pmap.c revision 298653
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2003 Peter Wemm
9 * All rights reserved.
10 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
11 * All rights reserved.
12 *
13 * This code is derived from software contributed to Berkeley by
14 * the Systems Programming Group of the University of Utah Computer
15 * Science Department and William Jolitz of UUNET Technologies Inc.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 *    notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 *    notice, this list of conditions and the following disclaimer in the
24 *    documentation and/or other materials provided with the distribution.
25 * 3. All advertising materials mentioning features or use of this software
26 *    must display the following acknowledgement:
27 *	This product includes software developed by the University of
28 *	California, Berkeley and its contributors.
29 * 4. Neither the name of the University nor the names of its contributors
30 *    may be used to endorse or promote products derived from this software
31 *    without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 * SUCH DAMAGE.
44 *
45 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
46 */
47/*-
48 * Copyright (c) 2003 Networks Associates Technology, Inc.
49 * All rights reserved.
50 *
51 * This software was developed for the FreeBSD Project by Jake Burkholder,
52 * Safeport Network Services, and Network Associates Laboratories, the
53 * Security Research Division of Network Associates, Inc. under
54 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
55 * CHATS research program.
56 *
57 * Redistribution and use in source and binary forms, with or without
58 * modification, are permitted provided that the following conditions
59 * are met:
60 * 1. Redistributions of source code must retain the above copyright
61 *    notice, this list of conditions and the following disclaimer.
62 * 2. Redistributions in binary form must reproduce the above copyright
63 *    notice, this list of conditions and the following disclaimer in the
64 *    documentation and/or other materials provided with the distribution.
65 *
66 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
67 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
68 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
69 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
70 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
71 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
72 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
73 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
74 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
75 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
76 * SUCH DAMAGE.
77 */
78
79#define	AMD64_NPT_AWARE
80
81#include <sys/cdefs.h>
82__FBSDID("$FreeBSD: stable/10/sys/amd64/amd64/pmap.c 298653 2016-04-26 17:39:54Z pfg $");
83
84/*
85 *	Manages physical address maps.
86 *
87 *	Since the information managed by this module is
88 *	also stored by the logical address mapping module,
89 *	this module may throw away valid virtual-to-physical
90 *	mappings at almost any time.  However, invalidations
91 *	of virtual-to-physical mappings must be done as
92 *	requested.
93 *
94 *	In order to cope with hardware architectures which
95 *	make virtual-to-physical map invalidates expensive,
96 *	this module may delay invalidate or reduced protection
97 *	operations until such time as they are actually
98 *	necessary.  This module is given full information as
99 *	to which processors are currently using which maps,
100 *	and to when physical maps must be made correct.
101 */
102
103#include "opt_pmap.h"
104#include "opt_vm.h"
105
106#include <sys/param.h>
107#include <sys/bus.h>
108#include <sys/systm.h>
109#include <sys/kernel.h>
110#include <sys/ktr.h>
111#include <sys/lock.h>
112#include <sys/malloc.h>
113#include <sys/mman.h>
114#include <sys/mutex.h>
115#include <sys/proc.h>
116#include <sys/rwlock.h>
117#include <sys/sx.h>
118#include <sys/vmmeter.h>
119#include <sys/sched.h>
120#include <sys/sysctl.h>
121#include <sys/_unrhdr.h>
122#include <sys/smp.h>
123
124#include <vm/vm.h>
125#include <vm/vm_param.h>
126#include <vm/vm_kern.h>
127#include <vm/vm_page.h>
128#include <vm/vm_map.h>
129#include <vm/vm_object.h>
130#include <vm/vm_extern.h>
131#include <vm/vm_pageout.h>
132#include <vm/vm_pager.h>
133#include <vm/vm_phys.h>
134#include <vm/vm_radix.h>
135#include <vm/vm_reserv.h>
136#include <vm/uma.h>
137
138#include <machine/intr_machdep.h>
139#include <machine/apicvar.h>
140#include <machine/cpu.h>
141#include <machine/cputypes.h>
142#include <machine/md_var.h>
143#include <machine/pcb.h>
144#include <machine/specialreg.h>
145#ifdef SMP
146#include <machine/smp.h>
147#endif
148
149static __inline boolean_t
150pmap_type_guest(pmap_t pmap)
151{
152
153	return ((pmap->pm_type == PT_EPT) || (pmap->pm_type == PT_RVI));
154}
155
156static __inline boolean_t
157pmap_emulate_ad_bits(pmap_t pmap)
158{
159
160	return ((pmap->pm_flags & PMAP_EMULATE_AD_BITS) != 0);
161}
162
163static __inline pt_entry_t
164pmap_valid_bit(pmap_t pmap)
165{
166	pt_entry_t mask;
167
168	switch (pmap->pm_type) {
169	case PT_X86:
170	case PT_RVI:
171		mask = X86_PG_V;
172		break;
173	case PT_EPT:
174		if (pmap_emulate_ad_bits(pmap))
175			mask = EPT_PG_EMUL_V;
176		else
177			mask = EPT_PG_READ;
178		break;
179	default:
180		panic("pmap_valid_bit: invalid pm_type %d", pmap->pm_type);
181	}
182
183	return (mask);
184}
185
186static __inline pt_entry_t
187pmap_rw_bit(pmap_t pmap)
188{
189	pt_entry_t mask;
190
191	switch (pmap->pm_type) {
192	case PT_X86:
193	case PT_RVI:
194		mask = X86_PG_RW;
195		break;
196	case PT_EPT:
197		if (pmap_emulate_ad_bits(pmap))
198			mask = EPT_PG_EMUL_RW;
199		else
200			mask = EPT_PG_WRITE;
201		break;
202	default:
203		panic("pmap_rw_bit: invalid pm_type %d", pmap->pm_type);
204	}
205
206	return (mask);
207}
208
209static __inline pt_entry_t
210pmap_global_bit(pmap_t pmap)
211{
212	pt_entry_t mask;
213
214	switch (pmap->pm_type) {
215	case PT_X86:
216		mask = X86_PG_G;
217		break;
218	case PT_RVI:
219	case PT_EPT:
220		mask = 0;
221		break;
222	default:
223		panic("pmap_global_bit: invalid pm_type %d", pmap->pm_type);
224	}
225
226	return (mask);
227}
228
229static __inline pt_entry_t
230pmap_accessed_bit(pmap_t pmap)
231{
232	pt_entry_t mask;
233
234	switch (pmap->pm_type) {
235	case PT_X86:
236	case PT_RVI:
237		mask = X86_PG_A;
238		break;
239	case PT_EPT:
240		if (pmap_emulate_ad_bits(pmap))
241			mask = EPT_PG_READ;
242		else
243			mask = EPT_PG_A;
244		break;
245	default:
246		panic("pmap_accessed_bit: invalid pm_type %d", pmap->pm_type);
247	}
248
249	return (mask);
250}
251
252static __inline pt_entry_t
253pmap_modified_bit(pmap_t pmap)
254{
255	pt_entry_t mask;
256
257	switch (pmap->pm_type) {
258	case PT_X86:
259	case PT_RVI:
260		mask = X86_PG_M;
261		break;
262	case PT_EPT:
263		if (pmap_emulate_ad_bits(pmap))
264			mask = EPT_PG_WRITE;
265		else
266			mask = EPT_PG_M;
267		break;
268	default:
269		panic("pmap_modified_bit: invalid pm_type %d", pmap->pm_type);
270	}
271
272	return (mask);
273}
274
275#if !defined(DIAGNOSTIC)
276#ifdef __GNUC_GNU_INLINE__
277#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
278#else
279#define PMAP_INLINE	extern inline
280#endif
281#else
282#define PMAP_INLINE
283#endif
284
285#ifdef PV_STATS
286#define PV_STAT(x)	do { x ; } while (0)
287#else
288#define PV_STAT(x)	do { } while (0)
289#endif
290
291#define	pa_index(pa)	((pa) >> PDRSHIFT)
292#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
293
294#define	NPV_LIST_LOCKS	MAXCPU
295
296#define	PHYS_TO_PV_LIST_LOCK(pa)	\
297			(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
298
299#define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
300	struct rwlock **_lockp = (lockp);		\
301	struct rwlock *_new_lock;			\
302							\
303	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
304	if (_new_lock != *_lockp) {			\
305		if (*_lockp != NULL)			\
306			rw_wunlock(*_lockp);		\
307		*_lockp = _new_lock;			\
308		rw_wlock(*_lockp);			\
309	}						\
310} while (0)
311
312#define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
313			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
314
315#define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
316	struct rwlock **_lockp = (lockp);		\
317							\
318	if (*_lockp != NULL) {				\
319		rw_wunlock(*_lockp);			\
320		*_lockp = NULL;				\
321	}						\
322} while (0)
323
324#define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
325			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
326
327struct pmap kernel_pmap_store;
328
329vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
330vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
331
332int nkpt;
333SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
334    "Number of kernel page table pages allocated on bootup");
335
336static int ndmpdp;
337vm_paddr_t dmaplimit;
338vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
339pt_entry_t pg_nx;
340
341static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
342
343static int pat_works = 1;
344SYSCTL_INT(_vm_pmap, OID_AUTO, pat_works, CTLFLAG_RD, &pat_works, 1,
345    "Is page attribute table fully functional?");
346
347static int pg_ps_enabled = 1;
348SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
349    "Are large page mappings enabled?");
350
351#define	PAT_INDEX_SIZE	8
352static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
353
354static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
355static u_int64_t	KPDphys;	/* phys addr of kernel level 2 */
356u_int64_t		KPDPphys;	/* phys addr of kernel level 3 */
357u_int64_t		KPML4phys;	/* phys addr of kernel level 4 */
358
359static u_int64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
360static u_int64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
361static int		ndmpdpphys;	/* number of DMPDPphys pages */
362
363/*
364 * pmap_mapdev support pre initialization (i.e. console)
365 */
366#define	PMAP_PREINIT_MAPPING_COUNT	8
367static struct pmap_preinit_mapping {
368	vm_paddr_t	pa;
369	vm_offset_t	va;
370	vm_size_t	sz;
371	int		mode;
372} pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
373static int pmap_initialized;
374
375static struct rwlock_padalign pvh_global_lock;
376
377/*
378 * Data for the pv entry allocation mechanism
379 */
380static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
381static struct mtx pv_chunks_mutex;
382static struct rwlock pv_list_locks[NPV_LIST_LOCKS];
383static struct md_page *pv_table;
384
385/*
386 * All those kernel PT submaps that BSD is so fond of
387 */
388pt_entry_t *CMAP1 = 0;
389caddr_t CADDR1 = 0;
390
391static int pmap_flags = PMAP_PDE_SUPERPAGE;	/* flags for x86 pmaps */
392
393static struct unrhdr pcid_unr;
394static struct mtx pcid_mtx;
395int pmap_pcid_enabled = 0;
396SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_enabled, CTLFLAG_RDTUN, &pmap_pcid_enabled,
397    0, "Is TLB Context ID enabled ?");
398int invpcid_works = 0;
399SYSCTL_INT(_vm_pmap, OID_AUTO, invpcid_works, CTLFLAG_RD, &invpcid_works, 0,
400    "Is the invpcid instruction available ?");
401
402static int
403pmap_pcid_save_cnt_proc(SYSCTL_HANDLER_ARGS)
404{
405	int i;
406	uint64_t res;
407
408	res = 0;
409	CPU_FOREACH(i) {
410		res += cpuid_to_pcpu[i]->pc_pm_save_cnt;
411	}
412	return (sysctl_handle_64(oidp, &res, 0, req));
413}
414SYSCTL_PROC(_vm_pmap, OID_AUTO, pcid_save_cnt, CTLTYPE_U64 | CTLFLAG_RW |
415    CTLFLAG_MPSAFE, NULL, 0, pmap_pcid_save_cnt_proc, "QU",
416    "Count of saved TLB context on switch");
417
418/* pmap_copy_pages() over non-DMAP */
419static struct mtx cpage_lock;
420static vm_offset_t cpage_a;
421static vm_offset_t cpage_b;
422
423/*
424 * Crashdump maps.
425 */
426static caddr_t crashdumpmap;
427
428static void	free_pv_chunk(struct pv_chunk *pc);
429static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
430static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
431static int	popcnt_pc_map_elem(uint64_t elem);
432static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
433static void	reserve_pv_entries(pmap_t pmap, int needed,
434		    struct rwlock **lockp);
435static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
436		    struct rwlock **lockp);
437static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
438		    struct rwlock **lockp);
439static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
440		    struct rwlock **lockp);
441static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
442static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
443		    vm_offset_t va);
444
445static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode);
446static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
447static boolean_t pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde,
448    vm_offset_t va, struct rwlock **lockp);
449static boolean_t pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe,
450    vm_offset_t va);
451static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
452    vm_prot_t prot, struct rwlock **lockp);
453static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
454    vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
455static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
456static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
457static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
458static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
459static void pmap_pde_attr(pd_entry_t *pde, int cache_bits, int mask);
460static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
461    struct rwlock **lockp);
462static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
463    vm_prot_t prot);
464static void pmap_pte_attr(pt_entry_t *pte, int cache_bits, int mask);
465static int pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
466    struct spglist *free, struct rwlock **lockp);
467static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
468    pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
469static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
470static void pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
471    struct spglist *free);
472static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
473    vm_page_t m, struct rwlock **lockp);
474static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
475    pd_entry_t newpde);
476static void pmap_update_pde_invalidate(pmap_t, vm_offset_t va, pd_entry_t pde);
477
478static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
479		struct rwlock **lockp);
480static vm_page_t pmap_allocpde(pmap_t pmap, vm_offset_t va,
481		struct rwlock **lockp);
482static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
483		struct rwlock **lockp);
484
485static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
486    struct spglist *free);
487static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
488static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
489
490/*
491 * Move the kernel virtual free pointer to the next
492 * 2MB.  This is used to help improve performance
493 * by using a large (2MB) page for much of the kernel
494 * (.text, .data, .bss)
495 */
496static vm_offset_t
497pmap_kmem_choose(vm_offset_t addr)
498{
499	vm_offset_t newaddr = addr;
500
501	newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
502	return (newaddr);
503}
504
505/********************/
506/* Inline functions */
507/********************/
508
509/* Return a non-clipped PD index for a given VA */
510static __inline vm_pindex_t
511pmap_pde_pindex(vm_offset_t va)
512{
513	return (va >> PDRSHIFT);
514}
515
516
517/* Return various clipped indexes for a given VA */
518static __inline vm_pindex_t
519pmap_pte_index(vm_offset_t va)
520{
521
522	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
523}
524
525static __inline vm_pindex_t
526pmap_pde_index(vm_offset_t va)
527{
528
529	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
530}
531
532static __inline vm_pindex_t
533pmap_pdpe_index(vm_offset_t va)
534{
535
536	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
537}
538
539static __inline vm_pindex_t
540pmap_pml4e_index(vm_offset_t va)
541{
542
543	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
544}
545
546/* Return a pointer to the PML4 slot that corresponds to a VA */
547static __inline pml4_entry_t *
548pmap_pml4e(pmap_t pmap, vm_offset_t va)
549{
550
551	return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
552}
553
554/* Return a pointer to the PDP slot that corresponds to a VA */
555static __inline pdp_entry_t *
556pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
557{
558	pdp_entry_t *pdpe;
559
560	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
561	return (&pdpe[pmap_pdpe_index(va)]);
562}
563
564/* Return a pointer to the PDP slot that corresponds to a VA */
565static __inline pdp_entry_t *
566pmap_pdpe(pmap_t pmap, vm_offset_t va)
567{
568	pml4_entry_t *pml4e;
569	pt_entry_t PG_V;
570
571	PG_V = pmap_valid_bit(pmap);
572	pml4e = pmap_pml4e(pmap, va);
573	if ((*pml4e & PG_V) == 0)
574		return (NULL);
575	return (pmap_pml4e_to_pdpe(pml4e, va));
576}
577
578/* Return a pointer to the PD slot that corresponds to a VA */
579static __inline pd_entry_t *
580pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
581{
582	pd_entry_t *pde;
583
584	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
585	return (&pde[pmap_pde_index(va)]);
586}
587
588/* Return a pointer to the PD slot that corresponds to a VA */
589static __inline pd_entry_t *
590pmap_pde(pmap_t pmap, vm_offset_t va)
591{
592	pdp_entry_t *pdpe;
593	pt_entry_t PG_V;
594
595	PG_V = pmap_valid_bit(pmap);
596	pdpe = pmap_pdpe(pmap, va);
597	if (pdpe == NULL || (*pdpe & PG_V) == 0)
598		return (NULL);
599	return (pmap_pdpe_to_pde(pdpe, va));
600}
601
602/* Return a pointer to the PT slot that corresponds to a VA */
603static __inline pt_entry_t *
604pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
605{
606	pt_entry_t *pte;
607
608	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
609	return (&pte[pmap_pte_index(va)]);
610}
611
612/* Return a pointer to the PT slot that corresponds to a VA */
613static __inline pt_entry_t *
614pmap_pte(pmap_t pmap, vm_offset_t va)
615{
616	pd_entry_t *pde;
617	pt_entry_t PG_V;
618
619	PG_V = pmap_valid_bit(pmap);
620	pde = pmap_pde(pmap, va);
621	if (pde == NULL || (*pde & PG_V) == 0)
622		return (NULL);
623	if ((*pde & PG_PS) != 0)	/* compat with i386 pmap_pte() */
624		return ((pt_entry_t *)pde);
625	return (pmap_pde_to_pte(pde, va));
626}
627
628static __inline void
629pmap_resident_count_inc(pmap_t pmap, int count)
630{
631
632	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
633	pmap->pm_stats.resident_count += count;
634}
635
636static __inline void
637pmap_resident_count_dec(pmap_t pmap, int count)
638{
639
640	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
641	KASSERT(pmap->pm_stats.resident_count >= count,
642	    ("pmap %p resident count underflow %ld %d", pmap,
643	    pmap->pm_stats.resident_count, count));
644	pmap->pm_stats.resident_count -= count;
645}
646
647PMAP_INLINE pt_entry_t *
648vtopte(vm_offset_t va)
649{
650	u_int64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
651
652	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopte on a uva/gpa 0x%0lx", va));
653
654	return (PTmap + ((va >> PAGE_SHIFT) & mask));
655}
656
657static __inline pd_entry_t *
658vtopde(vm_offset_t va)
659{
660	u_int64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
661
662	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopde on a uva/gpa 0x%0lx", va));
663
664	return (PDmap + ((va >> PDRSHIFT) & mask));
665}
666
667static u_int64_t
668allocpages(vm_paddr_t *firstaddr, int n)
669{
670	u_int64_t ret;
671
672	ret = *firstaddr;
673	bzero((void *)ret, n * PAGE_SIZE);
674	*firstaddr += n * PAGE_SIZE;
675	return (ret);
676}
677
678CTASSERT(powerof2(NDMPML4E));
679
680/* number of kernel PDP slots */
681#define	NKPDPE(ptpgs)		howmany(ptpgs, NPDEPG)
682
683static void
684nkpt_init(vm_paddr_t addr)
685{
686	int pt_pages;
687
688#ifdef NKPT
689	pt_pages = NKPT;
690#else
691	pt_pages = howmany(addr, 1 << PDRSHIFT);
692	pt_pages += NKPDPE(pt_pages);
693
694	/*
695	 * Add some slop beyond the bare minimum required for bootstrapping
696	 * the kernel.
697	 *
698	 * This is quite important when allocating KVA for kernel modules.
699	 * The modules are required to be linked in the negative 2GB of
700	 * the address space.  If we run out of KVA in this region then
701	 * pmap_growkernel() will need to allocate page table pages to map
702	 * the entire 512GB of KVA space which is an unnecessary tax on
703	 * physical memory.
704	 *
705	 * Secondly, device memory mapped as part of setting up the low-
706	 * level console(s) is taken from KVA, starting at virtual_avail.
707	 * This is because cninit() is called after pmap_bootstrap() but
708	 * before vm_init() and pmap_init(). 20MB for a frame buffer is
709	 * not uncommon.
710	 */
711	pt_pages += 32;		/* 64MB additional slop. */
712#endif
713	nkpt = pt_pages;
714}
715
716static void
717create_pagetables(vm_paddr_t *firstaddr)
718{
719	int i, j, ndm1g, nkpdpe;
720	pt_entry_t *pt_p;
721	pd_entry_t *pd_p;
722	pdp_entry_t *pdp_p;
723	pml4_entry_t *p4_p;
724
725	/* Allocate page table pages for the direct map */
726	ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
727	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
728		ndmpdp = 4;
729	ndmpdpphys = howmany(ndmpdp, NPDPEPG);
730	if (ndmpdpphys > NDMPML4E) {
731		/*
732		 * Each NDMPML4E allows 512 GB, so limit to that,
733		 * and then readjust ndmpdp and ndmpdpphys.
734		 */
735		printf("NDMPML4E limits system to %d GB\n", NDMPML4E * 512);
736		Maxmem = atop(NDMPML4E * NBPML4);
737		ndmpdpphys = NDMPML4E;
738		ndmpdp = NDMPML4E * NPDEPG;
739	}
740	DMPDPphys = allocpages(firstaddr, ndmpdpphys);
741	ndm1g = 0;
742	if ((amd_feature & AMDID_PAGE1GB) != 0)
743		ndm1g = ptoa(Maxmem) >> PDPSHIFT;
744	if (ndm1g < ndmpdp)
745		DMPDphys = allocpages(firstaddr, ndmpdp - ndm1g);
746	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
747
748	/* Allocate pages */
749	KPML4phys = allocpages(firstaddr, 1);
750	KPDPphys = allocpages(firstaddr, NKPML4E);
751
752	/*
753	 * Allocate the initial number of kernel page table pages required to
754	 * bootstrap.  We defer this until after all memory-size dependent
755	 * allocations are done (e.g. direct map), so that we don't have to
756	 * build in too much slop in our estimate.
757	 *
758	 * Note that when NKPML4E > 1, we have an empty page underneath
759	 * all but the KPML4I'th one, so we need NKPML4E-1 extra (zeroed)
760	 * pages.  (pmap_enter requires a PD page to exist for each KPML4E.)
761	 */
762	nkpt_init(*firstaddr);
763	nkpdpe = NKPDPE(nkpt);
764
765	KPTphys = allocpages(firstaddr, nkpt);
766	KPDphys = allocpages(firstaddr, nkpdpe);
767
768	/* Fill in the underlying page table pages */
769	/* Nominally read-only (but really R/W) from zero to physfree */
770	/* XXX not fully used, underneath 2M pages */
771	pt_p = (pt_entry_t *)KPTphys;
772	for (i = 0; ptoa(i) < *firstaddr; i++)
773		pt_p[i] = ptoa(i) | X86_PG_RW | X86_PG_V | X86_PG_G;
774
775	/* Now map the page tables at their location within PTmap */
776	pd_p = (pd_entry_t *)KPDphys;
777	for (i = 0; i < nkpt; i++)
778		pd_p[i] = (KPTphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
779
780	/* Map from zero to end of allocations under 2M pages */
781	/* This replaces some of the KPTphys entries above */
782	for (i = 0; (i << PDRSHIFT) < *firstaddr; i++)
783		pd_p[i] = (i << PDRSHIFT) | X86_PG_RW | X86_PG_V | PG_PS |
784		    X86_PG_G;
785
786	/* And connect up the PD to the PDP (leaving room for L4 pages) */
787	pdp_p = (pdp_entry_t *)(KPDPphys + ptoa(KPML4I - KPML4BASE));
788	for (i = 0; i < nkpdpe; i++)
789		pdp_p[i + KPDPI] = (KPDphys + ptoa(i)) | X86_PG_RW | X86_PG_V |
790		    PG_U;
791
792	/*
793	 * Now, set up the direct map region using 2MB and/or 1GB pages.  If
794	 * the end of physical memory is not aligned to a 1GB page boundary,
795	 * then the residual physical memory is mapped with 2MB pages.  Later,
796	 * if pmap_mapdev{_attr}() uses the direct map for non-write-back
797	 * memory, pmap_change_attr() will demote any 2MB or 1GB page mappings
798	 * that are partially used.
799	 */
800	pd_p = (pd_entry_t *)DMPDphys;
801	for (i = NPDEPG * ndm1g, j = 0; i < NPDEPG * ndmpdp; i++, j++) {
802		pd_p[j] = (vm_paddr_t)i << PDRSHIFT;
803		/* Preset PG_M and PG_A because demotion expects it. */
804		pd_p[j] |= X86_PG_RW | X86_PG_V | PG_PS | X86_PG_G |
805		    X86_PG_M | X86_PG_A;
806	}
807	pdp_p = (pdp_entry_t *)DMPDPphys;
808	for (i = 0; i < ndm1g; i++) {
809		pdp_p[i] = (vm_paddr_t)i << PDPSHIFT;
810		/* Preset PG_M and PG_A because demotion expects it. */
811		pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_PS | X86_PG_G |
812		    X86_PG_M | X86_PG_A;
813	}
814	for (j = 0; i < ndmpdp; i++, j++) {
815		pdp_p[i] = DMPDphys + ptoa(j);
816		pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_U;
817	}
818
819	/* And recursively map PML4 to itself in order to get PTmap */
820	p4_p = (pml4_entry_t *)KPML4phys;
821	p4_p[PML4PML4I] = KPML4phys;
822	p4_p[PML4PML4I] |= X86_PG_RW | X86_PG_V | PG_U;
823
824	/* Connect the Direct Map slot(s) up to the PML4. */
825	for (i = 0; i < ndmpdpphys; i++) {
826		p4_p[DMPML4I + i] = DMPDPphys + ptoa(i);
827		p4_p[DMPML4I + i] |= X86_PG_RW | X86_PG_V | PG_U;
828	}
829
830	/* Connect the KVA slots up to the PML4 */
831	for (i = 0; i < NKPML4E; i++) {
832		p4_p[KPML4BASE + i] = KPDPphys + ptoa(i);
833		p4_p[KPML4BASE + i] |= X86_PG_RW | X86_PG_V | PG_U;
834	}
835}
836
837/*
838 *	Bootstrap the system enough to run with virtual memory.
839 *
840 *	On amd64 this is called after mapping has already been enabled
841 *	and just syncs the pmap module with what has already been done.
842 *	[We can't call it easily with mapping off since the kernel is not
843 *	mapped with PA == VA, hence we would have to relocate every address
844 *	from the linked base (virtual) address "KERNBASE" to the actual
845 *	(physical) address starting relative to 0]
846 */
847void
848pmap_bootstrap(vm_paddr_t *firstaddr)
849{
850	vm_offset_t va;
851	pt_entry_t *pte;
852
853	/*
854	 * Create an initial set of page tables to run the kernel in.
855	 */
856	create_pagetables(firstaddr);
857
858	/*
859	 * Add a physical memory segment (vm_phys_seg) corresponding to the
860	 * preallocated kernel page table pages so that vm_page structures
861	 * representing these pages will be created.  The vm_page structures
862	 * are required for promotion of the corresponding kernel virtual
863	 * addresses to superpage mappings.
864	 */
865	vm_phys_add_seg(KPTphys, KPTphys + ptoa(nkpt));
866
867	virtual_avail = (vm_offset_t) KERNBASE + *firstaddr;
868	virtual_avail = pmap_kmem_choose(virtual_avail);
869
870	virtual_end = VM_MAX_KERNEL_ADDRESS;
871
872
873	/* XXX do %cr0 as well */
874	load_cr4(rcr4() | CR4_PGE | CR4_PSE);
875	load_cr3(KPML4phys);
876	if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
877		load_cr4(rcr4() | CR4_SMEP);
878
879	/*
880	 * Initialize the kernel pmap (which is statically allocated).
881	 */
882	PMAP_LOCK_INIT(kernel_pmap);
883	kernel_pmap->pm_pml4 = (pdp_entry_t *)PHYS_TO_DMAP(KPML4phys);
884	kernel_pmap->pm_cr3 = KPML4phys;
885	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
886	CPU_FILL(&kernel_pmap->pm_save);	/* always superset of pm_active */
887	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
888	kernel_pmap->pm_flags = pmap_flags;
889
890 	/*
891	 * Initialize the global pv list lock.
892	 */
893	rw_init(&pvh_global_lock, "pmap pv global");
894
895	/*
896	 * Reserve some special page table entries/VA space for temporary
897	 * mapping of pages.
898	 */
899#define	SYSMAP(c, p, v, n)	\
900	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
901
902	va = virtual_avail;
903	pte = vtopte(va);
904
905	/*
906	 * Crashdump maps.  The first page is reused as CMAP1 for the
907	 * memory test.
908	 */
909	SYSMAP(caddr_t, CMAP1, crashdumpmap, MAXDUMPPGS)
910	CADDR1 = crashdumpmap;
911
912	virtual_avail = va;
913
914	/* Initialize the PAT MSR. */
915	pmap_init_pat();
916
917	/* Initialize TLB Context Id. */
918	TUNABLE_INT_FETCH("vm.pmap.pcid_enabled", &pmap_pcid_enabled);
919	if ((cpu_feature2 & CPUID2_PCID) != 0 && pmap_pcid_enabled) {
920		load_cr4(rcr4() | CR4_PCIDE);
921		mtx_init(&pcid_mtx, "pcid", NULL, MTX_DEF);
922		init_unrhdr(&pcid_unr, 1, (1 << 12) - 1, &pcid_mtx);
923		/* Check for INVPCID support */
924		invpcid_works = (cpu_stdext_feature & CPUID_STDEXT_INVPCID)
925		    != 0;
926		kernel_pmap->pm_pcid = 0;
927#ifndef SMP
928		pmap_pcid_enabled = 0;
929#endif
930	} else
931		pmap_pcid_enabled = 0;
932}
933
934/*
935 * Setup the PAT MSR.
