busdma_machdep-v6.c revision 282506
1111645Sphk/*-
2111645Sphk * Copyright (c) 2012-2014 Ian Lepore
3247405Salfred * Copyright (c) 2010 Mark Tinguely
4247405Salfred * Copyright (c) 2004 Olivier Houchard
5247405Salfred * Copyright (c) 2002 Peter Grehan
6111645Sphk * Copyright (c) 1997, 1998 Justin T. Gibbs.
7111645Sphk * All rights reserved.
8111645Sphk *
9111645Sphk * Redistribution and use in source and binary forms, with or without
10111645Sphk * modification, are permitted provided that the following conditions
11111645Sphk * are met:
12111645Sphk * 1. Redistributions of source code must retain the above copyright
13111645Sphk *    notice, this list of conditions, and the following disclaimer,
14111645Sphk *    without modification, immediately at the beginning of the file.
15111645Sphk * 2. The name of the author may not be used to endorse or promote products
16111645Sphk *    derived from this software without specific prior written permission.
17111645Sphk *
18111645Sphk * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19111645Sphk * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20111645Sphk * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21111645Sphk * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
22111645Sphk * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23111645Sphk * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24111645Sphk * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25111645Sphk * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26111645Sphk * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27111645Sphk * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28111645Sphk * SUCH DAMAGE.
29111645Sphk *
30111645Sphk *  From i386/busdma_machdep.c 191438 2009-04-23 20:24:19Z jhb
31111645Sphk */
32116805Sphk
33111645Sphk#include <sys/cdefs.h>
34111645Sphk__FBSDID("$FreeBSD: stable/10/sys/arm/arm/busdma_machdep-v6.c 282506 2015-05-05 19:47:17Z hselasky $");
35111645Sphk
36126370Sphk#define _ARM32_BUS_DMA_PRIVATE
37126370Sphk#include <sys/param.h>
38247405Salfred#include <sys/kdb.h>
39247405Salfred#include <ddb/ddb.h>
40247405Salfred#include <ddb/db_output.h>
41247405Salfred#include <sys/systm.h>
42247405Salfred#include <sys/malloc.h>
43247405Salfred#include <sys/bus.h>
44247405Salfred#include <sys/busdma_bufalloc.h>
45247405Salfred#include <sys/interrupt.h>
46111645Sphk#include <sys/kernel.h>
47247405Salfred#include <sys/ktr.h>
48247405Salfred#include <sys/lock.h>
49247405Salfred#include <sys/memdesc.h>
50247405Salfred#include <sys/proc.h>
51111645Sphk#include <sys/mutex.h>
52111645Sphk#include <sys/sysctl.h>
53111645Sphk#include <sys/uio.h>
54111645Sphk
55111645Sphk#include <vm/vm.h>
56111645Sphk#include <vm/vm_page.h>
57111645Sphk#include <vm/vm_map.h>
58111645Sphk#include <vm/vm_extern.h>
59111645Sphk#include <vm/vm_kern.h>
60111645Sphk
61111645Sphk#include <machine/atomic.h>
62111645Sphk#include <machine/bus.h>
63111645Sphk#include <machine/cpufunc.h>
64111645Sphk#include <machine/md_var.h>
65111645Sphk
66111645Sphk#define MAX_BPAGES 64
67221121Sattilio#define MAX_DMA_SEGMENTS	4096
68221121Sattilio#define BUS_DMA_EXCL_BOUNCE	BUS_DMA_BUS2
69221121Sattilio#define BUS_DMA_ALIGN_BOUNCE	BUS_DMA_BUS3
70221121Sattilio#define BUS_DMA_COULD_BOUNCE	(BUS_DMA_EXCL_BOUNCE | BUS_DMA_ALIGN_BOUNCE)
71221121Sattilio#define BUS_DMA_MIN_ALLOC_COMP	BUS_DMA_BUS4
72221121Sattilio
73111645Sphkstruct bounce_zone;
74111645Sphk
75111645Sphkstruct bus_dma_tag {
76111645Sphk	bus_dma_tag_t	  parent;
77111645Sphk	bus_size_t	  alignment;
78111645Sphk	bus_size_t	  boundary;
79111645Sphk	bus_addr_t	  lowaddr;
80111645Sphk	bus_addr_t	  highaddr;
81111645Sphk	bus_dma_filter_t *filter;
82111645Sphk	void		 *filterarg;
83111645Sphk	bus_size_t	  maxsize;
84111645Sphk	u_int		  nsegments;
85111645Sphk	bus_size_t	  maxsegsz;
86111645Sphk	int		  flags;
87111645Sphk	int		  ref_count;
88111645Sphk	int		  map_count;
89111645Sphk	bus_dma_lock_t	 *lockfunc;
90111645Sphk	void		 *lockfuncarg;
91111645Sphk	struct bounce_zone *bounce_zone;
92111645Sphk	/*
93247405Salfred	 * DMA range for this tag.  If the page doesn't fall within
94247405Salfred	 * one of these ranges, an error is returned.  The caller
95111645Sphk	 * may then decide what to do with the transfer.  If the
96247405Salfred	 * range pointer is NULL, it is ignored.
97247405Salfred	 */
98247405Salfred	struct arm32_dma_range	*ranges;
99247405Salfred	int			_nranges;
100247405Salfred};
101247405Salfred
102247405Salfredstruct bounce_page {
103126370Sphk	vm_offset_t	vaddr;		/* kva of bounce buffer */
104126370Sphk	bus_addr_t	busaddr;	/* Physical address */
105126370Sphk	vm_offset_t	datavaddr;	/* kva of client data */
106126370Sphk	bus_addr_t	dataaddr;	/* client physical address */
107126370Sphk	bus_size_t	datacount;	/* client data count */
108126370Sphk	STAILQ_ENTRY(bounce_page) links;
109126370Sphk};
110221121Sattilio
111221121Sattiliostruct sync_list {
112221121Sattilio	vm_offset_t	vaddr;		/* kva of bounce buffer */
113126370Sphk	bus_addr_t	busaddr;	/* Physical address */
114126370Sphk	bus_size_t	datacount;	/* client data count */
115111645Sphk};
116
117int busdma_swi_pending;
118
119struct bounce_zone {
120	STAILQ_ENTRY(bounce_zone) links;
121	STAILQ_HEAD(bp_list, bounce_page) bounce_page_list;
122	int		total_bpages;
123	int		free_bpages;
124	int		reserved_bpages;
125	int		active_bpages;
126	int		total_bounced;
127	int		total_deferred;
128	int		map_count;
129	bus_size_t	alignment;
130	bus_addr_t	lowaddr;
131	char		zoneid[8];
132	char		lowaddrid[20];
133	struct sysctl_ctx_list sysctl_tree;
134	struct sysctl_oid *sysctl_tree_top;
135};
136
137static struct mtx bounce_lock;
138static int total_bpages;
139static int busdma_zonecount;
140static uint32_t tags_total;
141static uint32_t maps_total;
142static uint32_t maps_dmamem;
143static uint32_t maps_coherent;
144static uint64_t maploads_total;
145static uint64_t maploads_bounced;
146static uint64_t maploads_coherent;
147static uint64_t maploads_dmamem;
148static uint64_t maploads_mbuf;
149static uint64_t maploads_physmem;
150
151static STAILQ_HEAD(, bounce_zone) bounce_zone_list;
152
153SYSCTL_NODE(_hw, OID_AUTO, busdma, CTLFLAG_RD, 0, "Busdma parameters");
154SYSCTL_UINT(_hw_busdma, OID_AUTO, tags_total, CTLFLAG_RD, &tags_total, 0,
155	   "Number of active tags");
156SYSCTL_UINT(_hw_busdma, OID_AUTO, maps_total, CTLFLAG_RD, &maps_total, 0,
157	   "Number of active maps");
158SYSCTL_UINT(_hw_busdma, OID_AUTO, maps_dmamem, CTLFLAG_RD, &maps_dmamem, 0,
159	   "Number of active maps for bus_dmamem_alloc buffers");
160SYSCTL_UINT(_hw_busdma, OID_AUTO, maps_coherent, CTLFLAG_RD, &maps_coherent, 0,
161	   "Number of active maps with BUS_DMA_COHERENT flag set");
162SYSCTL_UQUAD(_hw_busdma, OID_AUTO, maploads_total, CTLFLAG_RD, &maploads_total, 0,
163	   "Number of load operations performed");
164SYSCTL_UQUAD(_hw_busdma, OID_AUTO, maploads_bounced, CTLFLAG_RD, &maploads_bounced, 0,
165	   "Number of load operations that used bounce buffers");
166SYSCTL_UQUAD(_hw_busdma, OID_AUTO, maploads_coherent, CTLFLAG_RD, &maploads_dmamem, 0,
167	   "Number of load operations on BUS_DMA_COHERENT memory");
168SYSCTL_UQUAD(_hw_busdma, OID_AUTO, maploads_dmamem, CTLFLAG_RD, &maploads_dmamem, 0,
169	   "Number of load operations on bus_dmamem_alloc buffers");
170SYSCTL_UQUAD(_hw_busdma, OID_AUTO, maploads_mbuf, CTLFLAG_RD, &maploads_mbuf, 0,
