pmap.c revision 287126
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2003 Peter Wemm
9 * All rights reserved.
10 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
11 * All rights reserved.
12 *
13 * This code is derived from software contributed to Berkeley by
14 * the Systems Programming Group of the University of Utah Computer
15 * Science Department and William Jolitz of UUNET Technologies Inc.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 *    notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 *    notice, this list of conditions and the following disclaimer in the
24 *    documentation and/or other materials provided with the distribution.
25 * 3. All advertising materials mentioning features or use of this software
26 *    must display the following acknowledgement:
27 *	This product includes software developed by the University of
28 *	California, Berkeley and its contributors.
29 * 4. Neither the name of the University nor the names of its contributors
30 *    may be used to endorse or promote products derived from this software
31 *    without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 * SUCH DAMAGE.
44 *
45 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
46 */
47/*-
48 * Copyright (c) 2003 Networks Associates Technology, Inc.
49 * All rights reserved.
50 *
51 * This software was developed for the FreeBSD Project by Jake Burkholder,
52 * Safeport Network Services, and Network Associates Laboratories, the
53 * Security Research Division of Network Associates, Inc. under
54 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
55 * CHATS research program.
56 *
57 * Redistribution and use in source and binary forms, with or without
58 * modification, are permitted provided that the following conditions
59 * are met:
60 * 1. Redistributions of source code must retain the above copyright
61 *    notice, this list of conditions and the following disclaimer.
62 * 2. Redistributions in binary form must reproduce the above copyright
63 *    notice, this list of conditions and the following disclaimer in the
64 *    documentation and/or other materials provided with the distribution.
65 *
66 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
67 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
68 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
69 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
70 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
71 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
72 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
73 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
74 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
75 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
76 * SUCH DAMAGE.
77 */
78
79#define	AMD64_NPT_AWARE
80
81#include <sys/cdefs.h>
82__FBSDID("$FreeBSD: stable/10/sys/amd64/amd64/pmap.c 287126 2015-08-25 14:39:40Z marcel $");
83
84/*
85 *	Manages physical address maps.
86 *
87 *	Since the information managed by this module is
88 *	also stored by the logical address mapping module,
89 *	this module may throw away valid virtual-to-physical
90 *	mappings at almost any time.  However, invalidations
91 *	of virtual-to-physical mappings must be done as
92 *	requested.
93 *
94 *	In order to cope with hardware architectures which
95 *	make virtual-to-physical map invalidates expensive,
96 *	this module may delay invalidate or reduced protection
97 *	operations until such time as they are actually
98 *	necessary.  This module is given full information as
99 *	to which processors are currently using which maps,
100 *	and to when physical maps must be made correct.
101 */
102
103#include "opt_pmap.h"
104#include "opt_vm.h"
105
106#include <sys/param.h>
107#include <sys/bus.h>
108#include <sys/systm.h>
109#include <sys/kernel.h>
110#include <sys/ktr.h>
111#include <sys/lock.h>
112#include <sys/malloc.h>
113#include <sys/mman.h>
114#include <sys/mutex.h>
115#include <sys/proc.h>
116#include <sys/rwlock.h>
117#include <sys/sx.h>
118#include <sys/vmmeter.h>
119#include <sys/sched.h>
120#include <sys/sysctl.h>
121#include <sys/_unrhdr.h>
122#include <sys/smp.h>
123
124#include <vm/vm.h>
125#include <vm/vm_param.h>
126#include <vm/vm_kern.h>
127#include <vm/vm_page.h>
128#include <vm/vm_map.h>
129#include <vm/vm_object.h>
130#include <vm/vm_extern.h>
131#include <vm/vm_pageout.h>
132#include <vm/vm_pager.h>
133#include <vm/vm_phys.h>
134#include <vm/vm_radix.h>
135#include <vm/vm_reserv.h>
136#include <vm/uma.h>
137
138#include <machine/intr_machdep.h>
139#include <machine/apicvar.h>
140#include <machine/cpu.h>
141#include <machine/cputypes.h>
142#include <machine/md_var.h>
143#include <machine/pcb.h>
144#include <machine/specialreg.h>
145#ifdef SMP
146#include <machine/smp.h>
147#endif
148
149static __inline boolean_t
150pmap_type_guest(pmap_t pmap)
151{
152
153	return ((pmap->pm_type == PT_EPT) || (pmap->pm_type == PT_RVI));
154}
155
156static __inline boolean_t
157pmap_emulate_ad_bits(pmap_t pmap)
158{
159
160	return ((pmap->pm_flags & PMAP_EMULATE_AD_BITS) != 0);
161}
162
163static __inline pt_entry_t
164pmap_valid_bit(pmap_t pmap)
165{
166	pt_entry_t mask;
167
168	switch (pmap->pm_type) {
169	case PT_X86:
170	case PT_RVI:
171		mask = X86_PG_V;
172		break;
173	case PT_EPT:
174		if (pmap_emulate_ad_bits(pmap))
175			mask = EPT_PG_EMUL_V;
176		else
177			mask = EPT_PG_READ;
178		break;
179	default:
180		panic("pmap_valid_bit: invalid pm_type %d", pmap->pm_type);
181	}
182
183	return (mask);
184}
185
186static __inline pt_entry_t
187pmap_rw_bit(pmap_t pmap)
188{
189	pt_entry_t mask;
190
191	switch (pmap->pm_type) {
192	case PT_X86:
193	case PT_RVI:
194		mask = X86_PG_RW;
195		break;
196	case PT_EPT:
197		if (pmap_emulate_ad_bits(pmap))
198			mask = EPT_PG_EMUL_RW;
199		else
200			mask = EPT_PG_WRITE;
201		break;
202	default:
203		panic("pmap_rw_bit: invalid pm_type %d", pmap->pm_type);
204	}
205
206	return (mask);
207}
208
209static __inline pt_entry_t
210pmap_global_bit(pmap_t pmap)
211{
212	pt_entry_t mask;
213
214	switch (pmap->pm_type) {
215	case PT_X86:
216		mask = X86_PG_G;
217		break;
218	case PT_RVI:
219	case PT_EPT:
220		mask = 0;
221		break;
222	default:
223		panic("pmap_global_bit: invalid pm_type %d", pmap->pm_type);
224	}
225
226	return (mask);
227}
228
229static __inline pt_entry_t
230pmap_accessed_bit(pmap_t pmap)
231{
232	pt_entry_t mask;
233
234	switch (pmap->pm_type) {
235	case PT_X86:
236	case PT_RVI:
237		mask = X86_PG_A;
238		break;
239	case PT_EPT:
240		if (pmap_emulate_ad_bits(pmap))
241			mask = EPT_PG_READ;
242		else
243			mask = EPT_PG_A;
244		break;
245	default:
246		panic("pmap_accessed_bit: invalid pm_type %d", pmap->pm_type);
247	}
248
249	return (mask);
250}
251
252static __inline pt_entry_t
253pmap_modified_bit(pmap_t pmap)
254{
255	pt_entry_t mask;
256
257	switch (pmap->pm_type) {
258	case PT_X86:
259	case PT_RVI:
260		mask = X86_PG_M;
261		break;
262	case PT_EPT:
263		if (pmap_emulate_ad_bits(pmap))
264			mask = EPT_PG_WRITE;
265		else
266			mask = EPT_PG_M;
267		break;
268	default:
269		panic("pmap_modified_bit: invalid pm_type %d", pmap->pm_type);
270	}
271
272	return (mask);
273}
274
275#if !defined(DIAGNOSTIC)
276#ifdef __GNUC_GNU_INLINE__
277#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
278#else
279#define PMAP_INLINE	extern inline
280#endif
281#else
282#define PMAP_INLINE
283#endif
284
285#ifdef PV_STATS
286#define PV_STAT(x)	do { x ; } while (0)
287#else
288#define PV_STAT(x)	do { } while (0)
289#endif
290
291#define	pa_index(pa)	((pa) >> PDRSHIFT)
292#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
293
294#define	NPV_LIST_LOCKS	MAXCPU
295
296#define	PHYS_TO_PV_LIST_LOCK(pa)	\
297			(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
298
299#define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
300	struct rwlock **_lockp = (lockp);		\
301	struct rwlock *_new_lock;			\
302							\
303	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
304	if (_new_lock != *_lockp) {			\
305		if (*_lockp != NULL)			\
306			rw_wunlock(*_lockp);		\
307		*_lockp = _new_lock;			\
308		rw_wlock(*_lockp);			\
309	}						\
310} while (0)
311
312#define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
313			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
314
315#define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
316	struct rwlock **_lockp = (lockp);		\
317							\
318	if (*_lockp != NULL) {				\
319		rw_wunlock(*_lockp);			\
320		*_lockp = NULL;				\
321	}						\
322} while (0)
323
324#define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
325			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
326
327struct pmap kernel_pmap_store;
328
329vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
330vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
331
332int nkpt;
333SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
334    "Number of kernel page table pages allocated on bootup");
335
336static int ndmpdp;
337vm_paddr_t dmaplimit;
338vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
339pt_entry_t pg_nx;
340
341static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
342
343static int pat_works = 1;
344SYSCTL_INT(_vm_pmap, OID_AUTO, pat_works, CTLFLAG_RD, &pat_works, 1,
345    "Is page attribute table fully functional?");
346
347static int pg_ps_enabled = 1;
348SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
349    "Are large page mappings enabled?");
350
351#define	PAT_INDEX_SIZE	8
352static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
353
354static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
355static u_int64_t	KPDphys;	/* phys addr of kernel level 2 */
356u_int64_t		KPDPphys;	/* phys addr of kernel level 3 */
357u_int64_t		KPML4phys;	/* phys addr of kernel level 4 */
358
359static u_int64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
360static u_int64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
361static int		ndmpdpphys;	/* number of DMPDPphys pages */
362
363/*
364 * pmap_mapdev support pre initialization (i.e. console)
365 */
366#define	PMAP_PREINIT_MAPPING_COUNT	8
367static struct pmap_preinit_mapping {
368	vm_paddr_t	pa;
369	vm_offset_t	va;
370	vm_size_t	sz;
371	int		mode;
372} pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
373static int pmap_initialized;
374
375static struct rwlock_padalign pvh_global_lock;
376
377/*
378 * Data for the pv entry allocation mechanism
379 */
380static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
381static struct mtx pv_chunks_mutex;
382static struct rwlock pv_list_locks[NPV_LIST_LOCKS];
383static struct md_page *pv_table;
384
385/*
386 * All those kernel PT submaps that BSD is so fond of
387 */
388pt_entry_t *CMAP1 = 0;
389caddr_t CADDR1 = 0;
390
391static int pmap_flags = PMAP_PDE_SUPERPAGE;	/* flags for x86 pmaps */
392
393static struct unrhdr pcid_unr;
394static struct mtx pcid_mtx;
395int pmap_pcid_enabled = 0;
396SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_enabled, CTLFLAG_RDTUN, &pmap_pcid_enabled,
397    0, "Is TLB Context ID enabled ?");
398int invpcid_works = 0;
399SYSCTL_INT(_vm_pmap, OID_AUTO, invpcid_works, CTLFLAG_RD, &invpcid_works, 0,
400    "Is the invpcid instruction available ?");
401
402static int
403pmap_pcid_save_cnt_proc(SYSCTL_HANDLER_ARGS)
404{
405	int i;
406	uint64_t res;
407
408	res = 0;
409	CPU_FOREACH(i) {
410		res += cpuid_to_pcpu[i]->pc_pm_save_cnt;
411	}
412	return (sysctl_handle_64(oidp, &res, 0, req));
413}
414SYSCTL_PROC(_vm_pmap, OID_AUTO, pcid_save_cnt, CTLTYPE_U64 | CTLFLAG_RW |
415    CTLFLAG_MPSAFE, NULL, 0, pmap_pcid_save_cnt_proc, "QU",
416    "Count of saved TLB context on switch");
417
418/* pmap_copy_pages() over non-DMAP */
419static struct mtx cpage_lock;
420static vm_offset_t cpage_a;
421static vm_offset_t cpage_b;
422
423/*
424 * Crashdump maps.
425 */
426static caddr_t crashdumpmap;
427
428static void	free_pv_chunk(struct pv_chunk *pc);
429static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
430static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
431static int	popcnt_pc_map_elem(uint64_t elem);
432static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
433static void	reserve_pv_entries(pmap_t pmap, int needed,
434		    struct rwlock **lockp);
435static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
436		    struct rwlock **lockp);
437static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
438		    struct rwlock **lockp);
439static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
440		    struct rwlock **lockp);
441static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
442static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
443		    vm_offset_t va);
444
445static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode);
446static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
447static boolean_t pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde,
448    vm_offset_t va, struct rwlock **lockp);
449static boolean_t pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe,
450    vm_offset_t va);
451static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
452    vm_prot_t prot, struct rwlock **lockp);
453static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
454    vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
455static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
456static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
457static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
458static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
459static void pmap_pde_attr(pd_entry_t *pde, int cache_bits, int mask);
460static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
461    struct rwlock **lockp);
462static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
463    vm_prot_t prot);
464static void pmap_pte_attr(pt_entry_t *pte, int cache_bits, int mask);
465static int pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
466    struct spglist *free, struct rwlock **lockp);
467static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
468    pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
469static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
470static void pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
471    struct spglist *free);
472static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
473    vm_page_t m, struct rwlock **lockp);
474static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
475    pd_entry_t newpde);
476static void pmap_update_pde_invalidate(pmap_t, vm_offset_t va, pd_entry_t pde);
477
478static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
479		struct rwlock **lockp);
480static vm_page_t pmap_allocpde(pmap_t pmap, vm_offset_t va,
481		struct rwlock **lockp);
482static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
483		struct rwlock **lockp);
484
485static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
486    struct spglist *free);
487static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
488static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
489
490/*
491 * Move the kernel virtual free pointer to the next
492 * 2MB.  This is used to help improve performance
493 * by using a large (2MB) page for much of the kernel
494 * (.text, .data, .bss)
495 */
496static vm_offset_t
497pmap_kmem_choose(vm_offset_t addr)
498{
499	vm_offset_t newaddr = addr;
500
501	newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
502	return (newaddr);
503}
504
505/********************/
506/* Inline functions */
507/********************/
508
509/* Return a non-clipped PD index for a given VA */
510static __inline vm_pindex_t
511pmap_pde_pindex(vm_offset_t va)
512{
513	return (va >> PDRSHIFT);
514}
515
516
517/* Return various clipped indexes for a given VA */
518static __inline vm_pindex_t
519pmap_pte_index(vm_offset_t va)
520{
521
522	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
523}
524
525static __inline vm_pindex_t
526pmap_pde_index(vm_offset_t va)
527{
528
529	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
530}
531
532static __inline vm_pindex_t
533pmap_pdpe_index(vm_offset_t va)
534{
535
536	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
537}
538
539static __inline vm_pindex_t
540pmap_pml4e_index(vm_offset_t va)
541{
542
543	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
544}
545
546/* Return a pointer to the PML4 slot that corresponds to a VA */
547static __inline pml4_entry_t *
548pmap_pml4e(pmap_t pmap, vm_offset_t va)
549{
550
551	return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
552}
553
554/* Return a pointer to the PDP slot that corresponds to a VA */
555static __inline pdp_entry_t *
556pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
557{
558	pdp_entry_t *pdpe;
559
560	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
561	return (&pdpe[pmap_pdpe_index(va)]);
562}
563
564/* Return a pointer to the PDP slot that corresponds to a VA */
565static __inline pdp_entry_t *
566pmap_pdpe(pmap_t pmap, vm_offset_t va)
567{
568	pml4_entry_t *pml4e;
569	pt_entry_t PG_V;
570
571	PG_V = pmap_valid_bit(pmap);
572	pml4e = pmap_pml4e(pmap, va);
573	if ((*pml4e & PG_V) == 0)
574		return (NULL);
575	return (pmap_pml4e_to_pdpe(pml4e, va));
576}
577
578/* Return a pointer to the PD slot that corresponds to a VA */
579static __inline pd_entry_t *
580pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
581{
582	pd_entry_t *pde;
583
584	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
585	return (&pde[pmap_pde_index(va)]);
586}
587
588/* Return a pointer to the PD slot that corresponds to a VA */
589static __inline pd_entry_t *
590pmap_pde(pmap_t pmap, vm_offset_t va)
591{
592	pdp_entry_t *pdpe;
593	pt_entry_t PG_V;
594
595	PG_V = pmap_valid_bit(pmap);
596	pdpe = pmap_pdpe(pmap, va);
597	if (pdpe == NULL || (*pdpe & PG_V) == 0)
598		return (NULL);
599	return (pmap_pdpe_to_pde(pdpe, va));
600}
601
602/* Return a pointer to the PT slot that corresponds to a VA */
603static __inline pt_entry_t *
604pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
605{
606	pt_entry_t *pte;
607
608	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
609	return (&pte[pmap_pte_index(va)]);
610}
611
612/* Return a pointer to the PT slot that corresponds to a VA */
613static __inline pt_entry_t *
614pmap_pte(pmap_t pmap, vm_offset_t va)
615{
616	pd_entry_t *pde;
617	pt_entry_t PG_V;
618
619	PG_V = pmap_valid_bit(pmap);
620	pde = pmap_pde(pmap, va);
621	if (pde == NULL || (*pde & PG_V) == 0)
622		return (NULL);
623	if ((*pde & PG_PS) != 0)	/* compat with i386 pmap_pte() */
624		return ((pt_entry_t *)pde);
625	return (pmap_pde_to_pte(pde, va));
626}
627
628static __inline void
629pmap_resident_count_inc(pmap_t pmap, int count)
630{
631
632	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
633	pmap->pm_stats.resident_count += count;
634}
635
636static __inline void
637pmap_resident_count_dec(pmap_t pmap, int count)
638{
639
640	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
641	KASSERT(pmap->pm_stats.resident_count >= count,
642	    ("pmap %p resident count underflow %ld %d", pmap,
643	    pmap->pm_stats.resident_count, count));
644	pmap->pm_stats.resident_count -= count;
645}
646
647PMAP_INLINE pt_entry_t *
648vtopte(vm_offset_t va)
649{
650	u_int64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
651
652	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopte on a uva/gpa 0x%0lx", va));
653
654	return (PTmap + ((va >> PAGE_SHIFT) & mask));
655}
656
657static __inline pd_entry_t *
658vtopde(vm_offset_t va)
659{
660	u_int64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
661
662	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopde on a uva/gpa 0x%0lx", va));
663
664	return (PDmap + ((va >> PDRSHIFT) & mask));
665}
666
667static u_int64_t
668allocpages(vm_paddr_t *firstaddr, int n)
669{
670	u_int64_t ret;
671
672	ret = *firstaddr;
673	bzero((void *)ret, n * PAGE_SIZE);
674	*firstaddr += n * PAGE_SIZE;
675	return (ret);
676}
677
678CTASSERT(powerof2(NDMPML4E));
679
680/* number of kernel PDP slots */
681#define	NKPDPE(ptpgs)		howmany((ptpgs), NPDEPG)
682
683static void
684nkpt_init(vm_paddr_t addr)
685{
686	int pt_pages;
687
688#ifdef NKPT
689	pt_pages = NKPT;
690#else
691	pt_pages = howmany(addr, 1 << PDRSHIFT);
692	pt_pages += NKPDPE(pt_pages);
693
694	/*
695	 * Add some slop beyond the bare minimum required for bootstrapping
696	 * the kernel.
697	 *
698	 * This is quite important when allocating KVA for kernel modules.
699	 * The modules are required to be linked in the negative 2GB of
700	 * the address space.  If we run out of KVA in this region then
701	 * pmap_growkernel() will need to allocate page table pages to map
702	 * the entire 512GB of KVA space which is an unnecessary tax on
703	 * physical memory.
704	 */
705	pt_pages += 8;		/* 16MB additional slop for kernel modules */
706#endif
707	nkpt = pt_pages;
708}
709
710static void
711create_pagetables(vm_paddr_t *firstaddr)
712{
713	int i, j, ndm1g, nkpdpe;
714	pt_entry_t *pt_p;
715	pd_entry_t *pd_p;
716	pdp_entry_t *pdp_p;
717	pml4_entry_t *p4_p;
718
719	/* Allocate page table pages for the direct map */
720	ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
721	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
722		ndmpdp = 4;
723	ndmpdpphys = howmany(ndmpdp, NPDPEPG);
724	if (ndmpdpphys > NDMPML4E) {
725		/*
726		 * Each NDMPML4E allows 512 GB, so limit to that,
727		 * and then readjust ndmpdp and ndmpdpphys.
728		 */
729		printf("NDMPML4E limits system to %d GB\n", NDMPML4E * 512);
730		Maxmem = atop(NDMPML4E * NBPML4);
731		ndmpdpphys = NDMPML4E;
732		ndmpdp = NDMPML4E * NPDEPG;
733	}
734	DMPDPphys = allocpages(firstaddr, ndmpdpphys);
735	ndm1g = 0;
736	if ((amd_feature & AMDID_PAGE1GB) != 0)
737		ndm1g = ptoa(Maxmem) >> PDPSHIFT;
738	if (ndm1g < ndmpdp)
739		DMPDphys = allocpages(firstaddr, ndmpdp - ndm1g);
740	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
741
742	/* Allocate pages */
743	KPML4phys = allocpages(firstaddr, 1);
744	KPDPphys = allocpages(firstaddr, NKPML4E);
745
746	/*
747	 * Allocate the initial number of kernel page table pages required to
748	 * bootstrap.  We defer this until after all memory-size dependent
749	 * allocations are done (e.g. direct map), so that we don't have to
750	 * build in too much slop in our estimate.
751	 *
752	 * Note that when NKPML4E > 1, we have an empty page underneath
753	 * all but the KPML4I'th one, so we need NKPML4E-1 extra (zeroed)
754	 * pages.  (pmap_enter requires a PD page to exist for each KPML4E.)
755	 */
756	nkpt_init(*firstaddr);
757	nkpdpe = NKPDPE(nkpt);
758
759	KPTphys = allocpages(firstaddr, nkpt);
760	KPDphys = allocpages(firstaddr, nkpdpe);
761
762	/* Fill in the underlying page table pages */
763	/* Nominally read-only (but really R/W) from zero to physfree */
764	/* XXX not fully used, underneath 2M pages */
765	pt_p = (pt_entry_t *)KPTphys;
766	for (i = 0; ptoa(i) < *firstaddr; i++)
767		pt_p[i] = ptoa(i) | X86_PG_RW | X86_PG_V | X86_PG_G;
768
769	/* Now map the page tables at their location within PTmap */
770	pd_p = (pd_entry_t *)KPDphys;
771	for (i = 0; i < nkpt; i++)
772		pd_p[i] = (KPTphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
773
774	/* Map from zero to end of allocations under 2M pages */
775	/* This replaces some of the KPTphys entries above */
776	for (i = 0; (i << PDRSHIFT) < *firstaddr; i++)
777		pd_p[i] = (i << PDRSHIFT) | X86_PG_RW | X86_PG_V | PG_PS |
778		    X86_PG_G;
779
780	/* And connect up the PD to the PDP (leaving room for L4 pages) */
781	pdp_p = (pdp_entry_t *)(KPDPphys + ptoa(KPML4I - KPML4BASE));
782	for (i = 0; i < nkpdpe; i++)
783		pdp_p[i + KPDPI] = (KPDphys + ptoa(i)) | X86_PG_RW | X86_PG_V |
784		    PG_U;
785
786	/*
787	 * Now, set up the direct map region using 2MB and/or 1GB pages.  If
788	 * the end of physical memory is not aligned to a 1GB page boundary,
789	 * then the residual physical memory is mapped with 2MB pages.  Later,
790	 * if pmap_mapdev{_attr}() uses the direct map for non-write-back
791	 * memory, pmap_change_attr() will demote any 2MB or 1GB page mappings
792	 * that are partially used.
793	 */
794	pd_p = (pd_entry_t *)DMPDphys;
795	for (i = NPDEPG * ndm1g, j = 0; i < NPDEPG * ndmpdp; i++, j++) {
796		pd_p[j] = (vm_paddr_t)i << PDRSHIFT;
797		/* Preset PG_M and PG_A because demotion expects it. */
798		pd_p[j] |= X86_PG_RW | X86_PG_V | PG_PS | X86_PG_G |
799		    X86_PG_M | X86_PG_A;
800	}
801	pdp_p = (pdp_entry_t *)DMPDPphys;
802	for (i = 0; i < ndm1g; i++) {
803		pdp_p[i] = (vm_paddr_t)i << PDPSHIFT;
804		/* Preset PG_M and PG_A because demotion expects it. */
805		pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_PS | X86_PG_G |
806		    X86_PG_M | X86_PG_A;
807	}
808	for (j = 0; i < ndmpdp; i++, j++) {
809		pdp_p[i] = DMPDphys + ptoa(j);
810		pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_U;
811	}
812
813	/* And recursively map PML4 to itself in order to get PTmap */
814	p4_p = (pml4_entry_t *)KPML4phys;
815	p4_p[PML4PML4I] = KPML4phys;
816	p4_p[PML4PML4I] |= X86_PG_RW | X86_PG_V | PG_U;
817
818	/* Connect the Direct Map slot(s) up to the PML4. */
819	for (i = 0; i < ndmpdpphys; i++) {
820		p4_p[DMPML4I + i] = DMPDPphys + ptoa(i);
821		p4_p[DMPML4I + i] |= X86_PG_RW | X86_PG_V | PG_U;
822	}
823
824	/* Connect the KVA slots up to the PML4 */
825	for (i = 0; i < NKPML4E; i++) {
826		p4_p[KPML4BASE + i] = KPDPphys + ptoa(i);
827		p4_p[KPML4BASE + i] |= X86_PG_RW | X86_PG_V | PG_U;
828	}
829}
830
831/*
832 *	Bootstrap the system enough to run with virtual memory.
833 *
834 *	On amd64 this is called after mapping has already been enabled
835 *	and just syncs the pmap module with what has already been done.
836 *	[We can't call it easily with mapping off since the kernel is not
837 *	mapped with PA == VA, hence we would have to relocate every address
838 *	from the linked base (virtual) address "KERNBASE" to the actual
839 *	(physical) address starting relative to 0]
840 */
841void
842pmap_bootstrap(vm_paddr_t *firstaddr)
843{
844	vm_offset_t va;
845	pt_entry_t *pte;
846
847	/*
848	 * Create an initial set of page tables to run the kernel in.
849	 */
850	create_pagetables(firstaddr);
851
852	/*
853	 * Add a physical memory segment (vm_phys_seg) corresponding to the
854	 * preallocated kernel page table pages so that vm_page structures
855	 * representing these pages will be created.  The vm_page structures
856	 * are required for promotion of the corresponding kernel virtual
857	 * addresses to superpage mappings.
858	 */
859	vm_phys_add_seg(KPTphys, KPTphys + ptoa(nkpt));
860
861	virtual_avail = (vm_offset_t) KERNBASE + *firstaddr;
862	virtual_avail = pmap_kmem_choose(virtual_avail);
863
864	virtual_end = VM_MAX_KERNEL_ADDRESS;
865
866
867	/* XXX do %cr0 as well */
868	load_cr4(rcr4() | CR4_PGE | CR4_PSE);
869	load_cr3(KPML4phys);
870	if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
871		load_cr4(rcr4() | CR4_SMEP);
872
873	/*
874	 * Initialize the kernel pmap (which is statically allocated).
875	 */
876	PMAP_LOCK_INIT(kernel_pmap);
877	kernel_pmap->pm_pml4 = (pdp_entry_t *)PHYS_TO_DMAP(KPML4phys);
878	kernel_pmap->pm_cr3 = KPML4phys;
879	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
880	CPU_FILL(&kernel_pmap->pm_save);	/* always superset of pm_active */
881	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
882	kernel_pmap->pm_flags = pmap_flags;
883
884 	/*
885	 * Initialize the global pv list lock.
886	 */
887	rw_init(&pvh_global_lock, "pmap pv global");
888
889	/*
890	 * Reserve some special page table entries/VA space for temporary
891	 * mapping of pages.
892	 */
893#define	SYSMAP(c, p, v, n)	\
894	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
895
896	va = virtual_avail;
897	pte = vtopte(va);
898
899	/*
900	 * Crashdump maps.  The first page is reused as CMAP1 for the
901	 * memory test.
902	 */
903	SYSMAP(caddr_t, CMAP1, crashdumpmap, MAXDUMPPGS)
904	CADDR1 = crashdumpmap;
905
906	virtual_avail = va;
907
908	/* Initialize the PAT MSR. */
909	pmap_init_pat();
910
911	/* Initialize TLB Context Id. */
912	TUNABLE_INT_FETCH("vm.pmap.pcid_enabled", &pmap_pcid_enabled);
913	if ((cpu_feature2 & CPUID2_PCID) != 0 && pmap_pcid_enabled) {
914		load_cr4(rcr4() | CR4_PCIDE);
915		mtx_init(&pcid_mtx, "pcid", NULL, MTX_DEF);
916		init_unrhdr(&pcid_unr, 1, (1 << 12) - 1, &pcid_mtx);
917		/* Check for INVPCID support */
918		invpcid_works = (cpu_stdext_feature & CPUID_STDEXT_INVPCID)
919		    != 0;
920		kernel_pmap->pm_pcid = 0;
921#ifndef SMP
922		pmap_pcid_enabled = 0;
923#endif
924	} else
925		pmap_pcid_enabled = 0;
926}
927
928/*
929 * Setup the PAT MSR.
