mp_machdep.c revision 331910
1/*-
2 * Copyright (c) 1996, by Steve Passe
3 * Copyright (c) 2003, by Peter Wemm
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. The name of the developer may NOT be used to endorse or promote products
12 *    derived from this software without specific prior written permission.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/10/sys/amd64/amd64/mp_machdep.c 331910 2018-04-03 07:52:06Z avg $");
29
30#include "opt_cpu.h"
31#include "opt_ddb.h"
32#include "opt_kstack_pages.h"
33#include "opt_sched.h"
34#include "opt_smp.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/bus.h>
39#include <sys/cpuset.h>
40#ifdef GPROF
41#include <sys/gmon.h>
42#endif
43#include <sys/kernel.h>
44#include <sys/ktr.h>
45#include <sys/lock.h>
46#include <sys/malloc.h>
47#include <sys/memrange.h>
48#include <sys/mutex.h>
49#include <sys/pcpu.h>
50#include <sys/proc.h>
51#include <sys/sched.h>
52#include <sys/smp.h>
53#include <sys/sysctl.h>
54
55#include <vm/vm.h>
56#include <vm/vm_param.h>
57#include <vm/pmap.h>
58#include <vm/vm_kern.h>
59#include <vm/vm_extern.h>
60
61#include <x86/apicreg.h>
62#include <machine/clock.h>
63#include <machine/cputypes.h>
64#include <machine/cpufunc.h>
65#include <x86/mca.h>
66#include <machine/md_var.h>
67#include <machine/pcb.h>
68#include <machine/psl.h>
69#include <machine/smp.h>
70#include <machine/specialreg.h>
71#include <machine/tss.h>
72#include <machine/cpu.h>
73
74#define WARMBOOT_TARGET		0
75#define WARMBOOT_OFF		(KERNBASE + 0x0467)
76#define WARMBOOT_SEG		(KERNBASE + 0x0469)
77
78#define CMOS_REG		(0x70)
79#define CMOS_DATA		(0x71)
80#define BIOS_RESET		(0x0f)
81#define BIOS_WARM		(0x0a)
82
83/* lock region used by kernel profiling */
84int	mcount_lock;
85
86int	mp_naps;		/* # of Applications processors */
87int	boot_cpu_id = -1;	/* designated BSP */
88
89extern  struct pcpu __pcpu[];
90
91/* AP uses this during bootstrap.  Do not staticize.  */
92char *bootSTK;
93static int bootAP;
94
95/* Free these after use */
96void *bootstacks[MAXCPU];
97
98/* Temporary variables for init_secondary()  */
99char *doublefault_stack;
100char *nmi_stack;
101void *dpcpu;
102
103struct pcb stoppcbs[MAXCPU];
104struct susppcb **susppcbs;
105
106/* Variables needed for SMP tlb shootdown. */
107vm_offset_t smp_tlb_addr2;
108struct invpcid_descr smp_tlb_invpcid;
109volatile int smp_tlb_wait;
110uint64_t pcid_cr3;
111pmap_t smp_tlb_pmap;
112extern int invpcid_works;
113
114#ifdef COUNT_IPIS
115/* Interrupt counts. */
116static u_long *ipi_preempt_counts[MAXCPU];
117static u_long *ipi_ast_counts[MAXCPU];
118u_long *ipi_invltlb_counts[MAXCPU];
119u_long *ipi_invlrng_counts[MAXCPU];
120u_long *ipi_invlpg_counts[MAXCPU];
121u_long *ipi_invlcache_counts[MAXCPU];
122u_long *ipi_rendezvous_counts[MAXCPU];
123static u_long *ipi_hardclock_counts[MAXCPU];
124#endif
125
126/* Default cpu_ops implementation. */
127struct cpu_ops cpu_ops = {
128	.ipi_vectored = lapic_ipi_vectored
129};
130
131extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
132
133extern int pmap_pcid_enabled;
134
135/*
136 * Local data and functions.
137 */
138
139static volatile cpuset_t ipi_nmi_pending;
140
141volatile cpuset_t resuming_cpus;
142volatile cpuset_t toresume_cpus;
143
144/* used to hold the AP's until we are ready to release them */
145static struct mtx ap_boot_mtx;
146
147/* Set to 1 once we're ready to let the APs out of the pen. */
148static volatile int aps_ready = 0;
149
150/*
151 * Store data from cpu_add() until later in the boot when we actually setup
152 * the APs.
153 */
154struct cpu_info {
155	int	cpu_present:1;
156	int	cpu_bsp:1;
157	int	cpu_disabled:1;
158	int	cpu_hyperthread:1;
159} static cpu_info[MAX_APIC_ID + 1];
160int cpu_apic_ids[MAXCPU];
161int apic_cpuids[MAX_APIC_ID + 1];
162
163/* Holds pending bitmap based IPIs per CPU */
164volatile u_int cpu_ipi_pending[MAXCPU];
165
166static u_int boot_address;
167static int cpu_logical;			/* logical cpus per core */
168static int cpu_cores;			/* cores per package */
169
170static void	assign_cpu_ids(void);
171static void	set_interrupt_apic_ids(void);
172static int	start_all_aps(void);
173static int	start_ap(int apic_id);
174static void	release_aps(void *dummy);
175
176static u_int	hyperthreading_cpus;	/* logical cpus sharing L1 cache */
177static int	hyperthreading_allowed = 1;
178static u_int	bootMP_size;
179
180static void
181mem_range_AP_init(void)
182{
183	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
184		mem_range_softc.mr_op->initAP(&mem_range_softc);
185}
186
187static void
188topo_probe_amd(void)
189{
190	int core_id_bits;
191	int id;
192
193	/* AMD processors do not support HTT. */
194	cpu_logical = 1;
195
196	if ((amd_feature2 & AMDID2_CMP) == 0) {
197		cpu_cores = 1;
198		return;
199	}
200
201	core_id_bits = (cpu_procinfo2 & AMDID_COREID_SIZE) >>
202	    AMDID_COREID_SIZE_SHIFT;
203	if (core_id_bits == 0) {
204		cpu_cores = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
205		return;
206	}
207
208	/* Fam 10h and newer should get here. */
209	for (id = 0; id <= MAX_APIC_ID; id++) {
210		/* Check logical CPU availability. */
211		if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
212			continue;
213		/* Check if logical CPU has the same package ID. */
214		if ((id >> core_id_bits) != (boot_cpu_id >> core_id_bits))
215			continue;
216		cpu_cores++;
217	}
218}
219
220/*
221 * Round up to the next power of two, if necessary, and then
222 * take log2.
223 * Returns -1 if argument is zero.
224 */
225static __inline int
226mask_width(u_int x)
227{
228
229	return (fls(x << (1 - powerof2(x))) - 1);
230}
231
232static void
233topo_probe_0x4(void)
234{
235	u_int p[4];
236	int pkg_id_bits;
237	int core_id_bits;
238	int max_cores;
239	int max_logical;
240	int id;
241
242	/* Both zero and one here mean one logical processor per package. */
243	max_logical = (cpu_feature & CPUID_HTT) != 0 ?
244	    (cpu_procinfo & CPUID_HTT_CORES) >> 16 : 1;
245	if (max_logical <= 1)
246		return;
247
248	/*
249	 * Because of uniformity assumption we examine only
250	 * those logical processors that belong to the same
251	 * package as BSP.  Further, we count number of
252	 * logical processors that belong to the same core
253	 * as BSP thus deducing number of threads per core.
