vmx.c revision 270159
1/*-
2 * Copyright (c) 2011 NetApp, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 * $FreeBSD: stable/10/sys/amd64/vmm/intel/vmx.c 270159 2014-08-19 01:20:24Z grehan $
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD: stable/10/sys/amd64/vmm/intel/vmx.c 270159 2014-08-19 01:20:24Z grehan $");
31
32#include <sys/param.h>
33#include <sys/systm.h>
34#include <sys/smp.h>
35#include <sys/kernel.h>
36#include <sys/malloc.h>
37#include <sys/pcpu.h>
38#include <sys/proc.h>
39#include <sys/sysctl.h>
40
41#include <vm/vm.h>
42#include <vm/pmap.h>
43
44#include <machine/psl.h>
45#include <machine/cpufunc.h>
46#include <machine/md_var.h>
47#include <machine/segments.h>
48#include <machine/smp.h>
49#include <machine/specialreg.h>
50#include <machine/vmparam.h>
51
52#include <machine/vmm.h>
53#include <machine/vmm_dev.h>
54#include <machine/vmm_instruction_emul.h>
55#include "vmm_host.h"
56#include "vmm_ioport.h"
57#include "vmm_ipi.h"
58#include "vmm_msr.h"
59#include "vmm_ktr.h"
60#include "vmm_stat.h"
61#include "vatpic.h"
62#include "vlapic.h"
63#include "vlapic_priv.h"
64
65#include "vmx_msr.h"
66#include "ept.h"
67#include "vmx_cpufunc.h"
68#include "vmx.h"
69#include "x86.h"
70#include "vmx_controls.h"
71
72#define	PINBASED_CTLS_ONE_SETTING					\
73	(PINBASED_EXTINT_EXITING	|				\
74	 PINBASED_NMI_EXITING		|				\
75	 PINBASED_VIRTUAL_NMI)
76#define	PINBASED_CTLS_ZERO_SETTING	0
77
78#define PROCBASED_CTLS_WINDOW_SETTING					\
79	(PROCBASED_INT_WINDOW_EXITING	|				\
80	 PROCBASED_NMI_WINDOW_EXITING)
81
82#define	PROCBASED_CTLS_ONE_SETTING 					\
83	(PROCBASED_SECONDARY_CONTROLS	|				\
84	 PROCBASED_IO_EXITING		|				\
85	 PROCBASED_MSR_BITMAPS		|				\
86	 PROCBASED_CTLS_WINDOW_SETTING	|				\
87	 PROCBASED_CR8_LOAD_EXITING	|				\
88	 PROCBASED_CR8_STORE_EXITING)
89#define	PROCBASED_CTLS_ZERO_SETTING	\
90	(PROCBASED_CR3_LOAD_EXITING |	\
91	PROCBASED_CR3_STORE_EXITING |	\
92	PROCBASED_IO_BITMAPS)
93
94#define	PROCBASED_CTLS2_ONE_SETTING	PROCBASED2_ENABLE_EPT
95#define	PROCBASED_CTLS2_ZERO_SETTING	0
96
97#define VM_EXIT_CTLS_ONE_SETTING_NO_PAT					\
98	(VM_EXIT_HOST_LMA			|			\
99	VM_EXIT_SAVE_EFER			|			\
100	VM_EXIT_LOAD_EFER)
101
102#define	VM_EXIT_CTLS_ONE_SETTING					\
103	(VM_EXIT_CTLS_ONE_SETTING_NO_PAT       	|			\
104	VM_EXIT_ACKNOWLEDGE_INTERRUPT		|			\
105	VM_EXIT_SAVE_PAT			|			\
106	VM_EXIT_LOAD_PAT)
107#define	VM_EXIT_CTLS_ZERO_SETTING	VM_EXIT_SAVE_DEBUG_CONTROLS
108
109#define	VM_ENTRY_CTLS_ONE_SETTING_NO_PAT	VM_ENTRY_LOAD_EFER
110
111#define	VM_ENTRY_CTLS_ONE_SETTING					\
112	(VM_ENTRY_CTLS_ONE_SETTING_NO_PAT     	|			\
113	VM_ENTRY_LOAD_PAT)
114#define	VM_ENTRY_CTLS_ZERO_SETTING					\
115	(VM_ENTRY_LOAD_DEBUG_CONTROLS		|			\
116	VM_ENTRY_INTO_SMM			|			\
117	VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
118
119#define	guest_msr_rw(vmx, msr) \
120	msr_bitmap_change_access((vmx)->msr_bitmap, (msr), MSR_BITMAP_ACCESS_RW)
121
122#define	guest_msr_ro(vmx, msr) \
123    msr_bitmap_change_access((vmx)->msr_bitmap, (msr), MSR_BITMAP_ACCESS_READ)
124
125#define	HANDLED		1
126#define	UNHANDLED	0
127
128static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
129static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
130
131SYSCTL_DECL(_hw_vmm);
132SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW, NULL, NULL);
133
134int vmxon_enabled[MAXCPU];
135static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
136
137static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
138static uint32_t exit_ctls, entry_ctls;
139
140static uint64_t cr0_ones_mask, cr0_zeros_mask;
141SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
142	     &cr0_ones_mask, 0, NULL);
143SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
144	     &cr0_zeros_mask, 0, NULL);
145
146static uint64_t cr4_ones_mask, cr4_zeros_mask;
147SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
148	     &cr4_ones_mask, 0, NULL);
149SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
150	     &cr4_zeros_mask, 0, NULL);
151
152static int vmx_initialized;
153SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
154	   &vmx_initialized, 0, "Intel VMX initialized");
155
156/*
157 * Optional capabilities
158 */
159static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap, CTLFLAG_RW, NULL, NULL);
160
161static int vmx_patmsr;
162SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, patmsr, CTLFLAG_RD, &vmx_patmsr, 0,
163    "PAT MSR saved and restored in VCMS");
164
165static int cap_halt_exit;
166SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0,
167    "HLT triggers a VM-exit");
168
169static int cap_pause_exit;
170SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit,
171    0, "PAUSE triggers a VM-exit");
172
173static int cap_unrestricted_guest;
174SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD,
175    &cap_unrestricted_guest, 0, "Unrestricted guests");
176
177static int cap_monitor_trap;
178SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD,
179    &cap_monitor_trap, 0, "Monitor trap flag");
180
181static int cap_invpcid;
182SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid,
183    0, "Guests are allowed to use INVPCID");
184
185static int virtual_interrupt_delivery;
186SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD,
187    &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
188
189static int posted_interrupts;
190SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts, CTLFLAG_RD,
191    &posted_interrupts, 0, "APICv posted interrupt support");
192
193static int pirvec;
194SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD,
195    &pirvec, 0, "APICv posted interrupt vector");
196
197static struct unrhdr *vpid_unr;
198static u_int vpid_alloc_failed;
199SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
200	    &vpid_alloc_failed, 0, NULL);
201
202/*
203 * Use the last page below 4GB as the APIC access address. This address is
204 * occupied by the boot firmware so it is guaranteed that it will not conflict
205 * with a page in system memory.
206 */
207#define	APIC_ACCESS_ADDRESS	0xFFFFF000
208
209static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc);
210static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval);
211static void vmx_inject_pir(struct vlapic *vlapic);
212
213#ifdef KTR
214static const char *
215exit_reason_to_str(int reason)
216{
217	static char reasonbuf[32];
218
219	switch (reason) {
220	case EXIT_REASON_EXCEPTION:
221		return "exception";
222	case EXIT_REASON_EXT_INTR:
223		return "extint";
224	case EXIT_REASON_TRIPLE_FAULT:
225		return "triplefault";
226	case EXIT_REASON_INIT:
227		return "init";
228	case EXIT_REASON_SIPI:
229		return "sipi";
230	case EXIT_REASON_IO_SMI:
231		return "iosmi";
232	case EXIT_REASON_SMI:
233		return "smi";
234	case EXIT_REASON_INTR_WINDOW:
235		return "intrwindow";
236	case EXIT_REASON_NMI_WINDOW:
237		return "nmiwindow";
238	case EXIT_REASON_TASK_SWITCH:
239		return "taskswitch";
240	case EXIT_REASON_CPUID:
241		return "cpuid";
242	case EXIT_REASON_GETSEC:
243		return "getsec";
244	case EXIT_REASON_HLT:
245		return "hlt";
246	case EXIT_REASON_INVD:
247		return "invd";
248	case EXIT_REASON_INVLPG:
249		return "invlpg";
250	case EXIT_REASON_RDPMC:
251		return "rdpmc";
252	case EXIT_REASON_RDTSC:
253		return "rdtsc";
254	case EXIT_REASON_RSM:
255		return "rsm";
256	case EXIT_REASON_VMCALL:
257		return "vmcall";
258	case EXIT_REASON_VMCLEAR:
259		return "vmclear";
260	case EXIT_REASON_VMLAUNCH:
261		return "vmlaunch";
262	case EXIT_REASON_VMPTRLD:
263		return "vmptrld";
264	case EXIT_REASON_VMPTRST:
265		return "vmptrst";
266	case EXIT_REASON_VMREAD:
267		return "vmread";
268	case EXIT_REASON_VMRESUME:
269		return "vmresume";
270	case EXIT_REASON_VMWRITE:
271		return "vmwrite";
272	case EXIT_REASON_VMXOFF:
273		return "vmxoff";
274	case EXIT_REASON_VMXON:
275		return "vmxon";
276	case EXIT_REASON_CR_ACCESS:
277		return "craccess";
278	case EXIT_REASON_DR_ACCESS:
279		return "draccess";
280	case EXIT_REASON_INOUT:
281		return "inout";
282	case EXIT_REASON_RDMSR:
283		return "rdmsr";
284	case EXIT_REASON_WRMSR:
285		return "wrmsr";
286	case EXIT_REASON_INVAL_VMCS:
287		return "invalvmcs";
288	case EXIT_REASON_INVAL_MSR:
289		return "invalmsr";
290	case EXIT_REASON_MWAIT:
291		return "mwait";
292	case EXIT_REASON_MTF:
293		return "mtf";
294	case EXIT_REASON_MONITOR:
295		return "monitor";
296	case EXIT_REASON_PAUSE:
297		return "pause";
298	case EXIT_REASON_MCE:
299		return "mce";
300	case EXIT_REASON_TPR:
301		return "tpr";
302	case EXIT_REASON_APIC_ACCESS:
303		return "apic-access";
304	case EXIT_REASON_GDTR_IDTR:
305		return "gdtridtr";
306	case EXIT_REASON_LDTR_TR:
307		return "ldtrtr";
308	case EXIT_REASON_EPT_FAULT:
309		return "eptfault";
310	case EXIT_REASON_EPT_MISCONFIG:
311		return "eptmisconfig";
312	case EXIT_REASON_INVEPT:
313		return "invept";
314	case EXIT_REASON_RDTSCP:
315		return "rdtscp";
316	case EXIT_REASON_VMX_PREEMPT:
317		return "vmxpreempt";
318	case EXIT_REASON_INVVPID:
319		return "invvpid";
320	case EXIT_REASON_WBINVD:
321		return "wbinvd";
322	case EXIT_REASON_XSETBV:
323		return "xsetbv";
324	case EXIT_REASON_APIC_WRITE:
325		return "apic-write";
326	default:
327		snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
328		return (reasonbuf);
329	}
330}
331#endif	/* KTR */
332
333static int
334vmx_allow_x2apic_msrs(struct vmx *vmx)
335{
336	int i, error;
337
338	error = 0;
339
340	/*
341	 * Allow readonly access to the following x2APIC MSRs from the guest.
342	 */
343	error += guest_msr_ro(vmx, MSR_APIC_ID);
344	error += guest_msr_ro(vmx, MSR_APIC_VERSION);
345	error += guest_msr_ro(vmx, MSR_APIC_LDR);
346	error += guest_msr_ro(vmx, MSR_APIC_SVR);
347
348	for (i = 0; i < 8; i++)
349		error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i);
350
351	for (i = 0; i < 8; i++)
352		error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i);
353
354	for (i = 0; i < 8; i++)
355		error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i);
356
357	error += guest_msr_ro(vmx, MSR_APIC_ESR);
358	error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER);
359	error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL);
360	error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT);
361	error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0);
362	error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1);
363	error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR);
364	error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER);
365	error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER);
366	error += guest_msr_ro(vmx, MSR_APIC_ICR);
367
368	/*
369	 * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
370	 *
371	 * These registers get special treatment described in the section
372	 * "Virtualizing MSR-Based APIC Accesses".
373	 */
374	error += guest_msr_rw(vmx, MSR_APIC_TPR);
375	error += guest_msr_rw(vmx, MSR_APIC_EOI);
376	error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI);
377
378	return (error);
379}
380
381u_long
382vmx_fix_cr0(u_long cr0)
383{
384
385	return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
386}
387
388u_long
389vmx_fix_cr4(u_long cr4)
390{
391
392	return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
393}
394
395static void
396vpid_free(int vpid)
397{
398	if (vpid < 0 || vpid > 0xffff)
399		panic("vpid_free: invalid vpid %d", vpid);
400
401	/*
402	 * VPIDs [0,VM_MAXCPU] are special and are not allocated from
403	 * the unit number allocator.
