elf_trampoline.c revision 266160
1/*-
2 * Copyright (c) 2005 Olivier Houchard.  All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23 */
24
25/*
26 * Since we are compiled outside of the normal kernel build process, we
27 * need to include opt_global.h manually.
28 */
29#include "opt_global.h"
30#include "opt_kernname.h"
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/10/sys/arm/arm/elf_trampoline.c 266160 2014-05-15 17:30:16Z ian $");
34#include <machine/asm.h>
35#include <sys/param.h>
36#include <sys/elf32.h>
37#include <sys/inflate.h>
38#include <machine/elf.h>
39#include <machine/pte.h>
40#include <machine/cpufunc.h>
41#include <machine/armreg.h>
42
43extern char kernel_start[];
44extern char kernel_end[];
45
46extern void *_end;
47
48void _start(void);
49void __start(void);
50void __startC(void);
51
52extern unsigned int cpufunc_id(void);
53extern void armv6_idcache_wbinv_all(void);
54extern void armv7_idcache_wbinv_all(void);
55extern void do_call(void *, void *, void *, int);
56
57#define GZ_HEAD	0xa
58
59#ifdef CPU_ARM7TDMI
60#define cpu_idcache_wbinv_all	arm7tdmi_cache_flushID
61extern void arm7tdmi_cache_flushID(void);
62#elif defined(CPU_ARM8)
63#define cpu_idcache_wbinv_all	arm8_cache_purgeID
64extern void arm8_cache_purgeID(void);
65#elif defined(CPU_ARM9)
66#define cpu_idcache_wbinv_all	arm9_idcache_wbinv_all
67extern void arm9_idcache_wbinv_all(void);
68#elif defined(CPU_FA526) || defined(CPU_FA626TE)
69#define cpu_idcache_wbinv_all	fa526_idcache_wbinv_all
70extern void fa526_idcache_wbinv_all(void);
71#elif defined(CPU_ARM9E)
72#define cpu_idcache_wbinv_all	armv5_ec_idcache_wbinv_all
73extern void armv5_ec_idcache_wbinv_all(void);
74#elif defined(CPU_ARM10)
75#define cpu_idcache_wbinv_all	arm10_idcache_wbinv_all
76extern void arm10_idcache_wbinv_all(void);
77#elif defined(CPU_ARM1136) || defined(CPU_ARM1176)
78#define cpu_idcache_wbinv_all	armv6_idcache_wbinv_all
79#elif defined(CPU_SA110) || defined(CPU_SA1110) || defined(CPU_SA1100) || \
80    defined(CPU_IXP12X0)
81#define cpu_idcache_wbinv_all	sa1_cache_purgeID
82extern void sa1_cache_purgeID(void);
83#elif defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
84  defined(CPU_XSCALE_PXA2X0) || defined(CPU_XSCALE_IXP425) ||	\
85  defined(CPU_XSCALE_80219)
86#define cpu_idcache_wbinv_all	xscale_cache_purgeID
87extern void xscale_cache_purgeID(void);
88#elif defined(CPU_XSCALE_81342)
89#define cpu_idcache_wbinv_all	xscalec3_cache_purgeID
90extern void xscalec3_cache_purgeID(void);
91#elif defined(CPU_MV_PJ4B)
92#if !defined(SOC_MV_ARMADAXP)
93#define cpu_idcache_wbinv_all	armv6_idcache_wbinv_all
94extern void armv6_idcache_wbinv_all(void);
95#else
96#define cpu_idcache_wbinv_all()	armadaxp_idcache_wbinv_all
97#endif
98#endif /* CPU_MV_PJ4B */
99#ifdef CPU_XSCALE_81342