254	 */
255	if (cpu_high >= 0x4) {
256		cpuid_count(0x04, 0, p);
257		max_cores = ((p[0] >> 26) & 0x3f) + 1;
258	} else
259		max_cores = 1;
260	core_id_bits = mask_width(max_logical/max_cores);
261	if (core_id_bits < 0)
262		return;
263	pkg_id_bits = core_id_bits + mask_width(max_cores);
264
265	for (id = 0; id <= MAX_APIC_ID; id++) {
266		/* Check logical CPU availability. */
267		if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
268			continue;
269		/* Check if logical CPU has the same package ID. */
270		if ((id >> pkg_id_bits) != (boot_cpu_id >> pkg_id_bits))
271			continue;
272		cpu_cores++;
273		/* Check if logical CPU has the same package and core IDs. */
274		if ((id >> core_id_bits) == (boot_cpu_id >> core_id_bits))
275			cpu_logical++;
276	}
277
278	KASSERT(cpu_cores >= 1 && cpu_logical >= 1,
279	    ("topo_probe_0x4 couldn't find BSP"));
280
281	cpu_cores /= cpu_logical;
282	hyperthreading_cpus = cpu_logical;
283}
284
285static void
286topo_probe_0xb(void)
287{
288	u_int p[4];
289	int bits;
290	int cnt;
291	int i;
292	int logical;
293	int type;
294	int x;
295
296	/* We only support three levels for now. */
297	for (i = 0; i < 3; i++) {
298		cpuid_count(0x0b, i, p);
299
300		/* Fall back if CPU leaf 11 doesn't really exist. */
301		if (i == 0 && p[1] == 0) {
302			topo_probe_0x4();
303			return;
304		}
305
306		bits = p[0] & 0x1f;
307		logical = p[1] &= 0xffff;
308		type = (p[2] >> 8) & 0xff;
309		if (type == 0 || logical == 0)
310			break;
311		/*
312		 * Because of uniformity assumption we examine only
313		 * those logical processors that belong to the same
314		 * package as BSP.
315		 */
316		for (cnt = 0, x = 0; x <= MAX_APIC_ID; x++) {
317			if (!cpu_info[x].cpu_present ||
318			    cpu_info[x].cpu_disabled)
319				continue;
320			if (x >> bits == boot_cpu_id >> bits)
321				cnt++;
322		}
323		if (type == CPUID_TYPE_SMT)
324			cpu_logical = cnt;
325		else if (type == CPUID_TYPE_CORE)
326			cpu_cores = cnt;
327	}
328	if (cpu_logical == 0)
329		cpu_logical = 1;
330	cpu_cores /= cpu_logical;
331}
332
333/*
334 * Both topology discovery code and code that consumes topology
335 * information assume top-down uniformity of the topology.
336 * That is, all physical packages must be identical and each
337 * core in a package must have the same number of threads.
338 * Topology information is queried only on BSP, on which this
339 * code runs and for which it can query CPUID information.
340 * Then topology is extrapolated on all packages using the
341 * uniformity assumption.
342 */
343static void
344topo_probe(void)
345{
346	static int cpu_topo_probed = 0;
347
348	if (cpu_topo_probed)
349		return;
350
351	CPU_ZERO(&logical_cpus_mask);
352	if (mp_ncpus <= 1)
353		cpu_cores = cpu_logical = 1;
354	else if (cpu_vendor_id == CPU_VENDOR_AMD)
355		topo_probe_amd();
356	else if (cpu_vendor_id == CPU_VENDOR_INTEL) {
357		/*
358		 * See Intel(R) 64 Architecture Processor
359		 * Topology Enumeration article for details.
360		 *
361		 * Note that 0x1 <= cpu_high < 4 case should be
362		 * compatible with topo_probe_0x4() logic when
363		 * CPUID.1:EBX[23:16] > 0 (cpu_cores will be 1)
364		 * or it should trigger the fallback otherwise.
365		 */
366		if (cpu_high >= 0xb)
367			topo_probe_0xb();
368		else if (cpu_high >= 0x1)
369			topo_probe_0x4();
370	}
371
372	/*
373	 * Fallback: assume each logical CPU is in separate
374	 * physical package.  That is, no multi-core, no SMT.
375	 */
376	if (cpu_cores == 0 || cpu_logical == 0)
377		cpu_cores = cpu_logical = 1;
378	cpu_topo_probed = 1;
379}
380
381struct cpu_group *
382cpu_topo(void)
383{
384	int cg_flags;
385
386	/*
387	 * Determine whether any threading flags are
388	 * necessry.
389	 */
390	topo_probe();
391	if (cpu_logical > 1 && hyperthreading_cpus)
392		cg_flags = CG_FLAG_HTT;
393	else if (cpu_logical > 1)
394		cg_flags = CG_FLAG_SMT;
395	else
396		cg_flags = 0;
397	if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
398		printf("WARNING: Non-uniform processors.\n");
399		printf("WARNING: Using suboptimal topology.\n");
400		return (smp_topo_none());
401	}
402	/*
403	 * No multi-core or hyper-threaded.
404	 */
405	if (cpu_logical * cpu_cores == 1)
406		return (smp_topo_none());
407	/*
408	 * Only HTT no multi-core.
409	 */
410	if (cpu_logical > 1 && cpu_cores == 1)
411		return (smp_topo_1level(CG_SHARE_L1, cpu_logical, cg_flags));
412	/*
413	 * Only multi-core no HTT.
414	 */
415	if (cpu_cores > 1 && cpu_logical == 1)
416		return (smp_topo_1level(CG_SHARE_L2, cpu_cores, cg_flags));
417	/*
418	 * Both HTT and multi-core.
419	 */
420	return (smp_topo_2level(CG_SHARE_L2, cpu_cores,
421	    CG_SHARE_L1, cpu_logical, cg_flags));
422}
423
424/*
425 * Calculate usable address in base memory for AP trampoline code.
426 */
427u_int
428mp_bootaddress(u_int basemem)
429{
430
431	bootMP_size = mptramp_end - mptramp_start;
432	boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
433	if (((basemem * 1024) - boot_address) < bootMP_size)
434		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
435	/* 3 levels of page table pages */
436	mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
437
438	return mptramp_pagetables;
439}
440
441void
442cpu_add(u_int apic_id, char boot_cpu)
443{
444
445	if (apic_id > MAX_APIC_ID) {
446		panic("SMP: APIC ID %d too high", apic_id);
447		return;
448	}
449	KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
450	    apic_id));
451	cpu_info[apic_id].cpu_present = 1;
452	if (boot_cpu) {
453		KASSERT(boot_cpu_id == -1,
454		    ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
455		    boot_cpu_id));
456		boot_cpu_id = apic_id;
457		cpu_info[apic_id].cpu_bsp = 1;
458	}
459	if (mp_ncpus < MAXCPU) {
460		mp_ncpus++;
461		mp_maxid = mp_ncpus - 1;
462	}
463	if (bootverbose)
464		printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
465		    "AP");
466}
467
468void
469cpu_mp_setmaxid(void)
470{
471
472	/*
473	 * mp_maxid should be already set by calls to cpu_add().
474	 * Just sanity check its value here.