404	 */
405
406	if (vpid > VM_MAXCPU)
407		free_unr(vpid_unr, vpid);
408}
409
410static void
411vpid_alloc(uint16_t *vpid, int num)
412{
413	int i, x;
414
415	if (num <= 0 || num > VM_MAXCPU)
416		panic("invalid number of vpids requested: %d", num);
417
418	/*
419	 * If the "enable vpid" execution control is not enabled then the
420	 * VPID is required to be 0 for all vcpus.
421	 */
422	if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
423		for (i = 0; i < num; i++)
424			vpid[i] = 0;
425		return;
426	}
427
428	/*
429	 * Allocate a unique VPID for each vcpu from the unit number allocator.
430	 */
431	for (i = 0; i < num; i++) {
432		x = alloc_unr(vpid_unr);
433		if (x == -1)
434			break;
435		else
436			vpid[i] = x;
437	}
438
439	if (i < num) {
440		atomic_add_int(&vpid_alloc_failed, 1);
441
442		/*
443		 * If the unit number allocator does not have enough unique
444		 * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
445		 *
446		 * These VPIDs are not be unique across VMs but this does not
447		 * affect correctness because the combined mappings are also
448		 * tagged with the EP4TA which is unique for each VM.
449		 *
450		 * It is still sub-optimal because the invvpid will invalidate
451		 * combined mappings for a particular VPID across all EP4TAs.
452		 */
453		while (i-- > 0)
454			vpid_free(vpid[i]);
455
456		for (i = 0; i < num; i++)
457			vpid[i] = i + 1;
458	}
459}
460
461static void
462vpid_init(void)
463{
464	/*
465	 * VPID 0 is required when the "enable VPID" execution control is
466	 * disabled.
467	 *
468	 * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the
469	 * unit number allocator does not have sufficient unique VPIDs to
470	 * satisfy the allocation.
471	 *
472	 * The remaining VPIDs are managed by the unit number allocator.
473	 */
474	vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL);
475}
476
477static void
478msr_save_area_init(struct msr_entry *g_area, int *g_count)
479{
480	int cnt;
481
482	static struct msr_entry guest_msrs[] = {
483		{ MSR_KGSBASE, 0, 0 },
484	};
485
486	cnt = sizeof(guest_msrs) / sizeof(guest_msrs[0]);
487	if (cnt > GUEST_MSR_MAX_ENTRIES)
488		panic("guest msr save area overrun");
489	bcopy(guest_msrs, g_area, sizeof(guest_msrs));
490	*g_count = cnt;
491}
492
493static void
494vmx_disable(void *arg __unused)
495{
496	struct invvpid_desc invvpid_desc = { 0 };
497	struct invept_desc invept_desc = { 0 };
498
499	if (vmxon_enabled[curcpu]) {
500		/*
501		 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
502		 *
503		 * VMXON or VMXOFF are not required to invalidate any TLB
504		 * caching structures. This prevents potential retention of
505		 * cached information in the TLB between distinct VMX episodes.
506		 */
507		invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
508		invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
509		vmxoff();
510	}
511	load_cr4(rcr4() & ~CR4_VMXE);
512}
513
514static int
515vmx_cleanup(void)
516{
517
518	if (pirvec != 0)
519		vmm_ipi_free(pirvec);
520
521	if (vpid_unr != NULL) {
522		delete_unrhdr(vpid_unr);
523		vpid_unr = NULL;
524	}
525
526	smp_rendezvous(NULL, vmx_disable, NULL, NULL);
527
528	return (0);
529}
530
531static void
532vmx_enable(void *arg __unused)
533{
534	int error;
535	uint64_t feature_control;
536
537	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
538	if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
539	    (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
540		wrmsr(MSR_IA32_FEATURE_CONTROL,
541		    feature_control | IA32_FEATURE_CONTROL_VMX_EN |
542		    IA32_FEATURE_CONTROL_LOCK);
543	}
544
545	load_cr4(rcr4() | CR4_VMXE);
546
547	*(uint32_t *)vmxon_region[curcpu] = vmx_revision();
548	error = vmxon(vmxon_region[curcpu]);
549	if (error == 0)
550		vmxon_enabled[curcpu] = 1;
551}
552
553static void
554vmx_restore(void)
555{
556
557	if (vmxon_enabled[curcpu])
558		vmxon(vmxon_region[curcpu]);
559}
560
561static int
562vmx_init(int ipinum)
563{
564	int error, use_tpr_shadow;
565	uint64_t basic, fixed0, fixed1, feature_control;
566	uint32_t tmp, procbased2_vid_bits;
567
568	/* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
569	if (!(cpu_feature2 & CPUID2_VMX)) {
570		printf("vmx_init: processor does not support VMX operation\n");
571		return (ENXIO);
572	}
573
574	/*
575	 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
576	 * are set (bits 0 and 2 respectively).
577	 */
578	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
579	if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 &&
580	    (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
581		printf("vmx_init: VMX operation disabled by BIOS\n");
582		return (ENXIO);
583	}
584
585	/*
586	 * Verify capabilities MSR_VMX_BASIC:
587	 * - bit 54 indicates support for INS/OUTS decoding
588	 */
589	basic = rdmsr(MSR_VMX_BASIC);
590	if ((basic & (1UL << 54)) == 0) {
591		printf("vmx_init: processor does not support desired basic "
592		    "capabilities\n");
593		return (EINVAL);
594	}
595
596	/* Check support for primary processor-based VM-execution controls */
597	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
598			       MSR_VMX_TRUE_PROCBASED_CTLS,
599			       PROCBASED_CTLS_ONE_SETTING,
600			       PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
601	if (error) {
602		printf("vmx_init: processor does not support desired primary "
603		       "processor-based controls\n");
604		return (error);
605	}
606
607	/* Clear the processor-based ctl bits that are set on demand */
608	procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
609
610	/* Check support for secondary processor-based VM-execution controls */
611	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
612			       MSR_VMX_PROCBASED_CTLS2,
613			       PROCBASED_CTLS2_ONE_SETTING,
614			       PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
615	if (error) {
616		printf("vmx_init: processor does not support desired secondary "
617		       "processor-based controls\n");
618		return (error);
619	}
620
621	/* Check support for VPID */
622	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
623			       PROCBASED2_ENABLE_VPID, 0, &tmp);
624	if (error == 0)
625		procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
626
627	/* Check support for pin-based VM-execution controls */
628	error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
629			       MSR_VMX_TRUE_PINBASED_CTLS,
630			       PINBASED_CTLS_ONE_SETTING,
631			       PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
632	if (error) {
633		printf("vmx_init: processor does not support desired "
634		       "pin-based controls\n");
635		return (error);
636	}
637
638	/* Check support for VM-exit controls */
639	vmx_patmsr = 1;
640	error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
641			       VM_EXIT_CTLS_ONE_SETTING,
642			       VM_EXIT_CTLS_ZERO_SETTING,
643			       &exit_ctls);
644	if (error) {
645		/* Try again without the PAT MSR bits */
646		error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS,
647				       MSR_VMX_TRUE_EXIT_CTLS,
648				       VM_EXIT_CTLS_ONE_SETTING_NO_PAT,
649				       VM_EXIT_CTLS_ZERO_SETTING,
650				       &exit_ctls);
651		if (error) {
652			printf("vmx_init: processor does not support desired "
653			       "exit controls\n");
654			return (error);
655		} else {
656			if (bootverbose)
657				printf("vmm: PAT MSR access not supported\n");
658			guest_msr_valid(MSR_PAT);
659			vmx_patmsr = 0;
660		}
661	}
662
663	/* Check support for VM-entry controls */
664	if (vmx_patmsr) {
665		error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS,
666				       MSR_VMX_TRUE_ENTRY_CTLS,
667				       VM_ENTRY_CTLS_ONE_SETTING,
668				       VM_ENTRY_CTLS_ZERO_SETTING,
669				       &entry_ctls);
670	} else {
671		error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS,
672				       MSR_VMX_TRUE_ENTRY_CTLS,
673				       VM_ENTRY_CTLS_ONE_SETTING_NO_PAT,
674				       VM_ENTRY_CTLS_ZERO_SETTING,
675				       &entry_ctls);
676	}
677
678	if (error) {
679		printf("vmx_init: processor does not support desired "
680		       "entry controls\n");
681		       return (error);
682	}
683
684	/*
685	 * Check support for optional features by testing them
686	 * as individual bits
687	 */
688	cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
689					MSR_VMX_TRUE_PROCBASED_CTLS,
690					PROCBASED_HLT_EXITING, 0,
691					&tmp) == 0);
692
693	cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
694					MSR_VMX_PROCBASED_CTLS,
695					PROCBASED_MTF, 0,
696					&tmp) == 0);
697
698	cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
699					 MSR_VMX_TRUE_PROCBASED_CTLS,
700					 PROCBASED_PAUSE_EXITING, 0,
701					 &tmp) == 0);
702
703	cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
704					MSR_VMX_PROCBASED_CTLS2,
705					PROCBASED2_UNRESTRICTED_GUEST, 0,
706				        &tmp) == 0);
707
708	cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
709	    MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
710	    &tmp) == 0);
711
712	/*
713	 * Check support for virtual interrupt delivery.
714	 */
715	procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
716	    PROCBASED2_VIRTUALIZE_X2APIC_MODE |
717	    PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
718	    PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
719
720	use_tpr_shadow = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
721	    MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
722	    &tmp) == 0);
723
724	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
725	    procbased2_vid_bits, 0, &tmp);
726	if (error == 0 && use_tpr_shadow) {
727		virtual_interrupt_delivery = 1;
728		TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
729		    &virtual_interrupt_delivery);
730	}
731
732	if (virtual_interrupt_delivery) {
733		procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
734		procbased_ctls2 |= procbased2_vid_bits;
735		procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
736
737		/*
738		 * No need to emulate accesses to %CR8 if virtual
739		 * interrupt delivery is enabled.
740		 */
741		procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING;
742		procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING;
743
744		/*
745		 * Check for Posted Interrupts only if Virtual Interrupt
746		 * Delivery is enabled.
747		 */
748		error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
749		    MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0,
750		    &tmp);
751		if (error == 0) {
752			pirvec = vmm_ipi_alloc();
753			if (pirvec == 0) {
754				if (bootverbose) {
755					printf("vmx_init: unable to allocate "
756					    "posted interrupt vector\n");
757				}
758			} else {
759				posted_interrupts = 1;
760				TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir",
761				    &posted_interrupts);
762			}
763		}
764	}
765
766	if (posted_interrupts)
767		    pinbased_ctls |= PINBASED_POSTED_INTERRUPT;
768
769	/* Initialize EPT */
770	error = ept_init(ipinum);
771	if (error) {
772		printf("vmx_init: ept initialization failed (%d)\n", error);
773		return (error);
774	}
775
776	/*
777	 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
778	 */
779	fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
780	fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
781	cr0_ones_mask = fixed0 & fixed1;
782	cr0_zeros_mask = ~fixed0 & ~fixed1;
783
784	/*
785	 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
786	 * if unrestricted guest execution is allowed.
787	 */
788	if (cap_unrestricted_guest)
789		cr0_ones_mask &= ~(CR0_PG | CR0_PE);
790
791	/*
792	 * Do not allow the guest to set CR0_NW or CR0_CD.
793	 */
794	cr0_zeros_mask |= (CR0_NW | CR0_CD);
795
796	fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
797	fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
798	cr4_ones_mask = fixed0 & fixed1;
799	cr4_zeros_mask = ~fixed0 & ~fixed1;
800
801	vpid_init();
802
803	/* enable VMX operation */
804	smp_rendezvous(NULL, vmx_enable, NULL, NULL);
805
806	vmx_initialized = 1;
807
808	return (0);
809}
810
811static void
812vmx_trigger_hostintr(int vector)
813{
814	uintptr_t func;
815	struct gate_descriptor *gd;
816
817	gd = &idt[vector];
818
819	KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
820	    "invalid vector %d", vector));
821	KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
822	    vector));
823	KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
824	    "has invalid type %d", vector, gd->gd_type));
825	KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
826	    "has invalid dpl %d", vector, gd->gd_dpl));
827	KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
828	    "for vector %d has invalid selector %d", vector, gd->gd_selector));
829	KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
830	    "IST %d", vector, gd->gd_ist));
831
832	func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
833	vmx_call_isr(func);
834}
835
836static int
837vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
838{
839	int error, mask_ident, shadow_ident;
840	uint64_t mask_value;
841
842	if (which != 0 && which != 4)
843		panic("vmx_setup_cr_shadow: unknown cr%d", which);
844
845	if (which == 0) {
846		mask_ident = VMCS_CR0_MASK;
847		mask_value = cr0_ones_mask | cr0_zeros_mask;
848		shadow_ident = VMCS_CR0_SHADOW;
849	} else {
850		mask_ident = VMCS_CR4_MASK;
851		mask_value = cr4_ones_mask | cr4_zeros_mask;
852		shadow_ident = VMCS_CR4_SHADOW;
853	}
854
855	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
856	if (error)
857		return (error);
858
859	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
860	if (error)
861		return (error);
862
863	return (0);
864}
865#define	vmx_setup_cr0_shadow(vmcs,init)	vmx_setup_cr_shadow(0, (vmcs), (init))
866#define	vmx_setup_cr4_shadow(vmcs,init)	vmx_setup_cr_shadow(4, (vmcs), (init))
867
868static void *
869vmx_vminit(struct vm *vm, pmap_t pmap)
870{
871	uint16_t vpid[VM_MAXCPU];
872	int i, error, guest_msr_count;
873	struct vmx *vmx;
874	struct vmcs *vmcs;
875
876	vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
877	if ((uintptr_t)vmx & PAGE_MASK) {
878		panic("malloc of struct vmx not aligned on %d byte boundary",
879		      PAGE_SIZE);
880	}
881	vmx->vm = vm;
882
883	vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4));
884
885	/*
886	 * Clean up EPTP-tagged guest physical and combined mappings
887	 *
888	 * VMX transitions are not required to invalidate any guest physical
889	 * mappings. So, it may be possible for stale guest physical mappings
890	 * to be present in the processor TLBs.
