machdep.c revision 287126
1183242Ssam/*-
2183242Ssam * Copyright (c) 2003 Peter Wemm.
3183242Ssam * Copyright (c) 1992 Terrence R. Lambert.
4183242Ssam * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5183242Ssam * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: stable/10/sys/amd64/amd64/machdep.c 287126 2015-08-25 14:39:40Z marcel $");
43
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_mp_watchdog.h"
55#include "opt_perfmon.h"
56#include "opt_platform.h"
57#include "opt_sched.h"
58#include "opt_kdtrace.h"
59
60#include <sys/param.h>
61#include <sys/proc.h>
62#include <sys/systm.h>
63#include <sys/bio.h>
64#include <sys/buf.h>
65#include <sys/bus.h>
66#include <sys/callout.h>
67#include <sys/cons.h>
68#include <sys/cpu.h>
69#include <sys/efi.h>
70#include <sys/eventhandler.h>
71#include <sys/exec.h>
72#include <sys/imgact.h>
73#include <sys/kdb.h>
74#include <sys/kernel.h>
75#include <sys/ktr.h>
76#include <sys/linker.h>
77#include <sys/lock.h>
78#include <sys/malloc.h>
79#include <sys/memrange.h>
80#include <sys/msgbuf.h>
81#include <sys/mutex.h>
82#include <sys/pcpu.h>
83#include <sys/ptrace.h>
84#include <sys/reboot.h>
85#include <sys/rwlock.h>
86#include <sys/sched.h>
87#include <sys/signalvar.h>
88#ifdef SMP
89#include <sys/smp.h>
90#endif
91#include <sys/syscallsubr.h>
92#include <sys/sysctl.h>
93#include <sys/sysent.h>
94#include <sys/sysproto.h>
95#include <sys/ucontext.h>
96#include <sys/vmmeter.h>
97
98#include <vm/vm.h>
99#include <vm/vm_extern.h>
100#include <vm/vm_kern.h>
101#include <vm/vm_page.h>
102#include <vm/vm_map.h>
103#include <vm/vm_object.h>
104#include <vm/vm_pager.h>
105#include <vm/vm_param.h>
106
107#ifdef DDB
108#ifndef KDB
109#error KDB must be enabled in order for DDB to work!
110#endif
111#include <ddb/ddb.h>
112#include <ddb/db_sym.h>
113#endif
114
115#include <net/netisr.h>
116
117#include <machine/clock.h>
118#include <machine/cpu.h>
119#include <machine/cputypes.h>
120#include <machine/intr_machdep.h>
121#include <x86/mca.h>
122#include <machine/md_var.h>
123#include <machine/metadata.h>
124#include <machine/mp_watchdog.h>
125#include <machine/pc/bios.h>
126#include <machine/pcb.h>
127#include <machine/proc.h>
128#include <machine/reg.h>
129#include <machine/sigframe.h>
130#include <machine/specialreg.h>
131#ifdef PERFMON
132#include <machine/perfmon.h>
133#endif
134#include <machine/tss.h>
135#ifdef SMP
136#include <machine/smp.h>
137#endif
138#ifdef FDT
139#include <x86/fdt.h>
140#endif
141
142#ifdef DEV_ATPIC
143#include <x86/isa/icu.h>
144#else
145#include <machine/apicvar.h>
146#endif
147
148#include <isa/isareg.h>
149#include <isa/rtc.h>
150
151/* Sanity check for __curthread() */
152CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
153
154extern u_int64_t hammer_time(u_int64_t, u_int64_t);
155
156#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
157#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
158
159static void cpu_startup(void *);
160static void get_fpcontext(struct thread *td, mcontext_t *mcp,
161    char *xfpusave, size_t xfpusave_len);
162static int  set_fpcontext(struct thread *td, mcontext_t *mcp,
163    char *xfpustate, size_t xfpustate_len);
164SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
165
166/*
167 * The file "conf/ldscript.amd64" defines the symbol "kernphys".  Its value is
168 * the physical address at which the kernel is loaded.
169 */
170extern char kernphys[];
171#ifdef DDB
172extern vm_offset_t ksym_start, ksym_end;
173#endif
174
175struct msgbuf *msgbufp;
176
177/* Intel ICH registers */
178#define ICH_PMBASE	0x400
179#define ICH_SMI_EN	ICH_PMBASE + 0x30
180
181int	_udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
182
183int cold = 1;
184
185long Maxmem = 0;
186long realmem = 0;
187
188/*
189 * The number of PHYSMAP entries must be one less than the number of
190 * PHYSSEG entries because the PHYSMAP entry that spans the largest
191 * physical address that is accessible by ISA DMA is split into two
192 * PHYSSEG entries.
193 */
194#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
195
196vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
197vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
198
199/* must be 2 less so 0 0 can signal end of chunks */
200#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
201#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
202
203struct kva_md_info kmi;
204
205static struct trapframe proc0_tf;
206struct region_descriptor r_gdt, r_idt;
207
208struct pcpu __pcpu[MAXCPU];
209
210struct mtx icu_lock;
211
212struct mem_range_softc mem_range_softc;
213
214struct mtx dt_lock;	/* lock for GDT and LDT */
215
216void (*vmm_resume_p)(void);
217
218static void
219cpu_startup(dummy)
220	void *dummy;
221{
222	uintmax_t memsize;
223	char *sysenv;
224
225	/*
226	 * On MacBooks, we need to disallow the legacy USB circuit to
227	 * generate an SMI# because this can cause several problems,
228	 * namely: incorrect CPU frequency detection and failure to
229	 * start the APs.
230	 * We do this by disabling a bit in the SMI_EN (SMI Control and
231	 * Enable register) of the Intel ICH LPC Interface Bridge.
232	 */
233	sysenv = getenv("smbios.system.product");
234	if (sysenv != NULL) {
235		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
236		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
237		    strncmp(sysenv, "MacBook4,1", 10) == 0 ||
238		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
239		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
240		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
241		    strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
242		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
243			if (bootverbose)
244				printf("Disabling LEGACY_USB_EN bit on "
245				    "Intel ICH.\n");
246			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
247		}
248		freeenv(sysenv);
249	}
250
251	/*
252	 * Good {morning,afternoon,evening,night}.
253	 */
254	startrtclock();
255	printcpuinfo();
256	panicifcpuunsupported();
257#ifdef PERFMON
258	perfmon_init();
259#endif
260
261	/*
262	 * Display physical memory if SMBIOS reports reasonable amount.
263	 */
264	memsize = 0;
265	sysenv = getenv("smbios.memory.enabled");
266	if (sysenv != NULL) {
267		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
268		freeenv(sysenv);
269	}
270	if (memsize < ptoa((uintmax_t)cnt.v_free_count))
271		memsize = ptoa((uintmax_t)Maxmem);
272	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
273	realmem = atop(memsize);
274
275	/*
276	 * Display any holes after the first chunk of extended memory.
277	 */
278	if (bootverbose) {
279		int indx;
280
281		printf("Physical memory chunk(s):\n");
282		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
283			vm_paddr_t size;
284
285			size = phys_avail[indx + 1] - phys_avail[indx];
286			printf(
287			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
288			    (uintmax_t)phys_avail[indx],
289			    (uintmax_t)phys_avail[indx + 1] - 1,
290			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
291		}
292	}
293
294	vm_ksubmap_init(&kmi);
295
296	printf("avail memory = %ju (%ju MB)\n",
297	    ptoa((uintmax_t)cnt.v_free_count),
298	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
299
300	/*
301	 * Set up buffers, so they can be used to read disk labels.
302	 */
303	bufinit();
304	vm_pager_bufferinit();
305
306	cpu_setregs();
307}
308
309/*
310 * Send an interrupt to process.
311 *
312 * Stack is set up to allow sigcode stored
313 * at top to call routine, followed by call
314 * to sigreturn routine below.  After sigreturn
315 * resets the signal mask, the stack, and the
316 * frame pointer, it returns to the user
317 * specified pc, psl.