475	 */
476	if (mp_ncpus == 0)
477		KASSERT(mp_maxid == 0,
478		    ("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
479	else if (mp_ncpus == 1)
480		mp_maxid = 0;
481	else
482		KASSERT(mp_maxid >= mp_ncpus - 1,
483		    ("%s: counters out of sync: max %d, count %d", __func__,
484			mp_maxid, mp_ncpus));
485}
486
487int
488cpu_mp_probe(void)
489{
490
491	/*
492	 * Always record BSP in CPU map so that the mbuf init code works
493	 * correctly.
494	 */
495	CPU_SETOF(0, &all_cpus);
496	if (mp_ncpus == 0) {
497		/*
498		 * No CPUs were found, so this must be a UP system.  Setup
499		 * the variables to represent a system with a single CPU
500		 * with an id of 0.
501		 */
502		mp_ncpus = 1;
503		return (0);
504	}
505
506	/* At least one CPU was found. */
507	if (mp_ncpus == 1) {
508		/*
509		 * One CPU was found, so this must be a UP system with
510		 * an I/O APIC.
511		 */
512		mp_maxid = 0;
513		return (0);
514	}
515
516	/* At least two CPUs were found. */
517	return (1);
518}
519
520/*
521 * Initialize the IPI handlers and start up the AP's.
522 */
523void
524cpu_mp_start(void)
525{
526	int i;
527
528	/* Initialize the logical ID to APIC ID table. */
529	for (i = 0; i < MAXCPU; i++) {
530		cpu_apic_ids[i] = -1;
531		cpu_ipi_pending[i] = 0;
532	}
533
534	/* Install an inter-CPU IPI for TLB invalidation */
535	if (pmap_pcid_enabled) {
536		setidt(IPI_INVLTLB, IDTVEC(invltlb_pcid), SDT_SYSIGT,
537		    SEL_KPL, 0);
538		setidt(IPI_INVLPG, IDTVEC(invlpg_pcid), SDT_SYSIGT,
539		    SEL_KPL, 0);
540	} else {
541		setidt(IPI_INVLTLB, IDTVEC(invltlb), SDT_SYSIGT, SEL_KPL, 0);
542		setidt(IPI_INVLPG, IDTVEC(invlpg), SDT_SYSIGT, SEL_KPL, 0);
543	}
544	setidt(IPI_INVLRNG, IDTVEC(invlrng), SDT_SYSIGT, SEL_KPL, 0);
545
546	/* Install an inter-CPU IPI for cache invalidation. */
547	setidt(IPI_INVLCACHE, IDTVEC(invlcache), SDT_SYSIGT, SEL_KPL, 0);
548
549	/* Install an inter-CPU IPI for all-CPU rendezvous */
550	setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous), SDT_SYSIGT, SEL_KPL, 0);
551
552	/* Install generic inter-CPU IPI handler */
553	setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
554	       SDT_SYSIGT, SEL_KPL, 0);
555
556	/* Install an inter-CPU IPI for CPU stop/restart */
557	setidt(IPI_STOP, IDTVEC(cpustop), SDT_SYSIGT, SEL_KPL, 0);
558
559	/* Install an inter-CPU IPI for CPU suspend/resume */
560	setidt(IPI_SUSPEND, IDTVEC(cpususpend), SDT_SYSIGT, SEL_KPL, 0);
561
562	/* Set boot_cpu_id if needed. */
563	if (boot_cpu_id == -1) {
564		boot_cpu_id = PCPU_GET(apic_id);
565		cpu_info[boot_cpu_id].cpu_bsp = 1;
566	} else
567		KASSERT(boot_cpu_id == PCPU_GET(apic_id),
568		    ("BSP's APIC ID doesn't match boot_cpu_id"));
569
570	/* Probe logical/physical core configuration. */
571	topo_probe();
572
573	assign_cpu_ids();
574
575	/* Start each Application Processor */
576	start_all_aps();
577
578	set_interrupt_apic_ids();
579}
580
581
582/*
583 * Print various information about the SMP system hardware and setup.
584 */
585void
586cpu_mp_announce(void)
587{
588	const char *hyperthread;
589	int i;
590
591	printf("FreeBSD/SMP: %d package(s) x %d core(s)",
592	    mp_ncpus / (cpu_cores * cpu_logical), cpu_cores);
593	if (hyperthreading_cpus > 1)
594	    printf(" x %d HTT threads", cpu_logical);
595	else if (cpu_logical > 1)
596	    printf(" x %d SMT threads", cpu_logical);
597	printf("\n");
598
599	/* List active CPUs first. */
600	printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
601	for (i = 1; i < mp_ncpus; i++) {
602		if (cpu_info[cpu_apic_ids[i]].cpu_hyperthread)
603			hyperthread = "/HT";
604		else
605			hyperthread = "";
606		printf(" cpu%d (AP%s): APIC ID: %2d\n", i, hyperthread,
607		    cpu_apic_ids[i]);
608	}
609
610	/* List disabled CPUs last. */
611	for (i = 0; i <= MAX_APIC_ID; i++) {
612		if (!cpu_info[i].cpu_present || !cpu_info[i].cpu_disabled)
613			continue;
614		if (cpu_info[i].cpu_hyperthread)
615			hyperthread = "/HT";
616		else
617			hyperthread = "";
618		printf("  cpu (AP%s): APIC ID: %2d (disabled)\n", hyperthread,
619		    i);
620	}
621}
622
623/*
624 * AP CPU's call this to initialize themselves.