891	 *
892	 * Combined mappings for this EP4TA are also invalidated for all VPIDs.
893	 */
894	ept_invalidate_mappings(vmx->eptp);
895
896	msr_bitmap_initialize(vmx->msr_bitmap);
897
898	/*
899	 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
900	 * The guest FSBASE and GSBASE are saved and restored during
901	 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
902	 * always restored from the vmcs host state area on vm-exit.
903	 *
904	 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
905	 * how they are saved/restored so can be directly accessed by the
906	 * guest.
907	 *
908	 * Guest KGSBASE is saved and restored in the guest MSR save area.
909	 * Host KGSBASE is restored before returning to userland from the pcb.
910	 * There will be a window of time when we are executing in the host
911	 * kernel context with a value of KGSBASE from the guest. This is ok
912	 * because the value of KGSBASE is inconsequential in kernel context.
913	 *
914	 * MSR_EFER is saved and restored in the guest VMCS area on a
915	 * VM exit and entry respectively. It is also restored from the
916	 * host VMCS area on a VM exit.
917	 *
918	 * The TSC MSR is exposed read-only. Writes are disallowed as that
919	 * will impact the host TSC.
920	 * XXX Writes would be implemented with a wrmsr trap, and
921	 * then modifying the TSC offset in the VMCS.
922	 */
923	if (guest_msr_rw(vmx, MSR_GSBASE) ||
924	    guest_msr_rw(vmx, MSR_FSBASE) ||
925	    guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
926	    guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
927	    guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
928	    guest_msr_rw(vmx, MSR_KGSBASE) ||
929	    guest_msr_rw(vmx, MSR_EFER) ||
930	    guest_msr_ro(vmx, MSR_TSC))
931		panic("vmx_vminit: error setting guest msr access");
932
933	/*
934	 * MSR_PAT is saved and restored in the guest VMCS are on a VM exit
935	 * and entry respectively. It is also restored from the host VMCS
936	 * area on a VM exit. However, if running on a system with no
937	 * MSR_PAT save/restore support, leave access disabled so accesses
938	 * will be trapped.
939	 */
940	if (vmx_patmsr && guest_msr_rw(vmx, MSR_PAT))
941		panic("vmx_vminit: error setting guest pat msr access");
942
943	vpid_alloc(vpid, VM_MAXCPU);
944
945	if (virtual_interrupt_delivery) {
946		error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
947		    APIC_ACCESS_ADDRESS);
948		/* XXX this should really return an error to the caller */
949		KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
950	}
951
952	for (i = 0; i < VM_MAXCPU; i++) {
953		vmcs = &vmx->vmcs[i];
954		vmcs->identifier = vmx_revision();
955		error = vmclear(vmcs);
956		if (error != 0) {
957			panic("vmx_vminit: vmclear error %d on vcpu %d\n",
958			      error, i);
959		}
960
961		error = vmcs_init(vmcs);
962		KASSERT(error == 0, ("vmcs_init error %d", error));
963
964		VMPTRLD(vmcs);
965		error = 0;
966		error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]);
967		error += vmwrite(VMCS_EPTP, vmx->eptp);
968		error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
969		error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
970		error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
971		error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
972		error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
973		error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
974		error += vmwrite(VMCS_VPID, vpid[i]);
975		if (virtual_interrupt_delivery) {
976			error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
977			error += vmwrite(VMCS_VIRTUAL_APIC,
978			    vtophys(&vmx->apic_page[i]));
979			error += vmwrite(VMCS_EOI_EXIT0, 0);
980			error += vmwrite(VMCS_EOI_EXIT1, 0);
981			error += vmwrite(VMCS_EOI_EXIT2, 0);
982			error += vmwrite(VMCS_EOI_EXIT3, 0);
983		}
984		if (posted_interrupts) {
985			error += vmwrite(VMCS_PIR_VECTOR, pirvec);
986			error += vmwrite(VMCS_PIR_DESC,
987			    vtophys(&vmx->pir_desc[i]));
988		}
989		VMCLEAR(vmcs);
990		KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs"));
991
992		vmx->cap[i].set = 0;
993		vmx->cap[i].proc_ctls = procbased_ctls;
994		vmx->cap[i].proc_ctls2 = procbased_ctls2;
995
996		vmx->state[i].lastcpu = NOCPU;
997		vmx->state[i].vpid = vpid[i];
998
999		msr_save_area_init(vmx->guest_msrs[i], &guest_msr_count);
1000
1001		error = vmcs_set_msr_save(vmcs, vtophys(vmx->guest_msrs[i]),
1002		    guest_msr_count);
1003		if (error != 0)
1004			panic("vmcs_set_msr_save error %d", error);
1005
1006		/*
1007		 * Set up the CR0/4 shadows, and init the read shadow
1008		 * to the power-on register value from the Intel Sys Arch.
1009		 *  CR0 - 0x60000010
1010		 *  CR4 - 0
1011		 */
1012		error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
1013		if (error != 0)
1014			panic("vmx_setup_cr0_shadow %d", error);
1015
1016		error = vmx_setup_cr4_shadow(vmcs, 0);
1017		if (error != 0)
1018			panic("vmx_setup_cr4_shadow %d", error);
1019
1020		vmx->ctx[i].pmap = pmap;
1021	}
1022
1023	return (vmx);
1024}
1025
1026static int
1027vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
1028{
1029	int handled, func;
1030
1031	func = vmxctx->guest_rax;
1032
1033	handled = x86_emulate_cpuid(vm, vcpu,
1034				    (uint32_t*)(&vmxctx->guest_rax),
1035				    (uint32_t*)(&vmxctx->guest_rbx),
1036				    (uint32_t*)(&vmxctx->guest_rcx),
1037				    (uint32_t*)(&vmxctx->guest_rdx));
1038	return (handled);
1039}
1040
1041static __inline void
1042vmx_run_trace(struct vmx *vmx, int vcpu)
1043{
1044#ifdef KTR
1045	VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip());
1046#endif
1047}
1048
1049static __inline void
1050vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason,
1051	       int handled)
1052{
1053#ifdef KTR
1054	VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx",
1055		 handled ? "handled" : "unhandled",
1056		 exit_reason_to_str(exit_reason), rip);
1057#endif
1058}
1059
1060static __inline void
1061vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
1062{
1063#ifdef KTR
1064	VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
1065#endif
1066}
1067
1068static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
1069static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done");
1070
1071/*
1072 * Invalidate guest mappings identified by its vpid from the TLB.
1073 */
1074static __inline void
1075vmx_invvpid(struct vmx *vmx, int vcpu, pmap_t pmap, int running)
1076{
1077	struct vmxstate *vmxstate;
1078	struct invvpid_desc invvpid_desc;
1079
1080	vmxstate = &vmx->state[vcpu];
1081	if (vmxstate->vpid == 0)
1082		return;
1083
1084	if (!running) {
1085		/*
1086		 * Set the 'lastcpu' to an invalid host cpu.
1087		 *
1088		 * This will invalidate TLB entries tagged with the vcpu's
1089		 * vpid the next time it runs via vmx_set_pcpu_defaults().
1090		 */
1091		vmxstate->lastcpu = NOCPU;
1092		return;
1093	}
1094
1095	KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside "
1096	    "critical section", __func__, vcpu));
1097
1098	/*
1099	 * Invalidate all mappings tagged with 'vpid'
1100	 *
1101	 * We do this because this vcpu was executing on a different host
1102	 * cpu when it last ran. We do not track whether it invalidated
1103	 * mappings associated with its 'vpid' during that run. So we must
1104	 * assume that the mappings associated with 'vpid' on 'curcpu' are
1105	 * stale and invalidate them.
1106	 *
1107	 * Note that we incur this penalty only when the scheduler chooses to
1108	 * move the thread associated with this vcpu between host cpus.
1109	 *
1110	 * Note also that this will invalidate mappings tagged with 'vpid'
1111	 * for "all" EP4TAs.
1112	 */
1113	if (pmap->pm_eptgen == vmx->eptgen[curcpu]) {
1114		invvpid_desc._res1 = 0;
1115		invvpid_desc._res2 = 0;
1116		invvpid_desc.vpid = vmxstate->vpid;
1117		invvpid_desc.linear_addr = 0;
1118		invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
1119		vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1);
1120	} else {
1121		/*
1122		 * The invvpid can be skipped if an invept is going to
1123		 * be performed before entering the guest. The invept
1124		 * will invalidate combined mappings tagged with
1125		 * 'vmx->eptp' for all vpids.
1126		 */
1127		vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1);
1128	}
1129}
1130
1131static void
1132vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu, pmap_t pmap)
1133{
1134	struct vmxstate *vmxstate;
1135
1136	vmxstate = &vmx->state[vcpu];
1137	if (vmxstate->lastcpu == curcpu)
1138		return;
1139
1140	vmxstate->lastcpu = curcpu;
1141
1142	vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
1143
1144	vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
1145	vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
1146	vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
1147	vmx_invvpid(vmx, vcpu, pmap, 1);
1148}
1149
1150/*
1151 * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
1152 */
1153CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
1154
1155static void __inline
1156vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
1157{
1158
1159	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
1160		vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1161		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1162		VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1163	}
1164}
1165
1166static void __inline
1167vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
1168{
1169
1170	KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
1171	    ("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls));
1172	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1173	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1174	VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1175}
1176
1177static void __inline
1178vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
1179{
1180
1181	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) {
1182		vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1183		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1184		VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting");
1185	}
1186}
1187
1188static void __inline
1189vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
1190{
1191
1192	KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0,
1193	    ("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls));
1194	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1195	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1196	VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting");
1197}
1198
1199#define	NMI_BLOCKING	(VMCS_INTERRUPTIBILITY_NMI_BLOCKING |		\
1200			 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1201#define	HWINTR_BLOCKING	(VMCS_INTERRUPTIBILITY_STI_BLOCKING |		\
1202			 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1203
1204static void
1205vmx_inject_nmi(struct vmx *vmx, int vcpu)
1206{
1207	uint32_t gi, info;
1208
1209	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1210	KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest "
1211	    "interruptibility-state %#x", gi));
1212
1213	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1214	KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid "
1215	    "VM-entry interruption information %#x", info));
1216
1217	/*
1218	 * Inject the virtual NMI. The vector must be the NMI IDT entry
1219	 * or the VMCS entry check will fail.
1220	 */
1221	info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID;
1222	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1223
1224	VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI");
1225
1226	/* Clear the request */
1227	vm_nmi_clear(vmx->vm, vcpu);
1228}
1229
1230static void
1231vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic)
1232{
1233	int vector, need_nmi_exiting, extint_pending;
1234	uint64_t rflags, entryinfo;
1235	uint32_t gi, info;
1236
1237	if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) {
1238		KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry "
1239		    "intinfo is not valid: %#lx", __func__, entryinfo));
1240
1241		info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1242		KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject "
1243		     "pending exception: %#lx/%#x", __func__, entryinfo, info));
1244
1245		info = entryinfo;
1246		vector = info & 0xff;
1247		if (vector == IDT_BP || vector == IDT_OF) {
1248			/*
1249			 * VT-x requires #BP and #OF to be injected as software
1250			 * exceptions.
1251			 */
1252			info &= ~VMCS_INTR_T_MASK;
1253			info |= VMCS_INTR_T_SWEXCEPTION;
1254		}
1255
1256		if (info & VMCS_INTR_DEL_ERRCODE)
1257			vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32);
1258
1259		vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1260	}
1261
1262	if (vm_nmi_pending(vmx->vm, vcpu)) {
1263		/*
1264		 * If there are no conditions blocking NMI injection then
1265		 * inject it directly here otherwise enable "NMI window
1266		 * exiting" to inject it as soon as we can.
1267		 *
1268		 * We also check for STI_BLOCKING because some implementations
1269		 * don't allow NMI injection in this case. If we are running
1270		 * on a processor that doesn't have this restriction it will
1271		 * immediately exit and the NMI will be injected in the
1272		 * "NMI window exiting" handler.