171	   "Number of load operations for mbufs");
172SYSCTL_UQUAD(_hw_busdma, OID_AUTO, maploads_physmem, CTLFLAG_RD, &maploads_physmem, 0,
173	   "Number of load operations on physical buffers");
174SYSCTL_INT(_hw_busdma, OID_AUTO, total_bpages, CTLFLAG_RD, &total_bpages, 0,
175	   "Total bounce pages");
176
177struct bus_dmamap {
178	struct bp_list	       bpages;
179	int		       pagesneeded;
180	int		       pagesreserved;
181	bus_dma_tag_t	       dmat;
182	struct memdesc	       mem;
183	pmap_t		       pmap;
184	bus_dmamap_callback_t *callback;
185	void		      *callback_arg;
186	int		      flags;
187#define DMAMAP_COHERENT		(1 << 0)
188#define DMAMAP_DMAMEM_ALLOC	(1 << 1)
189#define DMAMAP_MBUF		(1 << 2)
190	STAILQ_ENTRY(bus_dmamap) links;
191	bus_dma_segment_t	*segments;
192	int		       sync_count;
193	struct sync_list       slist[];
194};
195
196static STAILQ_HEAD(, bus_dmamap) bounce_map_waitinglist;
197static STAILQ_HEAD(, bus_dmamap) bounce_map_callbacklist;
198
199static void init_bounce_pages(void *dummy);
200static int alloc_bounce_zone(bus_dma_tag_t dmat);
201static int alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages);
202static int reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
203				int commit);
204static bus_addr_t add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map,
205				  vm_offset_t vaddr, bus_addr_t addr,
206				  bus_size_t size);
207static void free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage);
208static void _bus_dmamap_count_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
209    void *buf, bus_size_t buflen, int flags);
210static void _bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map,
211    vm_paddr_t buf, bus_size_t buflen, int flags);
212static int _bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
213    int flags);
214
215static busdma_bufalloc_t coherent_allocator;	/* Cache of coherent buffers */
216static busdma_bufalloc_t standard_allocator;	/* Cache of standard buffers */
217static void
218busdma_init(void *dummy)
219{
220	int uma_flags;
221
222	uma_flags = 0;
223
224	/* Create a cache of buffers in standard (cacheable) memory. */
225	standard_allocator = busdma_bufalloc_create("buffer",
226	    arm_dcache_align,	/* minimum_alignment */
227	    NULL,		/* uma_alloc func */
228	    NULL,		/* uma_free func */
229	    uma_flags);		/* uma_zcreate_flags */
230
231#ifdef INVARIANTS
232	/*
233	 * Force UMA zone to allocate service structures like
234	 * slabs using own allocator. uma_debug code performs
235	 * atomic ops on uma_slab_t fields and safety of this
236	 * operation is not guaranteed for write-back caches
237	 */
238	uma_flags = UMA_ZONE_OFFPAGE;
239#endif
240	/*
241	 * Create a cache of buffers in uncacheable memory, to implement the
242	 * BUS_DMA_COHERENT (and potentially BUS_DMA_NOCACHE) flag.
243	 */
244	coherent_allocator = busdma_bufalloc_create("coherent",
245	    arm_dcache_align,	/* minimum_alignment */
246	    busdma_bufalloc_alloc_uncacheable,
247	    busdma_bufalloc_free_uncacheable,
248	    uma_flags);	/* uma_zcreate_flags */
249}
250
251/*
252 * This init historically used SI_SUB_VM, but now the init code requires
253 * malloc(9) using M_DEVBUF memory, which is set up later than SI_SUB_VM, by
254 * SI_SUB_KMEM and SI_ORDER_SECOND, so we'll go right after that by using
255 * SI_SUB_KMEM and SI_ORDER_THIRD.
256 */
257SYSINIT(busdma, SI_SUB_KMEM, SI_ORDER_THIRD, busdma_init, NULL);
258
259static int
260exclusion_bounce_check(vm_offset_t lowaddr, vm_offset_t highaddr)
261{
262	int i;
263	for (i = 0; phys_avail[i] && phys_avail[i + 1]; i += 2) {
264		if ((lowaddr >= phys_avail[i] && lowaddr < phys_avail[i + 1]) ||
265		    (lowaddr < phys_avail[i] && highaddr >= phys_avail[i]))
266			return (1);
267	}
268	return (0);
269}
270
271/*
272 * Return true if the tag has an exclusion zone that could lead to bouncing.
273 */
274static __inline int
275exclusion_bounce(bus_dma_tag_t dmat)
276{
277
278	return (dmat->flags & BUS_DMA_EXCL_BOUNCE);
279}
280
281/*
282 * Return true if the given address does not fall on the alignment boundary.
283 */
284static __inline int
285alignment_bounce(bus_dma_tag_t dmat, bus_addr_t addr)
286{
287
288	return (addr & (dmat->alignment - 1));
289}
290
291/*
292 * Return true if the DMA should bounce because the start or end does not fall
293 * on a cacheline boundary (which would require a partial cacheline flush).
294 * COHERENT memory doesn't trigger cacheline flushes.  Memory allocated by
295 * bus_dmamem_alloc() is always aligned to cacheline boundaries, and there's a
296 * strict rule that such memory cannot be accessed by the CPU while DMA is in
297 * progress (or by multiple DMA engines at once), so that it's always safe to do
298 * full cacheline flushes even if that affects memory outside the range of a
299 * given DMA operation that doesn't involve the full allocated buffer.  If we're
300 * mapping an mbuf, that follows the same rules as a buffer we allocated.
301 */
302static __inline int
303cacheline_bounce(bus_dmamap_t map, bus_addr_t addr, bus_size_t size)
304{
305
306	if (map->flags & (DMAMAP_DMAMEM_ALLOC | DMAMAP_COHERENT | DMAMAP_MBUF))
307		return (0);
308	return ((addr | size) & arm_dcache_align_mask);
309}
310
311/*
312 * Return true if we might need to bounce the DMA described by addr and size.
313 *
314 * This is used to quick-check whether we need to do the more expensive work of
315 * checking the DMA page-by-page looking for alignment and exclusion bounces.
316 *
317 * Note that the addr argument might be either virtual or physical.  It doesn't
318 * matter because we only look at the low-order bits, which are the same in both
319 * address spaces.
320 */
321static __inline int
322might_bounce(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t addr,
323    bus_size_t size)
324{
325
326	return ((dmat->flags & BUS_DMA_EXCL_BOUNCE) ||
327	    alignment_bounce(dmat, addr) ||
328	    cacheline_bounce(map, addr, size));
329}
330
331/*
332 * Return true if we must bounce the DMA described by paddr and size.
333 *
334 * Bouncing can be triggered by DMA that doesn't begin and end on cacheline
335 * boundaries, or doesn't begin on an alignment boundary, or falls within the
336 * exclusion zone of any tag in the ancestry chain.
337 *
338 * For exclusions, walk the chain of tags comparing paddr to the exclusion zone
339 * within each tag.  If the tag has a filter function, use it to decide whether
340 * the DMA needs to bounce, otherwise any DMA within the zone bounces.
341 */
342static int
343must_bounce(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t paddr,
344    bus_size_t size)
345{
346
347	if (cacheline_bounce(map, paddr, size))
348		return (1);
349
350	/*
351	 *  The tag already contains ancestors' alignment restrictions so this
352	 *  check doesn't need to be inside the loop.
353	 */
354	if (alignment_bounce(dmat, paddr))
355		return (1);
356
357	/*
358	 * Even though each tag has an exclusion zone that is a superset of its
359	 * own and all its ancestors' exclusions, the exclusion zone of each tag
360	 * up the chain must be checked within the loop, because the busdma
361	 * rules say the filter function is called only when the address lies
362	 * within the low-highaddr range of the tag that filterfunc belongs to.