625 */
626void
627init_secondary(void)
628{
629	struct pcpu *pc;
630	struct nmi_pcpu *np;
631	u_int64_t msr, cr0;
632	u_int cpuid;
633	int cpu, gsel_tss, x;
634	struct region_descriptor ap_gdt;
635
636	/* Set by the startup code for us to use */
637	cpu = bootAP;
638
639	/* Init tss */
640	common_tss[cpu] = common_tss[0];
641	common_tss[cpu].tss_rsp0 = 0;   /* not used until after switch */
642	common_tss[cpu].tss_iobase = sizeof(struct amd64tss) +
643	    IOPAGES * PAGE_SIZE;
644	common_tss[cpu].tss_ist1 = (long)&doublefault_stack[PAGE_SIZE];
645
646	/* The NMI stack runs on IST2. */
647	np = ((struct nmi_pcpu *) &nmi_stack[PAGE_SIZE]) - 1;
648	common_tss[cpu].tss_ist2 = (long) np;
649
650	/* Prepare private GDT */
651	gdt_segs[GPROC0_SEL].ssd_base = (long) &common_tss[cpu];
652	for (x = 0; x < NGDT; x++) {
653		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
654		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL + 1))
655			ssdtosd(&gdt_segs[x], &gdt[NGDT * cpu + x]);
656	}
657	ssdtosyssd(&gdt_segs[GPROC0_SEL],
658	    (struct system_segment_descriptor *)&gdt[NGDT * cpu + GPROC0_SEL]);
659	ap_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
660	ap_gdt.rd_base =  (long) &gdt[NGDT * cpu];
661	lgdt(&ap_gdt);			/* does magic intra-segment return */
662
663	/* Get per-cpu data */
664	pc = &__pcpu[cpu];
665
666	/* prime data page for it to use */
667	pcpu_init(pc, cpu, sizeof(struct pcpu));
668	dpcpu_init(dpcpu, cpu);
669	pc->pc_apic_id = cpu_apic_ids[cpu];
670	pc->pc_prvspace = pc;
671	pc->pc_curthread = 0;
672	pc->pc_tssp = &common_tss[cpu];
673	pc->pc_commontssp = &common_tss[cpu];
674	pc->pc_rsp0 = 0;
675	pc->pc_tss = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
676	    GPROC0_SEL];
677	pc->pc_fs32p = &gdt[NGDT * cpu + GUFS32_SEL];
678	pc->pc_gs32p = &gdt[NGDT * cpu + GUGS32_SEL];
679	pc->pc_ldt = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
680	    GUSERLDT_SEL];
681
682	/* Save the per-cpu pointer for use by the NMI handler. */
683	np->np_pcpu = (register_t) pc;
684
685	wrmsr(MSR_FSBASE, 0);		/* User value */
686	wrmsr(MSR_GSBASE, (u_int64_t)pc);
687	wrmsr(MSR_KGSBASE, (u_int64_t)pc);	/* XXX User value while we're in the kernel */
688	fix_cpuid();
689
690	lidt(&r_idt);
691
692	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
693	ltr(gsel_tss);
694
695	/*
696	 * Set to a known state:
697	 * Set by mpboot.s: CR0_PG, CR0_PE
698	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
699	 */
700	cr0 = rcr0();
701	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
702	load_cr0(cr0);
703
704	/* Set up the fast syscall stuff */
705	msr = rdmsr(MSR_EFER) | EFER_SCE;
706	wrmsr(MSR_EFER, msr);
707	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
708	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
709	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
710	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
711	wrmsr(MSR_STAR, msr);
712	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
713
714	/* Disable local APIC just to be sure. */
715	lapic_disable();
716
717	/* signal our startup to the BSP. */
718	mp_naps++;
719
720	/* Spin until the BSP releases the AP's. */
721	while (!aps_ready)
722		ia32_pause();
723
724	/* Initialize the PAT MSR. */
725	pmap_init_pat();
726
727	/* set up CPU registers and state */
728	cpu_setregs();
729
730	/* set up SSE/NX */
731	initializecpu();
732
733	/* set up FPU state on the AP */
734	fpuinit();
735
736	if (cpu_ops.cpu_init)
737		cpu_ops.cpu_init();
738
739	/* A quick check from sanity claus */
740	cpuid = PCPU_GET(cpuid);
741	if (PCPU_GET(apic_id) != lapic_id()) {
742		printf("SMP: cpuid = %d\n", cpuid);
743		printf("SMP: actual apic_id = %d\n", lapic_id());
744		printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
745		panic("cpuid mismatch! boom!!");
746	}
747
748	/* Initialize curthread. */
749	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
750	PCPU_SET(curthread, PCPU_GET(idlethread));
751
752	mca_init();
753
754	mtx_lock_spin(&ap_boot_mtx);
755
756	/* Init local apic for irq's */
757	lapic_setup(1);
758
759	/* Set memory range attributes for this CPU to match the BSP */
760	mem_range_AP_init();
761
762	smp_cpus++;
763
764	CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", cpuid);
765	printf("SMP: AP CPU #%d Launched!\n", cpuid);
766
767	/* Determine if we are a logical CPU. */
768	/* XXX Calculation depends on cpu_logical being a power of 2, e.g. 2 */
769	if (cpu_logical > 1 && PCPU_GET(apic_id) % cpu_logical != 0)
770		CPU_SET(cpuid, &logical_cpus_mask);
771
772	if (bootverbose)
773		lapic_dump("AP");
774
775	if (smp_cpus == mp_ncpus) {
776		/* enable IPI's, tlb shootdown, freezes etc */
777		atomic_store_rel_int(&smp_started, 1);
778	}
779
780	/*
781	 * Enable global pages TLB extension
782	 * This also implicitly flushes the TLB
783	 */
784
785	load_cr4(rcr4() | CR4_PGE);
786	if (pmap_pcid_enabled)
787		load_cr4(rcr4() | CR4_PCIDE);
788	load_ds(_udatasel);
789	load_es(_udatasel);
790	load_fs(_ufssel);
791	mtx_unlock_spin(&ap_boot_mtx);
792
793	/* Wait until all the AP's are up. */
794	while (smp_started == 0)
795		ia32_pause();
796
797	/* Start per-CPU event timers. */
798	cpu_initclocks_ap();
799
800	sched_throw(NULL);
801
802	panic("scheduler returned us to %s", __func__);
803	/* NOTREACHED */
804}
805
806/*******************************************************************
807 * local functions and data
808 */
809
810/*
811 * We tell the I/O APIC code about all the CPUs we want to receive
812 * interrupts.  If we don't want certain CPUs to receive IRQs we
813 * can simply not tell the I/O APIC code about them in this function.
814 * We also do not tell it about the BSP since it tells itself about
815 * the BSP internally to work with UP kernels and on UP machines.
816 */
817static void
818set_interrupt_apic_ids(void)
819{
820	u_int i, apic_id;
821
822	for (i = 0; i < MAXCPU; i++) {
823		apic_id = cpu_apic_ids[i];
824		if (apic_id == -1)
825			continue;
826		if (cpu_info[apic_id].cpu_bsp)
827			continue;
828		if (cpu_info[apic_id].cpu_disabled)
829			continue;
830
831		/* Don't let hyperthreads service interrupts. */
832		if (hyperthreading_cpus > 1 &&
833		    apic_id % hyperthreading_cpus != 0)
834			continue;
835
836		intr_add_cpu(i);
837	}
838}
839
840/*
841 * Assign logical CPU IDs to local APICs.
842 */
843static void
844assign_cpu_ids(void)
845{
846	u_int i;
847
848	TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
849	    &hyperthreading_allowed);
850
851	/* Check for explicitly disabled CPUs. */
852	for (i = 0; i <= MAX_APIC_ID; i++) {
853		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
854			continue;
855
856		if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
857			cpu_info[i].cpu_hyperthread = 1;
858
859			/*
860			 * Don't use HT CPU if it has been disabled by a
861			 * tunable.
862			 */
863			if (hyperthreading_allowed == 0) {
864				cpu_info[i].cpu_disabled = 1;
865				continue;
866			}
867		}
868
869		/* Don't use this CPU if it has been disabled by a tunable. */
870		if (resource_disabled("lapic", i)) {
871			cpu_info[i].cpu_disabled = 1;
872			continue;
873		}
874	}
875
876	if (hyperthreading_allowed == 0 && hyperthreading_cpus > 1) {
877		hyperthreading_cpus = 0;
878		cpu_logical = 1;
879	}
880
881	/*
882	 * Assign CPU IDs to local APIC IDs and disable any CPUs
883	 * beyond MAXCPU.  CPU 0 is always assigned to the BSP.
884	 *
885	 * To minimize confusion for userland, we attempt to number
886	 * CPUs such that all threads and cores in a package are
887	 * grouped together.  For now we assume that the BSP is always
888	 * the first thread in a package and just start adding APs
889	 * starting with the BSP's APIC ID.