1273		 */
1274		need_nmi_exiting = 1;
1275		gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1276		if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1277			info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1278			if ((info & VMCS_INTR_VALID) == 0) {
1279				vmx_inject_nmi(vmx, vcpu);
1280				need_nmi_exiting = 0;
1281			} else {
1282				VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI "
1283				    "due to VM-entry intr info %#x", info);
1284			}
1285		} else {
1286			VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to "
1287			    "Guest Interruptibility-state %#x", gi);
1288		}
1289
1290		if (need_nmi_exiting)
1291			vmx_set_nmi_window_exiting(vmx, vcpu);
1292	}
1293
1294	extint_pending = vm_extint_pending(vmx->vm, vcpu);
1295
1296	if (!extint_pending && virtual_interrupt_delivery) {
1297		vmx_inject_pir(vlapic);
1298		return;
1299	}
1300
1301	/*
1302	 * If interrupt-window exiting is already in effect then don't bother
1303	 * checking for pending interrupts. This is just an optimization and
1304	 * not needed for correctness.
1305	 */
1306	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) {
1307		VCPU_CTR0(vmx->vm, vcpu, "Skip interrupt injection due to "
1308		    "pending int_window_exiting");
1309		return;
1310	}
1311
1312	if (!extint_pending) {
1313		/* Ask the local apic for a vector to inject */
1314		if (!vlapic_pending_intr(vlapic, &vector))
1315			return;
1316
1317		/*
1318		 * From the Intel SDM, Volume 3, Section "Maskable
1319		 * Hardware Interrupts":
1320		 * - maskable interrupt vectors [16,255] can be delivered
1321		 *   through the local APIC.
1322		*/
1323		KASSERT(vector >= 16 && vector <= 255,
1324		    ("invalid vector %d from local APIC", vector));
1325	} else {
1326		/* Ask the legacy pic for a vector to inject */
1327		vatpic_pending_intr(vmx->vm, &vector);
1328
1329		/*
1330		 * From the Intel SDM, Volume 3, Section "Maskable
1331		 * Hardware Interrupts":
1332		 * - maskable interrupt vectors [0,255] can be delivered
1333		 *   through the INTR pin.
1334		 */
1335		KASSERT(vector >= 0 && vector <= 255,
1336		    ("invalid vector %d from INTR", vector));
1337	}
1338
1339	/* Check RFLAGS.IF and the interruptibility state of the guest */
1340	rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1341	if ((rflags & PSL_I) == 0) {
1342		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1343		    "rflags %#lx", vector, rflags);
1344		goto cantinject;
1345	}
1346
1347	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1348	if (gi & HWINTR_BLOCKING) {
1349		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1350		    "Guest Interruptibility-state %#x", vector, gi);
1351		goto cantinject;
1352	}
1353
1354	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1355	if (info & VMCS_INTR_VALID) {
1356		/*
1357		 * This is expected and could happen for multiple reasons:
1358		 * - A vectoring VM-entry was aborted due to astpending
1359		 * - A VM-exit happened during event injection.
1360		 * - An exception was injected above.
1361		 * - An NMI was injected above or after "NMI window exiting"
1362		 */
1363		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1364		    "VM-entry intr info %#x", vector, info);
1365		goto cantinject;
1366	}
1367
1368	/* Inject the interrupt */
1369	info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID;
1370	info |= vector;
1371	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1372
1373	if (!extint_pending) {
1374		/* Update the Local APIC ISR */
1375		vlapic_intr_accepted(vlapic, vector);
1376	} else {
1377		vm_extint_clear(vmx->vm, vcpu);
1378		vatpic_intr_accepted(vmx->vm, vector);
1379
1380		/*
1381		 * After we accepted the current ExtINT the PIC may
1382		 * have posted another one.  If that is the case, set
1383		 * the Interrupt Window Exiting execution control so
1384		 * we can inject that one too.
1385		 *
1386		 * Also, interrupt window exiting allows us to inject any
1387		 * pending APIC vector that was preempted by the ExtINT
1388		 * as soon as possible. This applies both for the software
1389		 * emulated vlapic and the hardware assisted virtual APIC.
1390		 */
1391		vmx_set_int_window_exiting(vmx, vcpu);
1392	}
1393
1394	VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector);
1395
1396	return;
1397
1398cantinject:
1399	/*
1400	 * Set the Interrupt Window Exiting execution control so we can inject
1401	 * the interrupt as soon as blocking condition goes away.
1402	 */
1403	vmx_set_int_window_exiting(vmx, vcpu);
1404}
1405
1406/*
1407 * If the Virtual NMIs execution control is '1' then the logical processor
1408 * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1409 * the VMCS. An IRET instruction in VMX non-root operation will remove any
1410 * virtual-NMI blocking.
1411 *
1412 * This unblocking occurs even if the IRET causes a fault. In this case the
1413 * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1414 */
1415static void
1416vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid)
1417{
1418	uint32_t gi;
1419
1420	VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking");
1421	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1422	gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1423	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1424}
1425
1426static void
1427vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid)
1428{
1429	uint32_t gi;
1430
1431	VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking");
1432	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1433	gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1434	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1435}
1436
1437static void
1438vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid)
1439{
1440	uint32_t gi;
1441
1442	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1443	KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING,
1444	    ("NMI blocking is not in effect %#x", gi));
1445}
1446
1447static int
1448vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1449{
1450	struct vmxctx *vmxctx;
1451	uint64_t xcrval;
1452	const struct xsave_limits *limits;
1453
1454	vmxctx = &vmx->ctx[vcpu];
1455	limits = vmm_get_xsave_limits();
1456
1457	/*
1458	 * Note that the processor raises a GP# fault on its own if
1459	 * xsetbv is executed for CPL != 0, so we do not have to
1460	 * emulate that fault here.
1461	 */
1462
1463	/* Only xcr0 is supported. */
1464	if (vmxctx->guest_rcx != 0) {
1465		vm_inject_gp(vmx->vm, vcpu);
1466		return (HANDLED);
1467	}
1468
1469	/* We only handle xcr0 if both the host and guest have XSAVE enabled. */
1470	if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
1471		vm_inject_ud(vmx->vm, vcpu);
1472		return (HANDLED);
1473	}
1474
1475	xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
1476	if ((xcrval & ~limits->xcr0_allowed) != 0) {
1477		vm_inject_gp(vmx->vm, vcpu);
1478		return (HANDLED);
1479	}
1480
1481	if (!(xcrval & XFEATURE_ENABLED_X87)) {
1482		vm_inject_gp(vmx->vm, vcpu);
1483		return (HANDLED);
1484	}
1485
1486	/* AVX (YMM_Hi128) requires SSE. */
1487	if (xcrval & XFEATURE_ENABLED_AVX &&
1488	    (xcrval & XFEATURE_AVX) != XFEATURE_AVX) {
1489		vm_inject_gp(vmx->vm, vcpu);
1490		return (HANDLED);
1491	}
1492
1493	/*
1494	 * AVX512 requires base AVX (YMM_Hi128) as well as OpMask,
1495	 * ZMM_Hi256, and Hi16_ZMM.
1496	 */
1497	if (xcrval & XFEATURE_AVX512 &&
1498	    (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) !=
1499	    (XFEATURE_AVX512 | XFEATURE_AVX)) {
1500		vm_inject_gp(vmx->vm, vcpu);
1501		return (HANDLED);
1502	}
1503
1504	/*
1505	 * Intel MPX requires both bound register state flags to be
1506	 * set.
1507	 */
1508	if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) !=
1509	    ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) {
1510		vm_inject_gp(vmx->vm, vcpu);
1511		return (HANDLED);
1512	}
1513
1514	/*
1515	 * This runs "inside" vmrun() with the guest's FPU state, so
1516	 * modifying xcr0 directly modifies the guest's xcr0, not the
1517	 * host's.
1518	 */
1519	load_xcr(0, xcrval);
1520	return (HANDLED);
1521}
1522
1523static uint64_t
1524vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident)
1525{
1526	const struct vmxctx *vmxctx;
1527
1528	vmxctx = &vmx->ctx[vcpu];
1529
1530	switch (ident) {
1531	case 0:
1532		return (vmxctx->guest_rax);
1533	case 1:
1534		return (vmxctx->guest_rcx);
1535	case 2:
1536		return (vmxctx->guest_rdx);
1537	case 3:
1538		return (vmxctx->guest_rbx);
1539	case 4:
1540		return (vmcs_read(VMCS_GUEST_RSP));
1541	case 5:
1542		return (vmxctx->guest_rbp);
1543	case 6:
1544		return (vmxctx->guest_rsi);
1545	case 7:
1546		return (vmxctx->guest_rdi);
1547	case 8:
1548		return (vmxctx->guest_r8);
1549	case 9:
1550		return (vmxctx->guest_r9);
1551	case 10:
1552		return (vmxctx->guest_r10);
1553	case 11:
1554		return (vmxctx->guest_r11);
1555	case 12:
1556		return (vmxctx->guest_r12);
1557	case 13:
1558		return (vmxctx->guest_r13);
1559	case 14:
1560		return (vmxctx->guest_r14);
1561	case 15:
1562		return (vmxctx->guest_r15);
1563	default:
1564		panic("invalid vmx register %d", ident);
1565	}
1566}
1567
1568static void
1569vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval)
1570{
1571	struct vmxctx *vmxctx;
1572
1573	vmxctx = &vmx->ctx[vcpu];
1574
1575	switch (ident) {
1576	case 0:
1577		vmxctx->guest_rax = regval;
1578		break;
1579	case 1:
1580		vmxctx->guest_rcx = regval;
1581		break;
1582	case 2:
1583		vmxctx->guest_rdx = regval;
1584		break;
1585	case 3:
1586		vmxctx->guest_rbx = regval;
1587		break;
1588	case 4:
1589		vmcs_write(VMCS_GUEST_RSP, regval);
1590		break;
1591	case 5:
1592		vmxctx->guest_rbp = regval;
1593		break;
1594	case 6:
1595		vmxctx->guest_rsi = regval;
1596		break;
1597	case 7:
1598		vmxctx->guest_rdi = regval;
1599		break;
1600	case 8:
1601		vmxctx->guest_r8 = regval;
1602		break;
1603	case 9:
1604		vmxctx->guest_r9 = regval;
1605		break;
1606	case 10:
1607		vmxctx->guest_r10 = regval;
1608		break;
1609	case 11:
1610		vmxctx->guest_r11 = regval;
1611		break;
1612	case 12:
1613		vmxctx->guest_r12 = regval;
1614		break;
1615	case 13:
1616		vmxctx->guest_r13 = regval;
1617		break;
1618	case 14:
1619		vmxctx->guest_r14 = regval;
1620		break;
1621	case 15:
1622		vmxctx->guest_r15 = regval;
1623		break;
1624	default:
1625		panic("invalid vmx register %d", ident);
1626	}
1627}
1628
1629static int
1630vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1631{
1632	uint64_t crval, regval;
1633
1634	/* We only handle mov to %cr0 at this time */
1635	if ((exitqual & 0xf0) != 0x00)
1636		return (UNHANDLED);
1637
1638	regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1639
1640	vmcs_write(VMCS_CR0_SHADOW, regval);
1641
1642	crval = regval | cr0_ones_mask;
1643	crval &= ~cr0_zeros_mask;
1644	vmcs_write(VMCS_GUEST_CR0, crval);
1645
1646	if (regval & CR0_PG) {
1647		uint64_t efer, entry_ctls;
1648
1649		/*
1650		 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1651		 * the "IA-32e mode guest" bit in VM-entry control must be
1652		 * equal.