318 */
319void
320sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
321{
322	struct sigframe sf, *sfp;
323	struct pcb *pcb;
324	struct proc *p;
325	struct thread *td;
326	struct sigacts *psp;
327	char *sp;
328	struct trapframe *regs;
329	char *xfpusave;
330	size_t xfpusave_len;
331	int sig;
332	int oonstack;
333
334	td = curthread;
335	pcb = td->td_pcb;
336	p = td->td_proc;
337	PROC_LOCK_ASSERT(p, MA_OWNED);
338	sig = ksi->ksi_signo;
339	psp = p->p_sigacts;
340	mtx_assert(&psp->ps_mtx, MA_OWNED);
341	regs = td->td_frame;
342	oonstack = sigonstack(regs->tf_rsp);
343
344	if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) {
345		xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu);
346		xfpusave = __builtin_alloca(xfpusave_len);
347	} else {
348		xfpusave_len = 0;
349		xfpusave = NULL;
350	}
351
352	/* Save user context. */
353	bzero(&sf, sizeof(sf));
354	sf.sf_uc.uc_sigmask = *mask;
355	sf.sf_uc.uc_stack = td->td_sigstk;
356	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
357	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
358	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
359	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
360	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
361	get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
362	fpstate_drop(td);
363	sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
364	sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
365	bzero(sf.sf_uc.uc_mcontext.mc_spare,
366	    sizeof(sf.sf_uc.uc_mcontext.mc_spare));
367	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
368
369	/* Allocate space for the signal handler context. */
370	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
371	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
372		sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
373#if defined(COMPAT_43)
374		td->td_sigstk.ss_flags |= SS_ONSTACK;
375#endif
376	} else
377		sp = (char *)regs->tf_rsp - 128;
378	if (xfpusave != NULL) {
379		sp -= xfpusave_len;
380		sp = (char *)((unsigned long)sp & ~0x3Ful);
381		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
382	}
383	sp -= sizeof(struct sigframe);
384	/* Align to 16 bytes. */
385	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
386
387	/* Translate the signal if appropriate. */
388	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
389		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
390
391	/* Build the argument list for the signal handler. */
392	regs->tf_rdi = sig;			/* arg 1 in %rdi */
393	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
394	bzero(&sf.sf_si, sizeof(sf.sf_si));
395	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
396		/* Signal handler installed with SA_SIGINFO. */
397		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
398		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
399
400		/* Fill in POSIX parts */
401		sf.sf_si = ksi->ksi_info;
402		sf.sf_si.si_signo = sig; /* maybe a translated signal */
403		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
404	} else {
405		/* Old FreeBSD-style arguments. */
406		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
407		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
408		sf.sf_ahu.sf_handler = catcher;
409	}
410	mtx_unlock(&psp->ps_mtx);
411	PROC_UNLOCK(p);
412
413	/*
414	 * Copy the sigframe out to the user's stack.
415	 */
416	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
417	    (xfpusave != NULL && copyout(xfpusave,
418	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
419	    != 0)) {
420#ifdef DEBUG
421		printf("process %ld has trashed its stack\n", (long)p->p_pid);
422#endif
423		PROC_LOCK(p);
424		sigexit(td, SIGILL);
425	}
426
427	regs->tf_rsp = (long)sfp;
428	regs->tf_rip = p->p_sysent->sv_sigcode_base;
429	regs->tf_rflags &= ~(PSL_T | PSL_D);
430	regs->tf_cs = _ucodesel;
431	regs->tf_ds = _udatasel;
432	regs->tf_ss = _udatasel;
433	regs->tf_es = _udatasel;
434	regs->tf_fs = _ufssel;
435	regs->tf_gs = _ugssel;
436	regs->tf_flags = TF_HASSEGS;
437	set_pcb_flags(pcb, PCB_FULL_IRET);
438	PROC_LOCK(p);
439	mtx_lock(&psp->ps_mtx);
440}
441
442/*
443 * System call to cleanup state after a signal
444 * has been taken.  Reset signal mask and
445 * stack state from context left by sendsig (above).
446 * Return to previous pc and psl as specified by
447 * context left by sendsig. Check carefully to
448 * make sure that the user has not modified the
449 * state to gain improper privileges.
450 *
451 * MPSAFE
452 */
453int
454sys_sigreturn(td, uap)
455	struct thread *td;
456	struct sigreturn_args /* {
457		const struct __ucontext *sigcntxp;
458	} */ *uap;
459{
460	ucontext_t uc;
461	struct pcb *pcb;
462	struct proc *p;
463	struct trapframe *regs;
464	ucontext_t *ucp;
465	char *xfpustate;
466	size_t xfpustate_len;
467	long rflags;
468	int cs, error, ret;
469	ksiginfo_t ksi;
470
471	pcb = td->td_pcb;
472	p = td->td_proc;
473
474	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
475	if (error != 0) {
476		uprintf("pid %d (%s): sigreturn copyin failed\n",
477		    p->p_pid, td->td_name);
478		return (error);
479	}
480	ucp = &uc;
481	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
482		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
483		    td->td_name, ucp->uc_mcontext.mc_flags);
484		return (EINVAL);
485	}
486	regs = td->td_frame;
487	rflags = ucp->uc_mcontext.mc_rflags;
488	/*
489	 * Don't allow users to change privileged or reserved flags.
490	 */
491	if (!EFL_SECURE(rflags, regs->tf_rflags)) {
492		uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
493		    td->td_name, rflags);
494		return (EINVAL);
495	}
496
497	/*
498	 * Don't allow users to load a valid privileged %cs.  Let the
499	 * hardware check for invalid selectors, excess privilege in
500	 * other selectors, invalid %eip's and invalid %esp's.
501	 */
502	cs = ucp->uc_mcontext.mc_cs;
503	if (!CS_SECURE(cs)) {
504		uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
505		    td->td_name, cs);
506		ksiginfo_init_trap(&ksi);
507		ksi.ksi_signo = SIGBUS;
508		ksi.ksi_code = BUS_OBJERR;
509		ksi.ksi_trapno = T_PROTFLT;
510		ksi.ksi_addr = (void *)regs->tf_rip;
511		trapsignal(td, &ksi);
512		return (EINVAL);
513	}
514
515	if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
516		xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
517		if (xfpustate_len > cpu_max_ext_state_size -
518		    sizeof(struct savefpu)) {
519			uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
520			    p->p_pid, td->td_name, xfpustate_len);
521			return (EINVAL);
522		}
523		xfpustate = __builtin_alloca(xfpustate_len);
524		error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
525		    xfpustate, xfpustate_len);
526		if (error != 0) {
527			uprintf(
528	"pid %d (%s): sigreturn copying xfpustate failed\n",
529			    p->p_pid, td->td_name);
530			return (error);
531		}
532	} else {
533		xfpustate = NULL;
534		xfpustate_len = 0;
535	}
536	ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len);
537	if (ret != 0) {
538		uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
539		    p->p_pid, td->td_name, ret);
540		return (ret);
541	}
542	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
543	pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
544	pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
545
546#if defined(COMPAT_43)
547	if (ucp->uc_mcontext.mc_onstack & 1)
548		td->td_sigstk.ss_flags |= SS_ONSTACK;
549	else
550		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
551#endif
552
553	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
554	set_pcb_flags(pcb, PCB_FULL_IRET);
555	return (EJUSTRETURN);
556}
557
558#ifdef COMPAT_FREEBSD4
559int
560freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
561{
562
563	return sys_sigreturn(td, (struct sigreturn_args *)uap);
564}
565#endif
566
567
568/*
569 * Machine dependent boot() routine
570 *
571 * I haven't seen anything to put here yet
572 * Possibly some stuff might be grafted back here from boot()
573 */
574void
575cpu_boot(int howto)
576{
577}
578
579/*
580 * Flush the D-cache for non-DMA I/O so that the I-cache can
581 * be made coherent later.
582 */
583void
584cpu_flush_dcache(void *ptr, size_t len)
585{
586	/* Not applicable */
587}
588
589/* Get current clock frequency for the given cpu id. */
590int
591cpu_est_clockrate(int cpu_id, uint64_t *rate)
592{
593	uint64_t tsc1, tsc2;
594	uint64_t acnt, mcnt, perf;
595	register_t reg;
596
597	if (pcpu_find(cpu_id) == NULL || rate == NULL)
598		return (EINVAL);
599
600	/*
601	 * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
602	 * DELAY(9) based logic fails.