100#define cpu_l2cache_wbinv_all	xscalec3_l2cache_purge
101extern void xscalec3_l2cache_purge(void);
102#elif defined(SOC_MV_KIRKWOOD) || defined(SOC_MV_DISCOVERY)
103#define cpu_l2cache_wbinv_all	sheeva_l2cache_wbinv_all
104extern void sheeva_l2cache_wbinv_all(void);
105#elif defined(CPU_CORTEXA) || defined(CPU_KRAIT)
106#define cpu_idcache_wbinv_all	armv7_idcache_wbinv_all
107#define cpu_l2cache_wbinv_all()
108#else
109#define cpu_l2cache_wbinv_all()
110#endif
111
112static void armadaxp_idcache_wbinv_all(void);
113
114int     arm_picache_size;
115int     arm_picache_line_size;
116int     arm_picache_ways;
117
118int     arm_pdcache_size;       /* and unified */
119int     arm_pdcache_line_size = 32;
120int     arm_pdcache_ways;
121
122int     arm_pcache_type;
123int     arm_pcache_unified;
124
125int     arm_dcache_align;
126int     arm_dcache_align_mask;
127
128u_int	arm_cache_level;
129u_int	arm_cache_type[14];
130u_int	arm_cache_loc;
131
132/* Additional cache information local to this file.  Log2 of some of the
133      above numbers.  */
134static int      arm_dcache_l2_nsets;
135static int      arm_dcache_l2_assoc;
136static int      arm_dcache_l2_linesize;
137
138
139int block_userspace_access = 0;
140extern int arm9_dcache_sets_inc;
141extern int arm9_dcache_sets_max;
142extern int arm9_dcache_index_max;
143extern int arm9_dcache_index_inc;
144
145static __inline void *
146memcpy(void *dst, const void *src, int len)
147{
148	const char *s = src;
149    	char *d = dst;
150
151	while (len) {
152		if (0 && len >= 4 && !((vm_offset_t)d & 3) &&
153		    !((vm_offset_t)s & 3)) {
154			*(uint32_t *)d = *(uint32_t *)s;
155			s += 4;
156			d += 4;
157			len -= 4;
158		} else {
159			*d++ = *s++;
160			len--;
161		}
162	}
163	return (dst);
164}
165
166static __inline void
167bzero(void *addr, int count)
168{
169	char *tmp = (char *)addr;
170
171	while (count > 0) {
172		if (count >= 4 && !((vm_offset_t)tmp & 3)) {
173			*(uint32_t *)tmp = 0;
174			tmp += 4;
175			count -= 4;
176		} else {
177			*tmp = 0;
178			tmp++;
179			count--;
180		}
181	}
182}
183
184static void arm9_setup(void);
185
186void
187_startC(void)
188{
189	int physaddr = KERNPHYSADDR;
190	int tmp1;
191	unsigned int sp = ((unsigned int)&_end & ~3) + 4;
192#if defined(FLASHADDR) && defined(PHYSADDR) && defined(LOADERRAMADDR)
193	unsigned int pc;
194
195	__asm __volatile("mov %0, pc\n"
196	    : "=r" (pc));
197	if ((FLASHADDR > LOADERRAMADDR && pc >= FLASHADDR) ||
198	    (FLASHADDR < LOADERRAMADDR && pc < LOADERRAMADDR)) {
199		/*
200		 * We're running from flash, so just copy the whole thing
201		 * from flash to memory.
202		 * This is far from optimal, we could do the relocation or
203		 * the unzipping directly from flash to memory to avoid this
204		 * needless copy, but it would require to know the flash
205		 * physical address.