1653		 */
1654		efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1655		if (efer & EFER_LME) {
1656			efer |= EFER_LMA;
1657			vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1658			entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1659			entry_ctls |= VM_ENTRY_GUEST_LMA;
1660			vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1661		}
1662	}
1663
1664	return (HANDLED);
1665}
1666
1667static int
1668vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1669{
1670	uint64_t crval, regval;
1671
1672	/* We only handle mov to %cr4 at this time */
1673	if ((exitqual & 0xf0) != 0x00)
1674		return (UNHANDLED);
1675
1676	regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1677
1678	vmcs_write(VMCS_CR4_SHADOW, regval);
1679
1680	crval = regval | cr4_ones_mask;
1681	crval &= ~cr4_zeros_mask;
1682	vmcs_write(VMCS_GUEST_CR4, crval);
1683
1684	return (HANDLED);
1685}
1686
1687static int
1688vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1689{
1690	struct vlapic *vlapic;
1691	uint64_t cr8;
1692	int regnum;
1693
1694	/* We only handle mov %cr8 to/from a register at this time. */
1695	if ((exitqual & 0xe0) != 0x00) {
1696		return (UNHANDLED);
1697	}
1698
1699	vlapic = vm_lapic(vmx->vm, vcpu);
1700	regnum = (exitqual >> 8) & 0xf;
1701	if (exitqual & 0x10) {
1702		cr8 = vlapic_get_cr8(vlapic);
1703		vmx_set_guest_reg(vmx, vcpu, regnum, cr8);
1704	} else {
1705		cr8 = vmx_get_guest_reg(vmx, vcpu, regnum);
1706		vlapic_set_cr8(vlapic, cr8);
1707	}
1708
1709	return (HANDLED);
1710}
1711
1712/*
1713 * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL
1714 */
1715static int
1716vmx_cpl(void)
1717{
1718	uint32_t ssar;
1719
1720	ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS);
1721	return ((ssar >> 5) & 0x3);
1722}
1723
1724static enum vm_cpu_mode
1725vmx_cpu_mode(void)
1726{
1727	uint32_t csar;
1728
1729	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) {
1730		csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1731		if (csar & 0x2000)
1732			return (CPU_MODE_64BIT);	/* CS.L = 1 */
1733		else
1734			return (CPU_MODE_COMPATIBILITY);
1735	} else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) {
1736		return (CPU_MODE_PROTECTED);
1737	} else {
1738		return (CPU_MODE_REAL);
1739	}
1740}
1741
1742static enum vm_paging_mode
1743vmx_paging_mode(void)
1744{
1745
1746	if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
1747		return (PAGING_MODE_FLAT);
1748	if (!(vmcs_read(VMCS_GUEST_CR4) & CR4_PAE))
1749		return (PAGING_MODE_32);
1750	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME)
1751		return (PAGING_MODE_64);
1752	else
1753		return (PAGING_MODE_PAE);
1754}
1755
1756static uint64_t
1757inout_str_index(struct vmx *vmx, int vcpuid, int in)
1758{
1759	uint64_t val;
1760	int error;
1761	enum vm_reg_name reg;
1762
1763	reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI;
1764	error = vmx_getreg(vmx, vcpuid, reg, &val);
1765	KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error));
1766	return (val);
1767}
1768
1769static uint64_t
1770inout_str_count(struct vmx *vmx, int vcpuid, int rep)
1771{
1772	uint64_t val;
1773	int error;
1774
1775	if (rep) {
1776		error = vmx_getreg(vmx, vcpuid, VM_REG_GUEST_RCX, &val);
1777		KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error));
1778	} else {
1779		val = 1;
1780	}
1781	return (val);
1782}
1783
1784static int
1785inout_str_addrsize(uint32_t inst_info)
1786{
1787	uint32_t size;
1788
1789	size = (inst_info >> 7) & 0x7;
1790	switch (size) {
1791	case 0:
1792		return (2);	/* 16 bit */
1793	case 1:
1794		return (4);	/* 32 bit */
1795	case 2:
1796		return (8);	/* 64 bit */
1797	default:
1798		panic("%s: invalid size encoding %d", __func__, size);
1799	}
1800}
1801
1802static void
1803inout_str_seginfo(struct vmx *vmx, int vcpuid, uint32_t inst_info, int in,
1804    struct vm_inout_str *vis)
1805{
1806	int error, s;
1807
1808	if (in) {
1809		vis->seg_name = VM_REG_GUEST_ES;
1810	} else {
1811		s = (inst_info >> 15) & 0x7;
1812		vis->seg_name = vm_segment_name(s);
1813	}
1814
1815	error = vmx_getdesc(vmx, vcpuid, vis->seg_name, &vis->seg_desc);
1816	KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error));
1817
1818	/* XXX modify svm.c to update bit 16 of seg_desc.access (unusable) */
1819}
1820
1821static void
1822vmx_paging_info(struct vm_guest_paging *paging)
1823{
1824	paging->cr3 = vmcs_guest_cr3();
1825	paging->cpl = vmx_cpl();
1826	paging->cpu_mode = vmx_cpu_mode();
1827	paging->paging_mode = vmx_paging_mode();
1828}
1829
1830static void
1831vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla)
1832{
1833	struct vm_guest_paging *paging;
1834	uint32_t csar;
1835
1836	paging = &vmexit->u.inst_emul.paging;
1837
1838	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
1839	vmexit->u.inst_emul.gpa = gpa;
1840	vmexit->u.inst_emul.gla = gla;
1841	vmx_paging_info(paging);
1842	switch (paging->cpu_mode) {
1843	case CPU_MODE_PROTECTED:
1844	case CPU_MODE_COMPATIBILITY:
1845		csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1846		vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar);
1847		break;
1848	default:
1849		vmexit->u.inst_emul.cs_d = 0;
1850		break;
1851	}
1852}
1853
1854static int
1855ept_fault_type(uint64_t ept_qual)
1856{
1857	int fault_type;
1858
1859	if (ept_qual & EPT_VIOLATION_DATA_WRITE)
1860		fault_type = VM_PROT_WRITE;
1861	else if (ept_qual & EPT_VIOLATION_INST_FETCH)
1862		fault_type = VM_PROT_EXECUTE;
1863	else
1864		fault_type= VM_PROT_READ;
1865
1866	return (fault_type);
1867}
1868
1869static boolean_t
1870ept_emulation_fault(uint64_t ept_qual)
1871{
1872	int read, write;
1873
1874	/* EPT fault on an instruction fetch doesn't make sense here */
1875	if (ept_qual & EPT_VIOLATION_INST_FETCH)
1876		return (FALSE);
1877
1878	/* EPT fault must be a read fault or a write fault */
1879	read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
1880	write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
1881	if ((read | write) == 0)
1882		return (FALSE);
1883
1884	/*
1885	 * The EPT violation must have been caused by accessing a
1886	 * guest-physical address that is a translation of a guest-linear
1887	 * address.
1888	 */
1889	if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
1890	    (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
1891		return (FALSE);
1892	}
1893
1894	return (TRUE);
1895}
1896
1897static __inline int
1898apic_access_virtualization(struct vmx *vmx, int vcpuid)
1899{
1900	uint32_t proc_ctls2;
1901
1902	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1903	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
1904}
1905
1906static __inline int
1907x2apic_virtualization(struct vmx *vmx, int vcpuid)
1908{
1909	uint32_t proc_ctls2;
1910
1911	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1912	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
1913}
1914
1915static int
1916vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic,
1917    uint64_t qual)
1918{
1919	int error, handled, offset;
1920	uint32_t *apic_regs, vector;
1921	bool retu;
1922
1923	handled = HANDLED;
1924	offset = APIC_WRITE_OFFSET(qual);
1925
1926	if (!apic_access_virtualization(vmx, vcpuid)) {
1927		/*
1928		 * In general there should not be any APIC write VM-exits
1929		 * unless APIC-access virtualization is enabled.
1930		 *
1931		 * However self-IPI virtualization can legitimately trigger
1932		 * an APIC-write VM-exit so treat it specially.
1933		 */
1934		if (x2apic_virtualization(vmx, vcpuid) &&
1935		    offset == APIC_OFFSET_SELF_IPI) {
1936			apic_regs = (uint32_t *)(vlapic->apic_page);
1937			vector = apic_regs[APIC_OFFSET_SELF_IPI / 4];
1938			vlapic_self_ipi_handler(vlapic, vector);
1939			return (HANDLED);
1940		} else
1941			return (UNHANDLED);
1942	}
1943
1944	switch (offset) {
1945	case APIC_OFFSET_ID:
1946		vlapic_id_write_handler(vlapic);
1947		break;
1948	case APIC_OFFSET_LDR:
1949		vlapic_ldr_write_handler(vlapic);
1950		break;
1951	case APIC_OFFSET_DFR:
1952		vlapic_dfr_write_handler(vlapic);
1953		break;
1954	case APIC_OFFSET_SVR:
1955		vlapic_svr_write_handler(vlapic);
1956		break;
1957	case APIC_OFFSET_ESR:
1958		vlapic_esr_write_handler(vlapic);
1959		break;
1960	case APIC_OFFSET_ICR_LOW:
1961		retu = false;
1962		error = vlapic_icrlo_write_handler(vlapic, &retu);
1963		if (error != 0 || retu)
1964			handled = UNHANDLED;
1965		break;
1966	case APIC_OFFSET_CMCI_LVT:
1967	case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
1968		vlapic_lvt_write_handler(vlapic, offset);
1969		break;
1970	case APIC_OFFSET_TIMER_ICR:
1971		vlapic_icrtmr_write_handler(vlapic);
1972		break;
1973	case APIC_OFFSET_TIMER_DCR:
1974		vlapic_dcr_write_handler(vlapic);
1975		break;
1976	default:
1977		handled = UNHANDLED;
1978		break;
1979	}
1980	return (handled);
1981}
1982
1983static bool
1984apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa)
1985{
1986
1987	if (apic_access_virtualization(vmx, vcpuid) &&
1988	    (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
1989		return (true);
1990	else
1991		return (false);
1992}
1993
1994static int
1995vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
1996{
1997	uint64_t qual;
1998	int access_type, offset, allowed;
1999
2000	if (!apic_access_virtualization(vmx, vcpuid))
2001		return (UNHANDLED);
2002
2003	qual = vmexit->u.vmx.exit_qualification;
2004	access_type = APIC_ACCESS_TYPE(qual);
2005	offset = APIC_ACCESS_OFFSET(qual);
2006
2007	allowed = 0;
2008	if (access_type == 0) {
2009		/*
2010		 * Read data access to the following registers is expected.
2011		 */
2012		switch (offset) {
2013		case APIC_OFFSET_APR:
2014		case APIC_OFFSET_PPR:
2015		case APIC_OFFSET_RRR:
2016		case APIC_OFFSET_CMCI_LVT:
2017		case APIC_OFFSET_TIMER_CCR:
2018			allowed = 1;
2019			break;
2020		default:
2021			break;
2022		}
2023	} else if (access_type == 1) {
2024		/*
2025		 * Write data access to the following registers is expected.
2026		 */
2027		switch (offset) {
2028		case APIC_OFFSET_VER:
2029		case APIC_OFFSET_APR:
2030		case APIC_OFFSET_PPR:
2031		case APIC_OFFSET_RRR:
2032		case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
2033		case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
2034		case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
2035		case APIC_OFFSET_CMCI_LVT:
2036		case APIC_OFFSET_TIMER_CCR:
2037			allowed = 1;
2038			break;
2039		default:
2040			break;
2041		}
2042	}
2043
2044	if (allowed) {
2045		vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset,
2046		    VIE_INVALID_GLA);
2047	}
2048
2049	/*
2050	 * Regardless of whether the APIC-access is allowed this handler
2051	 * always returns UNHANDLED:
2052	 * - if the access is allowed then it is handled by emulating the
2053	 *   instruction that caused the VM-exit (outside the critical section)
2054	 * - if the access is not allowed then it will be converted to an
2055	 *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
2056	 */
2057	return (UNHANDLED);
2058}
2059
2060static enum task_switch_reason
2061vmx_task_switch_reason(uint64_t qual)
2062{
2063	int reason;
2064
2065	reason = (qual >> 30) & 0x3;
2066	switch (reason) {
2067	case 0:
2068		return (TSR_CALL);
2069	case 1:
2070		return (TSR_IRET);
2071	case 2:
2072		return (TSR_JMP);
2073	case 3:
2074		return (TSR_IDT_GATE);
2075	default:
2076		panic("%s: invalid reason %d", __func__, reason);
2077	}
2078}
2079
2080static int
2081vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
2082{
2083	int error, handled, in;
2084	struct vmxctx *vmxctx;
2085	struct vlapic *vlapic;
2086	struct vm_inout_str *vis;
2087	struct vm_task_switch *ts;
2088	uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info;
2089	uint32_t intr_type, reason;
2090	uint64_t exitintinfo, qual, gpa;
2091	bool retu;
2092
2093	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
2094	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
2095
2096	handled = UNHANDLED;
2097	vmxctx = &vmx->ctx[vcpu];
2098
2099	qual = vmexit->u.vmx.exit_qualification;
2100	reason = vmexit->u.vmx.exit_reason;
2101	vmexit->exitcode = VM_EXITCODE_BOGUS;
2102
2103	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
2104
2105	/*
2106	 * VM exits that can be triggered during event delivery need to
2107	 * be handled specially by re-injecting the event if the IDT
2108	 * vectoring information field's valid bit is set.
2109	 *
2110	 * See "Information for VM Exits During Event Delivery" in Intel SDM
2111	 * for details.
2112	 */
2113	idtvec_info = vmcs_idt_vectoring_info();
2114	if (idtvec_info & VMCS_IDT_VEC_VALID) {
2115		idtvec_info &= ~(1 << 12); /* clear undefined bit */
2116		exitintinfo = idtvec_info;
2117		if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2118			idtvec_err = vmcs_idt_vectoring_err();
2119			exitintinfo |= (uint64_t)idtvec_err << 32;
2120		}
2121		error = vm_exit_intinfo(vmx->vm, vcpu, exitintinfo);
2122		KASSERT(error == 0, ("%s: vm_set_intinfo error %d",
2123		    __func__, error));
2124
2125		/*
2126		 * If 'virtual NMIs' are being used and the VM-exit
2127		 * happened while injecting an NMI during the previous
2128		 * VM-entry, then clear "blocking by NMI" in the
2129		 * Guest Interruptibility-State so the NMI can be
2130		 * reinjected on the subsequent VM-entry.
2131		 *
2132		 * However, if the NMI was being delivered through a task
2133		 * gate, then the new task must start execution with NMIs
2134		 * blocked so don't clear NMI blocking in this case.