603	 */
604	if (tsc_is_invariant && !tsc_perf_stat)
605		return (EOPNOTSUPP);
606
607#ifdef SMP
608	if (smp_cpus > 1) {
609		/* Schedule ourselves on the indicated cpu. */
610		thread_lock(curthread);
611		sched_bind(curthread, cpu_id);
612		thread_unlock(curthread);
613	}
614#endif
615
616	/* Calibrate by measuring a short delay. */
617	reg = intr_disable();
618	if (tsc_is_invariant) {
619		wrmsr(MSR_MPERF, 0);
620		wrmsr(MSR_APERF, 0);
621		tsc1 = rdtsc();
622		DELAY(1000);
623		mcnt = rdmsr(MSR_MPERF);
624		acnt = rdmsr(MSR_APERF);
625		tsc2 = rdtsc();
626		intr_restore(reg);
627		perf = 1000 * acnt / mcnt;
628		*rate = (tsc2 - tsc1) * perf;
629	} else {
630		tsc1 = rdtsc();
631		DELAY(1000);
632		tsc2 = rdtsc();
633		intr_restore(reg);
634		*rate = (tsc2 - tsc1) * 1000;
635	}
636
637#ifdef SMP
638	if (smp_cpus > 1) {
639		thread_lock(curthread);
640		sched_unbind(curthread);
641		thread_unlock(curthread);
642	}
643#endif
644
645	return (0);
646}
647
648/*
649 * Shutdown the CPU as much as possible
650 */
651void
652cpu_halt(void)
653{
654	for (;;)
655		halt();
656}
657
658void (*cpu_idle_hook)(sbintime_t) = NULL;	/* ACPI idle hook. */
659static int	cpu_ident_amdc1e = 0;	/* AMD C1E supported. */
660static int	idle_mwait = 1;		/* Use MONITOR/MWAIT for short idle. */
661TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
662SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
663    0, "Use MONITOR/MWAIT for short idle");
664
665#define	STATE_RUNNING	0x0
666#define	STATE_MWAIT	0x1
667#define	STATE_SLEEPING	0x2
668
669static void
670cpu_idle_acpi(sbintime_t sbt)
671{
672	int *state;
673
674	state = (int *)PCPU_PTR(monitorbuf);
675	*state = STATE_SLEEPING;
676
677	/* See comments in cpu_idle_hlt(). */
678	disable_intr();
679	if (sched_runnable())
680		enable_intr();
681	else if (cpu_idle_hook)
682		cpu_idle_hook(sbt);
683	else
684		__asm __volatile("sti; hlt");
685	*state = STATE_RUNNING;
686}
687
688static void
689cpu_idle_hlt(sbintime_t sbt)
690{
691	int *state;
692
693	state = (int *)PCPU_PTR(monitorbuf);
694	*state = STATE_SLEEPING;
695
696	/*
697	 * Since we may be in a critical section from cpu_idle(), if
698	 * an interrupt fires during that critical section we may have
699	 * a pending preemption.  If the CPU halts, then that thread
700	 * may not execute until a later interrupt awakens the CPU.
701	 * To handle this race, check for a runnable thread after
702	 * disabling interrupts and immediately return if one is
703	 * found.  Also, we must absolutely guarentee that hlt is
704	 * the next instruction after sti.  This ensures that any
705	 * interrupt that fires after the call to disable_intr() will
706	 * immediately awaken the CPU from hlt.  Finally, please note
707	 * that on x86 this works fine because of interrupts enabled only
708	 * after the instruction following sti takes place, while IF is set
709	 * to 1 immediately, allowing hlt instruction to acknowledge the
710	 * interrupt.
711	 */
712	disable_intr();
713	if (sched_runnable())
714		enable_intr();
715	else
716		__asm __volatile("sti; hlt");
717	*state = STATE_RUNNING;
718}
719
720static void
721cpu_idle_mwait(sbintime_t sbt)
722{
723	int *state;
724
725	state = (int *)PCPU_PTR(monitorbuf);
726	*state = STATE_MWAIT;
727
728	/* See comments in cpu_idle_hlt(). */
729	disable_intr();
730	if (sched_runnable()) {
731		enable_intr();
732		*state = STATE_RUNNING;
733		return;
734	}
735	cpu_monitor(state, 0, 0);
736	if (*state == STATE_MWAIT)
737		__asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
738	else
739		enable_intr();
740	*state = STATE_RUNNING;
741}
742
743static void
744cpu_idle_spin(sbintime_t sbt)
745{
746	int *state;
747	int i;
748
749	state = (int *)PCPU_PTR(monitorbuf);
750	*state = STATE_RUNNING;
751
752	/*
753	 * The sched_runnable() call is racy but as long as there is
754	 * a loop missing it one time will have just a little impact if any
755	 * (and it is much better than missing the check at all).
756	 */
757	for (i = 0; i < 1000; i++) {
758		if (sched_runnable())
759			return;
760		cpu_spinwait();
761	}
762}
763
764/*
765 * C1E renders the local APIC timer dead, so we disable it by
766 * reading the Interrupt Pending Message register and clearing
767 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
768 *
769 * Reference:
770 *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
771 *   #32559 revision 3.00+
772 */
773#define	MSR_AMDK8_IPM		0xc0010055
774#define	AMDK8_SMIONCMPHALT	(1ULL << 27)
775#define	AMDK8_C1EONCMPHALT	(1ULL << 28)
776#define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
777
778static void
779cpu_probe_amdc1e(void)
780{
781
782	/*
783	 * Detect the presence of C1E capability mostly on latest
784	 * dual-cores (or future) k8 family.
785	 */
786	if (cpu_vendor_id == CPU_VENDOR_AMD &&
787	    (cpu_id & 0x00000f00) == 0x00000f00 &&
788	    (cpu_id & 0x0fff0000) >=  0x00040000) {
789		cpu_ident_amdc1e = 1;
790	}
791}
792
793void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi;
794
795void
796cpu_idle(int busy)
797{
798	uint64_t msr;
799	sbintime_t sbt = -1;
800
801	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
802	    busy, curcpu);
803#ifdef MP_WATCHDOG
804	ap_watchdog(PCPU_GET(cpuid));
805#endif
806	/* If we are busy - try to use fast methods. */
807	if (busy) {
808		if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
809			cpu_idle_mwait(busy);
810			goto out;
811		}
812	}
813
814	/* If we have time - switch timers into idle mode. */
815	if (!busy) {
816		critical_enter();
817		sbt = cpu_idleclock();
818	}
819
820	/* Apply AMD APIC timer C1E workaround. */
821	if (cpu_ident_amdc1e && cpu_disable_c3_sleep) {
822		msr = rdmsr(MSR_AMDK8_IPM);
823		if (msr & AMDK8_CMPHALT)
824			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
825	}
826
827	/* Call main idle method. */
828	cpu_idle_fn(sbt);
829
830	/* Switch timers mack into active mode. */
831	if (!busy) {
832		cpu_activeclock();
833		critical_exit();
834	}
835out:
836	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
837	    busy, curcpu);
838}
839
840int
841cpu_idle_wakeup(int cpu)
842{
843	struct pcpu *pcpu;
844	int *state;
845
846	pcpu = pcpu_find(cpu);
847	state = (int *)pcpu->pc_monitorbuf;
848	/*
849	 * This doesn't need to be atomic since missing the race will
850	 * simply result in unnecessary IPIs.
851	 */
852	if (*state == STATE_SLEEPING)
853		return (0);
854	if (*state == STATE_MWAIT)
855		*state = STATE_RUNNING;
856	return (1);
857}
858
859/*
860 * Ordered by speed/power consumption.
861 */
862struct {
863	void	*id_fn;
864	char	*id_name;
865} idle_tbl[] = {
866	{ cpu_idle_spin, "spin" },
867	{ cpu_idle_mwait, "mwait" },
868	{ cpu_idle_hlt, "hlt" },
869	{ cpu_idle_acpi, "acpi" },
870	{ NULL, NULL }
871};
872
873static int
874idle_sysctl_available(SYSCTL_HANDLER_ARGS)
875{
876	char *avail, *p;
877	int error;
878	int i;
879
880	avail = malloc(256, M_TEMP, M_WAITOK);
881	p = avail;
882	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
883		if (strstr(idle_tbl[i].id_name, "mwait") &&
884		    (cpu_feature2 & CPUID2_MON) == 0)
885			continue;
886		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
887		    cpu_idle_hook == NULL)
888			continue;
889		p += sprintf(p, "%s%s", p != avail ? ", " : "",
890		    idle_tbl[i].id_name);
891	}
892	error = sysctl_handle_string(oidp, avail, 0, req);
893	free(avail, M_TEMP);
894	return (error);
895}
896
897SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
898    0, 0, idle_sysctl_available, "A", "list of available idle functions");
899
900static int
901idle_sysctl(SYSCTL_HANDLER_ARGS)
902{
903	char buf[16];
904	int error;
905	char *p;
906	int i;
907
908	p = "unknown";
909	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
910		if (idle_tbl[i].id_fn == cpu_idle_fn) {
911			p = idle_tbl[i].id_name;
912			break;
913		}
914	}
915	strncpy(buf, p, sizeof(buf));
916	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
917	if (error != 0 || req->newptr == NULL)
918		return (error);
919	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
920		if (strstr(idle_tbl[i].id_name, "mwait") &&
921		    (cpu_feature2 & CPUID2_MON) == 0)
922			continue;
923		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
924		    cpu_idle_hook == NULL)
925			continue;
926		if (strcmp(idle_tbl[i].id_name, buf))
927			continue;
928		cpu_idle_fn = idle_tbl[i].id_fn;
929		return (0);
930	}
931	return (EINVAL);
932}
933
934SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
935    idle_sysctl, "A", "currently selected idle function");
936
937/*
938 * Reset registers to default values on exec.