363	 */
364	while (dmat != NULL && exclusion_bounce(dmat)) {
365		if ((paddr >= dmat->lowaddr && paddr <= dmat->highaddr) &&
366		    (dmat->filter == NULL ||
367		    dmat->filter(dmat->filterarg, paddr) != 0))
368			return (1);
369		dmat = dmat->parent;
370	}
371
372	return (0);
373}
374
375static __inline struct arm32_dma_range *
376_bus_dma_inrange(struct arm32_dma_range *ranges, int nranges,
377    bus_addr_t curaddr)
378{
379	struct arm32_dma_range *dr;
380	int i;
381
382	for (i = 0, dr = ranges; i < nranges; i++, dr++) {
383		if (curaddr >= dr->dr_sysbase &&
384		    round_page(curaddr) <= (dr->dr_sysbase + dr->dr_len))
385			return (dr);
386	}
387
388	return (NULL);
389}
390
391/*
392 * Convenience function for manipulating driver locks from busdma (during
393 * busdma_swi, for example).  Drivers that don't provide their own locks
394 * should specify &Giant to dmat->lockfuncarg.  Drivers that use their own
395 * non-mutex locking scheme don't have to use this at all.
396 */
397void
398busdma_lock_mutex(void *arg, bus_dma_lock_op_t op)
399{
400	struct mtx *dmtx;
401
402	dmtx = (struct mtx *)arg;
403	switch (op) {
404	case BUS_DMA_LOCK:
405		mtx_lock(dmtx);
406		break;
407	case BUS_DMA_UNLOCK:
408		mtx_unlock(dmtx);
409		break;
410	default:
411		panic("Unknown operation 0x%x for busdma_lock_mutex!", op);
412	}
413}
414
415/*
416 * dflt_lock should never get called.  It gets put into the dma tag when
417 * lockfunc == NULL, which is only valid if the maps that are associated
418 * with the tag are meant to never be defered.
419 * XXX Should have a way to identify which driver is responsible here.
420 */
421static void
422dflt_lock(void *arg, bus_dma_lock_op_t op)
423{
424
425	panic("driver error: busdma dflt_lock called");
426}
427
428/*
429 * Allocate a device specific dma_tag.
430 */
431int
432bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment,
433		   bus_size_t boundary, bus_addr_t lowaddr,
434		   bus_addr_t highaddr, bus_dma_filter_t *filter,
435		   void *filterarg, bus_size_t maxsize, int nsegments,
436		   bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc,
437		   void *lockfuncarg, bus_dma_tag_t *dmat)
438{
439	bus_dma_tag_t newtag;
440	int error = 0;
441
442#if 0
443	if (!parent)
444		parent = arm_root_dma_tag;
445#endif
446
447	/* Basic sanity checking */
448	if (boundary != 0 && boundary < maxsegsz)
449		maxsegsz = boundary;
450
451	/* Return a NULL tag on failure */
452	*dmat = NULL;
453
454	if (maxsegsz == 0) {
455		return (EINVAL);
456	}
457
458	newtag = (bus_dma_tag_t)malloc(sizeof(*newtag), M_DEVBUF,
459	    M_ZERO | M_NOWAIT);
460	if (newtag == NULL) {
461		CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d",
462		    __func__, newtag, 0, error);
463		return (ENOMEM);
464	}
465
466	newtag->parent = parent;
467	newtag->alignment = alignment;
468	newtag->boundary = boundary;
469	newtag->lowaddr = trunc_page((vm_paddr_t)lowaddr) + (PAGE_SIZE - 1);
470	newtag->highaddr = trunc_page((vm_paddr_t)highaddr) +
471	    (PAGE_SIZE - 1);
472	newtag->filter = filter;
473	newtag->filterarg = filterarg;
474	newtag->maxsize = maxsize;
475	newtag->nsegments = nsegments;
476	newtag->maxsegsz = maxsegsz;
477	newtag->flags = flags;
478	newtag->ref_count = 1; /* Count ourself */
479	newtag->map_count = 0;
480	newtag->ranges = bus_dma_get_range();
481	newtag->_nranges = bus_dma_get_range_nb();
482	if (lockfunc != NULL) {
483		newtag->lockfunc = lockfunc;
484		newtag->lockfuncarg = lockfuncarg;
485	} else {
486		newtag->lockfunc = dflt_lock;
487		newtag->lockfuncarg = NULL;
488	}
489
490	/* Take into account any restrictions imposed by our parent tag */
491	if (parent != NULL) {
492		newtag->lowaddr = MIN(parent->lowaddr, newtag->lowaddr);
493		newtag->highaddr = MAX(parent->highaddr, newtag->highaddr);
494		newtag->alignment = MAX(parent->alignment, newtag->alignment);
495		newtag->flags |= parent->flags & BUS_DMA_COULD_BOUNCE;
496		if (newtag->boundary == 0)
497			newtag->boundary = parent->boundary;
498		else if (parent->boundary != 0)
499			newtag->boundary = MIN(parent->boundary,
500					       newtag->boundary);
501		if (newtag->filter == NULL) {
502			/*
503			 * Short circuit to looking at our parent directly
504			 * since we have encapsulated all of its information
505			 */
506			newtag->filter = parent->filter;
507			newtag->filterarg = parent->filterarg;
508			newtag->parent = parent->parent;
509		}
510		if (newtag->parent != NULL)
511			atomic_add_int(&parent->ref_count, 1);
512	}
513
514	if (exclusion_bounce_check(newtag->lowaddr, newtag->highaddr))
515		newtag->flags |= BUS_DMA_EXCL_BOUNCE;
516	if (alignment_bounce(newtag, 1))
517		newtag->flags |= BUS_DMA_ALIGN_BOUNCE;
518
519	/*
520	 * Any request can auto-bounce due to cacheline alignment, in addition
521	 * to any alignment or boundary specifications in the tag, so if the
522	 * ALLOCNOW flag is set, there's always work to do.
523	 */
524	if ((flags & BUS_DMA_ALLOCNOW) != 0) {
525		struct bounce_zone *bz;
526		/*
527		 * Round size up to a full page, and add one more page because
528		 * there can always be one more boundary crossing than the
529		 * number of pages in a transfer.
530		 */
531		maxsize = roundup2(maxsize, PAGE_SIZE) + PAGE_SIZE;
532
533		if ((error = alloc_bounce_zone(newtag)) != 0) {
534			free(newtag, M_DEVBUF);
535			return (error);
536		}
537		bz = newtag->bounce_zone;
538
539		if (ptoa(bz->total_bpages) < maxsize) {
540			int pages;
541
542			pages = atop(maxsize) - bz->total_bpages;
543
544			/* Add pages to our bounce pool */
545			if (alloc_bounce_pages(newtag, pages) < pages)
546				error = ENOMEM;
547		}
548		/* Performed initial allocation */
549		newtag->flags |= BUS_DMA_MIN_ALLOC_COMP;
550	} else
551		newtag->bounce_zone = NULL;
552
553	if (error != 0) {
554		free(newtag, M_DEVBUF);
555	} else {
556		atomic_add_32(&tags_total, 1);
557		*dmat = newtag;
558	}
559	CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d",
560	    __func__, newtag, (newtag != NULL ? newtag->flags : 0), error);
561	return (error);
562}
563
564int
565bus_dma_tag_destroy(bus_dma_tag_t dmat)
566{
567	bus_dma_tag_t dmat_copy;
568	int error;
569
570	error = 0;
571	dmat_copy = dmat;
572
573	if (dmat != NULL) {
574
575		if (dmat->map_count != 0) {
576			error = EBUSY;
577			goto out;
578		}
579
580		while (dmat != NULL) {
581			bus_dma_tag_t parent;
582
583			parent = dmat->parent;
584			atomic_subtract_int(&dmat->ref_count, 1);
585			if (dmat->ref_count == 0) {
586				atomic_subtract_32(&tags_total, 1);
587				free(dmat, M_DEVBUF);
588				/*
589				 * Last reference count, so
590				 * release our reference
591				 * count on our parent.
592				 */
593				dmat = parent;
594			} else
595				dmat = NULL;
596		}
597	}
598out:
599	CTR3(KTR_BUSDMA, "%s tag %p error %d", __func__, dmat_copy, error);
600	return (error);
601}
602
603static int allocate_bz_and_pages(bus_dma_tag_t dmat, bus_dmamap_t mapp)
604{
605	struct bounce_zone *bz;
606	int maxpages;
607	int error;
608
609	if (dmat->bounce_zone == NULL)
610		if ((error = alloc_bounce_zone(dmat)) != 0)
611			return (error);
612	bz = dmat->bounce_zone;
613	/* Initialize the new map */
614	STAILQ_INIT(&(mapp->bpages));
615
616	/*
617	 * Attempt to add pages to our pool on a per-instance basis up to a sane
618	 * limit.  Even if the tag isn't flagged as COULD_BOUNCE due to
619	 * alignment and boundary constraints, it could still auto-bounce due to
620	 * cacheline alignment, which requires at most two bounce pages.