2135		 */
2136		intr_type = idtvec_info & VMCS_INTR_T_MASK;
2137		if (intr_type == VMCS_INTR_T_NMI) {
2138			if (reason != EXIT_REASON_TASK_SWITCH)
2139				vmx_clear_nmi_blocking(vmx, vcpu);
2140			else
2141				vmx_assert_nmi_blocking(vmx, vcpu);
2142		}
2143
2144		/*
2145		 * Update VM-entry instruction length if the event being
2146		 * delivered was a software interrupt or software exception.
2147		 */
2148		if (intr_type == VMCS_INTR_T_SWINTR ||
2149		    intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION ||
2150		    intr_type == VMCS_INTR_T_SWEXCEPTION) {
2151			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2152		}
2153	}
2154
2155	switch (reason) {
2156	case EXIT_REASON_TASK_SWITCH:
2157		ts = &vmexit->u.task_switch;
2158		ts->tsssel = qual & 0xffff;
2159		ts->reason = vmx_task_switch_reason(qual);
2160		ts->ext = 0;
2161		ts->errcode_valid = 0;
2162		vmx_paging_info(&ts->paging);
2163		/*
2164		 * If the task switch was due to a CALL, JMP, IRET, software
2165		 * interrupt (INT n) or software exception (INT3, INTO),
2166		 * then the saved %rip references the instruction that caused
2167		 * the task switch. The instruction length field in the VMCS
2168		 * is valid in this case.
2169		 *
2170		 * In all other cases (e.g., NMI, hardware exception) the
2171		 * saved %rip is one that would have been saved in the old TSS
2172		 * had the task switch completed normally so the instruction
2173		 * length field is not needed in this case and is explicitly
2174		 * set to 0.
2175		 */
2176		if (ts->reason == TSR_IDT_GATE) {
2177			KASSERT(idtvec_info & VMCS_IDT_VEC_VALID,
2178			    ("invalid idtvec_info %#x for IDT task switch",
2179			    idtvec_info));
2180			intr_type = idtvec_info & VMCS_INTR_T_MASK;
2181			if (intr_type != VMCS_INTR_T_SWINTR &&
2182			    intr_type != VMCS_INTR_T_SWEXCEPTION &&
2183			    intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) {
2184				/* Task switch triggered by external event */
2185				ts->ext = 1;
2186				vmexit->inst_length = 0;
2187				if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2188					ts->errcode_valid = 1;
2189					ts->errcode = vmcs_idt_vectoring_err();
2190				}
2191			}
2192		}
2193		vmexit->exitcode = VM_EXITCODE_TASK_SWITCH;
2194		VCPU_CTR4(vmx->vm, vcpu, "task switch reason %d, tss 0x%04x, "
2195		    "%s errcode 0x%016lx", ts->reason, ts->tsssel,
2196		    ts->ext ? "external" : "internal",
2197		    ((uint64_t)ts->errcode << 32) | ts->errcode_valid);
2198		break;
2199	case EXIT_REASON_CR_ACCESS:
2200		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
2201		switch (qual & 0xf) {
2202		case 0:
2203			handled = vmx_emulate_cr0_access(vmx, vcpu, qual);
2204			break;
2205		case 4:
2206			handled = vmx_emulate_cr4_access(vmx, vcpu, qual);
2207			break;
2208		case 8:
2209			handled = vmx_emulate_cr8_access(vmx, vcpu, qual);
2210			break;
2211		}
2212		break;
2213	case EXIT_REASON_RDMSR:
2214		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1);
2215		retu = false;
2216		ecx = vmxctx->guest_rcx;
2217		VCPU_CTR1(vmx->vm, vcpu, "rdmsr 0x%08x", ecx);
2218		error = emulate_rdmsr(vmx->vm, vcpu, ecx, &retu);
2219		if (error) {
2220			vmexit->exitcode = VM_EXITCODE_RDMSR;
2221			vmexit->u.msr.code = ecx;
2222		} else if (!retu) {
2223			handled = HANDLED;
2224		} else {
2225			/* Return to userspace with a valid exitcode */
2226			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2227			    ("emulate_wrmsr retu with bogus exitcode"));
2228		}
2229		break;
2230	case EXIT_REASON_WRMSR:
2231		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1);
2232		retu = false;
2233		eax = vmxctx->guest_rax;
2234		ecx = vmxctx->guest_rcx;
2235		edx = vmxctx->guest_rdx;
2236		VCPU_CTR2(vmx->vm, vcpu, "wrmsr 0x%08x value 0x%016lx",
2237		    ecx, (uint64_t)edx << 32 | eax);
2238		error = emulate_wrmsr(vmx->vm, vcpu, ecx,
2239		    (uint64_t)edx << 32 | eax, &retu);
2240		if (error) {
2241			vmexit->exitcode = VM_EXITCODE_WRMSR;
2242			vmexit->u.msr.code = ecx;
2243			vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
2244		} else if (!retu) {
2245			handled = HANDLED;
2246		} else {
2247			/* Return to userspace with a valid exitcode */
2248			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2249			    ("emulate_wrmsr retu with bogus exitcode"));
2250		}
2251		break;
2252	case EXIT_REASON_HLT:
2253		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
2254		vmexit->exitcode = VM_EXITCODE_HLT;
2255		vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2256		break;
2257	case EXIT_REASON_MTF:
2258		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
2259		vmexit->exitcode = VM_EXITCODE_MTRAP;
2260		break;
2261	case EXIT_REASON_PAUSE:
2262		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
2263		vmexit->exitcode = VM_EXITCODE_PAUSE;
2264		break;
2265	case EXIT_REASON_INTR_WINDOW:
2266		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
2267		vmx_clear_int_window_exiting(vmx, vcpu);
2268		return (1);
2269	case EXIT_REASON_EXT_INTR:
2270		/*
2271		 * External interrupts serve only to cause VM exits and allow
2272		 * the host interrupt handler to run.
2273		 *
2274		 * If this external interrupt triggers a virtual interrupt
2275		 * to a VM, then that state will be recorded by the
2276		 * host interrupt handler in the VM's softc. We will inject
2277		 * this virtual interrupt during the subsequent VM enter.
2278		 */
2279		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2280
2281		/*
2282		 * XXX: Ignore this exit if VMCS_INTR_VALID is not set.
2283		 * This appears to be a bug in VMware Fusion?
2284		 */
2285		if (!(intr_info & VMCS_INTR_VALID))
2286			return (1);
2287		KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
2288		    (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
2289		    ("VM exit interruption info invalid: %#x", intr_info));
2290		vmx_trigger_hostintr(intr_info & 0xff);
2291
2292		/*
2293		 * This is special. We want to treat this as an 'handled'
2294		 * VM-exit but not increment the instruction pointer.
2295		 */
2296		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
2297		return (1);
2298	case EXIT_REASON_NMI_WINDOW:
2299		/* Exit to allow the pending virtual NMI to be injected */
2300		if (vm_nmi_pending(vmx->vm, vcpu))
2301			vmx_inject_nmi(vmx, vcpu);
2302		vmx_clear_nmi_window_exiting(vmx, vcpu);
2303		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
2304		return (1);
2305	case EXIT_REASON_INOUT:
2306		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
2307		vmexit->exitcode = VM_EXITCODE_INOUT;
2308		vmexit->u.inout.bytes = (qual & 0x7) + 1;
2309		vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0;
2310		vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
2311		vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
2312		vmexit->u.inout.port = (uint16_t)(qual >> 16);
2313		vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
2314		if (vmexit->u.inout.string) {
2315			inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO);
2316			vmexit->exitcode = VM_EXITCODE_INOUT_STR;
2317			vis = &vmexit->u.inout_str;
2318			vmx_paging_info(&vis->paging);
2319			vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2320			vis->cr0 = vmcs_read(VMCS_GUEST_CR0);
2321			vis->index = inout_str_index(vmx, vcpu, in);
2322			vis->count = inout_str_count(vmx, vcpu, vis->inout.rep);
2323			vis->addrsize = inout_str_addrsize(inst_info);
2324			inout_str_seginfo(vmx, vcpu, inst_info, in, vis);
2325		}
2326		break;
2327	case EXIT_REASON_CPUID:
2328		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
2329		handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
2330		break;
2331	case EXIT_REASON_EXCEPTION:
2332		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1);
2333		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2334		KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2335		    ("VM exit interruption info invalid: %#x", intr_info));
2336
2337		/*
2338		 * If Virtual NMIs control is 1 and the VM-exit is due to a
2339		 * fault encountered during the execution of IRET then we must
2340		 * restore the state of "virtual-NMI blocking" before resuming
2341		 * the guest.
2342		 *
2343		 * See "Resuming Guest Software after Handling an Exception".
2344		 * See "Information for VM Exits Due to Vectored Events".
2345		 */
2346		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2347		    (intr_info & 0xff) != IDT_DF &&
2348		    (intr_info & EXIT_QUAL_NMIUDTI) != 0)
2349			vmx_restore_nmi_blocking(vmx, vcpu);
2350
2351		/*
2352		 * The NMI has already been handled in vmx_exit_handle_nmi().
2353		 */
2354		if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI)
2355			return (1);
2356		break;
2357	case EXIT_REASON_EPT_FAULT:
2358		/*
2359		 * If 'gpa' lies within the address space allocated to
2360		 * memory then this must be a nested page fault otherwise
2361		 * this must be an instruction that accesses MMIO space.
2362		 */
2363		gpa = vmcs_gpa();
2364		if (vm_mem_allocated(vmx->vm, gpa) ||
2365		    apic_access_fault(vmx, vcpu, gpa)) {
2366			vmexit->exitcode = VM_EXITCODE_PAGING;
2367			vmexit->u.paging.gpa = gpa;
2368			vmexit->u.paging.fault_type = ept_fault_type(qual);
2369			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
2370		} else if (ept_emulation_fault(qual)) {
2371			vmexit_inst_emul(vmexit, gpa, vmcs_gla());
2372			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INST_EMUL, 1);
2373		}
2374		/*
2375		 * If Virtual NMIs control is 1 and the VM-exit is due to an
2376		 * EPT fault during the execution of IRET then we must restore
2377		 * the state of "virtual-NMI blocking" before resuming.
2378		 *
2379		 * See description of "NMI unblocking due to IRET" in
2380		 * "Exit Qualification for EPT Violations".
2381		 */
2382		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2383		    (qual & EXIT_QUAL_NMIUDTI) != 0)
2384			vmx_restore_nmi_blocking(vmx, vcpu);
2385		break;
2386	case EXIT_REASON_VIRTUALIZED_EOI:
2387		vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
2388		vmexit->u.ioapic_eoi.vector = qual & 0xFF;
2389		vmexit->inst_length = 0;	/* trap-like */
2390		break;
2391	case EXIT_REASON_APIC_ACCESS:
2392		handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
2393		break;
2394	case EXIT_REASON_APIC_WRITE:
2395		/*
2396		 * APIC-write VM exit is trap-like so the %rip is already
2397		 * pointing to the next instruction.
2398		 */
2399		vmexit->inst_length = 0;
2400		vlapic = vm_lapic(vmx->vm, vcpu);
2401		handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual);
2402		break;
2403	case EXIT_REASON_XSETBV:
2404		handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
2405		break;
2406	default:
2407		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
2408		break;
2409	}
2410
2411	if (handled) {
2412		/*
2413		 * It is possible that control is returned to userland
2414		 * even though we were able to handle the VM exit in the
2415		 * kernel.
2416		 *
2417		 * In such a case we want to make sure that the userland
2418		 * restarts guest execution at the instruction *after*
2419		 * the one we just processed. Therefore we update the
2420		 * guest rip in the VMCS and in 'vmexit'.
2421		 */
2422		vmexit->rip += vmexit->inst_length;
2423		vmexit->inst_length = 0;
2424		vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
2425	} else {
2426		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
2427			/*
2428			 * If this VM exit was not claimed by anybody then
2429			 * treat it as a generic VMX exit.
2430			 */
2431			vmexit->exitcode = VM_EXITCODE_VMX;
2432			vmexit->u.vmx.status = VM_SUCCESS;
2433			vmexit->u.vmx.inst_type = 0;
2434			vmexit->u.vmx.inst_error = 0;
2435		} else {
2436			/*
2437			 * The exitcode and collateral have been populated.
2438			 * The VM exit will be processed further in userland.
2439			 */
2440		}
2441	}
2442	return (handled);
2443}
2444
2445static __inline void
2446vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
2447{
2448
2449	KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
2450	    ("vmx_exit_inst_error: invalid inst_fail_status %d",
2451	    vmxctx->inst_fail_status));
2452
2453	vmexit->inst_length = 0;
2454	vmexit->exitcode = VM_EXITCODE_VMX;
2455	vmexit->u.vmx.status = vmxctx->inst_fail_status;
2456	vmexit->u.vmx.inst_error = vmcs_instruction_error();
2457	vmexit->u.vmx.exit_reason = ~0;
2458	vmexit->u.vmx.exit_qualification = ~0;
2459
2460	switch (rc) {
2461	case VMX_VMRESUME_ERROR:
2462	case VMX_VMLAUNCH_ERROR:
2463	case VMX_INVEPT_ERROR:
2464		vmexit->u.vmx.inst_type = rc;
2465		break;
2466	default:
2467		panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
2468	}
2469}
2470
2471/*
2472 * If the NMI-exiting VM execution control is set to '1' then an NMI in
2473 * non-root operation causes a VM-exit. NMI blocking is in effect so it is
2474 * sufficient to simply vector to the NMI handler via a software interrupt.