936 */
937void
938pmap_init_pat(void)
939{
940	int pat_table[PAT_INDEX_SIZE];
941	uint64_t pat_msr;
942	u_long cr0, cr4;
943	int i;
944
945	/* Bail if this CPU doesn't implement PAT. */
946	if ((cpu_feature & CPUID_PAT) == 0)
947		panic("no PAT??");
948
949	/* Set default PAT index table. */
950	for (i = 0; i < PAT_INDEX_SIZE; i++)
951		pat_table[i] = -1;
952	pat_table[PAT_WRITE_BACK] = 0;
953	pat_table[PAT_WRITE_THROUGH] = 1;
954	pat_table[PAT_UNCACHEABLE] = 3;
955	pat_table[PAT_WRITE_COMBINING] = 3;
956	pat_table[PAT_WRITE_PROTECTED] = 3;
957	pat_table[PAT_UNCACHED] = 3;
958
959	/* Initialize default PAT entries. */
960	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
961	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
962	    PAT_VALUE(2, PAT_UNCACHED) |
963	    PAT_VALUE(3, PAT_UNCACHEABLE) |
964	    PAT_VALUE(4, PAT_WRITE_BACK) |
965	    PAT_VALUE(5, PAT_WRITE_THROUGH) |
966	    PAT_VALUE(6, PAT_UNCACHED) |
967	    PAT_VALUE(7, PAT_UNCACHEABLE);
968
969	if (pat_works) {
970		/*
971		 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
972		 * Program 5 and 6 as WP and WC.
973		 * Leave 4 and 7 as WB and UC.
974		 */
975		pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
976		pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
977		    PAT_VALUE(6, PAT_WRITE_COMBINING);
978		pat_table[PAT_UNCACHED] = 2;
979		pat_table[PAT_WRITE_PROTECTED] = 5;
980		pat_table[PAT_WRITE_COMBINING] = 6;
981	} else {
982		/*
983		 * Just replace PAT Index 2 with WC instead of UC-.
984		 */
985		pat_msr &= ~PAT_MASK(2);
986		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
987		pat_table[PAT_WRITE_COMBINING] = 2;
988	}
989
990	/* Disable PGE. */
991	cr4 = rcr4();
992	load_cr4(cr4 & ~CR4_PGE);
993
994	/* Disable caches (CD = 1, NW = 0). */
995	cr0 = rcr0();
996	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
997
998	/* Flushes caches and TLBs. */
999	wbinvd();
1000	invltlb();
1001
1002	/* Update PAT and index table. */
1003	wrmsr(MSR_PAT, pat_msr);
1004	for (i = 0; i < PAT_INDEX_SIZE; i++)
1005		pat_index[i] = pat_table[i];
1006
1007	/* Flush caches and TLBs again. */
1008	wbinvd();
1009	invltlb();
1010
1011	/* Restore caches and PGE. */
1012	load_cr0(cr0);
1013	load_cr4(cr4);
1014}
1015
1016/*
1017 *	Initialize a vm_page's machine-dependent fields.
1018 */
1019void
1020pmap_page_init(vm_page_t m)
1021{
1022
1023	TAILQ_INIT(&m->md.pv_list);
1024	m->md.pat_mode = PAT_WRITE_BACK;
1025}
1026
1027/*
1028 *	Initialize the pmap module.
1029 *	Called by vm_init, to initialize any structures that the pmap
1030 *	system needs to map virtual memory.
1031 */
1032void
1033pmap_init(void)
1034{
1035	struct pmap_preinit_mapping *ppim;
1036	vm_page_t mpte;
1037	vm_size_t s;
1038	int i, pv_npg;
1039
1040	/*
1041	 * Initialize the vm page array entries for the kernel pmap's
1042	 * page table pages.
1043	 */
1044	for (i = 0; i < nkpt; i++) {
1045		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
1046		KASSERT(mpte >= vm_page_array &&
1047		    mpte < &vm_page_array[vm_page_array_size],
1048		    ("pmap_init: page table page is out of range"));
1049		mpte->pindex = pmap_pde_pindex(KERNBASE) + i;
1050		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
1051	}
1052
1053	/*
1054	 * If the kernel is running on a virtual machine, then it must assume
1055	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
1056	 * be prepared for the hypervisor changing the vendor and family that
1057	 * are reported by CPUID.  Consequently, the workaround for AMD Family
1058	 * 10h Erratum 383 is enabled if the processor's feature set does not
1059	 * include at least one feature that is only supported by older Intel
1060	 * or newer AMD processors.
1061	 */
1062	if (vm_guest == VM_GUEST_VM && (cpu_feature & CPUID_SS) == 0 &&
1063	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
1064	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
1065	    AMDID2_FMA4)) == 0)
1066		workaround_erratum383 = 1;
1067
1068	/*
1069	 * Are large page mappings enabled?
1070	 */
1071	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
1072	if (pg_ps_enabled) {
1073		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1074		    ("pmap_init: can't assign to pagesizes[1]"));
1075		pagesizes[1] = NBPDR;
1076	}
1077
1078	/*
1079	 * Initialize the pv chunk list mutex.
1080	 */
1081	mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
1082
1083	/*
1084	 * Initialize the pool of pv list locks.
1085	 */
1086	for (i = 0; i < NPV_LIST_LOCKS; i++)
1087		rw_init(&pv_list_locks[i], "pmap pv list");
1088
1089	/*
1090	 * Calculate the size of the pv head table for superpages.
1091	 */
1092	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, NBPDR);
1093
1094	/*
1095	 * Allocate memory for the pv head table for superpages.
1096	 */
1097	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
1098	s = round_page(s);
1099	pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
1100	    M_WAITOK | M_ZERO);
1101	for (i = 0; i < pv_npg; i++)
1102		TAILQ_INIT(&pv_table[i].pv_list);
1103
1104	mtx_init(&cpage_lock, "cpage", NULL, MTX_DEF);
1105	cpage_a = kva_alloc(PAGE_SIZE);
1106	cpage_b = kva_alloc(PAGE_SIZE);
1107
1108	pmap_initialized = 1;
1109	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
1110		ppim = pmap_preinit_mapping + i;
1111		if (ppim->va == 0)
1112			continue;
1113		/* Make the direct map consistent */
1114		if (ppim->pa < dmaplimit && ppim->pa + ppim->sz < dmaplimit) {
1115			(void)pmap_change_attr(PHYS_TO_DMAP(ppim->pa),
1116			    ppim->sz, ppim->mode);
1117		}
1118		if (!bootverbose)
1119			continue;
1120		printf("PPIM %u: PA=%#lx, VA=%#lx, size=%#lx, mode=%#x\n", i,
1121		    ppim->pa, ppim->va, ppim->sz, ppim->mode);
1122	}
1123}
1124
1125static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
1126    "2MB page mapping counters");
1127
1128static u_long pmap_pde_demotions;
1129SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
1130    &pmap_pde_demotions, 0, "2MB page demotions");
1131
1132static u_long pmap_pde_mappings;
1133SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
1134    &pmap_pde_mappings, 0, "2MB page mappings");
1135
1136static u_long pmap_pde_p_failures;
1137SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
1138    &pmap_pde_p_failures, 0, "2MB page promotion failures");
1139
1140static u_long pmap_pde_promotions;
1141SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
1142    &pmap_pde_promotions, 0, "2MB page promotions");
1143
1144static SYSCTL_NODE(_vm_pmap, OID_AUTO, pdpe, CTLFLAG_RD, 0,
1145    "1GB page mapping counters");
1146
1147static u_long pmap_pdpe_demotions;
1148SYSCTL_ULONG(_vm_pmap_pdpe, OID_AUTO, demotions, CTLFLAG_RD,
1149    &pmap_pdpe_demotions, 0, "1GB page demotions");
1150
1151/***************************************************
1152 * Low level helper routines.....
1153 ***************************************************/
1154
1155static pt_entry_t
1156pmap_swap_pat(pmap_t pmap, pt_entry_t entry)
1157{
1158	int x86_pat_bits = X86_PG_PTE_PAT | X86_PG_PDE_PAT;
1159
1160	switch (pmap->pm_type) {
1161	case PT_X86:
1162	case PT_RVI:
1163		/* Verify that both PAT bits are not set at the same time */
1164		KASSERT((entry & x86_pat_bits) != x86_pat_bits,
1165		    ("Invalid PAT bits in entry %#lx", entry));
1166
1167		/* Swap the PAT bits if one of them is set */
1168		if ((entry & x86_pat_bits) != 0)
1169			entry ^= x86_pat_bits;
1170		break;
1171	case PT_EPT:
1172		/*
1173		 * Nothing to do - the memory attributes are represented
1174		 * the same way for regular pages and superpages.
1175		 */
1176		break;
1177	default:
1178		panic("pmap_switch_pat_bits: bad pm_type %d", pmap->pm_type);
1179	}
1180
1181	return (entry);
1182}
1183
1184/*
1185 * Determine the appropriate bits to set in a PTE or PDE for a specified
1186 * caching mode.
1187 */
1188static int
1189pmap_cache_bits(pmap_t pmap, int mode, boolean_t is_pde)
1190{
1191	int cache_bits, pat_flag, pat_idx;
1192
1193	if (mode < 0 || mode >= PAT_INDEX_SIZE || pat_index[mode] < 0)
1194		panic("Unknown caching mode %d\n", mode);
1195
1196	switch (pmap->pm_type) {
1197	case PT_X86:
1198	case PT_RVI:
1199		/* The PAT bit is different for PTE's and PDE's. */
1200		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
1201
1202		/* Map the caching mode to a PAT index. */
1203		pat_idx = pat_index[mode];
1204
1205		/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
1206		cache_bits = 0;
1207		if (pat_idx & 0x4)
1208			cache_bits |= pat_flag;
1209		if (pat_idx & 0x2)
1210			cache_bits |= PG_NC_PCD;
1211		if (pat_idx & 0x1)
1212			cache_bits |= PG_NC_PWT;
1213		break;
1214
1215	case PT_EPT:
1216		cache_bits = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(mode);
1217		break;
1218
1219	default:
1220		panic("unsupported pmap type %d", pmap->pm_type);
1221	}
1222
1223	return (cache_bits);
1224}
1225
1226static int
1227pmap_cache_mask(pmap_t pmap, boolean_t is_pde)
1228{
1229	int mask;
1230
1231	switch (pmap->pm_type) {
1232	case PT_X86:
1233	case PT_RVI:
1234		mask = is_pde ? X86_PG_PDE_CACHE : X86_PG_PTE_CACHE;
1235		break;
1236	case PT_EPT:
1237		mask = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(0x7);
1238		break;
1239	default:
1240		panic("pmap_cache_mask: invalid pm_type %d", pmap->pm_type);
1241	}
1242
1243	return (mask);
1244}
1245
1246static __inline boolean_t
1247pmap_ps_enabled(pmap_t pmap)
1248{
1249
1250	return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
1251}
1252
1253static void
1254pmap_update_pde_store(pmap_t pmap, pd_entry_t *pde, pd_entry_t newpde)
1255{
1256
1257	switch (pmap->pm_type) {
1258	case PT_X86:
1259		break;
1260	case PT_RVI:
1261	case PT_EPT:
1262		/*
1263		 * XXX
1264		 * This is a little bogus since the generation number is
1265		 * supposed to be bumped up when a region of the address
1266		 * space is invalidated in the page tables.
1267		 *
1268		 * In this case the old PDE entry is valid but yet we want
1269		 * to make sure that any mappings using the old entry are
1270		 * invalidated in the TLB.
1271		 *
1272		 * The reason this works as expected is because we rendezvous
1273		 * "all" host cpus and force any vcpu context to exit as a
1274		 * side-effect.
1275		 */
1276		atomic_add_acq_long(&pmap->pm_eptgen, 1);
1277		break;
1278	default:
1279		panic("pmap_update_pde_store: bad pm_type %d", pmap->pm_type);
1280	}
1281	pde_store(pde, newpde);
1282}
1283
1284/*
1285 * After changing the page size for the specified virtual address in the page
1286 * table, flush the corresponding entries from the processor's TLB.  Only the
1287 * calling processor's TLB is affected.
1288 *
1289 * The calling thread must be pinned to a processor.
1290 */
1291static void
1292pmap_update_pde_invalidate(pmap_t pmap, vm_offset_t va, pd_entry_t newpde)
1293{
1294	pt_entry_t PG_G;
1295
1296	if (pmap_type_guest(pmap))
1297		return;
1298
1299	KASSERT(pmap->pm_type == PT_X86,
1300	    ("pmap_update_pde_invalidate: invalid type %d", pmap->pm_type));
1301
1302	PG_G = pmap_global_bit(pmap);
1303
1304	if ((newpde & PG_PS) == 0)
1305		/* Demotion: flush a specific 2MB page mapping. */
1306		invlpg(va);
1307	else if ((newpde & PG_G) == 0)
1308		/*
1309		 * Promotion: flush every 4KB page mapping from the TLB
1310		 * because there are too many to flush individually.
1311		 */
1312		invltlb();
1313	else {
1314		/*
1315		 * Promotion: flush every 4KB page mapping from the TLB,
1316		 * including any global (PG_G) mappings.
1317		 */
1318		invltlb_globpcid();
1319	}
1320}
1321#ifdef SMP
1322
1323static void
1324pmap_invalidate_page_pcid(pmap_t pmap, vm_offset_t va)
1325{
1326	struct invpcid_descr d;
1327	uint64_t cr3;
1328
1329	if (invpcid_works) {
1330		d.pcid = pmap->pm_pcid;
1331		d.pad = 0;
1332		d.addr = va;
1333		invpcid(&d, INVPCID_ADDR);
1334		return;
1335	}
1336
1337	cr3 = rcr3();
1338	critical_enter();
1339	load_cr3(pmap->pm_cr3 | CR3_PCID_SAVE);
1340	invlpg(va);
1341	load_cr3(cr3 | CR3_PCID_SAVE);
1342	critical_exit();
1343}
1344
1345/*
1346 * For SMP, these functions have to use the IPI mechanism for coherence.
1347 *
1348 * N.B.: Before calling any of the following TLB invalidation functions,
1349 * the calling processor must ensure that all stores updating a non-
1350 * kernel page table are globally performed.  Otherwise, another
1351 * processor could cache an old, pre-update entry without being
1352 * invalidated.  This can happen one of two ways: (1) The pmap becomes
1353 * active on another processor after its pm_active field is checked by
1354 * one of the following functions but before a store updating the page
1355 * table is globally performed. (2) The pmap becomes active on another
1356 * processor before its pm_active field is checked but due to
1357 * speculative loads one of the following functions stills reads the
1358 * pmap as inactive on the other processor.
1359 *
1360 * The kernel page table is exempt because its pm_active field is
1361 * immutable.  The kernel page table is always active on every
1362 * processor.
1363 */
1364
1365/*
1366 * Interrupt the cpus that are executing in the guest context.
1367 * This will force the vcpu to exit and the cached EPT mappings
1368 * will be invalidated by the host before the next vmresume.
1369 */
1370static __inline void
1371pmap_invalidate_ept(pmap_t pmap)
1372{
1373	int ipinum;
1374
1375	sched_pin();
1376	KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
1377	    ("pmap_invalidate_ept: absurd pm_active"));
1378
1379	/*
1380	 * The TLB mappings associated with a vcpu context are not
1381	 * flushed each time a different vcpu is chosen to execute.
1382	 *
1383	 * This is in contrast with a process's vtop mappings that
1384	 * are flushed from the TLB on each context switch.
1385	 *
1386	 * Therefore we need to do more than just a TLB shootdown on
1387	 * the active cpus in 'pmap->pm_active'. To do this we keep
1388	 * track of the number of invalidations performed on this pmap.
1389	 *
1390	 * Each vcpu keeps a cache of this counter and compares it
1391	 * just before a vmresume. If the counter is out-of-date an
1392	 * invept will be done to flush stale mappings from the TLB.
1393	 */
1394	atomic_add_acq_long(&pmap->pm_eptgen, 1);
1395
1396	/*
1397	 * Force the vcpu to exit and trap back into the hypervisor.
1398	 */
1399	ipinum = pmap->pm_flags & PMAP_NESTED_IPIMASK;
1400	ipi_selected(pmap->pm_active, ipinum);
1401	sched_unpin();
1402}
1403
1404void
1405pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1406{
1407	cpuset_t other_cpus;
1408	u_int cpuid;
1409
1410	if (pmap_type_guest(pmap)) {
1411		pmap_invalidate_ept(pmap);
1412		return;
1413	}
1414
1415	KASSERT(pmap->pm_type == PT_X86,
1416	    ("pmap_invalidate_page: invalid type %d", pmap->pm_type));
1417
1418	sched_pin();
1419	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
1420		if (!pmap_pcid_enabled) {
1421			invlpg(va);
1422		} else {
1423			if (pmap->pm_pcid != -1 && pmap->pm_pcid != 0) {
1424				if (pmap == PCPU_GET(curpmap))
1425					invlpg(va);
1426				else
1427					pmap_invalidate_page_pcid(pmap, va);
1428			} else {
1429				invltlb_globpcid();
1430			}
1431		}
1432		smp_invlpg(pmap, va);
1433	} else {
1434		cpuid = PCPU_GET(cpuid);
1435		other_cpus = all_cpus;
1436		CPU_CLR(cpuid, &other_cpus);
1437		if (CPU_ISSET(cpuid, &pmap->pm_active))
1438			invlpg(va);
1439		else if (pmap_pcid_enabled) {
1440			if (pmap->pm_pcid != -1 && pmap->pm_pcid != 0)
1441				pmap_invalidate_page_pcid(pmap, va);
1442			else
1443				invltlb_globpcid();
1444		}
1445		if (pmap_pcid_enabled)
1446			CPU_AND(&other_cpus, &pmap->pm_save);
1447		else
1448			CPU_AND(&other_cpus, &pmap->pm_active);
1449		if (!CPU_EMPTY(&other_cpus))
1450			smp_masked_invlpg(other_cpus, pmap, va);
1451	}
1452	sched_unpin();
1453}
1454
1455static void
1456pmap_invalidate_range_pcid(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1457{
1458	struct invpcid_descr d;
1459	uint64_t cr3;
1460	vm_offset_t addr;
1461
1462	if (invpcid_works) {
1463		d.pcid = pmap->pm_pcid;
1464		d.pad = 0;
1465		for (addr = sva; addr < eva; addr += PAGE_SIZE) {
1466			d.addr = addr;
1467			invpcid(&d, INVPCID_ADDR);
1468		}
1469		return;
1470	}
1471
1472	cr3 = rcr3();
1473	critical_enter();
1474	load_cr3(pmap->pm_cr3 | CR3_PCID_SAVE);
1475	for (addr = sva; addr < eva; addr += PAGE_SIZE)
1476		invlpg(addr);
1477	load_cr3(cr3 | CR3_PCID_SAVE);
1478	critical_exit();
1479}
1480
1481void
1482pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1483{
1484	cpuset_t other_cpus;
1485	vm_offset_t addr;
1486	u_int cpuid;
1487
1488	if (pmap_type_guest(pmap)) {
1489		pmap_invalidate_ept(pmap);
1490		return;
1491	}
1492
1493	KASSERT(pmap->pm_type == PT_X86,
1494	    ("pmap_invalidate_range: invalid type %d", pmap->pm_type));
1495
1496	sched_pin();
1497	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
1498		if (!pmap_pcid_enabled) {
1499			for (addr = sva; addr < eva; addr += PAGE_SIZE)
1500				invlpg(addr);
1501		} else {
1502			if (pmap->pm_pcid != -1 && pmap->pm_pcid != 0) {
1503				if (pmap == PCPU_GET(curpmap)) {
1504					for (addr = sva; addr < eva;
1505					    addr += PAGE_SIZE)
1506						invlpg(addr);
1507				} else {
1508					pmap_invalidate_range_pcid(pmap,
1509					    sva, eva);
1510				}
1511			} else {
1512				invltlb_globpcid();
1513			}
1514		}
1515		smp_invlpg_range(pmap, sva, eva);
1516	} else {
1517		cpuid = PCPU_GET(cpuid);
1518		other_cpus = all_cpus;
1519		CPU_CLR(cpuid, &other_cpus);
1520		if (CPU_ISSET(cpuid, &pmap->pm_active)) {
1521			for (addr = sva; addr < eva; addr += PAGE_SIZE)
1522				invlpg(addr);
1523		} else if (pmap_pcid_enabled) {
1524			if (pmap->pm_pcid != -1 && pmap->pm_pcid != 0)
1525				pmap_invalidate_range_pcid(pmap, sva, eva);
1526			else
1527				invltlb_globpcid();
1528		}
1529		if (pmap_pcid_enabled)
1530			CPU_AND(&other_cpus, &pmap->pm_save);
1531		else
1532			CPU_AND(&other_cpus, &pmap->pm_active);
1533		if (!CPU_EMPTY(&other_cpus))
1534			smp_masked_invlpg_range(other_cpus, pmap, sva, eva);
1535	}
1536	sched_unpin();
1537}
1538
1539void
1540pmap_invalidate_all(pmap_t pmap)
1541{
1542	cpuset_t other_cpus;
1543	struct invpcid_descr d;
1544	uint64_t cr3;
1545	u_int cpuid;
1546
1547	if (pmap_type_guest(pmap)) {
1548		pmap_invalidate_ept(pmap);
1549		return;
1550	}
1551
1552	KASSERT(pmap->pm_type == PT_X86,
1553	    ("pmap_invalidate_all: invalid type %d", pmap->pm_type));
1554
1555	sched_pin();
1556	cpuid = PCPU_GET(cpuid);
1557	if (pmap == kernel_pmap ||
1558	    (pmap_pcid_enabled && !CPU_CMP(&pmap->pm_save, &all_cpus)) ||
1559	    !CPU_CMP(&pmap->pm_active, &all_cpus)) {
1560		if (invpcid_works) {
1561			bzero(&d, sizeof(d));
1562			invpcid(&d, INVPCID_CTXGLOB);
1563		} else {
1564			invltlb_globpcid();
1565		}
1566		if (!CPU_ISSET(cpuid, &pmap->pm_active))
1567			CPU_CLR_ATOMIC(cpuid, &pmap->pm_save);
1568		smp_invltlb(pmap);
1569	} else {
1570		other_cpus = all_cpus;
1571		CPU_CLR(cpuid, &other_cpus);
1572
1573		/*
1574		 * This logic is duplicated in the Xinvltlb shootdown
1575		 * IPI handler.
1576		 */
1577		if (pmap_pcid_enabled) {
1578			if (pmap->pm_pcid != -1 && pmap->pm_pcid != 0) {
1579				if (invpcid_works) {
1580					d.pcid = pmap->pm_pcid;
1581					d.pad = 0;
1582					d.addr = 0;
1583					invpcid(&d, INVPCID_CTX);
1584				} else {
1585					cr3 = rcr3();
1586					critical_enter();
1587
1588					/*
1589					 * Bit 63 is clear, pcid TLB
1590					 * entries are invalidated.
1591					 */
1592					load_cr3(pmap->pm_cr3);
1593					load_cr3(cr3 | CR3_PCID_SAVE);
1594					critical_exit();
1595				}
1596			} else {
1597				invltlb_globpcid();
1598			}
1599		} else if (CPU_ISSET(cpuid, &pmap->pm_active))
1600			invltlb();
1601		if (!CPU_ISSET(cpuid, &pmap->pm_active))
1602			CPU_CLR_ATOMIC(cpuid, &pmap->pm_save);
1603		if (pmap_pcid_enabled)
1604			CPU_AND(&other_cpus, &pmap->pm_save);
1605		else
1606			CPU_AND(&other_cpus, &pmap->pm_active);
1607		if (!CPU_EMPTY(&other_cpus))
1608			smp_masked_invltlb(other_cpus, pmap);
1609	}
1610	sched_unpin();
1611}
1612
1613void
1614pmap_invalidate_cache(void)
1615{
1616
1617	sched_pin();
1618	wbinvd();
1619	smp_cache_flush();
1620	sched_unpin();
1621}
1622
1623struct pde_action {
1624	cpuset_t invalidate;	/* processors that invalidate their TLB */
1625	pmap_t pmap;
1626	vm_offset_t va;
1627	pd_entry_t *pde;
1628	pd_entry_t newpde;
1629	u_int store;		/* processor that updates the PDE */
1630};
1631
1632static void
1633pmap_update_pde_action(void *arg)
1634{
1635	struct pde_action *act = arg;
1636
1637	if (act->store == PCPU_GET(cpuid))
1638		pmap_update_pde_store(act->pmap, act->pde, act->newpde);
1639}
1640
1641static void
1642pmap_update_pde_teardown(void *arg)
1643{
1644	struct pde_action *act = arg;
1645
1646	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
1647		pmap_update_pde_invalidate(act->pmap, act->va, act->newpde);
1648}
1649
1650/*
1651 * Change the page size for the specified virtual address in a way that
1652 * prevents any possibility of the TLB ever having two entries that map the
1653 * same virtual address using different page sizes.  This is the recommended
1654 * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
1655 * machine check exception for a TLB state that is improperly diagnosed as a
1656 * hardware error.
1657 */
1658static void
1659pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1660{
1661	struct pde_action act;
1662	cpuset_t active, other_cpus;
1663	u_int cpuid;
1664
1665	sched_pin();
1666	cpuid = PCPU_GET(cpuid);
1667	other_cpus = all_cpus;
1668	CPU_CLR(cpuid, &other_cpus);
1669	if (pmap == kernel_pmap || pmap_type_guest(pmap))
1670		active = all_cpus;
1671	else {
1672		active = pmap->pm_active;
1673		CPU_AND_ATOMIC(&pmap->pm_save, &active);
1674	}
1675	if (CPU_OVERLAP(&active, &other_cpus)) {
1676		act.store = cpuid;
1677		act.invalidate = active;
1678		act.va = va;
1679		act.pmap = pmap;
1680		act.pde = pde;
1681		act.newpde = newpde;
1682		CPU_SET(cpuid, &active);
1683		smp_rendezvous_cpus(active,
1684		    smp_no_rendevous_barrier, pmap_update_pde_action,
1685		    pmap_update_pde_teardown, &act);
1686	} else {
1687		pmap_update_pde_store(pmap, pde, newpde);
1688		if (CPU_ISSET(cpuid, &active))
1689			pmap_update_pde_invalidate(pmap, va, newpde);
1690	}
1691	sched_unpin();
1692}
1693#else /* !SMP */
1694/*
1695 * Normal, non-SMP, invalidation functions.
1696 * We inline these within pmap.c for speed.
1697 */
1698PMAP_INLINE void
1699pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1700{
1701
1702	switch (pmap->pm_type) {
1703	case PT_X86:
1704		if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1705			invlpg(va);
1706		break;
1707	case PT_RVI:
1708	case PT_EPT:
1709		pmap->pm_eptgen++;
1710		break;
1711	default:
1712		panic("pmap_invalidate_page: unknown type: %d", pmap->pm_type);
1713	}
1714}
1715
1716PMAP_INLINE void
1717pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1718{
1719	vm_offset_t addr;
1720
1721	switch (pmap->pm_type) {
1722	case PT_X86:
1723		if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1724			for (addr = sva; addr < eva; addr += PAGE_SIZE)
1725				invlpg(addr);
1726		break;
1727	case PT_RVI:
1728	case PT_EPT:
1729		pmap->pm_eptgen++;
1730		break;
1731	default:
1732		panic("pmap_invalidate_range: unknown type: %d", pmap->pm_type);
1733	}
1734}
1735
1736PMAP_INLINE void
1737pmap_invalidate_all(pmap_t pmap)
1738{
1739
1740	switch (pmap->pm_type) {
1741	case PT_X86:
1742		if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1743			invltlb();
1744		break;
1745	case PT_RVI:
1746	case PT_EPT:
1747		pmap->pm_eptgen++;
1748		break;
1749	default:
1750		panic("pmap_invalidate_all: unknown type %d", pmap->pm_type);
1751	}
1752}
1753
1754PMAP_INLINE void
1755pmap_invalidate_cache(void)
1756{
1757
1758	wbinvd();
1759}
1760
1761static void
1762pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1763{
1764
1765	pmap_update_pde_store(pmap, pde, newpde);
1766	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1767		pmap_update_pde_invalidate(pmap, va, newpde);
1768	else
1769		CPU_ZERO(&pmap->pm_save);
1770}
1771#endif /* !SMP */
1772
1773#define PMAP_CLFLUSH_THRESHOLD   (2 * 1024 * 1024)
1774
1775void
1776pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva, boolean_t force)
1777{
1778
1779	if (force) {
1780		sva &= ~(vm_offset_t)cpu_clflush_line_size;
1781	} else {
1782		KASSERT((sva & PAGE_MASK) == 0,
1783		    ("pmap_invalidate_cache_range: sva not page-aligned"));
1784		KASSERT((eva & PAGE_MASK) == 0,
1785		    ("pmap_invalidate_cache_range: eva not page-aligned"));
1786	}
1787
1788	if ((cpu_feature & CPUID_SS) != 0 && !force)
1789		; /* If "Self Snoop" is supported and allowed, do nothing. */
1790	else if ((cpu_feature & CPUID_CLFSH) != 0 &&
1791	    eva - sva < PMAP_CLFLUSH_THRESHOLD) {
1792
1793		/*
1794		 * XXX: Some CPUs fault, hang, or trash the local APIC
1795		 * registers if we use CLFLUSH on the local APIC
1796		 * range.  The local APIC is always uncached, so we
1797		 * don't need to flush for that range anyway.
