/boards can override this weak function with one of their
957 * own.  We just fake metadata...
958 */
959__weak_reference(default_parse_boot_param, parse_boot_param);
960
961/*
962 * Initialize proc0
963 */
964void
965init_proc0(vm_offset_t kstack)
966{
967	proc_linkup0(&proc0, &thread0);
968	thread0.td_kstack = kstack;
969	thread0.td_pcb = (struct pcb *)
970		(thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
971	thread0.td_pcb->pcb_flags = 0;
972	thread0.td_frame = &proc0_tf;
973	pcpup->pc_curpcb = thread0.td_pcb;
974}
975
976void
977set_stackptrs(int cpu)
978{
979
980	set_stackptr(PSR_IRQ32_MODE,
981	    irqstack.pv_va + ((IRQ_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
982	set_stackptr(PSR_ABT32_MODE,
983	    abtstack.pv_va + ((ABT_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
984	set_stackptr(PSR_UND32_MODE,
985	    undstack.pv_va + ((UND_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
986}
987
988#ifdef FDT
989static char *
990kenv_next(char *cp)
991{
992
993	if (cp != NULL) {
994		while (*cp != 0)
995			cp++;
996		cp++;
997		if (*cp == 0)
998			cp = NULL;
999	}
1000	return (cp);
1001}
1002
1003static void
1004print_kenv(void)
1005{
1006	int len;
1007	char *cp;
1008
1009	debugf("loader passed (static) kenv:\n");
1010	if (kern_envp == NULL) {
1011		debugf(" no env, null ptr\n");
1012		return;
1013	}
1014	debugf(" kern_envp = 0x%08x\n", (uint32_t)kern_envp);
1015
1016	len = 0;
1017	for (cp = kern_envp; cp != NULL; cp = kenv_next(cp))
1018		debugf(" %x %s\n", (uint32_t)cp, cp);
1019}
1020
1021void *
1022initarm(struct arm_boot_params *abp)
1023{
1024	struct mem_region mem_regions[FDT_MEM_REGIONS];
1025	struct pv_addr kernel_l1pt;
1026	struct pv_addr dpcpu;
1027	vm_offset_t dtbp, freemempos, l2_start, lastaddr;
1028	uint32_t memsize, l2size;
1029	char *env;
1030	void *kmdp;
1031	u_int l1pagetable;
1032	int i, j, err_devmap, mem_regions_sz;
1033
1034	lastaddr = parse_boot_param(abp);
1035	arm_physmem_kernaddr = abp->abp_physaddr;
1036
1037	memsize = 0;
1038	set_cpufuncs();
1039
1040	/*
1041	 * Find the dtb passed in by the boot loader.
1042	 */
1043	kmdp = preload_search_by_type("elf kernel");
1044	if (kmdp != NULL)
1045		dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
1046	else
1047		dtbp = (vm_offset_t)NULL;
1048
1049#if defined(FDT_DTB_STATIC)
1050	/*
1051	 * In case the device tree blob was not retrieved (from metadata) try
1052	 * to use the statically embedded one.
1053	 */
1054	if (dtbp == (vm_offset_t)NULL)
1055		dtbp = (vm_offset_t)&fdt_static_dtb;
1056#endif
1057
1058	if (OF_install(OFW_FDT, 0) == FALSE)
1059		panic("Cannot install FDT");
1060
1061	if (OF_init((void *)dtbp) != 0)
1062		panic("OF_init failed with the found device tree");
1063
1064	/* Grab physical memory regions information from device tree. */
1065	if (fdt_get_mem_regions(mem_regions, &mem_regions_sz, &memsize) != 0)
1066		panic("Cannot get physical memory regions");
1067	arm_physmem_hardware_regions(mem_regions, mem_regions_sz);
1068
1069	/* Grab reserved memory regions information from device tree. */
1070	if (fdt_get_reserved_regions(mem_regions, &mem_regions_sz) == 0)
1071		arm_physmem_exclude_regions(mem_regions, mem_regions_sz,
1072		    EXFLAG_NODUMP | EXFLAG_NOALLOC);
1073
1074	/* Platform-specific initialisation */
1075	initarm_early_init();
1076
1077	pcpu0_init();
1078
1079	/* Do basic tuning, hz etc */
1080	init_param1();
1081
1082	/* Calculate number of L2 tables needed for mapping vm_page_array */
1083	l2size = (memsize / PAGE_SIZE) * sizeof(struct vm_page);
1084	l2size = (l2size >> L1_S_SHIFT) + 1;
1085
1086	/*
1087	 * Add one table for end of kernel map, one for stacks, msgbuf and
1088	 * L1 and L2 tables map and one for vectors map.