930 */
931void
932pmap_init_pat(void)
933{
934	int pat_table[PAT_INDEX_SIZE];
935	uint64_t pat_msr;
936	u_long cr0, cr4;
937	int i;
938
939	/* Bail if this CPU doesn't implement PAT. */
940	if ((cpu_feature & CPUID_PAT) == 0)
941		panic("no PAT??");
942
943	/* Set default PAT index table. */
944	for (i = 0; i < PAT_INDEX_SIZE; i++)
945		pat_table[i] = -1;
946	pat_table[PAT_WRITE_BACK] = 0;
947	pat_table[PAT_WRITE_THROUGH] = 1;
948	pat_table[PAT_UNCACHEABLE] = 3;
949	pat_table[PAT_WRITE_COMBINING] = 3;
950	pat_table[PAT_WRITE_PROTECTED] = 3;
951	pat_table[PAT_UNCACHED] = 3;
952
953	/* Initialize default PAT entries. */
954	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
955	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
956	    PAT_VALUE(2, PAT_UNCACHED) |
957	    PAT_VALUE(3, PAT_UNCACHEABLE) |
958	    PAT_VALUE(4, PAT_WRITE_BACK) |
959	    PAT_VALUE(5, PAT_WRITE_THROUGH) |
960	    PAT_VALUE(6, PAT_UNCACHED) |
961	    PAT_VALUE(7, PAT_UNCACHEABLE);
962
963	if (pat_works) {
964		/*
965		 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
966		 * Program 5 and 6 as WP and WC.
967		 * Leave 4 and 7 as WB and UC.
968		 */
969		pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
970		pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
971		    PAT_VALUE(6, PAT_WRITE_COMBINING);
972		pat_table[PAT_UNCACHED] = 2;
973		pat_table[PAT_WRITE_PROTECTED] = 5;
974		pat_table[PAT_WRITE_COMBINING] = 6;
975	} else {
976		/*
977		 * Just replace PAT Index 2 with WC instead of UC-.
978		 */
979		pat_msr &= ~PAT_MASK(2);
980		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
981		pat_table[PAT_WRITE_COMBINING] = 2;
982	}
983
984	/* Disable PGE. */
985	cr4 = rcr4();
986	load_cr4(cr4 & ~CR4_PGE);
987
988	/* Disable caches (CD = 1, NW = 0). */
989	cr0 = rcr0();
990	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
991
992	/* Flushes caches and TLBs. */
993	wbinvd();
994	invltlb();
995
996	/* Update PAT and index table. */
997	wrmsr(MSR_PAT, pat_msr);
998	for (i = 0; i < PAT_INDEX_SIZE; i++)
999		pat_index[i] = pat_table[i];
1000
1001	/* Flush caches and TLBs again. */
1002	wbinvd();
1003	invltlb();
1004
1005	/* Restore caches and PGE. */
1006	load_cr0(cr0);
1007	load_cr4(cr4);
1008}
1009
1010/*
1011 *	Initialize a vm_page's machine-dependent fields.
1012 */
1013void
1014pmap_page_init(vm_page_t m)
1015{
1016
1017	TAILQ_INIT(&m->md.pv_list);
1018	m->md.pat_mode = PAT_WRITE_BACK;
1019}
1020
1021/*
1022 *	Initialize the pmap module.
1023 *	Called by vm_init, to initialize any structures that the pmap
1024 *	system needs to map virtual memory.
1025 */
1026void
1027pmap_init(void)
1028{
1029	struct pmap_preinit_mapping *ppim;
1030	vm_page_t mpte;
1031	vm_size_t s;
1032	int i, pv_npg;
1033
1034	/*
1035	 * Initialize the vm page array entries for the kernel pmap's
1036	 * page table pages.
1037	 */
1038	for (i = 0; i < nkpt; i++) {
1039		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
1040		KASSERT(mpte >= vm_page_array &&
1041		    mpte < &vm_page_array[vm_page_array_size],
1042		    ("pmap_init: page table page is out of range"));
1043		mpte->pindex = pmap_pde_pindex(KERNBASE) + i;
1044		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
1045	}
1046
1047	/*
1048	 * If the kernel is running on a virtual machine, then it must assume
1049	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
1050	 * be prepared for the hypervisor changing the vendor and family that
1051	 * are reported by CPUID.  Consequently, the workaround for AMD Family
1052	 * 10h Erratum 383 is enabled if the processor's feature set does not
1053	 * include at least one feature that is only supported by older Intel
1054	 * or newer AMD processors.
1055	 */
1056	if (vm_guest == VM_GUEST_VM && (cpu_feature & CPUID_SS) == 0 &&
1057	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
1058	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
1059	    AMDID2_FMA4)) == 0)
1060		workaround_erratum383 = 1;
1061
1062	/*
1063	 * Are large page mappings enabled?
1064	 */
1065	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
1066	if (pg_ps_enabled) {
1067		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1068		    ("pmap_init: can't assign to pagesizes[1]"));
1069		pagesizes[1] = NBPDR;
1070	}
1071
1072	/*
1073	 * Initialize the pv chunk list mutex.
1074	 */
1075	mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
1076
1077	/*
1078	 * Initialize the pool of pv list locks.
1079	 */
1080	for (i = 0; i < NPV_LIST_LOCKS; i++)
1081		rw_init(&pv_list_locks[i], "pmap pv list");
1082
1083	/*
1084	 * Calculate the size of the pv head table for superpages.
1085	 */
1086	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, NBPDR);
1087
1088	/*
1089	 * Allocate memory for the pv head table for superpages.
1090	 */
1091	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
1092	s = round_page(s);
1093	pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
1094	    M_WAITOK | M_ZERO);
1095	for (i = 0; i < pv_npg; i++)
1096		TAILQ_INIT(&pv_table[i].pv_list);
1097
1098	mtx_init(&cpage_lock, "cpage", NULL, MTX_DEF);
1099	cpage_a = kva_alloc(PAGE_SIZE);
1100	cpage_b = kva_alloc(PAGE_SIZE);
1101
1102	pmap_initialized = 1;
1103	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
1104		ppim = pmap_preinit_mapping + i;
1105		if (ppim->va == 0)
1106			continue;
1107		/* Make the direct map consistent */
1108		if (ppim->pa < dmaplimit && ppim->pa + ppim->sz < dmaplimit) {
1109			(void)pmap_change_attr(PHYS_TO_DMAP(ppim->pa),
1110			    ppim->sz, ppim->mode);
1111		}
1112		if (!bootverbose)
1113			continue;
1114		printf("PPIM %u: PA=%#lx, VA=%#lx, size=%#lx, mode=%#x\n", i,
1115		    ppim->pa, ppim->va, ppim->sz, ppim->mode);
1116	}
1117}
1118
1119static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
1120    "2MB page mapping counters");
1121
1122static u_long pmap_pde_demotions;
1123SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
1124    &pmap_pde_demotions, 0, "2MB page demotions");
1125
1126static u_long pmap_pde_mappings;
1127SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
1128    &pmap_pde_mappings, 0, "2MB page mappings");
1129
1130static u_long pmap_pde_p_failures;
1131SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
1132    &pmap_pde_p_failures, 0, "2MB page promotion failures");
1133
1134static u_long pmap_pde_promotions;
1135SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
1136    &pmap_pde_promotions, 0, "2MB page promotions");
1137
1138static SYSCTL_NODE(_vm_pmap, OID_AUTO, pdpe, CTLFLAG_RD, 0,
1139    "1GB page mapping counters");
1140
1141static u_long pmap_pdpe_demotions;
1142SYSCTL_ULONG(_vm_pmap_pdpe, OID_AUTO, demotions, CTLFLAG_RD,
1143    &pmap_pdpe_demotions, 0, "1GB page demotions");
1144
1145/***************************************************
1146 * Low level helper routines.....
1147 ***************************************************/
1148
1149static pt_entry_t
1150pmap_swap_pat(pmap_t pmap, pt_entry_t entry)
1151{
1152	int x86_pat_bits = X86_PG_PTE_PAT | X86_PG_PDE_PAT;
1153
1154	switch (pmap->pm_type) {
1155	case PT_X86:
1156	case PT_RVI:
1157		/* Verify that both PAT bits are not set at the same time */
1158		KASSERT((entry & x86_pat_bits) != x86_pat_bits,
1159		    ("Invalid PAT bits in entry %#lx", entry));
1160
1161		/* Swap the PAT bits if one of them is set */
1162		if ((entry & x86_pat_bits) != 0)
1163			entry ^= x86_pat_bits;
1164		break;
1165	case PT_EPT:
1166		/*
1167		 * Nothing to do - the memory attributes are represented
1168		 * the same way for regular pages and superpages.
1169		 */
1170		break;
1171	default:
1172		panic("pmap_switch_pat_bits: bad pm_type %d", pmap->pm_type);
1173	}
1174
1175	return (entry);
1176}
1177
1178/*
1179 * Determine the appropriate bits to set in a PTE or PDE for a specified
1180 * caching mode.
1181 */
1182static int
1183pmap_cache_bits(pmap_t pmap, int mode, boolean_t is_pde)
1184{
1185	int cache_bits, pat_flag, pat_idx;
1186
1187	if (mode < 0 || mode >= PAT_INDEX_SIZE || pat_index[mode] < 0)
1188		panic("Unknown caching mode %d\n", mode);
1189
1190	switch (pmap->pm_type) {
1191	case PT_X86:
1192	case PT_RVI:
1193		/* The PAT bit is different for PTE's and PDE's. */
1194		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
1195
1196		/* Map the caching mode to a PAT index. */
1197		pat_idx = pat_index[mode];
1198
1199		/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
1200		cache_bits = 0;
1201		if (pat_idx & 0x4)
1202			cache_bits |= pat_flag;
1203		if (pat_idx & 0x2)
1204			cache_bits |= PG_NC_PCD;
1205		if (pat_idx & 0x1)
1206			cache_bits |= PG_NC_PWT;
1207		break;
1208
1209	case PT_EPT:
1210		cache_bits = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(mode);
1211		break;
1212
1213	default:
1214		panic("unsupported pmap type %d", pmap->pm_type);
1215	}
1216
1217	return (cache_bits);
1218}
1219
1220static int
1221pmap_cache_mask(pmap_t pmap, boolean_t is_pde)
1222{
1223	int mask;
1224
1225	switch (pmap->pm_type) {
1226	case PT_X86:
1227	case PT_RVI:
1228		mask = is_pde ? X86_PG_PDE_CACHE : X86_PG_PTE_CACHE;
1229		break;
1230	case PT_EPT:
1231		mask = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(0x7);
1232		break;
1233	default:
1234		panic("pmap_cache_mask: invalid pm_type %d", pmap->pm_type);
1235	}
1236
1237	return (mask);
1238}
1239
1240static __inline boolean_t
1241pmap_ps_enabled(pmap_t pmap)
1242{
1243
1244	return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
1245}
1246
1247static void
1248pmap_update_pde_store(pmap_t pmap, pd_entry_t *pde, pd_entry_t newpde)
1249{
1250
1251	switch (pmap->pm_type) {
1252	case PT_X86:
1253		break;
1254	case PT_RVI:
1255	case PT_EPT:
1256		/*
1257		 * XXX
1258		 * This is a little bogus since the generation number is
1259		 * supposed to be bumped up when a region of the address
1260		 * space is invalidated in the page tables.
1261		 *
1262		 * In this case the old PDE entry is valid but yet we want
1263		 * to make sure that any mappings using the old entry are
1264		 * invalidated in the TLB.
1265		 *
1266		 * The reason this works as expected is because we rendezvous
1267		 * "all" host cpus and force any vcpu context to exit as a
1268		 * side-effect.
1269		 */
1270		atomic_add_acq_long(&pmap->pm_eptgen, 1);
1271		break;
1272	default:
1273		panic("pmap_update_pde_store: bad pm_type %d", pmap->pm_type);
1274	}
1275	pde_store(pde, newpde);
1276}
1277
1278/*
1279 * After changing the page size for the specified virtual address in the page
1280 * table, flush the corresponding entries from the processor's TLB.  Only the
1281 * calling processor's TLB is affected.
1282 *
1283 * The calling thread must be pinned to a processor.
1284 */
1285static void
1286pmap_update_pde_invalidate(pmap_t pmap, vm_offset_t va, pd_entry_t newpde)
1287{
1288	pt_entry_t PG_G;
1289
1290	if (pmap_type_guest(pmap))
1291		return;
1292
1293	KASSERT(pmap->pm_type == PT_X86,
1294	    ("pmap_update_pde_invalidate: invalid type %d", pmap->pm_type));
1295
1296	PG_G = pmap_global_bit(pmap);
1297
1298	if ((newpde & PG_PS) == 0)
1299		/* Demotion: flush a specific 2MB page mapping. */
1300		invlpg(va);
1301	else if ((newpde & PG_G) == 0)
1302		/*
1303		 * Promotion: flush every 4KB page mapping from the TLB
1304		 * because there are too many to flush individually.
1305		 */
1306		invltlb();
1307	else {
1308		/*
1309		 * Promotion: flush every 4KB page mapping from the TLB,
1310		 * including any global (PG_G) mappings.
1311		 */
1312		invltlb_globpcid();
1313	}
1314}
1315#ifdef SMP
1316
1317static void
1318pmap_invalidate_page_pcid(pmap_t pmap, vm_offset_t va)
1319{
1320	struct invpcid_descr d;
1321	uint64_t cr3;
1322
1323	if (invpcid_works) {
1324		d.pcid = pmap->pm_pcid;
1325		d.pad = 0;
1326		d.addr = va;
1327		invpcid(&d, INVPCID_ADDR);
1328		return;
1329	}
1330
1331	cr3 = rcr3();
1332	critical_enter();
1333	load_cr3(pmap->pm_cr3 | CR3_PCID_SAVE);
1334	invlpg(va);
1335	load_cr3(cr3 | CR3_PCID_SAVE);
1336	critical_exit();
1337}
1338
1339/*
1340 * For SMP, these functions have to use the IPI mechanism for coherence.
1341 *
1342 * N.B.: Before calling any of the following TLB invalidation functions,
1343 * the calling processor must ensure that all stores updating a non-
1344 * kernel page table are globally performed.  Otherwise, another
1345 * processor could cache an old, pre-update entry without being
1346 * invalidated.  This can happen one of two ways: (1) The pmap becomes
1347 * active on another processor after its pm_active field is checked by
1348 * one of the following functions but before a store updating the page
1349 * table is globally performed. (2) The pmap becomes active on another
1350 * processor before its pm_active field is checked but due to
1351 * speculative loads one of the following functions stills reads the
1352 * pmap as inactive on the other processor.
1353 *
1354 * The kernel page table is exempt because its pm_active field is
1355 * immutable.  The kernel page table is always active on every
1356 * processor.
1357 */
1358
1359/*
1360 * Interrupt the cpus that are executing in the guest context.
1361 * This will force the vcpu to exit and the cached EPT mappings
1362 * will be invalidated by the host before the next vmresume.
1363 */
1364static __inline void
1365pmap_invalidate_ept(pmap_t pmap)
1366{
1367	int ipinum;
1368
1369	sched_pin();
1370	KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
1371	    ("pmap_invalidate_ept: absurd pm_active"));
1372
1373	/*
1374	 * The TLB mappings associated with a vcpu context are not
1375	 * flushed each time a different vcpu is chosen to execute.
1376	 *
1377	 * This is in contrast with a process's vtop mappings that
1378	 * are flushed from the TLB on each context switch.
1379	 *
1380	 * Therefore we need to do more than just a TLB shootdown on
1381	 * the active cpus in 'pmap->pm_active'. To do this we keep
1382	 * track of the number of invalidations performed on this pmap.
1383	 *
1384	 * Each vcpu keeps a cache of this counter and compares it
1385	 * just before a vmresume. If the counter is out-of-date an
1386	 * invept will be done to flush stale mappings from the TLB.
1387	 */
1388	atomic_add_acq_long(&pmap->pm_eptgen, 1);
1389
1390	/*
1391	 * Force the vcpu to exit and trap back into the hypervisor.
1392	 */
1393	ipinum = pmap->pm_flags & PMAP_NESTED_IPIMASK;
1394	ipi_selected(pmap->pm_active, ipinum);
1395	sched_unpin();
1396}
1397
1398void
1399pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1400{
1401	cpuset_t other_cpus;
1402	u_int cpuid;
1403
1404	if (pmap_type_guest(pmap)) {
1405		pmap_invalidate_ept(pmap);
1406		return;
1407	}
1408
1409	KASSERT(pmap->pm_type == PT_X86,
1410	    ("pmap_invalidate_page: invalid type %d", pmap->pm_type));
1411
1412	sched_pin();
1413	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
1414		if (!pmap_pcid_enabled) {
1415			invlpg(va);
1416		} else {
1417			if (pmap->pm_pcid != -1 && pmap->pm_pcid != 0) {
1418				if (pmap == PCPU_GET(curpmap))
1419					invlpg(va);
1420				else
1421					pmap_invalidate_page_pcid(pmap, va);
1422			} else {
1423				invltlb_globpcid();
1424			}
1425		}
1426		smp_invlpg(pmap, va);
1427	} else {
1428		cpuid = PCPU_GET(cpuid);
1429		other_cpus = all_cpus;
1430		CPU_CLR(cpuid, &other_cpus);
1431		if (CPU_ISSET(cpuid, &pmap->pm_active))
1432			invlpg(va);
1433		else if (pmap_pcid_enabled) {
1434			if (pmap->pm_pcid != -1 && pmap->pm_pcid != 0)
1435				pmap_invalidate_page_pcid(pmap, va);
1436			else
1437				invltlb_globpcid();
1438		}
1439		if (pmap_pcid_enabled)
1440			CPU_AND(&other_cpus, &pmap->pm_save);
1441		else
1442			CPU_AND(&other_cpus, &pmap->pm_active);
1443		if (!CPU_EMPTY(&other_cpus))
1444			smp_masked_invlpg(other_cpus, pmap, va);
1445	}
1446	sched_unpin();
1447}
1448
1449static void
1450pmap_invalidate_range_pcid(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1451{
1452	struct invpcid_descr d;
1453	uint64_t cr3;
1454	vm_offset_t addr;
1455
1456	if (invpcid_works) {
1457		d.pcid = pmap->pm_pcid;
1458		d.pad = 0;
1459		for (addr = sva; addr < eva; addr += PAGE_SIZE) {
1460			d.addr = addr;
1461			invpcid(&d, INVPCID_ADDR);
1462		}
1463		return;
1464	}
1465
1466	cr3 = rcr3();
1467	critical_enter();
1468	load_cr3(pmap->pm_cr3 | CR3_PCID_SAVE);
1469	for (addr = sva; addr < eva; addr += PAGE_SIZE)
1470		invlpg(addr);
1471	load_cr3(cr3 | CR3_PCID_SAVE);
1472	critical_exit();
1473}
1474
1475void
1476pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1477{
1478	cpuset_t other_cpus;
1479	vm_offset_t addr;
1480	u_int cpuid;
1481
1482	if (pmap_type_guest(pmap)) {
1483		pmap_invalidate_ept(pmap);
1484		return;
1485	}
1486
1487	KASSERT(pmap->pm_type == PT_X86,
1488	    ("pmap_invalidate_range: invalid type %d", pmap->pm_type));
1489
1490	sched_pin();
1491	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
1492		if (!pmap_pcid_enabled) {
1493			for (addr = sva; addr < eva; addr += PAGE_SIZE)
1494				invlpg(addr);
1495		} else {
1496			if (pmap->pm_pcid != -1 && pmap->pm_pcid != 0) {
1497				if (pmap == PCPU_GET(curpmap)) {
1498					for (addr = sva; addr < eva;
1499					    addr += PAGE_SIZE)
1500						invlpg(addr);
1501				} else {
1502					pmap_invalidate_range_pcid(pmap,
1503					    sva, eva);
1504				}
1505			} else {
1506				invltlb_globpcid();
1507			}
1508		}
1509		smp_invlpg_range(pmap, sva, eva);
1510	} else {
1511		cpuid = PCPU_GET(cpuid);
1512		other_cpus = all_cpus;
1513		CPU_CLR(cpuid, &other_cpus);
1514		if (CPU_ISSET(cpuid, &pmap->pm_active)) {
1515			for (addr = sva; addr < eva; addr += PAGE_SIZE)
1516				invlpg(addr);
1517		} else if (pmap_pcid_enabled) {
1518			if (pmap->pm_pcid != -1 && pmap->pm_pcid != 0)
1519				pmap_invalidate_range_pcid(pmap, sva, eva);
1520			else
1521				invltlb_globpcid();
1522		}
1523		if (pmap_pcid_enabled)
1524			CPU_AND(&other_cpus, &pmap->pm_save);
1525		else
1526			CPU_AND(&other_cpus, &pmap->pm_active);
1527		if (!CPU_EMPTY(&other_cpus))
1528			smp_masked_invlpg_range(other_cpus, pmap, sva, eva);
1529	}
1530	sched_unpin();
1531}
1532
1533void
1534pmap_invalidate_all(pmap_t pmap)
1535{
1536	cpuset_t other_cpus;
1537	struct invpcid_descr d;
1538	uint64_t cr3;
1539	u_int cpuid;
1540
1541	if (pmap_type_guest(pmap)) {
1542		pmap_invalidate_ept(pmap);
1543		return;
1544	}
1545
1546	KASSERT(pmap->pm_type == PT_X86,
1547	    ("pmap_invalidate_all: invalid type %d", pmap->pm_type));
1548
1549	sched_pin();
1550	cpuid = PCPU_GET(cpuid);
1551	if (pmap == kernel_pmap ||
1552	    (pmap_pcid_enabled && !CPU_CMP(&pmap->pm_save, &all_cpus)) ||
1553	    !CPU_CMP(&pmap->pm_active, &all_cpus)) {
1554		if (invpcid_works) {
1555			bzero(&d, sizeof(d));
1556			invpcid(&d, INVPCID_CTXGLOB);
1557		} else {
1558			invltlb_globpcid();
1559		}
1560		if (!CPU_ISSET(cpuid, &pmap->pm_active))
1561			CPU_CLR_ATOMIC(cpuid, &pmap->pm_save);
1562		smp_invltlb(pmap);
1563	} else {
1564		other_cpus = all_cpus;
1565		CPU_CLR(cpuid, &other_cpus);
1566
1567		/*
1568		 * This logic is duplicated in the Xinvltlb shootdown
1569		 * IPI handler.
1570		 */
1571		if (pmap_pcid_enabled) {
1572			if (pmap->pm_pcid != -1 && pmap->pm_pcid != 0) {
1573				if (invpcid_works) {
1574					d.pcid = pmap->pm_pcid;
1575					d.pad = 0;
1576					d.addr = 0;
1577					invpcid(&d, INVPCID_CTX);
1578				} else {
1579					cr3 = rcr3();
1580					critical_enter();
1581
1582					/*
1583					 * Bit 63 is clear, pcid TLB
1584					 * entries are invalidated.
1585					 */
1586					load_cr3(pmap->pm_cr3);
1587					load_cr3(cr3 | CR3_PCID_SAVE);
1588					critical_exit();
1589				}
1590			} else {
1591				invltlb_globpcid();
1592			}
1593		} else if (CPU_ISSET(cpuid, &pmap->pm_active))
1594			invltlb();
1595		if (!CPU_ISSET(cpuid, &pmap->pm_active))
1596			CPU_CLR_ATOMIC(cpuid, &pmap->pm_save);
1597		if (pmap_pcid_enabled)
1598			CPU_AND(&other_cpus, &pmap->pm_save);
1599		else
1600			CPU_AND(&other_cpus, &pmap->pm_active);
1601		if (!CPU_EMPTY(&other_cpus))
1602			smp_masked_invltlb(other_cpus, pmap);
1603	}
1604	sched_unpin();
1605}
1606
1607void
1608pmap_invalidate_cache(void)
1609{
1610
1611	sched_pin();
1612	wbinvd();
1613	smp_cache_flush();
1614	sched_unpin();
1615}
1616
1617struct pde_action {
1618	cpuset_t invalidate;	/* processors that invalidate their TLB */
1619	pmap_t pmap;
1620	vm_offset_t va;
1621	pd_entry_t *pde;
1622	pd_entry_t newpde;
1623	u_int store;		/* processor that updates the PDE */
1624};
1625
1626static void
1627pmap_update_pde_action(void *arg)
1628{
1629	struct pde_action *act = arg;
1630
1631	if (act->store == PCPU_GET(cpuid))
1632		pmap_update_pde_store(act->pmap, act->pde, act->newpde);
1633}
1634
1635static void
1636pmap_update_pde_teardown(void *arg)
1637{
1638	struct pde_action *act = arg;
1639
1640	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
1641		pmap_update_pde_invalidate(act->pmap, act->va, act->newpde);
1642}
1643
1644/*
1645 * Change the page size for the specified virtual address in a way that
1646 * prevents any possibility of the TLB ever having two entries that map the
1647 * same virtual address using different page sizes.  This is the recommended
1648 * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
1649 * machine check exception for a TLB state that is improperly diagnosed as a
1650 * hardware error.
1651 */
1652static void
1653pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1654{
1655	struct pde_action act;
1656	cpuset_t active, other_cpus;
1657	u_int cpuid;
1658
1659	sched_pin();
1660	cpuid = PCPU_GET(cpuid);
1661	other_cpus = all_cpus;
1662	CPU_CLR(cpuid, &other_cpus);
1663	if (pmap == kernel_pmap || pmap_type_guest(pmap))
1664		active = all_cpus;
1665	else {
1666		active = pmap->pm_active;
1667		CPU_AND_ATOMIC(&pmap->pm_save, &active);
1668	}
1669	if (CPU_OVERLAP(&active, &other_cpus)) {
1670		act.store = cpuid;
1671		act.invalidate = active;
1672		act.va = va;
1673		act.pmap = pmap;
1674		act.pde = pde;
1675		act.newpde = newpde;
1676		CPU_SET(cpuid, &active);
1677		smp_rendezvous_cpus(active,
1678		    smp_no_rendevous_barrier, pmap_update_pde_action,
1679		    pmap_update_pde_teardown, &act);
1680	} else {
1681		pmap_update_pde_store(pmap, pde, newpde);
1682		if (CPU_ISSET(cpuid, &active))
1683			pmap_update_pde_invalidate(pmap, va, newpde);
1684	}
1685	sched_unpin();
1686}
1687#else /* !SMP */
1688/*
1689 * Normal, non-SMP, invalidation functions.
1690 * We inline these within pmap.c for speed.
1691 */
1692PMAP_INLINE void
1693pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1694{
1695
1696	switch (pmap->pm_type) {
1697	case PT_X86:
1698		if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1699			invlpg(va);
1700		break;
1701	case PT_RVI:
1702	case PT_EPT:
1703		pmap->pm_eptgen++;
1704		break;
1705	default:
1706		panic("pmap_invalidate_page: unknown type: %d", pmap->pm_type);
1707	}
1708}
1709
1710PMAP_INLINE void
1711pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1712{
1713	vm_offset_t addr;
1714
1715	switch (pmap->pm_type) {
1716	case PT_X86:
1717		if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1718			for (addr = sva; addr < eva; addr += PAGE_SIZE)
1719				invlpg(addr);
1720		break;
1721	case PT_RVI:
1722	case PT_EPT:
1723		pmap->pm_eptgen++;
1724		break;
1725	default:
1726		panic("pmap_invalidate_range: unknown type: %d", pmap->pm_type);
1727	}
1728}
1729
1730PMAP_INLINE void
1731pmap_invalidate_all(pmap_t pmap)
1732{
1733
1734	switch (pmap->pm_type) {
1735	case PT_X86:
1736		if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1737			invltlb();
1738		break;
1739	case PT_RVI:
1740	case PT_EPT:
1741		pmap->pm_eptgen++;
1742		break;
1743	default:
1744		panic("pmap_invalidate_all: unknown type %d", pmap->pm_type);
1745	}
1746}
1747
1748PMAP_INLINE void
1749pmap_invalidate_cache(void)
1750{
1751
1752	wbinvd();
1753}
1754
1755static void
1756pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1757{
1758
1759	pmap_update_pde_store(pmap, pde, newpde);
1760	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1761		pmap_update_pde_invalidate(pmap, va, newpde);
1762	else
1763		CPU_ZERO(&pmap->pm_save);
1764}
1765#endif /* !SMP */
1766
1767#define PMAP_CLFLUSH_THRESHOLD   (2 * 1024 * 1024)
1768
1769void
1770pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva, boolean_t force)
1771{
1772
1773	if (force) {
1774		sva &= ~(vm_offset_t)cpu_clflush_line_size;
1775	} else {
1776		KASSERT((sva & PAGE_MASK) == 0,
1777		    ("pmap_invalidate_cache_range: sva not page-aligned"));
1778		KASSERT((eva & PAGE_MASK) == 0,
1779		    ("pmap_invalidate_cache_range: eva not page-aligned"));
1780	}
1781
1782	if ((cpu_feature & CPUID_SS) != 0 && !force)
1783		; /* If "Self Snoop" is supported and allowed, do nothing. */
1784	else if ((cpu_feature & CPUID_CLFSH) != 0 &&
1785	    eva - sva < PMAP_CLFLUSH_THRESHOLD) {
1786
1787		/*
1788		 * XXX: Some CPUs fault, hang, or trash the local APIC
1789		 * registers if we use CLFLUSH on the local APIC
1790		 * range.  The local APIC is always uncached, so we
1791		 * don't need to flush for that range anyway.
1792		 */
1793		if (pmap_kextract(sva) == lapic_paddr)
1794			return;
1795
1796		/*
1797		 * Otherwise, do per-cache line flush.  Use the mfence
1798		 * instruction to insure that previous stores are
1799		 * included in the write-back.  The processor
1800		 * propagates flush to other processors in the cache
1801		 * coherence domain.
