machdep.c revision 266160
1/*	$NetBSD: arm32_machdep.c,v 1.44 2004/03/24 15:34:47 atatat Exp $	*/
2
3/*-
4 * Copyright (c) 2004 Olivier Houchard
5 * Copyright (c) 1994-1998 Mark Brinicombe.
6 * Copyright (c) 1994 Brini.
7 * All rights reserved.
8 *
9 * This code is derived from software written for Brini by Mark Brinicombe
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by Mark Brinicombe
22 *	for the NetBSD Project.
23 * 4. The name of the company nor the name of the author may be used to
24 *    endorse or promote products derived from this software without specific
25 *    prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
28 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
29 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
30 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
31 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
32 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
33 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 * Machine dependant functions for kernel setup
40 *
41 * Created      : 17/09/94
42 * Updated	: 18/04/01 updated for new wscons
43 */
44
45#include "opt_compat.h"
46#include "opt_ddb.h"
47#include "opt_platform.h"
48#include "opt_sched.h"
49#include "opt_timer.h"
50
51#include <sys/cdefs.h>
52__FBSDID("$FreeBSD: stable/10/sys/arm/arm/machdep.c 266160 2014-05-15 17:30:16Z ian $");
53
54#include <sys/param.h>
55#include <sys/proc.h>
56#include <sys/systm.h>
57#include <sys/bio.h>
58#include <sys/buf.h>
59#include <sys/bus.h>
60#include <sys/cons.h>
61#include <sys/cpu.h>
62#include <sys/exec.h>
63#include <sys/imgact.h>
64#include <sys/kdb.h>
65#include <sys/kernel.h>
66#include <sys/ktr.h>
67#include <sys/linker.h>
68#include <sys/lock.h>
69#include <sys/malloc.h>
70#include <sys/msgbuf.h>
71#include <sys/mutex.h>
72#include <sys/pcpu.h>
73#include <sys/ptrace.h>
74#include <sys/rwlock.h>
75#include <sys/sched.h>
76#include <sys/signalvar.h>
77#include <sys/syscallsubr.h>
78#include <sys/sysctl.h>
79#include <sys/sysent.h>
80#include <sys/sysproto.h>
81#include <sys/uio.h>
82
83#include <vm/vm.h>
84#include <vm/pmap.h>
85#include <vm/vm_map.h>
86#include <vm/vm_object.h>
87#include <vm/vm_page.h>
88#include <vm/vm_pager.h>
89
90#include <machine/armreg.h>
91#include <machine/atags.h>
92#include <machine/cpu.h>
93#include <machine/devmap.h>
94#include <machine/frame.h>
95#include <machine/intr.h>
96#include <machine/machdep.h>
97#include <machine/md_var.h>
98#include <machine/metadata.h>
99#include <machine/pcb.h>
100#include <machine/reg.h>
101#include <machine/trap.h>
102#include <machine/undefined.h>
103#include <machine/vmparam.h>
104#include <machine/sysarch.h>
105
106#ifdef FDT
107#include <dev/fdt/fdt_common.h>
108#include <dev/ofw/openfirm.h>
109#endif
110
111#ifdef DEBUG
112#define	debugf(fmt, args...) printf(fmt, ##args)
113#else
114#define	debugf(fmt, args...)
115#endif
116
117struct pcpu __pcpu[MAXCPU];
118struct pcpu *pcpup = &__pcpu[0];
119
120static struct trapframe proc0_tf;
121uint32_t cpu_reset_address = 0;
122int cold = 1;
123vm_offset_t vector_page;
124
125long realmem = 0;
126
127int (*_arm_memcpy)(void *, void *, int, int) = NULL;
128int (*_arm_bzero)(void *, int, int) = NULL;
129int _min_memcpy_size = 0;
130int _min_bzero_size = 0;
131
132extern int *end;
133#ifdef DDB
134extern vm_offset_t ksym_start, ksym_end;
135#endif
136
137#ifdef FDT
138/*
139 * This is the number of L2 page tables required for covering max
140 * (hypothetical) memsize of 4GB and all kernel mappings (vectors, msgbuf,
141 * stacks etc.), uprounded to be divisible by 4.
142 */
143#define KERNEL_PT_MAX	78
144
145static struct pv_addr kernel_pt_table[KERNEL_PT_MAX];
146
147vm_paddr_t phys_avail[10];
148vm_paddr_t dump_avail[4];
149
150extern u_int data_abort_handler_address;
151extern u_int prefetch_abort_handler_address;
152extern u_int undefined_handler_address;
153
154vm_paddr_t pmap_pa;
155
156struct pv_addr systempage;
157static struct pv_addr msgbufpv;
158struct pv_addr irqstack;
159struct pv_addr undstack;
160struct pv_addr abtstack;
161static struct pv_addr kernelstack;
162
163#endif
164
165#if defined(LINUX_BOOT_ABI)
166#define LBABI_MAX_BANKS	10
167
168uint32_t board_id;
169struct arm_lbabi_tag *atag_list;
170char linux_command_line[LBABI_MAX_COMMAND_LINE + 1];
171char atags[LBABI_MAX_COMMAND_LINE * 2];
172uint32_t memstart[LBABI_MAX_BANKS];
173uint32_t memsize[LBABI_MAX_BANKS];
174uint32_t membanks;
175#endif
176
177static uint32_t board_revision;
178/* hex representation of uint64_t */
179static char board_serial[32];
180
181SYSCTL_NODE(_hw, OID_AUTO, board, CTLFLAG_RD, 0, "Board attributes");
182SYSCTL_UINT(_hw_board, OID_AUTO, revision, CTLFLAG_RD,
183    &board_revision, 0, "Board revision");
184SYSCTL_STRING(_hw_board, OID_AUTO, serial, CTLFLAG_RD,
185    board_serial, 0, "Board serial");
186
187int vfp_exists;
188SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
189    &vfp_exists, 0, "Floating point support enabled");
190
191void
192board_set_serial(uint64_t serial)
193{
194
195	snprintf(board_serial, sizeof(board_serial)-1,
196		    "%016jx", serial);
197}
198
199void
200board_set_revision(uint32_t revision)
201{
202
203	board_revision = revision;
204}
205
206void
207sendsig(catcher, ksi, mask)
208	sig_t catcher;
209	ksiginfo_t *ksi;
210	sigset_t *mask;
211{
212	struct thread *td;
213	struct proc *p;
214	struct trapframe *tf;
215	struct sigframe *fp, frame;
216	struct sigacts *psp;
217	int onstack;
218	int sig;
219	int code;
220
221	td = curthread;
222	p = td->td_proc;
223	PROC_LOCK_ASSERT(p, MA_OWNED);
224	sig = ksi->ksi_signo;
225	code = ksi->ksi_code;
226	psp = p->p_sigacts;
227	mtx_assert(&psp->ps_mtx, MA_OWNED);
228	tf = td->td_frame;
229	onstack = sigonstack(tf->tf_usr_sp);
230
231	CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
