svm.c revision 276403
1/*-
2 * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com)
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/10/sys/amd64/vmm/amd/svm.c 276403 2014-12-30 08:24:14Z neel $");
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/smp.h>
33#include <sys/kernel.h>
34#include <sys/malloc.h>
35#include <sys/pcpu.h>
36#include <sys/proc.h>
37#include <sys/sysctl.h>
38
39#include <vm/vm.h>
40#include <vm/pmap.h>
41
42#include <machine/cpufunc.h>
43#include <machine/psl.h>
44#include <machine/pmap.h>
45#include <machine/md_var.h>
46#include <machine/specialreg.h>
47#include <machine/smp.h>
48#include <machine/vmm.h>
49#include <machine/vmm_dev.h>
50#include <machine/vmm_instruction_emul.h>
51
52#include "vmm_lapic.h"
53#include "vmm_stat.h"
54#include "vmm_ktr.h"
55#include "vmm_ioport.h"
56#include "vatpic.h"
57#include "vlapic.h"
58#include "vlapic_priv.h"
59
60#include "x86.h"
61#include "vmcb.h"
62#include "svm.h"
63#include "svm_softc.h"
64#include "svm_msr.h"
65#include "npt.h"
66
67SYSCTL_DECL(_hw_vmm);
68SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW, NULL, NULL);
69
70/*
71 * SVM CPUID function 0x8000_000A, edx bit decoding.
72 */
73#define AMD_CPUID_SVM_NP		BIT(0)  /* Nested paging or RVI */
74#define AMD_CPUID_SVM_LBR		BIT(1)  /* Last branch virtualization */
75#define AMD_CPUID_SVM_SVML		BIT(2)  /* SVM lock */
76#define AMD_CPUID_SVM_NRIP_SAVE		BIT(3)  /* Next RIP is saved */
77#define AMD_CPUID_SVM_TSC_RATE		BIT(4)  /* TSC rate control. */
78#define AMD_CPUID_SVM_VMCB_CLEAN	BIT(5)  /* VMCB state caching */
79#define AMD_CPUID_SVM_FLUSH_BY_ASID	BIT(6)  /* Flush by ASID */
80#define AMD_CPUID_SVM_DECODE_ASSIST	BIT(7)  /* Decode assist */
81#define AMD_CPUID_SVM_PAUSE_INC		BIT(10) /* Pause intercept filter. */
82#define AMD_CPUID_SVM_PAUSE_FTH		BIT(12) /* Pause filter threshold */
83
84#define	VMCB_CACHE_DEFAULT	(VMCB_CACHE_ASID 	|	\
85				VMCB_CACHE_IOPM		|	\
86				VMCB_CACHE_I		|	\
87				VMCB_CACHE_TPR		|	\
88				VMCB_CACHE_CR2		|	\
89				VMCB_CACHE_CR		|	\
90				VMCB_CACHE_DT		|	\
91				VMCB_CACHE_SEG		|	\
92				VMCB_CACHE_NP)
93
94static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT;
95SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean,
96    0, NULL);
97
98static MALLOC_DEFINE(M_SVM, "svm", "svm");
99static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic");
100
101/* Per-CPU context area. */
102extern struct pcpu __pcpu[];
103
104static uint32_t svm_feature;	/* AMD SVM features. */
105SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RD, &svm_feature, 0,
106    "SVM features advertised by CPUID.8000000AH:EDX");
107
108static int disable_npf_assist;
109SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN,
110    &disable_npf_assist, 0, NULL);
111
112/* Maximum ASIDs supported by the processor */
113static uint32_t nasid;
114SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RD, &nasid, 0,
115    "Number of ASIDs supported by this processor");
116
117/* Current ASID generation for each host cpu */
118static struct asid asid[MAXCPU];
119
120/*
121 * SVM host state saved area of size 4KB for each core.
122 */
123static uint8_t hsave[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
124
125static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery");
126static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry");
127static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window");
128
129static int svm_setreg(void *arg, int vcpu, int ident, uint64_t val);
130
131static __inline int
132flush_by_asid(void)
133{
134
135	return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID);
136}
137
138static __inline int
139decode_assist(void)
140{
141
142	return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST);
143}
144
145static void
146svm_disable(void *arg __unused)
147{
148	uint64_t efer;
149
150	efer = rdmsr(MSR_EFER);
151	efer &= ~EFER_SVM;
152	wrmsr(MSR_EFER, efer);
153}
154
155/*
156 * Disable SVM on all CPUs.
157 */
158static int
159svm_cleanup(void)
160{
161
162	smp_rendezvous(NULL, svm_disable, NULL, NULL);
163	return (0);
164}
165
166/*
167 * Verify that all the features required by bhyve are available.
168 */
169static int
170check_svm_features(void)
171{
172	u_int regs[4];
173
174	/* CPUID Fn8000_000A is for SVM */
175	do_cpuid(0x8000000A, regs);
176	svm_feature = regs[3];
177
178	nasid = regs[1];
179	KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid));
180
181	/* bhyve requires the Nested Paging feature */
182	if (!(svm_feature & AMD_CPUID_SVM_NP)) {
183		printf("SVM: Nested Paging feature not available.\n");
184		return (ENXIO);
185	}
186
187	/* bhyve requires the NRIP Save feature */
188	if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) {
189		printf("SVM: NRIP Save feature not available.\n");
190		return (ENXIO);
191	}
192
193	return (0);
194}
195
196static void
197svm_enable(void *arg __unused)
198{
199	uint64_t efer;
200
201	efer = rdmsr(MSR_EFER);
202	efer |= EFER_SVM;
203	wrmsr(MSR_EFER, efer);
204
205	wrmsr(MSR_VM_HSAVE_PA, vtophys(hsave[curcpu]));
206}
207
208/*
209 * Return 1 if SVM is enabled on this processor and 0 otherwise.
210 */
211static int
212svm_available(void)
213{
214	uint64_t msr;
215
216	/* Section 15.4 Enabling SVM from APM2. */
217	if ((amd_feature2 & AMDID2_SVM) == 0) {
218		printf("SVM: not available.\n");
219		return (0);
220	}
221
222	msr = rdmsr(MSR_VM_CR);
223	if ((msr & VM_CR_SVMDIS) != 0) {
224		printf("SVM: disabled by BIOS.\n");
225		return (0);
226	}
227
228	return (1);
229}
230
231static int
232svm_init(int ipinum)
233{
234	int error, cpu;
235
236	if (!svm_available())
237		return (ENXIO);
238
239	error = check_svm_features();
240	if (error)
241		return (error);
242
243	vmcb_clean &= VMCB_CACHE_DEFAULT;
244
245	for (cpu = 0; cpu < MAXCPU; cpu++) {
246		/*
247		 * Initialize the host ASIDs to their "highest" valid values.
248		 *
249		 * The next ASID allocation will rollover both 'gen' and 'num'
250		 * and start off the sequence at {1,1}.
251		 */
252		asid[cpu].gen = ~0UL;
253		asid[cpu].num = nasid - 1;
254	}
255
256	svm_msr_init();
257	svm_npt_init(ipinum);
258
259	/* Enable SVM on all CPUs */
260	smp_rendezvous(NULL, svm_enable, NULL, NULL);
261
262	return (0);
263}
264
265static void
266svm_restore(void)
267{
268
269	svm_enable(NULL);
270}
271
272/* Pentium compatible MSRs */
273#define MSR_PENTIUM_START 	0
274#define MSR_PENTIUM_END 	0x1FFF
275/* AMD 6th generation and Intel compatible MSRs */
276#define MSR_AMD6TH_START 	0xC0000000UL
277#define MSR_AMD6TH_END 		0xC0001FFFUL
278/* AMD 7th and 8th generation compatible MSRs */
279#define MSR_AMD7TH_START 	0xC0010000UL
280#define MSR_AMD7TH_END 		0xC0011FFFUL
281
282/*
283 * Get the index and bit position for a MSR in permission bitmap.
284 * Two bits are used for each MSR: lower bit for read and higher bit for write.
285 */
286static int
287svm_msr_index(uint64_t msr, int *index, int *bit)
288{
289	uint32_t base, off;
290
291	*index = -1;
292	*bit = (msr % 4) * 2;
293	base = 0;
294
295	if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) {
296		*index = msr / 4;
297		return (0);
298	}
299
300	base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1);
301	if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) {
302		off = (msr - MSR_AMD6TH_START);
303		*index = (off + base) / 4;
304		return (0);
305	}
306
307	base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1);
308	if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) {
309		off = (msr - MSR_AMD7TH_START);
310		*index = (off + base) / 4;
311		return (0);
312	}
313
314	return (EINVAL);
315}
316
317/*
318 * Allow vcpu to read or write the 'msr' without trapping into the hypervisor.