890	 */
891	mp_ncpus = 1;
892	cpu_apic_ids[0] = boot_cpu_id;
893	apic_cpuids[boot_cpu_id] = 0;
894	for (i = boot_cpu_id + 1; i != boot_cpu_id;
895	     i == MAX_APIC_ID ? i = 0 : i++) {
896		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
897		    cpu_info[i].cpu_disabled)
898			continue;
899
900		if (mp_ncpus < MAXCPU) {
901			cpu_apic_ids[mp_ncpus] = i;
902			apic_cpuids[i] = mp_ncpus;
903			mp_ncpus++;
904		} else
905			cpu_info[i].cpu_disabled = 1;
906	}
907	KASSERT(mp_maxid >= mp_ncpus - 1,
908	    ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
909	    mp_ncpus));
910}
911
912/*
913 * start each AP in our list
914 */
915static int
916start_all_aps(void)
917{
918	vm_offset_t va = boot_address + KERNBASE;
919	u_int64_t *pt4, *pt3, *pt2;
920	u_int32_t mpbioswarmvec;
921	int apic_id, cpu, i;
922	u_char mpbiosreason;
923
924	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
925
926	/* install the AP 1st level boot code */
927	pmap_kenter(va, boot_address);
928	pmap_invalidate_page(kernel_pmap, va);
929	bcopy(mptramp_start, (void *)va, bootMP_size);
930
931	/* Locate the page tables, they'll be below the trampoline */
932	pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
933	pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
934	pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
935
936	/* Create the initial 1GB replicated page tables */
937	for (i = 0; i < 512; i++) {
938		/* Each slot of the level 4 pages points to the same level 3 page */
939		pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
940		pt4[i] |= PG_V | PG_RW | PG_U;
941
942		/* Each slot of the level 3 pages points to the same level 2 page */
943		pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
944		pt3[i] |= PG_V | PG_RW | PG_U;
945
946		/* The level 2 page slots are mapped with 2MB pages for 1GB. */
947		pt2[i] = i * (2 * 1024 * 1024);
948		pt2[i] |= PG_V | PG_RW | PG_PS | PG_U;
949	}
950
951	/* save the current value of the warm-start vector */
952	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
953	outb(CMOS_REG, BIOS_RESET);
954	mpbiosreason = inb(CMOS_DATA);
955
956	/* setup a vector to our boot code */
957	*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
958	*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
959	outb(CMOS_REG, BIOS_RESET);
960	outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
961
962	/* start each AP */
963	for (cpu = 1; cpu < mp_ncpus; cpu++) {
964		apic_id = cpu_apic_ids[cpu];
965
966		/* allocate and set up an idle stack data page */
967		bootstacks[cpu] = (void *)kmem_malloc(kernel_arena,
968		    KSTACK_PAGES * PAGE_SIZE, M_WAITOK | M_ZERO);
969		doublefault_stack = (char *)kmem_malloc(kernel_arena,
970		    PAGE_SIZE, M_WAITOK | M_ZERO);
971		nmi_stack = (char *)kmem_malloc(kernel_arena, PAGE_SIZE,
972		    M_WAITOK | M_ZERO);
973		dpcpu = (void *)kmem_malloc(kernel_arena, DPCPU_SIZE,
974		    M_WAITOK | M_ZERO);
975
976		bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 8;
977		bootAP = cpu;
978
979		/* attempt to start the Application Processor */
980		if (!start_ap(apic_id)) {
981			/* restore the warmstart vector */
982			*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
983			panic("AP #%d (PHY# %d) failed!", cpu, apic_id);
984		}
985
986		CPU_SET(cpu, &all_cpus);	/* record AP in CPU map */
987	}
988
989	/* restore the warmstart vector */
990	*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
991
992	outb(CMOS_REG, BIOS_RESET);
993	outb(CMOS_DATA, mpbiosreason);
994
995	/* number of APs actually started */
996	return mp_naps;
997}
998
999
1000/*
1001 * This function starts the AP (application processor) identified
1002 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
1003 * to accomplish this.  This is necessary because of the nuances
1004 * of the different hardware we might encounter.  It isn't pretty,
1005 * but it seems to work.
1006 */
1007static int
1008start_ap(int apic_id)
1009{
1010	int vector, ms;
1011	int cpus;
1012
1013	/* calculate the vector */
1014	vector = (boot_address >> 12) & 0xff;
1015
1016	/* used as a watchpoint to signal AP startup */
1017	cpus = mp_naps;
1018
1019	ipi_startup(apic_id, vector);
1020
1021	/* Wait up to 5 seconds for it to start. */
1022	for (ms = 0; ms < 5000; ms++) {
1023		if (mp_naps > cpus)
1024			return 1;	/* return SUCCESS */
1025		DELAY(1000);
1026	}
1027	return 0;		/* return FAILURE */
1028}
1029
1030#ifdef COUNT_XINVLTLB_HITS
1031u_int xhits_gbl[MAXCPU];
1032u_int xhits_pg[MAXCPU];
1033u_int xhits_rng[MAXCPU];
1034static SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
1035SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
1036    sizeof(xhits_gbl), "IU", "");
1037SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
1038    sizeof(xhits_pg), "IU", "");
1039SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
1040    sizeof(xhits_rng), "IU", "");
1041
1042u_int ipi_global;
1043u_int ipi_page;
1044u_int ipi_range;
1045u_int ipi_range_size;
1046SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
1047SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
1048SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
1049SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW,
1050    &ipi_range_size, 0, "");
1051
1052u_int ipi_masked_global;
1053u_int ipi_masked_page;
1054u_int ipi_masked_range;
1055u_int ipi_masked_range_size;
1056SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
1057    &ipi_masked_global, 0, "");
1058SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
1059    &ipi_masked_page, 0, "");
1060SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
1061    &ipi_masked_range, 0, "");
1062SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
1063    &ipi_masked_range_size, 0, "");
1064#endif /* COUNT_XINVLTLB_HITS */
1065
1066/*
1067 * Init and startup IPI.
1068 */
1069void
1070ipi_startup(int apic_id, int vector)
1071{
1072
1073	/*
1074	 * This attempts to follow the algorithm described in the
1075	 * Intel Multiprocessor Specification v1.4 in section B.4.
1076	 * For each IPI, we allow the local APIC ~20us to deliver the
1077	 * IPI.  If that times out, we panic.
1078	 */
1079
1080	/*
1081	 * first we do an INIT IPI: this INIT IPI might be run, resetting
1082	 * and running the target CPU. OR this INIT IPI might be latched (P5
1083	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
1084	 * ignored.
1085	 */
1086	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_LEVEL |
1087	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
1088	lapic_ipi_wait(100);
1089
1090	/* Explicitly deassert the INIT IPI. */
1091	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_LEVEL |
1092	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT,
1093	    apic_id);
1094
1095	DELAY(10000);		/* wait ~10mS */
1096
1097	/*
1098	 * next we do a STARTUP IPI: the previous INIT IPI might still be
1099	 * latched, (P5 bug) this 1st STARTUP would then terminate
1100	 * immediately, and the previously started INIT IPI would continue. OR
1101	 * the previous INIT IPI has already run. and this STARTUP IPI will
1102	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
1103	 * will run.
1104	 */
1105	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1106	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1107	    vector, apic_id);
1108	if (!lapic_ipi_wait(100))
1109		panic("Failed to deliver first STARTUP IPI to APIC %d",
1110		    apic_id);
1111	DELAY(200);		/* wait ~200uS */
1112
1113	/*
1114	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
1115	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
1116	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
1117	 * recognized after hardware RESET or INIT IPI.
1118	 */
1119	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1120	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1121	    vector, apic_id);
1122	if (!lapic_ipi_wait(100))
1123		panic("Failed to deliver second STARTUP IPI to APIC %d",
1124		    apic_id);
1125
1126	DELAY(200);		/* wait ~200uS */
1127}
1128
1129/*
1130 * Send an IPI to specified CPU handling the bitmap logic.