232	    catcher, sig);
233
234	/* Allocate and validate space for the signal handler context. */
235	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !(onstack) &&
236	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
237		fp = (struct sigframe *)(td->td_sigstk.ss_sp +
238		    td->td_sigstk.ss_size);
239#if defined(COMPAT_43)
240		td->td_sigstk.ss_flags |= SS_ONSTACK;
241#endif
242	} else
243		fp = (struct sigframe *)td->td_frame->tf_usr_sp;
244
245	/* make room on the stack */
246	fp--;
247
248	/* make the stack aligned */
249	fp = (struct sigframe *)STACKALIGN(fp);
250	/* Populate the siginfo frame. */
251	get_mcontext(td, &frame.sf_uc.uc_mcontext, 0);
252	frame.sf_si = ksi->ksi_info;
253	frame.sf_uc.uc_sigmask = *mask;
254	frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK )
255	    ? ((onstack) ? SS_ONSTACK : 0) : SS_DISABLE;
256	frame.sf_uc.uc_stack = td->td_sigstk;
257	mtx_unlock(&psp->ps_mtx);
258	PROC_UNLOCK(td->td_proc);
259
260	/* Copy the sigframe out to the user's stack. */
261	if (copyout(&frame, fp, sizeof(*fp)) != 0) {
262		/* Process has trashed its stack. Kill it. */
263		CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp);
264		PROC_LOCK(p);
265		sigexit(td, SIGILL);
266	}
267
268	/* Translate the signal if appropriate. */
269	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
270		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
271
272	/*
273	 * Build context to run handler in.  We invoke the handler
274	 * directly, only returning via the trampoline.  Note the
275	 * trampoline version numbers are coordinated with machine-
276	 * dependent code in libc.
277	 */
278
279	tf->tf_r0 = sig;
280	tf->tf_r1 = (register_t)&fp->sf_si;
281	tf->tf_r2 = (register_t)&fp->sf_uc;
282
283	/* the trampoline uses r5 as the uc address */
284	tf->tf_r5 = (register_t)&fp->sf_uc;
285	tf->tf_pc = (register_t)catcher;
286	tf->tf_usr_sp = (register_t)fp;
287	tf->tf_usr_lr = (register_t)(PS_STRINGS - *(p->p_sysent->sv_szsigcode));
288
289	CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_usr_lr,
290	    tf->tf_usr_sp);
291
292	PROC_LOCK(p);
293	mtx_lock(&psp->ps_mtx);
294}
295
296struct kva_md_info kmi;
297
298/*
299 * arm32_vector_init:
300 *
301 *	Initialize the vector page, and select whether or not to
302 *	relocate the vectors.
303 *
304 *	NOTE: We expect the vector page to be mapped at its expected
305 *	destination.
306 */
307
308extern unsigned int page0[], page0_data[];
309void
310arm_vector_init(vm_offset_t va, int which)
311{
312	unsigned int *vectors = (int *) va;
313	unsigned int *vectors_data = vectors + (page0_data - page0);
314	int vec;
315
316	/*
317	 * Loop through the vectors we're taking over, and copy the
318	 * vector's insn and data word.
319	 */
320	for (vec = 0; vec < ARM_NVEC; vec++) {
321		if ((which & (1 << vec)) == 0) {
322			/* Don't want to take over this vector. */
323			continue;
324		}
325		vectors[vec] = page0[vec];
326		vectors_data[vec] = page0_data[vec];
327	}
328
329	/* Now sync the vectors. */
330	cpu_icache_sync_range(va, (ARM_NVEC * 2) * sizeof(u_int));
331
332	vector_page = va;
333
334	if (va == ARM_VECTORS_HIGH) {
335		/*
336		 * Assume the MD caller knows what it's doing here, and
337		 * really does want the vector page relocated.
338		 *
339		 * Note: This has to be done here (and not just in
340		 * cpu_setup()) because the vector page needs to be
341		 * accessible *before* cpu_startup() is called.
342		 * Think ddb(9) ...
343		 *
344		 * NOTE: If the CPU control register is not readable,
345		 * this will totally fail!  We'll just assume that
346		 * any system that has high vector support has a
347		 * readable CPU control register, for now.  If we
348		 * ever encounter one that does not, we'll have to
349		 * rethink this.
350		 */
351		cpu_control(CPU_CONTROL_VECRELOC, CPU_CONTROL_VECRELOC);
352	}
353}
354
355static void
356cpu_startup(void *dummy)
357{
358	struct pcb *pcb = thread0.td_pcb;
359#ifdef ARM_TP_ADDRESS
360#ifndef ARM_CACHE_LOCK_ENABLE
361	vm_page_t m;
362#endif
363#endif
364
365	identify_arm_cpu();
366
367	printf("real memory  = %ju (%ju MB)\n", (uintmax_t)ptoa(physmem),
368	    (uintmax_t)ptoa(physmem) / 1048576);
369	realmem = physmem;
370
371	/*
372	 * Display the RAM layout.
373	 */
374	if (bootverbose) {
375		int indx;
376
377		printf("Physical memory chunk(s):\n");
378		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
379			vm_paddr_t size;
380
381			size = phys_avail[indx + 1] - phys_avail[indx];
382			printf("  0x%08jx - 0x%08jx, %ju KBytes (%ju pages)\n",
383			    (uintmax_t)phys_avail[indx],
384			    (uintmax_t)phys_avail[indx + 1] - 1,
385			    (uintmax_t)size / 1024, (uintmax_t)size / PAGE_SIZE);
386		}
387	}
388
389	vm_ksubmap_init(&kmi);
390
391	printf("avail memory = %ju (%ju MB)\n",
392	    (uintmax_t)ptoa(cnt.v_free_count),
393	    (uintmax_t)ptoa(cnt.v_free_count) / 1048576);
394
395	if (bootverbose)
396		arm_devmap_print_table();
397
398	bufinit();
399	vm_pager_bufferinit();
400	pcb->un_32.pcb32_und_sp = (u_int)thread0.td_kstack +
401	    USPACE_UNDEF_STACK_TOP;
402	pcb->un_32.pcb32_sp = (u_int)thread0.td_kstack +
403	    USPACE_SVC_STACK_TOP;
404	vector_page_setprot(VM_PROT_READ);
405	pmap_set_pcb_pagedir(pmap_kernel(), pcb);
406	pmap_postinit();
407#ifdef ARM_TP_ADDRESS
408#ifdef ARM_CACHE_LOCK_ENABLE
409	pmap_kenter_user(ARM_TP_ADDRESS, ARM_TP_ADDRESS);
410	arm_lock_cache_line(ARM_TP_ADDRESS);
411#else
412	m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_ZERO);
413	pmap_kenter_user(ARM_TP_ADDRESS, VM_PAGE_TO_PHYS(m));
414#endif
415	*(uint32_t *)ARM_RAS_START = 0;
416	*(uint32_t *)ARM_RAS_END = 0xffffffff;
417#endif
418}
419
420SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
421
422/*
423 * Flush the D-cache for non-DMA I/O so that the I-cache can
424 * be made coherent later.