2475 * However, this must be done before maskable interrupts are enabled
2476 * otherwise the "iret" issued by an interrupt handler will incorrectly
2477 * clear NMI blocking.
2478 */
2479static __inline void
2480vmx_exit_handle_nmi(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2481{
2482	uint32_t intr_info;
2483
2484	KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
2485
2486	if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION)
2487		return;
2488
2489	intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2490	KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2491	    ("VM exit interruption info invalid: %#x", intr_info));
2492
2493	if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
2494		KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due "
2495		    "to NMI has invalid vector: %#x", intr_info));
2496		VCPU_CTR0(vmx->vm, vcpuid, "Vectoring to NMI handler");
2497		__asm __volatile("int $2");
2498	}
2499}
2500
2501static int
2502vmx_run(void *arg, int vcpu, register_t startrip, pmap_t pmap,
2503    void *rendezvous_cookie, void *suspend_cookie)
2504{
2505	int rc, handled, launched;
2506	struct vmx *vmx;
2507	struct vm *vm;
2508	struct vmxctx *vmxctx;
2509	struct vmcs *vmcs;
2510	struct vm_exit *vmexit;
2511	struct vlapic *vlapic;
2512	uint64_t rip;
2513	uint32_t exit_reason;
2514
2515	vmx = arg;
2516	vm = vmx->vm;
2517	vmcs = &vmx->vmcs[vcpu];
2518	vmxctx = &vmx->ctx[vcpu];
2519	vlapic = vm_lapic(vm, vcpu);
2520	vmexit = vm_exitinfo(vm, vcpu);
2521	launched = 0;
2522
2523	KASSERT(vmxctx->pmap == pmap,
2524	    ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
2525
2526	VMPTRLD(vmcs);
2527
2528	/*
2529	 * XXX
2530	 * We do this every time because we may setup the virtual machine
2531	 * from a different process than the one that actually runs it.
2532	 *
2533	 * If the life of a virtual machine was spent entirely in the context
2534	 * of a single process we could do this once in vmx_vminit().
2535	 */
2536	vmcs_write(VMCS_HOST_CR3, rcr3());
2537
2538	vmcs_write(VMCS_GUEST_RIP, startrip);
2539	vmx_set_pcpu_defaults(vmx, vcpu, pmap);
2540	do {
2541		handled = UNHANDLED;
2542
2543		/*
2544		 * Interrupts are disabled from this point on until the
2545		 * guest starts executing. This is done for the following
2546		 * reasons:
2547		 *
2548		 * If an AST is asserted on this thread after the check below,
2549		 * then the IPI_AST notification will not be lost, because it
2550		 * will cause a VM exit due to external interrupt as soon as
2551		 * the guest state is loaded.
2552		 *
2553		 * A posted interrupt after 'vmx_inject_interrupts()' will
2554		 * not be "lost" because it will be held pending in the host
2555		 * APIC because interrupts are disabled. The pending interrupt
2556		 * will be recognized as soon as the guest state is loaded.
2557		 *
2558		 * The same reasoning applies to the IPI generated by
2559		 * pmap_invalidate_ept().
2560		 */
2561		disable_intr();
2562		vmx_inject_interrupts(vmx, vcpu, vlapic);
2563
2564		/*
2565		 * Check for vcpu suspension after injecting events because
2566		 * vmx_inject_interrupts() can suspend the vcpu due to a
2567		 * triple fault.
2568		 */
2569		if (vcpu_suspended(suspend_cookie)) {
2570			enable_intr();
2571			vm_exit_suspended(vmx->vm, vcpu, vmcs_guest_rip());
2572			break;
2573		}
2574
2575		if (vcpu_rendezvous_pending(rendezvous_cookie)) {
2576			enable_intr();
2577			vm_exit_rendezvous(vmx->vm, vcpu, vmcs_guest_rip());
2578			break;
2579		}
2580
2581		if (vcpu_should_yield(vm, vcpu)) {
2582			enable_intr();
2583			vm_exit_astpending(vmx->vm, vcpu, vmcs_guest_rip());
2584			vmx_astpending_trace(vmx, vcpu, vmexit->rip);
2585			handled = HANDLED;
2586			break;
2587		}
2588
2589		vmx_run_trace(vmx, vcpu);
2590		rc = vmx_enter_guest(vmxctx, vmx, launched);
2591
2592		/* Collect some information for VM exit processing */
2593		vmexit->rip = rip = vmcs_guest_rip();
2594		vmexit->inst_length = vmexit_instruction_length();
2595		vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
2596		vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
2597
2598		if (rc == VMX_GUEST_VMEXIT) {
2599			vmx_exit_handle_nmi(vmx, vcpu, vmexit);
2600			enable_intr();
2601			handled = vmx_exit_process(vmx, vcpu, vmexit);
2602		} else {
2603			enable_intr();
2604			vmx_exit_inst_error(vmxctx, rc, vmexit);
2605		}
2606		launched = 1;
2607		vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
2608	} while (handled);
2609
2610	/*
2611	 * If a VM exit has been handled then the exitcode must be BOGUS
2612	 * If a VM exit is not handled then the exitcode must not be BOGUS
2613	 */
2614	if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
2615	    (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
2616		panic("Mismatch between handled (%d) and exitcode (%d)",
2617		      handled, vmexit->exitcode);
2618	}
2619
2620	if (!handled)
2621		vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1);
2622
2623	VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d",
2624	    vmexit->exitcode);
2625
2626	VMCLEAR(vmcs);
2627	return (0);
2628}
2629
2630static void
2631vmx_vmcleanup(void *arg)
2632{
2633	int i;
2634	struct vmx *vmx = arg;
2635
2636	if (apic_access_virtualization(vmx, 0))
2637		vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
2638
2639	for (i = 0; i < VM_MAXCPU; i++)
2640		vpid_free(vmx->state[i].vpid);
2641
2642	free(vmx, M_VMX);
2643
2644	return;
2645}
2646
2647static register_t *
2648vmxctx_regptr(struct vmxctx *vmxctx, int reg)
2649{
2650
2651	switch (reg) {
2652	case VM_REG_GUEST_RAX:
2653		return (&vmxctx->guest_rax);
2654	case VM_REG_GUEST_RBX:
2655		return (&vmxctx->guest_rbx);
2656	case VM_REG_GUEST_RCX:
2657		return (&vmxctx->guest_rcx);
2658	case VM_REG_GUEST_RDX:
2659		return (&vmxctx->guest_rdx);
2660	case VM_REG_GUEST_RSI:
2661		return (&vmxctx->guest_rsi);
2662	case VM_REG_GUEST_RDI:
2663		return (&vmxctx->guest_rdi);
2664	case VM_REG_GUEST_RBP:
2665		return (&vmxctx->guest_rbp);
2666	case VM_REG_GUEST_R8:
2667		return (&vmxctx->guest_r8);
2668	case VM_REG_GUEST_R9:
2669		return (&vmxctx->guest_r9);
2670	case VM_REG_GUEST_R10:
2671		return (&vmxctx->guest_r10);
2672	case VM_REG_GUEST_R11:
2673		return (&vmxctx->guest_r11);
2674	case VM_REG_GUEST_R12:
2675		return (&vmxctx->guest_r12);
2676	case VM_REG_GUEST_R13:
2677		return (&vmxctx->guest_r13);
2678	case VM_REG_GUEST_R14:
2679		return (&vmxctx->guest_r14);
2680	case VM_REG_GUEST_R15:
2681		return (&vmxctx->guest_r15);
2682	case VM_REG_GUEST_CR2:
2683		return (&vmxctx->guest_cr2);
2684	default:
2685		break;
2686	}
2687	return (NULL);
2688}
2689
2690static int
2691vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
2692{
2693	register_t *regp;
2694
2695	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
2696		*retval = *regp;
2697		return (0);
2698	} else
2699		return (EINVAL);
2700}
2701
2702static int
2703vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
2704{
2705	register_t *regp;
2706
2707	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
2708		*regp = val;
2709		return (0);
2710	} else
2711		return (EINVAL);
2712}
2713
2714static int
2715vmx_shadow_reg(int reg)
2716{
2717	int shreg;
2718
2719	shreg = -1;
2720
2721	switch (reg) {
2722	case VM_REG_GUEST_CR0:
2723		shreg = VMCS_CR0_SHADOW;
2724                break;
2725        case VM_REG_GUEST_CR4:
2726		shreg = VMCS_CR4_SHADOW;
2727		break;
2728	default:
2729		break;
2730	}
2731
2732	return (shreg);
2733}
2734
2735static int
2736vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
2737{
2738	int running, hostcpu;
2739	struct vmx *vmx = arg;
2740
2741	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2742	if (running && hostcpu != curcpu)
2743		panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
2744
2745	if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0)
2746		return (0);
2747
2748	return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval));
2749}
2750
2751static int
2752vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
2753{
2754	int error, hostcpu, running, shadow;
2755	uint64_t ctls;
2756	pmap_t pmap;
2757	struct vmx *vmx = arg;
2758
2759	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2760	if (running && hostcpu != curcpu)
2761		panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
2762
2763	if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0)
2764		return (0);
2765
2766	error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val);
2767
2768	if (error == 0) {
2769		/*
2770		 * If the "load EFER" VM-entry control is 1 then the
2771		 * value of EFER.LMA must be identical to "IA-32e mode guest"
2772		 * bit in the VM-entry control.
2773		 */
2774		if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
2775		    (reg == VM_REG_GUEST_EFER)) {
2776			vmcs_getreg(&vmx->vmcs[vcpu], running,
2777				    VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
2778			if (val & EFER_LMA)
2779				ctls |= VM_ENTRY_GUEST_LMA;
2780			else
2781				ctls &= ~VM_ENTRY_GUEST_LMA;
2782			vmcs_setreg(&vmx->vmcs[vcpu], running,
2783				    VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
2784		}
2785
2786		shadow = vmx_shadow_reg(reg);
2787		if (shadow > 0) {
2788			/*
2789			 * Store the unmodified value in the shadow
2790			 */
2791			error = vmcs_setreg(&vmx->vmcs[vcpu], running,
2792				    VMCS_IDENT(shadow), val);
2793		}
2794
2795		if (reg == VM_REG_GUEST_CR3) {
2796			/*
2797			 * Invalidate the guest vcpu's TLB mappings to emulate
2798			 * the behavior of updating %cr3.
2799			 *
2800			 * XXX the processor retains global mappings when %cr3
2801			 * is updated but vmx_invvpid() does not.