319 */
320static void
321svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write)
322{
323	int index, bit, error;
324
325	error = svm_msr_index(msr, &index, &bit);
326	KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr));
327	KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE,
328	    ("%s: invalid index %d for msr %#lx", __func__, index, msr));
329	KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d "
330	    "msr %#lx", __func__, bit, msr));
331
332	if (read)
333		perm_bitmap[index] &= ~(1UL << bit);
334
335	if (write)
336		perm_bitmap[index] &= ~(2UL << bit);
337}
338
339static void
340svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr)
341{
342
343	svm_msr_perm(perm_bitmap, msr, true, true);
344}
345
346static void
347svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr)
348{
349
350	svm_msr_perm(perm_bitmap, msr, true, false);
351}
352
353static __inline int
354svm_get_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask)
355{
356	struct vmcb_ctrl *ctrl;
357
358	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
359
360	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
361	return (ctrl->intercept[idx] & bitmask ? 1 : 0);
362}
363
364static __inline void
365svm_set_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask,
366    int enabled)
367{
368	struct vmcb_ctrl *ctrl;
369	uint32_t oldval;
370
371	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
372
373	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
374	oldval = ctrl->intercept[idx];
375
376	if (enabled)
377		ctrl->intercept[idx] |= bitmask;
378	else
379		ctrl->intercept[idx] &= ~bitmask;
380
381	if (ctrl->intercept[idx] != oldval) {
382		svm_set_dirty(sc, vcpu, VMCB_CACHE_I);
383		VCPU_CTR3(sc->vm, vcpu, "intercept[%d] modified "
384		    "from %#x to %#x", idx, oldval, ctrl->intercept[idx]);
385	}
386}
387
388static __inline void
389svm_disable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
390{
391
392	svm_set_intercept(sc, vcpu, off, bitmask, 0);
393}
394
395static __inline void
396svm_enable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
397{
398
399	svm_set_intercept(sc, vcpu, off, bitmask, 1);
400}
401
402static void
403vmcb_init(struct svm_softc *sc, int vcpu, uint64_t iopm_base_pa,
404    uint64_t msrpm_base_pa, uint64_t np_pml4)
405{
406	struct vmcb_ctrl *ctrl;
407	struct vmcb_state *state;
408	uint32_t mask;
409	int n;
410
411	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
412	state = svm_get_vmcb_state(sc, vcpu);
413
414	ctrl->iopm_base_pa = iopm_base_pa;
415	ctrl->msrpm_base_pa = msrpm_base_pa;
416
417	/* Enable nested paging */
418	ctrl->np_enable = 1;
419	ctrl->n_cr3 = np_pml4;
420
421	/*
422	 * Intercept accesses to the control registers that are not shadowed
423	 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8.
424	 */
425	for (n = 0; n < 16; n++) {
426		mask = (BIT(n) << 16) | BIT(n);
427		if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8)
428			svm_disable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
429		else
430			svm_enable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
431	}
432
433
434	/*
435	 * Intercept everything when tracing guest exceptions otherwise
436	 * just intercept machine check exception.
437	 */
438	if (vcpu_trace_exceptions(sc->vm, vcpu)) {
439		for (n = 0; n < 32; n++) {
440			/*
441			 * Skip unimplemented vectors in the exception bitmap.
442			 */
443			if (n == 2 || n == 9) {
444				continue;
445			}
446			svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(n));
447		}
448	} else {
449		svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC));
450	}
451
452	/* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */
453	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO);
454	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR);
455	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID);
456	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR);
457	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT);
458	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI);
459	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI);
460	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN);
461	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
462	    VMCB_INTCPT_FERR_FREEZE);
463
464	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR);
465	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT);
466
467	/*
468	 * From section "Canonicalization and Consistency Checks" in APMv2
469	 * the VMRUN intercept bit must be set to pass the consistency check.
470	 */
471	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN);
472
473	/*
474	 * The ASID will be set to a non-zero value just before VMRUN.
475	 */
476	ctrl->asid = 0;
477
478	/*
479	 * Section 15.21.1, Interrupt Masking in EFLAGS
480	 * Section 15.21.2, Virtualizing APIC.TPR
481	 *
482	 * This must be set for %rflag and %cr8 isolation of guest and host.
483	 */
484	ctrl->v_intr_masking = 1;
485
486	/* Enable Last Branch Record aka LBR for debugging */
487	ctrl->lbr_virt_en = 1;
488	state->dbgctl = BIT(0);
489
490	/* EFER_SVM must always be set when the guest is executing */
491	state->efer = EFER_SVM;
492
493	/* Set up the PAT to power-on state */
494	state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK)	|
495	    PAT_VALUE(1, PAT_WRITE_THROUGH)	|
496	    PAT_VALUE(2, PAT_UNCACHED)		|
497	    PAT_VALUE(3, PAT_UNCACHEABLE)	|
498	    PAT_VALUE(4, PAT_WRITE_BACK)	|
499	    PAT_VALUE(5, PAT_WRITE_THROUGH)	|
500	    PAT_VALUE(6, PAT_UNCACHED)		|
501	    PAT_VALUE(7, PAT_UNCACHEABLE);
502}
503
504/*
505 * Initialize a virtual machine.
506 */
507static void *
508svm_vminit(struct vm *vm, pmap_t pmap)
509{
510	struct svm_softc *svm_sc;
511	struct svm_vcpu *vcpu;
512	vm_paddr_t msrpm_pa, iopm_pa, pml4_pa;
513	int i;
514
515	svm_sc = malloc(sizeof (struct svm_softc), M_SVM, M_WAITOK | M_ZERO);
516	svm_sc->vm = vm;
517	svm_sc->nptp = (vm_offset_t)vtophys(pmap->pm_pml4);
518
519	/*
520	 * Intercept read and write accesses to all MSRs.
521	 */
522	memset(svm_sc->msr_bitmap, 0xFF, sizeof(svm_sc->msr_bitmap));
523
524	/*
525	 * Access to the following MSRs is redirected to the VMCB when the
526	 * guest is executing. Therefore it is safe to allow the guest to
527	 * read/write these MSRs directly without hypervisor involvement.
528	 */
529	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE);
530	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE);
531	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE);
532
533	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR);
534	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR);
535	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR);
536	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK);
537	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR);
538	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR);
539	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR);
540	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT);
541
542	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC);
543
544	/*
545	 * Intercept writes to make sure that the EFER_SVM bit is not cleared.
546	 */
547	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER);
548
549	/* Intercept access to all I/O ports. */
550	memset(svm_sc->iopm_bitmap, 0xFF, sizeof(svm_sc->iopm_bitmap));
551
552	iopm_pa = vtophys(svm_sc->iopm_bitmap);
553	msrpm_pa = vtophys(svm_sc->msr_bitmap);
554	pml4_pa = svm_sc->nptp;
555	for (i = 0; i < VM_MAXCPU; i++) {
556		vcpu = svm_get_vcpu(svm_sc, i);
557		vcpu->lastcpu = NOCPU;
558		vcpu->vmcb_pa = vtophys(&vcpu->vmcb);
559		vmcb_init(svm_sc, i, iopm_pa, msrpm_pa, pml4_pa);
560		svm_msr_guest_init(svm_sc, i);
561	}
562	return (svm_sc);
563}
564
565static int
566svm_cpl(struct vmcb_state *state)
567{
568
569	/*
570	 * From APMv2:
571	 *   "Retrieve the CPL from the CPL field in the VMCB, not
572	 *    from any segment DPL"
573	 */
574	return (state->cpl);
575}
576
577static enum vm_cpu_mode
578svm_vcpu_mode(struct vmcb *vmcb)
579{
580	struct vmcb_segment seg;
581	struct vmcb_state *state;
582	int error;
583
584	state = &vmcb->state;
585
586	if (state->efer & EFER_LMA) {
587		error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
588		KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__,
589		    error));
590
591		/*
592		 * Section 4.8.1 for APM2, check if Code Segment has
593		 * Long attribute set in descriptor.
594		 */
595		if (seg.attrib & VMCB_CS_ATTRIB_L)
596			return (CPU_MODE_64BIT);
597		else
598			return (CPU_MODE_COMPATIBILITY);
599	} else  if (state->cr0 & CR0_PE) {
600		return (CPU_MODE_PROTECTED);
601	} else {
602		return (CPU_MODE_REAL);
603	}
604}
605
606static enum vm_paging_mode
607svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer)
608{
609
610	if ((cr0 & CR0_PG) == 0)
611		return (PAGING_MODE_FLAT);
612	if ((cr4 & CR4_PAE) == 0)
613		return (PAGING_MODE_32);
614	if (efer & EFER_LME)
615		return (PAGING_MODE_64);
616	else
617		return (PAGING_MODE_PAE);
618}
619
620/*
621 * ins/outs utility routines
622 */
623static uint64_t
624svm_inout_str_index(struct svm_regctx *regs, int in)
625{
626	uint64_t val;
627
628	val = in ? regs->sctx_rdi : regs->sctx_rsi;
629
630	return (val);
631}
632
633static uint64_t
634svm_inout_str_count(struct svm_regctx *regs, int rep)
635{
636	uint64_t val;
637
638	val = rep ? regs->sctx_rcx : 1;
639
640	return (val);
641}
642
643static void
644svm_inout_str_seginfo(struct svm_softc *svm_sc, int vcpu, int64_t info1,
645    int in, struct vm_inout_str *vis)
646{
647	int error, s;
648
649	if (in) {
650		vis->seg_name = VM_REG_GUEST_ES;
651	} else {
652		/* The segment field has standard encoding */
653		s = (info1 >> 10) & 0x7;
654		vis->seg_name = vm_segment_name(s);
655	}
656
657	error = vmcb_getdesc(svm_sc, vcpu, vis->seg_name, &vis->seg_desc);
658	KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error));
659}
660
661static int
662svm_inout_str_addrsize(uint64_t info1)
663{
664        uint32_t size;
665
666        size = (info1 >> 7) & 0x7;
667        switch (size) {
668        case 1:
669                return (2);     /* 16 bit */
670        case 2:
671                return (4);     /* 32 bit */
672        case 4:
673                return (8);     /* 64 bit */
674        default:
675                panic("%s: invalid size encoding %d", __func__, size);
676        }
677}
678
679static void
680svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging)
681{
682	struct vmcb_state *state;
683
684	state = &vmcb->state;
685	paging->cr3 = state->cr3;
686	paging->cpl = svm_cpl(state);
687	paging->cpu_mode = svm_vcpu_mode(vmcb);
688	paging->paging_mode = svm_paging_mode(state->cr0, state->cr4,
689	    state->efer);
690}
691
692#define	UNHANDLED 0
693
694/*
695 * Handle guest I/O intercept.