425 */
426void
427cpu_flush_dcache(void *ptr, size_t len)
428{
429
430	cpu_dcache_wb_range((uintptr_t)ptr, len);
431	cpu_l2cache_wb_range((uintptr_t)ptr, len);
432}
433
434/* Get current clock frequency for the given cpu id. */
435int
436cpu_est_clockrate(int cpu_id, uint64_t *rate)
437{
438
439	return (ENXIO);
440}
441
442void
443cpu_idle(int busy)
444{
445
446	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
447	    busy, curcpu);
448#ifndef NO_EVENTTIMERS
449	if (!busy) {
450		critical_enter();
451		cpu_idleclock();
452	}
453#endif
454	if (!sched_runnable())
455		cpu_sleep(0);
456#ifndef NO_EVENTTIMERS
457	if (!busy) {
458		cpu_activeclock();
459		critical_exit();
460	}
461#endif
462	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
463	    busy, curcpu);
464}
465
466int
467cpu_idle_wakeup(int cpu)
468{
469
470	return (0);
471}
472
473int
474fill_regs(struct thread *td, struct reg *regs)
475{
476	struct trapframe *tf = td->td_frame;
477	bcopy(&tf->tf_r0, regs->r, sizeof(regs->r));
478	regs->r_sp = tf->tf_usr_sp;
479	regs->r_lr = tf->tf_usr_lr;
480	regs->r_pc = tf->tf_pc;
481	regs->r_cpsr = tf->tf_spsr;
482	return (0);
483}
484int
485fill_fpregs(struct thread *td, struct fpreg *regs)
486{
487	bzero(regs, sizeof(*regs));
488	return (0);
489}
490
491int
492set_regs(struct thread *td, struct reg *regs)
493{
494	struct trapframe *tf = td->td_frame;
495
496	bcopy(regs->r, &tf->tf_r0, sizeof(regs->r));
497	tf->tf_usr_sp = regs->r_sp;
498	tf->tf_usr_lr = regs->r_lr;
499	tf->tf_pc = regs->r_pc;
500	tf->tf_spsr &=  ~PSR_FLAGS;
501	tf->tf_spsr |= regs->r_cpsr & PSR_FLAGS;
502	return (0);
503}
504
505int
506set_fpregs(struct thread *td, struct fpreg *regs)
507{
508	return (0);
509}
510
511int
512fill_dbregs(struct thread *td, struct dbreg *regs)
513{
514	return (0);
515}
516int
517set_dbregs(struct thread *td, struct dbreg *regs)
518{
519	return (0);
520}
521
522
523static int
524ptrace_read_int(struct thread *td, vm_offset_t addr, u_int32_t *v)
525{
526	struct iovec iov;
527	struct uio uio;
528
529	PROC_LOCK_ASSERT(td->td_proc, MA_NOTOWNED);
530	iov.iov_base = (caddr_t) v;
531	iov.iov_len = sizeof(u_int32_t);
532	uio.uio_iov = &iov;
533	uio.uio_iovcnt = 1;
534	uio.uio_offset = (off_t)addr;
535	uio.uio_resid = sizeof(u_int32_t);
536	uio.uio_segflg = UIO_SYSSPACE;
537	uio.uio_rw = UIO_READ;
538	uio.uio_td = td;
539	return proc_rwmem(td->td_proc, &uio);
540}
541
542static int
543ptrace_write_int(struct thread *td, vm_offset_t addr, u_int32_t v)
544{
545	struct iovec iov;
546	struct uio uio;
547
548	PROC_LOCK_ASSERT(td->td_proc, MA_NOTOWNED);
549	iov.iov_base = (caddr_t) &v;
550	iov.iov_len = sizeof(u_int32_t);
551	uio.uio_iov = &iov;
552	uio.uio_iovcnt = 1;
553	uio.uio_offset = (off_t)addr;
554	uio.uio_resid = sizeof(u_int32_t);
555	uio.uio_segflg = UIO_SYSSPACE;
556	uio.uio_rw = UIO_WRITE;
557	uio.uio_td = td;
558	return proc_rwmem(td->td_proc, &uio);
559}
560
561int
562ptrace_single_step(struct thread *td)
563{
564	struct proc *p;
565	int error;
566
567	KASSERT(td->td_md.md_ptrace_instr == 0,
568	 ("Didn't clear single step"));
569	p = td->td_proc;
570	PROC_UNLOCK(p);
571	error = ptrace_read_int(td, td->td_frame->tf_pc + 4,
572	    &td->td_md.md_ptrace_instr);
573	if (error)
574		goto out;
575	error = ptrace_write_int(td, td->td_frame->tf_pc + 4,
576	    PTRACE_BREAKPOINT);
577	if (error)
578		td->td_md.md_ptrace_instr = 0;
579	td->td_md.md_ptrace_addr = td->td_frame->tf_pc + 4;
580out:
581	PROC_LOCK(p);
582	return (error);
583}
584
585int
586ptrace_clear_single_step(struct thread *td)
587{
588	struct proc *p;
589
590	if (td->td_md.md_ptrace_instr) {
591		p = td->td_proc;
592		PROC_UNLOCK(p);
593		ptrace_write_int(td, td->td_md.md_ptrace_addr,
594		    td->td_md.md_ptrace_instr);
595		PROC_LOCK(p);
596		td->td_md.md_ptrace_instr = 0;
597	}
598	return (0);
599}
600
601int
602ptrace_set_pc(struct thread *td, unsigned long addr)
603{
604	td->td_frame->tf_pc = addr;
605	return (0);
606}
607
608void
609cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
610{
611}
612
613void
614spinlock_enter(void)
615{
616	struct thread *td;
617	register_t cspr;
618
619	td = curthread;
620	if (td->td_md.md_spinlock_count == 0) {
621		cspr = disable_interrupts(I32_bit | F32_bit);
622		td->td_md.md_spinlock_count = 1;
623		td->td_md.md_saved_cspr = cspr;
624	} else
625		td->td_md.md_spinlock_count++;
626	critical_enter();
627}
628
629void
630spinlock_exit(void)
631{
632	struct thread *td;
633	register_t cspr;
634
635	td = curthread;
636	critical_exit();
637	cspr = td->td_md.md_saved_cspr;
638	td->td_md.md_spinlock_count--;
639	if (td->td_md.md_spinlock_count == 0)
640		restore_interrupts(cspr);
641}
642
643/*
644 * Clear registers on exec
645 */
646void
647exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
648{
649	struct trapframe *tf = td->td_frame;
650
651	memset(tf, 0, sizeof(*tf));
652	tf->tf_usr_sp = stack;
653	tf->tf_usr_lr = imgp->entry_addr;
654	tf->tf_svc_lr = 0x77777777;
655	tf->tf_pc = imgp->entry_addr;
656	tf->tf_spsr = PSR_USR32_MODE;
657}
658
659/*
660 * Get machine context.
