db_trace.c revision 261455
1/*	$NetBSD: db_trace.c,v 1.8 2003/01/17 22:28:48 thorpej Exp $	*/
2
3/*-
4 * Copyright (c) 2000, 2001 Ben Harris
5 * Copyright (c) 1996 Scott K. Stevens
6 *
7 * Mach Operating System
8 * Copyright (c) 1991,1990 Carnegie Mellon University
9 * All Rights Reserved.
10 *
11 * Permission to use, copy, modify and distribute this software and its
12 * documentation is hereby granted, provided that both the copyright
13 * notice and this permission notice appear in all copies of the
14 * software, derivative works or modified versions, and any portions
15 * thereof, and that both notices appear in supporting documentation.
16 *
17 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
18 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
19 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
20 *
21 * Carnegie Mellon requests users of this software to return to
22 *
23 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
24 *  School of Computer Science
25 *  Carnegie Mellon University
26 *  Pittsburgh PA 15213-3890
27 *
28 * any improvements or extensions that they make and grant Carnegie the
29 * rights to redistribute these changes.
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/10/sys/arm/arm/db_trace.c 261455 2014-02-04 03:36:42Z eadler $");
34#include <sys/param.h>
35#include <sys/systm.h>
36
37
38#include <sys/proc.h>
39#include <sys/kdb.h>
40#include <sys/stack.h>
41#include <machine/armreg.h>
42#include <machine/asm.h>
43#include <machine/cpufunc.h>
44#include <machine/db_machdep.h>
45#include <machine/pcb.h>
46#include <machine/stack.h>
47#include <machine/vmparam.h>
48#include <ddb/ddb.h>
49#include <ddb/db_access.h>
50#include <ddb/db_sym.h>
51#include <ddb/db_output.h>
52
53#ifdef __ARM_EABI__
54/*
55 * Definitions for the instruction interpreter.
56 *
57 * The ARM EABI specifies how to perform the frame unwinding in the
58 * Exception Handling ABI for the ARM Architecture document. To perform
59 * the unwind we need to know the initial frame pointer, stack pointer,
60 * link register and program counter. We then find the entry within the
61 * index table that points to the function the program counter is within.
62 * This gives us either a list of three instructions to process, a 31-bit
63 * relative offset to a table of instructions, or a value telling us
64 * we can't unwind any further.
65 *
66 * When we have the instructions to process we need to decode them
67 * following table 4 in section 9.3. This describes a collection of bit
68 * patterns to encode that steps to take to update the stack pointer and
69 * link register to the correct values at the start of the function.
70 */
71
72/* A special case when we are unable to unwind past this function */
73#define	EXIDX_CANTUNWIND	1
74
75/* The register names */
76#define	FP	11
77#define	SP	13
78#define	LR	14
79#define	PC	15
80
81/*
82 * These are set in the linker script. Their addresses will be
83 * either the start or end of the exception table or index.
84 */
85extern int extab_start, extab_end, exidx_start, exidx_end;
86
87/*
88 * Entry types.
89 * These are the only entry types that have been seen in the kernel.
90 */
91#define	ENTRY_MASK	0xff000000
92#define	ENTRY_ARM_SU16	0x80000000
93#define	ENTRY_ARM_LU16	0x81000000
94
95/* Instruction masks. */
96#define	INSN_VSP_MASK		0xc0
97#define	INSN_VSP_SIZE_MASK	0x3f
98#define	INSN_STD_MASK		0xf0
99#define	INSN_STD_DATA_MASK	0x0f
100#define	INSN_POP_TYPE_MASK	0x08
101#define	INSN_POP_COUNT_MASK	0x07
102#define	INSN_VSP_LARGE_INC_MASK	0xff
103
104/* Instruction definitions */
105#define	INSN_VSP_INC		0x00
106#define	INSN_VSP_DEC		0x40
107#define	INSN_POP_MASKED		0x80
108#define	INSN_VSP_REG		0x90
109#define	INSN_POP_COUNT		0xa0
110#define	INSN_FINISH		0xb0
111#define	INSN_POP_REGS		0xb1
112#define	INSN_VSP_LARGE_INC	0xb2
113
114/* An item in the exception index table */
115struct unwind_idx {
116	uint32_t offset;
117	uint32_t insn;
118};
119
120/* The state of the unwind process */
121struct unwind_state {
122	uint32_t registers[16];
123	uint32_t start_pc;
124	uint32_t *insn;
125	u_int entries;
126	u_int byte;
127	uint16_t update_mask;
128};
129
130/* Expand a 31-bit signed value to a 32-bit signed value */
131static __inline int32_t
132db_expand_prel31(uint32_t prel31)
133{
134
135	return ((int32_t)(prel31 & 0x7fffffffu) << 1) / 2;
136}
137
138/*
139 * Perform a binary search of the index table to find the function
140 * with the largest address that doesn't exceed addr.