696 */
697static int
698svm_handle_io(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
699{
700	struct vmcb_ctrl *ctrl;
701	struct vmcb_state *state;
702	struct svm_regctx *regs;
703	struct vm_inout_str *vis;
704	uint64_t info1;
705	int inout_string;
706
707	state = svm_get_vmcb_state(svm_sc, vcpu);
708	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
709	regs  = svm_get_guest_regctx(svm_sc, vcpu);
710
711	info1 = ctrl->exitinfo1;
712	inout_string = info1 & BIT(2) ? 1 : 0;
713
714	/*
715	 * The effective segment number in EXITINFO1[12:10] is populated
716	 * only if the processor has the DecodeAssist capability.
717	 *
718	 * XXX this is not specified explicitly in APMv2 but can be verified
719	 * empirically.
720	 */
721	if (inout_string && !decode_assist())
722		return (UNHANDLED);
723
724	vmexit->exitcode 	= VM_EXITCODE_INOUT;
725	vmexit->u.inout.in 	= (info1 & BIT(0)) ? 1 : 0;
726	vmexit->u.inout.string 	= inout_string;
727	vmexit->u.inout.rep 	= (info1 & BIT(3)) ? 1 : 0;
728	vmexit->u.inout.bytes 	= (info1 >> 4) & 0x7;
729	vmexit->u.inout.port 	= (uint16_t)(info1 >> 16);
730	vmexit->u.inout.eax 	= (uint32_t)(state->rax);
731
732	if (inout_string) {
733		vmexit->exitcode = VM_EXITCODE_INOUT_STR;
734		vis = &vmexit->u.inout_str;
735		svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &vis->paging);
736		vis->rflags = state->rflags;
737		vis->cr0 = state->cr0;
738		vis->index = svm_inout_str_index(regs, vmexit->u.inout.in);
739		vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep);
740		vis->addrsize = svm_inout_str_addrsize(info1);
741		svm_inout_str_seginfo(svm_sc, vcpu, info1,
742		    vmexit->u.inout.in, vis);
743	}
744
745	return (UNHANDLED);
746}
747
748static int
749npf_fault_type(uint64_t exitinfo1)
750{
751
752	if (exitinfo1 & VMCB_NPF_INFO1_W)
753		return (VM_PROT_WRITE);
754	else if (exitinfo1 & VMCB_NPF_INFO1_ID)
755		return (VM_PROT_EXECUTE);
756	else
757		return (VM_PROT_READ);
758}
759
760static bool
761svm_npf_emul_fault(uint64_t exitinfo1)
762{
763
764	if (exitinfo1 & VMCB_NPF_INFO1_ID) {
765		return (false);
766	}
767
768	if (exitinfo1 & VMCB_NPF_INFO1_GPT) {
769		return (false);
770	}
771
772	if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) {
773		return (false);
774	}
775
776	return (true);
777}
778
779static void
780svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit)
781{
782	struct vm_guest_paging *paging;
783	struct vmcb_segment seg;
784	struct vmcb_ctrl *ctrl;
785	char *inst_bytes;
786	int error, inst_len;
787
788	ctrl = &vmcb->ctrl;
789	paging = &vmexit->u.inst_emul.paging;
790
791	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
792	vmexit->u.inst_emul.gpa = gpa;
793	vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
794	svm_paging_info(vmcb, paging);
795
796	error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
797	KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error));
798
799	switch(paging->cpu_mode) {
800	case CPU_MODE_PROTECTED:
801	case CPU_MODE_COMPATIBILITY:
802		/*
803		 * Section 4.8.1 of APM2, Default Operand Size or D bit.
804		 */
805		vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ?
806		    1 : 0;
807		break;
808	default:
809		vmexit->u.inst_emul.cs_d = 0;
810		break;
811	}
812
813	/*
814	 * Copy the instruction bytes into 'vie' if available.
815	 */
816	if (decode_assist() && !disable_npf_assist) {
817		inst_len = ctrl->inst_len;
818		inst_bytes = ctrl->inst_bytes;
819	} else {
820		inst_len = 0;
821		inst_bytes = NULL;
822	}
823	vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len);
824}
825
826#ifdef KTR
827static const char *
828intrtype_to_str(int intr_type)
829{
830	switch (intr_type) {
831	case VMCB_EVENTINJ_TYPE_INTR:
832		return ("hwintr");
833	case VMCB_EVENTINJ_TYPE_NMI:
834		return ("nmi");
835	case VMCB_EVENTINJ_TYPE_INTn:
836		return ("swintr");
837	case VMCB_EVENTINJ_TYPE_EXCEPTION:
838		return ("exception");
839	default:
840		panic("%s: unknown intr_type %d", __func__, intr_type);
841	}
842}
843#endif
844
845/*
846 * Inject an event to vcpu as described in section 15.20, "Event injection".
847 */
848static void
849svm_eventinject(struct svm_softc *sc, int vcpu, int intr_type, int vector,
850		 uint32_t error, bool ec_valid)
851{
852	struct vmcb_ctrl *ctrl;
853
854	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
855
856	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0,
857	    ("%s: event already pending %#lx", __func__, ctrl->eventinj));
858
859	KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d",
860	    __func__, vector));
861
862	switch (intr_type) {
863	case VMCB_EVENTINJ_TYPE_INTR:
864	case VMCB_EVENTINJ_TYPE_NMI:
865	case VMCB_EVENTINJ_TYPE_INTn:
866		break;
867	case VMCB_EVENTINJ_TYPE_EXCEPTION:
868		if (vector >= 0 && vector <= 31 && vector != 2)
869			break;
870		/* FALLTHROUGH */
871	default:
872		panic("%s: invalid intr_type/vector: %d/%d", __func__,
873		    intr_type, vector);
874	}
875	ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID;
876	if (ec_valid) {
877		ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID;
878		ctrl->eventinj |= (uint64_t)error << 32;
879		VCPU_CTR3(sc->vm, vcpu, "Injecting %s at vector %d errcode %#x",
880		    intrtype_to_str(intr_type), vector, error);
881	} else {
882		VCPU_CTR2(sc->vm, vcpu, "Injecting %s at vector %d",
883		    intrtype_to_str(intr_type), vector);
884	}
885}
886
887static void
888svm_update_virqinfo(struct svm_softc *sc, int vcpu)
889{
890	struct vm *vm;
891	struct vlapic *vlapic;
892	struct vmcb_ctrl *ctrl;
893	int pending;
894
895	vm = sc->vm;
896	vlapic = vm_lapic(vm, vcpu);
897	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
898
899	/* Update %cr8 in the emulated vlapic */
900	vlapic_set_cr8(vlapic, ctrl->v_tpr);
901
902	/*
903	 * If V_IRQ indicates that the interrupt injection attempted on then
904	 * last VMRUN was successful then update the vlapic accordingly.
905	 */
906	if (ctrl->v_intr_vector != 0) {
907		pending = ctrl->v_irq;
908		KASSERT(ctrl->v_intr_vector >= 16, ("%s: invalid "
909		    "v_intr_vector %d", __func__, ctrl->v_intr_vector));
910		KASSERT(!ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
911		VCPU_CTR2(vm, vcpu, "v_intr_vector %d %s", ctrl->v_intr_vector,
912		    pending ? "pending" : "accepted");
913		if (!pending)
914			vlapic_intr_accepted(vlapic, ctrl->v_intr_vector);
915	}
916}
917
918static void
919svm_save_intinfo(struct svm_softc *svm_sc, int vcpu)
920{
921	struct vmcb_ctrl *ctrl;
922	uint64_t intinfo;
923
924	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
925	intinfo = ctrl->exitintinfo;
926	if (!VMCB_EXITINTINFO_VALID(intinfo))
927		return;
928
929	/*
930	 * From APMv2, Section "Intercepts during IDT interrupt delivery"
931	 *
932	 * If a #VMEXIT happened during event delivery then record the event
933	 * that was being delivered.