621	 */
622	if (dmat->flags & BUS_DMA_COULD_BOUNCE)
623		maxpages = MAX_BPAGES;
624	else
625		maxpages = 2 * bz->map_count;
626	if ((dmat->flags & BUS_DMA_MIN_ALLOC_COMP) == 0 ||
627	    (bz->map_count > 0 && bz->total_bpages < maxpages)) {
628		int pages;
629
630		pages = atop(roundup2(dmat->maxsize, PAGE_SIZE)) + 1;
631		pages = MIN(maxpages - bz->total_bpages, pages);
632		pages = MAX(pages, 2);
633		if (alloc_bounce_pages(dmat, pages) < pages)
634			return (ENOMEM);
635
636		if ((dmat->flags & BUS_DMA_MIN_ALLOC_COMP) == 0)
637			dmat->flags |= BUS_DMA_MIN_ALLOC_COMP;
638	}
639	bz->map_count++;
640	return (0);
641}
642
643static bus_dmamap_t
644allocate_map(bus_dma_tag_t dmat, int mflags)
645{
646	int mapsize, segsize;
647	bus_dmamap_t map;
648
649	/*
650	 * Allocate the map.  The map structure ends with an embedded
651	 * variable-sized array of sync_list structures.  Following that
652	 * we allocate enough extra space to hold the array of bus_dma_segments.
653	 */
654	KASSERT(dmat->nsegments <= MAX_DMA_SEGMENTS,
655	   ("cannot allocate %u dma segments (max is %u)",
656	    dmat->nsegments, MAX_DMA_SEGMENTS));
657	segsize = sizeof(struct bus_dma_segment) * dmat->nsegments;
658	mapsize = sizeof(*map) + sizeof(struct sync_list) * dmat->nsegments;
659	map = malloc(mapsize + segsize, M_DEVBUF, mflags | M_ZERO);
660	if (map == NULL) {
661		CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, ENOMEM);
662		return (NULL);
663	}
664	map->segments = (bus_dma_segment_t *)((uintptr_t)map + mapsize);
665	return (map);
666}
667
668/*
669 * Allocate a handle for mapping from kva/uva/physical
670 * address space into bus device space.
671 */
672int
673bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp)
674{
675	bus_dmamap_t map;
676	int error = 0;
677
678	*mapp = map = allocate_map(dmat, M_NOWAIT);
679	if (map == NULL) {
680		CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, ENOMEM);
681		return (ENOMEM);
682	}
683
684	/*
685	 * Bouncing might be required if the driver asks for an exclusion
686	 * region, a data alignment that is stricter than 1, or DMA that begins
687	 * or ends with a partial cacheline.  Whether bouncing will actually
688	 * happen can't be known until mapping time, but we need to pre-allocate
689	 * resources now because we might not be allowed to at mapping time.
690	 */
691	error = allocate_bz_and_pages(dmat, map);
692	if (error != 0) {
693		free(map, M_DEVBUF);
694		*mapp = NULL;
695		return (error);
696	}
697	if (map->flags & DMAMAP_COHERENT)
698		atomic_add_32(&maps_coherent, 1);
699	atomic_add_32(&maps_total, 1);
700	dmat->map_count++;
701
702	return (0);
703}
704
705/*
706 * Destroy a handle for mapping from kva/uva/physical
707 * address space into bus device space.
708 */
709int
710bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map)
711{
712	if (STAILQ_FIRST(&map->bpages) != NULL || map->sync_count != 0) {
713		CTR3(KTR_BUSDMA, "%s: tag %p error %d",
714		    __func__, dmat, EBUSY);
715		return (EBUSY);
716	}
717	if (dmat->bounce_zone)
718		dmat->bounce_zone->map_count--;
719	if (map->flags & DMAMAP_COHERENT)
720		atomic_subtract_32(&maps_coherent, 1);
721	atomic_subtract_32(&maps_total, 1);
722	free(map, M_DEVBUF);
723	dmat->map_count--;
724	CTR2(KTR_BUSDMA, "%s: tag %p error 0", __func__, dmat);
725	return (0);
726}
727
728
729/*
730 * Allocate a piece of memory that can be efficiently mapped into
731 * bus device space based on the constraints lited in the dma tag.
732 * A dmamap to for use with dmamap_load is also allocated.
733 */
734int
735bus_dmamem_alloc(bus_dma_tag_t dmat, void** vaddr, int flags,
736		 bus_dmamap_t *mapp)
737{
738	busdma_bufalloc_t ba;
739	struct busdma_bufzone *bufzone;
740	bus_dmamap_t map;
741	vm_memattr_t memattr;
742	int mflags;
743
744	if (flags & BUS_DMA_NOWAIT)
745		mflags = M_NOWAIT;
746	else
747		mflags = M_WAITOK;
748	if (flags & BUS_DMA_ZERO)
749		mflags |= M_ZERO;
750
751	*mapp = map = allocate_map(dmat, mflags);
752	if (map == NULL) {
753		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
754		    __func__, dmat, dmat->flags, ENOMEM);
755		return (ENOMEM);
756	}
757	map->flags = DMAMAP_DMAMEM_ALLOC;
758
759	/* Choose a busdma buffer allocator based on memory type flags. */
760	if (flags & BUS_DMA_COHERENT) {
761		memattr = VM_MEMATTR_UNCACHEABLE;
762		ba = coherent_allocator;
763		map->flags |= DMAMAP_COHERENT;
764	} else {
765		memattr = VM_MEMATTR_DEFAULT;
766		ba = standard_allocator;
767	}
768
769	/*
770	 * Try to find a bufzone in the allocator that holds a cache of buffers
771	 * of the right size for this request.  If the buffer is too big to be
772	 * held in the allocator cache, this returns NULL.
773	 */
774	bufzone = busdma_bufalloc_findzone(ba, dmat->maxsize);
775
776	/*
777	 * Allocate the buffer from the uma(9) allocator if...
778	 *  - It's small enough to be in the allocator (bufzone not NULL).
779	 *  - The alignment constraint isn't larger than the allocation size
780	 *    (the allocator aligns buffers to their size boundaries).
781	 *  - There's no need to handle lowaddr/highaddr exclusion zones.
782	 * else allocate non-contiguous pages if...
783	 *  - The page count that could get allocated doesn't exceed nsegments.
784	 *  - The alignment constraint isn't larger than a page boundary.
785	 *  - There are no boundary-crossing constraints.
786	 * else allocate a block of contiguous pages because one or more of the
787	 * constraints is something that only the contig allocator can fulfill.
788	 */
789	if (bufzone != NULL && dmat->alignment <= bufzone->size &&
790	    !exclusion_bounce(dmat)) {
791		*vaddr = uma_zalloc(bufzone->umazone, mflags);
792	} else if (dmat->nsegments >= btoc(dmat->maxsize) &&
793	    dmat->alignment <= PAGE_SIZE && dmat->boundary == 0) {
794		*vaddr = (void *)kmem_alloc_attr(kernel_arena, dmat->maxsize,
795		    mflags, 0, dmat->lowaddr, memattr);
796	} else {
797		*vaddr = (void *)kmem_alloc_contig(kernel_arena, dmat->maxsize,
798		    mflags, 0, dmat->lowaddr, dmat->alignment, dmat->boundary,
799		    memattr);
800	}
801
802
803	if (*vaddr == NULL) {
804		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
805		    __func__, dmat, dmat->flags, ENOMEM);
806		free(map, M_DEVBUF);
807		*mapp = NULL;
808		return (ENOMEM);
809	} else if ((uintptr_t)*vaddr & (dmat->alignment - 1)) {
810		printf("bus_dmamem_alloc failed to align memory properly.\n");
811	}
812	if (map->flags & DMAMAP_COHERENT)
813		atomic_add_32(&maps_coherent, 1);
814	atomic_add_32(&maps_dmamem, 1);
815	atomic_add_32(&maps_total, 1);
816	dmat->map_count++;
817
818	CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
819	    __func__, dmat, dmat->flags, 0);
820	return (0);
821}
822
823/*
824 * Free a piece of memory and it's allociated dmamap, that was allocated
825 * via bus_dmamem_alloc.  Make the same choice for free/contigfree.