1802		 */
1803		mfence();
1804		for (; sva < eva; sva += cpu_clflush_line_size)
1805			clflush(sva);
1806		mfence();
1807	} else {
1808
1809		/*
1810		 * No targeted cache flush methods are supported by CPU,
1811		 * or the supplied range is bigger than 2MB.
1812		 * Globally invalidate cache.
1813		 */
1814		pmap_invalidate_cache();
1815	}
1816}
1817
1818/*
1819 * Remove the specified set of pages from the data and instruction caches.
1820 *
1821 * In contrast to pmap_invalidate_cache_range(), this function does not
1822 * rely on the CPU's self-snoop feature, because it is intended for use
1823 * when moving pages into a different cache domain.
1824 */
1825void
1826pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1827{
1828	vm_offset_t daddr, eva;
1829	int i;
1830
1831	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1832	    (cpu_feature & CPUID_CLFSH) == 0)
1833		pmap_invalidate_cache();
1834	else {
1835		mfence();
1836		for (i = 0; i < count; i++) {
1837			daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
1838			eva = daddr + PAGE_SIZE;
1839			for (; daddr < eva; daddr += cpu_clflush_line_size)
1840				clflush(daddr);
1841		}
1842		mfence();
1843	}
1844}
1845
1846/*
1847 *	Routine:	pmap_extract
1848 *	Function:
1849 *		Extract the physical page address associated
1850 *		with the given map/virtual_address pair.
1851 */
1852vm_paddr_t
1853pmap_extract(pmap_t pmap, vm_offset_t va)
1854{
1855	pdp_entry_t *pdpe;
1856	pd_entry_t *pde;
1857	pt_entry_t *pte, PG_V;
1858	vm_paddr_t pa;
1859
1860	pa = 0;
1861	PG_V = pmap_valid_bit(pmap);
1862	PMAP_LOCK(pmap);
1863	pdpe = pmap_pdpe(pmap, va);
1864	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
1865		if ((*pdpe & PG_PS) != 0)
1866			pa = (*pdpe & PG_PS_FRAME) | (va & PDPMASK);
1867		else {
1868			pde = pmap_pdpe_to_pde(pdpe, va);
1869			if ((*pde & PG_V) != 0) {
1870				if ((*pde & PG_PS) != 0) {
1871					pa = (*pde & PG_PS_FRAME) |
1872					    (va & PDRMASK);
1873				} else {
1874					pte = pmap_pde_to_pte(pde, va);
1875					pa = (*pte & PG_FRAME) |
1876					    (va & PAGE_MASK);
1877				}
1878			}
1879		}
1880	}
1881	PMAP_UNLOCK(pmap);
1882	return (pa);
1883}
1884
1885/*
1886 *	Routine:	pmap_extract_and_hold
1887 *	Function:
1888 *		Atomically extract and hold the physical page
1889 *		with the given pmap and virtual address pair
1890 *		if that mapping permits the given protection.
1891 */
1892vm_page_t
1893pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1894{
1895	pd_entry_t pde, *pdep;
1896	pt_entry_t pte, PG_RW, PG_V;
1897	vm_paddr_t pa;
1898	vm_page_t m;
1899
1900	pa = 0;
1901	m = NULL;
1902	PG_RW = pmap_rw_bit(pmap);
1903	PG_V = pmap_valid_bit(pmap);
1904	PMAP_LOCK(pmap);
1905retry:
1906	pdep = pmap_pde(pmap, va);
1907	if (pdep != NULL && (pde = *pdep)) {
1908		if (pde & PG_PS) {
1909			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1910				if (vm_page_pa_tryrelock(pmap, (pde &
1911				    PG_PS_FRAME) | (va & PDRMASK), &pa))
1912					goto retry;
1913				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1914				    (va & PDRMASK));
1915				vm_page_hold(m);
1916			}
1917		} else {
1918			pte = *pmap_pde_to_pte(pdep, va);
1919			if ((pte & PG_V) &&
1920			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1921				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
1922				    &pa))
1923					goto retry;
1924				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1925				vm_page_hold(m);
1926			}
1927		}
1928	}
1929	PA_UNLOCK_COND(pa);
1930	PMAP_UNLOCK(pmap);
1931	return (m);
1932}
1933
1934vm_paddr_t
1935pmap_kextract(vm_offset_t va)
1936{
1937	pd_entry_t pde;
1938	vm_paddr_t pa;
1939
1940	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1941		pa = DMAP_TO_PHYS(va);
1942	} else {
1943		pde = *vtopde(va);
1944		if (pde & PG_PS) {
1945			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
1946		} else {
1947			/*
1948			 * Beware of a concurrent promotion that changes the
1949			 * PDE at this point!  For example, vtopte() must not
1950			 * be used to access the PTE because it would use the
1951			 * new PDE.  It is, however, safe to use the old PDE
1952			 * because the page table page is preserved by the
1953			 * promotion.
1954			 */
1955			pa = *pmap_pde_to_pte(&pde, va);
1956			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1957		}
1958	}
1959	return (pa);
1960}
1961
1962/***************************************************
1963 * Low level mapping routines.....
1964 ***************************************************/
1965
1966/*
1967 * Add a wired page to the kva.
1968 * Note: not SMP coherent.
1969 */
1970PMAP_INLINE void
1971pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1972{
1973	pt_entry_t *pte;
1974
1975	pte = vtopte(va);
1976	pte_store(pte, pa | X86_PG_RW | X86_PG_V | X86_PG_G);
1977}
1978
1979static __inline void
1980pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1981{
1982	pt_entry_t *pte;
1983	int cache_bits;
1984
1985	pte = vtopte(va);
1986	cache_bits = pmap_cache_bits(kernel_pmap, mode, 0);
1987	pte_store(pte, pa | X86_PG_RW | X86_PG_V | X86_PG_G | cache_bits);
1988}
1989
1990/*
1991 * Remove a page from the kernel pagetables.
1992 * Note: not SMP coherent.
1993 */
1994PMAP_INLINE void
1995pmap_kremove(vm_offset_t va)
1996{
1997	pt_entry_t *pte;
1998
1999	pte = vtopte(va);
2000	pte_clear(pte);
2001}
2002
2003/*
2004 *	Used to map a range of physical addresses into kernel
2005 *	virtual address space.
2006 *
2007 *	The value passed in '*virt' is a suggested virtual address for
2008 *	the mapping. Architectures which can support a direct-mapped
2009 *	physical to virtual region can return the appropriate address
2010 *	within that region, leaving '*virt' unchanged. Other
2011 *	architectures should map the pages starting at '*virt' and
2012 *	update '*virt' with the first usable address after the mapped
2013 *	region.
2014 */
2015vm_offset_t
2016pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
2017{
2018	return PHYS_TO_DMAP(start);
2019}
2020
2021
2022/*
2023 * Add a list of wired pages to the kva
2024 * this routine is only used for temporary
2025 * kernel mappings that do not need to have
2026 * page modification or references recorded.
2027 * Note that old mappings are simply written
2028 * over.  The page *must* be wired.
2029 * Note: SMP coherent.  Uses a ranged shootdown IPI.
2030 */
2031void
2032pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
2033{
2034	pt_entry_t *endpte, oldpte, pa, *pte;
2035	vm_page_t m;
2036	int cache_bits;
2037
2038	oldpte = 0;
2039	pte = vtopte(sva);
2040	endpte = pte + count;
2041	while (pte < endpte) {
2042		m = *ma++;
2043		cache_bits = pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0);
2044		pa = VM_PAGE_TO_PHYS(m) | cache_bits;
2045		if ((*pte & (PG_FRAME | X86_PG_PTE_CACHE)) != pa) {
2046			oldpte |= *pte;
2047			pte_store(pte, pa | X86_PG_G | X86_PG_RW | X86_PG_V);
2048		}
2049		pte++;
2050	}
2051	if (__predict_false((oldpte & X86_PG_V) != 0))
2052		pmap_invalidate_range(kernel_pmap, sva, sva + count *
2053		    PAGE_SIZE);
2054}
2055
2056/*
2057 * This routine tears out page mappings from the
2058 * kernel -- it is meant only for temporary mappings.
2059 * Note: SMP coherent.  Uses a ranged shootdown IPI.
2060 */
2061void
2062pmap_qremove(vm_offset_t sva, int count)
2063{
2064	vm_offset_t va;
2065
2066	va = sva;
2067	while (count-- > 0) {
2068		KASSERT(va >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", va));
2069		pmap_kremove(va);
2070		va += PAGE_SIZE;
2071	}
2072	pmap_invalidate_range(kernel_pmap, sva, va);
2073}
2074
2075/***************************************************
2076 * Page table page management routines.....
2077 ***************************************************/
2078static __inline void
2079pmap_free_zero_pages(struct spglist *free)
2080{
2081	vm_page_t m;
2082
2083	while ((m = SLIST_FIRST(free)) != NULL) {
2084		SLIST_REMOVE_HEAD(free, plinks.s.ss);
2085		/* Preserve the page's PG_ZERO setting. */
2086		vm_page_free_toq(m);
2087	}
2088}
2089
2090/*
2091 * Schedule the specified unused page table page to be freed.  Specifically,
2092 * add the page to the specified list of pages that will be released to the
2093 * physical memory manager after the TLB has been updated.
2094 */
2095static __inline void
2096pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
2097    boolean_t set_PG_ZERO)
2098{
2099
2100	if (set_PG_ZERO)
2101		m->flags |= PG_ZERO;
2102	else
2103		m->flags &= ~PG_ZERO;
2104	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
2105}
2106
2107/*
2108 * Inserts the specified page table page into the specified pmap's collection
2109 * of idle page table pages.  Each of a pmap's page table pages is responsible
2110 * for mapping a distinct range of virtual addresses.  The pmap's collection is
2111 * ordered by this virtual address range.
2112 */
2113static __inline int
2114pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
2115{
2116
2117	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2118	return (vm_radix_insert(&pmap->pm_root, mpte));
2119}
2120
2121/*
2122 * Looks for a page table page mapping the specified virtual address in the
2123 * specified pmap's collection of idle page table pages.  Returns NULL if there
2124 * is no page table page corresponding to the specified virtual address.
2125 */
2126static __inline vm_page_t
2127pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
2128{
2129
2130	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2131	return (vm_radix_lookup(&pmap->pm_root, pmap_pde_pindex(va)));
2132}
2133
2134/*
2135 * Removes the specified page table page from the specified pmap's collection
2136 * of idle page table pages.  The specified page table page must be a member of
2137 * the pmap's collection.
2138 */
2139static __inline void
2140pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
2141{
2142
2143	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2144	vm_radix_remove(&pmap->pm_root, mpte->pindex);
2145}
2146
2147/*
2148 * Decrements a page table page's wire count, which is used to record the
2149 * number of valid page table entries within the page.  If the wire count
2150 * drops to zero, then the page table page is unmapped.  Returns TRUE if the
2151 * page table page was unmapped and FALSE otherwise.
2152 */
2153static inline boolean_t
2154pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
2155{
2156
2157	--m->wire_count;
2158	if (m->wire_count == 0) {
2159		_pmap_unwire_ptp(pmap, va, m, free);
2160		return (TRUE);
2161	} else
2162		return (FALSE);
2163}
2164
2165static void
2166_pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
2167{
2168
2169	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2170	/*
2171	 * unmap the page table page
2172	 */
2173	if (m->pindex >= (NUPDE + NUPDPE)) {
2174		/* PDP page */
2175		pml4_entry_t *pml4;
2176		pml4 = pmap_pml4e(pmap, va);
2177		*pml4 = 0;
2178	} else if (m->pindex >= NUPDE) {
2179		/* PD page */
2180		pdp_entry_t *pdp;
2181		pdp = pmap_pdpe(pmap, va);
2182		*pdp = 0;
2183	} else {
2184		/* PTE page */
2185		pd_entry_t *pd;
2186		pd = pmap_pde(pmap, va);
2187		*pd = 0;
2188	}
2189	pmap_resident_count_dec(pmap, 1);
2190	if (m->pindex < NUPDE) {
2191		/* We just released a PT, unhold the matching PD */
2192		vm_page_t pdpg;
2193
2194		pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
2195		pmap_unwire_ptp(pmap, va, pdpg, free);
2196	}
2197	if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
2198		/* We just released a PD, unhold the matching PDP */
2199		vm_page_t pdppg;
2200
2201		pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
2202		pmap_unwire_ptp(pmap, va, pdppg, free);
2203	}
2204
2205	/*
2206	 * This is a release store so that the ordinary store unmapping
2207	 * the page table page is globally performed before TLB shoot-
2208	 * down is begun.
2209	 */
2210	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
2211
2212	/*
2213	 * Put page on a list so that it is released after
2214	 * *ALL* TLB shootdown is done
2215	 */
2216	pmap_add_delayed_free_list(m, free, TRUE);
2217}
2218
2219/*
2220 * After removing a page table entry, this routine is used to
2221 * conditionally free the page, and manage the hold/wire counts.
2222 */
2223static int
2224pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
2225    struct spglist *free)
2226{
2227	vm_page_t mpte;
2228
2229	if (va >= VM_MAXUSER_ADDRESS)
2230		return (0);
2231	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
2232	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
2233	return (pmap_unwire_ptp(pmap, va, mpte, free));
2234}
2235
2236void
2237pmap_pinit0(pmap_t pmap)
2238{
2239
2240	PMAP_LOCK_INIT(pmap);
2241	pmap->pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
2242	pmap->pm_cr3 = KPML4phys;
2243	pmap->pm_root.rt_root = 0;
2244	CPU_ZERO(&pmap->pm_active);
2245	CPU_ZERO(&pmap->pm_save);
2246	PCPU_SET(curpmap, pmap);
2247	TAILQ_INIT(&pmap->pm_pvchunk);
2248	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2249	pmap->pm_pcid = pmap_pcid_enabled ? 0 : -1;
2250	pmap->pm_flags = pmap_flags;
2251}
2252
2253/*
2254 * Initialize a preallocated and zeroed pmap structure,
2255 * such as one in a vmspace structure.
2256 */
2257int
2258pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags)
2259{
2260	vm_page_t pml4pg;
2261	vm_paddr_t pml4phys;
2262	int i;
2263
2264	/*
2265	 * allocate the page directory page
2266	 */
2267	while ((pml4pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2268	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL)
2269		VM_WAIT;
2270
2271	pml4phys = VM_PAGE_TO_PHYS(pml4pg);
2272	pmap->pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(pml4phys);
2273	pmap->pm_pcid = -1;
2274	pmap->pm_cr3 = ~0;	/* initialize to an invalid value */
2275
2276	if ((pml4pg->flags & PG_ZERO) == 0)
2277		pagezero(pmap->pm_pml4);
2278
2279	/*
2280	 * Do not install the host kernel mappings in the nested page
2281	 * tables. These mappings are meaningless in the guest physical
2282	 * address space.
2283	 */
2284	if ((pmap->pm_type = pm_type) == PT_X86) {
2285		pmap->pm_cr3 = pml4phys;
2286
2287		/* Wire in kernel global address entries. */
2288		for (i = 0; i < NKPML4E; i++) {
2289			pmap->pm_pml4[KPML4BASE + i] = (KPDPphys + ptoa(i)) |
2290			    X86_PG_RW | X86_PG_V | PG_U;
2291		}
2292		for (i = 0; i < ndmpdpphys; i++) {
2293			pmap->pm_pml4[DMPML4I + i] = (DMPDPphys + ptoa(i)) |
2294			    X86_PG_RW | X86_PG_V | PG_U;
2295		}
2296
2297		/* install self-referential address mapping entry(s) */
2298		pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) |
2299		    X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
2300
2301		if (pmap_pcid_enabled) {
2302			pmap->pm_pcid = alloc_unr(&pcid_unr);
2303			if (pmap->pm_pcid != -1)
2304				pmap->pm_cr3 |= pmap->pm_pcid;
2305		}
2306	}
2307
2308	pmap->pm_root.rt_root = 0;
2309	CPU_ZERO(&pmap->pm_active);
2310	TAILQ_INIT(&pmap->pm_pvchunk);
2311	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2312	pmap->pm_flags = flags;
2313	pmap->pm_eptgen = 0;
2314	CPU_ZERO(&pmap->pm_save);
2315
2316	return (1);
2317}
2318
2319int
2320pmap_pinit(pmap_t pmap)
2321{
2322
2323	return (pmap_pinit_type(pmap, PT_X86, pmap_flags));
2324}
2325
2326/*
2327 * This routine is called if the desired page table page does not exist.
2328 *
2329 * If page table page allocation fails, this routine may sleep before
2330 * returning NULL.  It sleeps only if a lock pointer was given.
2331 *
2332 * Note: If a page allocation fails at page table level two or three,
2333 * one or two pages may be held during the wait, only to be released
2334 * afterwards.  This conservative approach is easily argued to avoid
2335 * race conditions.
2336 */
2337static vm_page_t
2338_pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
2339{
2340	vm_page_t m, pdppg, pdpg;
2341	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
2342
2343	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2344
2345	PG_A = pmap_accessed_bit(pmap);
2346	PG_M = pmap_modified_bit(pmap);
2347	PG_V = pmap_valid_bit(pmap);
2348	PG_RW = pmap_rw_bit(pmap);
2349
2350	/*
2351	 * Allocate a page table page.
2352	 */
2353	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
2354	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
2355		if (lockp != NULL) {
2356			RELEASE_PV_LIST_LOCK(lockp);
2357			PMAP_UNLOCK(pmap);
2358			rw_runlock(&pvh_global_lock);
2359			VM_WAIT;
2360			rw_rlock(&pvh_global_lock);
2361			PMAP_LOCK(pmap);
2362		}
2363
2364		/*
2365		 * Indicate the need to retry.  While waiting, the page table
2366		 * page may have been allocated.
2367		 */
2368		return (NULL);
2369	}
2370	if ((m->flags & PG_ZERO) == 0)
2371		pmap_zero_page(m);
2372
2373	/*
2374	 * Map the pagetable page into the process address space, if
2375	 * it isn't already there.
2376	 */
2377
2378	if (ptepindex >= (NUPDE + NUPDPE)) {
2379		pml4_entry_t *pml4;
2380		vm_pindex_t pml4index;
2381
2382		/* Wire up a new PDPE page */
2383		pml4index = ptepindex - (NUPDE + NUPDPE);
2384		pml4 = &pmap->pm_pml4[pml4index];
2385		*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
2386
2387	} else if (ptepindex >= NUPDE) {
2388		vm_pindex_t pml4index;
2389		vm_pindex_t pdpindex;
2390		pml4_entry_t *pml4;
2391		pdp_entry_t *pdp;
2392
2393		/* Wire up a new PDE page */
2394		pdpindex = ptepindex - NUPDE;
2395		pml4index = pdpindex >> NPML4EPGSHIFT;
2396
2397		pml4 = &pmap->pm_pml4[pml4index];
2398		if ((*pml4 & PG_V) == 0) {
2399			/* Have to allocate a new pdp, recurse */
2400			if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml4index,
2401			    lockp) == NULL) {
2402				--m->wire_count;
2403				atomic_subtract_int(&cnt.v_wire_count, 1);
2404				vm_page_free_zero(m);
2405				return (NULL);
2406			}
2407		} else {
2408			/* Add reference to pdp page */
2409			pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
2410			pdppg->wire_count++;
2411		}
2412		pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
2413
2414		/* Now find the pdp page */
2415		pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
2416		*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
2417
2418	} else {
2419		vm_pindex_t pml4index;
2420		vm_pindex_t pdpindex;
2421		pml4_entry_t *pml4;
2422		pdp_entry_t *pdp;
2423		pd_entry_t *pd;
2424
2425		/* Wire up a new PTE page */
2426		pdpindex = ptepindex >> NPDPEPGSHIFT;
2427		pml4index = pdpindex >> NPML4EPGSHIFT;
2428
2429		/* First, find the pdp and check that its valid. */
2430		pml4 = &pmap->pm_pml4[pml4index];
2431		if ((*pml4 & PG_V) == 0) {
2432			/* Have to allocate a new pd, recurse */
2433			if (_pmap_allocpte(pmap, NUPDE + pdpindex,
2434			    lockp) == NULL) {
2435				--m->wire_count;
2436				atomic_subtract_int(&cnt.v_wire_count, 1);
2437				vm_page_free_zero(m);
2438				return (NULL);
2439			}
2440			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
2441			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
2442		} else {
2443			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
2444			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
2445			if ((*pdp & PG_V) == 0) {
2446				/* Have to allocate a new pd, recurse */
2447				if (_pmap_allocpte(pmap, NUPDE + pdpindex,
2448				    lockp) == NULL) {
2449					--m->wire_count;
2450					atomic_subtract_int(&cnt.v_wire_count,
2451					    1);
2452					vm_page_free_zero(m);
2453					return (NULL);
2454				}
2455			} else {
2456				/* Add reference to the pd page */
2457				pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
2458				pdpg->wire_count++;
2459			}
2460		}
2461		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
2462
2463		/* Now we know where the page directory page is */
2464		pd = &pd[ptepindex & ((1ul << NPDEPGSHIFT) - 1)];
2465		*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
2466	}
2467
2468	pmap_resident_count_inc(pmap, 1);
2469
2470	return (m);
2471}
2472
2473static vm_page_t
2474pmap_allocpde(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
2475{
2476	vm_pindex_t pdpindex, ptepindex;
2477	pdp_entry_t *pdpe, PG_V;
2478	vm_page_t pdpg;
2479
2480	PG_V = pmap_valid_bit(pmap);
2481
2482retry:
2483	pdpe = pmap_pdpe(pmap, va);
2484	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
2485		/* Add a reference to the pd page. */
2486		pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
2487		pdpg->wire_count++;
2488	} else {
2489		/* Allocate a pd page. */
2490		ptepindex = pmap_pde_pindex(va);
2491		pdpindex = ptepindex >> NPDPEPGSHIFT;
2492		pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex, lockp);
2493		if (pdpg == NULL && lockp != NULL)
2494			goto retry;
2495	}
2496	return (pdpg);
2497}
2498
2499static vm_page_t
2500pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
2501{
2502	vm_pindex_t ptepindex;
2503	pd_entry_t *pd, PG_V;
2504	vm_page_t m;
2505
2506	PG_V = pmap_valid_bit(pmap);
2507
2508	/*
2509	 * Calculate pagetable page index
2510	 */
2511	ptepindex = pmap_pde_pindex(va);
2512retry:
2513	/*
2514	 * Get the page directory entry
2515	 */
2516	pd = pmap_pde(pmap, va);
2517
2518	/*
2519	 * This supports switching from a 2MB page to a
2520	 * normal 4K page.
2521	 */
2522	if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
2523		if (!pmap_demote_pde_locked(pmap, pd, va, lockp)) {
2524			/*
2525			 * Invalidation of the 2MB page mapping may have caused
2526			 * the deallocation of the underlying PD page.
2527			 */
2528			pd = NULL;
2529		}
2530	}
2531
2532	/*
2533	 * If the page table page is mapped, we just increment the
2534	 * hold count, and activate it.
2535	 */
2536	if (pd != NULL && (*pd & PG_V) != 0) {
2537		m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
2538		m->wire_count++;
2539	} else {
2540		/*
2541		 * Here if the pte page isn't mapped, or if it has been
2542		 * deallocated.
2543		 */
2544		m = _pmap_allocpte(pmap, ptepindex, lockp);
2545		if (m == NULL && lockp != NULL)
2546			goto retry;
2547	}
2548	return (m);
2549}
2550
2551
2552/***************************************************
2553 * Pmap allocation/deallocation routines.
2554 ***************************************************/
2555
2556/*
2557 * Release any resources held by the given physical map.
2558 * Called when a pmap initialized by pmap_pinit is being released.
2559 * Should only be called if the map contains no valid mappings.
2560 */
2561void
2562pmap_release(pmap_t pmap)
2563{
2564	vm_page_t m;
2565	int i;
2566
2567	KASSERT(pmap->pm_stats.resident_count == 0,
2568	    ("pmap_release: pmap resident count %ld != 0",
2569	    pmap->pm_stats.resident_count));
2570	KASSERT(vm_radix_is_empty(&pmap->pm_root),
2571	    ("pmap_release: pmap has reserved page table page(s)"));
2572
2573	if (pmap_pcid_enabled) {
2574		/*
2575		 * Invalidate any left TLB entries, to allow the reuse
2576		 * of the pcid.
2577		 */
2578		pmap_invalidate_all(pmap);
2579	}
2580
2581	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_pml4));
2582
2583	for (i = 0; i < NKPML4E; i++)	/* KVA */
2584		pmap->pm_pml4[KPML4BASE + i] = 0;
2585	for (i = 0; i < ndmpdpphys; i++)/* Direct Map */
2586		pmap->pm_pml4[DMPML4I + i] = 0;
2587	pmap->pm_pml4[PML4PML4I] = 0;	/* Recursive Mapping */
2588
2589	m->wire_count--;
2590	atomic_subtract_int(&cnt.v_wire_count, 1);
2591	vm_page_free_zero(m);
2592	if (pmap->pm_pcid != -1)
2593		free_unr(&pcid_unr, pmap->pm_pcid);
2594}
2595
2596static int
2597kvm_size(SYSCTL_HANDLER_ARGS)
2598{
2599	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
2600
2601	return sysctl_handle_long(oidp, &ksize, 0, req);
2602}
2603SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
2604    0, 0, kvm_size, "LU", "Size of KVM");
2605
2606static int
2607kvm_free(SYSCTL_HANDLER_ARGS)
2608{
2609	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
2610
2611	return sysctl_handle_long(oidp, &kfree, 0, req);
2612}
2613SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
2614    0, 0, kvm_free, "LU", "Amount of KVM free");
2615
2616/*
2617 * grow the number of kernel page table entries, if needed
2618 */
2619void
2620pmap_growkernel(vm_offset_t addr)
2621{
2622	vm_paddr_t paddr;
2623	vm_page_t nkpg;
2624	pd_entry_t *pde, newpdir;
2625	pdp_entry_t *pdpe;
2626
2627	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2628
2629	/*
2630	 * Return if "addr" is within the range of kernel page table pages
2631	 * that were preallocated during pmap bootstrap.  Moreover, leave
2632	 * "kernel_vm_end" and the kernel page table as they were.
2633	 *
2634	 * The correctness of this action is based on the following
2635	 * argument: vm_map_insert() allocates contiguous ranges of the
2636	 * kernel virtual address space.  It calls this function if a range
2637	 * ends after "kernel_vm_end".  If the kernel is mapped between
2638	 * "kernel_vm_end" and "addr", then the range cannot begin at
2639	 * "kernel_vm_end".  In fact, its beginning address cannot be less
2640	 * than the kernel.  Thus, there is no immediate need to allocate
2641	 * any new kernel page table pages between "kernel_vm_end" and
2642	 * "KERNBASE".
2643	 */
2644	if (KERNBASE < addr && addr <= KERNBASE + nkpt * NBPDR)
2645		return;
2646
2647	addr = roundup2(addr, NBPDR);
2648	if (addr - 1 >= kernel_map->max_offset)
2649		addr = kernel_map->max_offset;
2650	while (kernel_vm_end < addr) {
2651		pdpe = pmap_pdpe(kernel_pmap, kernel_vm_end);
2652		if ((*pdpe & X86_PG_V) == 0) {
2653			/* We need a new PDP entry */
2654			nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDPSHIFT,
2655			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
2656			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2657			if (nkpg == NULL)
2658				panic("pmap_growkernel: no memory to grow kernel");
2659			if ((nkpg->flags & PG_ZERO) == 0)
2660				pmap_zero_page(nkpg);
2661			paddr = VM_PAGE_TO_PHYS(nkpg);
2662			*pdpe = (pdp_entry_t)(paddr | X86_PG_V | X86_PG_RW |
2663			    X86_PG_A | X86_PG_M);
2664			continue; /* try again */
2665		}
2666		pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
2667		if ((*pde & X86_PG_V) != 0) {
2668			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2669			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2670				kernel_vm_end = kernel_map->max_offset;
2671				break;
2672			}
2673			continue;
2674		}
2675
2676		nkpg = vm_page_alloc(NULL, pmap_pde_pindex(kernel_vm_end),
2677		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2678		    VM_ALLOC_ZERO);
2679		if (nkpg == NULL)
2680			panic("pmap_growkernel: no memory to grow kernel");
2681		if ((nkpg->flags & PG_ZERO) == 0)
2682			pmap_zero_page(nkpg);
2683		paddr = VM_PAGE_TO_PHYS(nkpg);
2684		newpdir = paddr | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
2685		pde_store(pde, newpdir);
2686
2687		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2688		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2689			kernel_vm_end = kernel_map->max_offset;
2690			break;
2691		}
2692	}
2693}
2694
2695
2696/***************************************************
2697 * page management routines.
2698 ***************************************************/
2699
2700CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2701CTASSERT(_NPCM == 3);
2702CTASSERT(_NPCPV == 168);
2703
2704static __inline struct pv_chunk *
2705pv_to_chunk(pv_entry_t pv)
2706{
2707
2708	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2709}
2710
2711#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2712
2713#define	PC_FREE0	0xfffffffffffffffful
2714#define	PC_FREE1	0xfffffffffffffffful
2715#define	PC_FREE2	0x000000fffffffffful
2716
2717static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1, PC_FREE2 };
2718
2719#ifdef PV_STATS
2720static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2721
2722SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2723	"Current number of pv entry chunks");
2724SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2725	"Current number of pv entry chunks allocated");
2726SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2727	"Current number of pv entry chunks frees");
2728SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
2729	"Number of times tried to get a chunk page but failed.");
2730
2731static long pv_entry_frees, pv_entry_allocs, pv_entry_count;
2732static int pv_entry_spare;
2733
2734SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2735	"Current number of pv entry frees");
2736SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2737	"Current number of pv entry allocs");
2738SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2739	"Current number of pv entries");
2740SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2741	"Current number of spare pv entries");
2742#endif
2743
2744/*
2745 * We are in a serious low memory condition.  Resort to
2746 * drastic measures to free some pages so we can allocate
2747 * another pv entry chunk.