934	 */
935	VCPU_CTR2(svm_sc->vm, vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n",
936		intinfo, VMCB_EXITINTINFO_VECTOR(intinfo));
937	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_EXITINTINFO, 1);
938	vm_exit_intinfo(svm_sc->vm, vcpu, intinfo);
939}
940
941static __inline int
942vintr_intercept_enabled(struct svm_softc *sc, int vcpu)
943{
944
945	return (svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
946	    VMCB_INTCPT_VINTR));
947}
948
949static __inline void
950enable_intr_window_exiting(struct svm_softc *sc, int vcpu)
951{
952	struct vmcb_ctrl *ctrl;
953
954	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
955
956	if (ctrl->v_irq && ctrl->v_intr_vector == 0) {
957		KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
958		KASSERT(vintr_intercept_enabled(sc, vcpu),
959		    ("%s: vintr intercept should be enabled", __func__));
960		return;
961	}
962
963	VCPU_CTR0(sc->vm, vcpu, "Enable intr window exiting");
964	ctrl->v_irq = 1;
965	ctrl->v_ign_tpr = 1;
966	ctrl->v_intr_vector = 0;
967	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
968	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
969}
970
971static __inline void
972disable_intr_window_exiting(struct svm_softc *sc, int vcpu)
973{
974	struct vmcb_ctrl *ctrl;
975
976	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
977
978	if (!ctrl->v_irq && ctrl->v_intr_vector == 0) {
979		KASSERT(!vintr_intercept_enabled(sc, vcpu),
980		    ("%s: vintr intercept should be disabled", __func__));
981		return;
982	}
983
984#ifdef KTR
985	if (ctrl->v_intr_vector == 0)
986		VCPU_CTR0(sc->vm, vcpu, "Disable intr window exiting");
987	else
988		VCPU_CTR0(sc->vm, vcpu, "Clearing V_IRQ interrupt injection");
989#endif
990	ctrl->v_irq = 0;
991	ctrl->v_intr_vector = 0;
992	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
993	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
994}
995
996static int
997svm_modify_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t val)
998{
999	struct vmcb_ctrl *ctrl;
1000	int oldval, newval;
1001
1002	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1003	oldval = ctrl->intr_shadow;
1004	newval = val ? 1 : 0;
1005	if (newval != oldval) {
1006		ctrl->intr_shadow = newval;
1007		VCPU_CTR1(sc->vm, vcpu, "Setting intr_shadow to %d", newval);
1008	}
1009	return (0);
1010}
1011
1012static int
1013svm_get_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t *val)
1014{
1015	struct vmcb_ctrl *ctrl;
1016
1017	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1018	*val = ctrl->intr_shadow;
1019	return (0);
1020}
1021
1022/*
1023 * Once an NMI is injected it blocks delivery of further NMIs until the handler
1024 * executes an IRET. The IRET intercept is enabled when an NMI is injected to
1025 * to track when the vcpu is done handling the NMI.
1026 */
1027static int
1028nmi_blocked(struct svm_softc *sc, int vcpu)
1029{
1030	int blocked;
1031
1032	blocked = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
1033	    VMCB_INTCPT_IRET);
1034	return (blocked);
1035}
1036
1037static void
1038enable_nmi_blocking(struct svm_softc *sc, int vcpu)
1039{
1040
1041	KASSERT(!nmi_blocked(sc, vcpu), ("vNMI already blocked"));
1042	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking enabled");
1043	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1044}
1045
1046static void
1047clear_nmi_blocking(struct svm_softc *sc, int vcpu)
1048{
1049	int error;
1050
1051	KASSERT(nmi_blocked(sc, vcpu), ("vNMI already unblocked"));
1052	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking cleared");
1053	/*
1054	 * When the IRET intercept is cleared the vcpu will attempt to execute
1055	 * the "iret" when it runs next. However, it is possible to inject
1056	 * another NMI into the vcpu before the "iret" has actually executed.
1057	 *
1058	 * For e.g. if the "iret" encounters a #NPF when accessing the stack
1059	 * it will trap back into the hypervisor. If an NMI is pending for
1060	 * the vcpu it will be injected into the guest.
1061	 *
1062	 * XXX this needs to be fixed
1063	 */
1064	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1065
1066	/*
1067	 * Set 'intr_shadow' to prevent an NMI from being injected on the
1068	 * immediate VMRUN.
1069	 */
1070	error = svm_modify_intr_shadow(sc, vcpu, 1);
1071	KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error));
1072}
1073
1074static int
1075emulate_wrmsr(struct svm_softc *sc, int vcpu, u_int num, uint64_t val,
1076    bool *retu)
1077{
1078	int error;
1079
1080	if (lapic_msr(num))
1081		error = lapic_wrmsr(sc->vm, vcpu, num, val, retu);
1082	else if (num == MSR_EFER)
1083		error = svm_setreg(sc, vcpu, VM_REG_GUEST_EFER, val);
1084	else
1085		error = svm_wrmsr(sc, vcpu, num, val, retu);
1086
1087	return (error);
1088}
1089
1090static int
1091emulate_rdmsr(struct svm_softc *sc, int vcpu, u_int num, bool *retu)
1092{
1093	struct vmcb_state *state;
1094	struct svm_regctx *ctx;
1095	uint64_t result;
1096	int error;
1097
1098	if (lapic_msr(num))
1099		error = lapic_rdmsr(sc->vm, vcpu, num, &result, retu);
1100	else
1101		error = svm_rdmsr(sc, vcpu, num, &result, retu);
1102
1103	if (error == 0) {
1104		state = svm_get_vmcb_state(sc, vcpu);
1105		ctx = svm_get_guest_regctx(sc, vcpu);
1106		state->rax = result & 0xffffffff;
1107		ctx->sctx_rdx = result >> 32;
1108	}
1109
1110	return (error);
1111}
1112
1113#ifdef KTR
1114static const char *
1115exit_reason_to_str(uint64_t reason)
1116{
1117	static char reasonbuf[32];
1118
1119	switch (reason) {
1120	case VMCB_EXIT_INVALID:
1121		return ("invalvmcb");
1122	case VMCB_EXIT_SHUTDOWN:
1123		return ("shutdown");
1124	case VMCB_EXIT_NPF:
1125		return ("nptfault");
1126	case VMCB_EXIT_PAUSE:
1127		return ("pause");
1128	case VMCB_EXIT_HLT:
1129		return ("hlt");
1130	case VMCB_EXIT_CPUID:
1131		return ("cpuid");
1132	case VMCB_EXIT_IO:
1133		return ("inout");
1134	case VMCB_EXIT_MC:
1135		return ("mchk");
1136	case VMCB_EXIT_INTR:
1137		return ("extintr");
1138	case VMCB_EXIT_NMI:
1139		return ("nmi");
1140	case VMCB_EXIT_VINTR:
1141		return ("vintr");
1142	case VMCB_EXIT_MSR:
1143		return ("msr");
1144	case VMCB_EXIT_IRET:
1145		return ("iret");
1146	case VMCB_EXIT_MONITOR:
1147		return ("monitor");
1148	case VMCB_EXIT_MWAIT:
1149		return ("mwait");
1150	default:
1151		snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason);
1152		return (reasonbuf);
1153	}
1154}
1155#endif	/* KTR */
1156
1157/*
1158 * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs
1159 * that are due to instruction intercepts as well as MSR and IOIO intercepts
1160 * and exceptions caused by INT3, INTO and BOUND instructions.
1161 *
1162 * Return 1 if the nRIP is valid and 0 otherwise.
1163 */
1164static int
1165nrip_valid(uint64_t exitcode)
1166{
1167	switch (exitcode) {
1168	case 0x00 ... 0x0F:	/* read of CR0 through CR15 */
1169	case 0x10 ... 0x1F:	/* write of CR0 through CR15 */
1170	case 0x20 ... 0x2F:	/* read of DR0 through DR15 */
1171	case 0x30 ... 0x3F:	/* write of DR0 through DR15 */
1172	case 0x43:		/* INT3 */
1173	case 0x44:		/* INTO */
1174	case 0x45:		/* BOUND */
1175	case 0x65 ... 0x7C:	/* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */
1176	case 0x80 ... 0x8D:	/* VMEXIT_VMRUN ... VMEXIT_XSETBV */
1177		return (1);
1178	default:
1179		return (0);
1180	}
1181}
1182
1183/*
1184 * Collateral for a generic SVM VM-exit.