939 */
940void
941exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
942{
943	struct trapframe *regs = td->td_frame;
944	struct pcb *pcb = td->td_pcb;
945
946	mtx_lock(&dt_lock);
947	if (td->td_proc->p_md.md_ldt != NULL)
948		user_ldt_free(td);
949	else
950		mtx_unlock(&dt_lock);
951
952	pcb->pcb_fsbase = 0;
953	pcb->pcb_gsbase = 0;
954	clear_pcb_flags(pcb, PCB_32BIT);
955	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
956	set_pcb_flags(pcb, PCB_FULL_IRET);
957
958	bzero((char *)regs, sizeof(struct trapframe));
959	regs->tf_rip = imgp->entry_addr;
960	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
961	regs->tf_rdi = stack;		/* argv */
962	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
963	regs->tf_ss = _udatasel;
964	regs->tf_cs = _ucodesel;
965	regs->tf_ds = _udatasel;
966	regs->tf_es = _udatasel;
967	regs->tf_fs = _ufssel;
968	regs->tf_gs = _ugssel;
969	regs->tf_flags = TF_HASSEGS;
970	td->td_retval[1] = 0;
971
972	/*
973	 * Reset the hardware debug registers if they were in use.
974	 * They won't have any meaning for the newly exec'd process.
975	 */
976	if (pcb->pcb_flags & PCB_DBREGS) {
977		pcb->pcb_dr0 = 0;
978		pcb->pcb_dr1 = 0;
979		pcb->pcb_dr2 = 0;
980		pcb->pcb_dr3 = 0;
981		pcb->pcb_dr6 = 0;
982		pcb->pcb_dr7 = 0;
983		if (pcb == curpcb) {
984			/*
985			 * Clear the debug registers on the running
986			 * CPU, otherwise they will end up affecting
987			 * the next process we switch to.
988			 */
989			reset_dbregs();
990		}
991		clear_pcb_flags(pcb, PCB_DBREGS);
992	}
993
994	/*
995	 * Drop the FP state if we hold it, so that the process gets a
996	 * clean FP state if it uses the FPU again.
997	 */
998	fpstate_drop(td);
999}
1000
1001void
1002cpu_setregs(void)
1003{
1004	register_t cr0;
1005
1006	cr0 = rcr0();
1007	/*
1008	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
1009	 * BSP.  See the comments there about why we set them.
1010	 */
1011	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
1012	load_cr0(cr0);
1013}
1014
1015/*
1016 * Initialize amd64 and configure to run kernel
1017 */
1018
1019/*
1020 * Initialize segments & interrupt table
1021 */
1022
1023struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
1024static struct gate_descriptor idt0[NIDT];
1025struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1026
1027static char dblfault_stack[PAGE_SIZE] __aligned(16);
1028
1029static char nmi0_stack[PAGE_SIZE] __aligned(16);
1030CTASSERT(sizeof(struct nmi_pcpu) == 16);
1031
1032struct amd64tss common_tss[MAXCPU];
1033
1034/*
1035 * Software prototypes -- in more palatable form.
1036 *
1037 * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
1038 * slots as corresponding segments for i386 kernel.
1039 */
1040struct soft_segment_descriptor gdt_segs[] = {
1041/* GNULL_SEL	0 Null Descriptor */
1042{	.ssd_base = 0x0,
1043	.ssd_limit = 0x0,
1044	.ssd_type = 0,
1045	.ssd_dpl = 0,
1046	.ssd_p = 0,
1047	.ssd_long = 0,
1048	.ssd_def32 = 0,
1049	.ssd_gran = 0		},
1050/* GNULL2_SEL	1 Null Descriptor */
1051{	.ssd_base = 0x0,
1052	.ssd_limit = 0x0,
1053	.ssd_type = 0,
1054	.ssd_dpl = 0,
1055	.ssd_p = 0,
1056	.ssd_long = 0,
1057	.ssd_def32 = 0,
1058	.ssd_gran = 0		},
1059/* GUFS32_SEL	2 32 bit %gs Descriptor for user */
1060{	.ssd_base = 0x0,
1061	.ssd_limit = 0xfffff,
1062	.ssd_type = SDT_MEMRWA,
1063	.ssd_dpl = SEL_UPL,
1064	.ssd_p = 1,
1065	.ssd_long = 0,
1066	.ssd_def32 = 1,
1067	.ssd_gran = 1		},
1068/* GUGS32_SEL	3 32 bit %fs Descriptor for user */
1069{	.ssd_base = 0x0,
1070	.ssd_limit = 0xfffff,
1071	.ssd_type = SDT_MEMRWA,
1072	.ssd_dpl = SEL_UPL,
1073	.ssd_p = 1,
1074	.ssd_long = 0,
1075	.ssd_def32 = 1,
1076	.ssd_gran = 1		},
1077/* GCODE_SEL	4 Code Descriptor for kernel */
1078{	.ssd_base = 0x0,
1079	.ssd_limit = 0xfffff,
1080	.ssd_type = SDT_MEMERA,
1081	.ssd_dpl = SEL_KPL,
1082	.ssd_p = 1,
1083	.ssd_long = 1,
1084	.ssd_def32 = 0,
1085	.ssd_gran = 1		},
1086/* GDATA_SEL	5 Data Descriptor for kernel */
1087{	.ssd_base = 0x0,
1088	.ssd_limit = 0xfffff,
1089	.ssd_type = SDT_MEMRWA,
1090	.ssd_dpl = SEL_KPL,
1091	.ssd_p = 1,
1092	.ssd_long = 1,
1093	.ssd_def32 = 0,
1094	.ssd_gran = 1		},
1095/* GUCODE32_SEL	6 32 bit Code Descriptor for user */
1096{	.ssd_base = 0x0,
1097	.ssd_limit = 0xfffff,
1098	.ssd_type = SDT_MEMERA,
1099	.ssd_dpl = SEL_UPL,
1100	.ssd_p = 1,
1101	.ssd_long = 0,
1102	.ssd_def32 = 1,
1103	.ssd_gran = 1		},
1104/* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
1105{	.ssd_base = 0x0,
1106	.ssd_limit = 0xfffff,
1107	.ssd_type = SDT_MEMRWA,
1108	.ssd_dpl = SEL_UPL,
1109	.ssd_p = 1,
1110	.ssd_long = 0,
1111	.ssd_def32 = 1,
1112	.ssd_gran = 1		},
1113/* GUCODE_SEL	8 64 bit Code Descriptor for user */
1114{	.ssd_base = 0x0,
1115	.ssd_limit = 0xfffff,
1116	.ssd_type = SDT_MEMERA,
1117	.ssd_dpl = SEL_UPL,
1118	.ssd_p = 1,
1119	.ssd_long = 1,
1120	.ssd_def32 = 0,
1121	.ssd_gran = 1		},
1122/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1123{	.ssd_base = 0x0,
1124	.ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
1125	.ssd_type = SDT_SYSTSS,
1126	.ssd_dpl = SEL_KPL,
1127	.ssd_p = 1,
1128	.ssd_long = 0,
1129	.ssd_def32 = 0,
1130	.ssd_gran = 0		},
1131/* Actually, the TSS is a system descriptor which is double size */
1132{	.ssd_base = 0x0,
1133	.ssd_limit = 0x0,
1134	.ssd_type = 0,
1135	.ssd_dpl = 0,
1136	.ssd_p = 0,
1137	.ssd_long = 0,
1138	.ssd_def32 = 0,
1139	.ssd_gran = 0		},
1140/* GUSERLDT_SEL	11 LDT Descriptor */
1141{	.ssd_base = 0x0,
1142	.ssd_limit = 0x0,
1143	.ssd_type = 0,
1144	.ssd_dpl = 0,
1145	.ssd_p = 0,
1146	.ssd_long = 0,
1147	.ssd_def32 = 0,
1148	.ssd_gran = 0		},
1149/* GUSERLDT_SEL	12 LDT Descriptor, double size */
1150{	.ssd_base = 0x0,
1151	.ssd_limit = 0x0,
1152	.ssd_type = 0,
1153	.ssd_dpl = 0,
1154	.ssd_p = 0,
1155	.ssd_long = 0,
1156	.ssd_def32 = 0,
1157	.ssd_gran = 0		},
1158};
1159
1160void
1161setidt(idx, func, typ, dpl, ist)
1162	int idx;
1163	inthand_t *func;
1164	int typ;
1165	int dpl;
1166	int ist;
1167{
1168	struct gate_descriptor *ip;
1169
1170	ip = idt + idx;
1171	ip->gd_looffset = (uintptr_t)func;
1172	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1173	ip->gd_ist = ist;
1174	ip->gd_xx = 0;
1175	ip->gd_type = typ;
1176	ip->gd_dpl = dpl;
1177	ip->gd_p = 1;
1178	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1179}
1180
1181extern inthand_t
1182	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1183	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1184	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1185	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1186	IDTVEC(xmm), IDTVEC(dblfault),
1187#ifdef KDTRACE_HOOKS
1188	IDTVEC(dtrace_ret),
1189#endif
1190#ifdef XENHVM
1191	IDTVEC(xen_intr_upcall),
1192#endif
1193	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1194
1195#ifdef DDB
1196/*
1197 * Display the index and function name of any IDT entries that don't use
1198 * the default 'rsvd' entry point.