141 */
142static struct unwind_idx *
143db_find_index(uint32_t addr)
144{
145	unsigned int min, mid, max;
146	struct unwind_idx *start;
147	struct unwind_idx *item;
148	int32_t prel31_addr;
149	uint32_t func_addr;
150
151	start = (struct unwind_idx *)&exidx_start;
152
153	min = 0;
154	max = (&exidx_end - &exidx_start) / 2;
155
156	while (min != max) {
157		mid = min + (max - min + 1) / 2;
158
159		item = &start[mid];
160
161	 	prel31_addr = db_expand_prel31(item->offset);
162		func_addr = (uint32_t)&item->offset + prel31_addr;
163
164		if (func_addr <= addr) {
165			min = mid;
166		} else {
167			max = mid - 1;
168		}
169	}
170
171	return &start[min];
172}
173
174/* Reads the next byte from the instruction list */
175static uint8_t
176db_unwind_exec_read_byte(struct unwind_state *state)
177{
178	uint8_t insn;
179
180	/* Read the unwind instruction */
181	insn = (*state->insn) >> (state->byte * 8);
182
183	/* Update the location of the next instruction */
184	if (state->byte == 0) {
185		state->byte = 3;
186		state->insn++;
187		state->entries--;
188	} else
189		state->byte--;
190
191	return insn;
192}
193
194/* Executes the next instruction on the list */
195static int
196db_unwind_exec_insn(struct unwind_state *state)
197{
198	unsigned int insn;
199	uint32_t *vsp = (uint32_t *)state->registers[SP];
200	int update_vsp = 0;
201
202	/* This should never happen */
203	if (state->entries == 0)
204		return 1;
205
206	/* Read the next instruction */
207	insn = db_unwind_exec_read_byte(state);
208
209	if ((insn & INSN_VSP_MASK) == INSN_VSP_INC) {
210		state->registers[SP] += ((insn & INSN_VSP_SIZE_MASK) << 2) + 4;
211
212	} else if ((insn & INSN_VSP_MASK) == INSN_VSP_DEC) {
213		state->registers[SP] -= ((insn & INSN_VSP_SIZE_MASK) << 2) + 4;
214
215	} else if ((insn & INSN_STD_MASK) == INSN_POP_MASKED) {
216		unsigned int mask, reg;
217
218		/* Load the mask */
219		mask = db_unwind_exec_read_byte(state);
220		mask |= (insn & INSN_STD_DATA_MASK) << 8;
221
222		/* We have a refuse to unwind instruction */
223		if (mask == 0)
224			return 1;
225
226		/* Update SP */
227		update_vsp = 1;
228
229		/* Load the registers */
230		for (reg = 4; mask && reg < 16; mask >>= 1, reg++) {
231			if (mask & 1) {
232				state->registers[reg] = *vsp++;
233				state->update_mask |= 1 << reg;
234
235				/* If we have updated SP kep its value */
236				if (reg == SP)
237					update_vsp = 0;
238			}
239		}
240
241	} else if ((insn & INSN_STD_MASK) == INSN_VSP_REG &&
242	    ((insn & INSN_STD_DATA_MASK) != 13) &&
243	    ((insn & INSN_STD_DATA_MASK) != 15)) {
244		/* sp = register */
245		state->registers[SP] =
246		    state->registers[insn & INSN_STD_DATA_MASK];
247
248	} else if ((insn & INSN_STD_MASK) == INSN_POP_COUNT) {
249		unsigned int count, reg;
250
251		/* Read how many registers to load */
252		count = insn & INSN_POP_COUNT_MASK;
253
254		/* Update sp */
255		update_vsp = 1;
256
257		/* Pop the registers */
258		for (reg = 4; reg <= 4 + count; reg++) {
259			state->registers[reg] = *vsp++;
260			state->update_mask |= 1 << reg;
261		}
262
263		/* Check if we are in the pop r14 version */
264		if ((insn & INSN_POP_TYPE_MASK) != 0) {
265			state->registers[14] = *vsp++;
266		}
267
268	} else if (insn == INSN_FINISH) {
269		/* Stop processing */
270		state->entries = 0;
271
272	} else if ((insn == INSN_POP_REGS)) {
273		unsigned int mask, reg;