2748 *
2749 * Returns NULL if PV entries were reclaimed from the specified pmap.
2750 *
2751 * We do not, however, unmap 2mpages because subsequent accesses will
2752 * allocate per-page pv entries until repromotion occurs, thereby
2753 * exacerbating the shortage of free pv entries.
2754 */
2755static vm_page_t
2756reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
2757{
2758	struct pch new_tail;
2759	struct pv_chunk *pc;
2760	struct md_page *pvh;
2761	pd_entry_t *pde;
2762	pmap_t pmap;
2763	pt_entry_t *pte, tpte;
2764	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
2765	pv_entry_t pv;
2766	vm_offset_t va;
2767	vm_page_t m, m_pc;
2768	struct spglist free;
2769	uint64_t inuse;
2770	int bit, field, freed;
2771
2772	rw_assert(&pvh_global_lock, RA_LOCKED);
2773	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2774	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
2775	pmap = NULL;
2776	m_pc = NULL;
2777	PG_G = PG_A = PG_M = PG_RW = 0;
2778	SLIST_INIT(&free);
2779	TAILQ_INIT(&new_tail);
2780	mtx_lock(&pv_chunks_mutex);
2781	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && SLIST_EMPTY(&free)) {
2782		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2783		mtx_unlock(&pv_chunks_mutex);
2784		if (pmap != pc->pc_pmap) {
2785			if (pmap != NULL) {
2786				pmap_invalidate_all(pmap);
2787				if (pmap != locked_pmap)
2788					PMAP_UNLOCK(pmap);
2789			}
2790			pmap = pc->pc_pmap;
2791			/* Avoid deadlock and lock recursion. */
2792			if (pmap > locked_pmap) {
2793				RELEASE_PV_LIST_LOCK(lockp);
2794				PMAP_LOCK(pmap);
2795			} else if (pmap != locked_pmap &&
2796			    !PMAP_TRYLOCK(pmap)) {
2797				pmap = NULL;
2798				TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
2799				mtx_lock(&pv_chunks_mutex);
2800				continue;
2801			}
2802			PG_G = pmap_global_bit(pmap);
2803			PG_A = pmap_accessed_bit(pmap);
2804			PG_M = pmap_modified_bit(pmap);
2805			PG_RW = pmap_rw_bit(pmap);
2806		}
2807
2808		/*
2809		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2810		 */
2811		freed = 0;
2812		for (field = 0; field < _NPCM; field++) {
2813			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2814			    inuse != 0; inuse &= ~(1UL << bit)) {
2815				bit = bsfq(inuse);
2816				pv = &pc->pc_pventry[field * 64 + bit];
2817				va = pv->pv_va;
2818				pde = pmap_pde(pmap, va);
2819				if ((*pde & PG_PS) != 0)
2820					continue;
2821				pte = pmap_pde_to_pte(pde, va);
2822				if ((*pte & PG_W) != 0)
2823					continue;
2824				tpte = pte_load_clear(pte);
2825				if ((tpte & PG_G) != 0)
2826					pmap_invalidate_page(pmap, va);
2827				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2828				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2829					vm_page_dirty(m);
2830				if ((tpte & PG_A) != 0)
2831					vm_page_aflag_set(m, PGA_REFERENCED);
2832				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
2833				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2834				m->md.pv_gen++;
2835				if (TAILQ_EMPTY(&m->md.pv_list) &&
2836				    (m->flags & PG_FICTITIOUS) == 0) {
2837					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2838					if (TAILQ_EMPTY(&pvh->pv_list)) {
2839						vm_page_aflag_clear(m,
2840						    PGA_WRITEABLE);
2841					}
2842				}
2843				pc->pc_map[field] |= 1UL << bit;
2844				pmap_unuse_pt(pmap, va, *pde, &free);
2845				freed++;
2846			}
2847		}
2848		if (freed == 0) {
2849			TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
2850			mtx_lock(&pv_chunks_mutex);
2851			continue;
2852		}
2853		/* Every freed mapping is for a 4 KB page. */
2854		pmap_resident_count_dec(pmap, freed);
2855		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
2856		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
2857		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
2858		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2859		if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1 &&
2860		    pc->pc_map[2] == PC_FREE2) {
2861			PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
2862			PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
2863			PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
2864			/* Entire chunk is free; return it. */
2865			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
2866			dump_drop_page(m_pc->phys_addr);
2867			mtx_lock(&pv_chunks_mutex);
2868			break;
2869		}
2870		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2871		TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
2872		mtx_lock(&pv_chunks_mutex);
2873		/* One freed pv entry in locked_pmap is sufficient. */
2874		if (pmap == locked_pmap)
2875			break;
2876	}
2877	TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
2878	mtx_unlock(&pv_chunks_mutex);
2879	if (pmap != NULL) {
2880		pmap_invalidate_all(pmap);
2881		if (pmap != locked_pmap)
2882			PMAP_UNLOCK(pmap);
2883	}
2884	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
2885		m_pc = SLIST_FIRST(&free);
2886		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2887		/* Recycle a freed page table page. */
2888		m_pc->wire_count = 1;
2889		atomic_add_int(&cnt.v_wire_count, 1);
2890	}
2891	pmap_free_zero_pages(&free);
2892	return (m_pc);
2893}
2894
2895/*
2896 * free the pv_entry back to the free list
2897 */
2898static void
2899free_pv_entry(pmap_t pmap, pv_entry_t pv)
2900{
2901	struct pv_chunk *pc;
2902	int idx, field, bit;
2903
2904	rw_assert(&pvh_global_lock, RA_LOCKED);
2905	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2906	PV_STAT(atomic_add_long(&pv_entry_frees, 1));
2907	PV_STAT(atomic_add_int(&pv_entry_spare, 1));
2908	PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
2909	pc = pv_to_chunk(pv);
2910	idx = pv - &pc->pc_pventry[0];
2911	field = idx / 64;
2912	bit = idx % 64;
2913	pc->pc_map[field] |= 1ul << bit;
2914	if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1 ||
2915	    pc->pc_map[2] != PC_FREE2) {
2916		/* 98% of the time, pc is already at the head of the list. */
2917		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
2918			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2919			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2920		}
2921		return;
2922	}
2923	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2924	free_pv_chunk(pc);
2925}
2926
2927static void
2928free_pv_chunk(struct pv_chunk *pc)
2929{
2930	vm_page_t m;
2931
2932	mtx_lock(&pv_chunks_mutex);
2933 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2934	mtx_unlock(&pv_chunks_mutex);
2935	PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
2936	PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
2937	PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
2938	/* entire chunk is free, return it */
2939	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
2940	dump_drop_page(m->phys_addr);
2941	vm_page_unwire(m, 0);
2942	vm_page_free(m);
2943}
2944
2945/*
2946 * Returns a new PV entry, allocating a new PV chunk from the system when
2947 * needed.  If this PV chunk allocation fails and a PV list lock pointer was
2948 * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
2949 * returned.
2950 *
2951 * The given PV list lock may be released.
2952 */
2953static pv_entry_t
2954get_pv_entry(pmap_t pmap, struct rwlock **lockp)
2955{
2956	int bit, field;
2957	pv_entry_t pv;
2958	struct pv_chunk *pc;
2959	vm_page_t m;
2960
2961	rw_assert(&pvh_global_lock, RA_LOCKED);
2962	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2963	PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
2964retry:
2965	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2966	if (pc != NULL) {
2967		for (field = 0; field < _NPCM; field++) {
2968			if (pc->pc_map[field]) {
2969				bit = bsfq(pc->pc_map[field]);
2970				break;
2971			}
2972		}
2973		if (field < _NPCM) {
2974			pv = &pc->pc_pventry[field * 64 + bit];
2975			pc->pc_map[field] &= ~(1ul << bit);
2976			/* If this was the last item, move it to tail */
2977			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 &&
2978			    pc->pc_map[2] == 0) {
2979				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2980				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
2981				    pc_list);
2982			}
2983			PV_STAT(atomic_add_long(&pv_entry_count, 1));
2984			PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
2985			return (pv);
2986		}
2987	}
2988	/* No free items, allocate another chunk */
2989	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
2990	    VM_ALLOC_WIRED);
2991	if (m == NULL) {
2992		if (lockp == NULL) {
2993			PV_STAT(pc_chunk_tryfail++);
2994			return (NULL);
2995		}
2996		m = reclaim_pv_chunk(pmap, lockp);
2997		if (m == NULL)
2998			goto retry;
2999	}
3000	PV_STAT(atomic_add_int(&pc_chunk_count, 1));
3001	PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
3002	dump_add_page(m->phys_addr);
3003	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
3004	pc->pc_pmap = pmap;
3005	pc->pc_map[0] = PC_FREE0 & ~1ul;	/* preallocated bit 0 */
3006	pc->pc_map[1] = PC_FREE1;
3007	pc->pc_map[2] = PC_FREE2;
3008	mtx_lock(&pv_chunks_mutex);
3009	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
3010	mtx_unlock(&pv_chunks_mutex);
3011	pv = &pc->pc_pventry[0];
3012	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
3013	PV_STAT(atomic_add_long(&pv_entry_count, 1));
3014	PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
3015	return (pv);
3016}
3017
3018/*
3019 * Returns the number of one bits within the given PV chunk map element.
3020 */
3021static int
3022popcnt_pc_map_elem(uint64_t elem)
3023{
3024	int count;
3025
3026	/*
3027	 * This simple method of counting the one bits performs well because
3028	 * the given element typically contains more zero bits than one bits.
3029	 */
3030	count = 0;
3031	for (; elem != 0; elem &= elem - 1)
3032		count++;
3033	return (count);
3034}
3035
3036/*
3037 * Ensure that the number of spare PV entries in the specified pmap meets or
3038 * exceeds the given count, "needed".
3039 *
3040 * The given PV list lock may be released.
3041 */
3042static void
3043reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
3044{
3045	struct pch new_tail;
3046	struct pv_chunk *pc;
3047	int avail, free;
3048	vm_page_t m;
3049
3050	rw_assert(&pvh_global_lock, RA_LOCKED);
3051	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3052	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
3053
3054	/*
3055	 * Newly allocated PV chunks must be stored in a private list until
3056	 * the required number of PV chunks have been allocated.  Otherwise,
3057	 * reclaim_pv_chunk() could recycle one of these chunks.  In
3058	 * contrast, these chunks must be added to the pmap upon allocation.
3059	 */
3060	TAILQ_INIT(&new_tail);
3061retry:
3062	avail = 0;
3063	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
3064		if ((cpu_feature2 & CPUID2_POPCNT) == 0) {
3065			free = popcnt_pc_map_elem(pc->pc_map[0]);
3066			free += popcnt_pc_map_elem(pc->pc_map[1]);
3067			free += popcnt_pc_map_elem(pc->pc_map[2]);
3068		} else {
3069			free = popcntq(pc->pc_map[0]);
3070			free += popcntq(pc->pc_map[1]);
3071			free += popcntq(pc->pc_map[2]);
3072		}
3073		if (free == 0)
3074			break;
3075		avail += free;
3076		if (avail >= needed)
3077			break;
3078	}
3079	for (; avail < needed; avail += _NPCPV) {
3080		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
3081		    VM_ALLOC_WIRED);
3082		if (m == NULL) {
3083			m = reclaim_pv_chunk(pmap, lockp);
3084			if (m == NULL)
3085				goto retry;
3086		}
3087		PV_STAT(atomic_add_int(&pc_chunk_count, 1));
3088		PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
3089		dump_add_page(m->phys_addr);
3090		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
3091		pc->pc_pmap = pmap;
3092		pc->pc_map[0] = PC_FREE0;
3093		pc->pc_map[1] = PC_FREE1;
3094		pc->pc_map[2] = PC_FREE2;
3095		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
3096		TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
3097		PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
3098	}
3099	if (!TAILQ_EMPTY(&new_tail)) {
3100		mtx_lock(&pv_chunks_mutex);
3101		TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
3102		mtx_unlock(&pv_chunks_mutex);
3103	}
3104}
3105
3106/*
3107 * First find and then remove the pv entry for the specified pmap and virtual
3108 * address from the specified pv list.  Returns the pv entry if found and NULL
3109 * otherwise.  This operation can be performed on pv lists for either 4KB or
3110 * 2MB page mappings.
3111 */
3112static __inline pv_entry_t
3113pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3114{
3115	pv_entry_t pv;
3116
3117	rw_assert(&pvh_global_lock, RA_LOCKED);
3118	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
3119		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
3120			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
3121			pvh->pv_gen++;
3122			break;
3123		}
3124	}
3125	return (pv);
3126}
3127
3128/*
3129 * After demotion from a 2MB page mapping to 512 4KB page mappings,
3130 * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
3131 * entries for each of the 4KB page mappings.
3132 */
3133static void
3134pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
3135    struct rwlock **lockp)
3136{
3137	struct md_page *pvh;
3138	struct pv_chunk *pc;
3139	pv_entry_t pv;
3140	vm_offset_t va_last;
3141	vm_page_t m;
3142	int bit, field;
3143
3144	rw_assert(&pvh_global_lock, RA_LOCKED);
3145	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3146	KASSERT((pa & PDRMASK) == 0,
3147	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
3148	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
3149
3150	/*
3151	 * Transfer the 2mpage's pv entry for this mapping to the first
3152	 * page's pv list.  Once this transfer begins, the pv list lock
3153	 * must not be released until the last pv entry is reinstantiated.
3154	 */
3155	pvh = pa_to_pvh(pa);
3156	va = trunc_2mpage(va);
3157	pv = pmap_pvh_remove(pvh, pmap, va);
3158	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
3159	m = PHYS_TO_VM_PAGE(pa);
3160	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3161	m->md.pv_gen++;
3162	/* Instantiate the remaining NPTEPG - 1 pv entries. */
3163	PV_STAT(atomic_add_long(&pv_entry_allocs, NPTEPG - 1));
3164	va_last = va + NBPDR - PAGE_SIZE;
3165	for (;;) {
3166		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
3167		KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0 ||
3168		    pc->pc_map[2] != 0, ("pmap_pv_demote_pde: missing spare"));
3169		for (field = 0; field < _NPCM; field++) {
3170			while (pc->pc_map[field]) {
3171				bit = bsfq(pc->pc_map[field]);
3172				pc->pc_map[field] &= ~(1ul << bit);
3173				pv = &pc->pc_pventry[field * 64 + bit];
3174				va += PAGE_SIZE;
3175				pv->pv_va = va;
3176				m++;
3177				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3178			    ("pmap_pv_demote_pde: page %p is not managed", m));
3179				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3180				m->md.pv_gen++;
3181				if (va == va_last)
3182					goto out;
3183			}
3184		}
3185		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3186		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
3187	}
3188out:
3189	if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 && pc->pc_map[2] == 0) {
3190		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3191		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
3192	}
3193	PV_STAT(atomic_add_long(&pv_entry_count, NPTEPG - 1));
3194	PV_STAT(atomic_subtract_int(&pv_entry_spare, NPTEPG - 1));
3195}
3196
3197/*
3198 * After promotion from 512 4KB page mappings to a single 2MB page mapping,
3199 * replace the many pv entries for the 4KB page mappings by a single pv entry
3200 * for the 2MB page mapping.
3201 */
3202static void
3203pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
3204    struct rwlock **lockp)
3205{
3206	struct md_page *pvh;
3207	pv_entry_t pv;
3208	vm_offset_t va_last;
3209	vm_page_t m;
3210
3211	rw_assert(&pvh_global_lock, RA_LOCKED);
3212	KASSERT((pa & PDRMASK) == 0,
3213	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
3214	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
3215
3216	/*
3217	 * Transfer the first page's pv entry for this mapping to the 2mpage's
3218	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
3219	 * a transfer avoids the possibility that get_pv_entry() calls
3220	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
3221	 * mappings that is being promoted.
3222	 */
3223	m = PHYS_TO_VM_PAGE(pa);
3224	va = trunc_2mpage(va);
3225	pv = pmap_pvh_remove(&m->md, pmap, va);
3226	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
3227	pvh = pa_to_pvh(pa);
3228	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3229	pvh->pv_gen++;
3230	/* Free the remaining NPTEPG - 1 pv entries. */
3231	va_last = va + NBPDR - PAGE_SIZE;
3232	do {
3233		m++;
3234		va += PAGE_SIZE;
3235		pmap_pvh_free(&m->md, pmap, va);
3236	} while (va < va_last);
3237}
3238
3239/*
3240 * First find and then destroy the pv entry for the specified pmap and virtual
3241 * address.  This operation can be performed on pv lists for either 4KB or 2MB
3242 * page mappings.
3243 */
3244static void
3245pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3246{
3247	pv_entry_t pv;
3248
3249	pv = pmap_pvh_remove(pvh, pmap, va);
3250	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
3251	free_pv_entry(pmap, pv);
3252}
3253
3254/*
3255 * Conditionally create the PV entry for a 4KB page mapping if the required
3256 * memory can be allocated without resorting to reclamation.
3257 */
3258static boolean_t
3259pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
3260    struct rwlock **lockp)
3261{
3262	pv_entry_t pv;
3263
3264	rw_assert(&pvh_global_lock, RA_LOCKED);
3265	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3266	/* Pass NULL instead of the lock pointer to disable reclamation. */
3267	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
3268		pv->pv_va = va;
3269		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
3270		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3271		m->md.pv_gen++;
3272		return (TRUE);
3273	} else
3274		return (FALSE);
3275}
3276
3277/*
3278 * Conditionally create the PV entry for a 2MB page mapping if the required
3279 * memory can be allocated without resorting to reclamation.
3280 */
3281static boolean_t
3282pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
3283    struct rwlock **lockp)
3284{
3285	struct md_page *pvh;
3286	pv_entry_t pv;
3287
3288	rw_assert(&pvh_global_lock, RA_LOCKED);
3289	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3290	/* Pass NULL instead of the lock pointer to disable reclamation. */
3291	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
3292		pv->pv_va = va;
3293		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
3294		pvh = pa_to_pvh(pa);
3295		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3296		pvh->pv_gen++;
3297		return (TRUE);
3298	} else
3299		return (FALSE);
3300}
3301
3302/*
3303 * Fills a page table page with mappings to consecutive physical pages.
3304 */
3305static void
3306pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
3307{
3308	pt_entry_t *pte;
3309
3310	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
3311		*pte = newpte;
3312		newpte += PAGE_SIZE;
3313	}
3314}
3315
3316/*
3317 * Tries to demote a 2MB page mapping.  If demotion fails, the 2MB page
3318 * mapping is invalidated.
3319 */
3320static boolean_t
3321pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
3322{
3323	struct rwlock *lock;
3324	boolean_t rv;
3325
3326	lock = NULL;
3327	rv = pmap_demote_pde_locked(pmap, pde, va, &lock);
3328	if (lock != NULL)
3329		rw_wunlock(lock);
3330	return (rv);
3331}
3332
3333static boolean_t
3334pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
3335    struct rwlock **lockp)
3336{
3337	pd_entry_t newpde, oldpde;
3338	pt_entry_t *firstpte, newpte;
3339	pt_entry_t PG_A, PG_G, PG_M, PG_RW, PG_V;
3340	vm_paddr_t mptepa;
3341	vm_page_t mpte;
3342	struct spglist free;
3343	int PG_PTE_CACHE;
3344
3345	PG_G = pmap_global_bit(pmap);
3346	PG_A = pmap_accessed_bit(pmap);
3347	PG_M = pmap_modified_bit(pmap);
3348	PG_RW = pmap_rw_bit(pmap);
3349	PG_V = pmap_valid_bit(pmap);
3350	PG_PTE_CACHE = pmap_cache_mask(pmap, 0);
3351
3352	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3353	oldpde = *pde;
3354	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
3355	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
3356	if ((oldpde & PG_A) != 0 && (mpte = pmap_lookup_pt_page(pmap, va)) !=
3357	    NULL)
3358		pmap_remove_pt_page(pmap, mpte);
3359	else {
3360		KASSERT((oldpde & PG_W) == 0,
3361		    ("pmap_demote_pde: page table page for a wired mapping"
3362		    " is missing"));
3363
3364		/*
3365		 * Invalidate the 2MB page mapping and return "failure" if the
3366		 * mapping was never accessed or the allocation of the new
3367		 * page table page fails.  If the 2MB page mapping belongs to
3368		 * the direct map region of the kernel's address space, then
3369		 * the page allocation request specifies the highest possible
3370		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the priority is
3371		 * normal.  Page table pages are preallocated for every other
3372		 * part of the kernel address space, so the direct map region
3373		 * is the only part of the kernel address space that must be
3374		 * handled here.
3375		 */
3376		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
3377		    pmap_pde_pindex(va), (va >= DMAP_MIN_ADDRESS && va <
3378		    DMAP_MAX_ADDRESS ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL) |
3379		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
3380			SLIST_INIT(&free);
3381			pmap_remove_pde(pmap, pde, trunc_2mpage(va), &free,
3382			    lockp);
3383			pmap_invalidate_page(pmap, trunc_2mpage(va));
3384			pmap_free_zero_pages(&free);
3385			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#lx"
3386			    " in pmap %p", va, pmap);
3387			return (FALSE);
3388		}
3389		if (va < VM_MAXUSER_ADDRESS)
3390			pmap_resident_count_inc(pmap, 1);
3391	}
3392	mptepa = VM_PAGE_TO_PHYS(mpte);
3393	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
3394	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
3395	KASSERT((oldpde & PG_A) != 0,
3396	    ("pmap_demote_pde: oldpde is missing PG_A"));
3397	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
3398	    ("pmap_demote_pde: oldpde is missing PG_M"));
3399	newpte = oldpde & ~PG_PS;
3400	newpte = pmap_swap_pat(pmap, newpte);
3401
3402	/*
3403	 * If the page table page is new, initialize it.
3404	 */
3405	if (mpte->wire_count == 1) {
3406		mpte->wire_count = NPTEPG;
3407		pmap_fill_ptp(firstpte, newpte);
3408	}
3409	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
3410	    ("pmap_demote_pde: firstpte and newpte map different physical"
3411	    " addresses"));
3412
3413	/*
3414	 * If the mapping has changed attributes, update the page table
3415	 * entries.
3416	 */
3417	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
3418		pmap_fill_ptp(firstpte, newpte);
3419
3420	/*
3421	 * The spare PV entries must be reserved prior to demoting the
3422	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
3423	 * of the PDE and the PV lists will be inconsistent, which can result
3424	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
3425	 * wrong PV list and pmap_pv_demote_pde() failing to find the expected
3426	 * PV entry for the 2MB page mapping that is being demoted.
3427	 */
3428	if ((oldpde & PG_MANAGED) != 0)
3429		reserve_pv_entries(pmap, NPTEPG - 1, lockp);
3430
3431	/*
3432	 * Demote the mapping.  This pmap is locked.  The old PDE has
3433	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
3434	 * set.  Thus, there is no danger of a race with another
3435	 * processor changing the setting of PG_A and/or PG_M between
3436	 * the read above and the store below.
3437	 */
3438	if (workaround_erratum383)
3439		pmap_update_pde(pmap, va, pde, newpde);
3440	else
3441		pde_store(pde, newpde);
3442
3443	/*
3444	 * Invalidate a stale recursive mapping of the page table page.
3445	 */
3446	if (va >= VM_MAXUSER_ADDRESS)
3447		pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
3448
3449	/*
3450	 * Demote the PV entry.
3451	 */
3452	if ((oldpde & PG_MANAGED) != 0)
3453		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME, lockp);
3454
3455	atomic_add_long(&pmap_pde_demotions, 1);
3456	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#lx"
3457	    " in pmap %p", va, pmap);
3458	return (TRUE);
3459}
3460
3461/*
3462 * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
3463 */
3464static void
3465pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
3466{
3467	pd_entry_t newpde;
3468	vm_paddr_t mptepa;
3469	vm_page_t mpte;
3470
3471	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
3472	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3473	mpte = pmap_lookup_pt_page(pmap, va);
3474	if (mpte == NULL)
3475		panic("pmap_remove_kernel_pde: Missing pt page.");
3476
3477	pmap_remove_pt_page(pmap, mpte);
3478	mptepa = VM_PAGE_TO_PHYS(mpte);
3479	newpde = mptepa | X86_PG_M | X86_PG_A | X86_PG_RW | X86_PG_V;
3480
3481	/*
3482	 * Initialize the page table page.
3483	 */
3484	pagezero((void *)PHYS_TO_DMAP(mptepa));
3485
3486	/*
3487	 * Demote the mapping.
3488	 */
3489	if (workaround_erratum383)
3490		pmap_update_pde(pmap, va, pde, newpde);
3491	else
3492		pde_store(pde, newpde);
3493
3494	/*
3495	 * Invalidate a stale recursive mapping of the page table page.
3496	 */
3497	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
3498}
3499
3500/*
3501 * pmap_remove_pde: do the things to unmap a superpage in a process
3502 */
3503static int
3504pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
3505    struct spglist *free, struct rwlock **lockp)
3506{
3507	struct md_page *pvh;
3508	pd_entry_t oldpde;
3509	vm_offset_t eva, va;
3510	vm_page_t m, mpte;
3511	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
3512
3513	PG_G = pmap_global_bit(pmap);
3514	PG_A = pmap_accessed_bit(pmap);
3515	PG_M = pmap_modified_bit(pmap);
3516	PG_RW = pmap_rw_bit(pmap);
3517
3518	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3519	KASSERT((sva & PDRMASK) == 0,
3520	    ("pmap_remove_pde: sva is not 2mpage aligned"));
3521	oldpde = pte_load_clear(pdq);
3522	if (oldpde & PG_W)
3523		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
3524
3525	/*
3526	 * Machines that don't support invlpg, also don't support
3527	 * PG_G.
3528	 */
3529	if (oldpde & PG_G)
3530		pmap_invalidate_page(kernel_pmap, sva);
3531	pmap_resident_count_dec(pmap, NBPDR / PAGE_SIZE);
3532	if (oldpde & PG_MANAGED) {
3533		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
3534		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
3535		pmap_pvh_free(pvh, pmap, sva);
3536		eva = sva + NBPDR;
3537		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
3538		    va < eva; va += PAGE_SIZE, m++) {
3539			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
3540				vm_page_dirty(m);
3541			if (oldpde & PG_A)
3542				vm_page_aflag_set(m, PGA_REFERENCED);
3543			if (TAILQ_EMPTY(&m->md.pv_list) &&
3544			    TAILQ_EMPTY(&pvh->pv_list))
3545				vm_page_aflag_clear(m, PGA_WRITEABLE);
3546		}
3547	}
3548	if (pmap == kernel_pmap) {
3549		pmap_remove_kernel_pde(pmap, pdq, sva);
3550	} else {
3551		mpte = pmap_lookup_pt_page(pmap, sva);
3552		if (mpte != NULL) {
3553			pmap_remove_pt_page(pmap, mpte);
3554			pmap_resident_count_dec(pmap, 1);
3555			KASSERT(mpte->wire_count == NPTEPG,
3556			    ("pmap_remove_pde: pte page wire count error"));
3557			mpte->wire_count = 0;
3558			pmap_add_delayed_free_list(mpte, free, FALSE);
3559			atomic_subtract_int(&cnt.v_wire_count, 1);
3560		}
3561	}
3562	return (pmap_unuse_pt(pmap, sva, *pmap_pdpe(pmap, sva), free));
3563}
3564
3565/*
3566 * pmap_remove_pte: do the things to unmap a page in a process
3567 */
3568static int
3569pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
3570    pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
3571{
3572	struct md_page *pvh;
3573	pt_entry_t oldpte, PG_A, PG_M, PG_RW;
3574	vm_page_t m;
3575
3576	PG_A = pmap_accessed_bit(pmap);
3577	PG_M = pmap_modified_bit(pmap);
3578	PG_RW = pmap_rw_bit(pmap);
3579
3580	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3581	oldpte = pte_load_clear(ptq);
3582	if (oldpte & PG_W)
3583		pmap->pm_stats.wired_count -= 1;
3584	pmap_resident_count_dec(pmap, 1);
3585	if (oldpte & PG_MANAGED) {
3586		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
3587		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3588			vm_page_dirty(m);
3589		if (oldpte & PG_A)
3590			vm_page_aflag_set(m, PGA_REFERENCED);
3591		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
3592		pmap_pvh_free(&m->md, pmap, va);
3593		if (TAILQ_EMPTY(&m->md.pv_list) &&
3594		    (m->flags & PG_FICTITIOUS) == 0) {
3595			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3596			if (TAILQ_EMPTY(&pvh->pv_list))
3597				vm_page_aflag_clear(m, PGA_WRITEABLE);
3598		}
3599	}
3600	return (pmap_unuse_pt(pmap, va, ptepde, free));
3601}
3602
3603/*
3604 * Remove a single page from a process address space
3605 */
3606static void
3607pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
3608    struct spglist *free)
3609{
3610	struct rwlock *lock;
3611	pt_entry_t *pte, PG_V;
3612
3613	PG_V = pmap_valid_bit(pmap);
3614	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3615	if ((*pde & PG_V) == 0)
3616		return;
3617	pte = pmap_pde_to_pte(pde, va);
3618	if ((*pte & PG_V) == 0)
3619		return;
3620	lock = NULL;
3621	pmap_remove_pte(pmap, pte, va, *pde, free, &lock);
3622	if (lock != NULL)
3623		rw_wunlock(lock);
3624	pmap_invalidate_page(pmap, va);
3625}
3626
3627/*
3628 *	Remove the given range of addresses from the specified map.