1798		 */
1799		if (pmap_kextract(sva) == lapic_paddr)
1800			return;
1801
1802		/*
1803		 * Otherwise, do per-cache line flush.  Use the mfence
1804		 * instruction to insure that previous stores are
1805		 * included in the write-back.  The processor
1806		 * propagates flush to other processors in the cache
1807		 * coherence domain.
1808		 */
1809		mfence();
1810		for (; sva < eva; sva += cpu_clflush_line_size)
1811			clflush(sva);
1812		mfence();
1813	} else {
1814
1815		/*
1816		 * No targeted cache flush methods are supported by CPU,
1817		 * or the supplied range is bigger than 2MB.
1818		 * Globally invalidate cache.
1819		 */
1820		pmap_invalidate_cache();
1821	}
1822}
1823
1824/*
1825 * Remove the specified set of pages from the data and instruction caches.
1826 *
1827 * In contrast to pmap_invalidate_cache_range(), this function does not
1828 * rely on the CPU's self-snoop feature, because it is intended for use
1829 * when moving pages into a different cache domain.
1830 */
1831void
1832pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1833{
1834	vm_offset_t daddr, eva;
1835	int i;
1836
1837	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1838	    (cpu_feature & CPUID_CLFSH) == 0)
1839		pmap_invalidate_cache();
1840	else {
1841		mfence();
1842		for (i = 0; i < count; i++) {
1843			daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
1844			eva = daddr + PAGE_SIZE;
1845			for (; daddr < eva; daddr += cpu_clflush_line_size)
1846				clflush(daddr);
1847		}
1848		mfence();
1849	}
1850}
1851
1852/*
1853 *	Routine:	pmap_extract
1854 *	Function:
1855 *		Extract the physical page address associated
1856 *		with the given map/virtual_address pair.
1857 */
1858vm_paddr_t
1859pmap_extract(pmap_t pmap, vm_offset_t va)
1860{
1861	pdp_entry_t *pdpe;
1862	pd_entry_t *pde;
1863	pt_entry_t *pte, PG_V;
1864	vm_paddr_t pa;
1865
1866	pa = 0;
1867	PG_V = pmap_valid_bit(pmap);
1868	PMAP_LOCK(pmap);
1869	pdpe = pmap_pdpe(pmap, va);
1870	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
1871		if ((*pdpe & PG_PS) != 0)
1872			pa = (*pdpe & PG_PS_FRAME) | (va & PDPMASK);
1873		else {
1874			pde = pmap_pdpe_to_pde(pdpe, va);
1875			if ((*pde & PG_V) != 0) {
1876				if ((*pde & PG_PS) != 0) {
1877					pa = (*pde & PG_PS_FRAME) |
1878					    (va & PDRMASK);
1879				} else {
1880					pte = pmap_pde_to_pte(pde, va);
1881					pa = (*pte & PG_FRAME) |
1882					    (va & PAGE_MASK);
1883				}
1884			}
1885		}
1886	}
1887	PMAP_UNLOCK(pmap);
1888	return (pa);
1889}
1890
1891/*
1892 *	Routine:	pmap_extract_and_hold
1893 *	Function:
1894 *		Atomically extract and hold the physical page
1895 *		with the given pmap and virtual address pair
1896 *		if that mapping permits the given protection.
1897 */
1898vm_page_t
1899pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1900{
1901	pd_entry_t pde, *pdep;
1902	pt_entry_t pte, PG_RW, PG_V;
1903	vm_paddr_t pa;
1904	vm_page_t m;
1905
1906	pa = 0;
1907	m = NULL;
1908	PG_RW = pmap_rw_bit(pmap);
1909	PG_V = pmap_valid_bit(pmap);
1910	PMAP_LOCK(pmap);
1911retry:
1912	pdep = pmap_pde(pmap, va);
1913	if (pdep != NULL && (pde = *pdep)) {
1914		if (pde & PG_PS) {
1915			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1916				if (vm_page_pa_tryrelock(pmap, (pde &
1917				    PG_PS_FRAME) | (va & PDRMASK), &pa))
1918					goto retry;
1919				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1920				    (va & PDRMASK));
1921				vm_page_hold(m);
1922			}
1923		} else {
1924			pte = *pmap_pde_to_pte(pdep, va);
1925			if ((pte & PG_V) &&
1926			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1927				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
1928				    &pa))
1929					goto retry;
1930				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1931				vm_page_hold(m);
1932			}
1933		}
1934	}
1935	PA_UNLOCK_COND(pa);
1936	PMAP_UNLOCK(pmap);
1937	return (m);
1938}
1939
1940vm_paddr_t
1941pmap_kextract(vm_offset_t va)
1942{
1943	pd_entry_t pde;
1944	vm_paddr_t pa;
1945
1946	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1947		pa = DMAP_TO_PHYS(va);
1948	} else {
1949		pde = *vtopde(va);
1950		if (pde & PG_PS) {
1951			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
1952		} else {
1953			/*
1954			 * Beware of a concurrent promotion that changes the
1955			 * PDE at this point!  For example, vtopte() must not
1956			 * be used to access the PTE because it would use the
1957			 * new PDE.  It is, however, safe to use the old PDE
1958			 * because the page table page is preserved by the
1959			 * promotion.
1960			 */
1961			pa = *pmap_pde_to_pte(&pde, va);
1962			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1963		}
1964	}
1965	return (pa);
1966}
1967
1968/***************************************************
1969 * Low level mapping routines.....
1970 ***************************************************/
1971
1972/*
1973 * Add a wired page to the kva.
1974 * Note: not SMP coherent.
1975 */
1976PMAP_INLINE void
1977pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1978{
1979	pt_entry_t *pte;
1980
1981	pte = vtopte(va);
1982	pte_store(pte, pa | X86_PG_RW | X86_PG_V | X86_PG_G);
1983}
1984
1985static __inline void
1986pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1987{
1988	pt_entry_t *pte;
1989	int cache_bits;
1990
1991	pte = vtopte(va);
1992	cache_bits = pmap_cache_bits(kernel_pmap, mode, 0);
1993	pte_store(pte, pa | X86_PG_RW | X86_PG_V | X86_PG_G | cache_bits);
1994}
1995
1996/*
1997 * Remove a page from the kernel pagetables.
1998 * Note: not SMP coherent.
1999 */
2000PMAP_INLINE void
2001pmap_kremove(vm_offset_t va)
2002{
2003	pt_entry_t *pte;
2004
2005	pte = vtopte(va);
2006	pte_clear(pte);
2007}
2008
2009/*
2010 *	Used to map a range of physical addresses into kernel
2011 *	virtual address space.
2012 *
2013 *	The value passed in '*virt' is a suggested virtual address for
2014 *	the mapping. Architectures which can support a direct-mapped
2015 *	physical to virtual region can return the appropriate address
2016 *	within that region, leaving '*virt' unchanged. Other
2017 *	architectures should map the pages starting at '*virt' and
2018 *	update '*virt' with the first usable address after the mapped
2019 *	region.
2020 */
2021vm_offset_t
2022pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
2023{
2024	return PHYS_TO_DMAP(start);
2025}
2026
2027
2028/*
2029 * Add a list of wired pages to the kva
2030 * this routine is only used for temporary
2031 * kernel mappings that do not need to have
2032 * page modification or references recorded.
2033 * Note that old mappings are simply written
2034 * over.  The page *must* be wired.
2035 * Note: SMP coherent.  Uses a ranged shootdown IPI.
2036 */
2037void
2038pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
2039{
2040	pt_entry_t *endpte, oldpte, pa, *pte;
2041	vm_page_t m;
2042	int cache_bits;
2043
2044	oldpte = 0;
2045	pte = vtopte(sva);
2046	endpte = pte + count;
2047	while (pte < endpte) {
2048		m = *ma++;
2049		cache_bits = pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0);
2050		pa = VM_PAGE_TO_PHYS(m) | cache_bits;
2051		if ((*pte & (PG_FRAME | X86_PG_PTE_CACHE)) != pa) {
2052			oldpte |= *pte;
2053			pte_store(pte, pa | X86_PG_G | X86_PG_RW | X86_PG_V);
2054		}
2055		pte++;
2056	}
2057	if (__predict_false((oldpte & X86_PG_V) != 0))
2058		pmap_invalidate_range(kernel_pmap, sva, sva + count *
2059		    PAGE_SIZE);
2060}
2061
2062/*
2063 * This routine tears out page mappings from the
2064 * kernel -- it is meant only for temporary mappings.
2065 * Note: SMP coherent.  Uses a ranged shootdown IPI.
2066 */
2067void
2068pmap_qremove(vm_offset_t sva, int count)
2069{
2070	vm_offset_t va;
2071
2072	va = sva;
2073	while (count-- > 0) {
2074		KASSERT(va >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", va));
2075		pmap_kremove(va);
2076		va += PAGE_SIZE;
2077	}
2078	pmap_invalidate_range(kernel_pmap, sva, va);
2079}
2080
2081/***************************************************
2082 * Page table page management routines.....
2083 ***************************************************/
2084static __inline void
2085pmap_free_zero_pages(struct spglist *free)
2086{
2087	vm_page_t m;
2088
2089	while ((m = SLIST_FIRST(free)) != NULL) {
2090		SLIST_REMOVE_HEAD(free, plinks.s.ss);
2091		/* Preserve the page's PG_ZERO setting. */
2092		vm_page_free_toq(m);
2093	}
2094}
2095
2096/*
2097 * Schedule the specified unused page table page to be freed.  Specifically,
2098 * add the page to the specified list of pages that will be released to the
2099 * physical memory manager after the TLB has been updated.
2100 */
2101static __inline void
2102pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
2103    boolean_t set_PG_ZERO)
2104{
2105
2106	if (set_PG_ZERO)
2107		m->flags |= PG_ZERO;
2108	else
2109		m->flags &= ~PG_ZERO;
2110	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
2111}
2112
2113/*
2114 * Inserts the specified page table page into the specified pmap's collection
2115 * of idle page table pages.  Each of a pmap's page table pages is responsible
2116 * for mapping a distinct range of virtual addresses.  The pmap's collection is
2117 * ordered by this virtual address range.
2118 */
2119static __inline int
2120pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
2121{
2122
2123	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2124	return (vm_radix_insert(&pmap->pm_root, mpte));
2125}
2126
2127/*
2128 * Looks for a page table page mapping the specified virtual address in the
2129 * specified pmap's collection of idle page table pages.  Returns NULL if there
2130 * is no page table page corresponding to the specified virtual address.
2131 */
2132static __inline vm_page_t
2133pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
2134{
2135
2136	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2137	return (vm_radix_lookup(&pmap->pm_root, pmap_pde_pindex(va)));
2138}
2139
2140/*
2141 * Removes the specified page table page from the specified pmap's collection
2142 * of idle page table pages.  The specified page table page must be a member of
2143 * the pmap's collection.
2144 */
2145static __inline void
2146pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
2147{
2148
2149	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2150	vm_radix_remove(&pmap->pm_root, mpte->pindex);
2151}
2152
2153/*
2154 * Decrements a page table page's wire count, which is used to record the
2155 * number of valid page table entries within the page.  If the wire count
2156 * drops to zero, then the page table page is unmapped.  Returns TRUE if the
2157 * page table page was unmapped and FALSE otherwise.
2158 */
2159static inline boolean_t
2160pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
2161{
2162
2163	--m->wire_count;
2164	if (m->wire_count == 0) {
2165		_pmap_unwire_ptp(pmap, va, m, free);
2166		return (TRUE);
2167	} else
2168		return (FALSE);
2169}
2170
2171static void
2172_pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
2173{
2174
2175	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2176	/*
2177	 * unmap the page table page
2178	 */
2179	if (m->pindex >= (NUPDE + NUPDPE)) {
2180		/* PDP page */
2181		pml4_entry_t *pml4;
2182		pml4 = pmap_pml4e(pmap, va);
2183		*pml4 = 0;
2184	} else if (m->pindex >= NUPDE) {
2185		/* PD page */
2186		pdp_entry_t *pdp;
2187		pdp = pmap_pdpe(pmap, va);
2188		*pdp = 0;
2189	} else {
2190		/* PTE page */
2191		pd_entry_t *pd;
2192		pd = pmap_pde(pmap, va);
2193		*pd = 0;
2194	}
2195	pmap_resident_count_dec(pmap, 1);
2196	if (m->pindex < NUPDE) {
2197		/* We just released a PT, unhold the matching PD */
2198		vm_page_t pdpg;
2199
2200		pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
2201		pmap_unwire_ptp(pmap, va, pdpg, free);
2202	}
2203	if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
2204		/* We just released a PD, unhold the matching PDP */
2205		vm_page_t pdppg;
2206
2207		pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
2208		pmap_unwire_ptp(pmap, va, pdppg, free);
2209	}
2210
2211	/*
2212	 * This is a release store so that the ordinary store unmapping
2213	 * the page table page is globally performed before TLB shoot-
2214	 * down is begun.
2215	 */
2216	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
2217
2218	/*
2219	 * Put page on a list so that it is released after
2220	 * *ALL* TLB shootdown is done
2221	 */
2222	pmap_add_delayed_free_list(m, free, TRUE);
2223}
2224
2225/*
2226 * After removing a page table entry, this routine is used to
2227 * conditionally free the page, and manage the hold/wire counts.
2228 */
2229static int
2230pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
2231    struct spglist *free)
2232{
2233	vm_page_t mpte;
2234
2235	if (va >= VM_MAXUSER_ADDRESS)
2236		return (0);
2237	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
2238	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
2239	return (pmap_unwire_ptp(pmap, va, mpte, free));
2240}
2241
2242void
2243pmap_pinit0(pmap_t pmap)
2244{
2245
2246	PMAP_LOCK_INIT(pmap);
2247	pmap->pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
2248	pmap->pm_cr3 = KPML4phys;
2249	pmap->pm_root.rt_root = 0;
2250	CPU_ZERO(&pmap->pm_active);
2251	CPU_ZERO(&pmap->pm_save);
2252	PCPU_SET(curpmap, pmap);
2253	TAILQ_INIT(&pmap->pm_pvchunk);
2254	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2255	pmap->pm_pcid = pmap_pcid_enabled ? 0 : -1;
2256	pmap->pm_flags = pmap_flags;
2257}
2258
2259/*
2260 * Initialize a preallocated and zeroed pmap structure,
2261 * such as one in a vmspace structure.
2262 */
2263int
2264pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags)
2265{
2266	vm_page_t pml4pg;
2267	vm_paddr_t pml4phys;
2268	int i;
2269
2270	/*
2271	 * allocate the page directory page
2272	 */
2273	while ((pml4pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2274	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL)
2275		VM_WAIT;
2276
2277	pml4phys = VM_PAGE_TO_PHYS(pml4pg);
2278	pmap->pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(pml4phys);
2279	pmap->pm_pcid = -1;
2280	pmap->pm_cr3 = ~0;	/* initialize to an invalid value */
2281
2282	if ((pml4pg->flags & PG_ZERO) == 0)
2283		pagezero(pmap->pm_pml4);
2284
2285	/*
2286	 * Do not install the host kernel mappings in the nested page
2287	 * tables. These mappings are meaningless in the guest physical
2288	 * address space.
2289	 */
2290	if ((pmap->pm_type = pm_type) == PT_X86) {
2291		pmap->pm_cr3 = pml4phys;
2292
2293		/* Wire in kernel global address entries. */
2294		for (i = 0; i < NKPML4E; i++) {
2295			pmap->pm_pml4[KPML4BASE + i] = (KPDPphys + ptoa(i)) |
2296			    X86_PG_RW | X86_PG_V | PG_U;
2297		}
2298		for (i = 0; i < ndmpdpphys; i++) {
2299			pmap->pm_pml4[DMPML4I + i] = (DMPDPphys + ptoa(i)) |
2300			    X86_PG_RW | X86_PG_V | PG_U;
2301		}
2302
2303		/* install self-referential address mapping entry(s) */
2304		pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) |
2305		    X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
2306
2307		if (pmap_pcid_enabled) {
2308			pmap->pm_pcid = alloc_unr(&pcid_unr);
2309			if (pmap->pm_pcid != -1)
2310				pmap->pm_cr3 |= pmap->pm_pcid;
2311		}
2312	}
2313
2314	pmap->pm_root.rt_root = 0;
2315	CPU_ZERO(&pmap->pm_active);
2316	TAILQ_INIT(&pmap->pm_pvchunk);
2317	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2318	pmap->pm_flags = flags;
2319	pmap->pm_eptgen = 0;
2320	CPU_ZERO(&pmap->pm_save);
2321
2322	return (1);
2323}
2324
2325int
2326pmap_pinit(pmap_t pmap)
2327{
2328
2329	return (pmap_pinit_type(pmap, PT_X86, pmap_flags));
2330}
2331
2332/*
2333 * This routine is called if the desired page table page does not exist.
2334 *
2335 * If page table page allocation fails, this routine may sleep before
2336 * returning NULL.  It sleeps only if a lock pointer was given.
2337 *
2338 * Note: If a page allocation fails at page table level two or three,
2339 * one or two pages may be held during the wait, only to be released
2340 * afterwards.  This conservative approach is easily argued to avoid
2341 * race conditions.
2342 */
2343static vm_page_t
2344_pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
2345{
2346	vm_page_t m, pdppg, pdpg;
2347	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
2348
2349	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2350
2351	PG_A = pmap_accessed_bit(pmap);
2352	PG_M = pmap_modified_bit(pmap);
2353	PG_V = pmap_valid_bit(pmap);
2354	PG_RW = pmap_rw_bit(pmap);
2355
2356	/*
2357	 * Allocate a page table page.
2358	 */
2359	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
2360	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
2361		if (lockp != NULL) {
2362			RELEASE_PV_LIST_LOCK(lockp);
2363			PMAP_UNLOCK(pmap);
2364			rw_runlock(&pvh_global_lock);
2365			VM_WAIT;
2366			rw_rlock(&pvh_global_lock);
2367			PMAP_LOCK(pmap);
2368		}
2369
2370		/*
2371		 * Indicate the need to retry.  While waiting, the page table
2372		 * page may have been allocated.
2373		 */
2374		return (NULL);
2375	}
2376	if ((m->flags & PG_ZERO) == 0)
2377		pmap_zero_page(m);
2378
2379	/*
2380	 * Map the pagetable page into the process address space, if
2381	 * it isn't already there.
2382	 */
2383
2384	if (ptepindex >= (NUPDE + NUPDPE)) {
2385		pml4_entry_t *pml4;
2386		vm_pindex_t pml4index;
2387
2388		/* Wire up a new PDPE page */
2389		pml4index = ptepindex - (NUPDE + NUPDPE);
2390		pml4 = &pmap->pm_pml4[pml4index];
2391		*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
2392
2393	} else if (ptepindex >= NUPDE) {
2394		vm_pindex_t pml4index;
2395		vm_pindex_t pdpindex;
2396		pml4_entry_t *pml4;
2397		pdp_entry_t *pdp;
2398
2399		/* Wire up a new PDE page */
2400		pdpindex = ptepindex - NUPDE;
2401		pml4index = pdpindex >> NPML4EPGSHIFT;
2402
2403		pml4 = &pmap->pm_pml4[pml4index];
2404		if ((*pml4 & PG_V) == 0) {
2405			/* Have to allocate a new pdp, recurse */
2406			if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml4index,
2407			    lockp) == NULL) {
2408				--m->wire_count;
2409				atomic_subtract_int(&cnt.v_wire_count, 1);
2410				vm_page_free_zero(m);
2411				return (NULL);
2412			}
2413		} else {
2414			/* Add reference to pdp page */
2415			pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
2416			pdppg->wire_count++;
2417		}
2418		pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
2419
2420		/* Now find the pdp page */
2421		pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
2422		*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
2423
2424	} else {
2425		vm_pindex_t pml4index;
2426		vm_pindex_t pdpindex;
2427		pml4_entry_t *pml4;
2428		pdp_entry_t *pdp;
2429		pd_entry_t *pd;
2430
2431		/* Wire up a new PTE page */
2432		pdpindex = ptepindex >> NPDPEPGSHIFT;
2433		pml4index = pdpindex >> NPML4EPGSHIFT;
2434
2435		/* First, find the pdp and check that its valid. */
2436		pml4 = &pmap->pm_pml4[pml4index];
2437		if ((*pml4 & PG_V) == 0) {
2438			/* Have to allocate a new pd, recurse */
2439			if (_pmap_allocpte(pmap, NUPDE + pdpindex,
2440			    lockp) == NULL) {
2441				--m->wire_count;
2442				atomic_subtract_int(&cnt.v_wire_count, 1);
2443				vm_page_free_zero(m);
2444				return (NULL);
2445			}
2446			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
2447			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
2448		} else {
2449			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
2450			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
2451			if ((*pdp & PG_V) == 0) {
2452				/* Have to allocate a new pd, recurse */
2453				if (_pmap_allocpte(pmap, NUPDE + pdpindex,
2454				    lockp) == NULL) {
2455					--m->wire_count;
2456					atomic_subtract_int(&cnt.v_wire_count,
2457					    1);
2458					vm_page_free_zero(m);
2459					return (NULL);
2460				}
2461			} else {
2462				/* Add reference to the pd page */
2463				pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
2464				pdpg->wire_count++;
2465			}
2466		}
2467		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
2468
2469		/* Now we know where the page directory page is */
2470		pd = &pd[ptepindex & ((1ul << NPDEPGSHIFT) - 1)];
2471		*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
2472	}
2473
2474	pmap_resident_count_inc(pmap, 1);
2475
2476	return (m);
2477}
2478
2479static vm_page_t
2480pmap_allocpde(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
2481{
2482	vm_pindex_t pdpindex, ptepindex;
2483	pdp_entry_t *pdpe, PG_V;
2484	vm_page_t pdpg;
2485
2486	PG_V = pmap_valid_bit(pmap);
2487
2488retry:
2489	pdpe = pmap_pdpe(pmap, va);
2490	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
2491		/* Add a reference to the pd page. */
2492		pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
2493		pdpg->wire_count++;
2494	} else {
2495		/* Allocate a pd page. */
2496		ptepindex = pmap_pde_pindex(va);
2497		pdpindex = ptepindex >> NPDPEPGSHIFT;
2498		pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex, lockp);
2499		if (pdpg == NULL && lockp != NULL)
2500			goto retry;
2501	}
2502	return (pdpg);
2503}
2504
2505static vm_page_t
2506pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
2507{
2508	vm_pindex_t ptepindex;
2509	pd_entry_t *pd, PG_V;
2510	vm_page_t m;
2511
2512	PG_V = pmap_valid_bit(pmap);
2513
2514	/*
2515	 * Calculate pagetable page index
2516	 */
2517	ptepindex = pmap_pde_pindex(va);
2518retry:
2519	/*
2520	 * Get the page directory entry
2521	 */
2522	pd = pmap_pde(pmap, va);
2523
2524	/*
2525	 * This supports switching from a 2MB page to a
2526	 * normal 4K page.
2527	 */
2528	if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
2529		if (!pmap_demote_pde_locked(pmap, pd, va, lockp)) {
2530			/*
2531			 * Invalidation of the 2MB page mapping may have caused
2532			 * the deallocation of the underlying PD page.
2533			 */
2534			pd = NULL;
2535		}
2536	}
2537
2538	/*
2539	 * If the page table page is mapped, we just increment the
2540	 * hold count, and activate it.
2541	 */
2542	if (pd != NULL && (*pd & PG_V) != 0) {
2543		m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
2544		m->wire_count++;
2545	} else {
2546		/*
2547		 * Here if the pte page isn't mapped, or if it has been
2548		 * deallocated.
2549		 */
2550		m = _pmap_allocpte(pmap, ptepindex, lockp);
2551		if (m == NULL && lockp != NULL)
2552			goto retry;
2553	}
2554	return (m);
2555}
2556
2557
2558/***************************************************
2559 * Pmap allocation/deallocation routines.
2560 ***************************************************/
2561
2562/*
2563 * Release any resources held by the given physical map.
2564 * Called when a pmap initialized by pmap_pinit is being released.
2565 * Should only be called if the map contains no valid mappings.
2566 */
2567void
2568pmap_release(pmap_t pmap)
2569{
2570	vm_page_t m;
2571	int i;
2572
2573	KASSERT(pmap->pm_stats.resident_count == 0,
2574	    ("pmap_release: pmap resident count %ld != 0",
2575	    pmap->pm_stats.resident_count));
2576	KASSERT(vm_radix_is_empty(&pmap->pm_root),
2577	    ("pmap_release: pmap has reserved page table page(s)"));
2578
2579	if (pmap_pcid_enabled) {
2580		/*
2581		 * Invalidate any left TLB entries, to allow the reuse
2582		 * of the pcid.
2583		 */
2584		pmap_invalidate_all(pmap);
2585	}
2586
2587	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_pml4));
2588
2589	for (i = 0; i < NKPML4E; i++)	/* KVA */
2590		pmap->pm_pml4[KPML4BASE + i] = 0;
2591	for (i = 0; i < ndmpdpphys; i++)/* Direct Map */
2592		pmap->pm_pml4[DMPML4I + i] = 0;
2593	pmap->pm_pml4[PML4PML4I] = 0;	/* Recursive Mapping */
2594
2595	m->wire_count--;
2596	atomic_subtract_int(&cnt.v_wire_count, 1);
2597	vm_page_free_zero(m);
2598	if (pmap->pm_pcid != -1)
2599		free_unr(&pcid_unr, pmap->pm_pcid);
2600}
2601
2602static int
2603kvm_size(SYSCTL_HANDLER_ARGS)
2604{
2605	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
2606
2607	return sysctl_handle_long(oidp, &ksize, 0, req);
2608}
2609SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
2610    0, 0, kvm_size, "LU", "Size of KVM");
2611
2612static int
2613kvm_free(SYSCTL_HANDLER_ARGS)
2614{
2615	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
2616
2617	return sysctl_handle_long(oidp, &kfree, 0, req);
2618}
2619SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
2620    0, 0, kvm_free, "LU", "Amount of KVM free");
2621
2622/*
2623 * grow the number of kernel page table entries, if needed
2624 */
2625void
2626pmap_growkernel(vm_offset_t addr)
2627{
2628	vm_paddr_t paddr;
2629	vm_page_t nkpg;
2630	pd_entry_t *pde, newpdir;
2631	pdp_entry_t *pdpe;
2632
2633	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2634
2635	/*
2636	 * Return if "addr" is within the range of kernel page table pages
2637	 * that were preallocated during pmap bootstrap.  Moreover, leave
2638	 * "kernel_vm_end" and the kernel page table as they were.
2639	 *
2640	 * The correctness of this action is based on the following
2641	 * argument: vm_map_insert() allocates contiguous ranges of the
2642	 * kernel virtual address space.  It calls this function if a range
2643	 * ends after "kernel_vm_end".  If the kernel is mapped between
2644	 * "kernel_vm_end" and "addr", then the range cannot begin at
2645	 * "kernel_vm_end".  In fact, its beginning address cannot be less
2646	 * than the kernel.  Thus, there is no immediate need to allocate
2647	 * any new kernel page table pages between "kernel_vm_end" and
2648	 * "KERNBASE".
2649	 */
2650	if (KERNBASE < addr && addr <= KERNBASE + nkpt * NBPDR)
2651		return;
2652
2653	addr = roundup2(addr, NBPDR);
2654	if (addr - 1 >= kernel_map->max_offset)
2655		addr = kernel_map->max_offset;
2656	while (kernel_vm_end < addr) {
2657		pdpe = pmap_pdpe(kernel_pmap, kernel_vm_end);
2658		if ((*pdpe & X86_PG_V) == 0) {
2659			/* We need a new PDP entry */
2660			nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDPSHIFT,
2661			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
2662			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2663			if (nkpg == NULL)
2664				panic("pmap_growkernel: no memory to grow kernel");
2665			if ((nkpg->flags & PG_ZERO) == 0)
2666				pmap_zero_page(nkpg);
2667			paddr = VM_PAGE_TO_PHYS(nkpg);
2668			*pdpe = (pdp_entry_t)(paddr | X86_PG_V | X86_PG_RW |
2669			    X86_PG_A | X86_PG_M);
2670			continue; /* try again */
2671		}
2672		pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
2673		if ((*pde & X86_PG_V) != 0) {
2674			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2675			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2676				kernel_vm_end = kernel_map->max_offset;
2677				break;
2678			}
2679			continue;
2680		}
2681
2682		nkpg = vm_page_alloc(NULL, pmap_pde_pindex(kernel_vm_end),
2683		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2684		    VM_ALLOC_ZERO);
2685		if (nkpg == NULL)
2686			panic("pmap_growkernel: no memory to grow kernel");
2687		if ((nkpg->flags & PG_ZERO) == 0)
2688			pmap_zero_page(nkpg);
2689		paddr = VM_PAGE_TO_PHYS(nkpg);
2690		newpdir = paddr | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
2691		pde_store(pde, newpdir);
2692
2693		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2694		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2695			kernel_vm_end = kernel_map->max_offset;
2696			break;
2697		}
2698	}
2699}
2700
2701
2702/***************************************************
2703 * page management routines.
2704 ***************************************************/
2705
2706CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2707CTASSERT(_NPCM == 3);
2708CTASSERT(_NPCPV == 168);
2709
2710static __inline struct pv_chunk *
2711pv_to_chunk(pv_entry_t pv)
2712{
2713
2714	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2715}
2716
2717#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2718
2719#define	PC_FREE0	0xfffffffffffffffful
2720#define	PC_FREE1	0xfffffffffffffffful
2721#define	PC_FREE2	0x000000fffffffffful
2722
2723static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1, PC_FREE2 };
2724
2725#ifdef PV_STATS
2726static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2727
2728SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2729	"Current number of pv entry chunks");
2730SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2731	"Current number of pv entry chunks allocated");
2732SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2733	"Current number of pv entry chunks frees");
2734SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
2735	"Number of times tried to get a chunk page but failed.");
2736
2737static long pv_entry_frees, pv_entry_allocs, pv_entry_count;
2738static int pv_entry_spare;
2739
2740SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2741	"Current number of pv entry frees");
2742SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2743	"Current number of pv entry allocs");
2744SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2745	"Current number of pv entries");
2746SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2747	"Current number of spare pv entries");
2748#endif
2749
2750/*
2751 * We are in a serious low memory condition.  Resort to
2752 * drastic measures to free some pages so we can allocate
2753 * another pv entry chunk.