274
275		mask = db_unwind_exec_read_byte(state);
276		if (mask == 0 || (mask & 0xf0) != 0)
277			return 1;
278
279		/* Update SP */
280		update_vsp = 1;
281
282		/* Load the registers */
283		for (reg = 0; mask && reg < 4; mask >>= 1, reg++) {
284			if (mask & 1) {
285				state->registers[reg] = *vsp++;
286				state->update_mask |= 1 << reg;
287			}
288		}
289
290	} else if ((insn & INSN_VSP_LARGE_INC_MASK) == INSN_VSP_LARGE_INC) {
291		unsigned int uleb128;
292
293		/* Read the increment value */
294		uleb128 = db_unwind_exec_read_byte(state);
295
296		state->registers[SP] += 0x204 + (uleb128 << 2);
297
298	} else {
299		/* We hit a new instruction that needs to be implemented */
300		db_printf("Unhandled instruction %.2x\n", insn);
301		return 1;
302	}
303
304	if (update_vsp) {
305		state->registers[SP] = (uint32_t)vsp;
306	}
307
308#if 0
309	db_printf("fp = %08x, sp = %08x, lr = %08x, pc = %08x\n",
310	    state->registers[FP], state->registers[SP], state->registers[LR],
311	    state->registers[PC]);
312#endif
313
314	return 0;
315}
316
317/* Performs the unwind of a function */
318static int
319db_unwind_tab(struct unwind_state *state)
320{
321	uint32_t entry;
322
323	/* Set PC to a known value */
324	state->registers[PC] = 0;
325
326	/* Read the personality */
327	entry = *state->insn & ENTRY_MASK;
328
329	if (entry == ENTRY_ARM_SU16) {
330		state->byte = 2;
331		state->entries = 1;
332	} else if (entry == ENTRY_ARM_LU16) {
333		state->byte = 1;
334		state->entries = ((*state->insn >> 16) & 0xFF) + 1;
335	} else {
336		db_printf("Unknown entry: %x\n", entry);
337		return 1;
338	}
339
340	while (state->entries > 0) {
341		if (db_unwind_exec_insn(state) != 0)
342			return 1;
343	}
344
345	/*
346	 * The program counter was not updated, load it from the link register.
347	 */
348	if (state->registers[PC] == 0)
349		state->registers[PC] = state->registers[LR];
350
351	return 0;
352}
353
354static void
355db_stack_trace_cmd(struct unwind_state *state)
356{
357	struct unwind_idx *index;
358	const char *name;
359	db_expr_t value;
360	db_expr_t offset;
361	c_db_sym_t sym;
362	u_int reg, i;
363	char *sep;
364	uint16_t upd_mask;
365	bool finished;
366
367	finished = false;
368	while (!finished) {
369		/* Reset the mask of updated registers */
370		state->update_mask = 0;
371
372		/* The pc value is correct and will be overwritten, save it */
373		state->start_pc = state->registers[PC];
374
375		/* Find the item to run */
376		index = db_find_index(state->start_pc);
377
378		if (index->insn != EXIDX_CANTUNWIND) {
379			if (index->insn & (1U << 31)) {
380				/* The data is within the instruction */
381				state->insn = &index->insn;
382			} else {
383				/* A prel31 offset to the unwind table */
384				state->insn = (uint32_t *)
385				    ((uintptr_t)&index->insn +
386				     db_expand_prel31(index->insn));
387			}
388			/* Run the unwind function */
389			finished = db_unwind_tab(state);
390		}
391
392		/* Print the frame details */
393		sym = db_search_symbol(state->start_pc, DB_STGY_ANY, &offset);
394		if (sym == C_DB_SYM_NULL) {
395			value = 0;
396			name = "(null)";
397		} else
398			db_symbol_values(sym, &name, &value);
399		db_printf("%s() at ", name);
400		db_printsym(state->start_pc, DB_STGY_PROC);
401		db_printf("\n");
402		db_printf("\t pc = 0x%08x  lr = 0x%08x (", state->start_pc,
403		    state->registers[LR]);