1131 */
1132static void
1133ipi_send_cpu(int cpu, u_int ipi)
1134{
1135	u_int bitmap, old_pending, new_pending;
1136
1137	KASSERT(cpu_apic_ids[cpu] != -1, ("IPI to non-existent CPU %d", cpu));
1138
1139	if (IPI_IS_BITMAPED(ipi)) {
1140		bitmap = 1 << ipi;
1141		ipi = IPI_BITMAP_VECTOR;
1142		do {
1143			old_pending = cpu_ipi_pending[cpu];
1144			new_pending = old_pending | bitmap;
1145		} while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],
1146		    old_pending, new_pending));
1147		if (old_pending)
1148			return;
1149	}
1150	cpu_ops.ipi_vectored(ipi, cpu_apic_ids[cpu]);
1151}
1152
1153/*
1154 * Flush the TLB on all other CPU's
1155 */
1156static void
1157smp_tlb_shootdown(u_int vector, pmap_t pmap, vm_offset_t addr1,
1158    vm_offset_t addr2)
1159{
1160	u_int ncpu;
1161
1162	ncpu = mp_ncpus - 1;	/* does not shootdown self */
1163	if (ncpu < 1)
1164		return;		/* no other cpus */
1165	if (!(read_rflags() & PSL_I))
1166		panic("%s: interrupts disabled", __func__);
1167	mtx_lock_spin(&smp_ipi_mtx);
1168	smp_tlb_invpcid.addr = addr1;
1169	if (pmap == NULL) {
1170		smp_tlb_invpcid.pcid = 0;
1171	} else {
1172		smp_tlb_invpcid.pcid = pmap->pm_pcid;
1173		pcid_cr3 = pmap->pm_cr3;
1174	}
1175	smp_tlb_addr2 = addr2;
1176	smp_tlb_pmap = pmap;
1177	atomic_store_rel_int(&smp_tlb_wait, 0);
1178	ipi_all_but_self(vector);
1179	while (smp_tlb_wait < ncpu)
1180		ia32_pause();
1181	mtx_unlock_spin(&smp_ipi_mtx);
1182}
1183
1184static void
1185smp_targeted_tlb_shootdown(cpuset_t mask, u_int vector, pmap_t pmap,
1186    vm_offset_t addr1, vm_offset_t addr2)
1187{
1188	int cpu, ncpu, othercpus;
1189
1190	othercpus = mp_ncpus - 1;
1191	if (CPU_ISFULLSET(&mask)) {
1192		if (othercpus < 1)
1193			return;
1194	} else {
1195		CPU_CLR(PCPU_GET(cpuid), &mask);
1196		if (CPU_EMPTY(&mask))
1197			return;
1198	}
1199	if (!(read_rflags() & PSL_I))
1200		panic("%s: interrupts disabled", __func__);
1201	mtx_lock_spin(&smp_ipi_mtx);
1202	smp_tlb_invpcid.addr = addr1;
1203	if (pmap == NULL) {
1204		smp_tlb_invpcid.pcid = 0;
1205	} else {
1206		smp_tlb_invpcid.pcid = pmap->pm_pcid;
1207		pcid_cr3 = pmap->pm_cr3;
1208	}
1209	smp_tlb_addr2 = addr2;
1210	smp_tlb_pmap = pmap;
1211	atomic_store_rel_int(&smp_tlb_wait, 0);
1212	if (CPU_ISFULLSET(&mask)) {
1213		ncpu = othercpus;
1214		ipi_all_but_self(vector);
1215	} else {
1216		ncpu = 0;
1217		while ((cpu = CPU_FFS(&mask)) != 0) {
1218			cpu--;
1219			CPU_CLR(cpu, &mask);
1220			CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__,
1221			    cpu, vector);
1222			ipi_send_cpu(cpu, vector);
1223			ncpu++;
1224		}
1225	}
1226	while (smp_tlb_wait < ncpu)
1227		ia32_pause();
1228	mtx_unlock_spin(&smp_ipi_mtx);
1229}
1230
1231void
1232smp_cache_flush(void)
1233{
1234
1235	if (smp_started)
1236		smp_tlb_shootdown(IPI_INVLCACHE, NULL, 0, 0);
1237}
1238
1239void
1240smp_invltlb(pmap_t pmap)
1241{
1242
1243	if (smp_started) {
1244		smp_tlb_shootdown(IPI_INVLTLB, pmap, 0, 0);
1245#ifdef COUNT_XINVLTLB_HITS
1246		ipi_global++;
1247#endif
1248	}
1249}
1250
1251void
1252smp_invlpg(pmap_t pmap, vm_offset_t addr)
1253{
1254
1255	if (smp_started) {
1256		smp_tlb_shootdown(IPI_INVLPG, pmap, addr, 0);
1257#ifdef COUNT_XINVLTLB_HITS
1258		ipi_page++;
1259#endif
1260	}
1261}
1262
1263void
1264smp_invlpg_range(pmap_t pmap, vm_offset_t addr1, vm_offset_t addr2)
1265{
1266
1267	if (smp_started) {
1268		smp_tlb_shootdown(IPI_INVLRNG, pmap, addr1, addr2);
1269#ifdef COUNT_XINVLTLB_HITS
1270		ipi_range++;
1271		ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
1272#endif
1273	}
1274}
1275
1276void
1277smp_masked_invltlb(cpuset_t mask, pmap_t pmap)
1278{
1279
1280	if (smp_started) {
1281		smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, pmap, 0, 0);
1282#ifdef COUNT_XINVLTLB_HITS
1283		ipi_masked_global++;
1284#endif
1285	}
1286}
1287
1288void
1289smp_masked_invlpg(cpuset_t mask, pmap_t pmap, vm_offset_t addr)
1290{
1291
1292	if (smp_started) {
1293		smp_targeted_tlb_shootdown(mask, IPI_INVLPG, pmap, addr, 0);
1294#ifdef COUNT_XINVLTLB_HITS
1295		ipi_masked_page++;
1296#endif
1297	}
1298}
1299
1300void
1301smp_masked_invlpg_range(cpuset_t mask, pmap_t pmap, vm_offset_t addr1,
1302    vm_offset_t addr2)
1303{
1304
1305	if (smp_started) {
1306		smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, pmap, addr1,
1307		    addr2);
1308#ifdef COUNT_XINVLTLB_HITS
1309		ipi_masked_range++;
1310		ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
1311#endif
1312	}
1313}
1314
1315void
1316ipi_bitmap_handler(struct trapframe frame)
1317{
1318	struct trapframe *oldframe;
1319	struct thread *td;
1320	int cpu = PCPU_GET(cpuid);
1321	u_int ipi_bitmap;
1322
1323	critical_enter();
1324	td = curthread;
1325	td->td_intr_nesting_level++;
1326	oldframe = td->td_intr_frame;
1327	td->td_intr_frame = &frame;
1328	ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
1329	if (ipi_bitmap & (1 << IPI_PREEMPT)) {
1330#ifdef COUNT_IPIS
1331		(*ipi_preempt_counts[cpu])++;
1332#endif
1333		sched_preempt(td);
1334	}
1335	if (ipi_bitmap & (1 << IPI_AST)) {
1336#ifdef COUNT_IPIS
1337		(*ipi_ast_counts[cpu])++;
1338#endif
1339		/* Nothing to do for AST */
1340	}
1341	if (ipi_bitmap & (1 << IPI_HARDCLOCK)) {
1342#ifdef COUNT_IPIS
1343		(*ipi_hardclock_counts[cpu])++;
1344#endif
1345		hardclockintr();
1346	}
1347	td->td_intr_frame = oldframe;
1348	td->td_intr_nesting_level--;
1349	critical_exit();
1350}
1351
1352/*
1353 * send an IPI to a set of cpus.