1199 */
1200DB_SHOW_COMMAND(idt, db_show_idt)
1201{
1202	struct gate_descriptor *ip;
1203	int idx;
1204	uintptr_t func;
1205
1206	ip = idt;
1207	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1208		func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
1209		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1210			db_printf("%3d\t", idx);
1211			db_printsym(func, DB_STGY_PROC);
1212			db_printf("\n");
1213		}
1214		ip++;
1215	}
1216}
1217
1218/* Show privileged registers. */
1219DB_SHOW_COMMAND(sysregs, db_show_sysregs)
1220{
1221	struct {
1222		uint16_t limit;
1223		uint64_t base;
1224	} __packed idtr, gdtr;
1225	uint16_t ldt, tr;
1226
1227	__asm __volatile("sidt %0" : "=m" (idtr));
1228	db_printf("idtr\t0x%016lx/%04x\n",
1229	    (u_long)idtr.base, (u_int)idtr.limit);
1230	__asm __volatile("sgdt %0" : "=m" (gdtr));
1231	db_printf("gdtr\t0x%016lx/%04x\n",
1232	    (u_long)gdtr.base, (u_int)gdtr.limit);
1233	__asm __volatile("sldt %0" : "=r" (ldt));
1234	db_printf("ldtr\t0x%04x\n", ldt);
1235	__asm __volatile("str %0" : "=r" (tr));
1236	db_printf("tr\t0x%04x\n", tr);
1237	db_printf("cr0\t0x%016lx\n", rcr0());
1238	db_printf("cr2\t0x%016lx\n", rcr2());
1239	db_printf("cr3\t0x%016lx\n", rcr3());
1240	db_printf("cr4\t0x%016lx\n", rcr4());
1241	db_printf("EFER\t%016lx\n", rdmsr(MSR_EFER));
1242	db_printf("FEATURES_CTL\t%016lx\n", rdmsr(MSR_IA32_FEATURE_CONTROL));
1243	db_printf("DEBUG_CTL\t%016lx\n", rdmsr(MSR_DEBUGCTLMSR));
1244	db_printf("PAT\t%016lx\n", rdmsr(MSR_PAT));
1245	db_printf("GSBASE\t%016lx\n", rdmsr(MSR_GSBASE));
1246}
1247#endif
1248
1249void
1250sdtossd(sd, ssd)
1251	struct user_segment_descriptor *sd;
1252	struct soft_segment_descriptor *ssd;
1253{
1254
1255	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1256	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1257	ssd->ssd_type  = sd->sd_type;
1258	ssd->ssd_dpl   = sd->sd_dpl;
1259	ssd->ssd_p     = sd->sd_p;
1260	ssd->ssd_long  = sd->sd_long;
1261	ssd->ssd_def32 = sd->sd_def32;
1262	ssd->ssd_gran  = sd->sd_gran;
1263}
1264
1265void
1266ssdtosd(ssd, sd)
1267	struct soft_segment_descriptor *ssd;
1268	struct user_segment_descriptor *sd;
1269{
1270
1271	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1272	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1273	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1274	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1275	sd->sd_type  = ssd->ssd_type;
1276	sd->sd_dpl   = ssd->ssd_dpl;
1277	sd->sd_p     = ssd->ssd_p;
1278	sd->sd_long  = ssd->ssd_long;
1279	sd->sd_def32 = ssd->ssd_def32;
1280	sd->sd_gran  = ssd->ssd_gran;
1281}
1282
1283void
1284ssdtosyssd(ssd, sd)
1285	struct soft_segment_descriptor *ssd;
1286	struct system_segment_descriptor *sd;
1287{
1288
1289	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1290	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1291	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1292	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1293	sd->sd_type  = ssd->ssd_type;
1294	sd->sd_dpl   = ssd->ssd_dpl;
1295	sd->sd_p     = ssd->ssd_p;
1296	sd->sd_gran  = ssd->ssd_gran;
1297}
1298
1299#if !defined(DEV_ATPIC) && defined(DEV_ISA)
1300#include <isa/isavar.h>
1301#include <isa/isareg.h>
1302/*
1303 * Return a bitmap of the current interrupt requests.  This is 8259-specific
1304 * and is only suitable for use at probe time.
1305 * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
1306 * It shouldn't be here.  There should probably be an APIC centric
1307 * implementation in the apic driver code, if at all.
1308 */
1309intrmask_t
1310isa_irq_pending(void)
1311{
1312	u_char irr1;
1313	u_char irr2;
1314
1315	irr1 = inb(IO_ICU1);
1316	irr2 = inb(IO_ICU2);
1317	return ((irr2 << 8) | irr1);
1318}
1319#endif
1320
1321u_int basemem;
1322
1323static int
1324add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
1325    int *physmap_idxp)
1326{
1327	int i, insert_idx, physmap_idx;
1328
1329	physmap_idx = *physmap_idxp;
1330
1331	if (length == 0)
1332		return (1);
1333
1334	/*
1335	 * Find insertion point while checking for overlap.  Start off by
1336	 * assuming the new entry will be added to the end.
1337	 */
1338	insert_idx = physmap_idx + 2;
1339	for (i = 0; i <= physmap_idx; i += 2) {
1340		if (base < physmap[i + 1]) {
1341			if (base + length <= physmap[i]) {
1342				insert_idx = i;
1343				break;
1344			}
1345			if (boothowto & RB_VERBOSE)
1346				printf(
1347		    "Overlapping memory regions, ignoring second region\n");
1348			return (1);
1349		}
1350	}
1351
1352	/* See if we can prepend to the next entry. */
1353	if (insert_idx <= physmap_idx && base + length == physmap[insert_idx]) {
1354		physmap[insert_idx] = base;
1355		return (1);
1356	}
1357
1358	/* See if we can append to the previous entry. */
1359	if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
1360		physmap[insert_idx - 1] += length;
1361		return (1);
1362	}
1363
1364	physmap_idx += 2;
1365	*physmap_idxp = physmap_idx;
1366	if (physmap_idx == PHYSMAP_SIZE) {
1367		printf(
1368		"Too many segments in the physical address map, giving up\n");
1369		return (0);
1370	}
1371
1372	/*
1373	 * Move the last 'N' entries down to make room for the new
1374	 * entry if needed.
1375	 */
1376	for (i = physmap_idx; i > insert_idx; i -= 2) {
1377		physmap[i] = physmap[i - 2];
1378		physmap[i + 1] = physmap[i - 1];
1379	}
1380
1381	/* Insert the new entry. */
1382	physmap[insert_idx] = base;
1383	physmap[insert_idx + 1] = base + length;
1384	return (1);
1385}
1386
1387static void
1388add_smap_entries(struct bios_smap *smapbase, vm_paddr_t *physmap,
1389    int *physmap_idx)
1390{
1391	struct bios_smap *smap, *smapend;
1392	u_int32_t smapsize;
1393
1394	/*
1395	 * Memory map from INT 15:E820.
1396	 *
1397	 * subr_module.c says:
1398	 * "Consumer may safely assume that size value precedes data."
1399	 * ie: an int32_t immediately precedes smap.