404		db_printsym(state->registers[LR], DB_STGY_PROC);
405		db_printf(")\n");
406		db_printf("\t sp = 0x%08x  fp = 0x%08x",
407		    state->registers[SP], state->registers[FP]);
408
409		/* Don't print the registers we have already printed */
410		upd_mask = state->update_mask &
411		    ~((1 << SP) | (1 << FP) | (1 << LR) | (1 << PC));
412		sep = "\n\t";
413		for (i = 0, reg = 0; upd_mask != 0; upd_mask >>= 1, reg++) {
414			if ((upd_mask & 1) != 0) {
415				db_printf("%s%sr%d = 0x%08x", sep,
416				    (reg < 10) ? " " : "", reg,
417				    state->registers[reg]);
418				i++;
419				if (i == 2) {
420					sep = "\n\t";
421					i = 0;
422				} else
423					sep = " ";
424
425			}
426		}
427		db_printf("\n");
428
429		/*
430		 * Stop if directed to do so, or if we've unwound back to the
431		 * kernel entry point, or if the unwind function didn't change
432		 * anything (to avoid getting stuck in this loop forever).
433		 * If the latter happens, it's an indication that the unwind
434		 * information is incorrect somehow for the function named in
435		 * the last frame printed before you see the unwind failure
436		 * message (maybe it needs a STOP_UNWINDING).
437		 */
438		if (index->insn == EXIDX_CANTUNWIND) {
439			db_printf("Unable to unwind further\n");
440			finished = true;
441		} else if (state->registers[PC] < VM_MIN_KERNEL_ADDRESS) {
442			db_printf("Unable to unwind into user mode\n");
443			finished = true;
444		} else if (state->update_mask == 0) {
445			db_printf("Unwind failure (no registers changed)\n");
446			finished = true;
447		}
448	}
449}
450#endif
451
452/*
453 * APCS stack frames are awkward beasts, so I don't think even trying to use
454 * a structure to represent them is a good idea.
455 *
456 * Here's the diagram from the APCS.  Increasing address is _up_ the page.
457 *
458 *          save code pointer       [fp]        <- fp points to here
459 *          return link value       [fp, #-4]
460 *          return sp value         [fp, #-8]
461 *          return fp value         [fp, #-12]
462 *          [saved v7 value]
463 *          [saved v6 value]
464 *          [saved v5 value]
465 *          [saved v4 value]
466 *          [saved v3 value]
467 *          [saved v2 value]
468 *          [saved v1 value]
469 *          [saved a4 value]
470 *          [saved a3 value]
471 *          [saved a2 value]
472 *          [saved a1 value]
473 *
474 * The save code pointer points twelve bytes beyond the start of the
475 * code sequence (usually a single STM) that created the stack frame.
476 * We have to disassemble it if we want to know which of the optional
477 * fields are actually present.
478 */
479
480#ifndef __ARM_EABI__	/* The frame format is differend in AAPCS */
481static void
482db_stack_trace_cmd(db_expr_t addr, db_expr_t count, boolean_t kernel_only)
483{
484	u_int32_t	*frame, *lastframe;
485	c_db_sym_t sym;
486	const char *name;
487	db_expr_t value;
488	db_expr_t offset;
489	int	scp_offset;
490
491	frame = (u_int32_t *)addr;
492	lastframe = NULL;
493	scp_offset = -(get_pc_str_offset() >> 2);
494
495	while (count-- && frame != NULL && !db_pager_quit) {
496		db_addr_t	scp;
497		u_int32_t	savecode;
498		int		r;
499		u_int32_t	*rp;
500		const char	*sep;
501
502		/*
503		 * In theory, the SCP isn't guaranteed to be in the function
504		 * that generated the stack frame.  We hope for the best.