206		 */
207		unsigned int target_addr;
208		unsigned int tmp_sp;
209		uint32_t src_addr = (uint32_t)&_start - PHYSADDR + FLASHADDR
210		    + (pc - FLASHADDR - ((uint32_t)&_startC - PHYSADDR)) & 0xfffff000;
211
212		target_addr = (unsigned int)&_start - PHYSADDR + LOADERRAMADDR;
213		tmp_sp = target_addr + 0x100000 +
214		    (unsigned int)&_end - (unsigned int)&_start;
215		memcpy((char *)target_addr, (char *)src_addr,
216		    (unsigned int)&_end - (unsigned int)&_start);
217		/* Temporary set the sp and jump to the new location. */
218		__asm __volatile(
219		    "mov sp, %1\n"
220		    "mov pc, %0\n"
221		    : : "r" (target_addr), "r" (tmp_sp));
222
223	}
224#endif
225#ifdef KZIP
226	sp += KERNSIZE + 0x100;
227	sp &= ~(L1_TABLE_SIZE - 1);
228	sp += 2 * L1_TABLE_SIZE;
229#endif
230	sp += 1024 * 1024; /* Should be enough for a stack */
231
232	__asm __volatile("adr %0, 2f\n"
233	    		 "bic %0, %0, #0xff000000\n"
234			 "and %1, %1, #0xff000000\n"
235			 "orr %0, %0, %1\n"
236			 "mrc p15, 0, %1, c1, c0, 0\n"
237			 "bic %1, %1, #1\n" /* Disable MMU */
238			 "orr %1, %1, #(4 | 8)\n" /* Add DC enable,
239						     WBUF enable */
240			 "orr %1, %1, #0x1000\n" /* Add IC enable */
241			 "orr %1, %1, #(0x800)\n" /* BPRD enable */
242
243			 "mcr p15, 0, %1, c1, c0, 0\n"
244			 "nop\n"
245			 "nop\n"
246			 "nop\n"
247			 "mov pc, %0\n"
248			 "2: nop\n"
249			 "mov sp, %2\n"
250			 : "=r" (tmp1), "+r" (physaddr), "+r" (sp));
251#ifndef KZIP
252#ifdef CPU_ARM9
253	/* So that idcache_wbinv works; */
254	if ((cpufunc_id() & 0x0000f000) == 0x00009000)
255		arm9_setup();
256#endif
257#endif
258	__start();
259}
260
261static void
262get_cachetype_cp15()
263{
264	u_int ctype, isize, dsize, cpuid;
265	u_int clevel, csize, i, sel;
266	u_int multiplier;
267	u_char type;
268
269	__asm __volatile("mrc p15, 0, %0, c0, c0, 1"
270		: "=r" (ctype));
271
272	cpuid = cpufunc_id();
273	/*
274	 * ...and thus spake the ARM ARM:
275	 *
276	 * If an <opcode2> value corresponding to an unimplemented or
277	 * reserved ID register is encountered, the System Control
278	 * processor returns the value of the main ID register.
279	 */
280	if (ctype == cpuid)
281		goto out;
282
283	if (CPU_CT_FORMAT(ctype) == CPU_CT_ARMV7) {
284		__asm __volatile("mrc p15, 1, %0, c0, c0, 1"
285		    : "=r" (clevel));
286		arm_cache_level = clevel;
287		arm_cache_loc = CPU_CLIDR_LOC(arm_cache_level) + 1;
288		i = 0;
289		while ((type = (clevel & 0x7)) && i < 7) {
290			if (type == CACHE_DCACHE || type == CACHE_UNI_CACHE ||
291			    type == CACHE_SEP_CACHE) {
292				sel = i << 1;
293				__asm __volatile("mcr p15, 2, %0, c0, c0, 0"
294				    : : "r" (sel));
295				__asm __volatile("mrc p15, 1, %0, c0, c0, 0"
296				    : "=r" (csize));
297				arm_cache_type[sel] = csize;
298			}
299			if (type == CACHE_ICACHE || type == CACHE_SEP_CACHE) {
300				sel = (i << 1) | 1;
301				__asm __volatile("mcr p15, 2, %0, c0, c0, 0"
302				    : : "r" (sel));
303				__asm __volatile("mrc p15, 1, %0, c0, c0, 0"
304				    : "=r" (csize));
305				arm_cache_type[sel] = csize;
306			}
307			i++;
308			clevel >>= 3;
309		}
310	} else {
311		if ((ctype & CPU_CT_S) == 0)
312			arm_pcache_unified = 1;
313
314		/*
315		 * If you want to know how this code works, go read the ARM ARM.