1400	 */
1401	smapsize = *((u_int32_t *)smapbase - 1);
1402	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1403
1404	for (smap = smapbase; smap < smapend; smap++) {
1405		if (boothowto & RB_VERBOSE)
1406			printf("SMAP type=%02x base=%016lx len=%016lx\n",
1407			    smap->type, smap->base, smap->length);
1408
1409		if (smap->type != SMAP_TYPE_MEMORY)
1410			continue;
1411
1412		if (!add_physmap_entry(smap->base, smap->length, physmap,
1413		    physmap_idx))
1414			break;
1415	}
1416}
1417
1418#define efi_next_descriptor(ptr, size) \
1419	((struct efi_md *)(((uint8_t *) ptr) + size))
1420
1421static void
1422add_efi_map_entries(struct efi_map_header *efihdr, vm_paddr_t *physmap,
1423    int *physmap_idx)
1424{
1425	struct efi_md *map, *p;
1426	const char *type;
1427	size_t efisz;
1428	int ndesc, i;
1429
1430	static const char *types[] = {
1431		"Reserved",
1432		"LoaderCode",
1433		"LoaderData",
1434		"BootServicesCode",
1435		"BootServicesData",
1436		"RuntimeServicesCode",
1437		"RuntimeServicesData",
1438		"ConventionalMemory",
1439		"UnusableMemory",
1440		"ACPIReclaimMemory",
1441		"ACPIMemoryNVS",
1442		"MemoryMappedIO",
1443		"MemoryMappedIOPortSpace",
1444		"PalCode"
1445	};
1446
1447	/*
1448	 * Memory map data provided by UEFI via the GetMemoryMap
1449	 * Boot Services API.
1450	 */
1451	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1452	map = (struct efi_md *)((uint8_t *)efihdr + efisz);
1453
1454	if (efihdr->descriptor_size == 0)
1455		return;
1456	ndesc = efihdr->memory_size / efihdr->descriptor_size;
1457
1458	if (boothowto & RB_VERBOSE)
1459		printf("%23s %12s %12s %8s %4s\n",
1460		    "Type", "Physical", "Virtual", "#Pages", "Attr");
1461
1462	for (i = 0, p = map; i < ndesc; i++,
1463	    p = efi_next_descriptor(p, efihdr->descriptor_size)) {
1464		if (boothowto & RB_VERBOSE) {
1465			if (p->md_type <= EFI_MD_TYPE_PALCODE)
1466				type = types[p->md_type];
1467			else
1468				type = "<INVALID>";
1469			printf("%23s %012lx %12p %08lx ", type, p->md_phys,
1470			    p->md_virt, p->md_pages);
1471			if (p->md_attr & EFI_MD_ATTR_UC)
1472				printf("UC ");
1473			if (p->md_attr & EFI_MD_ATTR_WC)
1474				printf("WC ");
1475			if (p->md_attr & EFI_MD_ATTR_WT)
1476				printf("WT ");
1477			if (p->md_attr & EFI_MD_ATTR_WB)
1478				printf("WB ");
1479			if (p->md_attr & EFI_MD_ATTR_UCE)
1480				printf("UCE ");
1481			if (p->md_attr & EFI_MD_ATTR_WP)
1482				printf("WP ");
1483			if (p->md_attr & EFI_MD_ATTR_RP)
1484				printf("RP ");
1485			if (p->md_attr & EFI_MD_ATTR_XP)
1486				printf("XP ");
1487			if (p->md_attr & EFI_MD_ATTR_RT)
1488				printf("RUNTIME");
1489			printf("\n");
1490		}
1491
1492		switch (p->md_type) {
1493		case EFI_MD_TYPE_CODE:
1494		case EFI_MD_TYPE_DATA:
1495		case EFI_MD_TYPE_BS_CODE:
1496		case EFI_MD_TYPE_BS_DATA:
1497		case EFI_MD_TYPE_FREE:
1498			/*
1499			 * We're allowed to use any entry with these types.
1500			 */
1501			break;
1502		default:
1503			continue;
1504		}
1505
1506		if (!add_physmap_entry(p->md_phys, (p->md_pages * PAGE_SIZE),
1507		    physmap, physmap_idx))
1508			break;
1509	}
1510}
1511
1512static char bootmethod[16] = "";
1513SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0,
1514    "System firmware boot method");
1515
1516#define	PAGES_PER_GB	(1024 * 1024 * 1024 / PAGE_SIZE)
1517
1518/*
1519 * Populate the (physmap) array with base/bound pairs describing the
1520 * available physical memory in the system, then test this memory and
1521 * build the phys_avail array describing the actually-available memory.
1522 *
1523 * Total memory size may be set by the kernel environment variable
1524 * hw.physmem or the compile-time define MAXMEM.
1525 *
1526 * XXX first should be vm_paddr_t.
1527 */
1528static void
1529getmemsize(caddr_t kmdp, u_int64_t first)
1530{
1531	int i, physmap_idx, pa_indx, da_indx;
1532	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1533	u_long physmem_start, physmem_tunable, memtest;
1534	pt_entry_t *pte;
1535	struct bios_smap *smapbase;
1536	struct efi_map_header *efihdr;
1537	quad_t dcons_addr, dcons_size;
1538	int page_counter;
1539
1540	bzero(physmap, sizeof(physmap));
1541	basemem = 0;
1542	physmap_idx = 0;
1543
1544	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1545	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1546	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1547	    MODINFO_METADATA | MODINFOMD_SMAP);
1548
1549	if (efihdr != NULL) {
1550		add_efi_map_entries(efihdr, physmap, &physmap_idx);
1551		strlcpy(bootmethod, "UEFI", sizeof(bootmethod));
1552	} else if (smapbase != NULL) {
1553		add_smap_entries(smapbase, physmap, &physmap_idx);
1554		strlcpy(bootmethod, "BIOS", sizeof(bootmethod));
1555	} else {
1556		panic("No BIOS smap or EFI map info from loader!");
1557	}
1558
1559	/*
1560	 * Find the 'base memory' segment for SMP
1561	 */
1562	basemem = 0;
1563	for (i = 0; i <= physmap_idx; i += 2) {
1564		if (physmap[i] == 0x00000000) {
1565			basemem = physmap[i + 1] / 1024;
1566			break;
1567		}
1568	}
1569	if (basemem == 0)
1570		panic("BIOS smap did not include a basemem segment!");
1571
1572#ifdef SMP
1573	/* make hole for AP bootstrap code */
1574	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1575#endif
1576
1577	/*
1578	 * Maxmem isn't the "maximum memory", it's one larger than the
1579	 * highest page of the physical address space.  It should be
1580	 * called something like "Maxphyspage".  We may adjust this
1581	 * based on ``hw.physmem'' and the results of the memory test.
1582	 */
1583	Maxmem = atop(physmap[physmap_idx + 1]);
1584
1585#ifdef MAXMEM
1586	Maxmem = MAXMEM / 4;
1587#endif
1588
1589	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1590		Maxmem = atop(physmem_tunable);
1591
1592	/*
1593	 * The boot memory test is disabled by default, as it takes a
1594	 * significant amount of time on large-memory systems, and is
1595	 * unfriendly to virtual machines as it unnecessarily touches all
1596	 * pages.
1597	 *
1598	 * A general name is used as the code may be extended to support
1599	 * additional tests beyond the current "page present" test.
1600	 */
1601	memtest = 0;
1602	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
1603
1604	/*
1605	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1606	 * in the system.
1607	 */
1608	if (Maxmem > atop(physmap[physmap_idx + 1]))
1609		Maxmem = atop(physmap[physmap_idx + 1]);
1610
1611	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1612	    (boothowto & RB_VERBOSE))
1613		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1614
1615	/* call pmap initialization to make new kernel address space */
1616	pmap_bootstrap(&first);
1617
1618	/*
1619	 * Size up each available chunk of physical memory.
1620	 *
1621	 * XXX Some BIOSes corrupt low 64KB between suspend and resume.
1622	 * By default, mask off the first 16 pages unless we appear to be
1623	 * running in a VM.
1624	 */
1625	physmem_start = (vm_guest > VM_GUEST_NO ? 1 : 16) << PAGE_SHIFT;
1626	TUNABLE_ULONG_FETCH("hw.physmem.start", &physmem_start);
1627	if (physmem_start < PAGE_SIZE)
1628		physmap[0] = PAGE_SIZE;
1629	else if (physmem_start >= physmap[1])
1630		physmap[0] = round_page(physmap[1] - PAGE_SIZE);
1631	else
1632		physmap[0] = round_page(physmem_start);
1633	pa_indx = 0;
1634	da_indx = 1;
1635	phys_avail[pa_indx++] = physmap[0];
1636	phys_avail[pa_indx] = physmap[0];
1637	dump_avail[da_indx] = physmap[0];
1638	pte = CMAP1;
1639
1640	/*
1641	 * Get dcons buffer address
1642	 */
1643	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1644	    getenv_quad("dcons.size", &dcons_size) == 0)
1645		dcons_addr = 0;
1646
1647	/*
1648	 * physmap is in bytes, so when converting to page boundaries,
1649	 * round up the start address and round down the end address.