505		 */
506		scp = frame[FR_SCP];
507
508		sym = db_search_symbol(scp, DB_STGY_ANY, &offset);
509		if (sym == C_DB_SYM_NULL) {
510			value = 0;
511			name = "(null)";
512		} else
513			db_symbol_values(sym, &name, &value);
514		db_printf("%s() at ", name);
515		db_printsym(scp, DB_STGY_PROC);
516		db_printf("\n");
517#ifdef __PROG26
518		db_printf("\tscp=0x%08x rlv=0x%08x (", scp, frame[FR_RLV] & R15_PC);
519		db_printsym(frame[FR_RLV] & R15_PC, DB_STGY_PROC);
520		db_printf(")\n");
521#else
522		db_printf("\tscp=0x%08x rlv=0x%08x (", scp, frame[FR_RLV]);
523		db_printsym(frame[FR_RLV], DB_STGY_PROC);
524		db_printf(")\n");
525#endif
526		db_printf("\trsp=0x%08x rfp=0x%08x", frame[FR_RSP], frame[FR_RFP]);
527
528		savecode = ((u_int32_t *)scp)[scp_offset];
529		if ((savecode & 0x0e100000) == 0x08000000) {
530			/* Looks like an STM */
531			rp = frame - 4;
532			sep = "\n\t";
533			for (r = 10; r >= 0; r--) {
534				if (savecode & (1 << r)) {
535					db_printf("%sr%d=0x%08x",
536					    sep, r, *rp--);
537					sep = (frame - rp) % 4 == 2 ?
538					    "\n\t" : " ";
539				}
540			}
541		}
542
543		db_printf("\n");
544
545		/*
546		 * Switch to next frame up
547		 */
548		if (frame[FR_RFP] == 0)
549			break; /* Top of stack */
550
551		lastframe = frame;
552		frame = (u_int32_t *)(frame[FR_RFP]);
553
554		if (INKERNEL((int)frame)) {
555			/* staying in kernel */
556			if (frame <= lastframe) {
557				db_printf("Bad frame pointer: %p\n", frame);
558				break;
559			}
560		} else if (INKERNEL((int)lastframe)) {
561			/* switch from user to kernel */
562			if (kernel_only)
563				break;	/* kernel stack only */
564		} else {
565			/* in user */
566			if (frame <= lastframe) {
567				db_printf("Bad user frame pointer: %p\n",
568					  frame);
569				break;
570			}
571		}
572	}
573}
574#endif
575
576/* XXX stubs */
577void
578db_md_list_watchpoints()
579{
580}
581
582int
583db_md_clr_watchpoint(db_expr_t addr, db_expr_t size)
584{
585	return (0);
586}
587
588int
589db_md_set_watchpoint(db_expr_t addr, db_expr_t size)
590{
591	return (0);
592}
593
594int
595db_trace_thread(struct thread *thr, int count)
596{
597#ifdef __ARM_EABI__
598	struct unwind_state state;
599#endif
600	struct pcb *ctx;
601
602	if (thr != curthread) {
603		ctx = kdb_thr_ctx(thr);
604
605#ifdef __ARM_EABI__
606		state.registers[FP] = ctx->un_32.pcb32_r11;
607		state.registers[SP] = ctx->un_32.pcb32_sp;
608		state.registers[LR] = ctx->un_32.pcb32_lr;
609		state.registers[PC] = ctx->un_32.pcb32_pc;
610
611		db_stack_trace_cmd(&state);
612#else
613		db_stack_trace_cmd(ctx->un_32.pcb32_r11, -1, TRUE);
614#endif
615	} else
616		db_trace_self();
617	return (0);
618}
619
620void
621db_trace_self(void)
622{
623#ifdef __ARM_EABI__
624	struct unwind_state state;
625	uint32_t sp;
626
627	/* Read the stack pointer */
628	__asm __volatile("mov %0, sp" : "=&r" (sp));
629
630	state.registers[FP] = (uint32_t)__builtin_frame_address(0);
631	state.registers[SP] = sp;
632	state.registers[LR] = (uint32_t)__builtin_return_address(0);
633	state.registers[PC] = (uint32_t)db_trace_self;
634
635	db_stack_trace_cmd(&state);
636#else
637	db_addr_t addr;
638
639	addr = (db_addr_t)__builtin_frame_address(0);
640	db_stack_trace_cmd(addr, -1, FALSE);
641#endif
642}
643