316		 */
317
318		arm_pcache_type = CPU_CT_CTYPE(ctype);
319
320		if (arm_pcache_unified == 0) {
321			isize = CPU_CT_ISIZE(ctype);
322			multiplier = (isize & CPU_CT_xSIZE_M) ? 3 : 2;
323			arm_picache_line_size = 1U << (CPU_CT_xSIZE_LEN(isize) + 3);
324			if (CPU_CT_xSIZE_ASSOC(isize) == 0) {
325				if (isize & CPU_CT_xSIZE_M)
326					arm_picache_line_size = 0; /* not present */
327				else
328					arm_picache_ways = 1;
329			} else {
330				arm_picache_ways = multiplier <<
331				    (CPU_CT_xSIZE_ASSOC(isize) - 1);
332			}
333			arm_picache_size = multiplier << (CPU_CT_xSIZE_SIZE(isize) + 8);
334		}
335
336		dsize = CPU_CT_DSIZE(ctype);
337		multiplier = (dsize & CPU_CT_xSIZE_M) ? 3 : 2;
338		arm_pdcache_line_size = 1U << (CPU_CT_xSIZE_LEN(dsize) + 3);
339		if (CPU_CT_xSIZE_ASSOC(dsize) == 0) {
340			if (dsize & CPU_CT_xSIZE_M)
341				arm_pdcache_line_size = 0; /* not present */
342			else
343				arm_pdcache_ways = 1;
344		} else {
345			arm_pdcache_ways = multiplier <<
346			    (CPU_CT_xSIZE_ASSOC(dsize) - 1);
347		}
348		arm_pdcache_size = multiplier << (CPU_CT_xSIZE_SIZE(dsize) + 8);
349
350		arm_dcache_align = arm_pdcache_line_size;
351
352		arm_dcache_l2_assoc = CPU_CT_xSIZE_ASSOC(dsize) + multiplier - 2;
353		arm_dcache_l2_linesize = CPU_CT_xSIZE_LEN(dsize) + 3;
354		arm_dcache_l2_nsets = 6 + CPU_CT_xSIZE_SIZE(dsize) -
355		    CPU_CT_xSIZE_ASSOC(dsize) - CPU_CT_xSIZE_LEN(dsize);
356
357	out:
358		arm_dcache_align_mask = arm_dcache_align - 1;
359	}
360}
361
362static void
363arm9_setup(void)
364{
365
366	get_cachetype_cp15();
367	arm9_dcache_sets_inc = 1U << arm_dcache_l2_linesize;
368	arm9_dcache_sets_max = (1U << (arm_dcache_l2_linesize +
369	    arm_dcache_l2_nsets)) - arm9_dcache_sets_inc;
370	arm9_dcache_index_inc = 1U << (32 - arm_dcache_l2_assoc);
371	arm9_dcache_index_max = 0U - arm9_dcache_index_inc;
372}
373
374static void
375armadaxp_idcache_wbinv_all(void)
376{
377	uint32_t feat;
378
379	__asm __volatile("mrc p15, 0, %0, c0, c1, 0" : "=r" (feat));
380	if (feat & ARM_PFR0_THUMBEE_MASK)
381		armv7_idcache_wbinv_all();
382	else
383		armv6_idcache_wbinv_all();
384
385}
386#ifdef KZIP
387static  unsigned char *orig_input, *i_input, *i_output;
388
389
390static u_int memcnt;		/* Memory allocated: blocks */
391static size_t memtot;		/* Memory allocated: bytes */
392/*
393 * Library functions required by inflate().
394 */
395
396#define MEMSIZ 0x8000
397
398/*
399 * Allocate memory block.
400 */
401unsigned char *
402kzipmalloc(int size)
403{
404	void *ptr;
405	static u_char mem[MEMSIZ];
406
407	if (memtot + size > MEMSIZ)
408		return NULL;
409	ptr = mem + memtot;
410	memtot += size;
411	memcnt++;
412	return ptr;
413}
414
415/*
416 * Free allocated memory block.