826 */
827void
828bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map)
829{
830	struct busdma_bufzone *bufzone;
831	busdma_bufalloc_t ba;
832
833	if (map->flags & DMAMAP_COHERENT)
834		ba = coherent_allocator;
835	else
836		ba = standard_allocator;
837
838	bufzone = busdma_bufalloc_findzone(ba, dmat->maxsize);
839
840	if (bufzone != NULL && dmat->alignment <= bufzone->size &&
841	    !exclusion_bounce(dmat))
842		uma_zfree(bufzone->umazone, vaddr);
843	else
844		kmem_free(kernel_arena, (vm_offset_t)vaddr, dmat->maxsize);
845
846	dmat->map_count--;
847	if (map->flags & DMAMAP_COHERENT)
848		atomic_subtract_32(&maps_coherent, 1);
849	atomic_subtract_32(&maps_total, 1);
850	atomic_subtract_32(&maps_dmamem, 1);
851	free(map, M_DEVBUF);
852	CTR3(KTR_BUSDMA, "%s: tag %p flags 0x%x", __func__, dmat, dmat->flags);
853}
854
855static void
856_bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf,
857    bus_size_t buflen, int flags)
858{
859	bus_addr_t curaddr;
860	bus_size_t sgsize;
861
862	if (map->pagesneeded == 0) {
863		CTR5(KTR_BUSDMA, "lowaddr= %d, boundary= %d, alignment= %d"
864		    " map= %p, pagesneeded= %d",
865		    dmat->lowaddr, dmat->boundary, dmat->alignment,
866		    map, map->pagesneeded);
867		/*
868		 * Count the number of bounce pages
869		 * needed in order to complete this transfer
870		 */
871		curaddr = buf;
872		while (buflen != 0) {
873			sgsize = MIN(buflen, dmat->maxsegsz);
874			if (must_bounce(dmat, map, curaddr, sgsize) != 0) {
875				sgsize = MIN(sgsize, PAGE_SIZE);
876				map->pagesneeded++;
877			}
878			curaddr += sgsize;
879			buflen -= sgsize;
880		}
881		CTR1(KTR_BUSDMA, "pagesneeded= %d", map->pagesneeded);
882	}
883}
884
885static void
886_bus_dmamap_count_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
887    void *buf, bus_size_t buflen, int flags)
888{
889	vm_offset_t vaddr;
890	vm_offset_t vendaddr;
891	bus_addr_t paddr;
892
893	if (map->pagesneeded == 0) {
894		CTR5(KTR_BUSDMA, "lowaddr= %d, boundary= %d, alignment= %d"
895		    " map= %p, pagesneeded= %d",
896		    dmat->lowaddr, dmat->boundary, dmat->alignment,
897		    map, map->pagesneeded);
898		/*
899		 * Count the number of bounce pages
900		 * needed in order to complete this transfer
901		 */
902		vaddr = (vm_offset_t)buf;
903		vendaddr = (vm_offset_t)buf + buflen;
904
905		while (vaddr < vendaddr) {
906			if (__predict_true(map->pmap == kernel_pmap))
907				paddr = pmap_kextract(vaddr);
908			else
909				paddr = pmap_extract(map->pmap, vaddr);
910			if (must_bounce(dmat, map, paddr,
911			    min(vendaddr - vaddr, (PAGE_SIZE - ((vm_offset_t)vaddr &
912			    PAGE_MASK)))) != 0) {
913				map->pagesneeded++;
914			}
915			vaddr += (PAGE_SIZE - ((vm_offset_t)vaddr & PAGE_MASK));
916
917		}
918		CTR1(KTR_BUSDMA, "pagesneeded= %d", map->pagesneeded);
919	}
920}
921
922static int
923_bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int flags)
924{
925
926	/* Reserve Necessary Bounce Pages */
927	mtx_lock(&bounce_lock);
928	if (flags & BUS_DMA_NOWAIT) {
929		if (reserve_bounce_pages(dmat, map, 0) != 0) {
930			map->pagesneeded = 0;
931			mtx_unlock(&bounce_lock);
932			return (ENOMEM);
933		}
934	} else {
935		if (reserve_bounce_pages(dmat, map, 1) != 0) {
936			/* Queue us for resources */
937			STAILQ_INSERT_TAIL(&bounce_map_waitinglist, map, links);
938			mtx_unlock(&bounce_lock);
939			return (EINPROGRESS);
940		}
941	}
942	mtx_unlock(&bounce_lock);
943
944	return (0);
945}
946
947/*
948 * Add a single contiguous physical range to the segment list.
949 */
950static int
951_bus_dmamap_addseg(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t curaddr,
952		   bus_size_t sgsize, bus_dma_segment_t *segs, int *segp)
953{
954	bus_addr_t baddr, bmask;
955	int seg;
956
957	/*
958	 * Make sure we don't cross any boundaries.
959	 */
960	bmask = ~(dmat->boundary - 1);
961	if (dmat->boundary > 0) {
962		baddr = (curaddr + dmat->boundary) & bmask;
963		if (sgsize > (baddr - curaddr))
964			sgsize = (baddr - curaddr);
965	}
966
967	if (dmat->ranges) {
968		struct arm32_dma_range *dr;
969
970		dr = _bus_dma_inrange(dmat->ranges, dmat->_nranges,
971		    curaddr);
972		if (dr == NULL) {
973			_bus_dmamap_unload(dmat, map);
974			return (0);
975		}
976		/*
977		 * In a valid DMA range.  Translate the physical
978		 * memory address to an address in the DMA window.
979		 */
980		curaddr = (curaddr - dr->dr_sysbase) + dr->dr_busbase;
981	}
982
983	/*
984	 * Insert chunk into a segment, coalescing with
985	 * previous segment if possible.
986	 */
987	seg = *segp;
988	if (seg == -1) {
989		seg = 0;
990		segs[seg].ds_addr = curaddr;
991		segs[seg].ds_len = sgsize;
992	} else {
993		if (curaddr == segs[seg].ds_addr + segs[seg].ds_len &&
994		    (segs[seg].ds_len + sgsize) <= dmat->maxsegsz &&
995		    (dmat->boundary == 0 ||
996		     (segs[seg].ds_addr & bmask) == (curaddr & bmask)))
997			segs[seg].ds_len += sgsize;
998		else {
999			if (++seg >= dmat->nsegments)
1000				return (0);
1001			segs[seg].ds_addr = curaddr;
1002			segs[seg].ds_len = sgsize;
1003		}
1004	}
1005	*segp = seg;
1006	return (sgsize);
1007}
1008
1009/*
1010 * Utility function to load a physical buffer.  segp contains
1011 * the starting segment on entrace, and the ending segment on exit.
1012 */
1013int
1014_bus_dmamap_load_phys(bus_dma_tag_t dmat,
1015		      bus_dmamap_t map,
1016		      vm_paddr_t buf, bus_size_t buflen,
1017		      int flags,
1018		      bus_dma_segment_t *segs,
1019		      int *segp)
1020{
1021	bus_addr_t curaddr;
1022	bus_size_t sgsize;
1023	int error;
1024
1025	if (segs == NULL)
1026		segs = map->segments;
1027
1028	maploads_total++;
1029	maploads_physmem++;
1030
1031	if (might_bounce(dmat, map, buflen, buflen)) {
1032		_bus_dmamap_count_phys(dmat, map, buf, buflen, flags);
1033		if (map->pagesneeded != 0) {
1034			maploads_bounced++;
1035			error = _bus_dmamap_reserve_pages(dmat, map, flags);
1036			if (error)
1037				return (error);
1038		}
1039	}
1040
1041	while (buflen > 0) {
1042		curaddr = buf;
1043		sgsize = MIN(buflen, dmat->maxsegsz);
1044		if (map->pagesneeded != 0 && must_bounce(dmat, map, curaddr,
1045		    sgsize)) {
1046			sgsize = MIN(sgsize, PAGE_SIZE);
1047			curaddr = add_bounce_page(dmat, map, 0, curaddr,
1048						  sgsize);
1049		}
1050		sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs,
1051		    segp);
1052		if (sgsize == 0)
1053			break;
1054		buf += sgsize;
1055		buflen -= sgsize;
1056	}
1057
1058	/*
1059	 * Did we fit?
1060	 */
1061	if (buflen != 0) {
1062		_bus_dmamap_unload(dmat, map);
1063		return (EFBIG); /* XXX better return value here? */
1064	}
1065	return (0);
1066}
1067
1068int
1069_bus_dmamap_load_ma(bus_dma_tag_t dmat, bus_dmamap_t map,
1070    struct vm_page **ma, bus_size_t tlen, int ma_offs, int flags,
1071    bus_dma_segment_t *segs, int *segp)
1072{
1073
1074	return (bus_dmamap_load_ma_triv(dmat, map, ma, tlen, ma_offs, flags,
1075	    segs, segp));
1076}
1077
1078/*
1079 * Utility function to load a linear buffer.  segp contains
1080 * the starting segment on entrace, and the ending segment on exit.