1185 */
1186static void
1187vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2)
1188{
1189
1190	vme->exitcode = VM_EXITCODE_SVM;
1191	vme->u.svm.exitcode = code;
1192	vme->u.svm.exitinfo1 = info1;
1193	vme->u.svm.exitinfo2 = info2;
1194}
1195
1196static int
1197svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
1198{
1199	struct vmcb *vmcb;
1200	struct vmcb_state *state;
1201	struct vmcb_ctrl *ctrl;
1202	struct svm_regctx *ctx;
1203	struct vm_exception exception;
1204	uint64_t code, info1, info2, val;
1205	uint32_t eax, ecx, edx;
1206	int error, errcode_valid, handled, idtvec, reflect;
1207	bool retu;
1208
1209	ctx = svm_get_guest_regctx(svm_sc, vcpu);
1210	vmcb = svm_get_vmcb(svm_sc, vcpu);
1211	state = &vmcb->state;
1212	ctrl = &vmcb->ctrl;
1213
1214	handled = 0;
1215	code = ctrl->exitcode;
1216	info1 = ctrl->exitinfo1;
1217	info2 = ctrl->exitinfo2;
1218
1219	vmexit->exitcode = VM_EXITCODE_BOGUS;
1220	vmexit->rip = state->rip;
1221	vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0;
1222
1223	vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_COUNT, 1);
1224
1225	/*
1226	 * #VMEXIT(INVALID) needs to be handled early because the VMCB is
1227	 * in an inconsistent state and can trigger assertions that would
1228	 * never happen otherwise.
1229	 */
1230	if (code == VMCB_EXIT_INVALID) {
1231		vm_exit_svm(vmexit, code, info1, info2);
1232		return (0);
1233	}
1234
1235	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event "
1236	    "injection valid bit is set %#lx", __func__, ctrl->eventinj));
1237
1238	KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15,
1239	    ("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)",
1240	    vmexit->inst_length, code, info1, info2));
1241
1242	svm_update_virqinfo(svm_sc, vcpu);
1243	svm_save_intinfo(svm_sc, vcpu);
1244
1245	switch (code) {
1246	case VMCB_EXIT_IRET:
1247		/*
1248		 * Restart execution at "iret" but with the intercept cleared.
1249		 */
1250		vmexit->inst_length = 0;
1251		clear_nmi_blocking(svm_sc, vcpu);
1252		handled = 1;
1253		break;
1254	case VMCB_EXIT_VINTR:	/* interrupt window exiting */
1255		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_VINTR, 1);
1256		handled = 1;
1257		break;
1258	case VMCB_EXIT_INTR:	/* external interrupt */
1259		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1);
1260		handled = 1;
1261		break;
1262	case VMCB_EXIT_NMI:	/* external NMI */
1263		handled = 1;
1264		break;
1265	case 0x40 ... 0x5F:
1266		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXCEPTION, 1);
1267		reflect = 1;
1268		idtvec = code - 0x40;
1269		switch (idtvec) {
1270		case IDT_MC:
1271			/*
1272			 * Call the machine check handler by hand. Also don't
1273			 * reflect the machine check back into the guest.
1274			 */
1275			reflect = 0;
1276			VCPU_CTR0(svm_sc->vm, vcpu, "Vectoring to MCE handler");
1277			__asm __volatile("int $18");
1278			break;
1279		case IDT_PF:
1280			error = svm_setreg(svm_sc, vcpu, VM_REG_GUEST_CR2,
1281			    info2);
1282			KASSERT(error == 0, ("%s: error %d updating cr2",
1283			    __func__, error));
1284			/* fallthru */
1285		case IDT_NP:
1286		case IDT_SS:
1287		case IDT_GP:
1288		case IDT_AC:
1289		case IDT_TS:
1290			errcode_valid = 1;
1291			break;
1292
1293		case IDT_DF:
1294			errcode_valid = 1;
1295			info1 = 0;
1296			break;
1297
1298		case IDT_BP:
1299		case IDT_OF:
1300		case IDT_BR:
1301			/*
1302			 * The 'nrip' field is populated for INT3, INTO and
1303			 * BOUND exceptions and this also implies that
1304			 * 'inst_length' is non-zero.
1305			 *
1306			 * Reset 'inst_length' to zero so the guest %rip at
1307			 * event injection is identical to what it was when
1308			 * the exception originally happened.
1309			 */
1310			VCPU_CTR2(svm_sc->vm, vcpu, "Reset inst_length from %d "
1311			    "to zero before injecting exception %d",
1312			    vmexit->inst_length, idtvec);
1313			vmexit->inst_length = 0;
1314			/* fallthru */
1315		default:
1316			errcode_valid = 0;
1317			break;
1318		}
1319		KASSERT(vmexit->inst_length == 0, ("invalid inst_length (%d) "
1320		    "when reflecting exception %d into guest",
1321		    vmexit->inst_length, idtvec));
1322
1323		if (reflect) {
1324			/* Reflect the exception back into the guest */
1325			exception.vector = idtvec;
1326			exception.error_code_valid = errcode_valid;
1327			exception.error_code = errcode_valid ? info1 : 0;
1328			VCPU_CTR2(svm_sc->vm, vcpu, "Reflecting exception "
1329			    "%d/%#x into the guest", exception.vector,
1330			    exception.error_code);
1331			error = vm_inject_exception(svm_sc->vm, vcpu,
1332			    &exception);
1333			KASSERT(error == 0, ("%s: vm_inject_exception error %d",
1334			    __func__, error));
1335		}
1336		handled = 1;
1337		break;
1338	case VMCB_EXIT_MSR:	/* MSR access. */
1339		eax = state->rax;
1340		ecx = ctx->sctx_rcx;
1341		edx = ctx->sctx_rdx;
1342		retu = false;
1343
1344		if (info1) {
1345			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_WRMSR, 1);
1346			val = (uint64_t)edx << 32 | eax;
1347			VCPU_CTR2(svm_sc->vm, vcpu, "wrmsr %#x val %#lx",
1348			    ecx, val);
1349			if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) {
1350				vmexit->exitcode = VM_EXITCODE_WRMSR;
1351				vmexit->u.msr.code = ecx;
1352				vmexit->u.msr.wval = val;
1353			} else if (!retu) {
1354				handled = 1;
1355			} else {
1356				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1357				    ("emulate_wrmsr retu with bogus exitcode"));
1358			}
1359		} else {
1360			VCPU_CTR1(svm_sc->vm, vcpu, "rdmsr %#x", ecx);
1361			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_RDMSR, 1);
1362			if (emulate_rdmsr(svm_sc, vcpu, ecx, &retu)) {
1363				vmexit->exitcode = VM_EXITCODE_RDMSR;
1364				vmexit->u.msr.code = ecx;
1365			} else if (!retu) {
1366				handled = 1;
1367			} else {
1368				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1369				    ("emulate_rdmsr retu with bogus exitcode"));
1370			}
1371		}
1372		break;
1373	case VMCB_EXIT_IO:
1374		handled = svm_handle_io(svm_sc, vcpu, vmexit);
1375		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1);
1376		break;
1377	case VMCB_EXIT_CPUID:
1378		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1);
1379		handled = x86_emulate_cpuid(svm_sc->vm, vcpu,
1380		    (uint32_t *)&state->rax,
1381		    (uint32_t *)&ctx->sctx_rbx,
1382		    (uint32_t *)&ctx->sctx_rcx,
1383		    (uint32_t *)&ctx->sctx_rdx);
1384		break;
1385	case VMCB_EXIT_HLT:
1386		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1);
1387		vmexit->exitcode = VM_EXITCODE_HLT;
1388		vmexit->u.hlt.rflags = state->rflags;
1389		break;
1390	case VMCB_EXIT_PAUSE:
1391		vmexit->exitcode = VM_EXITCODE_PAUSE;
1392		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1);
1393		break;
1394	case VMCB_EXIT_NPF:
1395		/* EXITINFO2 contains the faulting guest physical address */
1396		if (info1 & VMCB_NPF_INFO1_RSV) {
1397			VCPU_CTR2(svm_sc->vm, vcpu, "nested page fault with "
1398			    "reserved bits set: info1(%#lx) info2(%#lx)",
1399			    info1, info2);
1400		} else if (vm_mem_allocated(svm_sc->vm, info2)) {
1401			vmexit->exitcode = VM_EXITCODE_PAGING;
1402			vmexit->u.paging.gpa = info2;
1403			vmexit->u.paging.fault_type = npf_fault_type(info1);
1404			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
1405			VCPU_CTR3(svm_sc->vm, vcpu, "nested page fault "
1406			    "on gpa %#lx/%#lx at rip %#lx",
1407			    info2, info1, state->rip);
1408		} else if (svm_npf_emul_fault(info1)) {
1409			svm_handle_inst_emul(vmcb, info2, vmexit);
1410			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INST_EMUL, 1);
1411			VCPU_CTR3(svm_sc->vm, vcpu, "inst_emul fault "
1412			    "for gpa %#lx/%#lx at rip %#lx",
1413			    info2, info1, state->rip);
1414		}
1415		break;
1416	case VMCB_EXIT_MONITOR:
1417		vmexit->exitcode = VM_EXITCODE_MONITOR;
1418		break;
1419	case VMCB_EXIT_MWAIT:
1420		vmexit->exitcode = VM_EXITCODE_MWAIT;
1421		break;
1422	default:
1423		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1);
1424		break;
1425	}
1426
1427	VCPU_CTR4(svm_sc->vm, vcpu, "%s %s vmexit at %#lx/%d",
1428	    handled ? "handled" : "unhandled", exit_reason_to_str(code),
1429	    vmexit->rip, vmexit->inst_length);
1430
1431	if (handled) {
1432		vmexit->rip += vmexit->inst_length;
1433		vmexit->inst_length = 0;
1434		state->rip = vmexit->rip;
1435	} else {
1436		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1437			/*
1438			 * If this VM exit was not claimed by anybody then
1439			 * treat it as a generic SVM exit.