417 */
418void
419kzipfree(void *ptr)
420{
421	memcnt--;
422	if (!memcnt)
423		memtot = 0;
424}
425
426void
427putstr(char *dummy)
428{
429}
430
431static int
432input(void *dummy)
433{
434	if ((size_t)(i_input - orig_input) >= KERNCOMPSIZE) {
435		return (GZ_EOF);
436	}
437	return *i_input++;
438}
439
440static int
441output(void *dummy, unsigned char *ptr, unsigned long len)
442{
443
444
445	memcpy(i_output, ptr, len);
446	i_output += len;
447	return (0);
448}
449
450static void *
451inflate_kernel(void *kernel, void *startaddr)
452{
453	struct inflate infl;
454	unsigned char slide[GZ_WSIZE];
455
456	orig_input = kernel;
457	memcnt = memtot = 0;
458	i_input = (unsigned char *)kernel + GZ_HEAD;
459	if (((char *)kernel)[3] & 0x18) {
460		while (*i_input)
461			i_input++;
462		i_input++;
463	}
464	i_output = startaddr;
465	bzero(&infl, sizeof(infl));
466	infl.gz_input = input;
467	infl.gz_output = output;
468	infl.gz_slide = slide;
469	inflate(&infl);
470	return ((char *)(((vm_offset_t)i_output & ~3) + 4));
471}
472
473#endif
474
475void *
476load_kernel(unsigned int kstart, unsigned int curaddr,unsigned int func_end,
477    int d)
478{
479	Elf32_Ehdr *eh;
480	Elf32_Phdr phdr[64] /* XXX */, *php;
481	Elf32_Shdr shdr[64] /* XXX */;
482	int i,j;
483	void *entry_point;
484	int symtabindex = -1;
485	int symstrindex = -1;
486	vm_offset_t lastaddr = 0;
487	Elf_Addr ssym = 0;
488	Elf_Dyn *dp;
489
490	eh = (Elf32_Ehdr *)kstart;
491	ssym = 0;
492	entry_point = (void*)eh->e_entry;
493	memcpy(phdr, (void *)(kstart + eh->e_phoff ),
494	    eh->e_phnum * sizeof(phdr[0]));
495
496	/* Determine lastaddr. */
497	for (i = 0; i < eh->e_phnum; i++) {
498		if (lastaddr < (phdr[i].p_vaddr - KERNVIRTADDR + curaddr
499		    + phdr[i].p_memsz))
500			lastaddr = phdr[i].p_vaddr - KERNVIRTADDR +
501			    curaddr + phdr[i].p_memsz;
502	}
503
504	/* Save the symbol tables, as there're about to be scratched. */
505	memcpy(shdr, (void *)(kstart + eh->e_shoff),
506	    sizeof(*shdr) * eh->e_shnum);
507	if (eh->e_shnum * eh->e_shentsize != 0 &&
508	    eh->e_shoff != 0) {
509		for (i = 0; i < eh->e_shnum; i++) {
510			if (shdr[i].sh_type == SHT_SYMTAB) {
511				for (j = 0; j < eh->e_phnum; j++) {
512					if (phdr[j].p_type == PT_LOAD &&
513					    shdr[i].sh_offset >=
514					    phdr[j].p_offset &&
515					    (shdr[i].sh_offset +
516					     shdr[i].sh_size <=
517					     phdr[j].p_offset +
518					     phdr[j].p_filesz)) {
519						shdr[i].sh_offset = 0;
520						shdr[i].sh_size = 0;
521						j = eh->e_phnum;
522					}
523				}
524				if (shdr[i].sh_offset != 0 &&
525				    shdr[i].sh_size != 0) {
526					symtabindex = i;
527					symstrindex = shdr[i].sh_link;
528				}
529			}
530		}
531		func_end = roundup(func_end, sizeof(long));
532		if (symtabindex >= 0 && symstrindex >= 0) {
533			ssym = lastaddr;
534			if (d) {
535				memcpy((void *)func_end, (void *)(
536				    shdr[symtabindex].sh_offset + kstart),
537				    shdr[symtabindex].sh_size);
538				memcpy((void *)(func_end +
539				    shdr[symtabindex].sh_size),
540				    (void *)(shdr[symstrindex].sh_offset +
541				    kstart), shdr[symstrindex].sh_size);
542			} else {
543				lastaddr += shdr[symtabindex].sh_size;
544				lastaddr = roundup(lastaddr,
545				    sizeof(shdr[symtabindex].sh_size));
546				lastaddr += sizeof(shdr[symstrindex].sh_size);
547				lastaddr += shdr[symstrindex].sh_size;
548				lastaddr = roundup(lastaddr,
549				    sizeof(shdr[symstrindex].sh_size));
550			}
551
552		}
553	}
554	if (!d)
555		return ((void *)lastaddr);