2754 *
2755 * Returns NULL if PV entries were reclaimed from the specified pmap.
2756 *
2757 * We do not, however, unmap 2mpages because subsequent accesses will
2758 * allocate per-page pv entries until repromotion occurs, thereby
2759 * exacerbating the shortage of free pv entries.
2760 */
2761static vm_page_t
2762reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
2763{
2764	struct pch new_tail;
2765	struct pv_chunk *pc;
2766	struct md_page *pvh;
2767	pd_entry_t *pde;
2768	pmap_t pmap;
2769	pt_entry_t *pte, tpte;
2770	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
2771	pv_entry_t pv;
2772	vm_offset_t va;
2773	vm_page_t m, m_pc;
2774	struct spglist free;
2775	uint64_t inuse;
2776	int bit, field, freed;
2777
2778	rw_assert(&pvh_global_lock, RA_LOCKED);
2779	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2780	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
2781	pmap = NULL;
2782	m_pc = NULL;
2783	PG_G = PG_A = PG_M = PG_RW = 0;
2784	SLIST_INIT(&free);
2785	TAILQ_INIT(&new_tail);
2786	mtx_lock(&pv_chunks_mutex);
2787	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && SLIST_EMPTY(&free)) {
2788		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2789		mtx_unlock(&pv_chunks_mutex);
2790		if (pmap != pc->pc_pmap) {
2791			if (pmap != NULL) {
2792				pmap_invalidate_all(pmap);
2793				if (pmap != locked_pmap)
2794					PMAP_UNLOCK(pmap);
2795			}
2796			pmap = pc->pc_pmap;
2797			/* Avoid deadlock and lock recursion. */
2798			if (pmap > locked_pmap) {
2799				RELEASE_PV_LIST_LOCK(lockp);
2800				PMAP_LOCK(pmap);
2801			} else if (pmap != locked_pmap &&
2802			    !PMAP_TRYLOCK(pmap)) {
2803				pmap = NULL;
2804				TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
2805				mtx_lock(&pv_chunks_mutex);
2806				continue;
2807			}
2808			PG_G = pmap_global_bit(pmap);
2809			PG_A = pmap_accessed_bit(pmap);
2810			PG_M = pmap_modified_bit(pmap);
2811			PG_RW = pmap_rw_bit(pmap);
2812		}
2813
2814		/*
2815		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2816		 */
2817		freed = 0;
2818		for (field = 0; field < _NPCM; field++) {
2819			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2820			    inuse != 0; inuse &= ~(1UL << bit)) {
2821				bit = bsfq(inuse);
2822				pv = &pc->pc_pventry[field * 64 + bit];
2823				va = pv->pv_va;
2824				pde = pmap_pde(pmap, va);
2825				if ((*pde & PG_PS) != 0)
2826					continue;
2827				pte = pmap_pde_to_pte(pde, va);
2828				if ((*pte & PG_W) != 0)
2829					continue;
2830				tpte = pte_load_clear(pte);
2831				if ((tpte & PG_G) != 0)
2832					pmap_invalidate_page(pmap, va);
2833				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2834				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2835					vm_page_dirty(m);
2836				if ((tpte & PG_A) != 0)
2837					vm_page_aflag_set(m, PGA_REFERENCED);
2838				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
2839				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2840				m->md.pv_gen++;
2841				if (TAILQ_EMPTY(&m->md.pv_list) &&
2842				    (m->flags & PG_FICTITIOUS) == 0) {
2843					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2844					if (TAILQ_EMPTY(&pvh->pv_list)) {
2845						vm_page_aflag_clear(m,
2846						    PGA_WRITEABLE);
2847					}
2848				}
2849				pc->pc_map[field] |= 1UL << bit;
2850				pmap_unuse_pt(pmap, va, *pde, &free);
2851				freed++;
2852			}
2853		}
2854		if (freed == 0) {
2855			TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
2856			mtx_lock(&pv_chunks_mutex);
2857			continue;
2858		}
2859		/* Every freed mapping is for a 4 KB page. */
2860		pmap_resident_count_dec(pmap, freed);
2861		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
2862		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
2863		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
2864		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2865		if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1 &&
2866		    pc->pc_map[2] == PC_FREE2) {
2867			PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
2868			PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
2869			PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
2870			/* Entire chunk is free; return it. */
2871			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
2872			dump_drop_page(m_pc->phys_addr);
2873			mtx_lock(&pv_chunks_mutex);
2874			break;
2875		}
2876		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2877		TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
2878		mtx_lock(&pv_chunks_mutex);
2879		/* One freed pv entry in locked_pmap is sufficient. */
2880		if (pmap == locked_pmap)
2881			break;
2882	}
2883	TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
2884	mtx_unlock(&pv_chunks_mutex);
2885	if (pmap != NULL) {
2886		pmap_invalidate_all(pmap);
2887		if (pmap != locked_pmap)
2888			PMAP_UNLOCK(pmap);
2889	}
2890	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
2891		m_pc = SLIST_FIRST(&free);
2892		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2893		/* Recycle a freed page table page. */
2894		m_pc->wire_count = 1;
2895		atomic_add_int(&cnt.v_wire_count, 1);
2896	}
2897	pmap_free_zero_pages(&free);
2898	return (m_pc);
2899}
2900
2901/*
2902 * free the pv_entry back to the free list
2903 */
2904static void
2905free_pv_entry(pmap_t pmap, pv_entry_t pv)
2906{
2907	struct pv_chunk *pc;
2908	int idx, field, bit;
2909
2910	rw_assert(&pvh_global_lock, RA_LOCKED);
2911	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2912	PV_STAT(atomic_add_long(&pv_entry_frees, 1));
2913	PV_STAT(atomic_add_int(&pv_entry_spare, 1));
2914	PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
2915	pc = pv_to_chunk(pv);
2916	idx = pv - &pc->pc_pventry[0];
2917	field = idx / 64;
2918	bit = idx % 64;
2919	pc->pc_map[field] |= 1ul << bit;
2920	if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1 ||
2921	    pc->pc_map[2] != PC_FREE2) {
2922		/* 98% of the time, pc is already at the head of the list. */
2923		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
2924			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2925			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2926		}
2927		return;
2928	}
2929	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2930	free_pv_chunk(pc);
2931}
2932
2933static void
2934free_pv_chunk(struct pv_chunk *pc)
2935{
2936	vm_page_t m;
2937
2938	mtx_lock(&pv_chunks_mutex);
2939 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2940	mtx_unlock(&pv_chunks_mutex);
2941	PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
2942	PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
2943	PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
2944	/* entire chunk is free, return it */
2945	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
2946	dump_drop_page(m->phys_addr);
2947	vm_page_unwire(m, 0);
2948	vm_page_free(m);
2949}
2950
2951/*
2952 * Returns a new PV entry, allocating a new PV chunk from the system when
2953 * needed.  If this PV chunk allocation fails and a PV list lock pointer was
2954 * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
2955 * returned.
2956 *
2957 * The given PV list lock may be released.
2958 */
2959static pv_entry_t
2960get_pv_entry(pmap_t pmap, struct rwlock **lockp)
2961{
2962	int bit, field;
2963	pv_entry_t pv;
2964	struct pv_chunk *pc;
2965	vm_page_t m;
2966
2967	rw_assert(&pvh_global_lock, RA_LOCKED);
2968	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2969	PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
2970retry:
2971	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2972	if (pc != NULL) {
2973		for (field = 0; field < _NPCM; field++) {
2974			if (pc->pc_map[field]) {
2975				bit = bsfq(pc->pc_map[field]);
2976				break;
2977			}
2978		}
2979		if (field < _NPCM) {
2980			pv = &pc->pc_pventry[field * 64 + bit];
2981			pc->pc_map[field] &= ~(1ul << bit);
2982			/* If this was the last item, move it to tail */
2983			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 &&
2984			    pc->pc_map[2] == 0) {
2985				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2986				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
2987				    pc_list);
2988			}
2989			PV_STAT(atomic_add_long(&pv_entry_count, 1));
2990			PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
2991			return (pv);
2992		}
2993	}
2994	/* No free items, allocate another chunk */
2995	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
2996	    VM_ALLOC_WIRED);
2997	if (m == NULL) {
2998		if (lockp == NULL) {
2999			PV_STAT(pc_chunk_tryfail++);
3000			return (NULL);
3001		}
3002		m = reclaim_pv_chunk(pmap, lockp);
3003		if (m == NULL)
3004			goto retry;
3005	}
3006	PV_STAT(atomic_add_int(&pc_chunk_count, 1));
3007	PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
3008	dump_add_page(m->phys_addr);
3009	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
3010	pc->pc_pmap = pmap;
3011	pc->pc_map[0] = PC_FREE0 & ~1ul;	/* preallocated bit 0 */
3012	pc->pc_map[1] = PC_FREE1;
3013	pc->pc_map[2] = PC_FREE2;
3014	mtx_lock(&pv_chunks_mutex);
3015	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
3016	mtx_unlock(&pv_chunks_mutex);
3017	pv = &pc->pc_pventry[0];
3018	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
3019	PV_STAT(atomic_add_long(&pv_entry_count, 1));
3020	PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
3021	return (pv);
3022}
3023
3024/*
3025 * Returns the number of one bits within the given PV chunk map element.
3026 */
3027static int
3028popcnt_pc_map_elem(uint64_t elem)
3029{
3030	int count;
3031
3032	/*
3033	 * This simple method of counting the one bits performs well because
3034	 * the given element typically contains more zero bits than one bits.
3035	 */
3036	count = 0;
3037	for (; elem != 0; elem &= elem - 1)
3038		count++;
3039	return (count);
3040}
3041
3042/*
3043 * Ensure that the number of spare PV entries in the specified pmap meets or
3044 * exceeds the given count, "needed".
3045 *
3046 * The given PV list lock may be released.
3047 */
3048static void
3049reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
3050{
3051	struct pch new_tail;
3052	struct pv_chunk *pc;
3053	int avail, free;
3054	vm_page_t m;
3055
3056	rw_assert(&pvh_global_lock, RA_LOCKED);
3057	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3058	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
3059
3060	/*
3061	 * Newly allocated PV chunks must be stored in a private list until
3062	 * the required number of PV chunks have been allocated.  Otherwise,
3063	 * reclaim_pv_chunk() could recycle one of these chunks.  In
3064	 * contrast, these chunks must be added to the pmap upon allocation.
3065	 */
3066	TAILQ_INIT(&new_tail);
3067retry:
3068	avail = 0;
3069	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
3070		if ((cpu_feature2 & CPUID2_POPCNT) == 0) {
3071			free = popcnt_pc_map_elem(pc->pc_map[0]);
3072			free += popcnt_pc_map_elem(pc->pc_map[1]);
3073			free += popcnt_pc_map_elem(pc->pc_map[2]);
3074		} else {
3075			free = popcntq(pc->pc_map[0]);
3076			free += popcntq(pc->pc_map[1]);
3077			free += popcntq(pc->pc_map[2]);
3078		}
3079		if (free == 0)
3080			break;
3081		avail += free;
3082		if (avail >= needed)
3083			break;
3084	}
3085	for (; avail < needed; avail += _NPCPV) {
3086		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
3087		    VM_ALLOC_WIRED);
3088		if (m == NULL) {
3089			m = reclaim_pv_chunk(pmap, lockp);
3090			if (m == NULL)
3091				goto retry;
3092		}
3093		PV_STAT(atomic_add_int(&pc_chunk_count, 1));
3094		PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
3095		dump_add_page(m->phys_addr);
3096		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
3097		pc->pc_pmap = pmap;
3098		pc->pc_map[0] = PC_FREE0;
3099		pc->pc_map[1] = PC_FREE1;
3100		pc->pc_map[2] = PC_FREE2;
3101		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
3102		TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
3103		PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
3104	}
3105	if (!TAILQ_EMPTY(&new_tail)) {
3106		mtx_lock(&pv_chunks_mutex);
3107		TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
3108		mtx_unlock(&pv_chunks_mutex);
3109	}
3110}
3111
3112/*
3113 * First find and then remove the pv entry for the specified pmap and virtual
3114 * address from the specified pv list.  Returns the pv entry if found and NULL
3115 * otherwise.  This operation can be performed on pv lists for either 4KB or
3116 * 2MB page mappings.
3117 */
3118static __inline pv_entry_t
3119pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3120{
3121	pv_entry_t pv;
3122
3123	rw_assert(&pvh_global_lock, RA_LOCKED);
3124	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
3125		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
3126			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
3127			pvh->pv_gen++;
3128			break;
3129		}
3130	}
3131	return (pv);
3132}
3133
3134/*
3135 * After demotion from a 2MB page mapping to 512 4KB page mappings,
3136 * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
3137 * entries for each of the 4KB page mappings.
3138 */
3139static void
3140pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
3141    struct rwlock **lockp)
3142{
3143	struct md_page *pvh;
3144	struct pv_chunk *pc;
3145	pv_entry_t pv;
3146	vm_offset_t va_last;
3147	vm_page_t m;
3148	int bit, field;
3149
3150	rw_assert(&pvh_global_lock, RA_LOCKED);
3151	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3152	KASSERT((pa & PDRMASK) == 0,
3153	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
3154	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
3155
3156	/*
3157	 * Transfer the 2mpage's pv entry for this mapping to the first
3158	 * page's pv list.  Once this transfer begins, the pv list lock
3159	 * must not be released until the last pv entry is reinstantiated.
3160	 */
3161	pvh = pa_to_pvh(pa);
3162	va = trunc_2mpage(va);
3163	pv = pmap_pvh_remove(pvh, pmap, va);
3164	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
3165	m = PHYS_TO_VM_PAGE(pa);
3166	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3167	m->md.pv_gen++;
3168	/* Instantiate the remaining NPTEPG - 1 pv entries. */
3169	PV_STAT(atomic_add_long(&pv_entry_allocs, NPTEPG - 1));
3170	va_last = va + NBPDR - PAGE_SIZE;
3171	for (;;) {
3172		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
3173		KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0 ||
3174		    pc->pc_map[2] != 0, ("pmap_pv_demote_pde: missing spare"));
3175		for (field = 0; field < _NPCM; field++) {
3176			while (pc->pc_map[field]) {
3177				bit = bsfq(pc->pc_map[field]);
3178				pc->pc_map[field] &= ~(1ul << bit);
3179				pv = &pc->pc_pventry[field * 64 + bit];
3180				va += PAGE_SIZE;
3181				pv->pv_va = va;
3182				m++;
3183				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3184			    ("pmap_pv_demote_pde: page %p is not managed", m));
3185				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3186				m->md.pv_gen++;
3187				if (va == va_last)
3188					goto out;
3189			}
3190		}
3191		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3192		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
3193	}
3194out:
3195	if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 && pc->pc_map[2] == 0) {
3196		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3197		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
3198	}
3199	PV_STAT(atomic_add_long(&pv_entry_count, NPTEPG - 1));
3200	PV_STAT(atomic_subtract_int(&pv_entry_spare, NPTEPG - 1));
3201}
3202
3203/*
3204 * After promotion from 512 4KB page mappings to a single 2MB page mapping,
3205 * replace the many pv entries for the 4KB page mappings by a single pv entry
3206 * for the 2MB page mapping.
3207 */
3208static void
3209pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
3210    struct rwlock **lockp)
3211{
3212	struct md_page *pvh;
3213	pv_entry_t pv;
3214	vm_offset_t va_last;
3215	vm_page_t m;
3216
3217	rw_assert(&pvh_global_lock, RA_LOCKED);
3218	KASSERT((pa & PDRMASK) == 0,
3219	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
3220	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
3221
3222	/*
3223	 * Transfer the first page's pv entry for this mapping to the 2mpage's
3224	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
3225	 * a transfer avoids the possibility that get_pv_entry() calls
3226	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
3227	 * mappings that is being promoted.
3228	 */
3229	m = PHYS_TO_VM_PAGE(pa);
3230	va = trunc_2mpage(va);
3231	pv = pmap_pvh_remove(&m->md, pmap, va);
3232	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
3233	pvh = pa_to_pvh(pa);
3234	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3235	pvh->pv_gen++;
3236	/* Free the remaining NPTEPG - 1 pv entries. */
3237	va_last = va + NBPDR - PAGE_SIZE;
3238	do {
3239		m++;
3240		va += PAGE_SIZE;
3241		pmap_pvh_free(&m->md, pmap, va);
3242	} while (va < va_last);
3243}
3244
3245/*
3246 * First find and then destroy the pv entry for the specified pmap and virtual
3247 * address.  This operation can be performed on pv lists for either 4KB or 2MB
3248 * page mappings.
3249 */
3250static void
3251pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3252{
3253	pv_entry_t pv;
3254
3255	pv = pmap_pvh_remove(pvh, pmap, va);
3256	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
3257	free_pv_entry(pmap, pv);
3258}
3259
3260/*
3261 * Conditionally create the PV entry for a 4KB page mapping if the required
3262 * memory can be allocated without resorting to reclamation.
3263 */
3264static boolean_t
3265pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
3266    struct rwlock **lockp)
3267{
3268	pv_entry_t pv;
3269
3270	rw_assert(&pvh_global_lock, RA_LOCKED);
3271	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3272	/* Pass NULL instead of the lock pointer to disable reclamation. */
3273	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
3274		pv->pv_va = va;
3275		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
3276		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3277		m->md.pv_gen++;
3278		return (TRUE);
3279	} else
3280		return (FALSE);
3281}
3282
3283/*
3284 * Conditionally create the PV entry for a 2MB page mapping if the required
3285 * memory can be allocated without resorting to reclamation.
3286 */
3287static boolean_t
3288pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
3289    struct rwlock **lockp)
3290{
3291	struct md_page *pvh;
3292	pv_entry_t pv;
3293
3294	rw_assert(&pvh_global_lock, RA_LOCKED);
3295	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3296	/* Pass NULL instead of the lock pointer to disable reclamation. */
3297	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
3298		pv->pv_va = va;
3299		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
3300		pvh = pa_to_pvh(pa);
3301		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3302		pvh->pv_gen++;
3303		return (TRUE);
3304	} else
3305		return (FALSE);
3306}
3307
3308/*
3309 * Fills a page table page with mappings to consecutive physical pages.
3310 */
3311static void
3312pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
3313{
3314	pt_entry_t *pte;
3315
3316	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
3317		*pte = newpte;
3318		newpte += PAGE_SIZE;
3319	}
3320}
3321
3322/*
3323 * Tries to demote a 2MB page mapping.  If demotion fails, the 2MB page
3324 * mapping is invalidated.
3325 */
3326static boolean_t
3327pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
3328{
3329	struct rwlock *lock;
3330	boolean_t rv;
3331
3332	lock = NULL;
3333	rv = pmap_demote_pde_locked(pmap, pde, va, &lock);
3334	if (lock != NULL)
3335		rw_wunlock(lock);
3336	return (rv);
3337}
3338
3339static boolean_t
3340pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
3341    struct rwlock **lockp)
3342{
3343	pd_entry_t newpde, oldpde;
3344	pt_entry_t *firstpte, newpte;
3345	pt_entry_t PG_A, PG_G, PG_M, PG_RW, PG_V;
3346	vm_paddr_t mptepa;
3347	vm_page_t mpte;
3348	struct spglist free;
3349	int PG_PTE_CACHE;
3350
3351	PG_G = pmap_global_bit(pmap);
3352	PG_A = pmap_accessed_bit(pmap);
3353	PG_M = pmap_modified_bit(pmap);
3354	PG_RW = pmap_rw_bit(pmap);
3355	PG_V = pmap_valid_bit(pmap);
3356	PG_PTE_CACHE = pmap_cache_mask(pmap, 0);
3357
3358	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3359	oldpde = *pde;
3360	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
3361	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
3362	if ((oldpde & PG_A) != 0 && (mpte = pmap_lookup_pt_page(pmap, va)) !=
3363	    NULL)
3364		pmap_remove_pt_page(pmap, mpte);
3365	else {
3366		KASSERT((oldpde & PG_W) == 0,
3367		    ("pmap_demote_pde: page table page for a wired mapping"
3368		    " is missing"));
3369
3370		/*
3371		 * Invalidate the 2MB page mapping and return "failure" if the
3372		 * mapping was never accessed or the allocation of the new
3373		 * page table page fails.  If the 2MB page mapping belongs to
3374		 * the direct map region of the kernel's address space, then
3375		 * the page allocation request specifies the highest possible
3376		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the priority is
3377		 * normal.  Page table pages are preallocated for every other
3378		 * part of the kernel address space, so the direct map region
3379		 * is the only part of the kernel address space that must be
3380		 * handled here.
3381		 */
3382		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
3383		    pmap_pde_pindex(va), (va >= DMAP_MIN_ADDRESS && va <
3384		    DMAP_MAX_ADDRESS ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL) |
3385		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
3386			SLIST_INIT(&free);
3387			pmap_remove_pde(pmap, pde, trunc_2mpage(va), &free,
3388			    lockp);
3389			pmap_invalidate_page(pmap, trunc_2mpage(va));
3390			pmap_free_zero_pages(&free);
3391			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#lx"
3392			    " in pmap %p", va, pmap);
3393			return (FALSE);
3394		}
3395		if (va < VM_MAXUSER_ADDRESS)
3396			pmap_resident_count_inc(pmap, 1);
3397	}
3398	mptepa = VM_PAGE_TO_PHYS(mpte);
3399	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
3400	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
3401	KASSERT((oldpde & PG_A) != 0,
3402	    ("pmap_demote_pde: oldpde is missing PG_A"));
3403	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
3404	    ("pmap_demote_pde: oldpde is missing PG_M"));
3405	newpte = oldpde & ~PG_PS;
3406	newpte = pmap_swap_pat(pmap, newpte);
3407
3408	/*
3409	 * If the page table page is new, initialize it.
3410	 */
3411	if (mpte->wire_count == 1) {
3412		mpte->wire_count = NPTEPG;
3413		pmap_fill_ptp(firstpte, newpte);
3414	}
3415	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
3416	    ("pmap_demote_pde: firstpte and newpte map different physical"
3417	    " addresses"));
3418
3419	/*
3420	 * If the mapping has changed attributes, update the page table
3421	 * entries.
3422	 */
3423	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
3424		pmap_fill_ptp(firstpte, newpte);
3425
3426	/*
3427	 * The spare PV entries must be reserved prior to demoting the
3428	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
3429	 * of the PDE and the PV lists will be inconsistent, which can result
3430	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
3431	 * wrong PV list and pmap_pv_demote_pde() failing to find the expected
3432	 * PV entry for the 2MB page mapping that is being demoted.
3433	 */
3434	if ((oldpde & PG_MANAGED) != 0)
3435		reserve_pv_entries(pmap, NPTEPG - 1, lockp);
3436
3437	/*
3438	 * Demote the mapping.  This pmap is locked.  The old PDE has
3439	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
3440	 * set.  Thus, there is no danger of a race with another
3441	 * processor changing the setting of PG_A and/or PG_M between
3442	 * the read above and the store below.
3443	 */
3444	if (workaround_erratum383)
3445		pmap_update_pde(pmap, va, pde, newpde);
3446	else
3447		pde_store(pde, newpde);
3448
3449	/*
3450	 * Invalidate a stale recursive mapping of the page table page.
3451	 */
3452	if (va >= VM_MAXUSER_ADDRESS)
3453		pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
3454
3455	/*
3456	 * Demote the PV entry.
3457	 */
3458	if ((oldpde & PG_MANAGED) != 0)
3459		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME, lockp);
3460
3461	atomic_add_long(&pmap_pde_demotions, 1);
3462	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#lx"
3463	    " in pmap %p", va, pmap);
3464	return (TRUE);
3465}
3466
3467/*
3468 * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
3469 */
3470static void
3471pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
3472{
3473	pd_entry_t newpde;
3474	vm_paddr_t mptepa;
3475	vm_page_t mpte;
3476
3477	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
3478	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3479	mpte = pmap_lookup_pt_page(pmap, va);
3480	if (mpte == NULL)
3481		panic("pmap_remove_kernel_pde: Missing pt page.");
3482
3483	pmap_remove_pt_page(pmap, mpte);
3484	mptepa = VM_PAGE_TO_PHYS(mpte);
3485	newpde = mptepa | X86_PG_M | X86_PG_A | X86_PG_RW | X86_PG_V;
3486
3487	/*
3488	 * Initialize the page table page.
3489	 */
3490	pagezero((void *)PHYS_TO_DMAP(mptepa));
3491
3492	/*
3493	 * Demote the mapping.
3494	 */
3495	if (workaround_erratum383)
3496		pmap_update_pde(pmap, va, pde, newpde);
3497	else
3498		pde_store(pde, newpde);
3499
3500	/*
3501	 * Invalidate a stale recursive mapping of the page table page.
3502	 */
3503	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
3504}
3505
3506/*
3507 * pmap_remove_pde: do the things to unmap a superpage in a process
3508 */
3509static int
3510pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
3511    struct spglist *free, struct rwlock **lockp)
3512{
3513	struct md_page *pvh;
3514	pd_entry_t oldpde;
3515	vm_offset_t eva, va;
3516	vm_page_t m, mpte;
3517	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
3518
3519	PG_G = pmap_global_bit(pmap);
3520	PG_A = pmap_accessed_bit(pmap);
3521	PG_M = pmap_modified_bit(pmap);
3522	PG_RW = pmap_rw_bit(pmap);
3523
3524	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3525	KASSERT((sva & PDRMASK) == 0,
3526	    ("pmap_remove_pde: sva is not 2mpage aligned"));
3527	oldpde = pte_load_clear(pdq);
3528	if (oldpde & PG_W)
3529		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
3530
3531	/*
3532	 * Machines that don't support invlpg, also don't support
3533	 * PG_G.
3534	 */
3535	if (oldpde & PG_G)
3536		pmap_invalidate_page(kernel_pmap, sva);
3537	pmap_resident_count_dec(pmap, NBPDR / PAGE_SIZE);
3538	if (oldpde & PG_MANAGED) {
3539		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
3540		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
3541		pmap_pvh_free(pvh, pmap, sva);
3542		eva = sva + NBPDR;
3543		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
3544		    va < eva; va += PAGE_SIZE, m++) {
3545			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
3546				vm_page_dirty(m);
3547			if (oldpde & PG_A)
3548				vm_page_aflag_set(m, PGA_REFERENCED);
3549			if (TAILQ_EMPTY(&m->md.pv_list) &&
3550			    TAILQ_EMPTY(&pvh->pv_list))
3551				vm_page_aflag_clear(m, PGA_WRITEABLE);
3552		}
3553	}
3554	if (pmap == kernel_pmap) {
3555		pmap_remove_kernel_pde(pmap, pdq, sva);
3556	} else {
3557		mpte = pmap_lookup_pt_page(pmap, sva);
3558		if (mpte != NULL) {
3559			pmap_remove_pt_page(pmap, mpte);
3560			pmap_resident_count_dec(pmap, 1);
3561			KASSERT(mpte->wire_count == NPTEPG,
3562			    ("pmap_remove_pde: pte page wire count error"));
3563			mpte->wire_count = 0;
3564			pmap_add_delayed_free_list(mpte, free, FALSE);
3565			atomic_subtract_int(&cnt.v_wire_count, 1);
3566		}
3567	}
3568	return (pmap_unuse_pt(pmap, sva, *pmap_pdpe(pmap, sva), free));
3569}
3570
3571/*
3572 * pmap_remove_pte: do the things to unmap a page in a process
3573 */
3574static int
3575pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
3576    pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
3577{
3578	struct md_page *pvh;
3579	pt_entry_t oldpte, PG_A, PG_M, PG_RW;
3580	vm_page_t m;
3581
3582	PG_A = pmap_accessed_bit(pmap);
3583	PG_M = pmap_modified_bit(pmap);
3584	PG_RW = pmap_rw_bit(pmap);
3585
3586	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3587	oldpte = pte_load_clear(ptq);
3588	if (oldpte & PG_W)
3589		pmap->pm_stats.wired_count -= 1;
3590	pmap_resident_count_dec(pmap, 1);
3591	if (oldpte & PG_MANAGED) {
3592		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
3593		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3594			vm_page_dirty(m);
3595		if (oldpte & PG_A)
3596			vm_page_aflag_set(m, PGA_REFERENCED);
3597		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
3598		pmap_pvh_free(&m->md, pmap, va);
3599		if (TAILQ_EMPTY(&m->md.pv_list) &&
3600		    (m->flags & PG_FICTITIOUS) == 0) {
3601			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3602			if (TAILQ_EMPTY(&pvh->pv_list))
3603				vm_page_aflag_clear(m, PGA_WRITEABLE);
3604		}
3605	}
3606	return (pmap_unuse_pt(pmap, va, ptepde, free));
3607}
3608
3609/*
3610 * Remove a single page from a process address space
3611 */
3612static void
3613pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
3614    struct spglist *free)
3615{
3616	struct rwlock *lock;
3617	pt_entry_t *pte, PG_V;
3618
3619	PG_V = pmap_valid_bit(pmap);
3620	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3621	if ((*pde & PG_V) == 0)
3622		return;
3623	pte = pmap_pde_to_pte(pde, va);
3624	if ((*pte & PG_V) == 0)
3625		return;
3626	lock = NULL;
3627	pmap_remove_pte(pmap, pte, va, *pde, free, &lock);
3628	if (lock != NULL)
3629		rw_wunlock(lock);
3630	pmap_invalidate_page(pmap, va);
3631}
3632
3633/*
3634 *	Remove the given range of addresses from the specified map.