3629 *
3630 *	It is assumed that the start and end are properly
3631 *	rounded to the page size.
3632 */
3633void
3634pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3635{
3636	struct rwlock *lock;
3637	vm_offset_t va, va_next;
3638	pml4_entry_t *pml4e;
3639	pdp_entry_t *pdpe;
3640	pd_entry_t ptpaddr, *pde;
3641	pt_entry_t *pte, PG_G, PG_V;
3642	struct spglist free;
3643	int anyvalid;
3644
3645	PG_G = pmap_global_bit(pmap);
3646	PG_V = pmap_valid_bit(pmap);
3647
3648	/*
3649	 * Perform an unsynchronized read.  This is, however, safe.
3650	 */
3651	if (pmap->pm_stats.resident_count == 0)
3652		return;
3653
3654	anyvalid = 0;
3655	SLIST_INIT(&free);
3656
3657	rw_rlock(&pvh_global_lock);
3658	PMAP_LOCK(pmap);
3659
3660	/*
3661	 * special handling of removing one page.  a very
3662	 * common operation and easy to short circuit some
3663	 * code.
3664	 */
3665	if (sva + PAGE_SIZE == eva) {
3666		pde = pmap_pde(pmap, sva);
3667		if (pde && (*pde & PG_PS) == 0) {
3668			pmap_remove_page(pmap, sva, pde, &free);
3669			goto out;
3670		}
3671	}
3672
3673	lock = NULL;
3674	for (; sva < eva; sva = va_next) {
3675
3676		if (pmap->pm_stats.resident_count == 0)
3677			break;
3678
3679		pml4e = pmap_pml4e(pmap, sva);
3680		if ((*pml4e & PG_V) == 0) {
3681			va_next = (sva + NBPML4) & ~PML4MASK;
3682			if (va_next < sva)
3683				va_next = eva;
3684			continue;
3685		}
3686
3687		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
3688		if ((*pdpe & PG_V) == 0) {
3689			va_next = (sva + NBPDP) & ~PDPMASK;
3690			if (va_next < sva)
3691				va_next = eva;
3692			continue;
3693		}
3694
3695		/*
3696		 * Calculate index for next page table.
3697		 */
3698		va_next = (sva + NBPDR) & ~PDRMASK;
3699		if (va_next < sva)
3700			va_next = eva;
3701
3702		pde = pmap_pdpe_to_pde(pdpe, sva);
3703		ptpaddr = *pde;
3704
3705		/*
3706		 * Weed out invalid mappings.
3707		 */
3708		if (ptpaddr == 0)
3709			continue;
3710
3711		/*
3712		 * Check for large page.
3713		 */
3714		if ((ptpaddr & PG_PS) != 0) {
3715			/*
3716			 * Are we removing the entire large page?  If not,
3717			 * demote the mapping and fall through.
3718			 */
3719			if (sva + NBPDR == va_next && eva >= va_next) {
3720				/*
3721				 * The TLB entry for a PG_G mapping is
3722				 * invalidated by pmap_remove_pde().
3723				 */
3724				if ((ptpaddr & PG_G) == 0)
3725					anyvalid = 1;
3726				pmap_remove_pde(pmap, pde, sva, &free, &lock);
3727				continue;
3728			} else if (!pmap_demote_pde_locked(pmap, pde, sva,
3729			    &lock)) {
3730				/* The large page mapping was destroyed. */
3731				continue;
3732			} else
3733				ptpaddr = *pde;
3734		}
3735
3736		/*
3737		 * Limit our scan to either the end of the va represented
3738		 * by the current page table page, or to the end of the
3739		 * range being removed.
3740		 */
3741		if (va_next > eva)
3742			va_next = eva;
3743
3744		va = va_next;
3745		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
3746		    sva += PAGE_SIZE) {
3747			if (*pte == 0) {
3748				if (va != va_next) {
3749					pmap_invalidate_range(pmap, va, sva);
3750					va = va_next;
3751				}
3752				continue;
3753			}
3754			if ((*pte & PG_G) == 0)
3755				anyvalid = 1;
3756			else if (va == va_next)
3757				va = sva;
3758			if (pmap_remove_pte(pmap, pte, sva, ptpaddr, &free,
3759			    &lock)) {
3760				sva += PAGE_SIZE;
3761				break;
3762			}
3763		}
3764		if (va != va_next)
3765			pmap_invalidate_range(pmap, va, sva);
3766	}
3767	if (lock != NULL)
3768		rw_wunlock(lock);
3769out:
3770	if (anyvalid)
3771		pmap_invalidate_all(pmap);
3772	rw_runlock(&pvh_global_lock);
3773	PMAP_UNLOCK(pmap);
3774	pmap_free_zero_pages(&free);
3775}
3776
3777/*
3778 *	Routine:	pmap_remove_all
3779 *	Function:
3780 *		Removes this physical page from
3781 *		all physical maps in which it resides.
3782 *		Reflects back modify bits to the pager.
3783 *
3784 *	Notes:
3785 *		Original versions of this routine were very
3786 *		inefficient because they iteratively called
3787 *		pmap_remove (slow...)
3788 */
3789
3790void
3791pmap_remove_all(vm_page_t m)
3792{
3793	struct md_page *pvh;
3794	pv_entry_t pv;
3795	pmap_t pmap;
3796	pt_entry_t *pte, tpte, PG_A, PG_M, PG_RW;
3797	pd_entry_t *pde;
3798	vm_offset_t va;
3799	struct spglist free;
3800
3801	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3802	    ("pmap_remove_all: page %p is not managed", m));
3803	SLIST_INIT(&free);
3804	rw_wlock(&pvh_global_lock);
3805	if ((m->flags & PG_FICTITIOUS) != 0)
3806		goto small_mappings;
3807	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3808	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
3809		pmap = PV_PMAP(pv);
3810		PMAP_LOCK(pmap);
3811		va = pv->pv_va;
3812		pde = pmap_pde(pmap, va);
3813		(void)pmap_demote_pde(pmap, pde, va);
3814		PMAP_UNLOCK(pmap);
3815	}
3816small_mappings:
3817	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3818		pmap = PV_PMAP(pv);
3819		PMAP_LOCK(pmap);
3820		PG_A = pmap_accessed_bit(pmap);
3821		PG_M = pmap_modified_bit(pmap);
3822		PG_RW = pmap_rw_bit(pmap);
3823		pmap_resident_count_dec(pmap, 1);
3824		pde = pmap_pde(pmap, pv->pv_va);
3825		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
3826		    " a 2mpage in page %p's pv list", m));
3827		pte = pmap_pde_to_pte(pde, pv->pv_va);
3828		tpte = pte_load_clear(pte);
3829		if (tpte & PG_W)
3830			pmap->pm_stats.wired_count--;
3831		if (tpte & PG_A)
3832			vm_page_aflag_set(m, PGA_REFERENCED);
3833
3834		/*
3835		 * Update the vm_page_t clean and reference bits.
3836		 */
3837		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3838			vm_page_dirty(m);
3839		pmap_unuse_pt(pmap, pv->pv_va, *pde, &free);
3840		pmap_invalidate_page(pmap, pv->pv_va);
3841		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3842		m->md.pv_gen++;
3843		free_pv_entry(pmap, pv);
3844		PMAP_UNLOCK(pmap);
3845	}
3846	vm_page_aflag_clear(m, PGA_WRITEABLE);
3847	rw_wunlock(&pvh_global_lock);
3848	pmap_free_zero_pages(&free);
3849}
3850
3851/*
3852 * pmap_protect_pde: do the things to protect a 2mpage in a process
3853 */
3854static boolean_t
3855pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
3856{
3857	pd_entry_t newpde, oldpde;
3858	vm_offset_t eva, va;
3859	vm_page_t m;
3860	boolean_t anychanged;
3861	pt_entry_t PG_G, PG_M, PG_RW;
3862
3863	PG_G = pmap_global_bit(pmap);
3864	PG_M = pmap_modified_bit(pmap);
3865	PG_RW = pmap_rw_bit(pmap);
3866
3867	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3868	KASSERT((sva & PDRMASK) == 0,
3869	    ("pmap_protect_pde: sva is not 2mpage aligned"));
3870	anychanged = FALSE;
3871retry:
3872	oldpde = newpde = *pde;
3873	if (oldpde & PG_MANAGED) {
3874		eva = sva + NBPDR;
3875		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
3876		    va < eva; va += PAGE_SIZE, m++)
3877			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
3878				vm_page_dirty(m);
3879	}
3880	if ((prot & VM_PROT_WRITE) == 0)
3881		newpde &= ~(PG_RW | PG_M);
3882	if ((prot & VM_PROT_EXECUTE) == 0)
3883		newpde |= pg_nx;
3884	if (newpde != oldpde) {
3885		if (!atomic_cmpset_long(pde, oldpde, newpde))
3886			goto retry;
3887		if (oldpde & PG_G)
3888			pmap_invalidate_page(pmap, sva);
3889		else
3890			anychanged = TRUE;
3891	}
3892	return (anychanged);
3893}
3894
3895/*
3896 *	Set the physical protection on the
3897 *	specified range of this map as requested.
3898 */
3899void
3900pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
3901{
3902	vm_offset_t va_next;
3903	pml4_entry_t *pml4e;
3904	pdp_entry_t *pdpe;
3905	pd_entry_t ptpaddr, *pde;
3906	pt_entry_t *pte, PG_G, PG_M, PG_RW, PG_V;
3907	boolean_t anychanged, pv_lists_locked;
3908
3909	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
3910	if (prot == VM_PROT_NONE) {
3911		pmap_remove(pmap, sva, eva);
3912		return;
3913	}
3914
3915	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
3916	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
3917		return;
3918
3919	PG_G = pmap_global_bit(pmap);
3920	PG_M = pmap_modified_bit(pmap);
3921	PG_V = pmap_valid_bit(pmap);
3922	PG_RW = pmap_rw_bit(pmap);
3923	pv_lists_locked = FALSE;
3924resume:
3925	anychanged = FALSE;
3926
3927	PMAP_LOCK(pmap);
3928	for (; sva < eva; sva = va_next) {
3929
3930		pml4e = pmap_pml4e(pmap, sva);
3931		if ((*pml4e & PG_V) == 0) {
3932			va_next = (sva + NBPML4) & ~PML4MASK;
3933			if (va_next < sva)
3934				va_next = eva;
3935			continue;
3936		}
3937
3938		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
3939		if ((*pdpe & PG_V) == 0) {
3940			va_next = (sva + NBPDP) & ~PDPMASK;
3941			if (va_next < sva)
3942				va_next = eva;
3943			continue;
3944		}
3945
3946		va_next = (sva + NBPDR) & ~PDRMASK;
3947		if (va_next < sva)
3948			va_next = eva;
3949
3950		pde = pmap_pdpe_to_pde(pdpe, sva);
3951		ptpaddr = *pde;
3952
3953		/*
3954		 * Weed out invalid mappings.
3955		 */
3956		if (ptpaddr == 0)
3957			continue;
3958
3959		/*
3960		 * Check for large page.
3961		 */
3962		if ((ptpaddr & PG_PS) != 0) {
3963			/*
3964			 * Are we protecting the entire large page?  If not,
3965			 * demote the mapping and fall through.
3966			 */
3967			if (sva + NBPDR == va_next && eva >= va_next) {
3968				/*
3969				 * The TLB entry for a PG_G mapping is
3970				 * invalidated by pmap_protect_pde().
3971				 */
3972				if (pmap_protect_pde(pmap, pde, sva, prot))
3973					anychanged = TRUE;
3974				continue;
3975			} else {
3976				if (!pv_lists_locked) {
3977					pv_lists_locked = TRUE;
3978					if (!rw_try_rlock(&pvh_global_lock)) {
3979						if (anychanged)
3980							pmap_invalidate_all(
3981							    pmap);
3982						PMAP_UNLOCK(pmap);
3983						rw_rlock(&pvh_global_lock);
3984						goto resume;
3985					}
3986				}
3987				if (!pmap_demote_pde(pmap, pde, sva)) {
3988					/*
3989					 * The large page mapping was
3990					 * destroyed.
3991					 */
3992					continue;
3993				}
3994			}
3995		}
3996
3997		if (va_next > eva)
3998			va_next = eva;
3999
4000		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
4001		    sva += PAGE_SIZE) {
4002			pt_entry_t obits, pbits;
4003			vm_page_t m;
4004
4005retry:
4006			obits = pbits = *pte;
4007			if ((pbits & PG_V) == 0)
4008				continue;
4009
4010			if ((prot & VM_PROT_WRITE) == 0) {
4011				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
4012				    (PG_MANAGED | PG_M | PG_RW)) {
4013					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4014					vm_page_dirty(m);
4015				}
4016				pbits &= ~(PG_RW | PG_M);
4017			}
4018			if ((prot & VM_PROT_EXECUTE) == 0)
4019				pbits |= pg_nx;
4020
4021			if (pbits != obits) {
4022				if (!atomic_cmpset_long(pte, obits, pbits))
4023					goto retry;
4024				if (obits & PG_G)
4025					pmap_invalidate_page(pmap, sva);
4026				else
4027					anychanged = TRUE;
4028			}
4029		}
4030	}
4031	if (anychanged)
4032		pmap_invalidate_all(pmap);
4033	if (pv_lists_locked)
4034		rw_runlock(&pvh_global_lock);
4035	PMAP_UNLOCK(pmap);
4036}
4037
4038/*
4039 * Tries to promote the 512, contiguous 4KB page mappings that are within a
4040 * single page table page (PTP) to a single 2MB page mapping.  For promotion
4041 * to occur, two conditions must be met: (1) the 4KB page mappings must map
4042 * aligned, contiguous physical memory and (2) the 4KB page mappings must have
4043 * identical characteristics.
4044 */
4045static void
4046pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
4047    struct rwlock **lockp)
4048{
4049	pd_entry_t newpde;
4050	pt_entry_t *firstpte, oldpte, pa, *pte;
4051	pt_entry_t PG_G, PG_A, PG_M, PG_RW, PG_V;
4052	vm_page_t mpte;
4053	int PG_PTE_CACHE;
4054
4055	PG_A = pmap_accessed_bit(pmap);
4056	PG_G = pmap_global_bit(pmap);
4057	PG_M = pmap_modified_bit(pmap);
4058	PG_V = pmap_valid_bit(pmap);
4059	PG_RW = pmap_rw_bit(pmap);
4060	PG_PTE_CACHE = pmap_cache_mask(pmap, 0);
4061
4062	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4063
4064	/*
4065	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
4066	 * either invalid, unused, or does not map the first 4KB physical page
4067	 * within a 2MB page.
4068	 */
4069	firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
4070setpde:
4071	newpde = *firstpte;
4072	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
4073		atomic_add_long(&pmap_pde_p_failures, 1);
4074		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
4075		    " in pmap %p", va, pmap);
4076		return;
4077	}
4078	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
4079		/*
4080		 * When PG_M is already clear, PG_RW can be cleared without
4081		 * a TLB invalidation.
4082		 */
4083		if (!atomic_cmpset_long(firstpte, newpde, newpde & ~PG_RW))
4084			goto setpde;
4085		newpde &= ~PG_RW;
4086	}
4087
4088	/*
4089	 * Examine each of the other PTEs in the specified PTP.  Abort if this
4090	 * PTE maps an unexpected 4KB physical page or does not have identical
4091	 * characteristics to the first PTE.
4092	 */
4093	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
4094	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
4095setpte:
4096		oldpte = *pte;
4097		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
4098			atomic_add_long(&pmap_pde_p_failures, 1);
4099			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
4100			    " in pmap %p", va, pmap);
4101			return;
4102		}
4103		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
4104			/*
4105			 * When PG_M is already clear, PG_RW can be cleared
4106			 * without a TLB invalidation.
4107			 */
4108			if (!atomic_cmpset_long(pte, oldpte, oldpte & ~PG_RW))
4109				goto setpte;
4110			oldpte &= ~PG_RW;
4111			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
4112			    " in pmap %p", (oldpte & PG_FRAME & PDRMASK) |
4113			    (va & ~PDRMASK), pmap);
4114		}
4115		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
4116			atomic_add_long(&pmap_pde_p_failures, 1);
4117			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
4118			    " in pmap %p", va, pmap);
4119			return;
4120		}
4121		pa -= PAGE_SIZE;
4122	}
4123
4124	/*
4125	 * Save the page table page in its current state until the PDE
4126	 * mapping the superpage is demoted by pmap_demote_pde() or
4127	 * destroyed by pmap_remove_pde().
4128	 */
4129	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
4130	KASSERT(mpte >= vm_page_array &&
4131	    mpte < &vm_page_array[vm_page_array_size],
4132	    ("pmap_promote_pde: page table page is out of range"));
4133	KASSERT(mpte->pindex == pmap_pde_pindex(va),
4134	    ("pmap_promote_pde: page table page's pindex is wrong"));
4135	if (pmap_insert_pt_page(pmap, mpte)) {
4136		atomic_add_long(&pmap_pde_p_failures, 1);
4137		CTR2(KTR_PMAP,
4138		    "pmap_promote_pde: failure for va %#lx in pmap %p", va,
4139		    pmap);
4140		return;
4141	}
4142
4143	/*
4144	 * Promote the pv entries.
4145	 */
4146	if ((newpde & PG_MANAGED) != 0)
4147		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME, lockp);
4148
4149	/*
4150	 * Propagate the PAT index to its proper position.
4151	 */
4152	newpde = pmap_swap_pat(pmap, newpde);
4153
4154	/*
4155	 * Map the superpage.
4156	 */
4157	if (workaround_erratum383)
4158		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
4159	else
4160		pde_store(pde, PG_PS | newpde);
4161
4162	atomic_add_long(&pmap_pde_promotions, 1);
4163	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#lx"
4164	    " in pmap %p", va, pmap);
4165}
4166
4167/*
4168 *	Insert the given physical page (p) at
4169 *	the specified virtual address (v) in the
4170 *	target physical map with the protection requested.
4171 *
4172 *	If specified, the page will be wired down, meaning
4173 *	that the related pte can not be reclaimed.
4174 *
4175 *	NB:  This is the only routine which MAY NOT lazy-evaluate
4176 *	or lose information.  That is, this routine must actually
4177 *	insert this page into the given map NOW.
4178 */
4179int
4180pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
4181    u_int flags, int8_t psind __unused)
4182{
4183	struct rwlock *lock;
4184	pd_entry_t *pde;
4185	pt_entry_t *pte, PG_G, PG_A, PG_M, PG_RW, PG_V;
4186	pt_entry_t newpte, origpte;
4187	pv_entry_t pv;
4188	vm_paddr_t opa, pa;
4189	vm_page_t mpte, om;
4190	boolean_t nosleep;
4191
4192	PG_A = pmap_accessed_bit(pmap);
4193	PG_G = pmap_global_bit(pmap);
4194	PG_M = pmap_modified_bit(pmap);
4195	PG_V = pmap_valid_bit(pmap);
4196	PG_RW = pmap_rw_bit(pmap);
4197
4198	va = trunc_page(va);
4199	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
4200	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
4201	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)",
4202	    va));
4203	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva ||
4204	    va >= kmi.clean_eva,
4205	    ("pmap_enter: managed mapping within the clean submap"));
4206	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
4207		VM_OBJECT_ASSERT_LOCKED(m->object);
4208	pa = VM_PAGE_TO_PHYS(m);
4209	newpte = (pt_entry_t)(pa | PG_A | PG_V);
4210	if ((flags & VM_PROT_WRITE) != 0)
4211		newpte |= PG_M;
4212	if ((prot & VM_PROT_WRITE) != 0)
4213		newpte |= PG_RW;
4214	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
4215	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
4216	if ((prot & VM_PROT_EXECUTE) == 0)
4217		newpte |= pg_nx;
4218	if ((flags & PMAP_ENTER_WIRED) != 0)
4219		newpte |= PG_W;
4220	if (va < VM_MAXUSER_ADDRESS)
4221		newpte |= PG_U;
4222	if (pmap == kernel_pmap)
4223		newpte |= PG_G;
4224	newpte |= pmap_cache_bits(pmap, m->md.pat_mode, 0);
4225
4226	/*
4227	 * Set modified bit gratuitously for writeable mappings if
4228	 * the page is unmanaged. We do not want to take a fault
4229	 * to do the dirty bit accounting for these mappings.
4230	 */
4231	if ((m->oflags & VPO_UNMANAGED) != 0) {
4232		if ((newpte & PG_RW) != 0)
4233			newpte |= PG_M;
4234	}
4235
4236	mpte = NULL;
4237
4238	lock = NULL;
4239	rw_rlock(&pvh_global_lock);
4240	PMAP_LOCK(pmap);
4241
4242	/*
4243	 * In the case that a page table page is not
4244	 * resident, we are creating it here.
4245	 */
4246retry:
4247	pde = pmap_pde(pmap, va);
4248	if (pde != NULL && (*pde & PG_V) != 0 && ((*pde & PG_PS) == 0 ||
4249	    pmap_demote_pde_locked(pmap, pde, va, &lock))) {
4250		pte = pmap_pde_to_pte(pde, va);
4251		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
4252			mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
4253			mpte->wire_count++;
4254		}
4255	} else if (va < VM_MAXUSER_ADDRESS) {
4256		/*
4257		 * Here if the pte page isn't mapped, or if it has been
4258		 * deallocated.
4259		 */
4260		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
4261		mpte = _pmap_allocpte(pmap, pmap_pde_pindex(va),
4262		    nosleep ? NULL : &lock);
4263		if (mpte == NULL && nosleep) {
4264			if (lock != NULL)
4265				rw_wunlock(lock);
4266			rw_runlock(&pvh_global_lock);
4267			PMAP_UNLOCK(pmap);
4268			return (KERN_RESOURCE_SHORTAGE);
4269		}
4270		goto retry;
4271	} else
4272		panic("pmap_enter: invalid page directory va=%#lx", va);
4273
4274	origpte = *pte;
4275
4276	/*
4277	 * Is the specified virtual address already mapped?
4278	 */
4279	if ((origpte & PG_V) != 0) {
4280		/*
4281		 * Wiring change, just update stats. We don't worry about
4282		 * wiring PT pages as they remain resident as long as there
4283		 * are valid mappings in them. Hence, if a user page is wired,
4284		 * the PT page will be also.
4285		 */
4286		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
4287			pmap->pm_stats.wired_count++;
4288		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
4289			pmap->pm_stats.wired_count--;
4290
4291		/*
4292		 * Remove the extra PT page reference.
4293		 */
4294		if (mpte != NULL) {
4295			mpte->wire_count--;
4296			KASSERT(mpte->wire_count > 0,
4297			    ("pmap_enter: missing reference to page table page,"
4298			     " va: 0x%lx", va));
4299		}
4300
4301		/*
4302		 * Has the physical page changed?
4303		 */
4304		opa = origpte & PG_FRAME;
4305		if (opa == pa) {
4306			/*
4307			 * No, might be a protection or wiring change.
4308			 */
4309			if ((origpte & PG_MANAGED) != 0) {
4310				newpte |= PG_MANAGED;
4311				if ((newpte & PG_RW) != 0)
4312					vm_page_aflag_set(m, PGA_WRITEABLE);
4313			}
4314			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
4315				goto unchanged;
4316			goto validate;
4317		}
4318	} else {
4319		/*
4320		 * Increment the counters.
4321		 */
4322		if ((newpte & PG_W) != 0)
4323			pmap->pm_stats.wired_count++;
4324		pmap_resident_count_inc(pmap, 1);
4325	}
4326
4327	/*
4328	 * Enter on the PV list if part of our managed memory.
4329	 */
4330	if ((m->oflags & VPO_UNMANAGED) == 0) {
4331		newpte |= PG_MANAGED;
4332		pv = get_pv_entry(pmap, &lock);
4333		pv->pv_va = va;
4334		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
4335		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
4336		m->md.pv_gen++;
4337		if ((newpte & PG_RW) != 0)
4338			vm_page_aflag_set(m, PGA_WRITEABLE);
4339	}
4340
4341	/*
4342	 * Update the PTE.
4343	 */
4344	if ((origpte & PG_V) != 0) {
4345validate:
4346		origpte = pte_load_store(pte, newpte);
4347		opa = origpte & PG_FRAME;
4348		if (opa != pa) {
4349			if ((origpte & PG_MANAGED) != 0) {
4350				om = PHYS_TO_VM_PAGE(opa);
4351				if ((origpte & (PG_M | PG_RW)) == (PG_M |
4352				    PG_RW))
4353					vm_page_dirty(om);
4354				if ((origpte & PG_A) != 0)
4355					vm_page_aflag_set(om, PGA_REFERENCED);
4356				CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
4357				pmap_pvh_free(&om->md, pmap, va);
4358				if ((om->aflags & PGA_WRITEABLE) != 0 &&
4359				    TAILQ_EMPTY(&om->md.pv_list) &&
4360				    ((om->flags & PG_FICTITIOUS) != 0 ||
4361				    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
4362					vm_page_aflag_clear(om, PGA_WRITEABLE);
4363			}
4364		} else if ((newpte & PG_M) == 0 && (origpte & (PG_M |
4365		    PG_RW)) == (PG_M | PG_RW)) {
4366			if ((origpte & PG_MANAGED) != 0)
4367				vm_page_dirty(m);
4368
4369			/*
4370			 * Although the PTE may still have PG_RW set, TLB
4371			 * invalidation may nonetheless be required because
4372			 * the PTE no longer has PG_M set.
4373			 */
4374		} else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
4375			/*
4376			 * This PTE change does not require TLB invalidation.
4377			 */
4378			goto unchanged;
4379		}
4380		if ((origpte & PG_A) != 0)
4381			pmap_invalidate_page(pmap, va);
4382	} else
4383		pte_store(pte, newpte);
4384
4385unchanged:
4386
4387	/*
4388	 * If both the page table page and the reservation are fully
4389	 * populated, then attempt promotion.
4390	 */
4391	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
4392	    pmap_ps_enabled(pmap) &&
4393	    (m->flags & PG_FICTITIOUS) == 0 &&
4394	    vm_reserv_level_iffullpop(m) == 0)
4395		pmap_promote_pde(pmap, pde, va, &lock);
4396
4397	if (lock != NULL)
4398		rw_wunlock(lock);
4399	rw_runlock(&pvh_global_lock);
4400	PMAP_UNLOCK(pmap);
4401	return (KERN_SUCCESS);
4402}
4403
4404/*
4405 * Tries to create a 2MB page mapping.  Returns TRUE if successful and FALSE
4406 * otherwise.  Fails if (1) a page table page cannot be allocated without
4407 * blocking, (2) a mapping already exists at the specified virtual address, or
4408 * (3) a pv entry cannot be allocated without reclaiming another pv entry.
4409 */
4410static boolean_t
4411pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
4412    struct rwlock **lockp)
4413{
4414	pd_entry_t *pde, newpde;
4415	pt_entry_t PG_V;
4416	vm_page_t mpde;
4417	struct spglist free;
4418
4419	PG_V = pmap_valid_bit(pmap);
4420	rw_assert(&pvh_global_lock, RA_LOCKED);
4421	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4422
4423	if ((mpde = pmap_allocpde(pmap, va, NULL)) == NULL) {
4424		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
4425		    " in pmap %p", va, pmap);
4426		return (FALSE);
4427	}
4428	pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpde));
4429	pde = &pde[pmap_pde_index(va)];
4430	if ((*pde & PG_V) != 0) {
4431		KASSERT(mpde->wire_count > 1,
4432		    ("pmap_enter_pde: mpde's wire count is too low"));
4433		mpde->wire_count--;
4434		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
4435		    " in pmap %p", va, pmap);
4436		return (FALSE);
4437	}
4438	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(pmap, m->md.pat_mode, 1) |
4439	    PG_PS | PG_V;
4440	if ((m->oflags & VPO_UNMANAGED) == 0) {
4441		newpde |= PG_MANAGED;
4442
4443		/*
4444		 * Abort this mapping if its PV entry could not be created.
4445		 */
4446		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m),
4447		    lockp)) {
4448			SLIST_INIT(&free);
4449			if (pmap_unwire_ptp(pmap, va, mpde, &free)) {
4450				pmap_invalidate_page(pmap, va);
4451				pmap_free_zero_pages(&free);
4452			}
4453			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
4454			    " in pmap %p", va, pmap);
4455			return (FALSE);
4456		}
4457	}
4458	if ((prot & VM_PROT_EXECUTE) == 0)
4459		newpde |= pg_nx;
4460	if (va < VM_MAXUSER_ADDRESS)
4461		newpde |= PG_U;
4462
4463	/*
4464	 * Increment counters.
4465	 */
4466	pmap_resident_count_inc(pmap, NBPDR / PAGE_SIZE);
4467
4468	/*
4469	 * Map the superpage.
4470	 */
4471	pde_store(pde, newpde);
4472
4473	atomic_add_long(&pmap_pde_mappings, 1);
4474	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
4475	    " in pmap %p", va, pmap);
4476	return (TRUE);
4477}
4478
4479/*
4480 * Maps a sequence of resident pages belonging to the same object.
4481 * The sequence begins with the given page m_start.  This page is
4482 * mapped at the given virtual address start.  Each subsequent page is
4483 * mapped at a virtual address that is offset from start by the same
4484 * amount as the page is offset from m_start within the object.  The
4485 * last page in the sequence is the page with the largest offset from
4486 * m_start that can be mapped at a virtual address less than the given
4487 * virtual address end.  Not every virtual page between start and end
4488 * is mapped; only those for which a resident page exists with the
4489 * corresponding offset from m_start are mapped.