1089	 */
1090	l2size += 3;
1091
1092	/* Make it divisible by 4 */
1093	l2size = (l2size + 3) & ~3;
1094
1095	freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
1096
1097	/* Define a macro to simplify memory allocation */
1098#define valloc_pages(var, np)						\
1099	alloc_pages((var).pv_va, (np));					\
1100	(var).pv_pa = (var).pv_va + (abp->abp_physaddr - KERNVIRTADDR);
1101
1102#define alloc_pages(var, np)						\
1103	(var) = freemempos;						\
1104	freemempos += (np * PAGE_SIZE);					\
1105	memset((char *)(var), 0, ((np) * PAGE_SIZE));
1106
1107	while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
1108		freemempos += PAGE_SIZE;
1109	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
1110
1111	for (i = 0, j = 0; i < l2size; ++i) {
1112		if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
1113			valloc_pages(kernel_pt_table[i],
1114			    L2_TABLE_SIZE / PAGE_SIZE);
1115			j = i;
1116		} else {
1117			kernel_pt_table[i].pv_va = kernel_pt_table[j].pv_va +
1118			    L2_TABLE_SIZE_REAL * (i - j);
1119			kernel_pt_table[i].pv_pa =
1120			    kernel_pt_table[i].pv_va - KERNVIRTADDR +
1121			    abp->abp_physaddr;
1122
1123		}
1124	}
1125	/*
1126	 * Allocate a page for the system page mapped to 0x00000000
1127	 * or 0xffff0000. This page will just contain the system vectors
1128	 * and can be shared by all processes.
1129	 */
1130	valloc_pages(systempage, 1);
1131
1132	/* Allocate dynamic per-cpu area. */
1133	valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
1134	dpcpu_init((void *)dpcpu.pv_va, 0);
1135
1136	/* Allocate stacks for all modes */
1137	valloc_pages(irqstack, IRQ_STACK_SIZE * MAXCPU);
1138	valloc_pages(abtstack, ABT_STACK_SIZE * MAXCPU);
1139	valloc_pages(undstack, UND_STACK_SIZE * MAXCPU);
1140	valloc_pages(kernelstack, KSTACK_PAGES * MAXCPU);
1141	valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
1142
1143	/*
1144	 * Now we start construction of the L1 page table
1145	 * We start by mapping the L2 page tables into the L1.
1146	 * This means that we can replace L1 mappings later on if necessary
1147	 */
1148	l1pagetable = kernel_l1pt.pv_va;
1149
1150	/*
1151	 * Try to map as much as possible of kernel text and data using
1152	 * 1MB section mapping and for the rest of initial kernel address
1153	 * space use L2 coarse tables.