3635 *
3636 *	It is assumed that the start and end are properly
3637 *	rounded to the page size.
3638 */
3639void
3640pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3641{
3642	struct rwlock *lock;
3643	vm_offset_t va, va_next;
3644	pml4_entry_t *pml4e;
3645	pdp_entry_t *pdpe;
3646	pd_entry_t ptpaddr, *pde;
3647	pt_entry_t *pte, PG_G, PG_V;
3648	struct spglist free;
3649	int anyvalid;
3650
3651	PG_G = pmap_global_bit(pmap);
3652	PG_V = pmap_valid_bit(pmap);
3653
3654	/*
3655	 * Perform an unsynchronized read.  This is, however, safe.
3656	 */
3657	if (pmap->pm_stats.resident_count == 0)
3658		return;
3659
3660	anyvalid = 0;
3661	SLIST_INIT(&free);
3662
3663	rw_rlock(&pvh_global_lock);
3664	PMAP_LOCK(pmap);
3665
3666	/*
3667	 * special handling of removing one page.  a very
3668	 * common operation and easy to short circuit some
3669	 * code.
3670	 */
3671	if (sva + PAGE_SIZE == eva) {
3672		pde = pmap_pde(pmap, sva);
3673		if (pde && (*pde & PG_PS) == 0) {
3674			pmap_remove_page(pmap, sva, pde, &free);
3675			goto out;
3676		}
3677	}
3678
3679	lock = NULL;
3680	for (; sva < eva; sva = va_next) {
3681
3682		if (pmap->pm_stats.resident_count == 0)
3683			break;
3684
3685		pml4e = pmap_pml4e(pmap, sva);
3686		if ((*pml4e & PG_V) == 0) {
3687			va_next = (sva + NBPML4) & ~PML4MASK;
3688			if (va_next < sva)
3689				va_next = eva;
3690			continue;
3691		}
3692
3693		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
3694		if ((*pdpe & PG_V) == 0) {
3695			va_next = (sva + NBPDP) & ~PDPMASK;
3696			if (va_next < sva)
3697				va_next = eva;
3698			continue;
3699		}
3700
3701		/*
3702		 * Calculate index for next page table.
3703		 */
3704		va_next = (sva + NBPDR) & ~PDRMASK;
3705		if (va_next < sva)
3706			va_next = eva;
3707
3708		pde = pmap_pdpe_to_pde(pdpe, sva);
3709		ptpaddr = *pde;
3710
3711		/*
3712		 * Weed out invalid mappings.
3713		 */
3714		if (ptpaddr == 0)
3715			continue;
3716
3717		/*
3718		 * Check for large page.
3719		 */
3720		if ((ptpaddr & PG_PS) != 0) {
3721			/*
3722			 * Are we removing the entire large page?  If not,
3723			 * demote the mapping and fall through.
3724			 */
3725			if (sva + NBPDR == va_next && eva >= va_next) {
3726				/*
3727				 * The TLB entry for a PG_G mapping is
3728				 * invalidated by pmap_remove_pde().
3729				 */
3730				if ((ptpaddr & PG_G) == 0)
3731					anyvalid = 1;
3732				pmap_remove_pde(pmap, pde, sva, &free, &lock);
3733				continue;
3734			} else if (!pmap_demote_pde_locked(pmap, pde, sva,
3735			    &lock)) {
3736				/* The large page mapping was destroyed. */
3737				continue;
3738			} else
3739				ptpaddr = *pde;
3740		}
3741
3742		/*
3743		 * Limit our scan to either the end of the va represented
3744		 * by the current page table page, or to the end of the
3745		 * range being removed.
3746		 */
3747		if (va_next > eva)
3748			va_next = eva;
3749
3750		va = va_next;
3751		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
3752		    sva += PAGE_SIZE) {
3753			if (*pte == 0) {
3754				if (va != va_next) {
3755					pmap_invalidate_range(pmap, va, sva);
3756					va = va_next;
3757				}
3758				continue;
3759			}
3760			if ((*pte & PG_G) == 0)
3761				anyvalid = 1;
3762			else if (va == va_next)
3763				va = sva;
3764			if (pmap_remove_pte(pmap, pte, sva, ptpaddr, &free,
3765			    &lock)) {
3766				sva += PAGE_SIZE;
3767				break;
3768			}
3769		}
3770		if (va != va_next)
3771			pmap_invalidate_range(pmap, va, sva);
3772	}
3773	if (lock != NULL)
3774		rw_wunlock(lock);
3775out:
3776	if (anyvalid)
3777		pmap_invalidate_all(pmap);
3778	rw_runlock(&pvh_global_lock);
3779	PMAP_UNLOCK(pmap);
3780	pmap_free_zero_pages(&free);
3781}
3782
3783/*
3784 *	Routine:	pmap_remove_all
3785 *	Function:
3786 *		Removes this physical page from
3787 *		all physical maps in which it resides.
3788 *		Reflects back modify bits to the pager.
3789 *
3790 *	Notes:
3791 *		Original versions of this routine were very
3792 *		inefficient because they iteratively called
3793 *		pmap_remove (slow...)
3794 */
3795
3796void
3797pmap_remove_all(vm_page_t m)
3798{
3799	struct md_page *pvh;
3800	pv_entry_t pv;
3801	pmap_t pmap;
3802	pt_entry_t *pte, tpte, PG_A, PG_M, PG_RW;
3803	pd_entry_t *pde;
3804	vm_offset_t va;
3805	struct spglist free;
3806
3807	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3808	    ("pmap_remove_all: page %p is not managed", m));
3809	SLIST_INIT(&free);
3810	rw_wlock(&pvh_global_lock);
3811	if ((m->flags & PG_FICTITIOUS) != 0)
3812		goto small_mappings;
3813	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3814	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
3815		pmap = PV_PMAP(pv);
3816		PMAP_LOCK(pmap);
3817		va = pv->pv_va;
3818		pde = pmap_pde(pmap, va);
3819		(void)pmap_demote_pde(pmap, pde, va);
3820		PMAP_UNLOCK(pmap);
3821	}
3822small_mappings:
3823	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3824		pmap = PV_PMAP(pv);
3825		PMAP_LOCK(pmap);
3826		PG_A = pmap_accessed_bit(pmap);
3827		PG_M = pmap_modified_bit(pmap);
3828		PG_RW = pmap_rw_bit(pmap);
3829		pmap_resident_count_dec(pmap, 1);
3830		pde = pmap_pde(pmap, pv->pv_va);
3831		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
3832		    " a 2mpage in page %p's pv list", m));
3833		pte = pmap_pde_to_pte(pde, pv->pv_va);
3834		tpte = pte_load_clear(pte);
3835		if (tpte & PG_W)
3836			pmap->pm_stats.wired_count--;
3837		if (tpte & PG_A)
3838			vm_page_aflag_set(m, PGA_REFERENCED);
3839
3840		/*
3841		 * Update the vm_page_t clean and reference bits.
3842		 */
3843		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3844			vm_page_dirty(m);
3845		pmap_unuse_pt(pmap, pv->pv_va, *pde, &free);
3846		pmap_invalidate_page(pmap, pv->pv_va);
3847		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3848		m->md.pv_gen++;
3849		free_pv_entry(pmap, pv);
3850		PMAP_UNLOCK(pmap);
3851	}
3852	vm_page_aflag_clear(m, PGA_WRITEABLE);
3853	rw_wunlock(&pvh_global_lock);
3854	pmap_free_zero_pages(&free);
3855}
3856
3857/*
3858 * pmap_protect_pde: do the things to protect a 2mpage in a process
3859 */
3860static boolean_t
3861pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
3862{
3863	pd_entry_t newpde, oldpde;
3864	vm_offset_t eva, va;
3865	vm_page_t m;
3866	boolean_t anychanged;
3867	pt_entry_t PG_G, PG_M, PG_RW;
3868
3869	PG_G = pmap_global_bit(pmap);
3870	PG_M = pmap_modified_bit(pmap);
3871	PG_RW = pmap_rw_bit(pmap);
3872
3873	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3874	KASSERT((sva & PDRMASK) == 0,
3875	    ("pmap_protect_pde: sva is not 2mpage aligned"));
3876	anychanged = FALSE;
3877retry:
3878	oldpde = newpde = *pde;
3879	if (oldpde & PG_MANAGED) {
3880		eva = sva + NBPDR;
3881		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
3882		    va < eva; va += PAGE_SIZE, m++)
3883			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
3884				vm_page_dirty(m);
3885	}
3886	if ((prot & VM_PROT_WRITE) == 0)
3887		newpde &= ~(PG_RW | PG_M);
3888	if ((prot & VM_PROT_EXECUTE) == 0)
3889		newpde |= pg_nx;
3890	if (newpde != oldpde) {
3891		if (!atomic_cmpset_long(pde, oldpde, newpde))
3892			goto retry;
3893		if (oldpde & PG_G)
3894			pmap_invalidate_page(pmap, sva);
3895		else
3896			anychanged = TRUE;
3897	}
3898	return (anychanged);
3899}
3900
3901/*
3902 *	Set the physical protection on the
3903 *	specified range of this map as requested.
3904 */
3905void
3906pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
3907{
3908	vm_offset_t va_next;
3909	pml4_entry_t *pml4e;
3910	pdp_entry_t *pdpe;
3911	pd_entry_t ptpaddr, *pde;
3912	pt_entry_t *pte, PG_G, PG_M, PG_RW, PG_V;
3913	boolean_t anychanged, pv_lists_locked;
3914
3915	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
3916	if (prot == VM_PROT_NONE) {
3917		pmap_remove(pmap, sva, eva);
3918		return;
3919	}
3920
3921	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
3922	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
3923		return;
3924
3925	PG_G = pmap_global_bit(pmap);
3926	PG_M = pmap_modified_bit(pmap);
3927	PG_V = pmap_valid_bit(pmap);
3928	PG_RW = pmap_rw_bit(pmap);
3929	pv_lists_locked = FALSE;
3930resume:
3931	anychanged = FALSE;
3932
3933	PMAP_LOCK(pmap);
3934	for (; sva < eva; sva = va_next) {
3935
3936		pml4e = pmap_pml4e(pmap, sva);
3937		if ((*pml4e & PG_V) == 0) {
3938			va_next = (sva + NBPML4) & ~PML4MASK;
3939			if (va_next < sva)
3940				va_next = eva;
3941			continue;
3942		}
3943
3944		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
3945		if ((*pdpe & PG_V) == 0) {
3946			va_next = (sva + NBPDP) & ~PDPMASK;
3947			if (va_next < sva)
3948				va_next = eva;
3949			continue;
3950		}
3951
3952		va_next = (sva + NBPDR) & ~PDRMASK;
3953		if (va_next < sva)
3954			va_next = eva;
3955
3956		pde = pmap_pdpe_to_pde(pdpe, sva);
3957		ptpaddr = *pde;
3958
3959		/*
3960		 * Weed out invalid mappings.
3961		 */
3962		if (ptpaddr == 0)
3963			continue;
3964
3965		/*
3966		 * Check for large page.
3967		 */
3968		if ((ptpaddr & PG_PS) != 0) {
3969			/*
3970			 * Are we protecting the entire large page?  If not,
3971			 * demote the mapping and fall through.
3972			 */
3973			if (sva + NBPDR == va_next && eva >= va_next) {
3974				/*
3975				 * The TLB entry for a PG_G mapping is
3976				 * invalidated by pmap_protect_pde().
3977				 */
3978				if (pmap_protect_pde(pmap, pde, sva, prot))
3979					anychanged = TRUE;
3980				continue;
3981			} else {
3982				if (!pv_lists_locked) {
3983					pv_lists_locked = TRUE;
3984					if (!rw_try_rlock(&pvh_global_lock)) {
3985						if (anychanged)
3986							pmap_invalidate_all(
3987							    pmap);
3988						PMAP_UNLOCK(pmap);
3989						rw_rlock(&pvh_global_lock);
3990						goto resume;
3991					}
3992				}
3993				if (!pmap_demote_pde(pmap, pde, sva)) {
3994					/*
3995					 * The large page mapping was
3996					 * destroyed.
3997					 */
3998					continue;
3999				}
4000			}
4001		}
4002
4003		if (va_next > eva)
4004			va_next = eva;
4005
4006		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
4007		    sva += PAGE_SIZE) {
4008			pt_entry_t obits, pbits;
4009			vm_page_t m;
4010
4011retry:
4012			obits = pbits = *pte;
4013			if ((pbits & PG_V) == 0)
4014				continue;
4015
4016			if ((prot & VM_PROT_WRITE) == 0) {
4017				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
4018				    (PG_MANAGED | PG_M | PG_RW)) {
4019					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4020					vm_page_dirty(m);
4021				}
4022				pbits &= ~(PG_RW | PG_M);
4023			}
4024			if ((prot & VM_PROT_EXECUTE) == 0)
4025				pbits |= pg_nx;
4026
4027			if (pbits != obits) {
4028				if (!atomic_cmpset_long(pte, obits, pbits))
4029					goto retry;
4030				if (obits & PG_G)
4031					pmap_invalidate_page(pmap, sva);
4032				else
4033					anychanged = TRUE;
4034			}
4035		}
4036	}
4037	if (anychanged)
4038		pmap_invalidate_all(pmap);
4039	if (pv_lists_locked)
4040		rw_runlock(&pvh_global_lock);
4041	PMAP_UNLOCK(pmap);
4042}
4043
4044/*
4045 * Tries to promote the 512, contiguous 4KB page mappings that are within a
4046 * single page table page (PTP) to a single 2MB page mapping.  For promotion
4047 * to occur, two conditions must be met: (1) the 4KB page mappings must map
4048 * aligned, contiguous physical memory and (2) the 4KB page mappings must have
4049 * identical characteristics.
4050 */
4051static void
4052pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
4053    struct rwlock **lockp)
4054{
4055	pd_entry_t newpde;
4056	pt_entry_t *firstpte, oldpte, pa, *pte;
4057	pt_entry_t PG_G, PG_A, PG_M, PG_RW, PG_V;
4058	vm_page_t mpte;
4059	int PG_PTE_CACHE;
4060
4061	PG_A = pmap_accessed_bit(pmap);
4062	PG_G = pmap_global_bit(pmap);
4063	PG_M = pmap_modified_bit(pmap);
4064	PG_V = pmap_valid_bit(pmap);
4065	PG_RW = pmap_rw_bit(pmap);
4066	PG_PTE_CACHE = pmap_cache_mask(pmap, 0);
4067
4068	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4069
4070	/*
4071	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
4072	 * either invalid, unused, or does not map the first 4KB physical page
4073	 * within a 2MB page.
4074	 */
4075	firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
4076setpde:
4077	newpde = *firstpte;
4078	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
4079		atomic_add_long(&pmap_pde_p_failures, 1);
4080		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
4081		    " in pmap %p", va, pmap);
4082		return;
4083	}
4084	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
4085		/*
4086		 * When PG_M is already clear, PG_RW can be cleared without
4087		 * a TLB invalidation.
4088		 */
4089		if (!atomic_cmpset_long(firstpte, newpde, newpde & ~PG_RW))
4090			goto setpde;
4091		newpde &= ~PG_RW;
4092	}
4093
4094	/*
4095	 * Examine each of the other PTEs in the specified PTP.  Abort if this
4096	 * PTE maps an unexpected 4KB physical page or does not have identical
4097	 * characteristics to the first PTE.
4098	 */
4099	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
4100	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
4101setpte:
4102		oldpte = *pte;
4103		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
4104			atomic_add_long(&pmap_pde_p_failures, 1);
4105			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
4106			    " in pmap %p", va, pmap);
4107			return;
4108		}
4109		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
4110			/*
4111			 * When PG_M is already clear, PG_RW can be cleared
4112			 * without a TLB invalidation.
4113			 */
4114			if (!atomic_cmpset_long(pte, oldpte, oldpte & ~PG_RW))
4115				goto setpte;
4116			oldpte &= ~PG_RW;
4117			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
4118			    " in pmap %p", (oldpte & PG_FRAME & PDRMASK) |
4119			    (va & ~PDRMASK), pmap);
4120		}
4121		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
4122			atomic_add_long(&pmap_pde_p_failures, 1);
4123			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
4124			    " in pmap %p", va, pmap);
4125			return;
4126		}
4127		pa -= PAGE_SIZE;
4128	}
4129
4130	/*
4131	 * Save the page table page in its current state until the PDE
4132	 * mapping the superpage is demoted by pmap_demote_pde() or
4133	 * destroyed by pmap_remove_pde().
4134	 */
4135	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
4136	KASSERT(mpte >= vm_page_array &&
4137	    mpte < &vm_page_array[vm_page_array_size],
4138	    ("pmap_promote_pde: page table page is out of range"));
4139	KASSERT(mpte->pindex == pmap_pde_pindex(va),
4140	    ("pmap_promote_pde: page table page's pindex is wrong"));
4141	if (pmap_insert_pt_page(pmap, mpte)) {
4142		atomic_add_long(&pmap_pde_p_failures, 1);
4143		CTR2(KTR_PMAP,
4144		    "pmap_promote_pde: failure for va %#lx in pmap %p", va,
4145		    pmap);
4146		return;
4147	}
4148
4149	/*
4150	 * Promote the pv entries.
4151	 */
4152	if ((newpde & PG_MANAGED) != 0)
4153		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME, lockp);
4154
4155	/*
4156	 * Propagate the PAT index to its proper position.
4157	 */
4158	newpde = pmap_swap_pat(pmap, newpde);
4159
4160	/*
4161	 * Map the superpage.
4162	 */
4163	if (workaround_erratum383)
4164		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
4165	else
4166		pde_store(pde, PG_PS | newpde);
4167
4168	atomic_add_long(&pmap_pde_promotions, 1);
4169	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#lx"
4170	    " in pmap %p", va, pmap);
4171}
4172
4173/*
4174 *	Insert the given physical page (p) at
4175 *	the specified virtual address (v) in the
4176 *	target physical map with the protection requested.
4177 *
4178 *	If specified, the page will be wired down, meaning
4179 *	that the related pte can not be reclaimed.
4180 *
4181 *	NB:  This is the only routine which MAY NOT lazy-evaluate
4182 *	or lose information.  That is, this routine must actually
4183 *	insert this page into the given map NOW.
4184 */
4185int
4186pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
4187    u_int flags, int8_t psind __unused)
4188{
4189	struct rwlock *lock;
4190	pd_entry_t *pde;
4191	pt_entry_t *pte, PG_G, PG_A, PG_M, PG_RW, PG_V;
4192	pt_entry_t newpte, origpte;
4193	pv_entry_t pv;
4194	vm_paddr_t opa, pa;
4195	vm_page_t mpte, om;
4196	boolean_t nosleep;
4197
4198	PG_A = pmap_accessed_bit(pmap);
4199	PG_G = pmap_global_bit(pmap);
4200	PG_M = pmap_modified_bit(pmap);
4201	PG_V = pmap_valid_bit(pmap);
4202	PG_RW = pmap_rw_bit(pmap);
4203
4204	va = trunc_page(va);
4205	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
4206	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
4207	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)",
4208	    va));
4209	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva ||
4210	    va >= kmi.clean_eva,
4211	    ("pmap_enter: managed mapping within the clean submap"));
4212	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
4213		VM_OBJECT_ASSERT_LOCKED(m->object);
4214	pa = VM_PAGE_TO_PHYS(m);
4215	newpte = (pt_entry_t)(pa | PG_A | PG_V);
4216	if ((flags & VM_PROT_WRITE) != 0)
4217		newpte |= PG_M;
4218	if ((prot & VM_PROT_WRITE) != 0)
4219		newpte |= PG_RW;
4220	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
4221	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
4222	if ((prot & VM_PROT_EXECUTE) == 0)
4223		newpte |= pg_nx;
4224	if ((flags & PMAP_ENTER_WIRED) != 0)
4225		newpte |= PG_W;
4226	if (va < VM_MAXUSER_ADDRESS)
4227		newpte |= PG_U;
4228	if (pmap == kernel_pmap)
4229		newpte |= PG_G;
4230	newpte |= pmap_cache_bits(pmap, m->md.pat_mode, 0);
4231
4232	/*
4233	 * Set modified bit gratuitously for writeable mappings if
4234	 * the page is unmanaged. We do not want to take a fault
4235	 * to do the dirty bit accounting for these mappings.
4236	 */
4237	if ((m->oflags & VPO_UNMANAGED) != 0) {
4238		if ((newpte & PG_RW) != 0)
4239			newpte |= PG_M;
4240	}
4241
4242	mpte = NULL;
4243
4244	lock = NULL;
4245	rw_rlock(&pvh_global_lock);
4246	PMAP_LOCK(pmap);
4247
4248	/*
4249	 * In the case that a page table page is not
4250	 * resident, we are creating it here.
4251	 */
4252retry:
4253	pde = pmap_pde(pmap, va);
4254	if (pde != NULL && (*pde & PG_V) != 0 && ((*pde & PG_PS) == 0 ||
4255	    pmap_demote_pde_locked(pmap, pde, va, &lock))) {
4256		pte = pmap_pde_to_pte(pde, va);
4257		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
4258			mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
4259			mpte->wire_count++;
4260		}
4261	} else if (va < VM_MAXUSER_ADDRESS) {
4262		/*
4263		 * Here if the pte page isn't mapped, or if it has been
4264		 * deallocated.
4265		 */
4266		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
4267		mpte = _pmap_allocpte(pmap, pmap_pde_pindex(va),
4268		    nosleep ? NULL : &lock);
4269		if (mpte == NULL && nosleep) {
4270			if (lock != NULL)
4271				rw_wunlock(lock);
4272			rw_runlock(&pvh_global_lock);
4273			PMAP_UNLOCK(pmap);
4274			return (KERN_RESOURCE_SHORTAGE);
4275		}
4276		goto retry;
4277	} else
4278		panic("pmap_enter: invalid page directory va=%#lx", va);
4279
4280	origpte = *pte;
4281
4282	/*
4283	 * Is the specified virtual address already mapped?
4284	 */
4285	if ((origpte & PG_V) != 0) {
4286		/*
4287		 * Wiring change, just update stats. We don't worry about
4288		 * wiring PT pages as they remain resident as long as there
4289		 * are valid mappings in them. Hence, if a user page is wired,
4290		 * the PT page will be also.
4291		 */
4292		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
4293			pmap->pm_stats.wired_count++;
4294		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
4295			pmap->pm_stats.wired_count--;
4296
4297		/*
4298		 * Remove the extra PT page reference.
4299		 */
4300		if (mpte != NULL) {
4301			mpte->wire_count--;
4302			KASSERT(mpte->wire_count > 0,
4303			    ("pmap_enter: missing reference to page table page,"
4304			     " va: 0x%lx", va));
4305		}
4306
4307		/*
4308		 * Has the physical page changed?
4309		 */
4310		opa = origpte & PG_FRAME;
4311		if (opa == pa) {
4312			/*
4313			 * No, might be a protection or wiring change.
4314			 */
4315			if ((origpte & PG_MANAGED) != 0) {
4316				newpte |= PG_MANAGED;
4317				if ((newpte & PG_RW) != 0)
4318					vm_page_aflag_set(m, PGA_WRITEABLE);
4319			}
4320			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
4321				goto unchanged;
4322			goto validate;
4323		}
4324	} else {
4325		/*
4326		 * Increment the counters.
4327		 */
4328		if ((newpte & PG_W) != 0)
4329			pmap->pm_stats.wired_count++;
4330		pmap_resident_count_inc(pmap, 1);
4331	}
4332
4333	/*
4334	 * Enter on the PV list if part of our managed memory.
4335	 */
4336	if ((m->oflags & VPO_UNMANAGED) == 0) {
4337		newpte |= PG_MANAGED;
4338		pv = get_pv_entry(pmap, &lock);
4339		pv->pv_va = va;
4340		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
4341		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
4342		m->md.pv_gen++;
4343		if ((newpte & PG_RW) != 0)
4344			vm_page_aflag_set(m, PGA_WRITEABLE);
4345	}
4346
4347	/*
4348	 * Update the PTE.
4349	 */
4350	if ((origpte & PG_V) != 0) {
4351validate:
4352		origpte = pte_load_store(pte, newpte);
4353		opa = origpte & PG_FRAME;
4354		if (opa != pa) {
4355			if ((origpte & PG_MANAGED) != 0) {
4356				om = PHYS_TO_VM_PAGE(opa);
4357				if ((origpte & (PG_M | PG_RW)) == (PG_M |
4358				    PG_RW))
4359					vm_page_dirty(om);
4360				if ((origpte & PG_A) != 0)
4361					vm_page_aflag_set(om, PGA_REFERENCED);
4362				CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
4363				pmap_pvh_free(&om->md, pmap, va);
4364				if ((om->aflags & PGA_WRITEABLE) != 0 &&
4365				    TAILQ_EMPTY(&om->md.pv_list) &&
4366				    ((om->flags & PG_FICTITIOUS) != 0 ||
4367				    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
4368					vm_page_aflag_clear(om, PGA_WRITEABLE);
4369			}
4370		} else if ((newpte & PG_M) == 0 && (origpte & (PG_M |
4371		    PG_RW)) == (PG_M | PG_RW)) {
4372			if ((origpte & PG_MANAGED) != 0)
4373				vm_page_dirty(m);
4374
4375			/*
4376			 * Although the PTE may still have PG_RW set, TLB
4377			 * invalidation may nonetheless be required because
4378			 * the PTE no longer has PG_M set.
4379			 */
4380		} else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
4381			/*
4382			 * This PTE change does not require TLB invalidation.
4383			 */
4384			goto unchanged;
4385		}
4386		if ((origpte & PG_A) != 0)
4387			pmap_invalidate_page(pmap, va);
4388	} else
4389		pte_store(pte, newpte);
4390
4391unchanged:
4392
4393	/*
4394	 * If both the page table page and the reservation are fully
4395	 * populated, then attempt promotion.
4396	 */
4397	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
4398	    pmap_ps_enabled(pmap) &&
4399	    (m->flags & PG_FICTITIOUS) == 0 &&
4400	    vm_reserv_level_iffullpop(m) == 0)
4401		pmap_promote_pde(pmap, pde, va, &lock);
4402
4403	if (lock != NULL)
4404		rw_wunlock(lock);
4405	rw_runlock(&pvh_global_lock);
4406	PMAP_UNLOCK(pmap);
4407	return (KERN_SUCCESS);
4408}
4409
4410/*
4411 * Tries to create a 2MB page mapping.  Returns TRUE if successful and FALSE
4412 * otherwise.  Fails if (1) a page table page cannot be allocated without
4413 * blocking, (2) a mapping already exists at the specified virtual address, or
4414 * (3) a pv entry cannot be allocated without reclaiming another pv entry.
4415 */
4416static boolean_t
4417pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
4418    struct rwlock **lockp)
4419{
4420	pd_entry_t *pde, newpde;
4421	pt_entry_t PG_V;
4422	vm_page_t mpde;
4423	struct spglist free;
4424
4425	PG_V = pmap_valid_bit(pmap);
4426	rw_assert(&pvh_global_lock, RA_LOCKED);
4427	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4428
4429	if ((mpde = pmap_allocpde(pmap, va, NULL)) == NULL) {
4430		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
4431		    " in pmap %p", va, pmap);
4432		return (FALSE);
4433	}
4434	pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpde));
4435	pde = &pde[pmap_pde_index(va)];
4436	if ((*pde & PG_V) != 0) {
4437		KASSERT(mpde->wire_count > 1,
4438		    ("pmap_enter_pde: mpde's wire count is too low"));
4439		mpde->wire_count--;
4440		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
4441		    " in pmap %p", va, pmap);
4442		return (FALSE);
4443	}
4444	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(pmap, m->md.pat_mode, 1) |
4445	    PG_PS | PG_V;
4446	if ((m->oflags & VPO_UNMANAGED) == 0) {
4447		newpde |= PG_MANAGED;
4448
4449		/*
4450		 * Abort this mapping if its PV entry could not be created.
4451		 */
4452		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m),
4453		    lockp)) {
4454			SLIST_INIT(&free);
4455			if (pmap_unwire_ptp(pmap, va, mpde, &free)) {
4456				pmap_invalidate_page(pmap, va);
4457				pmap_free_zero_pages(&free);
4458			}
4459			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
4460			    " in pmap %p", va, pmap);
4461			return (FALSE);
4462		}
4463	}
4464	if ((prot & VM_PROT_EXECUTE) == 0)
4465		newpde |= pg_nx;
4466	if (va < VM_MAXUSER_ADDRESS)
4467		newpde |= PG_U;
4468
4469	/*
4470	 * Increment counters.
4471	 */
4472	pmap_resident_count_inc(pmap, NBPDR / PAGE_SIZE);
4473
4474	/*
4475	 * Map the superpage.
4476	 */
4477	pde_store(pde, newpde);
4478
4479	atomic_add_long(&pmap_pde_mappings, 1);
4480	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
4481	    " in pmap %p", va, pmap);
4482	return (TRUE);
4483}
4484
4485/*
4486 * Maps a sequence of resident pages belonging to the same object.
4487 * The sequence begins with the given page m_start.  This page is
4488 * mapped at the given virtual address start.  Each subsequent page is
4489 * mapped at a virtual address that is offset from start by the same
4490 * amount as the page is offset from m_start within the object.  The
4491 * last page in the sequence is the page with the largest offset from
4492 * m_start that can be mapped at a virtual address less than the given
4493 * virtual address end.  Not every virtual page between start and end
4494 * is mapped; only those for which a resident page exists with the
4495 * corresponding offset from m_start are mapped.