1081 */
1082int
1083_bus_dmamap_load_buffer(bus_dma_tag_t dmat,
1084			bus_dmamap_t map,
1085			void *buf, bus_size_t buflen,
1086			pmap_t pmap,
1087			int flags,
1088			bus_dma_segment_t *segs,
1089			int *segp)
1090{
1091	bus_size_t sgsize;
1092	bus_addr_t curaddr;
1093	vm_offset_t vaddr;
1094	struct sync_list *sl;
1095	int error;
1096
1097	maploads_total++;
1098	if (map->flags & DMAMAP_COHERENT)
1099		maploads_coherent++;
1100	if (map->flags & DMAMAP_DMAMEM_ALLOC)
1101		maploads_dmamem++;
1102
1103	if (segs == NULL)
1104		segs = map->segments;
1105
1106	if (flags & BUS_DMA_LOAD_MBUF) {
1107		maploads_mbuf++;
1108		map->flags |= DMAMAP_MBUF;
1109	}
1110
1111	map->pmap = pmap;
1112
1113	if (might_bounce(dmat, map, (bus_addr_t)buf, buflen)) {
1114		_bus_dmamap_count_pages(dmat, map, buf, buflen, flags);
1115		if (map->pagesneeded != 0) {
1116			maploads_bounced++;
1117			error = _bus_dmamap_reserve_pages(dmat, map, flags);
1118			if (error)
1119				return (error);
1120		}
1121	}
1122
1123	sl = NULL;
1124	vaddr = (vm_offset_t)buf;
1125
1126	while (buflen > 0) {
1127		/*
1128		 * Get the physical address for this segment.
1129		 */
1130		if (__predict_true(map->pmap == kernel_pmap))
1131			curaddr = pmap_kextract(vaddr);
1132		else
1133			curaddr = pmap_extract(map->pmap, vaddr);
1134
1135		/*
1136		 * Compute the segment size, and adjust counts.
1137		 */
1138		sgsize = PAGE_SIZE - ((u_long)curaddr & PAGE_MASK);
1139		if (sgsize > dmat->maxsegsz)
1140			sgsize = dmat->maxsegsz;
1141		if (buflen < sgsize)
1142			sgsize = buflen;
1143
1144		if (map->pagesneeded != 0 && must_bounce(dmat, map, curaddr,
1145		    sgsize)) {
1146			curaddr = add_bounce_page(dmat, map, vaddr, curaddr,
1147						  sgsize);
1148		} else {
1149			sl = &map->slist[map->sync_count - 1];
1150			if (map->sync_count == 0 ||
1151#ifdef ARM_L2_PIPT
1152			    curaddr != sl->busaddr + sl->datacount ||
1153#endif
1154			    vaddr != sl->vaddr + sl->datacount) {
1155				if (++map->sync_count > dmat->nsegments)
1156					goto cleanup;
1157				sl++;
1158				sl->vaddr = vaddr;
1159				sl->datacount = sgsize;
1160				sl->busaddr = curaddr;
1161			} else
1162				sl->datacount += sgsize;
1163		}
1164		sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs,
1165					    segp);
1166		if (sgsize == 0)
1167			break;
1168		vaddr += sgsize;
1169		buflen -= sgsize;
1170	}
1171
1172cleanup:
1173	/*
1174	 * Did we fit?
1175	 */
1176	if (buflen != 0) {
1177		_bus_dmamap_unload(dmat, map);
1178		return (EFBIG); /* XXX better return value here? */
1179	}
1180	return (0);
1181}
1182
1183
1184void
1185__bus_dmamap_waitok(bus_dma_tag_t dmat, bus_dmamap_t map,
1186		    struct memdesc *mem, bus_dmamap_callback_t *callback,
1187		    void *callback_arg)
1188{
1189
1190	map->mem = *mem;
1191	map->dmat = dmat;
1192	map->callback = callback;
1193	map->callback_arg = callback_arg;
1194}
1195
1196bus_dma_segment_t *
1197_bus_dmamap_complete(bus_dma_tag_t dmat, bus_dmamap_t map,
1198		     bus_dma_segment_t *segs, int nsegs, int error)
1199{
1200
1201	if (segs == NULL)
1202		segs = map->segments;
1203	return (segs);
1204}
1205
1206/*
1207 * Release the mapping held by map.
1208 */
1209void
1210_bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map)
1211{
1212	struct bounce_page *bpage;
1213	struct bounce_zone *bz;
1214
1215	if ((bz = dmat->bounce_zone) != NULL) {
1216		while ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) {
1217			STAILQ_REMOVE_HEAD(&map->bpages, links);
1218			free_bounce_page(dmat, bpage);
1219		}
1220
1221		bz = dmat->bounce_zone;
1222		bz->free_bpages += map->pagesreserved;
1223		bz->reserved_bpages -= map->pagesreserved;
1224		map->pagesreserved = 0;
1225		map->pagesneeded = 0;
1226	}
1227	map->sync_count = 0;
1228	map->flags &= ~DMAMAP_MBUF;
1229}
1230
1231#ifdef notyetbounceuser
1232/* If busdma uses user pages, then the interrupt handler could
1233 * be use the kernel vm mapping. Both bounce pages and sync list
1234 * do not cross page boundaries.
1235 * Below is a rough sequence that a person would do to fix the
1236 * user page reference in the kernel vmspace. This would be
1237 * done in the dma post routine.
1238 */
1239void
1240_bus_dmamap_fix_user(vm_offset_t buf, bus_size_t len,
1241			pmap_t pmap, int op)
1242{
1243	bus_size_t sgsize;
1244	bus_addr_t curaddr;
1245	vm_offset_t va;
1246
1247	/*
1248	 * each synclist entry is contained within a single page.
1249	 * this would be needed if BUS_DMASYNC_POSTxxxx was implemented
1250	 */
1251	curaddr = pmap_extract(pmap, buf);
1252	va = pmap_dma_map(curaddr);
1253	switch (op) {
1254	case SYNC_USER_INV:
1255		cpu_dcache_wb_range(va, sgsize);
1256		break;
1257
1258	case SYNC_USER_COPYTO:
1259		bcopy((void *)va, (void *)bounce, sgsize);
1260		break;
1261
1262	case SYNC_USER_COPYFROM:
1263		bcopy((void *) bounce, (void *)va, sgsize);
1264		break;
1265
1266	default:
1267		break;
1268	}
1269
1270	pmap_dma_unmap(va);
1271}
1272#endif
1273
1274#ifdef ARM_L2_PIPT
1275#define l2cache_wb_range(va, pa, size) cpu_l2cache_wb_range(pa, size)
1276#define l2cache_wbinv_range(va, pa, size) cpu_l2cache_wbinv_range(pa, size)
1277#define l2cache_inv_range(va, pa, size) cpu_l2cache_inv_range(pa, size)
1278#else
1279#define l2cache_wb_range(va, pa, size) cpu_l2cache_wb_range(va, size)
1280#define l2cache_wbinv_range(va, pa, size) cpu_l2cache_wbinv_range(va, size)
1281#define l2cache_inv_range(va, pa, size) cpu_l2cache_inv_range(va, size)
1282#endif
1283
1284void
1285_bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dmasync_op_t op)
1286{
1287	struct bounce_page *bpage;
1288	struct sync_list *sl, *end;
1289	/*
1290	 * If the buffer was from user space, it is possible that this is not
1291	 * the same vm map, especially on a POST operation.  It's not clear that
1292	 * dma on userland buffers can work at all right now.  To be safe, until
1293	 * we're able to test direct userland dma, panic on a map mismatch.
1294	 */
1295	if ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) {
1296		if (!pmap_dmap_iscurrent(map->pmap))
1297			panic("_bus_dmamap_sync: wrong user map for bounce sync.");
1298
1299		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x op 0x%x "
1300		    "performing bounce", __func__, dmat, dmat->flags, op);
1301
1302		/*
1303		 * For PREWRITE do a writeback.  Clean the caches from the
1304		 * innermost to the outermost levels.