1440			 */
1441			vm_exit_svm(vmexit, code, info1, info2);
1442		} else {
1443			/*
1444			 * The exitcode and collateral have been populated.
1445			 * The VM exit will be processed further in userland.
1446			 */
1447		}
1448	}
1449	return (handled);
1450}
1451
1452static void
1453svm_inj_intinfo(struct svm_softc *svm_sc, int vcpu)
1454{
1455	uint64_t intinfo;
1456
1457	if (!vm_entry_intinfo(svm_sc->vm, vcpu, &intinfo))
1458		return;
1459
1460	KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not "
1461	    "valid: %#lx", __func__, intinfo));
1462
1463	svm_eventinject(svm_sc, vcpu, VMCB_EXITINTINFO_TYPE(intinfo),
1464		VMCB_EXITINTINFO_VECTOR(intinfo),
1465		VMCB_EXITINTINFO_EC(intinfo),
1466		VMCB_EXITINTINFO_EC_VALID(intinfo));
1467	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_INTINFO_INJECTED, 1);
1468	VCPU_CTR1(svm_sc->vm, vcpu, "Injected entry intinfo: %#lx", intinfo);
1469}
1470
1471/*
1472 * Inject event to virtual cpu.
1473 */
1474static void
1475svm_inj_interrupts(struct svm_softc *sc, int vcpu, struct vlapic *vlapic)
1476{
1477	struct vmcb_ctrl *ctrl;
1478	struct vmcb_state *state;
1479	uint8_t v_tpr;
1480	int vector, need_intr_window, pending_apic_vector;
1481
1482	state = svm_get_vmcb_state(sc, vcpu);
1483	ctrl  = svm_get_vmcb_ctrl(sc, vcpu);
1484
1485	need_intr_window = 0;
1486	pending_apic_vector = 0;
1487
1488	/*
1489	 * Inject pending events or exceptions for this vcpu.
1490	 *
1491	 * An event might be pending because the previous #VMEXIT happened
1492	 * during event delivery (i.e. ctrl->exitintinfo).
1493	 *
1494	 * An event might also be pending because an exception was injected
1495	 * by the hypervisor (e.g. #PF during instruction emulation).
1496	 */
1497	svm_inj_intinfo(sc, vcpu);
1498
1499	/* NMI event has priority over interrupts. */
1500	if (vm_nmi_pending(sc->vm, vcpu)) {
1501		if (nmi_blocked(sc, vcpu)) {
1502			/*
1503			 * Can't inject another NMI if the guest has not
1504			 * yet executed an "iret" after the last NMI.
1505			 */
1506			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due "
1507			    "to NMI-blocking");
1508		} else if (ctrl->intr_shadow) {
1509			/*
1510			 * Can't inject an NMI if the vcpu is in an intr_shadow.
1511			 */
1512			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due to "
1513			    "interrupt shadow");
1514			need_intr_window = 1;
1515			goto done;
1516		} else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1517			/*
1518			 * If there is already an exception/interrupt pending
1519			 * then defer the NMI until after that.
1520			 */
1521			VCPU_CTR1(sc->vm, vcpu, "Cannot inject NMI due to "
1522			    "eventinj %#lx", ctrl->eventinj);
1523
1524			/*
1525			 * Use self-IPI to trigger a VM-exit as soon as
1526			 * possible after the event injection is completed.
1527			 *
1528			 * This works only if the external interrupt exiting
1529			 * is at a lower priority than the event injection.
1530			 *
1531			 * Although not explicitly specified in APMv2 the
1532			 * relative priorities were verified empirically.
1533			 */
1534			ipi_cpu(curcpu, IPI_AST);	/* XXX vmm_ipinum? */
1535		} else {
1536			vm_nmi_clear(sc->vm, vcpu);
1537
1538			/* Inject NMI, vector number is not used */
1539			svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_NMI,
1540			    IDT_NMI, 0, false);
1541
1542			/* virtual NMI blocking is now in effect */
1543			enable_nmi_blocking(sc, vcpu);
1544
1545			VCPU_CTR0(sc->vm, vcpu, "Injecting vNMI");
1546		}
1547	}
1548
1549	if (!vm_extint_pending(sc->vm, vcpu)) {
1550		/*
1551		 * APIC interrupts are delivered using the V_IRQ offload.
1552		 *
1553		 * The primary benefit is that the hypervisor doesn't need to
1554		 * deal with the various conditions that inhibit interrupts.
1555		 * It also means that TPR changes via CR8 will be handled
1556		 * without any hypervisor involvement.
1557		 *
1558		 * Note that the APIC vector must remain pending in the vIRR
1559		 * until it is confirmed that it was delivered to the guest.
1560		 * This can be confirmed based on the value of V_IRQ at the
1561		 * next #VMEXIT (1 = pending, 0 = delivered).
1562		 *
1563		 * Also note that it is possible that another higher priority
1564		 * vector can become pending before this vector is delivered
1565		 * to the guest. This is alright because vcpu_notify_event()
1566		 * will send an IPI and force the vcpu to trap back into the
1567		 * hypervisor. The higher priority vector will be injected on
1568		 * the next VMRUN.
1569		 */
1570		if (vlapic_pending_intr(vlapic, &vector)) {
1571			KASSERT(vector >= 16 && vector <= 255,
1572			    ("invalid vector %d from local APIC", vector));
1573			pending_apic_vector = vector;
1574		}
1575		goto done;
1576	}
1577
1578	/* Ask the legacy pic for a vector to inject */
1579	vatpic_pending_intr(sc->vm, &vector);
1580	KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d from INTR",
1581	    vector));
1582
1583	/*
1584	 * If the guest has disabled interrupts or is in an interrupt shadow
1585	 * then we cannot inject the pending interrupt.
1586	 */
1587	if ((state->rflags & PSL_I) == 0) {
1588		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1589		    "rflags %#lx", vector, state->rflags);
1590		need_intr_window = 1;
1591		goto done;
1592	}
1593
1594	if (ctrl->intr_shadow) {
1595		VCPU_CTR1(sc->vm, vcpu, "Cannot inject vector %d due to "
1596		    "interrupt shadow", vector);
1597		need_intr_window = 1;
1598		goto done;
1599	}
1600
1601	if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1602		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1603		    "eventinj %#lx", vector, ctrl->eventinj);
1604		need_intr_window = 1;
1605		goto done;
1606	}
1607
1608	/*
1609	 * Legacy PIC interrupts are delivered via the event injection
1610	 * mechanism.
1611	 */
1612	svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false);
1613
1614	vm_extint_clear(sc->vm, vcpu);
1615	vatpic_intr_accepted(sc->vm, vector);
1616
1617	/*
1618	 * Force a VM-exit as soon as the vcpu is ready to accept another
1619	 * interrupt. This is done because the PIC might have another vector
1620	 * that it wants to inject. Also, if the APIC has a pending interrupt
1621	 * that was preempted by the ExtInt then it allows us to inject the
1622	 * APIC vector as soon as possible.
1623	 */
1624	need_intr_window = 1;
1625done:
1626	/*
1627	 * The guest can modify the TPR by writing to %CR8. In guest mode
1628	 * the processor reflects this write to V_TPR without hypervisor
1629	 * intervention.
1630	 *
1631	 * The guest can also modify the TPR by writing to it via the memory
1632	 * mapped APIC page. In this case, the write will be emulated by the
1633	 * hypervisor. For this reason V_TPR must be updated before every
1634	 * VMRUN.
1635	 */
1636	v_tpr = vlapic_get_cr8(vlapic);
1637	KASSERT(v_tpr >= 0 && v_tpr <= 15, ("invalid v_tpr %#x", v_tpr));
1638	if (ctrl->v_tpr != v_tpr) {
1639		VCPU_CTR2(sc->vm, vcpu, "VMCB V_TPR changed from %#x to %#x",
1640		    ctrl->v_tpr, v_tpr);
1641		ctrl->v_tpr = v_tpr;
1642		svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1643	}
1644
1645	if (pending_apic_vector) {
1646		/*
1647		 * If an APIC vector is being injected then interrupt window
1648		 * exiting is not possible on this VMRUN.
1649		 */
1650		KASSERT(!need_intr_window, ("intr_window exiting impossible"));
1651		VCPU_CTR1(sc->vm, vcpu, "Injecting vector %d using V_IRQ",
1652		    pending_apic_vector);
1653
1654		ctrl->v_irq = 1;
1655		ctrl->v_ign_tpr = 0;
1656		ctrl->v_intr_vector = pending_apic_vector;
1657		ctrl->v_intr_prio = pending_apic_vector >> 4;
1658		svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1659	} else if (need_intr_window) {
1660		/*
1661		 * We use V_IRQ in conjunction with the VINTR intercept to
1662		 * trap into the hypervisor as soon as a virtual interrupt
1663		 * can be delivered.