4496 */
4497void
4498pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
4499    vm_page_t m_start, vm_prot_t prot)
4500{
4501	struct rwlock *lock;
4502	vm_offset_t va;
4503	vm_page_t m, mpte;
4504	vm_pindex_t diff, psize;
4505
4506	VM_OBJECT_ASSERT_LOCKED(m_start->object);
4507
4508	psize = atop(end - start);
4509	mpte = NULL;
4510	m = m_start;
4511	lock = NULL;
4512	rw_rlock(&pvh_global_lock);
4513	PMAP_LOCK(pmap);
4514	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
4515		va = start + ptoa(diff);
4516		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
4517		    m->psind == 1 && pmap_ps_enabled(pmap) &&
4518		    pmap_enter_pde(pmap, va, m, prot, &lock))
4519			m = &m[NBPDR / PAGE_SIZE - 1];
4520		else
4521			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
4522			    mpte, &lock);
4523		m = TAILQ_NEXT(m, listq);
4524	}
4525	if (lock != NULL)
4526		rw_wunlock(lock);
4527	rw_runlock(&pvh_global_lock);
4528	PMAP_UNLOCK(pmap);
4529}
4530
4531/*
4532 * this code makes some *MAJOR* assumptions:
4533 * 1. Current pmap & pmap exists.
4534 * 2. Not wired.
4535 * 3. Read access.
4536 * 4. No page table pages.
4537 * but is *MUCH* faster than pmap_enter...
4538 */
4539
4540void
4541pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
4542{
4543	struct rwlock *lock;
4544
4545	lock = NULL;
4546	rw_rlock(&pvh_global_lock);
4547	PMAP_LOCK(pmap);
4548	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
4549	if (lock != NULL)
4550		rw_wunlock(lock);
4551	rw_runlock(&pvh_global_lock);
4552	PMAP_UNLOCK(pmap);
4553}
4554
4555static vm_page_t
4556pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
4557    vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
4558{
4559	struct spglist free;
4560	pt_entry_t *pte, PG_V;
4561	vm_paddr_t pa;
4562
4563	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
4564	    (m->oflags & VPO_UNMANAGED) != 0,
4565	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
4566	PG_V = pmap_valid_bit(pmap);
4567	rw_assert(&pvh_global_lock, RA_LOCKED);
4568	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4569
4570	/*
4571	 * In the case that a page table page is not
4572	 * resident, we are creating it here.
4573	 */
4574	if (va < VM_MAXUSER_ADDRESS) {
4575		vm_pindex_t ptepindex;
4576		pd_entry_t *ptepa;
4577
4578		/*
4579		 * Calculate pagetable page index
4580		 */
4581		ptepindex = pmap_pde_pindex(va);
4582		if (mpte && (mpte->pindex == ptepindex)) {
4583			mpte->wire_count++;
4584		} else {
4585			/*
4586			 * Get the page directory entry
4587			 */
4588			ptepa = pmap_pde(pmap, va);
4589
4590			/*
4591			 * If the page table page is mapped, we just increment
4592			 * the hold count, and activate it.  Otherwise, we
4593			 * attempt to allocate a page table page.  If this
4594			 * attempt fails, we don't retry.  Instead, we give up.
4595			 */
4596			if (ptepa && (*ptepa & PG_V) != 0) {
4597				if (*ptepa & PG_PS)
4598					return (NULL);
4599				mpte = PHYS_TO_VM_PAGE(*ptepa & PG_FRAME);
4600				mpte->wire_count++;
4601			} else {
4602				/*
4603				 * Pass NULL instead of the PV list lock
4604				 * pointer, because we don't intend to sleep.
4605				 */
4606				mpte = _pmap_allocpte(pmap, ptepindex, NULL);
4607				if (mpte == NULL)
4608					return (mpte);
4609			}
4610		}
4611		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
4612		pte = &pte[pmap_pte_index(va)];
4613	} else {
4614		mpte = NULL;
4615		pte = vtopte(va);
4616	}
4617	if (*pte) {
4618		if (mpte != NULL) {
4619			mpte->wire_count--;
4620			mpte = NULL;
4621		}
4622		return (mpte);
4623	}
4624
4625	/*
4626	 * Enter on the PV list if part of our managed memory.
4627	 */
4628	if ((m->oflags & VPO_UNMANAGED) == 0 &&
4629	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
4630		if (mpte != NULL) {
4631			SLIST_INIT(&free);
4632			if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
4633				pmap_invalidate_page(pmap, va);
4634				pmap_free_zero_pages(&free);
4635			}
4636			mpte = NULL;
4637		}
4638		return (mpte);
4639	}
4640
4641	/*
4642	 * Increment counters
4643	 */
4644	pmap_resident_count_inc(pmap, 1);
4645
4646	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(pmap, m->md.pat_mode, 0);
4647	if ((prot & VM_PROT_EXECUTE) == 0)
4648		pa |= pg_nx;
4649
4650	/*
4651	 * Now validate mapping with RO protection
4652	 */
4653	if ((m->oflags & VPO_UNMANAGED) != 0)
4654		pte_store(pte, pa | PG_V | PG_U);
4655	else
4656		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
4657	return (mpte);
4658}
4659
4660/*
4661 * Make a temporary mapping for a physical address.  This is only intended
4662 * to be used for panic dumps.
4663 */
4664void *
4665pmap_kenter_temporary(vm_paddr_t pa, int i)
4666{
4667	vm_offset_t va;
4668
4669	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
4670	pmap_kenter(va, pa);
4671	invlpg(va);
4672	return ((void *)crashdumpmap);
4673}
4674
4675/*
4676 * This code maps large physical mmap regions into the
4677 * processor address space.  Note that some shortcuts
4678 * are taken, but the code works.
4679 */
4680void
4681pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
4682    vm_pindex_t pindex, vm_size_t size)
4683{
4684	pd_entry_t *pde;
4685	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
4686	vm_paddr_t pa, ptepa;
4687	vm_page_t p, pdpg;
4688	int pat_mode;
4689
4690	PG_A = pmap_accessed_bit(pmap);
4691	PG_M = pmap_modified_bit(pmap);
4692	PG_V = pmap_valid_bit(pmap);
4693	PG_RW = pmap_rw_bit(pmap);
4694
4695	VM_OBJECT_ASSERT_WLOCKED(object);
4696	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4697	    ("pmap_object_init_pt: non-device object"));
4698	if ((addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
4699		if (!pmap_ps_enabled(pmap))
4700			return;
4701		if (!vm_object_populate(object, pindex, pindex + atop(size)))
4702			return;
4703		p = vm_page_lookup(object, pindex);
4704		KASSERT(p->valid == VM_PAGE_BITS_ALL,
4705		    ("pmap_object_init_pt: invalid page %p", p));
4706		pat_mode = p->md.pat_mode;
4707
4708		/*
4709		 * Abort the mapping if the first page is not physically
4710		 * aligned to a 2MB page boundary.
4711		 */
4712		ptepa = VM_PAGE_TO_PHYS(p);
4713		if (ptepa & (NBPDR - 1))
4714			return;
4715
4716		/*
4717		 * Skip the first page.  Abort the mapping if the rest of
4718		 * the pages are not physically contiguous or have differing
4719		 * memory attributes.
4720		 */
4721		p = TAILQ_NEXT(p, listq);
4722		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
4723		    pa += PAGE_SIZE) {
4724			KASSERT(p->valid == VM_PAGE_BITS_ALL,
4725			    ("pmap_object_init_pt: invalid page %p", p));
4726			if (pa != VM_PAGE_TO_PHYS(p) ||
4727			    pat_mode != p->md.pat_mode)
4728				return;
4729			p = TAILQ_NEXT(p, listq);
4730		}
4731
4732		/*
4733		 * Map using 2MB pages.  Since "ptepa" is 2M aligned and
4734		 * "size" is a multiple of 2M, adding the PAT setting to "pa"
4735		 * will not affect the termination of this loop.
4736		 */
4737		PMAP_LOCK(pmap);
4738		for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, 1);
4739		    pa < ptepa + size; pa += NBPDR) {
4740			pdpg = pmap_allocpde(pmap, addr, NULL);
4741			if (pdpg == NULL) {
4742				/*
4743				 * The creation of mappings below is only an
4744				 * optimization.  If a page directory page
4745				 * cannot be allocated without blocking,
4746				 * continue on to the next mapping rather than
4747				 * blocking.
4748				 */
4749				addr += NBPDR;
4750				continue;
4751			}
4752			pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4753			pde = &pde[pmap_pde_index(addr)];
4754			if ((*pde & PG_V) == 0) {
4755				pde_store(pde, pa | PG_PS | PG_M | PG_A |
4756				    PG_U | PG_RW | PG_V);
4757				pmap_resident_count_inc(pmap, NBPDR / PAGE_SIZE);
4758				atomic_add_long(&pmap_pde_mappings, 1);
4759			} else {
4760				/* Continue on if the PDE is already valid. */
4761				pdpg->wire_count--;
4762				KASSERT(pdpg->wire_count > 0,
4763				    ("pmap_object_init_pt: missing reference "
4764				    "to page directory page, va: 0x%lx", addr));
4765			}
4766			addr += NBPDR;
4767		}
4768		PMAP_UNLOCK(pmap);
4769	}
4770}
4771
4772/*
4773 *	Clear the wired attribute from the mappings for the specified range of
4774 *	addresses in the given pmap.  Every valid mapping within that range
4775 *	must have the wired attribute set.  In contrast, invalid mappings
4776 *	cannot have the wired attribute set, so they are ignored.
4777 *
4778 *	The wired attribute of the page table entry is not a hardware feature,
4779 *	so there is no need to invalidate any TLB entries.
4780 */
4781void
4782pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4783{
4784	vm_offset_t va_next;
4785	pml4_entry_t *pml4e;
4786	pdp_entry_t *pdpe;
4787	pd_entry_t *pde;
4788	pt_entry_t *pte, PG_V;
4789	boolean_t pv_lists_locked;
4790
4791	PG_V = pmap_valid_bit(pmap);
4792	pv_lists_locked = FALSE;
4793resume:
4794	PMAP_LOCK(pmap);
4795	for (; sva < eva; sva = va_next) {
4796		pml4e = pmap_pml4e(pmap, sva);
4797		if ((*pml4e & PG_V) == 0) {
4798			va_next = (sva + NBPML4) & ~PML4MASK;
4799			if (va_next < sva)
4800				va_next = eva;
4801			continue;
4802		}
4803		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
4804		if ((*pdpe & PG_V) == 0) {
4805			va_next = (sva + NBPDP) & ~PDPMASK;
4806			if (va_next < sva)
4807				va_next = eva;
4808			continue;
4809		}
4810		va_next = (sva + NBPDR) & ~PDRMASK;
4811		if (va_next < sva)
4812			va_next = eva;
4813		pde = pmap_pdpe_to_pde(pdpe, sva);
4814		if ((*pde & PG_V) == 0)
4815			continue;
4816		if ((*pde & PG_PS) != 0) {
4817			if ((*pde & PG_W) == 0)
4818				panic("pmap_unwire: pde %#jx is missing PG_W",
4819				    (uintmax_t)*pde);
4820
4821			/*
4822			 * Are we unwiring the entire large page?  If not,
4823			 * demote the mapping and fall through.
4824			 */
4825			if (sva + NBPDR == va_next && eva >= va_next) {
4826				atomic_clear_long(pde, PG_W);
4827				pmap->pm_stats.wired_count -= NBPDR /
4828				    PAGE_SIZE;
4829				continue;
4830			} else {
4831				if (!pv_lists_locked) {
4832					pv_lists_locked = TRUE;
4833					if (!rw_try_rlock(&pvh_global_lock)) {
4834						PMAP_UNLOCK(pmap);
4835						rw_rlock(&pvh_global_lock);
4836						/* Repeat sva. */
4837						goto resume;
4838					}
4839				}
4840				if (!pmap_demote_pde(pmap, pde, sva))
4841					panic("pmap_unwire: demotion failed");
4842			}
4843		}
4844		if (va_next > eva)
4845			va_next = eva;
4846		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
4847		    sva += PAGE_SIZE) {
4848			if ((*pte & PG_V) == 0)
4849				continue;
4850			if ((*pte & PG_W) == 0)
4851				panic("pmap_unwire: pte %#jx is missing PG_W",
4852				    (uintmax_t)*pte);
4853
4854			/*
4855			 * PG_W must be cleared atomically.  Although the pmap
4856			 * lock synchronizes access to PG_W, another processor
4857			 * could be setting PG_M and/or PG_A concurrently.
4858			 */
4859			atomic_clear_long(pte, PG_W);
4860			pmap->pm_stats.wired_count--;
4861		}
4862	}
4863	if (pv_lists_locked)
4864		rw_runlock(&pvh_global_lock);
4865	PMAP_UNLOCK(pmap);
4866}
4867
4868/*
4869 *	Copy the range specified by src_addr/len
4870 *	from the source map to the range dst_addr/len
4871 *	in the destination map.
4872 *
4873 *	This routine is only advisory and need not do anything.
4874 */
4875
4876void
4877pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
4878    vm_offset_t src_addr)
4879{
4880	struct rwlock *lock;
4881	struct spglist free;
4882	vm_offset_t addr;
4883	vm_offset_t end_addr = src_addr + len;
4884	vm_offset_t va_next;
4885	pt_entry_t PG_A, PG_M, PG_V;
4886
4887	if (dst_addr != src_addr)
4888		return;
4889
4890	if (dst_pmap->pm_type != src_pmap->pm_type)
4891		return;
4892
4893	/*
4894	 * EPT page table entries that require emulation of A/D bits are
4895	 * sensitive to clearing the PG_A bit (aka EPT_PG_READ). Although
4896	 * we clear PG_M (aka EPT_PG_WRITE) concomitantly, the PG_U bit
4897	 * (aka EPT_PG_EXECUTE) could still be set. Since some EPT
4898	 * implementations flag an EPT misconfiguration for exec-only
4899	 * mappings we skip this function entirely for emulated pmaps.
4900	 */
4901	if (pmap_emulate_ad_bits(dst_pmap))
4902		return;
4903
4904	lock = NULL;
4905	rw_rlock(&pvh_global_lock);
4906	if (dst_pmap < src_pmap) {
4907		PMAP_LOCK(dst_pmap);
4908		PMAP_LOCK(src_pmap);
4909	} else {
4910		PMAP_LOCK(src_pmap);
4911		PMAP_LOCK(dst_pmap);
4912	}
4913
4914	PG_A = pmap_accessed_bit(dst_pmap);
4915	PG_M = pmap_modified_bit(dst_pmap);
4916	PG_V = pmap_valid_bit(dst_pmap);
4917
4918	for (addr = src_addr; addr < end_addr; addr = va_next) {
4919		pt_entry_t *src_pte, *dst_pte;
4920		vm_page_t dstmpde, dstmpte, srcmpte;
4921		pml4_entry_t *pml4e;
4922		pdp_entry_t *pdpe;
4923		pd_entry_t srcptepaddr, *pde;
4924
4925		KASSERT(addr < UPT_MIN_ADDRESS,
4926		    ("pmap_copy: invalid to pmap_copy page tables"));
4927
4928		pml4e = pmap_pml4e(src_pmap, addr);
4929		if ((*pml4e & PG_V) == 0) {
4930			va_next = (addr + NBPML4) & ~PML4MASK;
4931			if (va_next < addr)
4932				va_next = end_addr;
4933			continue;
4934		}
4935
4936		pdpe = pmap_pml4e_to_pdpe(pml4e, addr);
4937		if ((*pdpe & PG_V) == 0) {
4938			va_next = (addr + NBPDP) & ~PDPMASK;
4939			if (va_next < addr)
4940				va_next = end_addr;
4941			continue;
4942		}
4943
4944		va_next = (addr + NBPDR) & ~PDRMASK;
4945		if (va_next < addr)
4946			va_next = end_addr;
4947
4948		pde = pmap_pdpe_to_pde(pdpe, addr);
4949		srcptepaddr = *pde;
4950		if (srcptepaddr == 0)
4951			continue;
4952
4953		if (srcptepaddr & PG_PS) {
4954			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
4955				continue;
4956			dstmpde = pmap_allocpde(dst_pmap, addr, NULL);
4957			if (dstmpde == NULL)
4958				break;
4959			pde = (pd_entry_t *)
4960			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpde));
4961			pde = &pde[pmap_pde_index(addr)];
4962			if (*pde == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
4963			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
4964			    PG_PS_FRAME, &lock))) {
4965				*pde = srcptepaddr & ~PG_W;
4966				pmap_resident_count_inc(dst_pmap, NBPDR / PAGE_SIZE);
4967			} else
4968				dstmpde->wire_count--;
4969			continue;
4970		}
4971
4972		srcptepaddr &= PG_FRAME;
4973		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
4974		KASSERT(srcmpte->wire_count > 0,
4975		    ("pmap_copy: source page table page is unused"));
4976
4977		if (va_next > end_addr)
4978			va_next = end_addr;
4979
4980		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
4981		src_pte = &src_pte[pmap_pte_index(addr)];
4982		dstmpte = NULL;
4983		while (addr < va_next) {
4984			pt_entry_t ptetemp;
4985			ptetemp = *src_pte;
4986			/*
4987			 * we only virtual copy managed pages
4988			 */
4989			if ((ptetemp & PG_MANAGED) != 0) {
4990				if (dstmpte != NULL &&
4991				    dstmpte->pindex == pmap_pde_pindex(addr))
4992					dstmpte->wire_count++;
4993				else if ((dstmpte = pmap_allocpte(dst_pmap,
4994				    addr, NULL)) == NULL)
4995					goto out;
4996				dst_pte = (pt_entry_t *)
4997				    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
4998				dst_pte = &dst_pte[pmap_pte_index(addr)];
4999				if (*dst_pte == 0 &&
5000				    pmap_try_insert_pv_entry(dst_pmap, addr,
5001				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME),
5002				    &lock)) {
5003					/*
5004					 * Clear the wired, modified, and
5005					 * accessed (referenced) bits
5006					 * during the copy.
5007					 */
5008					*dst_pte = ptetemp & ~(PG_W | PG_M |
5009					    PG_A);
5010					pmap_resident_count_inc(dst_pmap, 1);
5011				} else {
5012					SLIST_INIT(&free);
5013					if (pmap_unwire_ptp(dst_pmap, addr,
5014					    dstmpte, &free)) {
5015						pmap_invalidate_page(dst_pmap,
5016						    addr);
5017						pmap_free_zero_pages(&free);
5018					}
5019					goto out;
5020				}
5021				if (dstmpte->wire_count >= srcmpte->wire_count)
5022					break;
5023			}
5024			addr += PAGE_SIZE;
5025			src_pte++;
5026		}
5027	}
5028out:
5029	if (lock != NULL)
5030		rw_wunlock(lock);
5031	rw_runlock(&pvh_global_lock);
5032	PMAP_UNLOCK(src_pmap);
5033	PMAP_UNLOCK(dst_pmap);
5034}
5035
5036/*
5037 *	pmap_zero_page zeros the specified hardware page by mapping
5038 *	the page into KVM and using bzero to clear its contents.
5039 */
5040void
5041pmap_zero_page(vm_page_t m)
5042{
5043	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5044
5045	pagezero((void *)va);
5046}
5047
5048/*
5049 *	pmap_zero_page_area zeros the specified hardware page by mapping
5050 *	the page into KVM and using bzero to clear its contents.
5051 *
5052 *	off and size may not cover an area beyond a single hardware page.
5053 */
5054void
5055pmap_zero_page_area(vm_page_t m, int off, int size)
5056{
5057	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5058
5059	if (off == 0 && size == PAGE_SIZE)
5060		pagezero((void *)va);
5061	else
5062		bzero((char *)va + off, size);
5063}
5064
5065/*
5066 *	pmap_zero_page_idle zeros the specified hardware page by mapping
5067 *	the page into KVM and using bzero to clear its contents.  This
5068 *	is intended to be called from the vm_pagezero process only and
5069 *	outside of Giant.
5070 */
5071void
5072pmap_zero_page_idle(vm_page_t m)
5073{
5074	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5075
5076	pagezero((void *)va);
5077}
5078
5079/*
5080 *	pmap_copy_page copies the specified (machine independent)
5081 *	page by mapping the page into virtual memory and using
5082 *	bcopy to copy the page, one machine dependent page at a
5083 *	time.
5084 */
5085void
5086pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
5087{
5088	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
5089	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
5090
5091	pagecopy((void *)src, (void *)dst);
5092}
5093
5094int unmapped_buf_allowed = 1;
5095
5096void
5097pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
5098    vm_offset_t b_offset, int xfersize)
5099{
5100	void *a_cp, *b_cp;
5101	vm_page_t m_a, m_b;
5102	vm_paddr_t p_a, p_b;
5103	pt_entry_t *pte;
5104	vm_offset_t a_pg_offset, b_pg_offset;
5105	int cnt;
5106	boolean_t pinned;
5107
5108	/*
5109	 * NB:  The sequence of updating a page table followed by accesses
5110	 * to the corresponding pages used in the !DMAP case is subject to
5111	 * the situation described in the "AMD64 Architecture Programmer's
5112	 * Manual Volume 2: System Programming" rev. 3.23, "7.3.1 Special
5113	 * Coherency Considerations".  Therefore, issuing the INVLPG right
5114	 * after modifying the PTE bits is crucial.
5115	 */
5116	pinned = FALSE;
5117	while (xfersize > 0) {
5118		a_pg_offset = a_offset & PAGE_MASK;
5119		m_a = ma[a_offset >> PAGE_SHIFT];
5120		p_a = m_a->phys_addr;
5121		b_pg_offset = b_offset & PAGE_MASK;
5122		m_b = mb[b_offset >> PAGE_SHIFT];
5123		p_b = m_b->phys_addr;
5124		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
5125		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
5126		if (__predict_false(p_a < DMAP_MIN_ADDRESS ||
5127		    p_a > DMAP_MIN_ADDRESS + dmaplimit)) {
5128			mtx_lock(&cpage_lock);
5129			sched_pin();
5130			pinned = TRUE;
5131			pte = vtopte(cpage_a);
5132			*pte = p_a | X86_PG_A | X86_PG_V |
5133			    pmap_cache_bits(kernel_pmap, m_a->md.pat_mode, 0);
5134			invlpg(cpage_a);
5135			a_cp = (char *)cpage_a + a_pg_offset;
5136		} else {
5137			a_cp = (char *)PHYS_TO_DMAP(p_a) + a_pg_offset;
5138		}
5139		if (__predict_false(p_b < DMAP_MIN_ADDRESS ||
5140		    p_b > DMAP_MIN_ADDRESS + dmaplimit)) {
5141			if (!pinned) {
5142				mtx_lock(&cpage_lock);
5143				sched_pin();
5144				pinned = TRUE;
5145			}
5146			pte = vtopte(cpage_b);
5147			*pte = p_b | X86_PG_A | X86_PG_M | X86_PG_RW |
5148			    X86_PG_V | pmap_cache_bits(kernel_pmap,
5149			    m_b->md.pat_mode, 0);
5150			invlpg(cpage_b);
5151			b_cp = (char *)cpage_b + b_pg_offset;
5152		} else {
5153			b_cp = (char *)PHYS_TO_DMAP(p_b) + b_pg_offset;
5154		}
5155		bcopy(a_cp, b_cp, cnt);
5156		if (__predict_false(pinned)) {
5157			sched_unpin();
5158			mtx_unlock(&cpage_lock);
5159			pinned = FALSE;
5160		}
5161		a_offset += cnt;
5162		b_offset += cnt;
5163		xfersize -= cnt;
5164	}
5165}
5166
5167/*
5168 * Returns true if the pmap's pv is one of the first
5169 * 16 pvs linked to from this page.  This count may
5170 * be changed upwards or downwards in the future; it
5171 * is only necessary that true be returned for a small
5172 * subset of pmaps for proper page aging.
5173 */
5174boolean_t
5175pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
5176{
5177	struct md_page *pvh;
5178	struct rwlock *lock;
5179	pv_entry_t pv;
5180	int loops = 0;
5181	boolean_t rv;
5182
5183	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5184	    ("pmap_page_exists_quick: page %p is not managed", m));
5185	rv = FALSE;
5186	rw_rlock(&pvh_global_lock);
5187	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5188	rw_rlock(lock);
5189	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5190		if (PV_PMAP(pv) == pmap) {
5191			rv = TRUE;
5192			break;
5193		}
5194		loops++;
5195		if (loops >= 16)
5196			break;
5197	}
5198	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
5199		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5200		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5201			if (PV_PMAP(pv) == pmap) {
5202				rv = TRUE;
5203				break;
5204			}
5205			loops++;
5206			if (loops >= 16)
5207				break;
5208		}
5209	}
5210	rw_runlock(lock);
5211	rw_runlock(&pvh_global_lock);
5212	return (rv);
5213}
5214
5215/*
5216 *	pmap_page_wired_mappings:
5217 *
5218 *	Return the number of managed mappings to the given physical page
5219 *	that are wired.
5220 */
5221int
5222pmap_page_wired_mappings(vm_page_t m)
5223{
5224	struct rwlock *lock;
5225	struct md_page *pvh;
5226	pmap_t pmap;
5227	pt_entry_t *pte;
5228	pv_entry_t pv;
5229	int count, md_gen, pvh_gen;
5230
5231	if ((m->oflags & VPO_UNMANAGED) != 0)
5232		return (0);
5233	rw_rlock(&pvh_global_lock);
5234	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5235	rw_rlock(lock);
5236restart:
5237	count = 0;
5238	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5239		pmap = PV_PMAP(pv);
5240		if (!PMAP_TRYLOCK(pmap)) {
5241			md_gen = m->md.pv_gen;
5242			rw_runlock(lock);
5243			PMAP_LOCK(pmap);
5244			rw_rlock(lock);
5245			if (md_gen != m->md.pv_gen) {
5246				PMAP_UNLOCK(pmap);
5247				goto restart;
5248			}
5249		}
5250		pte = pmap_pte(pmap, pv->pv_va);
5251		if ((*pte & PG_W) != 0)
5252			count++;
5253		PMAP_UNLOCK(pmap);
5254	}
5255	if ((m->flags & PG_FICTITIOUS) == 0) {
5256		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5257		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5258			pmap = PV_PMAP(pv);
5259			if (!PMAP_TRYLOCK(pmap)) {
5260				md_gen = m->md.pv_gen;
5261				pvh_gen = pvh->pv_gen;
5262				rw_runlock(lock);
5263				PMAP_LOCK(pmap);
5264				rw_rlock(lock);
5265				if (md_gen != m->md.pv_gen ||
5266				    pvh_gen != pvh->pv_gen) {
5267					PMAP_UNLOCK(pmap);
5268					goto restart;
5269				}
5270			}
5271			pte = pmap_pde(pmap, pv->pv_va);
5272			if ((*pte & PG_W) != 0)
5273				count++;
5274			PMAP_UNLOCK(pmap);
5275		}
5276	}
5277	rw_runlock(lock);
5278	rw_runlock(&pvh_global_lock);
5279	return (count);
5280}
5281
5282/*
5283 * Returns TRUE if the given page is mapped individually or as part of
5284 * a 2mpage.  Otherwise, returns FALSE.
5285 */
5286boolean_t
5287pmap_page_is_mapped(vm_page_t m)
5288{
5289	struct rwlock *lock;
5290	boolean_t rv;
5291
5292	if ((m->oflags & VPO_UNMANAGED) != 0)
5293		return (FALSE);
5294	rw_rlock(&pvh_global_lock);
5295	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5296	rw_rlock(lock);
5297	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
5298	    ((m->flags & PG_FICTITIOUS) == 0 &&
5299	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
5300	rw_runlock(lock);
5301	rw_runlock(&pvh_global_lock);
5302	return (rv);
5303}
5304
5305/*
5306 * Destroy all managed, non-wired mappings in the given user-space
5307 * pmap.  This pmap cannot be active on any processor besides the
5308 * caller.
5309 *
5310 * This function cannot be applied to the kernel pmap.  Moreover, it
5311 * is not intended for general use.  It is only to be used during
5312 * process termination.  Consequently, it can be implemented in ways
5313 * that make it faster than pmap_remove().  First, it can more quickly
5314 * destroy mappings by iterating over the pmap's collection of PV
5315 * entries, rather than searching the page table.  Second, it doesn't
5316 * have to test and clear the page table entries atomically, because
5317 * no processor is currently accessing the user address space.  In
5318 * particular, a page table entry's dirty bit won't change state once
5319 * this function starts.
5320 */
5321void
5322pmap_remove_pages(pmap_t pmap)
5323{
5324	pd_entry_t ptepde;
5325	pt_entry_t *pte, tpte;
5326	pt_entry_t PG_M, PG_RW, PG_V;
5327	struct spglist free;
5328	vm_page_t m, mpte, mt;
5329	pv_entry_t pv;
5330	struct md_page *pvh;
5331	struct pv_chunk *pc, *npc;
5332	struct rwlock *lock;
5333	int64_t bit;
5334	uint64_t inuse, bitmask;
5335	int allfree, field, freed, idx;
5336	boolean_t superpage;
5337	vm_paddr_t pa;
5338
5339	/*
5340	 * Assert that the given pmap is only active on the current
5341	 * CPU.  Unfortunately, we cannot block another CPU from
5342	 * activating the pmap while this function is executing.