1154	 *
1155	 * Link L2 tables for mapping remainder of kernel (modulo 1MB)
1156	 * and kernel structures
1157	 */
1158	l2_start = lastaddr & ~(L1_S_OFFSET);
1159	for (i = 0 ; i < l2size - 1; i++)
1160		pmap_link_l2pt(l1pagetable, l2_start + i * L1_S_SIZE,
1161		    &kernel_pt_table[i]);
1162
1163	pmap_curmaxkvaddr = l2_start + (l2size - 1) * L1_S_SIZE;
1164
1165	/* Map kernel code and data */
1166	pmap_map_chunk(l1pagetable, KERNVIRTADDR, abp->abp_physaddr,
1167	   (((uint32_t)(lastaddr) - KERNVIRTADDR) + PAGE_MASK) & ~PAGE_MASK,
1168	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1169
1170	/* Map L1 directory and allocated L2 page tables */
1171	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
1172	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1173
1174	pmap_map_chunk(l1pagetable, kernel_pt_table[0].pv_va,
1175	    kernel_pt_table[0].pv_pa,
1176	    L2_TABLE_SIZE_REAL * l2size,
1177	    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1178
1179	/* Map allocated DPCPU, stacks and msgbuf */
1180	pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa,
1181	    freemempos - dpcpu.pv_va,
1182	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1183
1184	/* Link and map the vector page */
1185	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
1186	    &kernel_pt_table[l2size - 1]);
1187	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
1188	    VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
1189
1190	/* Establish static device mappings. */
1191	err_devmap = initarm_devmap_init();
1192	arm_devmap_bootstrap(l1pagetable, NULL);
1193	vm_max_kernel_address = initarm_lastaddr();
1194
1195	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) | DOMAIN_CLIENT);
1196	pmap_pa = kernel_l1pt.pv_pa;
1197	setttb(kernel_l1pt.pv_pa);
1198	cpu_tlb_flushID();
1199	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2));
1200
1201	/*
1202	 * Now that proper page tables are installed, call cpu_setup() to enable
1203	 * instruction and data caches and other chip-specific features.
1204	 */
1205	cpu_setup("");
1206
1207	/*
1208	 * Only after the SOC registers block is mapped we can perform device
1209	 * tree fixups, as they may attempt to read parameters from hardware.
1210	 */
1211	OF_interpret("perform-fixup", 0);
1212
1213	initarm_gpio_init();
1214
1215	cninit();
1216
1217	debugf("initarm: console initialized\n");
1218	debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp);
1219	debugf(" boothowto = 0x%08x\n", boothowto);
1220	debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
1221	print_kenv();
1222
1223	env = getenv("kernelname");
1224	if (env != NULL)
1225		strlcpy(kernelname, env, sizeof(kernelname));
1226
1227	if (err_devmap != 0)
1228		printf("WARNING: could not fully configure devmap, error=%d\n",
1229		    err_devmap);
1230
1231	initarm_late_init();
1232
1233	/*
1234	 * Pages were allocated during the secondary bootstrap for the
1235	 * stacks for different CPU modes.
1236	 * We must now set the r13 registers in the different CPU modes to
1237	 * point to these stacks.
1238	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
1239	 * of the stack memory.
1240	 */
1241	cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
1242
1243	set_stackptrs(0);
1244
1245	/*
1246	 * We must now clean the cache again....
1247	 * Cleaning may be done by reading new data to displace any
1248	 * dirty data in the cache. This will have happened in setttb()
1249	 * but since we are boot strapping the addresses used for the read
1250	 * may have just been remapped and thus the cache could be out
1251	 * of sync. A re-clean after the switch will cure this.
1252	 * After booting there are no gross relocations of the kernel thus
1253	 * this problem will not occur after initarm().
1254	 */
1255	cpu_idcache_wbinv_all();
1256
1257	/* Set stack for exception handlers */
1258	data_abort_handler_address = (u_int)data_abort_handler;
1259	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
1260	undefined_handler_address = (u_int)undefinedinstruction_bounce;
1261	undefined_init();
1262
1263	init_proc0(kernelstack.pv_va);
1264
1265	arm_intrnames_init();
1266	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
1267	pmap_bootstrap(freemempos, &kernel_l1pt);
1268	msgbufp = (void *)msgbufpv.pv_va;
1269	msgbufinit(msgbufp, msgbufsize);
1270	mutex_init();
1271
1272	/*
1273	 * Exclude the kernel (and all the things we allocated which immediately
1274	 * follow the kernel) from the VM allocation pool but not from crash
1275	 * dumps.  virtual_avail is a global variable which tracks the kva we've
1276	 * "allocated" while setting up pmaps.
1277	 *
1278	 * Prepare the list of physical memory available to the vm subsystem.
1279	 */
1280	arm_physmem_exclude_region(abp->abp_physaddr,
1281	    (virtual_avail - KERNVIRTADDR), EXFLAG_NOALLOC);
1282	arm_physmem_init_kernel_globals();
1283
1284	init_param2(physmem);
1285	kdb_init();
1286
1287	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
1288	    sizeof(struct pcb)));
1289}
1290#endif
1291