661 */
662int
663get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
664{
665	struct trapframe *tf = td->td_frame;
666	__greg_t *gr = mcp->__gregs;
667
668	if (clear_ret & GET_MC_CLEAR_RET)
669		gr[_REG_R0] = 0;
670	else
671		gr[_REG_R0]   = tf->tf_r0;
672	gr[_REG_R1]   = tf->tf_r1;
673	gr[_REG_R2]   = tf->tf_r2;
674	gr[_REG_R3]   = tf->tf_r3;
675	gr[_REG_R4]   = tf->tf_r4;
676	gr[_REG_R5]   = tf->tf_r5;
677	gr[_REG_R6]   = tf->tf_r6;
678	gr[_REG_R7]   = tf->tf_r7;
679	gr[_REG_R8]   = tf->tf_r8;
680	gr[_REG_R9]   = tf->tf_r9;
681	gr[_REG_R10]  = tf->tf_r10;
682	gr[_REG_R11]  = tf->tf_r11;
683	gr[_REG_R12]  = tf->tf_r12;
684	gr[_REG_SP]   = tf->tf_usr_sp;
685	gr[_REG_LR]   = tf->tf_usr_lr;
686	gr[_REG_PC]   = tf->tf_pc;
687	gr[_REG_CPSR] = tf->tf_spsr;
688
689	return (0);
690}
691
692/*
693 * Set machine context.
694 *
695 * However, we don't set any but the user modifiable flags, and we won't
696 * touch the cs selector.
697 */
698int
699set_mcontext(struct thread *td, const mcontext_t *mcp)
700{
701	struct trapframe *tf = td->td_frame;
702	const __greg_t *gr = mcp->__gregs;
703
704	tf->tf_r0 = gr[_REG_R0];
705	tf->tf_r1 = gr[_REG_R1];
706	tf->tf_r2 = gr[_REG_R2];
707	tf->tf_r3 = gr[_REG_R3];
708	tf->tf_r4 = gr[_REG_R4];
709	tf->tf_r5 = gr[_REG_R5];
710	tf->tf_r6 = gr[_REG_R6];
711	tf->tf_r7 = gr[_REG_R7];
712	tf->tf_r8 = gr[_REG_R8];
713	tf->tf_r9 = gr[_REG_R9];
714	tf->tf_r10 = gr[_REG_R10];
715	tf->tf_r11 = gr[_REG_R11];
716	tf->tf_r12 = gr[_REG_R12];
717	tf->tf_usr_sp = gr[_REG_SP];
718	tf->tf_usr_lr = gr[_REG_LR];
719	tf->tf_pc = gr[_REG_PC];
720	tf->tf_spsr = gr[_REG_CPSR];
721
722	return (0);
723}
724
725/*
726 * MPSAFE
727 */
728int
729sys_sigreturn(td, uap)
730	struct thread *td;
731	struct sigreturn_args /* {
732		const struct __ucontext *sigcntxp;
733	} */ *uap;
734{
735	struct sigframe sf;
736	struct trapframe *tf;
737	int spsr;
738
739	if (uap == NULL)
740		return (EFAULT);
741	if (copyin(uap->sigcntxp, &sf, sizeof(sf)))
742		return (EFAULT);
743	/*
744	 * Make sure the processor mode has not been tampered with and
745	 * interrupts have not been disabled.
746	 */
747	spsr = sf.sf_uc.uc_mcontext.__gregs[_REG_CPSR];
748	if ((spsr & PSR_MODE) != PSR_USR32_MODE ||
749	    (spsr & (I32_bit | F32_bit)) != 0)
750		return (EINVAL);
751		/* Restore register context. */
752	tf = td->td_frame;
753	set_mcontext(td, &sf.sf_uc.uc_mcontext);
754
755	/* Restore signal mask. */
756	kern_sigprocmask(td, SIG_SETMASK, &sf.sf_uc.uc_sigmask, NULL, 0);
757
758	return (EJUSTRETURN);
759}
760
761
762/*
763 * Construct a PCB from a trapframe. This is called from kdb_trap() where
764 * we want to start a backtrace from the function that caused us to enter
765 * the debugger. We have the context in the trapframe, but base the trace
766 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
767 * enough for a backtrace.
768 */
769void
770makectx(struct trapframe *tf, struct pcb *pcb)
771{
772	pcb->un_32.pcb32_r8 = tf->tf_r8;
773	pcb->un_32.pcb32_r9 = tf->tf_r9;
774	pcb->un_32.pcb32_r10 = tf->tf_r10;
775	pcb->un_32.pcb32_r11 = tf->tf_r11;
776	pcb->un_32.pcb32_r12 = tf->tf_r12;
777	pcb->un_32.pcb32_pc = tf->tf_pc;
778	pcb->un_32.pcb32_lr = tf->tf_usr_lr;
779	pcb->un_32.pcb32_sp = tf->tf_usr_sp;
780}
781
782/*
783 * Make a standard dump_avail array.  Can't make the phys_avail
784 * since we need to do that after we call pmap_bootstrap, but this
785 * is needed before pmap_boostrap.
786 *
787 * ARM_USE_SMALL_ALLOC uses dump_avail, so it must be filled before
788 * calling pmap_bootstrap.