1305		 */
1306		if (op & BUS_DMASYNC_PREWRITE) {
1307			while (bpage != NULL) {
1308				if (bpage->datavaddr != 0)
1309					bcopy((void *)bpage->datavaddr,
1310					    (void *)bpage->vaddr,
1311					    bpage->datacount);
1312				else
1313					physcopyout(bpage->dataaddr,
1314					    (void *)bpage->vaddr,
1315					    bpage->datacount);
1316				cpu_dcache_wb_range((vm_offset_t)bpage->vaddr,
1317				    bpage->datacount);
1318				l2cache_wb_range((vm_offset_t)bpage->vaddr,
1319				    (vm_offset_t)bpage->busaddr,
1320				    bpage->datacount);
1321				bpage = STAILQ_NEXT(bpage, links);
1322			}
1323			dmat->bounce_zone->total_bounced++;
1324		}
1325
1326		/*
1327		 * Do an invalidate for PREREAD unless a writeback was already
1328		 * done above due to PREWRITE also being set.  The reason for a
1329		 * PREREAD invalidate is to prevent dirty lines currently in the
1330		 * cache from being evicted during the DMA.  If a writeback was
1331		 * done due to PREWRITE also being set there will be no dirty
1332		 * lines and the POSTREAD invalidate handles the rest. The
1333		 * invalidate is done from the innermost to outermost level. If
1334		 * L2 were done first, a dirty cacheline could be automatically
1335		 * evicted from L1 before we invalidated it, re-dirtying the L2.
1336		 */
1337		if ((op & BUS_DMASYNC_PREREAD) && !(op & BUS_DMASYNC_PREWRITE)) {
1338			bpage = STAILQ_FIRST(&map->bpages);
1339			while (bpage != NULL) {
1340				cpu_dcache_inv_range((vm_offset_t)bpage->vaddr,
1341				    bpage->datacount);
1342				l2cache_inv_range((vm_offset_t)bpage->vaddr,
1343				    (vm_offset_t)bpage->busaddr,
1344				    bpage->datacount);
1345				bpage = STAILQ_NEXT(bpage, links);
1346			}
1347		}
1348
1349		/*
1350		 * Re-invalidate the caches on a POSTREAD, even though they were
1351		 * already invalidated at PREREAD time.  Aggressive prefetching
1352		 * due to accesses to other data near the dma buffer could have
1353		 * brought buffer data into the caches which is now stale.  The
1354		 * caches are invalidated from the outermost to innermost; the
1355		 * prefetches could be happening right now, and if L1 were
1356		 * invalidated first, stale L2 data could be prefetched into L1.
1357		 */
1358		if (op & BUS_DMASYNC_POSTREAD) {
1359			while (bpage != NULL) {
1360				vm_offset_t startv;
1361				vm_paddr_t startp;
1362				int len;
1363
1364				startv = bpage->vaddr &~ arm_dcache_align_mask;
1365				startp = bpage->busaddr &~ arm_dcache_align_mask;
1366				len = bpage->datacount;
1367
1368				if (startv != bpage->vaddr)
1369					len += bpage->vaddr & arm_dcache_align_mask;
1370				if (len & arm_dcache_align_mask)
1371					len = (len -
1372					    (len & arm_dcache_align_mask)) +
1373					    arm_dcache_align;
1374				l2cache_inv_range(startv, startp, len);
1375				cpu_dcache_inv_range(startv, len);
1376				if (bpage->datavaddr != 0)
1377					bcopy((void *)bpage->vaddr,
1378					    (void *)bpage->datavaddr,
1379					    bpage->datacount);
1380				else
1381					physcopyin((void *)bpage->vaddr,
1382					    bpage->dataaddr,
1383					    bpage->datacount);
1384				bpage = STAILQ_NEXT(bpage, links);
1385			}
1386			dmat->bounce_zone->total_bounced++;
1387		}
1388	}
1389
1390	/*
1391	 * For COHERENT memory no cache maintenance is necessary, but ensure all
1392	 * writes have reached memory for the PREWRITE case.  No action is
1393	 * needed for a PREREAD without PREWRITE also set, because that would
1394	 * imply that the cpu had written to the COHERENT buffer and expected
1395	 * the dma device to see that change, and by definition a PREWRITE sync
1396	 * is required to make that happen.
1397	 */
1398	if (map->flags & DMAMAP_COHERENT) {
1399		if (op & BUS_DMASYNC_PREWRITE) {
1400			dsb();
1401			cpu_l2cache_drain_writebuf();
1402		}
1403		return;
1404	}
1405
1406	/*
1407	 * Cache maintenance for normal (non-COHERENT non-bounce) buffers.  All
1408	 * the comments about the sequences for flushing cache levels in the
1409	 * bounce buffer code above apply here as well.  In particular, the fact
1410	 * that the sequence is inner-to-outer for PREREAD invalidation and
1411	 * outer-to-inner for POSTREAD invalidation is not a mistake.
1412	 */
1413	if (map->sync_count != 0) {
1414		if (!pmap_dmap_iscurrent(map->pmap))
1415			panic("_bus_dmamap_sync: wrong user map for sync.");
1416
1417		sl = &map->slist[0];
1418		end = &map->slist[map->sync_count];
1419		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x op 0x%x "
1420		    "performing sync", __func__, dmat, dmat->flags, op);
1421
1422		switch (op) {
1423		case BUS_DMASYNC_PREWRITE:
1424		case BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD:
1425			while (sl != end) {
1426				cpu_dcache_wb_range(sl->vaddr, sl->datacount);
1427				l2cache_wb_range(sl->vaddr, sl->busaddr,
1428				    sl->datacount);
1429				sl++;
1430			}
1431			break;
1432
1433		case BUS_DMASYNC_PREREAD:
1434			/*
1435			 * An mbuf may start in the middle of a cacheline. There
1436			 * will be no cpu writes to the beginning of that line
1437			 * (which contains the mbuf header) while dma is in
1438			 * progress.  Handle that case by doing a writeback of
1439			 * just the first cacheline before invalidating the
1440			 * overall buffer.  Any mbuf in a chain may have this
1441			 * misalignment.  Buffers which are not mbufs bounce if
1442			 * they are not aligned to a cacheline.
1443			 */
1444			while (sl != end) {
1445				if (sl->vaddr & arm_dcache_align_mask) {
1446					KASSERT(map->flags & DMAMAP_MBUF,
1447					    ("unaligned buffer is not an mbuf"));
1448					cpu_dcache_wb_range(sl->vaddr, 1);
1449					l2cache_wb_range(sl->vaddr,
1450					    sl->busaddr, 1);
1451				}
1452				cpu_dcache_inv_range(sl->vaddr, sl->datacount);
1453				l2cache_inv_range(sl->vaddr, sl->busaddr,
1454				    sl->datacount);
1455				sl++;
1456			}
1457			break;
1458
1459		case BUS_DMASYNC_POSTWRITE:
1460			break;
1461
1462		case BUS_DMASYNC_POSTREAD:
1463		case BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE:
1464			while (sl != end) {
1465				l2cache_inv_range(sl->vaddr, sl->busaddr,
1466				    sl->datacount);
1467				cpu_dcache_inv_range(sl->vaddr, sl->datacount);
1468				sl++;
1469			}
1470			break;
1471
1472		default:
1473			panic("unsupported combination of sync operations: 0x%08x\n", op);
1474			break;
1475		}
1476	}
1477}
1478
1479static void
1480init_bounce_pages(void *dummy __unused)
1481{
1482
1483	total_bpages = 0;
1484	STAILQ_INIT(&bounce_zone_list);
1485	STAILQ_INIT(&bounce_map_waitinglist);
1486	STAILQ_INIT(&bounce_map_callbacklist);
1487	mtx_init(&bounce_lock, "bounce pages lock", NULL, MTX_DEF);
1488}
1489SYSINIT(bpages, SI_SUB_LOCK, SI_ORDER_ANY, init_bounce_pages, NULL);
1490
1491static struct sysctl_ctx_list *
1492busdma_sysctl_tree(struct bounce_zone *bz)
1493{
1494
1495	return (&bz->sysctl_tree);
1496}
1497
1498static struct sysctl_oid *
1499busdma_sysctl_tree_top(struct bounce_zone *bz)
1500{
1501
1502	return (bz->sysctl_tree_top);
1503}
1504
1505static int
1506alloc_bounce_zone(bus_dma_tag_t dmat)
1507{
1508	struct bounce_zone *bz;
1509
1510	/* Check to see if we already have a suitable zone */
1511	STAILQ_FOREACH(bz, &bounce_zone_list, links) {
1512		if ((dmat->alignment <= bz->alignment) &&