556
557	j = eh->e_phnum;
558	for (i = 0; i < j; i++) {
559		volatile char c;
560
561		if (phdr[i].p_type != PT_LOAD)
562			continue;
563		memcpy((void *)(phdr[i].p_vaddr - KERNVIRTADDR + curaddr),
564		    (void*)(kstart + phdr[i].p_offset), phdr[i].p_filesz);
565		/* Clean space from oversized segments, eg: bss. */
566		if (phdr[i].p_filesz < phdr[i].p_memsz)
567			bzero((void *)(phdr[i].p_vaddr - KERNVIRTADDR +
568			    curaddr + phdr[i].p_filesz), phdr[i].p_memsz -
569			    phdr[i].p_filesz);
570	}
571	/* Now grab the symbol tables. */
572	if (symtabindex >= 0 && symstrindex >= 0) {
573		*(Elf_Size *)lastaddr =
574		    shdr[symtabindex].sh_size;
575		lastaddr += sizeof(shdr[symtabindex].sh_size);
576		memcpy((void*)lastaddr,
577		    (void *)func_end,
578		    shdr[symtabindex].sh_size);
579		lastaddr += shdr[symtabindex].sh_size;
580		lastaddr = roundup(lastaddr,
581		    sizeof(shdr[symtabindex].sh_size));
582		*(Elf_Size *)lastaddr =
583		    shdr[symstrindex].sh_size;
584		lastaddr += sizeof(shdr[symstrindex].sh_size);
585		memcpy((void*)lastaddr,
586		    (void*)(func_end +
587			    shdr[symtabindex].sh_size),
588		    shdr[symstrindex].sh_size);
589		lastaddr += shdr[symstrindex].sh_size;
590		lastaddr = roundup(lastaddr,
591   		    sizeof(shdr[symstrindex].sh_size));
592		*(Elf_Addr *)curaddr = MAGIC_TRAMP_NUMBER;
593		*((Elf_Addr *)curaddr + 1) = ssym - curaddr + KERNVIRTADDR;
594		*((Elf_Addr *)curaddr + 2) = lastaddr - curaddr + KERNVIRTADDR;
595	} else
596		*(Elf_Addr *)curaddr = 0;
597	/* Invalidate the instruction cache. */
598	__asm __volatile("mcr p15, 0, %0, c7, c5, 0\n"
599	    		 "mcr p15, 0, %0, c7, c10, 4\n"
600			 : : "r" (curaddr));
601	__asm __volatile("mrc p15, 0, %0, c1, c0, 0\n"
602	    "bic %0, %0, #1\n" /* MMU_ENABLE */
603	    "mcr p15, 0, %0, c1, c0, 0\n"
604	    : "=r" (ssym));
605	/* Jump to the entry point. */
606	((void(*)(void))(entry_point - KERNVIRTADDR + curaddr))();
607	__asm __volatile(".globl func_end\n"
608	    "func_end:");
609
610	/* NOTREACHED */
611	return NULL;
612}
613
614extern char func_end[];
615
616
617#define PMAP_DOMAIN_KERNEL	0 /*
618				    * Just define it instead of including the
619				    * whole VM headers set.
620				    */
621int __hack;
622static __inline void
623setup_pagetables(unsigned int pt_addr, vm_paddr_t physstart, vm_paddr_t physend,
624    int write_back)
625{
626	unsigned int *pd = (unsigned int *)pt_addr;
627	vm_paddr_t addr;
628	int domain = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) | DOMAIN_CLIENT;
629	int tmp;
630
631	bzero(pd, L1_TABLE_SIZE);
632	for (addr = physstart; addr < physend; addr += L1_S_SIZE) {
633		pd[addr >> L1_S_SHIFT] = L1_TYPE_S|L1_S_C|L1_S_AP(AP_KRW)|
634		    L1_S_DOM(PMAP_DOMAIN_KERNEL) | addr;
635		if (write_back && 0)
636			pd[addr >> L1_S_SHIFT] |= L1_S_B;
637	}
638	/* XXX: See below */
639	if (0xfff00000 < physstart || 0xfff00000 > physend)
640		pd[0xfff00000 >> L1_S_SHIFT] = L1_TYPE_S|L1_S_AP(AP_KRW)|
641		    L1_S_DOM(PMAP_DOMAIN_KERNEL)|physstart;
642	__asm __volatile("mcr p15, 0, %1, c2, c0, 0\n" /* set TTB */
643	    		 "mcr p15, 0, %1, c8, c7, 0\n" /* Flush TTB */
644			 "mcr p15, 0, %2, c3, c0, 0\n" /* Set DAR */
645			 "mrc p15, 0, %0, c1, c0, 0\n"
646			 "orr %0, %0, #1\n" /* MMU_ENABLE */
647			 "mcr p15, 0, %0, c1, c0, 0\n"
648			 "mrc p15, 0, %0, c2, c0, 0\n" /* CPWAIT */
649			 "mov r0, r0\n"
650			 "sub pc, pc, #4\n" :
651			 "=r" (tmp) : "r" (pd), "r" (domain));
652
653	/*
654	 * XXX: This is the most stupid workaround I've ever wrote.