789 */
790void
791arm_dump_avail_init(vm_paddr_t physaddr, vm_offset_t ramsize, size_t max)
792{
793#ifdef LINUX_BOOT_ABI
794	/*
795	 * Linux boot loader passes us the actual banks of memory, so use them
796	 * to construct the dump_avail array.
797	 */
798	if (membanks > 0)
799	{
800		int i, j;
801
802		if (max < (membanks + 1) * 2)
803			panic("dump_avail[%d] too small for %d banks\n",
804			    max, membanks);
805		for (j = 0, i = 0; i < membanks; i++) {
806			dump_avail[j++] = round_page(memstart[i]);
807			dump_avail[j++] = trunc_page(memstart[i] + memsize[i]);
808		}
809		dump_avail[j++] = 0;
810		dump_avail[j++] = 0;
811		return;
812	}
813#endif
814	if (max < 4)
815		panic("dump_avail too small\n");
816
817	dump_avail[0] = round_page(physaddr);
818	dump_avail[1] = trunc_page(physaddr + ramsize);
819	dump_avail[2] = 0;
820	dump_avail[3] = 0;
821}
822
823/*
824 * Fake up a boot descriptor table
825 */
826vm_offset_t
827fake_preload_metadata(struct arm_boot_params *abp __unused)
828{
829#ifdef DDB
830	vm_offset_t zstart = 0, zend = 0;
831#endif
832	vm_offset_t lastaddr;
833	int i = 0;
834	static uint32_t fake_preload[35];
835
836	fake_preload[i++] = MODINFO_NAME;
837	fake_preload[i++] = strlen("kernel") + 1;
838	strcpy((char*)&fake_preload[i++], "kernel");
839	i += 1;
840	fake_preload[i++] = MODINFO_TYPE;
841	fake_preload[i++] = strlen("elf kernel") + 1;
842	strcpy((char*)&fake_preload[i++], "elf kernel");
843	i += 2;
844	fake_preload[i++] = MODINFO_ADDR;
845	fake_preload[i++] = sizeof(vm_offset_t);
846	fake_preload[i++] = KERNVIRTADDR;
847	fake_preload[i++] = MODINFO_SIZE;
848	fake_preload[i++] = sizeof(uint32_t);
849	fake_preload[i++] = (uint32_t)&end - KERNVIRTADDR;
850#ifdef DDB
851	if (*(uint32_t *)KERNVIRTADDR == MAGIC_TRAMP_NUMBER) {
852		fake_preload[i++] = MODINFO_METADATA|MODINFOMD_SSYM;
853		fake_preload[i++] = sizeof(vm_offset_t);
854		fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 4);
855		fake_preload[i++] = MODINFO_METADATA|MODINFOMD_ESYM;
856		fake_preload[i++] = sizeof(vm_offset_t);
857		fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 8);
858		lastaddr = *(uint32_t *)(KERNVIRTADDR + 8);
859		zend = lastaddr;
860		zstart = *(uint32_t *)(KERNVIRTADDR + 4);
861		ksym_start = zstart;
862		ksym_end = zend;
863	} else
864#endif
865		lastaddr = (vm_offset_t)&end;
866	fake_preload[i++] = 0;
867	fake_preload[i] = 0;
868	preload_metadata = (void *)fake_preload;
869
870	return (lastaddr);
871}
872
873void
874pcpu0_init(void)
875{
876#if ARM_ARCH_6 || ARM_ARCH_7A || defined(CPU_MV_PJ4B)
877	set_curthread(&thread0);
878#endif
879	pcpu_init(pcpup, 0, sizeof(struct pcpu));
880	PCPU_SET(curthread, &thread0);
881#ifdef VFP
882	PCPU_SET(cpu, 0);
883#endif
884}
885
886#if defined(LINUX_BOOT_ABI)
887vm_offset_t
888linux_parse_boot_param(struct arm_boot_params *abp)
889{
890	struct arm_lbabi_tag *walker;
891	uint32_t revision;
892	uint64_t serial;
893
894	/*
895	 * Linux boot ABI: r0 = 0, r1 is the board type (!= 0) and r2
896	 * is atags or dtb pointer.  If all of these aren't satisfied,
897	 * then punt.
898	 */
899	if (!(abp->abp_r0 == 0 && abp->abp_r1 != 0 && abp->abp_r2 != 0))
900		return 0;
901
902	board_id = abp->abp_r1;
903	walker = (struct arm_lbabi_tag *)
904	    (abp->abp_r2 + KERNVIRTADDR - abp->abp_physaddr);
905
906	/* xxx - Need to also look for binary device tree */
907	if (ATAG_TAG(walker) != ATAG_CORE)
908		return 0;
909
910	atag_list = walker;
911	while (ATAG_TAG(walker) != ATAG_NONE) {
912		switch (ATAG_TAG(walker)) {
913		case ATAG_CORE:
914			break;
915		case ATAG_MEM:
916			if (membanks < LBABI_MAX_BANKS) {
917				memstart[membanks] = walker->u.tag_mem.start;
918				memsize[membanks] = walker->u.tag_mem.size;
919			}
920			membanks++;
921			break;
922		case ATAG_INITRD2:
923			break;
924		case ATAG_SERIAL:
925			serial = walker->u.tag_sn.low |
926			    ((uint64_t)walker->u.tag_sn.high << 32);
927			board_set_serial(serial);
928			break;
929		case ATAG_REVISION:
930			revision = walker->u.tag_rev.rev;
931			board_set_revision(revision);
932			break;
933		case ATAG_CMDLINE:
934			/* XXX open question: Parse this for boothowto? */
935			bcopy(walker->u.tag_cmd.command, linux_command_line,
936			      ATAG_SIZE(walker));
937			break;
938		default:
939			break;
940		}
941		walker = ATAG_NEXT(walker);
942	}
943
944	/* Save a copy for later */
945	bcopy(atag_list, atags,
946	    (char *)walker - (char *)atag_list + ATAG_SIZE(walker));
947
948	return fake_preload_metadata(abp);
949}
950#endif
951
952#if defined(FREEBSD_BOOT_LOADER)
953vm_offset_t
954freebsd_parse_boot_param(struct arm_boot_params *abp)
955{
956	vm_offset_t lastaddr = 0;
957	void *mdp;
958	void *kmdp;
959
960	/*
961	 * Mask metadata pointer: it is supposed to be on page boundary. If
962	 * the first argument (mdp) doesn't point to a valid address the
963	 * bootloader must have passed us something else than the metadata
964	 * ptr, so we give up.  Also give up if we cannot find metadta section
965	 * the loader creates that we get all this data out of.