1354 */
1355void
1356ipi_selected(cpuset_t cpus, u_int ipi)
1357{
1358	int cpu;
1359
1360	/*
1361	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1362	 * of help in order to understand what is the source.
1363	 * Set the mask of receiving CPUs for this purpose.
1364	 */
1365	if (ipi == IPI_STOP_HARD)
1366		CPU_OR_ATOMIC(&ipi_nmi_pending, &cpus);
1367
1368	while ((cpu = CPU_FFS(&cpus)) != 0) {
1369		cpu--;
1370		CPU_CLR(cpu, &cpus);
1371		CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
1372		ipi_send_cpu(cpu, ipi);
1373	}
1374}
1375
1376/*
1377 * send an IPI to a specific CPU.
1378 */
1379void
1380ipi_cpu(int cpu, u_int ipi)
1381{
1382
1383	/*
1384	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1385	 * of help in order to understand what is the source.
1386	 * Set the mask of receiving CPUs for this purpose.
1387	 */
1388	if (ipi == IPI_STOP_HARD)
1389		CPU_SET_ATOMIC(cpu, &ipi_nmi_pending);
1390
1391	CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
1392	ipi_send_cpu(cpu, ipi);
1393}
1394
1395/*
1396 * send an IPI to all CPUs EXCEPT myself
1397 */
1398void
1399ipi_all_but_self(u_int ipi)
1400{
1401	cpuset_t other_cpus;
1402
1403	other_cpus = all_cpus;
1404	CPU_CLR(PCPU_GET(cpuid), &other_cpus);
1405
1406	if (IPI_IS_BITMAPED(ipi)) {
1407		ipi_selected(other_cpus, ipi);
1408		return;
1409	}
1410
1411	/*
1412	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1413	 * of help in order to understand what is the source.
1414	 * Set the mask of receiving CPUs for this purpose.
1415	 */
1416	if (ipi == IPI_STOP_HARD)
1417		CPU_OR_ATOMIC(&ipi_nmi_pending, &other_cpus);
1418
1419	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1420	cpu_ops.ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
1421}
1422
1423int
1424ipi_nmi_handler()
1425{
1426	u_int cpuid;
1427
1428	/*
1429	 * As long as there is not a simple way to know about a NMI's
1430	 * source, if the bitmask for the current CPU is present in
1431	 * the global pending bitword an IPI_STOP_HARD has been issued
1432	 * and should be handled.
1433	 */
1434	cpuid = PCPU_GET(cpuid);
1435	if (!CPU_ISSET(cpuid, &ipi_nmi_pending))
1436		return (1);
1437
1438	CPU_CLR_ATOMIC(cpuid, &ipi_nmi_pending);
1439	cpustop_handler();
1440	return (0);
1441}
1442
1443/*
1444 * Handle an IPI_STOP by saving our current context and spinning until we
1445 * are resumed.
1446 */
1447void
1448cpustop_handler(void)
1449{
1450	u_int cpu;
1451
1452	cpu = PCPU_GET(cpuid);
1453
1454	savectx(&stoppcbs[cpu]);
1455
1456	/* Indicate that we are stopped */
1457	CPU_SET_ATOMIC(cpu, &stopped_cpus);
1458
1459	/* Wait for restart */
1460	while (!CPU_ISSET(cpu, &started_cpus))
1461	    ia32_pause();
1462
1463	CPU_CLR_ATOMIC(cpu, &started_cpus);
1464	CPU_CLR_ATOMIC(cpu, &stopped_cpus);
1465
1466#ifdef DDB
1467	amd64_db_resume_dbreg();
1468#endif
1469
1470	if (cpu == 0 && cpustop_restartfunc != NULL) {
1471		cpustop_restartfunc();
1472		cpustop_restartfunc = NULL;
1473	}
1474}
1475
1476/*
1477 * Handle an IPI_SUSPEND by saving our current context and spinning until we
1478 * are resumed.
1479 */
1480void
1481cpususpend_handler(void)
1482{
1483	u_int cpu;
1484
1485	mtx_assert(&smp_ipi_mtx, MA_NOTOWNED);
1486
1487	cpu = PCPU_GET(cpuid);
1488	if (savectx(&susppcbs[cpu]->sp_pcb)) {
1489		fpususpend(susppcbs[cpu]->sp_fpususpend);
1490		wbinvd();
1491		CPU_SET_ATOMIC(cpu, &suspended_cpus);
1492		/*
1493		 * Hack for xen, which does not use resumectx() so never
1494		 * uses the next clause: set resuming_cpus early so that
1495		 * resume_cpus() can wait on the same bitmap for acpi and
1496		 * xen.  resuming_cpus now means eventually_resumable_cpus.
1497		 */
1498		CPU_SET_ATOMIC(cpu, &resuming_cpus);
1499	} else {
1500		fpuresume(susppcbs[cpu]->sp_fpususpend);
1501		pmap_init_pat();
1502		initializecpu();
1503		PCPU_SET(switchtime, 0);
1504		PCPU_SET(switchticks, ticks);
1505
1506		/* Indicate that we are resuming */
1507		CPU_CLR_ATOMIC(cpu, &suspended_cpus);
1508	}
1509
1510	/* Wait for resume directive */
1511	while (!CPU_ISSET(cpu, &toresume_cpus))
1512		ia32_pause();
1513
1514	if (cpu_ops.cpu_resume)
1515		cpu_ops.cpu_resume();
1516	if (vmm_resume_p)
1517		vmm_resume_p();
1518
1519	/* Resume MCA and local APIC */
1520	mca_resume();
1521	lapic_setup(0);
1522
1523	/* Indicate that we are resumed */
1524	CPU_CLR_ATOMIC(cpu, &resuming_cpus);
1525	CPU_CLR_ATOMIC(cpu, &suspended_cpus);
1526	CPU_CLR_ATOMIC(cpu, &toresume_cpus);
1527}
1528
1529/*
1530 * Handlers for TLB related IPIs
1531 */
1532void
1533invltlb_handler(void)
1534{
1535#ifdef COUNT_XINVLTLB_HITS
1536	xhits_gbl[PCPU_GET(cpuid)]++;
1537#endif /* COUNT_XINVLTLB_HITS */
1538#ifdef COUNT_IPIS
1539	(*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
1540#endif /* COUNT_IPIS */
1541
1542	invltlb();
1543	atomic_add_int(&smp_tlb_wait, 1);
1544}
1545
1546void
1547invltlb_pcid_handler(void)
1548{
1549	uint64_t cr3;
1550	u_int cpuid;
1551#ifdef COUNT_XINVLTLB_HITS
1552	xhits_gbl[PCPU_GET(cpuid)]++;
1553#endif /* COUNT_XINVLTLB_HITS */
1554#ifdef COUNT_IPIS
1555	(*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
1556#endif /* COUNT_IPIS */
1557
1558	if (smp_tlb_invpcid.pcid != (uint64_t)-1 &&
1559	    smp_tlb_invpcid.pcid != 0) {
1560		if (invpcid_works) {
1561			invpcid(&smp_tlb_invpcid, INVPCID_CTX);
1562		} else {
1563			/* Otherwise reload %cr3 twice. */
1564			cr3 = rcr3();
1565			if (cr3 != pcid_cr3) {
1566				load_cr3(pcid_cr3);
1567				cr3 |= CR3_PCID_SAVE;
1568			}
1569			load_cr3(cr3);
1570		}
1571	} else {
1572		invltlb_globpcid();
1573	}
1574	if (smp_tlb_pmap != NULL) {
1575		cpuid = PCPU_GET(cpuid);
1576		if (!CPU_ISSET(cpuid, &smp_tlb_pmap->pm_active))
1577			CPU_CLR_ATOMIC(cpuid, &smp_tlb_pmap->pm_save);
1578	}
1579
1580	atomic_add_int(&smp_tlb_wait, 1);
1581}
1582
1583void
1584invlpg_handler(void)
1585{
1586#ifdef COUNT_XINVLTLB_HITS
1587	xhits_pg[PCPU_GET(cpuid)]++;
1588#endif /* COUNT_XINVLTLB_HITS */
1589#ifdef COUNT_IPIS
1590	(*ipi_invlpg_counts[PCPU_GET(cpuid)])++;
1591#endif /* COUNT_IPIS */
1592
1593	invlpg(smp_tlb_invpcid.addr);
1594	atomic_add_int(&smp_tlb_wait, 1);
1595}
1596
1597void
1598invlpg_pcid_handler(void)
1599{
1600	uint64_t cr3;
1601#ifdef COUNT_XINVLTLB_HITS
1602	xhits_pg[PCPU_GET(cpuid)]++;
1603#endif /* COUNT_XINVLTLB_HITS */
1604#ifdef COUNT_IPIS
1605	(*ipi_invlpg_counts[PCPU_GET(cpuid)])++;
1606#endif /* COUNT_IPIS */
1607
1608	if (smp_tlb_invpcid.pcid == (uint64_t)-1) {
1609		invltlb_globpcid();
1610	} else if (smp_tlb_invpcid.pcid == 0) {
1611		invlpg(smp_tlb_invpcid.addr);
1612	} else if (invpcid_works) {
1613		invpcid(&smp_tlb_invpcid, INVPCID_ADDR);
1614	} else {
1615		/*
1616		 * PCID supported, but INVPCID is not.