2802			 */
2803			pmap = vmx->ctx[vcpu].pmap;
2804			vmx_invvpid(vmx, vcpu, pmap, running);
2805		}
2806	}
2807
2808	return (error);
2809}
2810
2811static int
2812vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
2813{
2814	int hostcpu, running;
2815	struct vmx *vmx = arg;
2816
2817	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2818	if (running && hostcpu != curcpu)
2819		panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm), vcpu);
2820
2821	return (vmcs_getdesc(&vmx->vmcs[vcpu], running, reg, desc));
2822}
2823
2824static int
2825vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
2826{
2827	int hostcpu, running;
2828	struct vmx *vmx = arg;
2829
2830	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2831	if (running && hostcpu != curcpu)
2832		panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm), vcpu);
2833
2834	return (vmcs_setdesc(&vmx->vmcs[vcpu], running, reg, desc));
2835}
2836
2837static int
2838vmx_getcap(void *arg, int vcpu, int type, int *retval)
2839{
2840	struct vmx *vmx = arg;
2841	int vcap;
2842	int ret;
2843
2844	ret = ENOENT;
2845
2846	vcap = vmx->cap[vcpu].set;
2847
2848	switch (type) {
2849	case VM_CAP_HALT_EXIT:
2850		if (cap_halt_exit)
2851			ret = 0;
2852		break;
2853	case VM_CAP_PAUSE_EXIT:
2854		if (cap_pause_exit)
2855			ret = 0;
2856		break;
2857	case VM_CAP_MTRAP_EXIT:
2858		if (cap_monitor_trap)
2859			ret = 0;
2860		break;
2861	case VM_CAP_UNRESTRICTED_GUEST:
2862		if (cap_unrestricted_guest)
2863			ret = 0;
2864		break;
2865	case VM_CAP_ENABLE_INVPCID:
2866		if (cap_invpcid)
2867			ret = 0;
2868		break;
2869	default:
2870		break;
2871	}
2872
2873	if (ret == 0)
2874		*retval = (vcap & (1 << type)) ? 1 : 0;
2875
2876	return (ret);
2877}
2878
2879static int
2880vmx_setcap(void *arg, int vcpu, int type, int val)
2881{
2882	struct vmx *vmx = arg;
2883	struct vmcs *vmcs = &vmx->vmcs[vcpu];
2884	uint32_t baseval;
2885	uint32_t *pptr;
2886	int error;
2887	int flag;
2888	int reg;
2889	int retval;
2890
2891	retval = ENOENT;
2892	pptr = NULL;
2893
2894	switch (type) {
2895	case VM_CAP_HALT_EXIT:
2896		if (cap_halt_exit) {
2897			retval = 0;
2898			pptr = &vmx->cap[vcpu].proc_ctls;
2899			baseval = *pptr;
2900			flag = PROCBASED_HLT_EXITING;
2901			reg = VMCS_PRI_PROC_BASED_CTLS;
2902		}
2903		break;
2904	case VM_CAP_MTRAP_EXIT:
2905		if (cap_monitor_trap) {
2906			retval = 0;
2907			pptr = &vmx->cap[vcpu].proc_ctls;
2908			baseval = *pptr;
2909			flag = PROCBASED_MTF;
2910			reg = VMCS_PRI_PROC_BASED_CTLS;
2911		}
2912		break;
2913	case VM_CAP_PAUSE_EXIT:
2914		if (cap_pause_exit) {
2915			retval = 0;
2916			pptr = &vmx->cap[vcpu].proc_ctls;
2917			baseval = *pptr;
2918			flag = PROCBASED_PAUSE_EXITING;
2919			reg = VMCS_PRI_PROC_BASED_CTLS;
2920		}
2921		break;
2922	case VM_CAP_UNRESTRICTED_GUEST:
2923		if (cap_unrestricted_guest) {
2924			retval = 0;
2925			pptr = &vmx->cap[vcpu].proc_ctls2;
2926			baseval = *pptr;
2927			flag = PROCBASED2_UNRESTRICTED_GUEST;
2928			reg = VMCS_SEC_PROC_BASED_CTLS;
2929		}
2930		break;
2931	case VM_CAP_ENABLE_INVPCID:
2932		if (cap_invpcid) {
2933			retval = 0;
2934			pptr = &vmx->cap[vcpu].proc_ctls2;
2935			baseval = *pptr;
2936			flag = PROCBASED2_ENABLE_INVPCID;
2937			reg = VMCS_SEC_PROC_BASED_CTLS;
2938		}
2939		break;
2940	default:
2941		break;
2942	}
2943
2944	if (retval == 0) {
2945		if (val) {
2946			baseval |= flag;
2947		} else {
2948			baseval &= ~flag;
2949		}
2950		VMPTRLD(vmcs);
2951		error = vmwrite(reg, baseval);
2952		VMCLEAR(vmcs);
2953
2954		if (error) {
2955			retval = error;
2956		} else {
2957			/*
2958			 * Update optional stored flags, and record
2959			 * setting
2960			 */
2961			if (pptr != NULL) {
2962				*pptr = baseval;
2963			}
2964
2965			if (val) {
2966				vmx->cap[vcpu].set |= (1 << type);
2967			} else {
2968				vmx->cap[vcpu].set &= ~(1 << type);
2969			}
2970		}
2971	}
2972
2973        return (retval);
2974}
2975
2976struct vlapic_vtx {
2977	struct vlapic	vlapic;
2978	struct pir_desc	*pir_desc;
2979	struct vmx	*vmx;
2980};
2981
2982#define	VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg)	\
2983do {									\
2984	VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d",	\
2985	    level ? "level" : "edge", vector);				\
2986	VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]);	\
2987	VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]);	\
2988	VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]);	\
2989	VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]);	\
2990	VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\
2991} while (0)
2992
2993/*
2994 * vlapic->ops handlers that utilize the APICv hardware assist described in
2995 * Chapter 29 of the Intel SDM.
2996 */
2997static int
2998vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
2999{
3000	struct vlapic_vtx *vlapic_vtx;
3001	struct pir_desc *pir_desc;
3002	uint64_t mask;
3003	int idx, notify;
3004
3005	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3006	pir_desc = vlapic_vtx->pir_desc;
3007
3008	/*
3009	 * Keep track of interrupt requests in the PIR descriptor. This is
3010	 * because the virtual APIC page pointed to by the VMCS cannot be
3011	 * modified if the vcpu is running.
3012	 */
3013	idx = vector / 64;
3014	mask = 1UL << (vector % 64);
3015	atomic_set_long(&pir_desc->pir[idx], mask);
3016	notify = atomic_cmpset_long(&pir_desc->pending, 0, 1);
3017
3018	VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector,
3019	    level, "vmx_set_intr_ready");
3020	return (notify);
3021}
3022
3023static int
3024vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
3025{
3026	struct vlapic_vtx *vlapic_vtx;
3027	struct pir_desc *pir_desc;
3028	struct LAPIC *lapic;
3029	uint64_t pending, pirval;
3030	uint32_t ppr, vpr;
3031	int i;
3032
3033	/*
3034	 * This function is only expected to be called from the 'HLT' exit
3035	 * handler which does not care about the vector that is pending.
3036	 */
3037	KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
3038
3039	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3040	pir_desc = vlapic_vtx->pir_desc;
3041
3042	pending = atomic_load_acq_long(&pir_desc->pending);
3043	if (!pending)
3044		return (0);	/* common case */
3045
3046	/*
3047	 * If there is an interrupt pending then it will be recognized only
3048	 * if its priority is greater than the processor priority.
3049	 *
3050	 * Special case: if the processor priority is zero then any pending
3051	 * interrupt will be recognized.
3052	 */
3053	lapic = vlapic->apic_page;
3054	ppr = lapic->ppr & 0xf0;
3055	if (ppr == 0)
3056		return (1);
3057
3058	VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d",
3059	    lapic->ppr);
3060
3061	for (i = 3; i >= 0; i--) {
3062		pirval = pir_desc->pir[i];
3063		if (pirval != 0) {
3064			vpr = (i * 64 + flsl(pirval) - 1) & 0xf0;
3065			return (vpr > ppr);
3066		}
3067	}
3068	return (0);
3069}
3070
3071static void
3072vmx_intr_accepted(struct vlapic *vlapic, int vector)
3073{
3074
3075	panic("vmx_intr_accepted: not expected to be called");
3076}
3077
3078static void
3079vmx_set_tmr(struct vlapic *vlapic, int vector, bool level)
3080{
3081	struct vlapic_vtx *vlapic_vtx;
3082	struct vmx *vmx;
3083	struct vmcs *vmcs;
3084	uint64_t mask, val;
3085
3086	KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector));
3087	KASSERT(!vcpu_is_running(vlapic->vm, vlapic->vcpuid, NULL),
3088	    ("vmx_set_tmr: vcpu cannot be running"));
3089
3090	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3091	vmx = vlapic_vtx->vmx;
3092	vmcs = &vmx->vmcs[vlapic->vcpuid];
3093	mask = 1UL << (vector % 64);
3094
3095	VMPTRLD(vmcs);
3096	val = vmcs_read(VMCS_EOI_EXIT(vector));
3097	if (level)
3098		val |= mask;
3099	else
3100		val &= ~mask;
3101	vmcs_write(VMCS_EOI_EXIT(vector), val);
3102	VMCLEAR(vmcs);
3103}
3104
3105static void
3106vmx_enable_x2apic_mode(struct vlapic *vlapic)
3107{
3108	struct vmx *vmx;
3109	struct vmcs *vmcs;
3110	uint32_t proc_ctls2;
3111	int vcpuid, error;
3112
3113	vcpuid = vlapic->vcpuid;
3114	vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3115	vmcs = &vmx->vmcs[vcpuid];
3116
3117	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
3118	KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
3119	    ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2));
3120
3121	proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
3122	proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
3123	vmx->cap[vcpuid].proc_ctls2 = proc_ctls2;
3124
3125	VMPTRLD(vmcs);
3126	vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
3127	VMCLEAR(vmcs);
3128
3129	if (vlapic->vcpuid == 0) {
3130		/*
3131		 * The nested page table mappings are shared by all vcpus
3132		 * so unmap the APIC access page just once.
3133		 */
3134		error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3135		KASSERT(error == 0, ("%s: vm_unmap_mmio error %d",
3136		    __func__, error));
3137
3138		/*
3139		 * The MSR bitmap is shared by all vcpus so modify it only
3140		 * once in the context of vcpu 0.
3141		 */
3142		error = vmx_allow_x2apic_msrs(vmx);
3143		KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d",
3144		    __func__, error));
3145	}
3146}
3147
3148static void
3149vmx_post_intr(struct vlapic *vlapic, int hostcpu)
3150{
3151
3152	ipi_cpu(hostcpu, pirvec);
3153}
3154
3155/*
3156 * Transfer the pending interrupts in the PIR descriptor to the IRR
3157 * in the virtual APIC page.
3158 */
3159static void
3160vmx_inject_pir(struct vlapic *vlapic)
3161{
3162	struct vlapic_vtx *vlapic_vtx;
3163	struct pir_desc *pir_desc;
3164	struct LAPIC *lapic;
3165	uint64_t val, pirval;
3166	int rvi, pirbase = -1;
3167	uint16_t intr_status_old, intr_status_new;
3168
3169	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3170	pir_desc = vlapic_vtx->pir_desc;
3171	if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
3172		VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3173		    "no posted interrupt pending");
3174		return;
3175	}
3176
3177	pirval = 0;
3178	pirbase = -1;
3179	lapic = vlapic->apic_page;
3180
3181	val = atomic_readandclear_long(&pir_desc->pir[0]);
3182	if (val != 0) {
3183		lapic->irr0 |= val;
3184		lapic->irr1 |= val >> 32;
3185		pirbase = 0;
3186		pirval = val;
3187	}
3188
3189	val = atomic_readandclear_long(&pir_desc->pir[1]);
3190	if (val != 0) {
3191		lapic->irr2 |= val;
3192		lapic->irr3 |= val >> 32;
3193		pirbase = 64;
3194		pirval = val;
3195	}
3196
3197	val = atomic_readandclear_long(&pir_desc->pir[2]);
3198	if (val != 0) {
3199		lapic->irr4 |= val;
3200		lapic->irr5 |= val >> 32;
3201		pirbase = 128;
3202		pirval = val;
3203	}
3204
3205	val = atomic_readandclear_long(&pir_desc->pir[3]);
3206	if (val != 0) {
3207		lapic->irr6 |= val;
3208		lapic->irr7 |= val >> 32;
3209		pirbase = 192;
3210		pirval = val;
3211	}
3212
3213	VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
3214
3215	/*
3216	 * Update RVI so the processor can evaluate pending virtual
3217	 * interrupts on VM-entry.
3218	 *
3219	 * It is possible for pirval to be 0 here, even though the
3220	 * pending bit has been set. The scenario is:
3221	 * CPU-Y is sending a posted interrupt to CPU-X, which
3222	 * is running a guest and processing posted interrupts in h/w.
3223	 * CPU-X will eventually exit and the state seen in s/w is
3224	 * the pending bit set, but no PIR bits set.
3225	 *
3226	 *      CPU-X                      CPU-Y
3227	 *   (vm running)                (host running)
3228	 *   rx posted interrupt
3229	 *   CLEAR pending bit
3230	 *				 SET PIR bit
3231	 *   READ/CLEAR PIR bits
3232	 *				 SET pending bit
3233	 *   (vm exit)
3234	 *   pending bit set, PIR 0
3235	 */
3236	if (pirval != 0) {
3237		rvi = pirbase + flsl(pirval) - 1;
3238		intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
3239		intr_status_new = (intr_status_old & 0xFF00) | rvi;
3240		if (intr_status_new > intr_status_old) {
3241			vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
3242			VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3243			    "guest_intr_status changed from 0x%04x to 0x%04x",
3244			    intr_status_old, intr_status_new);
3245		}
3246	}
3247}
3248
3249static struct vlapic *
3250vmx_vlapic_init(void *arg, int vcpuid)
3251{
3252	struct vmx *vmx;
3253	struct vlapic *vlapic;
3254	struct vlapic_vtx *vlapic_vtx;
3255
3256	vmx = arg;
3257
3258	vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
3259	vlapic->vm = vmx->vm;
3260	vlapic->vcpuid = vcpuid;
3261	vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
3262
3263	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3264	vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid];
3265	vlapic_vtx->vmx = vmx;
3266
3267	if (virtual_interrupt_delivery) {
3268		vlapic->ops.set_intr_ready = vmx_set_intr_ready;
3269		vlapic->ops.pending_intr = vmx_pending_intr;
3270		vlapic->ops.intr_accepted = vmx_intr_accepted;
3271		vlapic->ops.set_tmr = vmx_set_tmr;
3272		vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode;
3273	}
3274
3275	if (posted_interrupts)
3276		vlapic->ops.post_intr = vmx_post_intr;
3277
3278	vlapic_init(vlapic);
3279
3280	return (vlapic);
3281}
3282
3283static void
3284vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
3285{
3286
3287	vlapic_cleanup(vlapic);
3288	free(vlapic, M_VLAPIC);
3289}
3290
3291struct vmm_ops vmm_ops_intel = {
3292	vmx_init,
3293	vmx_cleanup,
3294	vmx_restore,
3295	vmx_vminit,
3296	vmx_run,
3297	vmx_vmcleanup,
3298	vmx_getreg,
3299	vmx_setreg,
3300	vmx_getdesc,
3301	vmx_setdesc,
3302	vmx_getcap,
3303	vmx_setcap,
3304	ept_vmspace_alloc,
3305	ept_vmspace_free,
3306	vmx_vlapic_init,
3307	vmx_vlapic_cleanup,
3308};
3309