966	 */
967
968	if ((mdp = (void *)(abp->abp_r0 & ~PAGE_MASK)) == NULL)
969		return 0;
970	preload_metadata = mdp;
971	kmdp = preload_search_by_type("elf kernel");
972	if (kmdp == NULL)
973		return 0;
974
975	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
976	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
977	lastaddr = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
978#ifdef DDB
979	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
980	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
981#endif
982	preload_addr_relocate = KERNVIRTADDR - abp->abp_physaddr;
983	return lastaddr;
984}
985#endif
986
987vm_offset_t
988default_parse_boot_param(struct arm_boot_params *abp)
989{
990	vm_offset_t lastaddr;
991
992#if defined(LINUX_BOOT_ABI)
993	if ((lastaddr = linux_parse_boot_param(abp)) != 0)
994		return lastaddr;
995#endif
996#if defined(FREEBSD_BOOT_LOADER)
997	if ((lastaddr = freebsd_parse_boot_param(abp)) != 0)
998		return lastaddr;
999#endif
1000	/* Fall back to hardcoded metadata. */
1001	lastaddr = fake_preload_metadata(abp);
1002
1003	return lastaddr;
1004}
1005
1006/*
1007 * Stub version of the boot parameter parsing routine.  We are
1008 * called early in initarm, before even VM has been initialized.
1009 * This routine needs to preserve any data that the boot loader
1010 * has passed in before the kernel starts to grow past the end
1011 * of the BSS, traditionally the place boot-loaders put this data.
1012 *
1013 * Since this is called so early, things that depend on the vm system
1014 * being setup (including access to some SoC's serial ports), about
1015 * all that can be done in this routine is to copy the arguments.
1016 *
1017 * This is the default boot parameter parsing routine.  Individual
1018 * kernels/boards can override this weak function with one of their
1019 * own.  We just fake metadata...
1020 */
1021__weak_reference(default_parse_boot_param, parse_boot_param);
1022
1023/*
1024 * Initialize proc0
1025 */
1026void
1027init_proc0(vm_offset_t kstack)
1028{
1029	proc_linkup0(&proc0, &thread0);
1030	thread0.td_kstack = kstack;
1031	thread0.td_pcb = (struct pcb *)
1032		(thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
1033	thread0.td_pcb->pcb_flags = 0;
1034	thread0.td_frame = &proc0_tf;
1035	pcpup->pc_curpcb = thread0.td_pcb;
1036}
1037
1038void
1039set_stackptrs(int cpu)
1040{
1041
1042	set_stackptr(PSR_IRQ32_MODE,
1043	    irqstack.pv_va + ((IRQ_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
1044	set_stackptr(PSR_ABT32_MODE,
1045	    abtstack.pv_va + ((ABT_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
1046	set_stackptr(PSR_UND32_MODE,
1047	    undstack.pv_va + ((UND_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
1048}
1049
1050#ifdef FDT
1051static char *
1052kenv_next(char *cp)
1053{
1054
1055	if (cp != NULL) {
1056		while (*cp != 0)
1057			cp++;
1058		cp++;
1059		if (*cp == 0)
1060			cp = NULL;
1061	}
1062	return (cp);
1063}
1064
1065static void
1066print_kenv(void)
1067{
1068	int len;
1069	char *cp;
1070
1071	debugf("loader passed (static) kenv:\n");
1072	if (kern_envp == NULL) {
1073		debugf(" no env, null ptr\n");
1074		return;
1075	}
1076	debugf(" kern_envp = 0x%08x\n", (uint32_t)kern_envp);
1077
1078	len = 0;
1079	for (cp = kern_envp; cp != NULL; cp = kenv_next(cp))
1080		debugf(" %x %s\n", (uint32_t)cp, cp);
1081}
1082
1083static void
1084physmap_init(struct mem_region *availmem_regions, int availmem_regions_sz,
1085    vm_offset_t kernload)
1086{
1087	int i, j, cnt;
1088	vm_offset_t phys_kernelend;
1089	uint32_t s, e, sz;
1090	struct mem_region *mp, *mp1;
1091
1092	phys_kernelend = kernload + (virtual_avail - KERNVIRTADDR);
1093
1094	/*
1095	 * Remove kernel physical address range from avail
1096	 * regions list. Page align all regions.
1097	 * Non-page aligned memory isn't very interesting to us.
1098	 * Also, sort the entries for ascending addresses.
1099	 */
1100	sz = 0;
1101	cnt = availmem_regions_sz;
1102	debugf("processing avail regions:\n");
1103	for (mp = availmem_regions; mp->mr_size; mp++) {
1104		s = mp->mr_start;
1105		e = mp->mr_start + mp->mr_size;
1106		debugf(" %08x-%08x -> ", s, e);
1107		/* Check whether this region holds all of the kernel. */
1108		if (s < kernload && e > phys_kernelend) {
1109			availmem_regions[cnt].mr_start = phys_kernelend;
1110			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1111			e = kernload;
1112		}
1113		/* Look whether this regions starts within the kernel. */
1114		if (s >= kernload && s < phys_kernelend) {
1115			if (e <= phys_kernelend)
1116				goto empty;
1117			s = phys_kernelend;
1118		}
1119		/* Now look whether this region ends within the kernel. */
1120		if (e > kernload && e <= phys_kernelend) {
1121			if (s >= kernload) {
1122				goto empty;
1123			}
1124			e = kernload;
1125		}
1126		/* Now page align the start and size of the region. */
1127		s = round_page(s);
1128		e = trunc_page(e);
1129		if (e < s)
1130			e = s;
1131		sz = e - s;
1132		debugf("%08x-%08x = %x\n", s, e, sz);
1133
1134		/* Check whether some memory is left here. */
1135		if (sz == 0) {
1136		empty:
1137			printf("skipping\n");
1138			bcopy(mp + 1, mp,
1139			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1140			cnt--;
1141			mp--;
1142			continue;
1143		}
1144
1145		/* Do an insertion sort. */
1146		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1147			if (s < mp1->mr_start)
1148				break;
1149		if (mp1 < mp) {
1150			bcopy(mp1, mp1 + 1, (char *)mp - (char *)mp1);
1151			mp1->mr_start = s;
1152			mp1->mr_size = sz;
1153		} else {
1154			mp->mr_start = s;
1155			mp->mr_size = sz;
1156		}
1157	}
1158	availmem_regions_sz = cnt;
1159
1160	/* Fill in phys_avail table, based on availmem_regions */
1161	debugf("fill in phys_avail:\n");
1162	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1163
1164		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1165		    availmem_regions[i].mr_start,
1166		    availmem_regions[i].mr_start + availmem_regions[i].mr_size,
1167		    availmem_regions[i].mr_size);
1168
1169		/*
1170		 * We should not map the page at PA 0x0000000, the VM can't
1171		 * handle it, as pmap_extract() == 0 means failure.