4490 */
4491void
4492pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
4493    vm_page_t m_start, vm_prot_t prot)
4494{
4495	struct rwlock *lock;
4496	vm_offset_t va;
4497	vm_page_t m, mpte;
4498	vm_pindex_t diff, psize;
4499
4500	VM_OBJECT_ASSERT_LOCKED(m_start->object);
4501
4502	psize = atop(end - start);
4503	mpte = NULL;
4504	m = m_start;
4505	lock = NULL;
4506	rw_rlock(&pvh_global_lock);
4507	PMAP_LOCK(pmap);
4508	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
4509		va = start + ptoa(diff);
4510		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
4511		    m->psind == 1 && pmap_ps_enabled(pmap) &&
4512		    pmap_enter_pde(pmap, va, m, prot, &lock))
4513			m = &m[NBPDR / PAGE_SIZE - 1];
4514		else
4515			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
4516			    mpte, &lock);
4517		m = TAILQ_NEXT(m, listq);
4518	}
4519	if (lock != NULL)
4520		rw_wunlock(lock);
4521	rw_runlock(&pvh_global_lock);
4522	PMAP_UNLOCK(pmap);
4523}
4524
4525/*
4526 * this code makes some *MAJOR* assumptions:
4527 * 1. Current pmap & pmap exists.
4528 * 2. Not wired.
4529 * 3. Read access.
4530 * 4. No page table pages.
4531 * but is *MUCH* faster than pmap_enter...
4532 */
4533
4534void
4535pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
4536{
4537	struct rwlock *lock;
4538
4539	lock = NULL;
4540	rw_rlock(&pvh_global_lock);
4541	PMAP_LOCK(pmap);
4542	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
4543	if (lock != NULL)
4544		rw_wunlock(lock);
4545	rw_runlock(&pvh_global_lock);
4546	PMAP_UNLOCK(pmap);
4547}
4548
4549static vm_page_t
4550pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
4551    vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
4552{
4553	struct spglist free;
4554	pt_entry_t *pte, PG_V;
4555	vm_paddr_t pa;
4556
4557	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
4558	    (m->oflags & VPO_UNMANAGED) != 0,
4559	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
4560	PG_V = pmap_valid_bit(pmap);
4561	rw_assert(&pvh_global_lock, RA_LOCKED);
4562	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4563
4564	/*
4565	 * In the case that a page table page is not
4566	 * resident, we are creating it here.
4567	 */
4568	if (va < VM_MAXUSER_ADDRESS) {
4569		vm_pindex_t ptepindex;
4570		pd_entry_t *ptepa;
4571
4572		/*
4573		 * Calculate pagetable page index
4574		 */
4575		ptepindex = pmap_pde_pindex(va);
4576		if (mpte && (mpte->pindex == ptepindex)) {
4577			mpte->wire_count++;
4578		} else {
4579			/*
4580			 * Get the page directory entry
4581			 */
4582			ptepa = pmap_pde(pmap, va);
4583
4584			/*
4585			 * If the page table page is mapped, we just increment
4586			 * the hold count, and activate it.  Otherwise, we
4587			 * attempt to allocate a page table page.  If this
4588			 * attempt fails, we don't retry.  Instead, we give up.
4589			 */
4590			if (ptepa && (*ptepa & PG_V) != 0) {
4591				if (*ptepa & PG_PS)
4592					return (NULL);
4593				mpte = PHYS_TO_VM_PAGE(*ptepa & PG_FRAME);
4594				mpte->wire_count++;
4595			} else {
4596				/*
4597				 * Pass NULL instead of the PV list lock
4598				 * pointer, because we don't intend to sleep.
4599				 */
4600				mpte = _pmap_allocpte(pmap, ptepindex, NULL);
4601				if (mpte == NULL)
4602					return (mpte);
4603			}
4604		}
4605		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
4606		pte = &pte[pmap_pte_index(va)];
4607	} else {
4608		mpte = NULL;
4609		pte = vtopte(va);
4610	}
4611	if (*pte) {
4612		if (mpte != NULL) {
4613			mpte->wire_count--;
4614			mpte = NULL;
4615		}
4616		return (mpte);
4617	}
4618
4619	/*
4620	 * Enter on the PV list if part of our managed memory.
4621	 */
4622	if ((m->oflags & VPO_UNMANAGED) == 0 &&
4623	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
4624		if (mpte != NULL) {
4625			SLIST_INIT(&free);
4626			if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
4627				pmap_invalidate_page(pmap, va);
4628				pmap_free_zero_pages(&free);
4629			}
4630			mpte = NULL;
4631		}
4632		return (mpte);
4633	}
4634
4635	/*
4636	 * Increment counters
4637	 */
4638	pmap_resident_count_inc(pmap, 1);
4639
4640	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(pmap, m->md.pat_mode, 0);
4641	if ((prot & VM_PROT_EXECUTE) == 0)
4642		pa |= pg_nx;
4643
4644	/*
4645	 * Now validate mapping with RO protection
4646	 */
4647	if ((m->oflags & VPO_UNMANAGED) != 0)
4648		pte_store(pte, pa | PG_V | PG_U);
4649	else
4650		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
4651	return (mpte);
4652}
4653
4654/*
4655 * Make a temporary mapping for a physical address.  This is only intended
4656 * to be used for panic dumps.
4657 */
4658void *
4659pmap_kenter_temporary(vm_paddr_t pa, int i)
4660{
4661	vm_offset_t va;
4662
4663	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
4664	pmap_kenter(va, pa);
4665	invlpg(va);
4666	return ((void *)crashdumpmap);
4667}
4668
4669/*
4670 * This code maps large physical mmap regions into the
4671 * processor address space.  Note that some shortcuts
4672 * are taken, but the code works.
4673 */
4674void
4675pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
4676    vm_pindex_t pindex, vm_size_t size)
4677{
4678	pd_entry_t *pde;
4679	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
4680	vm_paddr_t pa, ptepa;
4681	vm_page_t p, pdpg;
4682	int pat_mode;
4683
4684	PG_A = pmap_accessed_bit(pmap);
4685	PG_M = pmap_modified_bit(pmap);
4686	PG_V = pmap_valid_bit(pmap);
4687	PG_RW = pmap_rw_bit(pmap);
4688
4689	VM_OBJECT_ASSERT_WLOCKED(object);
4690	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4691	    ("pmap_object_init_pt: non-device object"));
4692	if ((addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
4693		if (!pmap_ps_enabled(pmap))
4694			return;
4695		if (!vm_object_populate(object, pindex, pindex + atop(size)))
4696			return;
4697		p = vm_page_lookup(object, pindex);
4698		KASSERT(p->valid == VM_PAGE_BITS_ALL,
4699		    ("pmap_object_init_pt: invalid page %p", p));
4700		pat_mode = p->md.pat_mode;
4701
4702		/*
4703		 * Abort the mapping if the first page is not physically
4704		 * aligned to a 2MB page boundary.
4705		 */
4706		ptepa = VM_PAGE_TO_PHYS(p);
4707		if (ptepa & (NBPDR - 1))
4708			return;
4709
4710		/*
4711		 * Skip the first page.  Abort the mapping if the rest of
4712		 * the pages are not physically contiguous or have differing
4713		 * memory attributes.
4714		 */
4715		p = TAILQ_NEXT(p, listq);
4716		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
4717		    pa += PAGE_SIZE) {
4718			KASSERT(p->valid == VM_PAGE_BITS_ALL,
4719			    ("pmap_object_init_pt: invalid page %p", p));
4720			if (pa != VM_PAGE_TO_PHYS(p) ||
4721			    pat_mode != p->md.pat_mode)
4722				return;
4723			p = TAILQ_NEXT(p, listq);
4724		}
4725
4726		/*
4727		 * Map using 2MB pages.  Since "ptepa" is 2M aligned and
4728		 * "size" is a multiple of 2M, adding the PAT setting to "pa"
4729		 * will not affect the termination of this loop.
4730		 */
4731		PMAP_LOCK(pmap);
4732		for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, 1);
4733		    pa < ptepa + size; pa += NBPDR) {
4734			pdpg = pmap_allocpde(pmap, addr, NULL);
4735			if (pdpg == NULL) {
4736				/*
4737				 * The creation of mappings below is only an
4738				 * optimization.  If a page directory page
4739				 * cannot be allocated without blocking,
4740				 * continue on to the next mapping rather than
4741				 * blocking.
4742				 */
4743				addr += NBPDR;
4744				continue;
4745			}
4746			pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4747			pde = &pde[pmap_pde_index(addr)];
4748			if ((*pde & PG_V) == 0) {
4749				pde_store(pde, pa | PG_PS | PG_M | PG_A |
4750				    PG_U | PG_RW | PG_V);
4751				pmap_resident_count_inc(pmap, NBPDR / PAGE_SIZE);
4752				atomic_add_long(&pmap_pde_mappings, 1);
4753			} else {
4754				/* Continue on if the PDE is already valid. */
4755				pdpg->wire_count--;
4756				KASSERT(pdpg->wire_count > 0,
4757				    ("pmap_object_init_pt: missing reference "
4758				    "to page directory page, va: 0x%lx", addr));
4759			}
4760			addr += NBPDR;
4761		}
4762		PMAP_UNLOCK(pmap);
4763	}
4764}
4765
4766/*
4767 *	Clear the wired attribute from the mappings for the specified range of
4768 *	addresses in the given pmap.  Every valid mapping within that range
4769 *	must have the wired attribute set.  In contrast, invalid mappings
4770 *	cannot have the wired attribute set, so they are ignored.
4771 *
4772 *	The wired attribute of the page table entry is not a hardware feature,
4773 *	so there is no need to invalidate any TLB entries.
4774 */
4775void
4776pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4777{
4778	vm_offset_t va_next;
4779	pml4_entry_t *pml4e;
4780	pdp_entry_t *pdpe;
4781	pd_entry_t *pde;
4782	pt_entry_t *pte, PG_V;
4783	boolean_t pv_lists_locked;
4784
4785	PG_V = pmap_valid_bit(pmap);
4786	pv_lists_locked = FALSE;
4787resume:
4788	PMAP_LOCK(pmap);
4789	for (; sva < eva; sva = va_next) {
4790		pml4e = pmap_pml4e(pmap, sva);
4791		if ((*pml4e & PG_V) == 0) {
4792			va_next = (sva + NBPML4) & ~PML4MASK;
4793			if (va_next < sva)
4794				va_next = eva;
4795			continue;
4796		}
4797		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
4798		if ((*pdpe & PG_V) == 0) {
4799			va_next = (sva + NBPDP) & ~PDPMASK;
4800			if (va_next < sva)
4801				va_next = eva;
4802			continue;
4803		}
4804		va_next = (sva + NBPDR) & ~PDRMASK;
4805		if (va_next < sva)
4806			va_next = eva;
4807		pde = pmap_pdpe_to_pde(pdpe, sva);
4808		if ((*pde & PG_V) == 0)
4809			continue;
4810		if ((*pde & PG_PS) != 0) {
4811			if ((*pde & PG_W) == 0)
4812				panic("pmap_unwire: pde %#jx is missing PG_W",
4813				    (uintmax_t)*pde);
4814
4815			/*
4816			 * Are we unwiring the entire large page?  If not,
4817			 * demote the mapping and fall through.
4818			 */
4819			if (sva + NBPDR == va_next && eva >= va_next) {
4820				atomic_clear_long(pde, PG_W);
4821				pmap->pm_stats.wired_count -= NBPDR /
4822				    PAGE_SIZE;
4823				continue;
4824			} else {
4825				if (!pv_lists_locked) {
4826					pv_lists_locked = TRUE;
4827					if (!rw_try_rlock(&pvh_global_lock)) {
4828						PMAP_UNLOCK(pmap);
4829						rw_rlock(&pvh_global_lock);
4830						/* Repeat sva. */
4831						goto resume;
4832					}
4833				}
4834				if (!pmap_demote_pde(pmap, pde, sva))
4835					panic("pmap_unwire: demotion failed");
4836			}
4837		}
4838		if (va_next > eva)
4839			va_next = eva;
4840		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
4841		    sva += PAGE_SIZE) {
4842			if ((*pte & PG_V) == 0)
4843				continue;
4844			if ((*pte & PG_W) == 0)
4845				panic("pmap_unwire: pte %#jx is missing PG_W",
4846				    (uintmax_t)*pte);
4847
4848			/*
4849			 * PG_W must be cleared atomically.  Although the pmap
4850			 * lock synchronizes access to PG_W, another processor
4851			 * could be setting PG_M and/or PG_A concurrently.
4852			 */
4853			atomic_clear_long(pte, PG_W);
4854			pmap->pm_stats.wired_count--;
4855		}
4856	}
4857	if (pv_lists_locked)
4858		rw_runlock(&pvh_global_lock);
4859	PMAP_UNLOCK(pmap);
4860}
4861
4862/*
4863 *	Copy the range specified by src_addr/len
4864 *	from the source map to the range dst_addr/len
4865 *	in the destination map.
4866 *
4867 *	This routine is only advisory and need not do anything.
4868 */
4869
4870void
4871pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
4872    vm_offset_t src_addr)
4873{
4874	struct rwlock *lock;
4875	struct spglist free;
4876	vm_offset_t addr;
4877	vm_offset_t end_addr = src_addr + len;
4878	vm_offset_t va_next;
4879	pt_entry_t PG_A, PG_M, PG_V;
4880
4881	if (dst_addr != src_addr)
4882		return;
4883
4884	if (dst_pmap->pm_type != src_pmap->pm_type)
4885		return;
4886
4887	/*
4888	 * EPT page table entries that require emulation of A/D bits are
4889	 * sensitive to clearing the PG_A bit (aka EPT_PG_READ). Although
4890	 * we clear PG_M (aka EPT_PG_WRITE) concomitantly, the PG_U bit
4891	 * (aka EPT_PG_EXECUTE) could still be set. Since some EPT
4892	 * implementations flag an EPT misconfiguration for exec-only
4893	 * mappings we skip this function entirely for emulated pmaps.
4894	 */
4895	if (pmap_emulate_ad_bits(dst_pmap))
4896		return;
4897
4898	lock = NULL;
4899	rw_rlock(&pvh_global_lock);
4900	if (dst_pmap < src_pmap) {
4901		PMAP_LOCK(dst_pmap);
4902		PMAP_LOCK(src_pmap);
4903	} else {
4904		PMAP_LOCK(src_pmap);
4905		PMAP_LOCK(dst_pmap);
4906	}
4907
4908	PG_A = pmap_accessed_bit(dst_pmap);
4909	PG_M = pmap_modified_bit(dst_pmap);
4910	PG_V = pmap_valid_bit(dst_pmap);
4911
4912	for (addr = src_addr; addr < end_addr; addr = va_next) {
4913		pt_entry_t *src_pte, *dst_pte;
4914		vm_page_t dstmpde, dstmpte, srcmpte;
4915		pml4_entry_t *pml4e;
4916		pdp_entry_t *pdpe;
4917		pd_entry_t srcptepaddr, *pde;
4918
4919		KASSERT(addr < UPT_MIN_ADDRESS,
4920		    ("pmap_copy: invalid to pmap_copy page tables"));
4921
4922		pml4e = pmap_pml4e(src_pmap, addr);
4923		if ((*pml4e & PG_V) == 0) {
4924			va_next = (addr + NBPML4) & ~PML4MASK;
4925			if (va_next < addr)
4926				va_next = end_addr;
4927			continue;
4928		}
4929
4930		pdpe = pmap_pml4e_to_pdpe(pml4e, addr);
4931		if ((*pdpe & PG_V) == 0) {
4932			va_next = (addr + NBPDP) & ~PDPMASK;
4933			if (va_next < addr)
4934				va_next = end_addr;
4935			continue;
4936		}
4937
4938		va_next = (addr + NBPDR) & ~PDRMASK;
4939		if (va_next < addr)
4940			va_next = end_addr;
4941
4942		pde = pmap_pdpe_to_pde(pdpe, addr);
4943		srcptepaddr = *pde;
4944		if (srcptepaddr == 0)
4945			continue;
4946
4947		if (srcptepaddr & PG_PS) {
4948			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
4949				continue;
4950			dstmpde = pmap_allocpde(dst_pmap, addr, NULL);
4951			if (dstmpde == NULL)
4952				break;
4953			pde = (pd_entry_t *)
4954			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpde));
4955			pde = &pde[pmap_pde_index(addr)];
4956			if (*pde == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
4957			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
4958			    PG_PS_FRAME, &lock))) {
4959				*pde = srcptepaddr & ~PG_W;
4960				pmap_resident_count_inc(dst_pmap, NBPDR / PAGE_SIZE);
4961			} else
4962				dstmpde->wire_count--;
4963			continue;
4964		}
4965
4966		srcptepaddr &= PG_FRAME;
4967		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
4968		KASSERT(srcmpte->wire_count > 0,
4969		    ("pmap_copy: source page table page is unused"));
4970
4971		if (va_next > end_addr)
4972			va_next = end_addr;
4973
4974		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
4975		src_pte = &src_pte[pmap_pte_index(addr)];
4976		dstmpte = NULL;
4977		while (addr < va_next) {
4978			pt_entry_t ptetemp;
4979			ptetemp = *src_pte;
4980			/*
4981			 * we only virtual copy managed pages
4982			 */
4983			if ((ptetemp & PG_MANAGED) != 0) {
4984				if (dstmpte != NULL &&
4985				    dstmpte->pindex == pmap_pde_pindex(addr))
4986					dstmpte->wire_count++;
4987				else if ((dstmpte = pmap_allocpte(dst_pmap,
4988				    addr, NULL)) == NULL)
4989					goto out;
4990				dst_pte = (pt_entry_t *)
4991				    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
4992				dst_pte = &dst_pte[pmap_pte_index(addr)];
4993				if (*dst_pte == 0 &&
4994				    pmap_try_insert_pv_entry(dst_pmap, addr,
4995				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME),
4996				    &lock)) {
4997					/*
4998					 * Clear the wired, modified, and
4999					 * accessed (referenced) bits
5000					 * during the copy.
5001					 */
5002					*dst_pte = ptetemp & ~(PG_W | PG_M |
5003					    PG_A);
5004					pmap_resident_count_inc(dst_pmap, 1);
5005				} else {
5006					SLIST_INIT(&free);
5007					if (pmap_unwire_ptp(dst_pmap, addr,
5008					    dstmpte, &free)) {
5009						pmap_invalidate_page(dst_pmap,
5010						    addr);
5011						pmap_free_zero_pages(&free);
5012					}
5013					goto out;
5014				}
5015				if (dstmpte->wire_count >= srcmpte->wire_count)
5016					break;
5017			}
5018			addr += PAGE_SIZE;
5019			src_pte++;
5020		}
5021	}
5022out:
5023	if (lock != NULL)
5024		rw_wunlock(lock);
5025	rw_runlock(&pvh_global_lock);
5026	PMAP_UNLOCK(src_pmap);
5027	PMAP_UNLOCK(dst_pmap);
5028}
5029
5030/*
5031 *	pmap_zero_page zeros the specified hardware page by mapping
5032 *	the page into KVM and using bzero to clear its contents.
5033 */
5034void
5035pmap_zero_page(vm_page_t m)
5036{
5037	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5038
5039	pagezero((void *)va);
5040}
5041
5042/*
5043 *	pmap_zero_page_area zeros the specified hardware page by mapping
5044 *	the page into KVM and using bzero to clear its contents.
5045 *
5046 *	off and size may not cover an area beyond a single hardware page.
5047 */
5048void
5049pmap_zero_page_area(vm_page_t m, int off, int size)
5050{
5051	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5052
5053	if (off == 0 && size == PAGE_SIZE)
5054		pagezero((void *)va);
5055	else
5056		bzero((char *)va + off, size);
5057}
5058
5059/*
5060 *	pmap_zero_page_idle zeros the specified hardware page by mapping
5061 *	the page into KVM and using bzero to clear its contents.  This
5062 *	is intended to be called from the vm_pagezero process only and
5063 *	outside of Giant.
5064 */
5065void
5066pmap_zero_page_idle(vm_page_t m)
5067{
5068	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5069
5070	pagezero((void *)va);
5071}
5072
5073/*
5074 *	pmap_copy_page copies the specified (machine independent)
5075 *	page by mapping the page into virtual memory and using
5076 *	bcopy to copy the page, one machine dependent page at a
5077 *	time.
5078 */
5079void
5080pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
5081{
5082	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
5083	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
5084
5085	pagecopy((void *)src, (void *)dst);
5086}
5087
5088int unmapped_buf_allowed = 1;
5089
5090void
5091pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
5092    vm_offset_t b_offset, int xfersize)
5093{
5094	void *a_cp, *b_cp;
5095	vm_page_t m_a, m_b;
5096	vm_paddr_t p_a, p_b;
5097	pt_entry_t *pte;
5098	vm_offset_t a_pg_offset, b_pg_offset;
5099	int cnt;
5100	boolean_t pinned;
5101
5102	/*
5103	 * NB:  The sequence of updating a page table followed by accesses
5104	 * to the corresponding pages used in the !DMAP case is subject to
5105	 * the situation described in the "AMD64 Architecture Programmer's
5106	 * Manual Volume 2: System Programming" rev. 3.23, "7.3.1 Special
5107	 * Coherency Considerations".  Therefore, issuing the INVLPG right
5108	 * after modifying the PTE bits is crucial.
5109	 */
5110	pinned = FALSE;
5111	while (xfersize > 0) {
5112		a_pg_offset = a_offset & PAGE_MASK;
5113		m_a = ma[a_offset >> PAGE_SHIFT];
5114		p_a = m_a->phys_addr;
5115		b_pg_offset = b_offset & PAGE_MASK;
5116		m_b = mb[b_offset >> PAGE_SHIFT];
5117		p_b = m_b->phys_addr;
5118		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
5119		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
5120		if (__predict_false(p_a < DMAP_MIN_ADDRESS ||
5121		    p_a > DMAP_MIN_ADDRESS + dmaplimit)) {
5122			mtx_lock(&cpage_lock);
5123			sched_pin();
5124			pinned = TRUE;
5125			pte = vtopte(cpage_a);
5126			*pte = p_a | X86_PG_A | X86_PG_V |
5127			    pmap_cache_bits(kernel_pmap, m_a->md.pat_mode, 0);
5128			invlpg(cpage_a);
5129			a_cp = (char *)cpage_a + a_pg_offset;
5130		} else {
5131			a_cp = (char *)PHYS_TO_DMAP(p_a) + a_pg_offset;
5132		}
5133		if (__predict_false(p_b < DMAP_MIN_ADDRESS ||
5134		    p_b > DMAP_MIN_ADDRESS + dmaplimit)) {
5135			if (!pinned) {
5136				mtx_lock(&cpage_lock);
5137				sched_pin();
5138				pinned = TRUE;
5139			}
5140			pte = vtopte(cpage_b);
5141			*pte = p_b | X86_PG_A | X86_PG_M | X86_PG_RW |
5142			    X86_PG_V | pmap_cache_bits(kernel_pmap,
5143			    m_b->md.pat_mode, 0);
5144			invlpg(cpage_b);
5145			b_cp = (char *)cpage_b + b_pg_offset;
5146		} else {
5147			b_cp = (char *)PHYS_TO_DMAP(p_b) + b_pg_offset;
5148		}
5149		bcopy(a_cp, b_cp, cnt);
5150		if (__predict_false(pinned)) {
5151			sched_unpin();
5152			mtx_unlock(&cpage_lock);
5153			pinned = FALSE;
5154		}
5155		a_offset += cnt;
5156		b_offset += cnt;
5157		xfersize -= cnt;
5158	}
5159}
5160
5161/*
5162 * Returns true if the pmap's pv is one of the first
5163 * 16 pvs linked to from this page.  This count may
5164 * be changed upwards or downwards in the future; it
5165 * is only necessary that true be returned for a small
5166 * subset of pmaps for proper page aging.
5167 */
5168boolean_t
5169pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
5170{
5171	struct md_page *pvh;
5172	struct rwlock *lock;
5173	pv_entry_t pv;
5174	int loops = 0;
5175	boolean_t rv;
5176
5177	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5178	    ("pmap_page_exists_quick: page %p is not managed", m));
5179	rv = FALSE;
5180	rw_rlock(&pvh_global_lock);
5181	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5182	rw_rlock(lock);
5183	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5184		if (PV_PMAP(pv) == pmap) {
5185			rv = TRUE;
5186			break;
5187		}
5188		loops++;
5189		if (loops >= 16)
5190			break;
5191	}
5192	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
5193		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5194		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5195			if (PV_PMAP(pv) == pmap) {
5196				rv = TRUE;
5197				break;
5198			}
5199			loops++;
5200			if (loops >= 16)
5201				break;
5202		}
5203	}
5204	rw_runlock(lock);
5205	rw_runlock(&pvh_global_lock);
5206	return (rv);
5207}
5208
5209/*
5210 *	pmap_page_wired_mappings:
5211 *
5212 *	Return the number of managed mappings to the given physical page
5213 *	that are wired.
5214 */
5215int
5216pmap_page_wired_mappings(vm_page_t m)
5217{
5218	struct rwlock *lock;
5219	struct md_page *pvh;
5220	pmap_t pmap;
5221	pt_entry_t *pte;
5222	pv_entry_t pv;
5223	int count, md_gen, pvh_gen;
5224
5225	if ((m->oflags & VPO_UNMANAGED) != 0)
5226		return (0);
5227	rw_rlock(&pvh_global_lock);
5228	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5229	rw_rlock(lock);
5230restart:
5231	count = 0;
5232	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5233		pmap = PV_PMAP(pv);
5234		if (!PMAP_TRYLOCK(pmap)) {
5235			md_gen = m->md.pv_gen;
5236			rw_runlock(lock);
5237			PMAP_LOCK(pmap);
5238			rw_rlock(lock);
5239			if (md_gen != m->md.pv_gen) {
5240				PMAP_UNLOCK(pmap);
5241				goto restart;
5242			}
5243		}
5244		pte = pmap_pte(pmap, pv->pv_va);
5245		if ((*pte & PG_W) != 0)
5246			count++;
5247		PMAP_UNLOCK(pmap);
5248	}
5249	if ((m->flags & PG_FICTITIOUS) == 0) {
5250		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5251		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5252			pmap = PV_PMAP(pv);
5253			if (!PMAP_TRYLOCK(pmap)) {
5254				md_gen = m->md.pv_gen;
5255				pvh_gen = pvh->pv_gen;
5256				rw_runlock(lock);
5257				PMAP_LOCK(pmap);
5258				rw_rlock(lock);
5259				if (md_gen != m->md.pv_gen ||
5260				    pvh_gen != pvh->pv_gen) {
5261					PMAP_UNLOCK(pmap);
5262					goto restart;
5263				}
5264			}
5265			pte = pmap_pde(pmap, pv->pv_va);
5266			if ((*pte & PG_W) != 0)
5267				count++;
5268			PMAP_UNLOCK(pmap);
5269		}
5270	}
5271	rw_runlock(lock);
5272	rw_runlock(&pvh_global_lock);
5273	return (count);
5274}
5275
5276/*
5277 * Returns TRUE if the given page is mapped individually or as part of
5278 * a 2mpage.  Otherwise, returns FALSE.
5279 */
5280boolean_t
5281pmap_page_is_mapped(vm_page_t m)
5282{
5283	struct rwlock *lock;
5284	boolean_t rv;
5285
5286	if ((m->oflags & VPO_UNMANAGED) != 0)
5287		return (FALSE);
5288	rw_rlock(&pvh_global_lock);
5289	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5290	rw_rlock(lock);
5291	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
5292	    ((m->flags & PG_FICTITIOUS) == 0 &&
5293	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
5294	rw_runlock(lock);
5295	rw_runlock(&pvh_global_lock);
5296	return (rv);
5297}
5298
5299/*
5300 * Destroy all managed, non-wired mappings in the given user-space
5301 * pmap.  This pmap cannot be active on any processor besides the
5302 * caller.
5303 *
5304 * This function cannot be applied to the kernel pmap.  Moreover, it
5305 * is not intended for general use.  It is only to be used during
5306 * process termination.  Consequently, it can be implemented in ways
5307 * that make it faster than pmap_remove().  First, it can more quickly
5308 * destroy mappings by iterating over the pmap's collection of PV
5309 * entries, rather than searching the page table.  Second, it doesn't
5310 * have to test and clear the page table entries atomically, because
5311 * no processor is currently accessing the user address space.  In
5312 * particular, a page table entry's dirty bit won't change state once
5313 * this function starts.
5314 */
5315void
5316pmap_remove_pages(pmap_t pmap)
5317{
5318	pd_entry_t ptepde;
5319	pt_entry_t *pte, tpte;
5320	pt_entry_t PG_M, PG_RW, PG_V;
5321	struct spglist free;
5322	vm_page_t m, mpte, mt;
5323	pv_entry_t pv;
5324	struct md_page *pvh;
5325	struct pv_chunk *pc, *npc;
5326	struct rwlock *lock;
5327	int64_t bit;
5328	uint64_t inuse, bitmask;
5329	int allfree, field, freed, idx;
5330	boolean_t superpage;
5331	vm_paddr_t pa;
5332
5333	/*
5334	 * Assert that the given pmap is only active on the current
5335	 * CPU.  Unfortunately, we cannot block another CPU from
5336	 * activating the pmap while this function is executing.