5343	 */
5344	KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap));
5345#ifdef INVARIANTS
5346	{
5347		cpuset_t other_cpus;
5348
5349		other_cpus = all_cpus;
5350		critical_enter();
5351		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
5352		CPU_AND(&other_cpus, &pmap->pm_active);
5353		critical_exit();
5354		KASSERT(CPU_EMPTY(&other_cpus), ("pmap active %p", pmap));
5355	}
5356#endif
5357
5358	lock = NULL;
5359	PG_M = pmap_modified_bit(pmap);
5360	PG_V = pmap_valid_bit(pmap);
5361	PG_RW = pmap_rw_bit(pmap);
5362
5363	SLIST_INIT(&free);
5364	rw_rlock(&pvh_global_lock);
5365	PMAP_LOCK(pmap);
5366	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
5367		allfree = 1;
5368		freed = 0;
5369		for (field = 0; field < _NPCM; field++) {
5370			inuse = ~pc->pc_map[field] & pc_freemask[field];
5371			while (inuse != 0) {
5372				bit = bsfq(inuse);
5373				bitmask = 1UL << bit;
5374				idx = field * 64 + bit;
5375				pv = &pc->pc_pventry[idx];
5376				inuse &= ~bitmask;
5377
5378				pte = pmap_pdpe(pmap, pv->pv_va);
5379				ptepde = *pte;
5380				pte = pmap_pdpe_to_pde(pte, pv->pv_va);
5381				tpte = *pte;
5382				if ((tpte & (PG_PS | PG_V)) == PG_V) {
5383					superpage = FALSE;
5384					ptepde = tpte;
5385					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
5386					    PG_FRAME);
5387					pte = &pte[pmap_pte_index(pv->pv_va)];
5388					tpte = *pte;
5389				} else {
5390					/*
5391					 * Keep track whether 'tpte' is a
5392					 * superpage explicitly instead of
5393					 * relying on PG_PS being set.
5394					 *
5395					 * This is because PG_PS is numerically
5396					 * identical to PG_PTE_PAT and thus a
5397					 * regular page could be mistaken for
5398					 * a superpage.
5399					 */
5400					superpage = TRUE;
5401				}
5402
5403				if ((tpte & PG_V) == 0) {
5404					panic("bad pte va %lx pte %lx",
5405					    pv->pv_va, tpte);
5406				}
5407
5408/*
5409 * We cannot remove wired pages from a process' mapping at this time
5410 */
5411				if (tpte & PG_W) {
5412					allfree = 0;
5413					continue;
5414				}
5415
5416				if (superpage)
5417					pa = tpte & PG_PS_FRAME;
5418				else
5419					pa = tpte & PG_FRAME;
5420
5421				m = PHYS_TO_VM_PAGE(pa);
5422				KASSERT(m->phys_addr == pa,
5423				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
5424				    m, (uintmax_t)m->phys_addr,
5425				    (uintmax_t)tpte));
5426
5427				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
5428				    m < &vm_page_array[vm_page_array_size],
5429				    ("pmap_remove_pages: bad tpte %#jx",
5430				    (uintmax_t)tpte));
5431
5432				pte_clear(pte);
5433
5434				/*
5435				 * Update the vm_page_t clean/reference bits.
5436				 */
5437				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5438					if (superpage) {
5439						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
5440							vm_page_dirty(mt);
5441					} else
5442						vm_page_dirty(m);
5443				}
5444
5445				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
5446
5447				/* Mark free */
5448				pc->pc_map[field] |= bitmask;
5449				if (superpage) {
5450					pmap_resident_count_dec(pmap, NBPDR / PAGE_SIZE);
5451					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
5452					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5453					pvh->pv_gen++;
5454					if (TAILQ_EMPTY(&pvh->pv_list)) {
5455						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
5456							if ((mt->aflags & PGA_WRITEABLE) != 0 &&
5457							    TAILQ_EMPTY(&mt->md.pv_list))
5458								vm_page_aflag_clear(mt, PGA_WRITEABLE);
5459					}
5460					mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
5461					if (mpte != NULL) {
5462						pmap_remove_pt_page(pmap, mpte);
5463						pmap_resident_count_dec(pmap, 1);
5464						KASSERT(mpte->wire_count == NPTEPG,
5465						    ("pmap_remove_pages: pte page wire count error"));
5466						mpte->wire_count = 0;
5467						pmap_add_delayed_free_list(mpte, &free, FALSE);
5468						atomic_subtract_int(&cnt.v_wire_count, 1);
5469					}
5470				} else {
5471					pmap_resident_count_dec(pmap, 1);
5472					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5473					m->md.pv_gen++;
5474					if ((m->aflags & PGA_WRITEABLE) != 0 &&
5475					    TAILQ_EMPTY(&m->md.pv_list) &&
5476					    (m->flags & PG_FICTITIOUS) == 0) {
5477						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5478						if (TAILQ_EMPTY(&pvh->pv_list))
5479							vm_page_aflag_clear(m, PGA_WRITEABLE);
5480					}
5481				}
5482				pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
5483				freed++;
5484			}
5485		}
5486		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
5487		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
5488		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
5489		if (allfree) {
5490			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5491			free_pv_chunk(pc);
5492		}
5493	}
5494	if (lock != NULL)
5495		rw_wunlock(lock);
5496	pmap_invalidate_all(pmap);
5497	rw_runlock(&pvh_global_lock);
5498	PMAP_UNLOCK(pmap);
5499	pmap_free_zero_pages(&free);
5500}
5501
5502static boolean_t
5503pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
5504{
5505	struct rwlock *lock;
5506	pv_entry_t pv;
5507	struct md_page *pvh;
5508	pt_entry_t *pte, mask;
5509	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
5510	pmap_t pmap;
5511	int md_gen, pvh_gen;
5512	boolean_t rv;
5513
5514	rv = FALSE;
5515	rw_rlock(&pvh_global_lock);
5516	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5517	rw_rlock(lock);
5518restart:
5519	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5520		pmap = PV_PMAP(pv);
5521		if (!PMAP_TRYLOCK(pmap)) {
5522			md_gen = m->md.pv_gen;
5523			rw_runlock(lock);
5524			PMAP_LOCK(pmap);
5525			rw_rlock(lock);
5526			if (md_gen != m->md.pv_gen) {
5527				PMAP_UNLOCK(pmap);
5528				goto restart;
5529			}
5530		}
5531		pte = pmap_pte(pmap, pv->pv_va);
5532		mask = 0;
5533		if (modified) {
5534			PG_M = pmap_modified_bit(pmap);
5535			PG_RW = pmap_rw_bit(pmap);
5536			mask |= PG_RW | PG_M;
5537		}
5538		if (accessed) {
5539			PG_A = pmap_accessed_bit(pmap);
5540			PG_V = pmap_valid_bit(pmap);
5541			mask |= PG_V | PG_A;
5542		}
5543		rv = (*pte & mask) == mask;
5544		PMAP_UNLOCK(pmap);
5545		if (rv)
5546			goto out;
5547	}
5548	if ((m->flags & PG_FICTITIOUS) == 0) {
5549		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5550		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5551			pmap = PV_PMAP(pv);
5552			if (!PMAP_TRYLOCK(pmap)) {
5553				md_gen = m->md.pv_gen;
5554				pvh_gen = pvh->pv_gen;
5555				rw_runlock(lock);
5556				PMAP_LOCK(pmap);
5557				rw_rlock(lock);
5558				if (md_gen != m->md.pv_gen ||
5559				    pvh_gen != pvh->pv_gen) {
5560					PMAP_UNLOCK(pmap);
5561					goto restart;
5562				}
5563			}
5564			pte = pmap_pde(pmap, pv->pv_va);
5565			mask = 0;
5566			if (modified) {
5567				PG_M = pmap_modified_bit(pmap);
5568				PG_RW = pmap_rw_bit(pmap);
5569				mask |= PG_RW | PG_M;
5570			}
5571			if (accessed) {
5572				PG_A = pmap_accessed_bit(pmap);
5573				PG_V = pmap_valid_bit(pmap);
5574				mask |= PG_V | PG_A;
5575			}
5576			rv = (*pte & mask) == mask;
5577			PMAP_UNLOCK(pmap);
5578			if (rv)
5579				goto out;
5580		}
5581	}
5582out:
5583	rw_runlock(lock);
5584	rw_runlock(&pvh_global_lock);
5585	return (rv);
5586}
5587
5588/*
5589 *	pmap_is_modified:
5590 *
5591 *	Return whether or not the specified physical page was modified
5592 *	in any physical maps.
5593 */
5594boolean_t
5595pmap_is_modified(vm_page_t m)
5596{
5597
5598	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5599	    ("pmap_is_modified: page %p is not managed", m));
5600
5601	/*
5602	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
5603	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
5604	 * is clear, no PTEs can have PG_M set.
5605	 */
5606	VM_OBJECT_ASSERT_WLOCKED(m->object);
5607	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
5608		return (FALSE);
5609	return (pmap_page_test_mappings(m, FALSE, TRUE));
5610}
5611
5612/*
5613 *	pmap_is_prefaultable:
5614 *
5615 *	Return whether or not the specified virtual address is eligible
5616 *	for prefault.
5617 */
5618boolean_t
5619pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
5620{
5621	pd_entry_t *pde;
5622	pt_entry_t *pte, PG_V;
5623	boolean_t rv;
5624
5625	PG_V = pmap_valid_bit(pmap);
5626	rv = FALSE;
5627	PMAP_LOCK(pmap);
5628	pde = pmap_pde(pmap, addr);
5629	if (pde != NULL && (*pde & (PG_PS | PG_V)) == PG_V) {
5630		pte = pmap_pde_to_pte(pde, addr);
5631		rv = (*pte & PG_V) == 0;
5632	}
5633	PMAP_UNLOCK(pmap);
5634	return (rv);
5635}
5636
5637/*
5638 *	pmap_is_referenced:
5639 *
5640 *	Return whether or not the specified physical page was referenced
5641 *	in any physical maps.
5642 */
5643boolean_t
5644pmap_is_referenced(vm_page_t m)
5645{
5646
5647	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5648	    ("pmap_is_referenced: page %p is not managed", m));
5649	return (pmap_page_test_mappings(m, TRUE, FALSE));
5650}
5651
5652/*
5653 * Clear the write and modified bits in each of the given page's mappings.
5654 */
5655void
5656pmap_remove_write(vm_page_t m)
5657{
5658	struct md_page *pvh;
5659	pmap_t pmap;
5660	struct rwlock *lock;
5661	pv_entry_t next_pv, pv;
5662	pd_entry_t *pde;
5663	pt_entry_t oldpte, *pte, PG_M, PG_RW;
5664	vm_offset_t va;
5665	int pvh_gen, md_gen;
5666
5667	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5668	    ("pmap_remove_write: page %p is not managed", m));
5669
5670	/*
5671	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
5672	 * set by another thread while the object is locked.  Thus,
5673	 * if PGA_WRITEABLE is clear, no page table entries need updating.
5674	 */
5675	VM_OBJECT_ASSERT_WLOCKED(m->object);
5676	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
5677		return;
5678	rw_rlock(&pvh_global_lock);
5679	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5680	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5681retry_pv_loop:
5682	rw_wlock(lock);
5683	if ((m->flags & PG_FICTITIOUS) != 0)
5684		goto small_mappings;
5685	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5686		pmap = PV_PMAP(pv);
5687		if (!PMAP_TRYLOCK(pmap)) {
5688			pvh_gen = pvh->pv_gen;
5689			rw_wunlock(lock);
5690			PMAP_LOCK(pmap);
5691			rw_wlock(lock);
5692			if (pvh_gen != pvh->pv_gen) {
5693				PMAP_UNLOCK(pmap);
5694				rw_wunlock(lock);
5695				goto retry_pv_loop;
5696			}
5697		}
5698		PG_RW = pmap_rw_bit(pmap);
5699		va = pv->pv_va;
5700		pde = pmap_pde(pmap, va);
5701		if ((*pde & PG_RW) != 0)
5702			(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
5703		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
5704		    ("inconsistent pv lock %p %p for page %p",
5705		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
5706		PMAP_UNLOCK(pmap);
5707	}
5708small_mappings:
5709	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5710		pmap = PV_PMAP(pv);
5711		if (!PMAP_TRYLOCK(pmap)) {
5712			pvh_gen = pvh->pv_gen;
5713			md_gen = m->md.pv_gen;
5714			rw_wunlock(lock);
5715			PMAP_LOCK(pmap);
5716			rw_wlock(lock);
5717			if (pvh_gen != pvh->pv_gen ||
5718			    md_gen != m->md.pv_gen) {
5719				PMAP_UNLOCK(pmap);
5720				rw_wunlock(lock);
5721				goto retry_pv_loop;
5722			}
5723		}
5724		PG_M = pmap_modified_bit(pmap);
5725		PG_RW = pmap_rw_bit(pmap);
5726		pde = pmap_pde(pmap, pv->pv_va);
5727		KASSERT((*pde & PG_PS) == 0,
5728		    ("pmap_remove_write: found a 2mpage in page %p's pv list",
5729		    m));
5730		pte = pmap_pde_to_pte(pde, pv->pv_va);
5731retry:
5732		oldpte = *pte;
5733		if (oldpte & PG_RW) {
5734			if (!atomic_cmpset_long(pte, oldpte, oldpte &
5735			    ~(PG_RW | PG_M)))
5736				goto retry;
5737			if ((oldpte & PG_M) != 0)
5738				vm_page_dirty(m);
5739			pmap_invalidate_page(pmap, pv->pv_va);
5740		}
5741		PMAP_UNLOCK(pmap);
5742	}
5743	rw_wunlock(lock);
5744	vm_page_aflag_clear(m, PGA_WRITEABLE);
5745	rw_runlock(&pvh_global_lock);
5746}
5747
5748static __inline boolean_t
5749safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
5750{
5751
5752	if (!pmap_emulate_ad_bits(pmap))
5753		return (TRUE);
5754
5755	KASSERT(pmap->pm_type == PT_EPT, ("invalid pm_type %d", pmap->pm_type));
5756
5757	/*
5758	 * RWX = 010 or 110 will cause an unconditional EPT misconfiguration
5759	 * so we don't let the referenced (aka EPT_PG_READ) bit to be cleared
5760	 * if the EPT_PG_WRITE bit is set.
5761	 */
5762	if ((pte & EPT_PG_WRITE) != 0)
5763		return (FALSE);
5764
5765	/*
5766	 * RWX = 100 is allowed only if the PMAP_SUPPORTS_EXEC_ONLY is set.
5767	 */
5768	if ((pte & EPT_PG_EXECUTE) == 0 ||
5769	    ((pmap->pm_flags & PMAP_SUPPORTS_EXEC_ONLY) != 0))
5770		return (TRUE);
5771	else
5772		return (FALSE);
5773}
5774
5775#define	PMAP_TS_REFERENCED_MAX	5
5776
5777/*
5778 *	pmap_ts_referenced:
5779 *
5780 *	Return a count of reference bits for a page, clearing those bits.
5781 *	It is not necessary for every reference bit to be cleared, but it
5782 *	is necessary that 0 only be returned when there are truly no
5783 *	reference bits set.
5784 *
5785 *	XXX: The exact number of bits to check and clear is a matter that
5786 *	should be tested and standardized at some point in the future for
5787 *	optimal aging of shared pages.
5788 */
5789int
5790pmap_ts_referenced(vm_page_t m)
5791{
5792	struct md_page *pvh;
5793	pv_entry_t pv, pvf;
5794	pmap_t pmap;
5795	struct rwlock *lock;
5796	pd_entry_t oldpde, *pde;
5797	pt_entry_t *pte, PG_A;
5798	vm_offset_t va;
5799	vm_paddr_t pa;
5800	int cleared, md_gen, not_cleared, pvh_gen;
5801	struct spglist free;
5802	boolean_t demoted;
5803
5804	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5805	    ("pmap_ts_referenced: page %p is not managed", m));
5806	SLIST_INIT(&free);
5807	cleared = 0;
5808	pa = VM_PAGE_TO_PHYS(m);
5809	lock = PHYS_TO_PV_LIST_LOCK(pa);
5810	pvh = pa_to_pvh(pa);
5811	rw_rlock(&pvh_global_lock);
5812	rw_wlock(lock);
5813retry:
5814	not_cleared = 0;
5815	if ((m->flags & PG_FICTITIOUS) != 0 ||
5816	    (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
5817		goto small_mappings;
5818	pv = pvf;
5819	do {
5820		if (pvf == NULL)
5821			pvf = pv;
5822		pmap = PV_PMAP(pv);
5823		if (!PMAP_TRYLOCK(pmap)) {
5824			pvh_gen = pvh->pv_gen;
5825			rw_wunlock(lock);
5826			PMAP_LOCK(pmap);
5827			rw_wlock(lock);
5828			if (pvh_gen != pvh->pv_gen) {
5829				PMAP_UNLOCK(pmap);
5830				goto retry;
5831			}
5832		}
5833		PG_A = pmap_accessed_bit(pmap);
5834		va = pv->pv_va;
5835		pde = pmap_pde(pmap, pv->pv_va);
5836		oldpde = *pde;
5837		if ((*pde & PG_A) != 0) {
5838			/*
5839			 * Since this reference bit is shared by 512 4KB
5840			 * pages, it should not be cleared every time it is
5841			 * tested.  Apply a simple "hash" function on the
5842			 * physical page number, the virtual superpage number,
5843			 * and the pmap address to select one 4KB page out of
5844			 * the 512 on which testing the reference bit will
5845			 * result in clearing that reference bit.  This
5846			 * function is designed to avoid the selection of the
5847			 * same 4KB page for every 2MB page mapping.
5848			 *
5849			 * On demotion, a mapping that hasn't been referenced
5850			 * is simply destroyed.  To avoid the possibility of a
5851			 * subsequent page fault on a demoted wired mapping,
5852			 * always leave its reference bit set.  Moreover,
5853			 * since the superpage is wired, the current state of
5854			 * its reference bit won't affect page replacement.
5855			 */
5856			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
5857			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
5858			    (*pde & PG_W) == 0) {
5859				if (safe_to_clear_referenced(pmap, oldpde)) {
5860					atomic_clear_long(pde, PG_A);
5861					pmap_invalidate_page(pmap, pv->pv_va);
5862					demoted = FALSE;
5863				} else if (pmap_demote_pde_locked(pmap, pde,
5864				    pv->pv_va, &lock)) {
5865					/*
5866					 * Remove the mapping to a single page
5867					 * so that a subsequent access may
5868					 * repromote.  Since the underlying
5869					 * page table page is fully populated,
5870					 * this removal never frees a page
5871					 * table page.
5872					 */
5873					demoted = TRUE;
5874					va += VM_PAGE_TO_PHYS(m) - (oldpde &
5875					    PG_PS_FRAME);
5876					pte = pmap_pde_to_pte(pde, va);
5877					pmap_remove_pte(pmap, pte, va, *pde,
5878					    NULL, &lock);
5879					pmap_invalidate_page(pmap, va);
5880				} else
5881					demoted = TRUE;
5882
5883				if (demoted) {
5884					/*
5885					 * The superpage mapping was removed
5886					 * entirely and therefore 'pv' is no
5887					 * longer valid.
5888					 */
5889					if (pvf == pv)
5890						pvf = NULL;
5891					pv = NULL;
5892				}
5893				cleared++;
5894				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
5895				    ("inconsistent pv lock %p %p for page %p",
5896				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
5897			} else
5898				not_cleared++;
5899		}
5900		PMAP_UNLOCK(pmap);
5901		/* Rotate the PV list if it has more than one entry. */
5902		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
5903			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5904			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5905			pvh->pv_gen++;
5906		}
5907		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
5908			goto out;
5909	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
5910small_mappings:
5911	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
5912		goto out;
5913	pv = pvf;
5914	do {
5915		if (pvf == NULL)
5916			pvf = pv;
5917		pmap = PV_PMAP(pv);
5918		if (!PMAP_TRYLOCK(pmap)) {
5919			pvh_gen = pvh->pv_gen;
5920			md_gen = m->md.pv_gen;
5921			rw_wunlock(lock);
5922			PMAP_LOCK(pmap);
5923			rw_wlock(lock);
5924			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
5925				PMAP_UNLOCK(pmap);
5926				goto retry;
5927			}
5928		}
5929		PG_A = pmap_accessed_bit(pmap);
5930		pde = pmap_pde(pmap, pv->pv_va);
5931		KASSERT((*pde & PG_PS) == 0,
5932		    ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
5933		    m));
5934		pte = pmap_pde_to_pte(pde, pv->pv_va);
5935		if ((*pte & PG_A) != 0) {
5936			if (safe_to_clear_referenced(pmap, *pte)) {
5937				atomic_clear_long(pte, PG_A);
5938				pmap_invalidate_page(pmap, pv->pv_va);
5939				cleared++;
5940			} else if ((*pte & PG_W) == 0) {
5941				/*
5942				 * Wired pages cannot be paged out so
5943				 * doing accessed bit emulation for
5944				 * them is wasted effort. We do the
5945				 * hard work for unwired pages only.
5946				 */
5947				pmap_remove_pte(pmap, pte, pv->pv_va,
5948				    *pde, &free, &lock);
5949				pmap_invalidate_page(pmap, pv->pv_va);
5950				cleared++;
5951				if (pvf == pv)
5952					pvf = NULL;
5953				pv = NULL;
5954				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
5955				    ("inconsistent pv lock %p %p for page %p",
5956				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
5957			} else
5958				not_cleared++;
5959		}
5960		PMAP_UNLOCK(pmap);
5961		/* Rotate the PV list if it has more than one entry. */
5962		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
5963			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5964			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5965			m->md.pv_gen++;
5966		}
5967	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
5968	    not_cleared < PMAP_TS_REFERENCED_MAX);
5969out:
5970	rw_wunlock(lock);
5971	rw_runlock(&pvh_global_lock);
5972	pmap_free_zero_pages(&free);
5973	return (cleared + not_cleared);
5974}
5975
5976/*
5977 *	Apply the given advice to the specified range of addresses within the
5978 *	given pmap.  Depending on the advice, clear the referenced and/or
5979 *	modified flags in each mapping and set the mapped page's dirty field.
5980 */
5981void
5982pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
5983{
5984	struct rwlock *lock;
5985	pml4_entry_t *pml4e;
5986	pdp_entry_t *pdpe;
5987	pd_entry_t oldpde, *pde;
5988	pt_entry_t *pte, PG_A, PG_G, PG_M, PG_RW, PG_V;
5989	vm_offset_t va_next;
5990	vm_page_t m;
5991	boolean_t anychanged, pv_lists_locked;
5992
5993	if (advice != MADV_DONTNEED && advice != MADV_FREE)
5994		return;
5995
5996	/*
5997	 * A/D bit emulation requires an alternate code path when clearing
5998	 * the modified and accessed bits below. Since this function is
5999	 * advisory in nature we skip it entirely for pmaps that require
6000	 * A/D bit emulation.
6001	 */
6002	if (pmap_emulate_ad_bits(pmap))
6003		return;
6004
6005	PG_A = pmap_accessed_bit(pmap);
6006	PG_G = pmap_global_bit(pmap);
6007	PG_M = pmap_modified_bit(pmap);
6008	PG_V = pmap_valid_bit(pmap);
6009	PG_RW = pmap_rw_bit(pmap);
6010
6011	pv_lists_locked = FALSE;
6012resume:
6013	anychanged = FALSE;
6014	PMAP_LOCK(pmap);
6015	for (; sva < eva; sva = va_next) {
6016		pml4e = pmap_pml4e(pmap, sva);
6017		if ((*pml4e & PG_V) == 0) {
6018			va_next = (sva + NBPML4) & ~PML4MASK;
6019			if (va_next < sva)
6020				va_next = eva;
6021			continue;
6022		}
6023		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6024		if ((*pdpe & PG_V) == 0) {
6025			va_next = (sva + NBPDP) & ~PDPMASK;
6026			if (va_next < sva)
6027				va_next = eva;
6028			continue;
6029		}
6030		va_next = (sva + NBPDR) & ~PDRMASK;
6031		if (va_next < sva)
6032			va_next = eva;
6033		pde = pmap_pdpe_to_pde(pdpe, sva);
6034		oldpde = *pde;
6035		if ((oldpde & PG_V) == 0)
6036			continue;
6037		else if ((oldpde & PG_PS) != 0) {
6038			if ((oldpde & PG_MANAGED) == 0)
6039				continue;
6040			if (!pv_lists_locked) {
6041				pv_lists_locked = TRUE;
6042				if (!rw_try_rlock(&pvh_global_lock)) {
6043					if (anychanged)
6044						pmap_invalidate_all(pmap);
6045					PMAP_UNLOCK(pmap);
6046					rw_rlock(&pvh_global_lock);
6047					goto resume;
6048				}
6049			}
6050			lock = NULL;
6051			if (!pmap_demote_pde_locked(pmap, pde, sva, &lock)) {
6052				if (lock != NULL)
6053					rw_wunlock(lock);
6054
6055				/*
6056				 * The large page mapping was destroyed.
6057				 */
6058				continue;
6059			}
6060
6061			/*
6062			 * Unless the page mappings are wired, remove the
6063			 * mapping to a single page so that a subsequent
6064			 * access may repromote.  Since the underlying page
6065			 * table page is fully populated, this removal never
6066			 * frees a page table page.
6067			 */
6068			if ((oldpde & PG_W) == 0) {
6069				pte = pmap_pde_to_pte(pde, sva);
6070				KASSERT((*pte & PG_V) != 0,
6071				    ("pmap_advise: invalid PTE"));
6072				pmap_remove_pte(pmap, pte, sva, *pde, NULL,
6073				    &lock);
6074				anychanged = TRUE;
6075			}
6076			if (lock != NULL)
6077				rw_wunlock(lock);
6078		}
6079		if (va_next > eva)
6080			va_next = eva;
6081		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
6082		    sva += PAGE_SIZE) {
6083			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED |
6084			    PG_V))
6085				continue;
6086			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
6087				if (advice == MADV_DONTNEED) {
6088					/*
6089					 * Future calls to pmap_is_modified()
6090					 * can be avoided by making the page
6091					 * dirty now.
6092					 */
6093					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
6094					vm_page_dirty(m);
6095				}
6096				atomic_clear_long(pte, PG_M | PG_A);
6097			} else if ((*pte & PG_A) != 0)
6098				atomic_clear_long(pte, PG_A);
6099			else
6100				continue;
6101			if ((*pte & PG_G) != 0)
6102				pmap_invalidate_page(pmap, sva);
6103			else
6104				anychanged = TRUE;
6105		}
6106	}
6107	if (anychanged)
6108		pmap_invalidate_all(pmap);
6109	if (pv_lists_locked)
6110		rw_runlock(&pvh_global_lock);
6111	PMAP_UNLOCK(pmap);
6112}
6113
6114/*
6115 *	Clear the modify bits on the specified physical page.
6116 */
6117void
6118pmap_clear_modify(vm_page_t m)
6119{
6120	struct md_page *pvh;
6121	pmap_t pmap;
6122	pv_entry_t next_pv, pv;
6123	pd_entry_t oldpde, *pde;
6124	pt_entry_t oldpte, *pte, PG_M, PG_RW, PG_V;
6125	struct rwlock *lock;
6126	vm_offset_t va;
6127	int md_gen, pvh_gen;
6128
6129	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
6130	    ("pmap_clear_modify: page %p is not managed", m));
6131	VM_OBJECT_ASSERT_WLOCKED(m->object);
6132	KASSERT(!vm_page_xbusied(m),
6133	    ("pmap_clear_modify: page %p is exclusive busied", m));
6134
6135	/*
6136	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
6137	 * If the object containing the page is locked and the page is not
6138	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
6139	 */
6140	if ((m->aflags & PGA_WRITEABLE) == 0)
6141		return;
6142	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
6143	rw_rlock(&pvh_global_lock);
6144	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6145	rw_wlock(lock);
6146restart:
6147	if ((m->flags & PG_FICTITIOUS) != 0)
6148		goto small_mappings;
6149	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
6150		pmap = PV_PMAP(pv);
6151		if (!PMAP_TRYLOCK(pmap)) {
6152			pvh_gen = pvh->pv_gen;
6153			rw_wunlock(lock);
6154			PMAP_LOCK(pmap);
6155			rw_wlock(lock);
6156			if (pvh_gen != pvh->pv_gen) {
6157				PMAP_UNLOCK(pmap);
6158				goto restart;
6159			}
6160		}
6161		PG_M = pmap_modified_bit(pmap);
6162		PG_V = pmap_valid_bit(pmap);
6163		PG_RW = pmap_rw_bit(pmap);
6164		va = pv->pv_va;
6165		pde = pmap_pde(pmap, va);
6166		oldpde = *pde;
6167		if ((oldpde & PG_RW) != 0) {
6168			if (pmap_demote_pde_locked(pmap, pde, va, &lock)) {
6169				if ((oldpde & PG_W) == 0) {
6170					/*
6171					 * Write protect the mapping to a
6172					 * single page so that a subsequent
6173					 * write access may repromote.