1650	 */
1651	page_counter = 0;
1652	if (memtest != 0)
1653		printf("Testing system memory");
1654	for (i = 0; i <= physmap_idx; i += 2) {
1655		vm_paddr_t end;
1656
1657		end = ptoa((vm_paddr_t)Maxmem);
1658		if (physmap[i + 1] < end)
1659			end = trunc_page(physmap[i + 1]);
1660		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1661			int tmp, page_bad, full;
1662			int *ptr = (int *)CADDR1;
1663
1664			full = FALSE;
1665			/*
1666			 * block out kernel memory as not available.
1667			 */
1668			if (pa >= (vm_paddr_t)kernphys && pa < first)
1669				goto do_dump_avail;
1670
1671			/*
1672			 * block out dcons buffer
1673			 */
1674			if (dcons_addr > 0
1675			    && pa >= trunc_page(dcons_addr)
1676			    && pa < dcons_addr + dcons_size)
1677				goto do_dump_avail;
1678
1679			page_bad = FALSE;
1680			if (memtest == 0)
1681				goto skip_memtest;
1682
1683			/*
1684			 * Print a "." every GB to show we're making
1685			 * progress.
1686			 */
1687			page_counter++;
1688			if ((page_counter % PAGES_PER_GB) == 0)
1689				printf(".");
1690
1691			/*
1692			 * map page into kernel: valid, read/write,non-cacheable
1693			 */
1694			*pte = pa | PG_V | PG_RW | PG_NC_PWT | PG_NC_PCD;
1695			invltlb();
1696
1697			tmp = *(int *)ptr;
1698			/*
1699			 * Test for alternating 1's and 0's
1700			 */
1701			*(volatile int *)ptr = 0xaaaaaaaa;
1702			if (*(volatile int *)ptr != 0xaaaaaaaa)
1703				page_bad = TRUE;
1704			/*
1705			 * Test for alternating 0's and 1's
1706			 */
1707			*(volatile int *)ptr = 0x55555555;
1708			if (*(volatile int *)ptr != 0x55555555)
1709				page_bad = TRUE;
1710			/*
1711			 * Test for all 1's
1712			 */
1713			*(volatile int *)ptr = 0xffffffff;
1714			if (*(volatile int *)ptr != 0xffffffff)
1715				page_bad = TRUE;
1716			/*
1717			 * Test for all 0's
1718			 */
1719			*(volatile int *)ptr = 0x0;
1720			if (*(volatile int *)ptr != 0x0)
1721				page_bad = TRUE;
1722			/*
1723			 * Restore original value.
1724			 */
1725			*(int *)ptr = tmp;
1726
1727skip_memtest:
1728			/*
1729			 * Adjust array of valid/good pages.
1730			 */
1731			if (page_bad == TRUE)
1732				continue;
1733			/*
1734			 * If this good page is a continuation of the
1735			 * previous set of good pages, then just increase
1736			 * the end pointer. Otherwise start a new chunk.
1737			 * Note that "end" points one higher than end,
1738			 * making the range >= start and < end.
1739			 * If we're also doing a speculative memory
1740			 * test and we at or past the end, bump up Maxmem
1741			 * so that we keep going. The first bad page
1742			 * will terminate the loop.
1743			 */
1744			if (phys_avail[pa_indx] == pa) {
1745				phys_avail[pa_indx] += PAGE_SIZE;
1746			} else {
1747				pa_indx++;
1748				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1749					printf(
1750		"Too many holes in the physical address space, giving up\n");
1751					pa_indx--;
1752					full = TRUE;
1753					goto do_dump_avail;
1754				}
1755				phys_avail[pa_indx++] = pa;	/* start */
1756				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1757			}
1758			physmem++;
1759do_dump_avail:
1760			if (dump_avail[da_indx] == pa) {
1761				dump_avail[da_indx] += PAGE_SIZE;
1762			} else {
1763				da_indx++;
1764				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1765					da_indx--;
1766					goto do_next;
1767				}
1768				dump_avail[da_indx++] = pa; /* start */
1769				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1770			}
1771do_next:
1772			if (full)
1773				break;
1774		}
1775	}
1776	*pte = 0;
1777	invltlb();
1778	if (memtest != 0)
1779		printf("\n");
1780
1781	/*
1782	 * XXX
1783	 * The last chunk must contain at least one page plus the message
1784	 * buffer to avoid complicating other code (message buffer address
1785	 * calculation, etc.).
1786	 */
1787	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1788	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
1789		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1790		phys_avail[pa_indx--] = 0;
1791		phys_avail[pa_indx--] = 0;
1792	}
1793
1794	Maxmem = atop(phys_avail[pa_indx]);
1795
1796	/* Trim off space for the message buffer. */
1797	phys_avail[pa_indx] -= round_page(msgbufsize);
1798
1799	/* Map the message buffer. */
1800	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
1801}
1802
1803u_int64_t
1804hammer_time(u_int64_t modulep, u_int64_t physfree)
1805{
1806	caddr_t kmdp;
1807	int gsel_tss, x;
1808	struct pcpu *pc;
1809	struct nmi_pcpu *np;
1810	struct xstate_hdr *xhdr;
1811	u_int64_t msr;
1812	char *env;
1813	size_t kstack0_sz;
1814
1815	thread0.td_kstack = physfree + KERNBASE;
1816	thread0.td_kstack_pages = KSTACK_PAGES;
1817	kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
1818	bzero((void *)thread0.td_kstack, kstack0_sz);
1819	physfree += kstack0_sz;
1820
1821	/*
1822 	 * This may be done better later if it gets more high level
1823 	 * components in it. If so just link td->td_proc here.
1824	 */
1825	proc_linkup0(&proc0, &thread0);
1826
1827	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1828	preload_bootstrap_relocate(KERNBASE);
1829	kmdp = preload_search_by_type("elf kernel");
1830	if (kmdp == NULL)
1831		kmdp = preload_search_by_type("elf64 kernel");
1832	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1833	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1834#ifdef DDB
1835	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1836	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1837#endif
1838
1839	/* Init basic tunables, hz etc */
1840	init_param1();
1841
1842	/*
1843	 * make gdt memory segments
1844	 */
1845	for (x = 0; x < NGDT; x++) {
1846		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1847		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1848			ssdtosd(&gdt_segs[x], &gdt[x]);
1849	}
1850	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1851	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1852	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1853
1854	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1855	r_gdt.rd_base =  (long) gdt;
1856	lgdt(&r_gdt);
1857	pc = &__pcpu[0];
1858
1859	wrmsr(MSR_FSBASE, 0);		/* User value */
1860	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1861	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1862
1863	pcpu_init(pc, 0, sizeof(struct pcpu));
1864	dpcpu_init((void *)(physfree + KERNBASE), 0);
1865	physfree += DPCPU_SIZE;
1866	PCPU_SET(prvspace, pc);
1867	PCPU_SET(curthread, &thread0);
1868	PCPU_SET(tssp, &common_tss[0]);
1869	PCPU_SET(commontssp, &common_tss[0]);
1870	PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1871	PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1872	PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1873	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1874
1875	/*
1876	 * Initialize mutexes.
1877	 *
1878	 * icu_lock: in order to allow an interrupt to occur in a critical
1879	 * 	     section, to set pcpu->ipending (etc...) properly, we
1880	 *	     must be able to get the icu lock, so it can't be
1881	 *	     under witness.
1882	 */
1883	mutex_init();
1884	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1885	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1886
1887	/* exceptions */
1888	for (x = 0; x < NIDT; x++)
1889		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1890	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1891	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1892	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1893 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1894	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1895	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1896	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1897	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1898	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1899	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1900	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1901	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1902	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1903	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1904	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1905	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1906	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1907	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1908	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1909#ifdef KDTRACE_HOOKS
1910	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
1911#endif
1912#ifdef XENHVM
1913	setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYSIGT, SEL_UPL, 0);
1914#endif
1915
1916	r_idt.rd_limit = sizeof(idt0) - 1;
1917	r_idt.rd_base = (long) idt;
1918	lidt(&r_idt);
1919
1920	/*
1921	 * Initialize the i8254 before the console so that console
1922	 * initialization can use DELAY().
1923	 */
1924	i8254_init();
1925
1926	/*
1927	 * Use vt(4) by default for UEFI boot (during the sc(4)/vt(4)
1928	 * transition).
1929	 */
1930	if (kmdp != NULL && preload_search_info(kmdp,
1931	    MODINFO_METADATA | MODINFOMD_EFI_MAP) != NULL)
1932		vty_set_preferred(VTY_VT);
1933
1934	identify_cpu();		/* Final stage of CPU initialization */
1935	initializecpu();	/* Initialize CPU registers */
1936	initializecpucache();
1937
1938	/* doublefault stack space, runs on ist1 */
1939	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1940
1941	/*
1942	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1943	 * above the start of the ist2 stack.