1172		 */
1173		if (availmem_regions[i].mr_start > 0 ||
1174		    availmem_regions[i].mr_size > PAGE_SIZE) {
1175			phys_avail[j] = availmem_regions[i].mr_start;
1176			if (phys_avail[j] == 0)
1177				phys_avail[j] += PAGE_SIZE;
1178			phys_avail[j + 1] = availmem_regions[i].mr_start +
1179			    availmem_regions[i].mr_size;
1180		} else
1181			j -= 2;
1182	}
1183	phys_avail[j] = 0;
1184	phys_avail[j + 1] = 0;
1185}
1186
1187void *
1188initarm(struct arm_boot_params *abp)
1189{
1190	struct mem_region memory_regions[FDT_MEM_REGIONS];
1191	struct mem_region availmem_regions[FDT_MEM_REGIONS];
1192	struct mem_region reserved_regions[FDT_MEM_REGIONS];
1193	struct pv_addr kernel_l1pt;
1194	struct pv_addr dpcpu;
1195	vm_offset_t dtbp, freemempos, l2_start, lastaddr;
1196	uint32_t memsize, l2size;
1197	char *env;
1198	void *kmdp;
1199	u_int l1pagetable;
1200	int i = 0, j = 0, err_devmap = 0;
1201	int memory_regions_sz;
1202	int availmem_regions_sz;
1203	int reserved_regions_sz;
1204	vm_offset_t start, end;
1205	vm_offset_t rstart, rend;
1206	int curr;
1207
1208	lastaddr = parse_boot_param(abp);
1209	memsize = 0;
1210	set_cpufuncs();
1211
1212	/*
1213	 * Find the dtb passed in by the boot loader.
1214	 */
1215	kmdp = preload_search_by_type("elf kernel");
1216	if (kmdp != NULL)
1217		dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
1218	else
1219		dtbp = (vm_offset_t)NULL;
1220
1221#if defined(FDT_DTB_STATIC)
1222	/*
1223	 * In case the device tree blob was not retrieved (from metadata) try
1224	 * to use the statically embedded one.
1225	 */
1226	if (dtbp == (vm_offset_t)NULL)
1227		dtbp = (vm_offset_t)&fdt_static_dtb;
1228#endif
1229
1230	if (OF_install(OFW_FDT, 0) == FALSE)
1231		while (1);
1232
1233	if (OF_init((void *)dtbp) != 0)
1234		while (1);
1235
1236	/* Grab physical memory regions information from device tree. */
1237	if (fdt_get_mem_regions(memory_regions, &memory_regions_sz,
1238	    &memsize) != 0)
1239		while(1);
1240
1241	/* Grab physical memory regions information from device tree. */
1242	if (fdt_get_reserved_regions(reserved_regions, &reserved_regions_sz) != 0)
1243		reserved_regions_sz = 0;
1244
1245	/*
1246	 * Now exclude all the reserved regions
1247	 */
1248	curr = 0;
1249	for (i = 0; i < memory_regions_sz; i++) {
1250		start = memory_regions[i].mr_start;
1251		end = start + memory_regions[i].mr_size;
1252		for (j = 0; j < reserved_regions_sz; j++) {
1253			rstart = reserved_regions[j].mr_start;
1254			rend = rstart + reserved_regions[j].mr_size;
1255			/*
1256			 * Restricted region is before available
1257			 * Skip restricted region
1258			 */
1259			if (rend <= start)
1260				continue;
1261			/*
1262			 * Restricted region is behind available
1263			 * No  further processing required
1264			 */
1265			if (rstart >= end)
1266				break;
1267			/*
1268			 * Restricted region includes memory region
1269			 * skip available region
1270			 */
1271			if ((start >= rstart) && (rend >= end)) {
1272				start = rend;
1273				end = rend;
1274				break;
1275			}
1276			/*
1277			 * Memory region includes restricted region
1278			 */
1279			if ((rstart > start) && (end > rend)) {
1280				availmem_regions[curr].mr_start = start;
1281				availmem_regions[curr++].mr_size = rstart - start;
1282				start = rend;
1283				break;
1284			}
1285			/*
1286			 * Memory region partially overlaps with restricted
1287			 */
1288			if ((rstart >= start) && (rstart <= end)) {
1289				end = rstart;
1290			}
1291			else if ((rend >= start) && (rend <= end)) {
1292				start = rend;
1293			}
1294		}
1295
1296		if (end > start) {
1297			availmem_regions[curr].mr_start = start;
1298			availmem_regions[curr++].mr_size = end - start;
1299		}
1300	}
1301
1302	availmem_regions_sz = curr;
1303
1304	/* Platform-specific initialisation */
1305	initarm_early_init();
1306
1307	pcpu0_init();
1308
1309	/* Do basic tuning, hz etc */
1310	init_param1();
1311
1312	/* Calculate number of L2 tables needed for mapping vm_page_array */
1313	l2size = (memsize / PAGE_SIZE) * sizeof(struct vm_page);
1314	l2size = (l2size >> L1_S_SHIFT) + 1;
1315
1316	/*
1317	 * Add one table for end of kernel map, one for stacks, msgbuf and
1318	 * L1 and L2 tables map and one for vectors map.
1319	 */
1320	l2size += 3;
1321
1322	/* Make it divisible by 4 */
1323	l2size = (l2size + 3) & ~3;
1324
1325	freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
1326
1327	/* Define a macro to simplify memory allocation */
1328#define valloc_pages(var, np)						\
1329	alloc_pages((var).pv_va, (np));					\
1330	(var).pv_pa = (var).pv_va + (abp->abp_physaddr - KERNVIRTADDR);
1331
1332#define alloc_pages(var, np)						\
1333	(var) = freemempos;						\
1334	freemempos += (np * PAGE_SIZE);					\
1335	memset((char *)(var), 0, ((np) * PAGE_SIZE));
1336
1337	while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
1338		freemempos += PAGE_SIZE;
1339	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
1340
1341	for (i = 0; i < l2size; ++i) {
1342		if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
1343			valloc_pages(kernel_pt_table[i],
1344			    L2_TABLE_SIZE / PAGE_SIZE);
1345			j = i;
1346		} else {
1347			kernel_pt_table[i].pv_va = kernel_pt_table[j].pv_va +
1348			    L2_TABLE_SIZE_REAL * (i - j);
1349			kernel_pt_table[i].pv_pa =
1350			    kernel_pt_table[i].pv_va - KERNVIRTADDR +
1351			    abp->abp_physaddr;
1352
1353		}
1354	}
1355	/*
1356	 * Allocate a page for the system page mapped to 0x00000000
1357	 * or 0xffff0000. This page will just contain the system vectors
1358	 * and can be shared by all processes.