1664		 *
1665		 * Since injected events are not subject to intercept checks
1666		 * we need to ensure that the V_IRQ is not actually going to
1667		 * be delivered on VM entry. The KASSERT below enforces this.
1668		 */
1669		KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 ||
1670		    (state->rflags & PSL_I) == 0 || ctrl->intr_shadow,
1671		    ("Bogus intr_window_exiting: eventinj (%#lx), "
1672		    "intr_shadow (%u), rflags (%#lx)",
1673		    ctrl->eventinj, ctrl->intr_shadow, state->rflags));
1674		enable_intr_window_exiting(sc, vcpu);
1675	} else {
1676		disable_intr_window_exiting(sc, vcpu);
1677	}
1678}
1679
1680static __inline void
1681restore_host_tss(void)
1682{
1683	struct system_segment_descriptor *tss_sd;
1684
1685	/*
1686	 * The TSS descriptor was in use prior to launching the guest so it
1687	 * has been marked busy.
1688	 *
1689	 * 'ltr' requires the descriptor to be marked available so change the
1690	 * type to "64-bit available TSS".
1691	 */
1692	tss_sd = PCPU_GET(tss);
1693	tss_sd->sd_type = SDT_SYSTSS;
1694	ltr(GSEL(GPROC0_SEL, SEL_KPL));
1695}
1696
1697static void
1698check_asid(struct svm_softc *sc, int vcpuid, pmap_t pmap, u_int thiscpu)
1699{
1700	struct svm_vcpu *vcpustate;
1701	struct vmcb_ctrl *ctrl;
1702	long eptgen;
1703	bool alloc_asid;
1704
1705	KASSERT(CPU_ISSET(thiscpu, &pmap->pm_active), ("%s: nested pmap not "
1706	    "active on cpu %u", __func__, thiscpu));
1707
1708	vcpustate = svm_get_vcpu(sc, vcpuid);
1709	ctrl = svm_get_vmcb_ctrl(sc, vcpuid);
1710
1711	/*
1712	 * The TLB entries associated with the vcpu's ASID are not valid
1713	 * if either of the following conditions is true:
1714	 *
1715	 * 1. The vcpu's ASID generation is different than the host cpu's
1716	 *    ASID generation. This happens when the vcpu migrates to a new
1717	 *    host cpu. It can also happen when the number of vcpus executing
1718	 *    on a host cpu is greater than the number of ASIDs available.
1719	 *
1720	 * 2. The pmap generation number is different than the value cached in
1721	 *    the 'vcpustate'. This happens when the host invalidates pages
1722	 *    belonging to the guest.
1723	 *
1724	 *	asidgen		eptgen	      Action
1725	 *	mismatch	mismatch
1726	 *	   0		   0		(a)
1727	 *	   0		   1		(b1) or (b2)
1728	 *	   1		   0		(c)
1729	 *	   1		   1		(d)
1730	 *
1731	 * (a) There is no mismatch in eptgen or ASID generation and therefore
1732	 *     no further action is needed.
1733	 *
1734	 * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is
1735	 *      retained and the TLB entries associated with this ASID
1736	 *      are flushed by VMRUN.
1737	 *
1738	 * (b2) If the cpu does not support FlushByAsid then a new ASID is
1739	 *      allocated.
1740	 *
1741	 * (c) A new ASID is allocated.
1742	 *
1743	 * (d) A new ASID is allocated.
1744	 */
1745
1746	alloc_asid = false;
1747	eptgen = pmap->pm_eptgen;
1748	ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING;
1749
1750	if (vcpustate->asid.gen != asid[thiscpu].gen) {
1751		alloc_asid = true;	/* (c) and (d) */
1752	} else if (vcpustate->eptgen != eptgen) {
1753		if (flush_by_asid())
1754			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;	/* (b1) */
1755		else
1756			alloc_asid = true;			/* (b2) */
1757	} else {
1758		/*
1759		 * This is the common case (a).
1760		 */
1761		KASSERT(!alloc_asid, ("ASID allocation not necessary"));
1762		KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING,
1763		    ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl));
1764	}
1765
1766	if (alloc_asid) {
1767		if (++asid[thiscpu].num >= nasid) {
1768			asid[thiscpu].num = 1;
1769			if (++asid[thiscpu].gen == 0)
1770				asid[thiscpu].gen = 1;
1771			/*
1772			 * If this cpu does not support "flush-by-asid"
1773			 * then flush the entire TLB on a generation
1774			 * bump. Subsequent ASID allocation in this
1775			 * generation can be done without a TLB flush.
1776			 */
1777			if (!flush_by_asid())
1778				ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL;
1779		}
1780		vcpustate->asid.gen = asid[thiscpu].gen;
1781		vcpustate->asid.num = asid[thiscpu].num;
1782
1783		ctrl->asid = vcpustate->asid.num;
1784		svm_set_dirty(sc, vcpuid, VMCB_CACHE_ASID);
1785		/*
1786		 * If this cpu supports "flush-by-asid" then the TLB
1787		 * was not flushed after the generation bump. The TLB
1788		 * is flushed selectively after every new ASID allocation.
1789		 */
1790		if (flush_by_asid())
1791			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;
1792	}
1793	vcpustate->eptgen = eptgen;
1794
1795	KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero"));
1796	KASSERT(ctrl->asid == vcpustate->asid.num,
1797	    ("ASID mismatch: %u/%u", ctrl->asid, vcpustate->asid.num));
1798}
1799
1800static __inline void
1801disable_gintr(void)
1802{
1803
1804        __asm __volatile("clgi" : : :);
1805}
1806
1807static __inline void
1808enable_gintr(void)
1809{
1810
1811        __asm __volatile("stgi" : : :);
1812}
1813
1814/*
1815 * Start vcpu with specified RIP.
1816 */
1817static int
1818svm_vmrun(void *arg, int vcpu, register_t rip, pmap_t pmap,
1819	void *rend_cookie, void *suspended_cookie)
1820{
1821	struct svm_regctx *gctx;
1822	struct svm_softc *svm_sc;
1823	struct svm_vcpu *vcpustate;
1824	struct vmcb_state *state;
1825	struct vmcb_ctrl *ctrl;
1826	struct vm_exit *vmexit;
1827	struct vlapic *vlapic;
1828	struct vm *vm;
1829	uint64_t vmcb_pa;
1830	u_int thiscpu;
1831	int handled;
1832
1833	svm_sc = arg;
1834	vm = svm_sc->vm;
1835
1836	vcpustate = svm_get_vcpu(svm_sc, vcpu);
1837	state = svm_get_vmcb_state(svm_sc, vcpu);
1838	ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
1839	vmexit = vm_exitinfo(vm, vcpu);
1840	vlapic = vm_lapic(vm, vcpu);
1841
1842	/*
1843	 * Stash 'curcpu' on the stack as 'thiscpu'.
1844	 *
1845	 * The per-cpu data area is not accessible until MSR_GSBASE is restored
1846	 * after the #VMEXIT. Since VMRUN is executed inside a critical section
1847	 * 'curcpu' and 'thiscpu' are guaranteed to identical.
1848	 */
1849	thiscpu = curcpu;
1850
1851	gctx = svm_get_guest_regctx(svm_sc, vcpu);
1852	vmcb_pa = svm_sc->vcpu[vcpu].vmcb_pa;
1853
1854	if (vcpustate->lastcpu != thiscpu) {
1855		/*
1856		 * Force new ASID allocation by invalidating the generation.
1857		 */
1858		vcpustate->asid.gen = 0;
1859
1860		/*
1861		 * Invalidate the VMCB state cache by marking all fields dirty.
1862		 */
1863		svm_set_dirty(svm_sc, vcpu, 0xffffffff);
1864
1865		/*
1866		 * XXX
1867		 * Setting 'vcpustate->lastcpu' here is bit premature because
1868		 * we may return from this function without actually executing
1869		 * the VMRUN  instruction. This could happen if a rendezvous
1870		 * or an AST is pending on the first time through the loop.
1871		 *
1872		 * This works for now but any new side-effects of vcpu
1873		 * migration should take this case into account.
1874		 */
1875		vcpustate->lastcpu = thiscpu;
1876		vmm_stat_incr(vm, vcpu, VCPU_MIGRATIONS, 1);
1877	}
1878
1879	svm_msr_guest_enter(svm_sc, vcpu);
1880
1881	/* Update Guest RIP */
1882	state->rip = rip;
1883
1884	do {
1885		/*
1886		 * Disable global interrupts to guarantee atomicity during
1887		 * loading of guest state. This includes not only the state
1888		 * loaded by the "vmrun" instruction but also software state
1889		 * maintained by the hypervisor: suspended and rendezvous
1890		 * state, NPT generation number, vlapic interrupts etc.