5337	 */
5338	KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap));
5339#ifdef INVARIANTS
5340	{
5341		cpuset_t other_cpus;
5342
5343		other_cpus = all_cpus;
5344		critical_enter();
5345		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
5346		CPU_AND(&other_cpus, &pmap->pm_active);
5347		critical_exit();
5348		KASSERT(CPU_EMPTY(&other_cpus), ("pmap active %p", pmap));
5349	}
5350#endif
5351
5352	lock = NULL;
5353	PG_M = pmap_modified_bit(pmap);
5354	PG_V = pmap_valid_bit(pmap);
5355	PG_RW = pmap_rw_bit(pmap);
5356
5357	SLIST_INIT(&free);
5358	rw_rlock(&pvh_global_lock);
5359	PMAP_LOCK(pmap);
5360	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
5361		allfree = 1;
5362		freed = 0;
5363		for (field = 0; field < _NPCM; field++) {
5364			inuse = ~pc->pc_map[field] & pc_freemask[field];
5365			while (inuse != 0) {
5366				bit = bsfq(inuse);
5367				bitmask = 1UL << bit;
5368				idx = field * 64 + bit;
5369				pv = &pc->pc_pventry[idx];
5370				inuse &= ~bitmask;
5371
5372				pte = pmap_pdpe(pmap, pv->pv_va);
5373				ptepde = *pte;
5374				pte = pmap_pdpe_to_pde(pte, pv->pv_va);
5375				tpte = *pte;
5376				if ((tpte & (PG_PS | PG_V)) == PG_V) {
5377					superpage = FALSE;
5378					ptepde = tpte;
5379					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
5380					    PG_FRAME);
5381					pte = &pte[pmap_pte_index(pv->pv_va)];
5382					tpte = *pte;
5383				} else {
5384					/*
5385					 * Keep track whether 'tpte' is a
5386					 * superpage explicitly instead of
5387					 * relying on PG_PS being set.
5388					 *
5389					 * This is because PG_PS is numerically
5390					 * identical to PG_PTE_PAT and thus a
5391					 * regular page could be mistaken for
5392					 * a superpage.
5393					 */
5394					superpage = TRUE;
5395				}
5396
5397				if ((tpte & PG_V) == 0) {
5398					panic("bad pte va %lx pte %lx",
5399					    pv->pv_va, tpte);
5400				}
5401
5402/*
5403 * We cannot remove wired pages from a process' mapping at this time
5404 */
5405				if (tpte & PG_W) {
5406					allfree = 0;
5407					continue;
5408				}
5409
5410				if (superpage)
5411					pa = tpte & PG_PS_FRAME;
5412				else
5413					pa = tpte & PG_FRAME;
5414
5415				m = PHYS_TO_VM_PAGE(pa);
5416				KASSERT(m->phys_addr == pa,
5417				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
5418				    m, (uintmax_t)m->phys_addr,
5419				    (uintmax_t)tpte));
5420
5421				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
5422				    m < &vm_page_array[vm_page_array_size],
5423				    ("pmap_remove_pages: bad tpte %#jx",
5424				    (uintmax_t)tpte));
5425
5426				pte_clear(pte);
5427
5428				/*
5429				 * Update the vm_page_t clean/reference bits.
5430				 */
5431				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5432					if (superpage) {
5433						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
5434							vm_page_dirty(mt);
5435					} else
5436						vm_page_dirty(m);
5437				}
5438
5439				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
5440
5441				/* Mark free */
5442				pc->pc_map[field] |= bitmask;
5443				if (superpage) {
5444					pmap_resident_count_dec(pmap, NBPDR / PAGE_SIZE);
5445					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
5446					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5447					pvh->pv_gen++;
5448					if (TAILQ_EMPTY(&pvh->pv_list)) {
5449						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
5450							if ((mt->aflags & PGA_WRITEABLE) != 0 &&
5451							    TAILQ_EMPTY(&mt->md.pv_list))
5452								vm_page_aflag_clear(mt, PGA_WRITEABLE);
5453					}
5454					mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
5455					if (mpte != NULL) {
5456						pmap_remove_pt_page(pmap, mpte);
5457						pmap_resident_count_dec(pmap, 1);
5458						KASSERT(mpte->wire_count == NPTEPG,
5459						    ("pmap_remove_pages: pte page wire count error"));
5460						mpte->wire_count = 0;
5461						pmap_add_delayed_free_list(mpte, &free, FALSE);
5462						atomic_subtract_int(&cnt.v_wire_count, 1);
5463					}
5464				} else {
5465					pmap_resident_count_dec(pmap, 1);
5466					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5467					m->md.pv_gen++;
5468					if ((m->aflags & PGA_WRITEABLE) != 0 &&
5469					    TAILQ_EMPTY(&m->md.pv_list) &&
5470					    (m->flags & PG_FICTITIOUS) == 0) {
5471						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5472						if (TAILQ_EMPTY(&pvh->pv_list))
5473							vm_page_aflag_clear(m, PGA_WRITEABLE);
5474					}
5475				}
5476				pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
5477				freed++;
5478			}
5479		}
5480		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
5481		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
5482		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
5483		if (allfree) {
5484			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5485			free_pv_chunk(pc);
5486		}
5487	}
5488	if (lock != NULL)
5489		rw_wunlock(lock);
5490	pmap_invalidate_all(pmap);
5491	rw_runlock(&pvh_global_lock);
5492	PMAP_UNLOCK(pmap);
5493	pmap_free_zero_pages(&free);
5494}
5495
5496static boolean_t
5497pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
5498{
5499	struct rwlock *lock;
5500	pv_entry_t pv;
5501	struct md_page *pvh;
5502	pt_entry_t *pte, mask;
5503	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
5504	pmap_t pmap;
5505	int md_gen, pvh_gen;
5506	boolean_t rv;
5507
5508	rv = FALSE;
5509	rw_rlock(&pvh_global_lock);
5510	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5511	rw_rlock(lock);
5512restart:
5513	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5514		pmap = PV_PMAP(pv);
5515		if (!PMAP_TRYLOCK(pmap)) {
5516			md_gen = m->md.pv_gen;
5517			rw_runlock(lock);
5518			PMAP_LOCK(pmap);
5519			rw_rlock(lock);
5520			if (md_gen != m->md.pv_gen) {
5521				PMAP_UNLOCK(pmap);
5522				goto restart;
5523			}
5524		}
5525		pte = pmap_pte(pmap, pv->pv_va);
5526		mask = 0;
5527		if (modified) {
5528			PG_M = pmap_modified_bit(pmap);
5529			PG_RW = pmap_rw_bit(pmap);
5530			mask |= PG_RW | PG_M;
5531		}
5532		if (accessed) {
5533			PG_A = pmap_accessed_bit(pmap);
5534			PG_V = pmap_valid_bit(pmap);
5535			mask |= PG_V | PG_A;
5536		}
5537		rv = (*pte & mask) == mask;
5538		PMAP_UNLOCK(pmap);
5539		if (rv)
5540			goto out;
5541	}
5542	if ((m->flags & PG_FICTITIOUS) == 0) {
5543		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5544		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5545			pmap = PV_PMAP(pv);
5546			if (!PMAP_TRYLOCK(pmap)) {
5547				md_gen = m->md.pv_gen;
5548				pvh_gen = pvh->pv_gen;
5549				rw_runlock(lock);
5550				PMAP_LOCK(pmap);
5551				rw_rlock(lock);
5552				if (md_gen != m->md.pv_gen ||
5553				    pvh_gen != pvh->pv_gen) {
5554					PMAP_UNLOCK(pmap);
5555					goto restart;
5556				}
5557			}
5558			pte = pmap_pde(pmap, pv->pv_va);
5559			mask = 0;
5560			if (modified) {
5561				PG_M = pmap_modified_bit(pmap);
5562				PG_RW = pmap_rw_bit(pmap);
5563				mask |= PG_RW | PG_M;
5564			}
5565			if (accessed) {
5566				PG_A = pmap_accessed_bit(pmap);
5567				PG_V = pmap_valid_bit(pmap);
5568				mask |= PG_V | PG_A;
5569			}
5570			rv = (*pte & mask) == mask;
5571			PMAP_UNLOCK(pmap);
5572			if (rv)
5573				goto out;
5574		}
5575	}
5576out:
5577	rw_runlock(lock);
5578	rw_runlock(&pvh_global_lock);
5579	return (rv);
5580}
5581
5582/*
5583 *	pmap_is_modified:
5584 *
5585 *	Return whether or not the specified physical page was modified
5586 *	in any physical maps.
5587 */
5588boolean_t
5589pmap_is_modified(vm_page_t m)
5590{
5591
5592	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5593	    ("pmap_is_modified: page %p is not managed", m));
5594
5595	/*
5596	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
5597	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
5598	 * is clear, no PTEs can have PG_M set.
5599	 */
5600	VM_OBJECT_ASSERT_WLOCKED(m->object);
5601	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
5602		return (FALSE);
5603	return (pmap_page_test_mappings(m, FALSE, TRUE));
5604}
5605
5606/*
5607 *	pmap_is_prefaultable:
5608 *
5609 *	Return whether or not the specified virtual address is eligible
5610 *	for prefault.
5611 */
5612boolean_t
5613pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
5614{
5615	pd_entry_t *pde;
5616	pt_entry_t *pte, PG_V;
5617	boolean_t rv;
5618
5619	PG_V = pmap_valid_bit(pmap);
5620	rv = FALSE;
5621	PMAP_LOCK(pmap);
5622	pde = pmap_pde(pmap, addr);
5623	if (pde != NULL && (*pde & (PG_PS | PG_V)) == PG_V) {
5624		pte = pmap_pde_to_pte(pde, addr);
5625		rv = (*pte & PG_V) == 0;
5626	}
5627	PMAP_UNLOCK(pmap);
5628	return (rv);
5629}
5630
5631/*
5632 *	pmap_is_referenced:
5633 *
5634 *	Return whether or not the specified physical page was referenced
5635 *	in any physical maps.
5636 */
5637boolean_t
5638pmap_is_referenced(vm_page_t m)
5639{
5640
5641	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5642	    ("pmap_is_referenced: page %p is not managed", m));
5643	return (pmap_page_test_mappings(m, TRUE, FALSE));
5644}
5645
5646/*
5647 * Clear the write and modified bits in each of the given page's mappings.
5648 */
5649void
5650pmap_remove_write(vm_page_t m)
5651{
5652	struct md_page *pvh;
5653	pmap_t pmap;
5654	struct rwlock *lock;
5655	pv_entry_t next_pv, pv;
5656	pd_entry_t *pde;
5657	pt_entry_t oldpte, *pte, PG_M, PG_RW;
5658	vm_offset_t va;
5659	int pvh_gen, md_gen;
5660
5661	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5662	    ("pmap_remove_write: page %p is not managed", m));
5663
5664	/*
5665	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
5666	 * set by another thread while the object is locked.  Thus,
5667	 * if PGA_WRITEABLE is clear, no page table entries need updating.
5668	 */
5669	VM_OBJECT_ASSERT_WLOCKED(m->object);
5670	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
5671		return;
5672	rw_rlock(&pvh_global_lock);
5673	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5674	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5675retry_pv_loop:
5676	rw_wlock(lock);
5677	if ((m->flags & PG_FICTITIOUS) != 0)
5678		goto small_mappings;
5679	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5680		pmap = PV_PMAP(pv);
5681		if (!PMAP_TRYLOCK(pmap)) {
5682			pvh_gen = pvh->pv_gen;
5683			rw_wunlock(lock);
5684			PMAP_LOCK(pmap);
5685			rw_wlock(lock);
5686			if (pvh_gen != pvh->pv_gen) {
5687				PMAP_UNLOCK(pmap);
5688				rw_wunlock(lock);
5689				goto retry_pv_loop;
5690			}
5691		}
5692		PG_RW = pmap_rw_bit(pmap);
5693		va = pv->pv_va;
5694		pde = pmap_pde(pmap, va);
5695		if ((*pde & PG_RW) != 0)
5696			(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
5697		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
5698		    ("inconsistent pv lock %p %p for page %p",
5699		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
5700		PMAP_UNLOCK(pmap);
5701	}
5702small_mappings:
5703	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5704		pmap = PV_PMAP(pv);
5705		if (!PMAP_TRYLOCK(pmap)) {
5706			pvh_gen = pvh->pv_gen;
5707			md_gen = m->md.pv_gen;
5708			rw_wunlock(lock);
5709			PMAP_LOCK(pmap);
5710			rw_wlock(lock);
5711			if (pvh_gen != pvh->pv_gen ||
5712			    md_gen != m->md.pv_gen) {
5713				PMAP_UNLOCK(pmap);
5714				rw_wunlock(lock);
5715				goto retry_pv_loop;
5716			}
5717		}
5718		PG_M = pmap_modified_bit(pmap);
5719		PG_RW = pmap_rw_bit(pmap);
5720		pde = pmap_pde(pmap, pv->pv_va);
5721		KASSERT((*pde & PG_PS) == 0,
5722		    ("pmap_remove_write: found a 2mpage in page %p's pv list",
5723		    m));
5724		pte = pmap_pde_to_pte(pde, pv->pv_va);
5725retry:
5726		oldpte = *pte;
5727		if (oldpte & PG_RW) {
5728			if (!atomic_cmpset_long(pte, oldpte, oldpte &
5729			    ~(PG_RW | PG_M)))
5730				goto retry;
5731			if ((oldpte & PG_M) != 0)
5732				vm_page_dirty(m);
5733			pmap_invalidate_page(pmap, pv->pv_va);
5734		}
5735		PMAP_UNLOCK(pmap);
5736	}
5737	rw_wunlock(lock);
5738	vm_page_aflag_clear(m, PGA_WRITEABLE);
5739	rw_runlock(&pvh_global_lock);
5740}
5741
5742static __inline boolean_t
5743safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
5744{
5745
5746	if (!pmap_emulate_ad_bits(pmap))
5747		return (TRUE);
5748
5749	KASSERT(pmap->pm_type == PT_EPT, ("invalid pm_type %d", pmap->pm_type));
5750
5751	/*
5752	 * RWX = 010 or 110 will cause an unconditional EPT misconfiguration
5753	 * so we don't let the referenced (aka EPT_PG_READ) bit to be cleared
5754	 * if the EPT_PG_WRITE bit is set.
5755	 */
5756	if ((pte & EPT_PG_WRITE) != 0)
5757		return (FALSE);
5758
5759	/*
5760	 * RWX = 100 is allowed only if the PMAP_SUPPORTS_EXEC_ONLY is set.
5761	 */
5762	if ((pte & EPT_PG_EXECUTE) == 0 ||
5763	    ((pmap->pm_flags & PMAP_SUPPORTS_EXEC_ONLY) != 0))
5764		return (TRUE);
5765	else
5766		return (FALSE);
5767}
5768
5769#define	PMAP_TS_REFERENCED_MAX	5
5770
5771/*
5772 *	pmap_ts_referenced:
5773 *
5774 *	Return a count of reference bits for a page, clearing those bits.
5775 *	It is not necessary for every reference bit to be cleared, but it
5776 *	is necessary that 0 only be returned when there are truly no
5777 *	reference bits set.
5778 *
5779 *	XXX: The exact number of bits to check and clear is a matter that
5780 *	should be tested and standardized at some point in the future for
5781 *	optimal aging of shared pages.
5782 */
5783int
5784pmap_ts_referenced(vm_page_t m)
5785{
5786	struct md_page *pvh;
5787	pv_entry_t pv, pvf;
5788	pmap_t pmap;
5789	struct rwlock *lock;
5790	pd_entry_t oldpde, *pde;
5791	pt_entry_t *pte, PG_A;
5792	vm_offset_t va;
5793	vm_paddr_t pa;
5794	int cleared, md_gen, not_cleared, pvh_gen;
5795	struct spglist free;
5796	boolean_t demoted;
5797
5798	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5799	    ("pmap_ts_referenced: page %p is not managed", m));
5800	SLIST_INIT(&free);
5801	cleared = 0;
5802	pa = VM_PAGE_TO_PHYS(m);
5803	lock = PHYS_TO_PV_LIST_LOCK(pa);
5804	pvh = pa_to_pvh(pa);
5805	rw_rlock(&pvh_global_lock);
5806	rw_wlock(lock);
5807retry:
5808	not_cleared = 0;
5809	if ((m->flags & PG_FICTITIOUS) != 0 ||
5810	    (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
5811		goto small_mappings;
5812	pv = pvf;
5813	do {
5814		if (pvf == NULL)
5815			pvf = pv;
5816		pmap = PV_PMAP(pv);
5817		if (!PMAP_TRYLOCK(pmap)) {
5818			pvh_gen = pvh->pv_gen;
5819			rw_wunlock(lock);
5820			PMAP_LOCK(pmap);
5821			rw_wlock(lock);
5822			if (pvh_gen != pvh->pv_gen) {
5823				PMAP_UNLOCK(pmap);
5824				goto retry;
5825			}
5826		}
5827		PG_A = pmap_accessed_bit(pmap);
5828		va = pv->pv_va;
5829		pde = pmap_pde(pmap, pv->pv_va);
5830		oldpde = *pde;
5831		if ((*pde & PG_A) != 0) {
5832			/*
5833			 * Since this reference bit is shared by 512 4KB
5834			 * pages, it should not be cleared every time it is
5835			 * tested.  Apply a simple "hash" function on the
5836			 * physical page number, the virtual superpage number,
5837			 * and the pmap address to select one 4KB page out of
5838			 * the 512 on which testing the reference bit will
5839			 * result in clearing that reference bit.  This
5840			 * function is designed to avoid the selection of the
5841			 * same 4KB page for every 2MB page mapping.
5842			 *
5843			 * On demotion, a mapping that hasn't been referenced
5844			 * is simply destroyed.  To avoid the possibility of a
5845			 * subsequent page fault on a demoted wired mapping,
5846			 * always leave its reference bit set.  Moreover,
5847			 * since the superpage is wired, the current state of
5848			 * its reference bit won't affect page replacement.
5849			 */
5850			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
5851			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
5852			    (*pde & PG_W) == 0) {
5853				if (safe_to_clear_referenced(pmap, oldpde)) {
5854					atomic_clear_long(pde, PG_A);
5855					pmap_invalidate_page(pmap, pv->pv_va);
5856					demoted = FALSE;
5857				} else if (pmap_demote_pde_locked(pmap, pde,
5858				    pv->pv_va, &lock)) {
5859					/*
5860					 * Remove the mapping to a single page
5861					 * so that a subsequent access may
5862					 * repromote.  Since the underlying
5863					 * page table page is fully populated,
5864					 * this removal never frees a page
5865					 * table page.
5866					 */
5867					demoted = TRUE;
5868					va += VM_PAGE_TO_PHYS(m) - (oldpde &
5869					    PG_PS_FRAME);
5870					pte = pmap_pde_to_pte(pde, va);
5871					pmap_remove_pte(pmap, pte, va, *pde,
5872					    NULL, &lock);
5873					pmap_invalidate_page(pmap, va);
5874				} else
5875					demoted = TRUE;
5876
5877				if (demoted) {
5878					/*
5879					 * The superpage mapping was removed
5880					 * entirely and therefore 'pv' is no
5881					 * longer valid.
5882					 */
5883					if (pvf == pv)
5884						pvf = NULL;
5885					pv = NULL;
5886				}
5887				cleared++;
5888				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
5889				    ("inconsistent pv lock %p %p for page %p",
5890				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
5891			} else
5892				not_cleared++;
5893		}
5894		PMAP_UNLOCK(pmap);
5895		/* Rotate the PV list if it has more than one entry. */
5896		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
5897			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5898			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5899			pvh->pv_gen++;
5900		}
5901		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
5902			goto out;
5903	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
5904small_mappings:
5905	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
5906		goto out;
5907	pv = pvf;
5908	do {
5909		if (pvf == NULL)
5910			pvf = pv;
5911		pmap = PV_PMAP(pv);
5912		if (!PMAP_TRYLOCK(pmap)) {
5913			pvh_gen = pvh->pv_gen;
5914			md_gen = m->md.pv_gen;
5915			rw_wunlock(lock);
5916			PMAP_LOCK(pmap);
5917			rw_wlock(lock);
5918			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
5919				PMAP_UNLOCK(pmap);
5920				goto retry;
5921			}
5922		}
5923		PG_A = pmap_accessed_bit(pmap);
5924		pde = pmap_pde(pmap, pv->pv_va);
5925		KASSERT((*pde & PG_PS) == 0,
5926		    ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
5927		    m));
5928		pte = pmap_pde_to_pte(pde, pv->pv_va);
5929		if ((*pte & PG_A) != 0) {
5930			if (safe_to_clear_referenced(pmap, *pte)) {
5931				atomic_clear_long(pte, PG_A);
5932				pmap_invalidate_page(pmap, pv->pv_va);
5933				cleared++;
5934			} else if ((*pte & PG_W) == 0) {
5935				/*
5936				 * Wired pages cannot be paged out so
5937				 * doing accessed bit emulation for
5938				 * them is wasted effort. We do the
5939				 * hard work for unwired pages only.
5940				 */
5941				pmap_remove_pte(pmap, pte, pv->pv_va,
5942				    *pde, &free, &lock);
5943				pmap_invalidate_page(pmap, pv->pv_va);
5944				cleared++;
5945				if (pvf == pv)
5946					pvf = NULL;
5947				pv = NULL;
5948				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
5949				    ("inconsistent pv lock %p %p for page %p",
5950				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
5951			} else
5952				not_cleared++;
5953		}
5954		PMAP_UNLOCK(pmap);
5955		/* Rotate the PV list if it has more than one entry. */
5956		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
5957			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5958			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5959			m->md.pv_gen++;
5960		}
5961	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
5962	    not_cleared < PMAP_TS_REFERENCED_MAX);
5963out:
5964	rw_wunlock(lock);
5965	rw_runlock(&pvh_global_lock);
5966	pmap_free_zero_pages(&free);
5967	return (cleared + not_cleared);
5968}
5969
5970/*
5971 *	Apply the given advice to the specified range of addresses within the
5972 *	given pmap.  Depending on the advice, clear the referenced and/or
5973 *	modified flags in each mapping and set the mapped page's dirty field.
5974 */
5975void
5976pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
5977{
5978	struct rwlock *lock;
5979	pml4_entry_t *pml4e;
5980	pdp_entry_t *pdpe;
5981	pd_entry_t oldpde, *pde;
5982	pt_entry_t *pte, PG_A, PG_G, PG_M, PG_RW, PG_V;
5983	vm_offset_t va_next;
5984	vm_page_t m;
5985	boolean_t anychanged, pv_lists_locked;
5986
5987	if (advice != MADV_DONTNEED && advice != MADV_FREE)
5988		return;
5989
5990	/*
5991	 * A/D bit emulation requires an alternate code path when clearing
5992	 * the modified and accessed bits below. Since this function is
5993	 * advisory in nature we skip it entirely for pmaps that require
5994	 * A/D bit emulation.
5995	 */
5996	if (pmap_emulate_ad_bits(pmap))
5997		return;
5998
5999	PG_A = pmap_accessed_bit(pmap);
6000	PG_G = pmap_global_bit(pmap);
6001	PG_M = pmap_modified_bit(pmap);
6002	PG_V = pmap_valid_bit(pmap);
6003	PG_RW = pmap_rw_bit(pmap);
6004
6005	pv_lists_locked = FALSE;
6006resume:
6007	anychanged = FALSE;
6008	PMAP_LOCK(pmap);
6009	for (; sva < eva; sva = va_next) {
6010		pml4e = pmap_pml4e(pmap, sva);
6011		if ((*pml4e & PG_V) == 0) {
6012			va_next = (sva + NBPML4) & ~PML4MASK;
6013			if (va_next < sva)
6014				va_next = eva;
6015			continue;
6016		}
6017		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6018		if ((*pdpe & PG_V) == 0) {
6019			va_next = (sva + NBPDP) & ~PDPMASK;
6020			if (va_next < sva)
6021				va_next = eva;
6022			continue;
6023		}
6024		va_next = (sva + NBPDR) & ~PDRMASK;
6025		if (va_next < sva)
6026			va_next = eva;
6027		pde = pmap_pdpe_to_pde(pdpe, sva);
6028		oldpde = *pde;
6029		if ((oldpde & PG_V) == 0)
6030			continue;
6031		else if ((oldpde & PG_PS) != 0) {
6032			if ((oldpde & PG_MANAGED) == 0)
6033				continue;
6034			if (!pv_lists_locked) {
6035				pv_lists_locked = TRUE;
6036				if (!rw_try_rlock(&pvh_global_lock)) {
6037					if (anychanged)
6038						pmap_invalidate_all(pmap);
6039					PMAP_UNLOCK(pmap);
6040					rw_rlock(&pvh_global_lock);
6041					goto resume;
6042				}
6043			}
6044			lock = NULL;
6045			if (!pmap_demote_pde_locked(pmap, pde, sva, &lock)) {
6046				if (lock != NULL)
6047					rw_wunlock(lock);
6048
6049				/*
6050				 * The large page mapping was destroyed.
6051				 */
6052				continue;
6053			}
6054
6055			/*
6056			 * Unless the page mappings are wired, remove the
6057			 * mapping to a single page so that a subsequent
6058			 * access may repromote.  Since the underlying page
6059			 * table page is fully populated, this removal never
6060			 * frees a page table page.
6061			 */
6062			if ((oldpde & PG_W) == 0) {
6063				pte = pmap_pde_to_pte(pde, sva);
6064				KASSERT((*pte & PG_V) != 0,
6065				    ("pmap_advise: invalid PTE"));
6066				pmap_remove_pte(pmap, pte, sva, *pde, NULL,
6067				    &lock);
6068				anychanged = TRUE;
6069			}
6070			if (lock != NULL)
6071				rw_wunlock(lock);
6072		}
6073		if (va_next > eva)
6074			va_next = eva;
6075		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
6076		    sva += PAGE_SIZE) {
6077			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED |
6078			    PG_V))
6079				continue;
6080			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
6081				if (advice == MADV_DONTNEED) {
6082					/*
6083					 * Future calls to pmap_is_modified()
6084					 * can be avoided by making the page
6085					 * dirty now.
6086					 */
6087					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
6088					vm_page_dirty(m);
6089				}
6090				atomic_clear_long(pte, PG_M | PG_A);
6091			} else if ((*pte & PG_A) != 0)
6092				atomic_clear_long(pte, PG_A);
6093			else
6094				continue;
6095			if ((*pte & PG_G) != 0)
6096				pmap_invalidate_page(pmap, sva);
6097			else
6098				anychanged = TRUE;
6099		}
6100	}
6101	if (anychanged)
6102		pmap_invalidate_all(pmap);
6103	if (pv_lists_locked)
6104		rw_runlock(&pvh_global_lock);
6105	PMAP_UNLOCK(pmap);
6106}
6107
6108/*
6109 *	Clear the modify bits on the specified physical page.
6110 */
6111void
6112pmap_clear_modify(vm_page_t m)
6113{
6114	struct md_page *pvh;
6115	pmap_t pmap;
6116	pv_entry_t next_pv, pv;
6117	pd_entry_t oldpde, *pde;
6118	pt_entry_t oldpte, *pte, PG_M, PG_RW, PG_V;
6119	struct rwlock *lock;
6120	vm_offset_t va;
6121	int md_gen, pvh_gen;
6122
6123	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
6124	    ("pmap_clear_modify: page %p is not managed", m));
6125	VM_OBJECT_ASSERT_WLOCKED(m->object);
6126	KASSERT(!vm_page_xbusied(m),
6127	    ("pmap_clear_modify: page %p is exclusive busied", m));
6128
6129	/*
6130	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
6131	 * If the object containing the page is locked and the page is not
6132	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
6133	 */
6134	if ((m->aflags & PGA_WRITEABLE) == 0)
6135		return;
6136	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
6137	rw_rlock(&pvh_global_lock);
6138	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6139	rw_wlock(lock);
6140restart:
6141	if ((m->flags & PG_FICTITIOUS) != 0)
6142		goto small_mappings;
6143	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
6144		pmap = PV_PMAP(pv);
6145		if (!PMAP_TRYLOCK(pmap)) {
6146			pvh_gen = pvh->pv_gen;
6147			rw_wunlock(lock);
6148			PMAP_LOCK(pmap);
6149			rw_wlock(lock);
6150			if (pvh_gen != pvh->pv_gen) {
6151				PMAP_UNLOCK(pmap);
6152				goto restart;
6153			}
6154		}
6155		PG_M = pmap_modified_bit(pmap);
6156		PG_V = pmap_valid_bit(pmap);
6157		PG_RW = pmap_rw_bit(pmap);
6158		va = pv->pv_va;
6159		pde = pmap_pde(pmap, va);
6160		oldpde = *pde;
6161		if ((oldpde & PG_RW) != 0) {
6162			if (pmap_demote_pde_locked(pmap, pde, va, &lock)) {
6163				if ((oldpde & PG_W) == 0) {
6164					/*
6165					 * Write protect the mapping to a
6166					 * single page so that a subsequent
6167					 * write access may repromote.