1513		    (dmat->lowaddr >= bz->lowaddr)) {
1514			dmat->bounce_zone = bz;
1515			return (0);
1516		}
1517	}
1518
1519	if ((bz = (struct bounce_zone *)malloc(sizeof(*bz), M_DEVBUF,
1520	    M_NOWAIT | M_ZERO)) == NULL)
1521		return (ENOMEM);
1522
1523	STAILQ_INIT(&bz->bounce_page_list);
1524	bz->free_bpages = 0;
1525	bz->reserved_bpages = 0;
1526	bz->active_bpages = 0;
1527	bz->lowaddr = dmat->lowaddr;
1528	bz->alignment = MAX(dmat->alignment, PAGE_SIZE);
1529	bz->map_count = 0;
1530	snprintf(bz->zoneid, 8, "zone%d", busdma_zonecount);
1531	busdma_zonecount++;
1532	snprintf(bz->lowaddrid, 18, "%#jx", (uintmax_t)bz->lowaddr);
1533	STAILQ_INSERT_TAIL(&bounce_zone_list, bz, links);
1534	dmat->bounce_zone = bz;
1535
1536	sysctl_ctx_init(&bz->sysctl_tree);
1537	bz->sysctl_tree_top = SYSCTL_ADD_NODE(&bz->sysctl_tree,
1538	    SYSCTL_STATIC_CHILDREN(_hw_busdma), OID_AUTO, bz->zoneid,
1539	    CTLFLAG_RD, 0, "");
1540	if (bz->sysctl_tree_top == NULL) {
1541		sysctl_ctx_free(&bz->sysctl_tree);
1542		return (0);	/* XXX error code? */
1543	}
1544
1545	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1546	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1547	    "total_bpages", CTLFLAG_RD, &bz->total_bpages, 0,
1548	    "Total bounce pages");
1549	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1550	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1551	    "free_bpages", CTLFLAG_RD, &bz->free_bpages, 0,
1552	    "Free bounce pages");
1553	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1554	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1555	    "reserved_bpages", CTLFLAG_RD, &bz->reserved_bpages, 0,
1556	    "Reserved bounce pages");
1557	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1558	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1559	    "active_bpages", CTLFLAG_RD, &bz->active_bpages, 0,
1560	    "Active bounce pages");
1561	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1562	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1563	    "total_bounced", CTLFLAG_RD, &bz->total_bounced, 0,
1564	    "Total bounce requests (pages bounced)");
1565	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1566	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1567	    "total_deferred", CTLFLAG_RD, &bz->total_deferred, 0,
1568	    "Total bounce requests that were deferred");
1569	SYSCTL_ADD_STRING(busdma_sysctl_tree(bz),
1570	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1571	    "lowaddr", CTLFLAG_RD, bz->lowaddrid, 0, "");
1572	SYSCTL_ADD_ULONG(busdma_sysctl_tree(bz),
1573	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1574	    "alignment", CTLFLAG_RD, &bz->alignment, "");
1575
1576	return (0);
1577}
1578
1579static int
1580alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages)
1581{
1582	struct bounce_zone *bz;
1583	int count;
1584
1585	bz = dmat->bounce_zone;
1586	count = 0;
1587	while (numpages > 0) {
1588		struct bounce_page *bpage;
1589
1590		bpage = (struct bounce_page *)malloc(sizeof(*bpage), M_DEVBUF,
1591		    M_NOWAIT | M_ZERO);
1592
1593		if (bpage == NULL)
1594			break;
1595		bpage->vaddr = (vm_offset_t)contigmalloc(PAGE_SIZE, M_DEVBUF,
1596		    M_NOWAIT, 0ul, bz->lowaddr, PAGE_SIZE, 0);
1597		if (bpage->vaddr == 0) {
1598			free(bpage, M_DEVBUF);
1599			break;
1600		}
1601		bpage->busaddr = pmap_kextract(bpage->vaddr);
1602		mtx_lock(&bounce_lock);
1603		STAILQ_INSERT_TAIL(&bz->bounce_page_list, bpage, links);
1604		total_bpages++;
1605		bz->total_bpages++;
1606		bz->free_bpages++;
1607		mtx_unlock(&bounce_lock);
1608		count++;
1609		numpages--;
1610	}
1611	return (count);
1612}
1613
1614static int
1615reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int commit)
1616{
1617	struct bounce_zone *bz;
1618	int pages;
1619
1620	mtx_assert(&bounce_lock, MA_OWNED);
1621	bz = dmat->bounce_zone;
1622	pages = MIN(bz->free_bpages, map->pagesneeded - map->pagesreserved);
1623	if (commit == 0 && map->pagesneeded > (map->pagesreserved + pages))
1624		return (map->pagesneeded - (map->pagesreserved + pages));
1625	bz->free_bpages -= pages;
1626	bz->reserved_bpages += pages;
1627	map->pagesreserved += pages;
1628	pages = map->pagesneeded - map->pagesreserved;
1629
1630	return (pages);
1631}
1632
1633static bus_addr_t
1634add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map, vm_offset_t vaddr,
1635		bus_addr_t addr, bus_size_t size)
1636{
1637	struct bounce_zone *bz;
1638	struct bounce_page *bpage;
1639
1640	KASSERT(dmat->bounce_zone != NULL, ("no bounce zone in dma tag"));
1641	KASSERT(map != NULL,
1642	    ("add_bounce_page: bad map %p", map));
1643
1644	bz = dmat->bounce_zone;
1645	if (map->pagesneeded == 0)
1646		panic("add_bounce_page: map doesn't need any pages");
1647	map->pagesneeded--;
1648
1649	if (map->pagesreserved == 0)
1650		panic("add_bounce_page: map doesn't need any pages");
1651	map->pagesreserved--;
1652
1653	mtx_lock(&bounce_lock);
1654	bpage = STAILQ_FIRST(&bz->bounce_page_list);
1655	if (bpage == NULL)
1656		panic("add_bounce_page: free page list is empty");
1657
1658	STAILQ_REMOVE_HEAD(&bz->bounce_page_list, links);
1659	bz->reserved_bpages--;
1660	bz->active_bpages++;
1661	mtx_unlock(&bounce_lock);
1662
1663	if (dmat->flags & BUS_DMA_KEEP_PG_OFFSET) {
1664		/* Page offset needs to be preserved. */
1665		bpage->vaddr |= addr & PAGE_MASK;
1666		bpage->busaddr |= addr & PAGE_MASK;
1667	}
1668	bpage->datavaddr = vaddr;
1669	bpage->dataaddr = addr;
1670	bpage->datacount = size;
1671	STAILQ_INSERT_TAIL(&(map->bpages), bpage, links);
1672	return (bpage->busaddr);
1673}
1674
1675static void
1676free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage)
1677{
1678	struct bus_dmamap *map;
1679	struct bounce_zone *bz;
1680
1681	bz = dmat->bounce_zone;
1682	bpage->datavaddr = 0;
1683	bpage->datacount = 0;
1684	if (dmat->flags & BUS_DMA_KEEP_PG_OFFSET) {
1685		/*
1686		 * Reset the bounce page to start at offset 0.  Other uses
1687		 * of this bounce page may need to store a full page of
1688		 * data and/or assume it starts on a page boundary.
1689		 */
1690		bpage->vaddr &= ~PAGE_MASK;
1691		bpage->busaddr &= ~PAGE_MASK;
1692	}
1693
1694	mtx_lock(&bounce_lock);
1695	STAILQ_INSERT_HEAD(&bz->bounce_page_list, bpage, links);
1696	bz->free_bpages++;
1697	bz->active_bpages--;
1698	if ((map = STAILQ_FIRST(&bounce_map_waitinglist)) != NULL) {
1699		if (reserve_bounce_pages(map->dmat, map, 1) == 0) {
1700			STAILQ_REMOVE_HEAD(&bounce_map_waitinglist, links);
1701			STAILQ_INSERT_TAIL(&bounce_map_callbacklist,
1702			    map, links);
1703			busdma_swi_pending = 1;
1704			bz->total_deferred++;
1705			swi_sched(vm_ih, 0);
1706		}
1707	}
1708	mtx_unlock(&bounce_lock);
1709}
1710
1711void
1712busdma_swi(void)
1713{
1714	bus_dma_tag_t dmat;
1715	struct bus_dmamap *map;
1716
1717	mtx_lock(&bounce_lock);
1718	while ((map = STAILQ_FIRST(&bounce_map_callbacklist)) != NULL) {
1719		STAILQ_REMOVE_HEAD(&bounce_map_callbacklist, links);
1720		mtx_unlock(&bounce_lock);
1721		dmat = map->dmat;
1722		dmat->lockfunc(dmat->lockfuncarg, BUS_DMA_LOCK);
1723		bus_dmamap_load_mem(map->dmat, map, &map->mem, map->callback,
1724		    map->callback_arg, BUS_DMA_WAITOK);
1725		dmat->lockfunc(dmat->lockfuncarg, BUS_DMA_UNLOCK);
1726		mtx_lock(&bounce_lock);
1727	}
1728	mtx_unlock(&bounce_lock);
1729}
1730