1617		 * Temporarily switch to the target address
1618		 * space and do INVLPG.
1619		 */
1620		cr3 = rcr3();
1621		if (cr3 != pcid_cr3)
1622			load_cr3(pcid_cr3 | CR3_PCID_SAVE);
1623		invlpg(smp_tlb_invpcid.addr);
1624		load_cr3(cr3 | CR3_PCID_SAVE);
1625	}
1626
1627	atomic_add_int(&smp_tlb_wait, 1);
1628}
1629
1630static inline void
1631invlpg_range(vm_offset_t start, vm_offset_t end)
1632{
1633
1634	do {
1635		invlpg(start);
1636		start += PAGE_SIZE;
1637	} while (start < end);
1638}
1639
1640void
1641invlrng_handler(void)
1642{
1643	struct invpcid_descr d;
1644	vm_offset_t addr;
1645	uint64_t cr3;
1646	u_int cpuid;
1647#ifdef COUNT_XINVLTLB_HITS
1648	xhits_rng[PCPU_GET(cpuid)]++;
1649#endif /* COUNT_XINVLTLB_HITS */
1650#ifdef COUNT_IPIS
1651	(*ipi_invlrng_counts[PCPU_GET(cpuid)])++;
1652#endif /* COUNT_IPIS */
1653
1654	addr = smp_tlb_invpcid.addr;
1655	if (pmap_pcid_enabled) {
1656		if (smp_tlb_invpcid.pcid == 0) {
1657			/*
1658			 * kernel pmap - use invlpg to invalidate
1659			 * global mapping.
1660			 */
1661			invlpg_range(addr, smp_tlb_addr2);
1662		} else if (smp_tlb_invpcid.pcid == (uint64_t)-1) {
1663			invltlb_globpcid();
1664			if (smp_tlb_pmap != NULL) {
1665				cpuid = PCPU_GET(cpuid);
1666				if (!CPU_ISSET(cpuid, &smp_tlb_pmap->pm_active))
1667					CPU_CLR_ATOMIC(cpuid,
1668					    &smp_tlb_pmap->pm_save);
1669			}
1670		} else if (invpcid_works) {
1671			d = smp_tlb_invpcid;
1672			do {
1673				invpcid(&d, INVPCID_ADDR);
1674				d.addr += PAGE_SIZE;
1675			} while (d.addr <= smp_tlb_addr2);
1676		} else {
1677			cr3 = rcr3();
1678			if (cr3 != pcid_cr3)
1679				load_cr3(pcid_cr3 | CR3_PCID_SAVE);
1680			invlpg_range(addr, smp_tlb_addr2);
1681			load_cr3(cr3 | CR3_PCID_SAVE);
1682		}
1683	} else {
1684		invlpg_range(addr, smp_tlb_addr2);
1685	}
1686
1687	atomic_add_int(&smp_tlb_wait, 1);
1688}
1689
1690void
1691invlcache_handler(void)
1692{
1693#ifdef COUNT_IPIS
1694	(*ipi_invlcache_counts[PCPU_GET(cpuid)])++;
1695#endif /* COUNT_IPIS */
1696
1697	wbinvd();
1698	atomic_add_int(&smp_tlb_wait, 1);
1699}
1700
1701/*
1702 * This is called once the rest of the system is up and running and we're
1703 * ready to let the AP's out of the pen.
1704 */
1705static void
1706release_aps(void *dummy __unused)
1707{
1708
1709	if (mp_ncpus == 1)
1710		return;
1711	atomic_store_rel_int(&aps_ready, 1);
1712	while (smp_started == 0)
1713		ia32_pause();
1714}
1715SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
1716
1717#ifdef COUNT_IPIS
1718/*
1719 * Setup interrupt counters for IPI handlers.
1720 */
1721static void
1722mp_ipi_intrcnt(void *dummy)
1723{
1724	char buf[64];
1725	int i;
1726
1727	CPU_FOREACH(i) {
1728		snprintf(buf, sizeof(buf), "cpu%d:invltlb", i);
1729		intrcnt_add(buf, &ipi_invltlb_counts[i]);
1730		snprintf(buf, sizeof(buf), "cpu%d:invlrng", i);
1731		intrcnt_add(buf, &ipi_invlrng_counts[i]);
1732		snprintf(buf, sizeof(buf), "cpu%d:invlpg", i);
1733		intrcnt_add(buf, &ipi_invlpg_counts[i]);
1734		snprintf(buf, sizeof(buf), "cpu%d:invlcache", i);
1735		intrcnt_add(buf, &ipi_invlcache_counts[i]);
1736		snprintf(buf, sizeof(buf), "cpu%d:preempt", i);
1737		intrcnt_add(buf, &ipi_preempt_counts[i]);
1738		snprintf(buf, sizeof(buf), "cpu%d:ast", i);
1739		intrcnt_add(buf, &ipi_ast_counts[i]);
1740		snprintf(buf, sizeof(buf), "cpu%d:rendezvous", i);
1741		intrcnt_add(buf, &ipi_rendezvous_counts[i]);
1742		snprintf(buf, sizeof(buf), "cpu%d:hardclock", i);
1743		intrcnt_add(buf, &ipi_hardclock_counts[i]);
1744	}
1745}
1746SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL);
1747#endif
1748
1749