6168					 */
6169					va += VM_PAGE_TO_PHYS(m) - (oldpde &
6170					    PG_PS_FRAME);
6171					pte = pmap_pde_to_pte(pde, va);
6172					oldpte = *pte;
6173					if ((oldpte & PG_V) != 0) {
6174						while (!atomic_cmpset_long(pte,
6175						    oldpte,
6176						    oldpte & ~(PG_M | PG_RW)))
6177							oldpte = *pte;
6178						vm_page_dirty(m);
6179						pmap_invalidate_page(pmap, va);
6180					}
6181				}
6182			}
6183		}
6184		PMAP_UNLOCK(pmap);
6185	}
6186small_mappings:
6187	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
6188		pmap = PV_PMAP(pv);
6189		if (!PMAP_TRYLOCK(pmap)) {
6190			md_gen = m->md.pv_gen;
6191			pvh_gen = pvh->pv_gen;
6192			rw_wunlock(lock);
6193			PMAP_LOCK(pmap);
6194			rw_wlock(lock);
6195			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
6196				PMAP_UNLOCK(pmap);
6197				goto restart;
6198			}
6199		}
6200		PG_M = pmap_modified_bit(pmap);
6201		PG_RW = pmap_rw_bit(pmap);
6202		pde = pmap_pde(pmap, pv->pv_va);
6203		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
6204		    " a 2mpage in page %p's pv list", m));
6205		pte = pmap_pde_to_pte(pde, pv->pv_va);
6206		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
6207			atomic_clear_long(pte, PG_M);
6208			pmap_invalidate_page(pmap, pv->pv_va);
6209		}
6210		PMAP_UNLOCK(pmap);
6211	}
6212	rw_wunlock(lock);
6213	rw_runlock(&pvh_global_lock);
6214}
6215
6216/*
6217 * Miscellaneous support routines follow
6218 */
6219
6220/* Adjust the cache mode for a 4KB page mapped via a PTE. */
6221static __inline void
6222pmap_pte_attr(pt_entry_t *pte, int cache_bits, int mask)
6223{
6224	u_int opte, npte;
6225
6226	/*
6227	 * The cache mode bits are all in the low 32-bits of the
6228	 * PTE, so we can just spin on updating the low 32-bits.
6229	 */
6230	do {
6231		opte = *(u_int *)pte;
6232		npte = opte & ~mask;
6233		npte |= cache_bits;
6234	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
6235}
6236
6237/* Adjust the cache mode for a 2MB page mapped via a PDE. */
6238static __inline void
6239pmap_pde_attr(pd_entry_t *pde, int cache_bits, int mask)
6240{
6241	u_int opde, npde;
6242
6243	/*
6244	 * The cache mode bits are all in the low 32-bits of the
6245	 * PDE, so we can just spin on updating the low 32-bits.
6246	 */
6247	do {
6248		opde = *(u_int *)pde;
6249		npde = opde & ~mask;
6250		npde |= cache_bits;
6251	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
6252}
6253
6254/*
6255 * Map a set of physical memory pages into the kernel virtual
6256 * address space. Return a pointer to where it is mapped. This
6257 * routine is intended to be used for mapping device memory,
6258 * NOT real memory.
6259 */
6260void *
6261pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
6262{
6263	struct pmap_preinit_mapping *ppim;
6264	vm_offset_t va, offset;
6265	vm_size_t tmpsize;
6266	int i;
6267
6268	offset = pa & PAGE_MASK;
6269	size = round_page(offset + size);
6270	pa = trunc_page(pa);
6271
6272	if (!pmap_initialized) {
6273		va = 0;
6274		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
6275			ppim = pmap_preinit_mapping + i;
6276			if (ppim->va == 0) {
6277				ppim->pa = pa;
6278				ppim->sz = size;
6279				ppim->mode = mode;
6280				ppim->va = virtual_avail;
6281				virtual_avail += size;
6282				va = ppim->va;
6283				break;
6284			}
6285		}
6286		if (va == 0)
6287			panic("%s: too many preinit mappings", __func__);
6288	} else {
6289		/*
6290		 * If we have a preinit mapping, re-use it.
6291		 */
6292		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
6293			ppim = pmap_preinit_mapping + i;
6294			if (ppim->pa == pa && ppim->sz == size &&
6295			    ppim->mode == mode)
6296				return ((void *)(ppim->va + offset));
6297		}
6298		/*
6299		 * If the specified range of physical addresses fits within
6300		 * the direct map window, use the direct map.
6301		 */
6302		if (pa < dmaplimit && pa + size < dmaplimit) {
6303			va = PHYS_TO_DMAP(pa);
6304			if (!pmap_change_attr(va, size, mode))
6305				return ((void *)(va + offset));
6306		}
6307		va = kva_alloc(size);
6308		if (va == 0)
6309			panic("%s: Couldn't allocate KVA", __func__);
6310	}
6311	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
6312		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
6313	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
6314	pmap_invalidate_cache_range(va, va + tmpsize, FALSE);
6315	return ((void *)(va + offset));
6316}
6317
6318void *
6319pmap_mapdev(vm_paddr_t pa, vm_size_t size)
6320{
6321
6322	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
6323}
6324
6325void *
6326pmap_mapbios(vm_paddr_t pa, vm_size_t size)
6327{
6328
6329	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
6330}
6331
6332void
6333pmap_unmapdev(vm_offset_t va, vm_size_t size)
6334{
6335	struct pmap_preinit_mapping *ppim;
6336	vm_offset_t offset;
6337	int i;
6338
6339	/* If we gave a direct map region in pmap_mapdev, do nothing */
6340	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
6341		return;
6342	offset = va & PAGE_MASK;
6343	size = round_page(offset + size);
6344	va = trunc_page(va);
6345	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
6346		ppim = pmap_preinit_mapping + i;
6347		if (ppim->va == va && ppim->sz == size) {
6348			if (pmap_initialized)
6349				return;
6350			ppim->pa = 0;
6351			ppim->va = 0;
6352			ppim->sz = 0;
6353			ppim->mode = 0;
6354			if (va + size == virtual_avail)
6355				virtual_avail = va;
6356			return;
6357		}
6358	}
6359	if (pmap_initialized)
6360		kva_free(va, size);
6361}
6362
6363/*
6364 * Tries to demote a 1GB page mapping.
6365 */
6366static boolean_t
6367pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe, vm_offset_t va)
6368{
6369	pdp_entry_t newpdpe, oldpdpe;
6370	pd_entry_t *firstpde, newpde, *pde;
6371	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
6372	vm_paddr_t mpdepa;
6373	vm_page_t mpde;
6374
6375	PG_A = pmap_accessed_bit(pmap);
6376	PG_M = pmap_modified_bit(pmap);
6377	PG_V = pmap_valid_bit(pmap);
6378	PG_RW = pmap_rw_bit(pmap);
6379
6380	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6381	oldpdpe = *pdpe;
6382	KASSERT((oldpdpe & (PG_PS | PG_V)) == (PG_PS | PG_V),
6383	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
6384	if ((mpde = vm_page_alloc(NULL, va >> PDPSHIFT, VM_ALLOC_INTERRUPT |
6385	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
6386		CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
6387		    " in pmap %p", va, pmap);
6388		return (FALSE);
6389	}
6390	mpdepa = VM_PAGE_TO_PHYS(mpde);
6391	firstpde = (pd_entry_t *)PHYS_TO_DMAP(mpdepa);
6392	newpdpe = mpdepa | PG_M | PG_A | (oldpdpe & PG_U) | PG_RW | PG_V;
6393	KASSERT((oldpdpe & PG_A) != 0,
6394	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
6395	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
6396	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
6397	newpde = oldpdpe;
6398
6399	/*
6400	 * Initialize the page directory page.
6401	 */
6402	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
6403		*pde = newpde;
6404		newpde += NBPDR;
6405	}
6406
6407	/*
6408	 * Demote the mapping.
6409	 */
6410	*pdpe = newpdpe;
6411
6412	/*
6413	 * Invalidate a stale recursive mapping of the page directory page.
6414	 */
6415	pmap_invalidate_page(pmap, (vm_offset_t)vtopde(va));
6416
6417	pmap_pdpe_demotions++;
6418	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
6419	    " in pmap %p", va, pmap);
6420	return (TRUE);
6421}
6422
6423/*
6424 * Sets the memory attribute for the specified page.
6425 */
6426void
6427pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
6428{
6429
6430	m->md.pat_mode = ma;
6431
6432	/*
6433	 * If "m" is a normal page, update its direct mapping.  This update
6434	 * can be relied upon to perform any cache operations that are
6435	 * required for data coherence.
6436	 */
6437	if ((m->flags & PG_FICTITIOUS) == 0 &&
6438	    pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
6439	    m->md.pat_mode))
6440		panic("memory attribute change on the direct map failed");
6441}
6442
6443/*
6444 * Changes the specified virtual address range's memory type to that given by
6445 * the parameter "mode".  The specified virtual address range must be
6446 * completely contained within either the direct map or the kernel map.  If
6447 * the virtual address range is contained within the kernel map, then the
6448 * memory type for each of the corresponding ranges of the direct map is also
6449 * changed.  (The corresponding ranges of the direct map are those ranges that
6450 * map the same physical pages as the specified virtual address range.)  These
6451 * changes to the direct map are necessary because Intel describes the
6452 * behavior of their processors as "undefined" if two or more mappings to the
6453 * same physical page have different memory types.
6454 *
6455 * Returns zero if the change completed successfully, and either EINVAL or
6456 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
6457 * of the virtual address range was not mapped, and ENOMEM is returned if
6458 * there was insufficient memory available to complete the change.  In the
6459 * latter case, the memory type may have been changed on some part of the
6460 * virtual address range or the direct map.
6461 */
6462int
6463pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
6464{
6465	int error;
6466
6467	PMAP_LOCK(kernel_pmap);
6468	error = pmap_change_attr_locked(va, size, mode);
6469	PMAP_UNLOCK(kernel_pmap);
6470	return (error);
6471}
6472
6473static int
6474pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode)
6475{
6476	vm_offset_t base, offset, tmpva;
6477	vm_paddr_t pa_start, pa_end;
6478	pdp_entry_t *pdpe;
6479	pd_entry_t *pde;
6480	pt_entry_t *pte;
6481	int cache_bits_pte, cache_bits_pde, error;
6482	boolean_t changed;
6483
6484	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
6485	base = trunc_page(va);
6486	offset = va & PAGE_MASK;
6487	size = round_page(offset + size);
6488
6489	/*
6490	 * Only supported on kernel virtual addresses, including the direct
6491	 * map but excluding the recursive map.
6492	 */
6493	if (base < DMAP_MIN_ADDRESS)
6494		return (EINVAL);
6495
6496	cache_bits_pde = pmap_cache_bits(kernel_pmap, mode, 1);
6497	cache_bits_pte = pmap_cache_bits(kernel_pmap, mode, 0);
6498	changed = FALSE;
6499
6500	/*
6501	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
6502	 * into 4KB pages if required.
6503	 */
6504	for (tmpva = base; tmpva < base + size; ) {
6505		pdpe = pmap_pdpe(kernel_pmap, tmpva);
6506		if (*pdpe == 0)
6507			return (EINVAL);
6508		if (*pdpe & PG_PS) {
6509			/*
6510			 * If the current 1GB page already has the required
6511			 * memory type, then we need not demote this page. Just
6512			 * increment tmpva to the next 1GB page frame.
6513			 */
6514			if ((*pdpe & X86_PG_PDE_CACHE) == cache_bits_pde) {
6515				tmpva = trunc_1gpage(tmpva) + NBPDP;
6516				continue;
6517			}
6518
6519			/*
6520			 * If the current offset aligns with a 1GB page frame
6521			 * and there is at least 1GB left within the range, then
6522			 * we need not break down this page into 2MB pages.
6523			 */
6524			if ((tmpva & PDPMASK) == 0 &&
6525			    tmpva + PDPMASK < base + size) {
6526				tmpva += NBPDP;
6527				continue;
6528			}
6529			if (!pmap_demote_pdpe(kernel_pmap, pdpe, tmpva))
6530				return (ENOMEM);
6531		}
6532		pde = pmap_pdpe_to_pde(pdpe, tmpva);
6533		if (*pde == 0)
6534			return (EINVAL);
6535		if (*pde & PG_PS) {
6536			/*
6537			 * If the current 2MB page already has the required
6538			 * memory type, then we need not demote this page. Just
6539			 * increment tmpva to the next 2MB page frame.
6540			 */
6541			if ((*pde & X86_PG_PDE_CACHE) == cache_bits_pde) {
6542				tmpva = trunc_2mpage(tmpva) + NBPDR;
6543				continue;
6544			}
6545
6546			/*
6547			 * If the current offset aligns with a 2MB page frame
6548			 * and there is at least 2MB left within the range, then
6549			 * we need not break down this page into 4KB pages.
6550			 */
6551			if ((tmpva & PDRMASK) == 0 &&
6552			    tmpva + PDRMASK < base + size) {
6553				tmpva += NBPDR;
6554				continue;
6555			}
6556			if (!pmap_demote_pde(kernel_pmap, pde, tmpva))
6557				return (ENOMEM);
6558		}
6559		pte = pmap_pde_to_pte(pde, tmpva);
6560		if (*pte == 0)
6561			return (EINVAL);
6562		tmpva += PAGE_SIZE;
6563	}
6564	error = 0;
6565
6566	/*
6567	 * Ok, all the pages exist, so run through them updating their
6568	 * cache mode if required.
6569	 */
6570	pa_start = pa_end = 0;
6571	for (tmpva = base; tmpva < base + size; ) {
6572		pdpe = pmap_pdpe(kernel_pmap, tmpva);
6573		if (*pdpe & PG_PS) {
6574			if ((*pdpe & X86_PG_PDE_CACHE) != cache_bits_pde) {
6575				pmap_pde_attr(pdpe, cache_bits_pde,
6576				    X86_PG_PDE_CACHE);
6577				changed = TRUE;
6578			}
6579			if (tmpva >= VM_MIN_KERNEL_ADDRESS) {
6580				if (pa_start == pa_end) {
6581					/* Start physical address run. */
6582					pa_start = *pdpe & PG_PS_FRAME;
6583					pa_end = pa_start + NBPDP;
6584				} else if (pa_end == (*pdpe & PG_PS_FRAME))
6585					pa_end += NBPDP;
6586				else {
6587					/* Run ended, update direct map. */
6588					error = pmap_change_attr_locked(
6589					    PHYS_TO_DMAP(pa_start),
6590					    pa_end - pa_start, mode);
6591					if (error != 0)
6592						break;
6593					/* Start physical address run. */
6594					pa_start = *pdpe & PG_PS_FRAME;
6595					pa_end = pa_start + NBPDP;
6596				}
6597			}
6598			tmpva = trunc_1gpage(tmpva) + NBPDP;
6599			continue;
6600		}
6601		pde = pmap_pdpe_to_pde(pdpe, tmpva);
6602		if (*pde & PG_PS) {
6603			if ((*pde & X86_PG_PDE_CACHE) != cache_bits_pde) {
6604				pmap_pde_attr(pde, cache_bits_pde,
6605				    X86_PG_PDE_CACHE);
6606				changed = TRUE;
6607			}
6608			if (tmpva >= VM_MIN_KERNEL_ADDRESS) {
6609				if (pa_start == pa_end) {
6610					/* Start physical address run. */
6611					pa_start = *pde & PG_PS_FRAME;
6612					pa_end = pa_start + NBPDR;
6613				} else if (pa_end == (*pde & PG_PS_FRAME))
6614					pa_end += NBPDR;
6615				else {
6616					/* Run ended, update direct map. */
6617					error = pmap_change_attr_locked(
6618					    PHYS_TO_DMAP(pa_start),
6619					    pa_end - pa_start, mode);
6620					if (error != 0)
6621						break;
6622					/* Start physical address run. */
6623					pa_start = *pde & PG_PS_FRAME;
6624					pa_end = pa_start + NBPDR;
6625				}
6626			}
6627			tmpva = trunc_2mpage(tmpva) + NBPDR;
6628		} else {
6629			pte = pmap_pde_to_pte(pde, tmpva);
6630			if ((*pte & X86_PG_PTE_CACHE) != cache_bits_pte) {
6631				pmap_pte_attr(pte, cache_bits_pte,
6632				    X86_PG_PTE_CACHE);
6633				changed = TRUE;
6634			}
6635			if (tmpva >= VM_MIN_KERNEL_ADDRESS) {
6636				if (pa_start == pa_end) {
6637					/* Start physical address run. */
6638					pa_start = *pte & PG_FRAME;
6639					pa_end = pa_start + PAGE_SIZE;
6640				} else if (pa_end == (*pte & PG_FRAME))
6641					pa_end += PAGE_SIZE;
6642				else {
6643					/* Run ended, update direct map. */
6644					error = pmap_change_attr_locked(
6645					    PHYS_TO_DMAP(pa_start),
6646					    pa_end - pa_start, mode);
6647					if (error != 0)
6648						break;
6649					/* Start physical address run. */
6650					pa_start = *pte & PG_FRAME;
6651					pa_end = pa_start + PAGE_SIZE;
6652				}
6653			}
6654			tmpva += PAGE_SIZE;
6655		}
6656	}
6657	if (error == 0 && pa_start != pa_end)
6658		error = pmap_change_attr_locked(PHYS_TO_DMAP(pa_start),
6659		    pa_end - pa_start, mode);
6660
6661	/*
6662	 * Flush CPU caches if required to make sure any data isn't cached that
6663	 * shouldn't be, etc.
6664	 */
6665	if (changed) {
6666		pmap_invalidate_range(kernel_pmap, base, tmpva);
6667		pmap_invalidate_cache_range(base, tmpva, FALSE);
6668	}
6669	return (error);
6670}
6671
6672/*
6673 * Demotes any mapping within the direct map region that covers more than the
6674 * specified range of physical addresses.  This range's size must be a power
6675 * of two and its starting address must be a multiple of its size.  Since the
6676 * demotion does not change any attributes of the mapping, a TLB invalidation
6677 * is not mandatory.  The caller may, however, request a TLB invalidation.
6678 */
6679void
6680pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, boolean_t invalidate)
6681{
6682	pdp_entry_t *pdpe;
6683	pd_entry_t *pde;
6684	vm_offset_t va;
6685	boolean_t changed;
6686
6687	if (len == 0)
6688		return;
6689	KASSERT(powerof2(len), ("pmap_demote_DMAP: len is not a power of 2"));
6690	KASSERT((base & (len - 1)) == 0,
6691	    ("pmap_demote_DMAP: base is not a multiple of len"));
6692	if (len < NBPDP && base < dmaplimit) {
6693		va = PHYS_TO_DMAP(base);
6694		changed = FALSE;
6695		PMAP_LOCK(kernel_pmap);
6696		pdpe = pmap_pdpe(kernel_pmap, va);
6697		if ((*pdpe & X86_PG_V) == 0)
6698			panic("pmap_demote_DMAP: invalid PDPE");
6699		if ((*pdpe & PG_PS) != 0) {
6700			if (!pmap_demote_pdpe(kernel_pmap, pdpe, va))
6701				panic("pmap_demote_DMAP: PDPE failed");
6702			changed = TRUE;
6703		}
6704		if (len < NBPDR) {
6705			pde = pmap_pdpe_to_pde(pdpe, va);
6706			if ((*pde & X86_PG_V) == 0)
6707				panic("pmap_demote_DMAP: invalid PDE");
6708			if ((*pde & PG_PS) != 0) {
6709				if (!pmap_demote_pde(kernel_pmap, pde, va))
6710					panic("pmap_demote_DMAP: PDE failed");
6711				changed = TRUE;
6712			}
6713		}
6714		if (changed && invalidate)
6715			pmap_invalidate_page(kernel_pmap, va);
6716		PMAP_UNLOCK(kernel_pmap);
6717	}
6718}
6719
6720/*
6721 * perform the pmap work for mincore
6722 */
6723int
6724pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
6725{
6726	pd_entry_t *pdep;
6727	pt_entry_t pte, PG_A, PG_M, PG_RW, PG_V;
6728	vm_paddr_t pa;
6729	int val;
6730
6731	PG_A = pmap_accessed_bit(pmap);
6732	PG_M = pmap_modified_bit(pmap);
6733	PG_V = pmap_valid_bit(pmap);
6734	PG_RW = pmap_rw_bit(pmap);
6735
6736	PMAP_LOCK(pmap);
6737retry:
6738	pdep = pmap_pde(pmap, addr);
6739	if (pdep != NULL && (*pdep & PG_V)) {
6740		if (*pdep & PG_PS) {
6741			pte = *pdep;
6742			/* Compute the physical address of the 4KB page. */
6743			pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
6744			    PG_FRAME;
6745			val = MINCORE_SUPER;
6746		} else {
6747			pte = *pmap_pde_to_pte(pdep, addr);
6748			pa = pte & PG_FRAME;
6749			val = 0;
6750		}
6751	} else {
6752		pte = 0;
6753		pa = 0;
6754		val = 0;
6755	}
6756	if ((pte & PG_V) != 0) {
6757		val |= MINCORE_INCORE;
6758		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6759			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
6760		if ((pte & PG_A) != 0)
6761			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
6762	}
6763	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
6764	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
6765	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
6766		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
6767		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
6768			goto retry;
6769	} else
6770		PA_UNLOCK_COND(*locked_pa);
6771	PMAP_UNLOCK(pmap);
6772	return (val);
6773}
6774
6775void
6776pmap_activate(struct thread *td)
6777{
6778	pmap_t	pmap, oldpmap;
6779	u_int	cpuid;
6780
6781	critical_enter();
6782	pmap = vmspace_pmap(td->td_proc->p_vmspace);
6783	oldpmap = PCPU_GET(curpmap);
6784	cpuid = PCPU_GET(cpuid);
6785#ifdef SMP
6786	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
6787	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
6788	CPU_SET_ATOMIC(cpuid, &pmap->pm_save);
6789#else
6790	CPU_CLR(cpuid, &oldpmap->pm_active);
6791	CPU_SET(cpuid, &pmap->pm_active);
6792	CPU_SET(cpuid, &pmap->pm_save);
6793#endif
6794	td->td_pcb->pcb_cr3 = pmap->pm_cr3;
6795	load_cr3(pmap->pm_cr3);
6796	PCPU_SET(curpmap, pmap);
6797	critical_exit();
6798}
6799
6800void
6801pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
6802{
6803}
6804
6805/*
6806 *	Increase the starting virtual address of the given mapping if a
6807 *	different alignment might result in more superpage mappings.
6808 */
6809void
6810pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
6811    vm_offset_t *addr, vm_size_t size)
6812{
6813	vm_offset_t superpage_offset;
6814
6815	if (size < NBPDR)
6816		return;
6817	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
6818		offset += ptoa(object->pg_color);
6819	superpage_offset = offset & PDRMASK;
6820	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
6821	    (*addr & PDRMASK) == superpage_offset)
6822		return;
6823	if ((*addr & PDRMASK) < superpage_offset)
6824		*addr = (*addr & ~PDRMASK) + superpage_offset;
6825	else
6826		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
6827}
6828
6829#ifdef INVARIANTS
6830static unsigned long num_dirty_emulations;
6831SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_dirty_emulations, CTLFLAG_RW,
6832	     &num_dirty_emulations, 0, NULL);
6833
6834static unsigned long num_accessed_emulations;
6835SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_accessed_emulations, CTLFLAG_RW,
6836	     &num_accessed_emulations, 0, NULL);
6837
6838static unsigned long num_superpage_accessed_emulations;
6839SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_superpage_accessed_emulations, CTLFLAG_RW,
6840	     &num_superpage_accessed_emulations, 0, NULL);
6841
6842static unsigned long ad_emulation_superpage_promotions;
6843SYSCTL_ULONG(_vm_pmap, OID_AUTO, ad_emulation_superpage_promotions, CTLFLAG_RW,
6844	     &ad_emulation_superpage_promotions, 0, NULL);
6845#endif	/* INVARIANTS */
6846
6847int
6848pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype)
6849{
6850	int rv;
6851	struct rwlock *lock;
6852	vm_page_t m, mpte;
6853	pd_entry_t *pde;
6854	pt_entry_t *pte, PG_A, PG_M, PG_RW, PG_V;
6855	boolean_t pv_lists_locked;
6856
6857	KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE,
6858	    ("pmap_emulate_accessed_dirty: invalid fault type %d", ftype));
6859
6860	if (!pmap_emulate_ad_bits(pmap))
6861		return (-1);
6862
6863	PG_A = pmap_accessed_bit(pmap);
6864	PG_M = pmap_modified_bit(pmap);
6865	PG_V = pmap_valid_bit(pmap);
6866	PG_RW = pmap_rw_bit(pmap);
6867
6868	rv = -1;
6869	lock = NULL;
6870	pv_lists_locked = FALSE;
6871retry:
6872	PMAP_LOCK(pmap);
6873
6874	pde = pmap_pde(pmap, va);
6875	if (pde == NULL || (*pde & PG_V) == 0)
6876		goto done;
6877
6878	if ((*pde & PG_PS) != 0) {
6879		if (ftype == VM_PROT_READ) {
6880#ifdef INVARIANTS
6881			atomic_add_long(&num_superpage_accessed_emulations, 1);
6882#endif
6883			*pde |= PG_A;
6884			rv = 0;
6885		}
6886		goto done;
6887	}
6888
6889	pte = pmap_pde_to_pte(pde, va);
6890	if ((*pte & PG_V) == 0)
6891		goto done;
6892
6893	if (ftype == VM_PROT_WRITE) {
6894		if ((*pte & PG_RW) == 0)
6895			goto done;
6896		/*
6897		 * Set the modified and accessed bits simultaneously.
6898		 *
6899		 * Intel EPT PTEs that do software emulation of A/D bits map
6900		 * PG_A and PG_M to EPT_PG_READ and EPT_PG_WRITE respectively.
6901		 * An EPT misconfiguration is triggered if the PTE is writable
6902		 * but not readable (WR=10). This is avoided by setting PG_A
6903		 * and PG_M simultaneously.
6904		 */
6905		*pte |= PG_M | PG_A;
6906	} else {
6907		*pte |= PG_A;
6908	}
6909
6910	/* try to promote the mapping */
6911	if (va < VM_MAXUSER_ADDRESS)
6912		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
6913	else
6914		mpte = NULL;
6915
6916	m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
6917
6918	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
6919	    pmap_ps_enabled(pmap) &&
6920	    (m->flags & PG_FICTITIOUS) == 0 &&
6921	    vm_reserv_level_iffullpop(m) == 0) {
6922		if (!pv_lists_locked) {
6923			pv_lists_locked = TRUE;
6924			if (!rw_try_rlock(&pvh_global_lock)) {
6925				PMAP_UNLOCK(pmap);
6926				rw_rlock(&pvh_global_lock);
6927				goto retry;
6928			}
6929		}
6930		pmap_promote_pde(pmap, pde, va, &lock);
6931#ifdef INVARIANTS
6932		atomic_add_long(&ad_emulation_superpage_promotions, 1);
6933#endif
6934	}
6935#ifdef INVARIANTS
6936	if (ftype == VM_PROT_WRITE)
6937		atomic_add_long(&num_dirty_emulations, 1);
6938	else
6939		atomic_add_long(&num_accessed_emulations, 1);
6940#endif
6941	rv = 0;		/* success */
6942done:
6943	if (lock != NULL)
6944		rw_wunlock(lock);
6945	if (pv_lists_locked)
6946		rw_runlock(&pvh_global_lock);
6947	PMAP_UNLOCK(pmap);
6948	return (rv);
6949}
6950
6951void
6952pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num)
6953{
6954	pml4_entry_t *pml4;
6955	pdp_entry_t *pdp;
6956	pd_entry_t *pde;
6957	pt_entry_t *pte, PG_V;
6958	int idx;
6959
6960	idx = 0;
6961	PG_V = pmap_valid_bit(pmap);
6962	PMAP_LOCK(pmap);
6963
6964	pml4 = pmap_pml4e(pmap, va);
6965	ptr[idx++] = *pml4;
6966	if ((*pml4 & PG_V) == 0)
6967		goto done;
6968
6969	pdp = pmap_pml4e_to_pdpe(pml4, va);
6970	ptr[idx++] = *pdp;
6971	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0)
6972		goto done;
6973
6974	pde = pmap_pdpe_to_pde(pdp, va);
6975	ptr[idx++] = *pde;
6976	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0)
6977		goto done;
6978
6979	pte = pmap_pde_to_pte(pde, va);
6980	ptr[idx++] = *pte;
6981
6982done:
6983	PMAP_UNLOCK(pmap);
6984	*num = idx;
6985}
6986
6987#include "opt_ddb.h"
6988#ifdef DDB
6989#include <ddb/ddb.h>
6990
6991DB_SHOW_COMMAND(pte, pmap_print_pte)
6992{
6993	pmap_t pmap;
6994	pml4_entry_t *pml4;
6995	pdp_entry_t *pdp;
6996	pd_entry_t *pde;
6997	pt_entry_t *pte, PG_V;
6998	vm_offset_t va;
6999
7000	if (have_addr) {
7001		va = (vm_offset_t)addr;
7002		pmap = PCPU_GET(curpmap); /* XXX */
7003	} else {
7004		db_printf("show pte addr\n");
7005		return;
7006	}
7007	PG_V = pmap_valid_bit(pmap);
7008	pml4 = pmap_pml4e(pmap, va);
7009	db_printf("VA %#016lx pml4e %#016lx", va, *pml4);
7010	if ((*pml4 & PG_V) == 0) {
7011		db_printf("\n");
7012		return;
7013	}
7014	pdp = pmap_pml4e_to_pdpe(pml4, va);
7015	db_printf(" pdpe %#016lx", *pdp);
7016	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0) {
7017		db_printf("\n");
7018		return;
7019	}
7020	pde = pmap_pdpe_to_pde(pdp, va);
7021	db_printf(" pde %#016lx", *pde);
7022	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0) {
7023		db_printf("\n");
7024		return;
7025	}
7026	pte = pmap_pde_to_pte(pde, va);
7027	db_printf(" pte %#016lx\n", *pte);
7028}
7029
7030DB_SHOW_COMMAND(phys2dmap, pmap_phys2dmap)
7031{
7032	vm_paddr_t a;
7033
7034	if (have_addr) {
7035		a = (vm_paddr_t)addr;
7036		db_printf("0x%jx\n", (uintmax_t)PHYS_TO_DMAP(a));
7037	} else {
7038		db_printf("show phys2dmap addr\n");
7039	}
7040}
7041#endif
7042