655	 * For some reason, the KB9202 won't boot the kernel unless
656	 * we access an address which is not in the
657	 * 0x20000000 - 0x20ffffff range. I hope I'll understand
658	 * what's going on later.
659	 */
660	__hack = *(volatile int *)0xfffff21c;
661}
662
663void
664__start(void)
665{
666	void *curaddr;
667	void *dst, *altdst;
668	char *kernel = (char *)&kernel_start;
669	int sp;
670	int pt_addr;
671
672	__asm __volatile("mov %0, pc"  :
673	    "=r" (curaddr));
674	curaddr = (void*)((unsigned int)curaddr & 0xfff00000);
675#ifdef KZIP
676	if (*kernel == 0x1f && kernel[1] == 0x8b) {
677		pt_addr = (((int)&_end + KERNSIZE + 0x100) &
678		    ~(L1_TABLE_SIZE - 1)) + L1_TABLE_SIZE;
679
680#ifdef CPU_ARM9
681		/* So that idcache_wbinv works; */
682		if ((cpufunc_id() & 0x0000f000) == 0x00009000)
683			arm9_setup();
684#endif
685		setup_pagetables(pt_addr, (vm_paddr_t)curaddr,
686		    (vm_paddr_t)curaddr + 0x10000000, 1);
687		/* Gzipped kernel */
688		dst = inflate_kernel(kernel, &_end);
689		kernel = (char *)&_end;
690		altdst = 4 + load_kernel((unsigned int)kernel,
691		    (unsigned int)curaddr,
692		    (unsigned int)&func_end + 800 , 0);
693		if (altdst > dst)
694			dst = altdst;
695
696		/*
697		 * Disable MMU.  Otherwise, setup_pagetables call below
698		 * might overwrite the L1 table we are currently using.
699		 */
700		cpu_idcache_wbinv_all();
701		cpu_l2cache_wbinv_all();
702		__asm __volatile("mrc p15, 0, %0, c1, c0, 0\n"
703		  "bic %0, %0, #1\n" /* MMU_DISABLE */
704		  "mcr p15, 0, %0, c1, c0, 0\n"
705		  :"=r" (pt_addr));
706	} else
707#endif
708		dst = 4 + load_kernel((unsigned int)&kernel_start,
709	    (unsigned int)curaddr,
710	    (unsigned int)&func_end, 0);
711	dst = (void *)(((vm_offset_t)dst & ~3));
712	pt_addr = ((unsigned int)dst &~(L1_TABLE_SIZE - 1)) + L1_TABLE_SIZE;
713	setup_pagetables(pt_addr, (vm_paddr_t)curaddr,
714	    (vm_paddr_t)curaddr + 0x10000000, 0);
715	sp = pt_addr + L1_TABLE_SIZE + 8192;
716	sp = sp &~3;
717	dst = (void *)(sp + 4);
718	memcpy((void *)dst, (void *)&load_kernel, (unsigned int)&func_end -
719	    (unsigned int)&load_kernel + 800);
720	do_call(dst, kernel, dst + (unsigned int)(&func_end) -
721	    (unsigned int)(&load_kernel) + 800, sp);
722}
723
724#ifdef __ARM_EABI__
725/* We need to provide these functions but never call them */
726void __aeabi_unwind_cpp_pr0(void);
727void __aeabi_unwind_cpp_pr1(void);
728void __aeabi_unwind_cpp_pr2(void);
729
730__strong_reference(__aeabi_unwind_cpp_pr0, __aeabi_unwind_cpp_pr1);
731__strong_reference(__aeabi_unwind_cpp_pr0, __aeabi_unwind_cpp_pr2);
732void
733__aeabi_unwind_cpp_pr0(void)
734{
735}
736#endif
737
738