1891		 */
1892		disable_gintr();
1893
1894		if (vcpu_suspended(suspended_cookie)) {
1895			enable_gintr();
1896			vm_exit_suspended(vm, vcpu, state->rip);
1897			break;
1898		}
1899
1900		if (vcpu_rendezvous_pending(rend_cookie)) {
1901			enable_gintr();
1902			vm_exit_rendezvous(vm, vcpu, state->rip);
1903			break;
1904		}
1905
1906		/* We are asked to give the cpu by scheduler. */
1907		if (curthread->td_flags & (TDF_ASTPENDING | TDF_NEEDRESCHED)) {
1908			enable_gintr();
1909			vm_exit_astpending(vm, vcpu, state->rip);
1910			break;
1911		}
1912
1913		svm_inj_interrupts(svm_sc, vcpu, vlapic);
1914
1915		/* Activate the nested pmap on 'thiscpu' */
1916		CPU_SET_ATOMIC_ACQ(thiscpu, &pmap->pm_active);
1917
1918		/*
1919		 * Check the pmap generation and the ASID generation to
1920		 * ensure that the vcpu does not use stale TLB mappings.
1921		 */
1922		check_asid(svm_sc, vcpu, pmap, thiscpu);
1923
1924		ctrl->vmcb_clean = vmcb_clean & ~vcpustate->dirty;
1925		vcpustate->dirty = 0;
1926		VCPU_CTR1(vm, vcpu, "vmcb clean %#x", ctrl->vmcb_clean);
1927
1928		/* Launch Virtual Machine. */
1929		VCPU_CTR1(vm, vcpu, "Resume execution at %#lx", state->rip);
1930		svm_launch(vmcb_pa, gctx);
1931
1932		CPU_CLR_ATOMIC(thiscpu, &pmap->pm_active);
1933
1934		/*
1935		 * Restore MSR_GSBASE to point to the pcpu data area.
1936		 *
1937		 * Note that accesses done via PCPU_GET/PCPU_SET will work
1938		 * only after MSR_GSBASE is restored.
1939		 *
1940		 * Also note that we don't bother restoring MSR_KGSBASE
1941		 * since it is not used in the kernel and will be restored
1942		 * when the VMRUN ioctl returns to userspace.
1943		 */
1944		wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[thiscpu]);
1945		KASSERT(curcpu == thiscpu, ("thiscpu/curcpu (%u/%u) mismatch",
1946		    thiscpu, curcpu));
1947
1948		/*
1949		 * The host GDTR and IDTR is saved by VMRUN and restored
1950		 * automatically on #VMEXIT. However, the host TSS needs
1951		 * to be restored explicitly.
1952		 */
1953		restore_host_tss();
1954
1955		/* #VMEXIT disables interrupts so re-enable them here. */
1956		enable_gintr();
1957
1958		/* Handle #VMEXIT and if required return to user space. */
1959		handled = svm_vmexit(svm_sc, vcpu, vmexit);
1960	} while (handled);
1961
1962	svm_msr_guest_exit(svm_sc, vcpu);
1963
1964	return (0);
1965}
1966
1967static void
1968svm_vmcleanup(void *arg)
1969{
1970	struct svm_softc *sc = arg;
1971
1972	free(sc, M_SVM);
1973}
1974
1975static register_t *
1976swctx_regptr(struct svm_regctx *regctx, int reg)
1977{
1978
1979	switch (reg) {
1980	case VM_REG_GUEST_RBX:
1981		return (&regctx->sctx_rbx);
1982	case VM_REG_GUEST_RCX:
1983		return (&regctx->sctx_rcx);
1984	case VM_REG_GUEST_RDX:
1985		return (&regctx->sctx_rdx);
1986	case VM_REG_GUEST_RDI:
1987		return (&regctx->sctx_rdi);
1988	case VM_REG_GUEST_RSI:
1989		return (&regctx->sctx_rsi);
1990	case VM_REG_GUEST_RBP:
1991		return (&regctx->sctx_rbp);
1992	case VM_REG_GUEST_R8:
1993		return (&regctx->sctx_r8);
1994	case VM_REG_GUEST_R9:
1995		return (&regctx->sctx_r9);
1996	case VM_REG_GUEST_R10:
1997		return (&regctx->sctx_r10);
1998	case VM_REG_GUEST_R11:
1999		return (&regctx->sctx_r11);
2000	case VM_REG_GUEST_R12:
2001		return (&regctx->sctx_r12);
2002	case VM_REG_GUEST_R13:
2003		return (&regctx->sctx_r13);
2004	case VM_REG_GUEST_R14:
2005		return (&regctx->sctx_r14);
2006	case VM_REG_GUEST_R15:
2007		return (&regctx->sctx_r15);
2008	default:
2009		return (NULL);
2010	}
2011}
2012
2013static int
2014svm_getreg(void *arg, int vcpu, int ident, uint64_t *val)
2015{
2016	struct svm_softc *svm_sc;
2017	register_t *reg;
2018
2019	svm_sc = arg;
2020
2021	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2022		return (svm_get_intr_shadow(svm_sc, vcpu, val));
2023	}
2024
2025	if (vmcb_read(svm_sc, vcpu, ident, val) == 0) {
2026		return (0);
2027	}
2028
2029	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2030
2031	if (reg != NULL) {
2032		*val = *reg;
2033		return (0);
2034	}
2035
2036	VCPU_CTR1(svm_sc->vm, vcpu, "svm_getreg: unknown register %#x", ident);
2037	return (EINVAL);
2038}
2039
2040static int
2041svm_setreg(void *arg, int vcpu, int ident, uint64_t val)
2042{
2043	struct svm_softc *svm_sc;
2044	register_t *reg;
2045
2046	svm_sc = arg;
2047
2048	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2049		return (svm_modify_intr_shadow(svm_sc, vcpu, val));
2050	}
2051
2052	if (vmcb_write(svm_sc, vcpu, ident, val) == 0) {
2053		return (0);
2054	}
2055
2056	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2057
2058	if (reg != NULL) {
2059		*reg = val;
2060		return (0);
2061	}
2062
2063	/*
2064	 * XXX deal with CR3 and invalidate TLB entries tagged with the
2065	 * vcpu's ASID. This needs to be treated differently depending on
2066	 * whether 'running' is true/false.
2067	 */
2068
2069	VCPU_CTR1(svm_sc->vm, vcpu, "svm_setreg: unknown register %#x", ident);
2070	return (EINVAL);
2071}
2072
2073static int
2074svm_setcap(void *arg, int vcpu, int type, int val)
2075{
2076	struct svm_softc *sc;
2077	int error;
2078
2079	sc = arg;
2080	error = 0;
2081	switch (type) {
2082	case VM_CAP_HALT_EXIT:
2083		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2084		    VMCB_INTCPT_HLT, val);
2085		break;
2086	case VM_CAP_PAUSE_EXIT:
2087		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2088		    VMCB_INTCPT_PAUSE, val);
2089		break;
2090	case VM_CAP_UNRESTRICTED_GUEST:
2091		/* Unrestricted guest execution cannot be disabled in SVM */
2092		if (val == 0)
2093			error = EINVAL;
2094		break;
2095	default:
2096		error = ENOENT;
2097		break;
2098	}
2099	return (error);
2100}
2101
2102static int
2103svm_getcap(void *arg, int vcpu, int type, int *retval)
2104{
2105	struct svm_softc *sc;
2106	int error;
2107
2108	sc = arg;
2109	error = 0;
2110
2111	switch (type) {
2112	case VM_CAP_HALT_EXIT:
2113		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2114		    VMCB_INTCPT_HLT);
2115		break;
2116	case VM_CAP_PAUSE_EXIT:
2117		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2118		    VMCB_INTCPT_PAUSE);
2119		break;
2120	case VM_CAP_UNRESTRICTED_GUEST:
2121		*retval = 1;	/* unrestricted guest is always enabled */
2122		break;
2123	default:
2124		error = ENOENT;
2125		break;
2126	}
2127	return (error);
2128}
2129
2130static struct vlapic *
2131svm_vlapic_init(void *arg, int vcpuid)
2132{
2133	struct svm_softc *svm_sc;
2134	struct vlapic *vlapic;
2135
2136	svm_sc = arg;
2137	vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO);
2138	vlapic->vm = svm_sc->vm;
2139	vlapic->vcpuid = vcpuid;
2140	vlapic->apic_page = (struct LAPIC *)&svm_sc->apic_page[vcpuid];
2141
2142	vlapic_init(vlapic);
2143
2144	return (vlapic);
2145}
2146
2147static void
2148svm_vlapic_cleanup(void *arg, struct vlapic *vlapic)
2149{
2150
2151        vlapic_cleanup(vlapic);
2152        free(vlapic, M_SVM_VLAPIC);
2153}
2154
2155struct vmm_ops vmm_ops_amd = {
2156	svm_init,
2157	svm_cleanup,
2158	svm_restore,
2159	svm_vminit,
2160	svm_vmrun,
2161	svm_vmcleanup,
2162	svm_getreg,
2163	svm_setreg,
2164	vmcb_getdesc,
2165	vmcb_setdesc,
2166	svm_getcap,
2167	svm_setcap,
2168	svm_npt_alloc,
2169	svm_npt_free,
2170	svm_vlapic_init,
2171	svm_vlapic_cleanup
2172};
2173