1359	 */
1360	valloc_pages(systempage, 1);
1361
1362	/* Allocate dynamic per-cpu area. */
1363	valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
1364	dpcpu_init((void *)dpcpu.pv_va, 0);
1365
1366	/* Allocate stacks for all modes */
1367	valloc_pages(irqstack, IRQ_STACK_SIZE * MAXCPU);
1368	valloc_pages(abtstack, ABT_STACK_SIZE * MAXCPU);
1369	valloc_pages(undstack, UND_STACK_SIZE * MAXCPU);
1370	valloc_pages(kernelstack, KSTACK_PAGES * MAXCPU);
1371	valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
1372
1373	/*
1374	 * Now we start construction of the L1 page table
1375	 * We start by mapping the L2 page tables into the L1.
1376	 * This means that we can replace L1 mappings later on if necessary
1377	 */
1378	l1pagetable = kernel_l1pt.pv_va;
1379
1380	/*
1381	 * Try to map as much as possible of kernel text and data using
1382	 * 1MB section mapping and for the rest of initial kernel address
1383	 * space use L2 coarse tables.
1384	 *
1385	 * Link L2 tables for mapping remainder of kernel (modulo 1MB)
1386	 * and kernel structures
1387	 */
1388	l2_start = lastaddr & ~(L1_S_OFFSET);
1389	for (i = 0 ; i < l2size - 1; i++)
1390		pmap_link_l2pt(l1pagetable, l2_start + i * L1_S_SIZE,
1391		    &kernel_pt_table[i]);
1392
1393	pmap_curmaxkvaddr = l2_start + (l2size - 1) * L1_S_SIZE;
1394
1395	/* Map kernel code and data */
1396	pmap_map_chunk(l1pagetable, KERNVIRTADDR, abp->abp_physaddr,
1397	   (((uint32_t)(lastaddr) - KERNVIRTADDR) + PAGE_MASK) & ~PAGE_MASK,
1398	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1399
1400
1401	/* Map L1 directory and allocated L2 page tables */
1402	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
1403	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1404
1405	pmap_map_chunk(l1pagetable, kernel_pt_table[0].pv_va,
1406	    kernel_pt_table[0].pv_pa,
1407	    L2_TABLE_SIZE_REAL * l2size,
1408	    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1409
1410	/* Map allocated DPCPU, stacks and msgbuf */
1411	pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa,
1412	    freemempos - dpcpu.pv_va,
1413	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1414
1415	/* Link and map the vector page */
1416	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
1417	    &kernel_pt_table[l2size - 1]);
1418	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
1419	    VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
1420
1421	/* Establish static device mappings. */
1422	err_devmap = initarm_devmap_init();
1423	arm_devmap_bootstrap(l1pagetable, NULL);
1424	vm_max_kernel_address = initarm_lastaddr();
1425
1426	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) | DOMAIN_CLIENT);
1427	pmap_pa = kernel_l1pt.pv_pa;
1428	setttb(kernel_l1pt.pv_pa);
1429	cpu_tlb_flushID();
1430	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2));
1431
1432	/*
1433	 * Now that proper page tables are installed, call cpu_setup() to enable
1434	 * instruction and data caches and other chip-specific features.
1435	 */
1436	cpu_setup("");
1437
1438	/*
1439	 * Only after the SOC registers block is mapped we can perform device
1440	 * tree fixups, as they may attempt to read parameters from hardware.
1441	 */
1442	OF_interpret("perform-fixup", 0);
1443
1444	initarm_gpio_init();
1445
1446	cninit();
1447
1448	physmem = memsize / PAGE_SIZE;
1449
1450	debugf("initarm: console initialized\n");
1451	debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp);
1452	debugf(" boothowto = 0x%08x\n", boothowto);
1453	debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
1454	print_kenv();
1455
1456	env = getenv("kernelname");
1457	if (env != NULL)
1458		strlcpy(kernelname, env, sizeof(kernelname));
1459
1460	if (err_devmap != 0)
1461		printf("WARNING: could not fully configure devmap, error=%d\n",
1462		    err_devmap);
1463
1464	initarm_late_init();
1465
1466	/*
1467	 * Pages were allocated during the secondary bootstrap for the
1468	 * stacks for different CPU modes.
1469	 * We must now set the r13 registers in the different CPU modes to
1470	 * point to these stacks.
1471	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
1472	 * of the stack memory.
1473	 */
1474	cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
1475
1476	set_stackptrs(0);
1477
1478	/*
1479	 * We must now clean the cache again....
1480	 * Cleaning may be done by reading new data to displace any
1481	 * dirty data in the cache. This will have happened in setttb()
1482	 * but since we are boot strapping the addresses used for the read
1483	 * may have just been remapped and thus the cache could be out
1484	 * of sync. A re-clean after the switch will cure this.
1485	 * After booting there are no gross relocations of the kernel thus
1486	 * this problem will not occur after initarm().
1487	 */
1488	cpu_idcache_wbinv_all();
1489
1490	/* Set stack for exception handlers */
1491	data_abort_handler_address = (u_int)data_abort_handler;
1492	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
1493	undefined_handler_address = (u_int)undefinedinstruction_bounce;
1494	undefined_init();
1495
1496	init_proc0(kernelstack.pv_va);
1497
1498	arm_intrnames_init();
1499	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
1500	arm_dump_avail_init(abp->abp_physaddr, memsize,
1501	    sizeof(dump_avail) / sizeof(dump_avail[0]));
1502	pmap_bootstrap(freemempos, &kernel_l1pt);
1503	msgbufp = (void *)msgbufpv.pv_va;
1504	msgbufinit(msgbufp, msgbufsize);
1505	mutex_init();
1506
1507	/*
1508	 * Prepare map of physical memory regions available to vm subsystem.
1509	 */
1510	physmap_init(availmem_regions, availmem_regions_sz, abp->abp_physaddr);
1511
1512	init_param2(physmem);
1513	kdb_init();
1514
1515	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
1516	    sizeof(struct pcb)));
1517}
1518#endif
1519