6174					 */
6175					va += VM_PAGE_TO_PHYS(m) - (oldpde &
6176					    PG_PS_FRAME);
6177					pte = pmap_pde_to_pte(pde, va);
6178					oldpte = *pte;
6179					if ((oldpte & PG_V) != 0) {
6180						while (!atomic_cmpset_long(pte,
6181						    oldpte,
6182						    oldpte & ~(PG_M | PG_RW)))
6183							oldpte = *pte;
6184						vm_page_dirty(m);
6185						pmap_invalidate_page(pmap, va);
6186					}
6187				}
6188			}
6189		}
6190		PMAP_UNLOCK(pmap);
6191	}
6192small_mappings:
6193	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
6194		pmap = PV_PMAP(pv);
6195		if (!PMAP_TRYLOCK(pmap)) {
6196			md_gen = m->md.pv_gen;
6197			pvh_gen = pvh->pv_gen;
6198			rw_wunlock(lock);
6199			PMAP_LOCK(pmap);
6200			rw_wlock(lock);
6201			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
6202				PMAP_UNLOCK(pmap);
6203				goto restart;
6204			}
6205		}
6206		PG_M = pmap_modified_bit(pmap);
6207		PG_RW = pmap_rw_bit(pmap);
6208		pde = pmap_pde(pmap, pv->pv_va);
6209		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
6210		    " a 2mpage in page %p's pv list", m));
6211		pte = pmap_pde_to_pte(pde, pv->pv_va);
6212		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
6213			atomic_clear_long(pte, PG_M);
6214			pmap_invalidate_page(pmap, pv->pv_va);
6215		}
6216		PMAP_UNLOCK(pmap);
6217	}
6218	rw_wunlock(lock);
6219	rw_runlock(&pvh_global_lock);
6220}
6221
6222/*
6223 * Miscellaneous support routines follow
6224 */
6225
6226/* Adjust the cache mode for a 4KB page mapped via a PTE. */
6227static __inline void
6228pmap_pte_attr(pt_entry_t *pte, int cache_bits, int mask)
6229{
6230	u_int opte, npte;
6231
6232	/*
6233	 * The cache mode bits are all in the low 32-bits of the
6234	 * PTE, so we can just spin on updating the low 32-bits.
6235	 */
6236	do {
6237		opte = *(u_int *)pte;
6238		npte = opte & ~mask;
6239		npte |= cache_bits;
6240	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
6241}
6242
6243/* Adjust the cache mode for a 2MB page mapped via a PDE. */
6244static __inline void
6245pmap_pde_attr(pd_entry_t *pde, int cache_bits, int mask)
6246{
6247	u_int opde, npde;
6248
6249	/*
6250	 * The cache mode bits are all in the low 32-bits of the
6251	 * PDE, so we can just spin on updating the low 32-bits.
6252	 */
6253	do {
6254		opde = *(u_int *)pde;
6255		npde = opde & ~mask;
6256		npde |= cache_bits;
6257	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
6258}
6259
6260/*
6261 * Map a set of physical memory pages into the kernel virtual
6262 * address space. Return a pointer to where it is mapped. This
6263 * routine is intended to be used for mapping device memory,
6264 * NOT real memory.
6265 */
6266void *
6267pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
6268{
6269	struct pmap_preinit_mapping *ppim;
6270	vm_offset_t va, offset;
6271	vm_size_t tmpsize;
6272	int i;
6273
6274	offset = pa & PAGE_MASK;
6275	size = round_page(offset + size);
6276	pa = trunc_page(pa);
6277
6278	if (!pmap_initialized) {
6279		va = 0;
6280		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
6281			ppim = pmap_preinit_mapping + i;
6282			if (ppim->va == 0) {
6283				ppim->pa = pa;
6284				ppim->sz = size;
6285				ppim->mode = mode;
6286				ppim->va = virtual_avail;
6287				virtual_avail += size;
6288				va = ppim->va;
6289				break;
6290			}
6291		}
6292		if (va == 0)
6293			panic("%s: too many preinit mappings", __func__);
6294	} else {
6295		/*
6296		 * If we have a preinit mapping, re-use it.
6297		 */
6298		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
6299			ppim = pmap_preinit_mapping + i;
6300			if (ppim->pa == pa && ppim->sz == size &&
6301			    ppim->mode == mode)
6302				return ((void *)(ppim->va + offset));
6303		}
6304		/*
6305		 * If the specified range of physical addresses fits within
6306		 * the direct map window, use the direct map.
6307		 */
6308		if (pa < dmaplimit && pa + size < dmaplimit) {
6309			va = PHYS_TO_DMAP(pa);
6310			if (!pmap_change_attr(va, size, mode))
6311				return ((void *)(va + offset));
6312		}
6313		va = kva_alloc(size);
6314		if (va == 0)
6315			panic("%s: Couldn't allocate KVA", __func__);
6316	}
6317	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
6318		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
6319	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
6320	pmap_invalidate_cache_range(va, va + tmpsize, FALSE);
6321	return ((void *)(va + offset));
6322}
6323
6324void *
6325pmap_mapdev(vm_paddr_t pa, vm_size_t size)
6326{
6327
6328	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
6329}
6330
6331void *
6332pmap_mapbios(vm_paddr_t pa, vm_size_t size)
6333{
6334
6335	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
6336}
6337
6338void
6339pmap_unmapdev(vm_offset_t va, vm_size_t size)
6340{
6341	struct pmap_preinit_mapping *ppim;
6342	vm_offset_t offset;
6343	int i;
6344
6345	/* If we gave a direct map region in pmap_mapdev, do nothing */
6346	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
6347		return;
6348	offset = va & PAGE_MASK;
6349	size = round_page(offset + size);
6350	va = trunc_page(va);
6351	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
6352		ppim = pmap_preinit_mapping + i;
6353		if (ppim->va == va && ppim->sz == size) {
6354			if (pmap_initialized)
6355				return;
6356			ppim->pa = 0;
6357			ppim->va = 0;
6358			ppim->sz = 0;
6359			ppim->mode = 0;
6360			if (va + size == virtual_avail)
6361				virtual_avail = va;
6362			return;
6363		}
6364	}
6365	if (pmap_initialized)
6366		kva_free(va, size);
6367}
6368
6369/*
6370 * Tries to demote a 1GB page mapping.
6371 */
6372static boolean_t
6373pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe, vm_offset_t va)
6374{
6375	pdp_entry_t newpdpe, oldpdpe;
6376	pd_entry_t *firstpde, newpde, *pde;
6377	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
6378	vm_paddr_t mpdepa;
6379	vm_page_t mpde;
6380
6381	PG_A = pmap_accessed_bit(pmap);
6382	PG_M = pmap_modified_bit(pmap);
6383	PG_V = pmap_valid_bit(pmap);
6384	PG_RW = pmap_rw_bit(pmap);
6385
6386	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6387	oldpdpe = *pdpe;
6388	KASSERT((oldpdpe & (PG_PS | PG_V)) == (PG_PS | PG_V),
6389	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
6390	if ((mpde = vm_page_alloc(NULL, va >> PDPSHIFT, VM_ALLOC_INTERRUPT |
6391	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
6392		CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
6393		    " in pmap %p", va, pmap);
6394		return (FALSE);
6395	}
6396	mpdepa = VM_PAGE_TO_PHYS(mpde);
6397	firstpde = (pd_entry_t *)PHYS_TO_DMAP(mpdepa);
6398	newpdpe = mpdepa | PG_M | PG_A | (oldpdpe & PG_U) | PG_RW | PG_V;
6399	KASSERT((oldpdpe & PG_A) != 0,
6400	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
6401	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
6402	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
6403	newpde = oldpdpe;
6404
6405	/*
6406	 * Initialize the page directory page.
6407	 */
6408	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
6409		*pde = newpde;
6410		newpde += NBPDR;
6411	}
6412
6413	/*
6414	 * Demote the mapping.
6415	 */
6416	*pdpe = newpdpe;
6417
6418	/*
6419	 * Invalidate a stale recursive mapping of the page directory page.
6420	 */
6421	pmap_invalidate_page(pmap, (vm_offset_t)vtopde(va));
6422
6423	pmap_pdpe_demotions++;
6424	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
6425	    " in pmap %p", va, pmap);
6426	return (TRUE);
6427}
6428
6429/*
6430 * Sets the memory attribute for the specified page.
6431 */
6432void
6433pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
6434{
6435
6436	m->md.pat_mode = ma;
6437
6438	/*
6439	 * If "m" is a normal page, update its direct mapping.  This update
6440	 * can be relied upon to perform any cache operations that are
6441	 * required for data coherence.
6442	 */
6443	if ((m->flags & PG_FICTITIOUS) == 0 &&
6444	    pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
6445	    m->md.pat_mode))
6446		panic("memory attribute change on the direct map failed");
6447}
6448
6449/*
6450 * Changes the specified virtual address range's memory type to that given by
6451 * the parameter "mode".  The specified virtual address range must be
6452 * completely contained within either the direct map or the kernel map.  If
6453 * the virtual address range is contained within the kernel map, then the
6454 * memory type for each of the corresponding ranges of the direct map is also
6455 * changed.  (The corresponding ranges of the direct map are those ranges that
6456 * map the same physical pages as the specified virtual address range.)  These
6457 * changes to the direct map are necessary because Intel describes the
6458 * behavior of their processors as "undefined" if two or more mappings to the
6459 * same physical page have different memory types.
6460 *
6461 * Returns zero if the change completed successfully, and either EINVAL or
6462 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
6463 * of the virtual address range was not mapped, and ENOMEM is returned if
6464 * there was insufficient memory available to complete the change.  In the
6465 * latter case, the memory type may have been changed on some part of the
6466 * virtual address range or the direct map.
6467 */
6468int
6469pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
6470{
6471	int error;
6472
6473	PMAP_LOCK(kernel_pmap);
6474	error = pmap_change_attr_locked(va, size, mode);
6475	PMAP_UNLOCK(kernel_pmap);
6476	return (error);
6477}
6478
6479static int
6480pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode)
6481{
6482	vm_offset_t base, offset, tmpva;
6483	vm_paddr_t pa_start, pa_end;
6484	pdp_entry_t *pdpe;
6485	pd_entry_t *pde;
6486	pt_entry_t *pte;
6487	int cache_bits_pte, cache_bits_pde, error;
6488	boolean_t changed;
6489
6490	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
6491	base = trunc_page(va);
6492	offset = va & PAGE_MASK;
6493	size = round_page(offset + size);
6494
6495	/*
6496	 * Only supported on kernel virtual addresses, including the direct
6497	 * map but excluding the recursive map.
6498	 */
6499	if (base < DMAP_MIN_ADDRESS)
6500		return (EINVAL);
6501
6502	cache_bits_pde = pmap_cache_bits(kernel_pmap, mode, 1);
6503	cache_bits_pte = pmap_cache_bits(kernel_pmap, mode, 0);
6504	changed = FALSE;
6505
6506	/*
6507	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
6508	 * into 4KB pages if required.
6509	 */
6510	for (tmpva = base; tmpva < base + size; ) {
6511		pdpe = pmap_pdpe(kernel_pmap, tmpva);
6512		if (*pdpe == 0)
6513			return (EINVAL);
6514		if (*pdpe & PG_PS) {
6515			/*
6516			 * If the current 1GB page already has the required
6517			 * memory type, then we need not demote this page. Just
6518			 * increment tmpva to the next 1GB page frame.
6519			 */
6520			if ((*pdpe & X86_PG_PDE_CACHE) == cache_bits_pde) {
6521				tmpva = trunc_1gpage(tmpva) + NBPDP;
6522				continue;
6523			}
6524
6525			/*
6526			 * If the current offset aligns with a 1GB page frame
6527			 * and there is at least 1GB left within the range, then
6528			 * we need not break down this page into 2MB pages.
6529			 */
6530			if ((tmpva & PDPMASK) == 0 &&
6531			    tmpva + PDPMASK < base + size) {
6532				tmpva += NBPDP;
6533				continue;
6534			}
6535			if (!pmap_demote_pdpe(kernel_pmap, pdpe, tmpva))
6536				return (ENOMEM);
6537		}
6538		pde = pmap_pdpe_to_pde(pdpe, tmpva);
6539		if (*pde == 0)
6540			return (EINVAL);
6541		if (*pde & PG_PS) {
6542			/*
6543			 * If the current 2MB page already has the required
6544			 * memory type, then we need not demote this page. Just
6545			 * increment tmpva to the next 2MB page frame.
6546			 */
6547			if ((*pde & X86_PG_PDE_CACHE) == cache_bits_pde) {
6548				tmpva = trunc_2mpage(tmpva) + NBPDR;
6549				continue;
6550			}
6551
6552			/*
6553			 * If the current offset aligns with a 2MB page frame
6554			 * and there is at least 2MB left within the range, then
6555			 * we need not break down this page into 4KB pages.
6556			 */
6557			if ((tmpva & PDRMASK) == 0 &&
6558			    tmpva + PDRMASK < base + size) {
6559				tmpva += NBPDR;
6560				continue;
6561			}
6562			if (!pmap_demote_pde(kernel_pmap, pde, tmpva))
6563				return (ENOMEM);
6564		}
6565		pte = pmap_pde_to_pte(pde, tmpva);
6566		if (*pte == 0)
6567			return (EINVAL);
6568		tmpva += PAGE_SIZE;
6569	}
6570	error = 0;
6571
6572	/*
6573	 * Ok, all the pages exist, so run through them updating their
6574	 * cache mode if required.
6575	 */
6576	pa_start = pa_end = 0;
6577	for (tmpva = base; tmpva < base + size; ) {
6578		pdpe = pmap_pdpe(kernel_pmap, tmpva);
6579		if (*pdpe & PG_PS) {
6580			if ((*pdpe & X86_PG_PDE_CACHE) != cache_bits_pde) {
6581				pmap_pde_attr(pdpe, cache_bits_pde,
6582				    X86_PG_PDE_CACHE);
6583				changed = TRUE;
6584			}
6585			if (tmpva >= VM_MIN_KERNEL_ADDRESS) {
6586				if (pa_start == pa_end) {
6587					/* Start physical address run. */
6588					pa_start = *pdpe & PG_PS_FRAME;
6589					pa_end = pa_start + NBPDP;
6590				} else if (pa_end == (*pdpe & PG_PS_FRAME))
6591					pa_end += NBPDP;
6592				else {
6593					/* Run ended, update direct map. */
6594					error = pmap_change_attr_locked(
6595					    PHYS_TO_DMAP(pa_start),
6596					    pa_end - pa_start, mode);
6597					if (error != 0)
6598						break;
6599					/* Start physical address run. */
6600					pa_start = *pdpe & PG_PS_FRAME;
6601					pa_end = pa_start + NBPDP;
6602				}
6603			}
6604			tmpva = trunc_1gpage(tmpva) + NBPDP;
6605			continue;
6606		}
6607		pde = pmap_pdpe_to_pde(pdpe, tmpva);
6608		if (*pde & PG_PS) {
6609			if ((*pde & X86_PG_PDE_CACHE) != cache_bits_pde) {
6610				pmap_pde_attr(pde, cache_bits_pde,
6611				    X86_PG_PDE_CACHE);
6612				changed = TRUE;
6613			}
6614			if (tmpva >= VM_MIN_KERNEL_ADDRESS) {
6615				if (pa_start == pa_end) {
6616					/* Start physical address run. */
6617					pa_start = *pde & PG_PS_FRAME;
6618					pa_end = pa_start + NBPDR;
6619				} else if (pa_end == (*pde & PG_PS_FRAME))
6620					pa_end += NBPDR;
6621				else {
6622					/* Run ended, update direct map. */
6623					error = pmap_change_attr_locked(
6624					    PHYS_TO_DMAP(pa_start),
6625					    pa_end - pa_start, mode);
6626					if (error != 0)
6627						break;
6628					/* Start physical address run. */
6629					pa_start = *pde & PG_PS_FRAME;
6630					pa_end = pa_start + NBPDR;
6631				}
6632			}
6633			tmpva = trunc_2mpage(tmpva) + NBPDR;
6634		} else {
6635			pte = pmap_pde_to_pte(pde, tmpva);
6636			if ((*pte & X86_PG_PTE_CACHE) != cache_bits_pte) {
6637				pmap_pte_attr(pte, cache_bits_pte,
6638				    X86_PG_PTE_CACHE);
6639				changed = TRUE;
6640			}
6641			if (tmpva >= VM_MIN_KERNEL_ADDRESS) {
6642				if (pa_start == pa_end) {
6643					/* Start physical address run. */
6644					pa_start = *pte & PG_FRAME;
6645					pa_end = pa_start + PAGE_SIZE;
6646				} else if (pa_end == (*pte & PG_FRAME))
6647					pa_end += PAGE_SIZE;
6648				else {
6649					/* Run ended, update direct map. */
6650					error = pmap_change_attr_locked(
6651					    PHYS_TO_DMAP(pa_start),
6652					    pa_end - pa_start, mode);
6653					if (error != 0)
6654						break;
6655					/* Start physical address run. */
6656					pa_start = *pte & PG_FRAME;
6657					pa_end = pa_start + PAGE_SIZE;
6658				}
6659			}
6660			tmpva += PAGE_SIZE;
6661		}
6662	}
6663	if (error == 0 && pa_start != pa_end)
6664		error = pmap_change_attr_locked(PHYS_TO_DMAP(pa_start),
6665		    pa_end - pa_start, mode);
6666
6667	/*
6668	 * Flush CPU caches if required to make sure any data isn't cached that
6669	 * shouldn't be, etc.
6670	 */
6671	if (changed) {
6672		pmap_invalidate_range(kernel_pmap, base, tmpva);
6673		pmap_invalidate_cache_range(base, tmpva, FALSE);
6674	}
6675	return (error);
6676}
6677
6678/*
6679 * Demotes any mapping within the direct map region that covers more than the
6680 * specified range of physical addresses.  This range's size must be a power
6681 * of two and its starting address must be a multiple of its size.  Since the
6682 * demotion does not change any attributes of the mapping, a TLB invalidation
6683 * is not mandatory.  The caller may, however, request a TLB invalidation.
6684 */
6685void
6686pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, boolean_t invalidate)
6687{
6688	pdp_entry_t *pdpe;
6689	pd_entry_t *pde;
6690	vm_offset_t va;
6691	boolean_t changed;
6692
6693	if (len == 0)
6694		return;
6695	KASSERT(powerof2(len), ("pmap_demote_DMAP: len is not a power of 2"));
6696	KASSERT((base & (len - 1)) == 0,
6697	    ("pmap_demote_DMAP: base is not a multiple of len"));
6698	if (len < NBPDP && base < dmaplimit) {
6699		va = PHYS_TO_DMAP(base);
6700		changed = FALSE;
6701		PMAP_LOCK(kernel_pmap);
6702		pdpe = pmap_pdpe(kernel_pmap, va);
6703		if ((*pdpe & X86_PG_V) == 0)
6704			panic("pmap_demote_DMAP: invalid PDPE");
6705		if ((*pdpe & PG_PS) != 0) {
6706			if (!pmap_demote_pdpe(kernel_pmap, pdpe, va))
6707				panic("pmap_demote_DMAP: PDPE failed");
6708			changed = TRUE;
6709		}
6710		if (len < NBPDR) {
6711			pde = pmap_pdpe_to_pde(pdpe, va);
6712			if ((*pde & X86_PG_V) == 0)
6713				panic("pmap_demote_DMAP: invalid PDE");
6714			if ((*pde & PG_PS) != 0) {
6715				if (!pmap_demote_pde(kernel_pmap, pde, va))
6716					panic("pmap_demote_DMAP: PDE failed");
6717				changed = TRUE;
6718			}
6719		}
6720		if (changed && invalidate)
6721			pmap_invalidate_page(kernel_pmap, va);
6722		PMAP_UNLOCK(kernel_pmap);
6723	}
6724}
6725
6726/*
6727 * perform the pmap work for mincore
6728 */
6729int
6730pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
6731{
6732	pd_entry_t *pdep;
6733	pt_entry_t pte, PG_A, PG_M, PG_RW, PG_V;
6734	vm_paddr_t pa;
6735	int val;
6736
6737	PG_A = pmap_accessed_bit(pmap);
6738	PG_M = pmap_modified_bit(pmap);
6739	PG_V = pmap_valid_bit(pmap);
6740	PG_RW = pmap_rw_bit(pmap);
6741
6742	PMAP_LOCK(pmap);
6743retry:
6744	pdep = pmap_pde(pmap, addr);
6745	if (pdep != NULL && (*pdep & PG_V)) {
6746		if (*pdep & PG_PS) {
6747			pte = *pdep;
6748			/* Compute the physical address of the 4KB page. */
6749			pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
6750			    PG_FRAME;
6751			val = MINCORE_SUPER;
6752		} else {
6753			pte = *pmap_pde_to_pte(pdep, addr);
6754			pa = pte & PG_FRAME;
6755			val = 0;
6756		}
6757	} else {
6758		pte = 0;
6759		pa = 0;
6760		val = 0;
6761	}
6762	if ((pte & PG_V) != 0) {
6763		val |= MINCORE_INCORE;
6764		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6765			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
6766		if ((pte & PG_A) != 0)
6767			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
6768	}
6769	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
6770	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
6771	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
6772		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
6773		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
6774			goto retry;
6775	} else
6776		PA_UNLOCK_COND(*locked_pa);
6777	PMAP_UNLOCK(pmap);
6778	return (val);
6779}
6780
6781void
6782pmap_activate(struct thread *td)
6783{
6784	pmap_t	pmap, oldpmap;
6785	u_int	cpuid;
6786
6787	critical_enter();
6788	pmap = vmspace_pmap(td->td_proc->p_vmspace);
6789	oldpmap = PCPU_GET(curpmap);
6790	cpuid = PCPU_GET(cpuid);
6791#ifdef SMP
6792	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
6793	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
6794	CPU_SET_ATOMIC(cpuid, &pmap->pm_save);
6795#else
6796	CPU_CLR(cpuid, &oldpmap->pm_active);
6797	CPU_SET(cpuid, &pmap->pm_active);
6798	CPU_SET(cpuid, &pmap->pm_save);
6799#endif
6800	td->td_pcb->pcb_cr3 = pmap->pm_cr3;
6801	load_cr3(pmap->pm_cr3);
6802	PCPU_SET(curpmap, pmap);
6803	critical_exit();
6804}
6805
6806void
6807pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
6808{
6809}
6810
6811/*
6812 *	Increase the starting virtual address of the given mapping if a
6813 *	different alignment might result in more superpage mappings.
6814 */
6815void
6816pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
6817    vm_offset_t *addr, vm_size_t size)
6818{
6819	vm_offset_t superpage_offset;
6820
6821	if (size < NBPDR)
6822		return;
6823	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
6824		offset += ptoa(object->pg_color);
6825	superpage_offset = offset & PDRMASK;
6826	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
6827	    (*addr & PDRMASK) == superpage_offset)
6828		return;
6829	if ((*addr & PDRMASK) < superpage_offset)
6830		*addr = (*addr & ~PDRMASK) + superpage_offset;
6831	else
6832		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
6833}
6834
6835#ifdef INVARIANTS
6836static unsigned long num_dirty_emulations;
6837SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_dirty_emulations, CTLFLAG_RW,
6838	     &num_dirty_emulations, 0, NULL);
6839
6840static unsigned long num_accessed_emulations;
6841SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_accessed_emulations, CTLFLAG_RW,
6842	     &num_accessed_emulations, 0, NULL);
6843
6844static unsigned long num_superpage_accessed_emulations;
6845SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_superpage_accessed_emulations, CTLFLAG_RW,
6846	     &num_superpage_accessed_emulations, 0, NULL);
6847
6848static unsigned long ad_emulation_superpage_promotions;
6849SYSCTL_ULONG(_vm_pmap, OID_AUTO, ad_emulation_superpage_promotions, CTLFLAG_RW,
6850	     &ad_emulation_superpage_promotions, 0, NULL);
6851#endif	/* INVARIANTS */
6852
6853int
6854pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype)
6855{
6856	int rv;
6857	struct rwlock *lock;
6858	vm_page_t m, mpte;
6859	pd_entry_t *pde;
6860	pt_entry_t *pte, PG_A, PG_M, PG_RW, PG_V;
6861	boolean_t pv_lists_locked;
6862
6863	KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE,
6864	    ("pmap_emulate_accessed_dirty: invalid fault type %d", ftype));
6865
6866	if (!pmap_emulate_ad_bits(pmap))
6867		return (-1);
6868
6869	PG_A = pmap_accessed_bit(pmap);
6870	PG_M = pmap_modified_bit(pmap);
6871	PG_V = pmap_valid_bit(pmap);
6872	PG_RW = pmap_rw_bit(pmap);
6873
6874	rv = -1;
6875	lock = NULL;
6876	pv_lists_locked = FALSE;
6877retry:
6878	PMAP_LOCK(pmap);
6879
6880	pde = pmap_pde(pmap, va);
6881	if (pde == NULL || (*pde & PG_V) == 0)
6882		goto done;
6883
6884	if ((*pde & PG_PS) != 0) {
6885		if (ftype == VM_PROT_READ) {
6886#ifdef INVARIANTS
6887			atomic_add_long(&num_superpage_accessed_emulations, 1);
6888#endif
6889			*pde |= PG_A;
6890			rv = 0;
6891		}
6892		goto done;
6893	}
6894
6895	pte = pmap_pde_to_pte(pde, va);
6896	if ((*pte & PG_V) == 0)
6897		goto done;
6898
6899	if (ftype == VM_PROT_WRITE) {
6900		if ((*pte & PG_RW) == 0)
6901			goto done;
6902		/*
6903		 * Set the modified and accessed bits simultaneously.
6904		 *
6905		 * Intel EPT PTEs that do software emulation of A/D bits map
6906		 * PG_A and PG_M to EPT_PG_READ and EPT_PG_WRITE respectively.
6907		 * An EPT misconfiguration is triggered if the PTE is writable
6908		 * but not readable (WR=10). This is avoided by setting PG_A
6909		 * and PG_M simultaneously.
6910		 */
6911		*pte |= PG_M | PG_A;
6912	} else {
6913		*pte |= PG_A;
6914	}
6915
6916	/* try to promote the mapping */
6917	if (va < VM_MAXUSER_ADDRESS)
6918		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
6919	else
6920		mpte = NULL;
6921
6922	m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
6923
6924	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
6925	    pmap_ps_enabled(pmap) &&
6926	    (m->flags & PG_FICTITIOUS) == 0 &&
6927	    vm_reserv_level_iffullpop(m) == 0) {
6928		if (!pv_lists_locked) {
6929			pv_lists_locked = TRUE;
6930			if (!rw_try_rlock(&pvh_global_lock)) {
6931				PMAP_UNLOCK(pmap);
6932				rw_rlock(&pvh_global_lock);
6933				goto retry;
6934			}
6935		}
6936		pmap_promote_pde(pmap, pde, va, &lock);
6937#ifdef INVARIANTS
6938		atomic_add_long(&ad_emulation_superpage_promotions, 1);
6939#endif
6940	}
6941#ifdef INVARIANTS
6942	if (ftype == VM_PROT_WRITE)
6943		atomic_add_long(&num_dirty_emulations, 1);
6944	else
6945		atomic_add_long(&num_accessed_emulations, 1);
6946#endif
6947	rv = 0;		/* success */
6948done:
6949	if (lock != NULL)
6950		rw_wunlock(lock);
6951	if (pv_lists_locked)
6952		rw_runlock(&pvh_global_lock);
6953	PMAP_UNLOCK(pmap);
6954	return (rv);
6955}
6956
6957void
6958pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num)
6959{
6960	pml4_entry_t *pml4;
6961	pdp_entry_t *pdp;
6962	pd_entry_t *pde;
6963	pt_entry_t *pte, PG_V;
6964	int idx;
6965
6966	idx = 0;
6967	PG_V = pmap_valid_bit(pmap);
6968	PMAP_LOCK(pmap);
6969
6970	pml4 = pmap_pml4e(pmap, va);
6971	ptr[idx++] = *pml4;
6972	if ((*pml4 & PG_V) == 0)
6973		goto done;
6974
6975	pdp = pmap_pml4e_to_pdpe(pml4, va);
6976	ptr[idx++] = *pdp;
6977	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0)
6978		goto done;
6979
6980	pde = pmap_pdpe_to_pde(pdp, va);
6981	ptr[idx++] = *pde;
6982	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0)
6983		goto done;
6984
6985	pte = pmap_pde_to_pte(pde, va);
6986	ptr[idx++] = *pte;
6987
6988done:
6989	PMAP_UNLOCK(pmap);
6990	*num = idx;
6991}
6992
6993#include "opt_ddb.h"
6994#ifdef DDB
6995#include <ddb/ddb.h>
6996
6997DB_SHOW_COMMAND(pte, pmap_print_pte)
6998{
6999	pmap_t pmap;
7000	pml4_entry_t *pml4;
7001	pdp_entry_t *pdp;
7002	pd_entry_t *pde;
7003	pt_entry_t *pte, PG_V;
7004	vm_offset_t va;
7005
7006	if (have_addr) {
7007		va = (vm_offset_t)addr;
7008		pmap = PCPU_GET(curpmap); /* XXX */
7009	} else {
7010		db_printf("show pte addr\n");
7011		return;
7012	}
7013	PG_V = pmap_valid_bit(pmap);
7014	pml4 = pmap_pml4e(pmap, va);
7015	db_printf("VA %#016lx pml4e %#016lx", va, *pml4);
7016	if ((*pml4 & PG_V) == 0) {
7017		db_printf("\n");
7018		return;
7019	}
7020	pdp = pmap_pml4e_to_pdpe(pml4, va);
7021	db_printf(" pdpe %#016lx", *pdp);
7022	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0) {
7023		db_printf("\n");
7024		return;
7025	}
7026	pde = pmap_pdpe_to_pde(pdp, va);
7027	db_printf(" pde %#016lx", *pde);
7028	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0) {
7029		db_printf("\n");
7030		return;
7031	}
7032	pte = pmap_pde_to_pte(pde, va);
7033	db_printf(" pte %#016lx\n", *pte);
7034}
7035
7036DB_SHOW_COMMAND(phys2dmap, pmap_phys2dmap)
7037{
7038	vm_paddr_t a;
7039
7040	if (have_addr) {
7041		a = (vm_paddr_t)addr;
7042		db_printf("0x%jx\n", (uintmax_t)PHYS_TO_DMAP(a));
7043	} else {
7044		db_printf("show phys2dmap addr\n");
7045	}
7046}
7047#endif
7048