1944	 */
1945	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1946	np->np_pcpu = (register_t) pc;
1947	common_tss[0].tss_ist2 = (long) np;
1948
1949	/* Set the IO permission bitmap (empty due to tss seg limit) */
1950	common_tss[0].tss_iobase = sizeof(struct amd64tss) +
1951	    IOPAGES * PAGE_SIZE;
1952
1953	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1954	ltr(gsel_tss);
1955
1956	/* Set up the fast syscall stuff */
1957	msr = rdmsr(MSR_EFER) | EFER_SCE;
1958	wrmsr(MSR_EFER, msr);
1959	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1960	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1961	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1962	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1963	wrmsr(MSR_STAR, msr);
1964	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1965
1966	getmemsize(kmdp, physfree);
1967	init_param2(physmem);
1968
1969	/* now running on new page tables, configured,and u/iom is accessible */
1970
1971	cninit();
1972
1973#ifdef DEV_ISA
1974#ifdef DEV_ATPIC
1975	elcr_probe();
1976	atpic_startup();
1977#else
1978	/* Reset and mask the atpics and leave them shut down. */
1979	atpic_reset();
1980
1981	/*
1982	 * Point the ICU spurious interrupt vectors at the APIC spurious
1983	 * interrupt handler.
1984	 */
1985	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1986	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1987#endif
1988#else
1989#error "have you forgotten the isa device?";
1990#endif
1991
1992	kdb_init();
1993
1994#ifdef KDB
1995	if (boothowto & RB_KDB)
1996		kdb_enter(KDB_WHY_BOOTFLAGS,
1997		    "Boot flags requested debugger");
1998#endif
1999
2000	msgbufinit(msgbufp, msgbufsize);
2001	fpuinit();
2002
2003	/*
2004	 * Set up thread0 pcb after fpuinit calculated pcb + fpu save
2005	 * area size.  Zero out the extended state header in fpu save
2006	 * area.
2007	 */
2008	thread0.td_pcb = get_pcb_td(&thread0);
2009	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
2010	if (use_xsave) {
2011		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
2012		    1);
2013		xhdr->xstate_bv = xsave_mask;
2014	}
2015	/* make an initial tss so cpu can get interrupt stack on syscall! */
2016	common_tss[0].tss_rsp0 = (vm_offset_t)thread0.td_pcb;
2017	/* Ensure the stack is aligned to 16 bytes */
2018	common_tss[0].tss_rsp0 &= ~0xFul;
2019	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
2020	PCPU_SET(curpcb, thread0.td_pcb);
2021
2022	/* transfer to user mode */
2023
2024	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2025	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2026	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2027	_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
2028	_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
2029
2030	load_ds(_udatasel);
2031	load_es(_udatasel);
2032	load_fs(_ufssel);
2033
2034	/* setup proc 0's pcb */
2035	thread0.td_pcb->pcb_flags = 0;
2036	thread0.td_pcb->pcb_cr3 = KPML4phys; /* PCID 0 is reserved for kernel */
2037	thread0.td_frame = &proc0_tf;
2038
2039        env = getenv("kernelname");
2040	if (env != NULL)
2041		strlcpy(kernelname, env, sizeof(kernelname));
2042
2043	cpu_probe_amdc1e();
2044
2045#ifdef FDT
2046	x86_init_fdt();
2047#endif
2048
2049	/* Location of kernel stack for locore */
2050	return ((u_int64_t)thread0.td_pcb);
2051}
2052
2053void
2054cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
2055{
2056
2057	pcpu->pc_acpi_id = 0xffffffff;
2058}
2059
2060static int
2061smap_sysctl_handler(SYSCTL_HANDLER_ARGS)
2062{
2063	struct bios_smap *smapbase;
2064	struct bios_smap_xattr smap;
2065	caddr_t kmdp;
2066	uint32_t *smapattr;
2067	int count, error, i;
2068
2069	/* Retrieve the system memory map from the loader. */
2070	kmdp = preload_search_by_type("elf kernel");
2071	if (kmdp == NULL)
2072		kmdp = preload_search_by_type("elf64 kernel");
2073	smapbase = (struct bios_smap *)preload_search_info(kmdp,
2074	    MODINFO_METADATA | MODINFOMD_SMAP);
2075	if (smapbase == NULL)
2076		return (0);
2077	smapattr = (uint32_t *)preload_search_info(kmdp,
2078	    MODINFO_METADATA | MODINFOMD_SMAP_XATTR);
2079	count = *((uint32_t *)smapbase - 1) / sizeof(*smapbase);
2080	error = 0;
2081	for (i = 0; i < count; i++) {
2082		smap.base = smapbase[i].base;
2083		smap.length = smapbase[i].length;
2084		smap.type = smapbase[i].type;
2085		if (smapattr != NULL)
2086			smap.xattr = smapattr[i];
2087		else
2088			smap.xattr = 0;
2089		error = SYSCTL_OUT(req, &smap, sizeof(smap));
2090	}
2091	return (error);
2092}
2093SYSCTL_PROC(_machdep, OID_AUTO, smap, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
2094    smap_sysctl_handler, "S,bios_smap_xattr", "Raw BIOS SMAP data");
2095
2096static int
2097efi_map_sysctl_handler(SYSCTL_HANDLER_ARGS)
2098{
2099	struct efi_map_header *efihdr;
2100	caddr_t kmdp;
2101	uint32_t efisize;
2102
2103	kmdp = preload_search_by_type("elf kernel");
2104	if (kmdp == NULL)
2105		kmdp = preload_search_by_type("elf64 kernel");
2106	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
2107	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
2108	if (efihdr == NULL)
2109		return (0);
2110	efisize = *((uint32_t *)efihdr - 1);
2111	return (SYSCTL_OUT(req, efihdr, efisize));
2112}
2113SYSCTL_PROC(_machdep, OID_AUTO, efi_map, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
2114    efi_map_sysctl_handler, "S,efi_map_header", "Raw EFI Memory Map");
2115
2116void
2117spinlock_enter(void)
2118{
2119	struct thread *td;
2120	register_t flags;
2121
2122	td = curthread;
2123	if (td->td_md.md_spinlock_count == 0) {
2124		flags = intr_disable();
2125		td->td_md.md_spinlock_count = 1;
2126		td->td_md.md_saved_flags = flags;
2127	} else
2128		td->td_md.md_spinlock_count++;
2129	critical_enter();
2130}
2131
2132void
2133spinlock_exit(void)
2134{
2135	struct thread *td;
2136	register_t flags;
2137
2138	td = curthread;
2139	critical_exit();
2140	flags = td->td_md.md_saved_flags;
2141	td->td_md.md_spinlock_count--;
2142	if (td->td_md.md_spinlock_count == 0)
2143		intr_restore(flags);
2144}
2145
2146/*
2147 * Construct a PCB from a trapframe. This is called from kdb_trap() where
2148 * we want to start a backtrace from the function that caused us to enter
2149 * the debugger. We have the context in the trapframe, but base the trace
2150 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
2151 * enough for a backtrace.
2152 */
2153void
2154makectx(struct trapframe *tf, struct pcb *pcb)
2155{
2156
2157	pcb->pcb_r12 = tf->tf_r12;
2158	pcb->pcb_r13 = tf->tf_r13;
2159	pcb->pcb_r14 = tf->tf_r14;
2160	pcb->pcb_r15 = tf->tf_r15;
2161	pcb->pcb_rbp = tf->tf_rbp;
2162	pcb->pcb_rbx = tf->tf_rbx;
2163	pcb->pcb_rip = tf->tf_rip;
2164	pcb->pcb_rsp = tf->tf_rsp;
2165}
2166
2167int
2168ptrace_set_pc(struct thread *td, unsigned long addr)
2169{
2170
2171	td->td_frame->tf_rip = addr;
2172	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
2173	return (0);
2174}
2175
2176int
2177ptrace_single_step(struct thread *td)
2178{
2179	td->td_frame->tf_rflags |= PSL_T;
2180	return (0);
2181}
2182
2183int
2184ptrace_clear_single_step(struct thread *td)
2185{
2186	td->td_frame->tf_rflags &= ~PSL_T;
2187	return (0);
2188}
2189
2190int
2191fill_regs(struct thread *td, struct reg *regs)
2192{
2193	struct trapframe *tp;
2194
2195	tp = td->td_frame;
2196	return (fill_frame_regs(tp, regs));
2197}
2198
2199int
2200fill_frame_regs(struct trapframe *tp, struct reg *regs)
2201{
2202	regs->r_r15 = tp->tf_r15;
2203	regs->r_r14 = tp->tf_r14;
2204	regs->r_r13 = tp->tf_r13;
2205	regs->r_r12 = tp->tf_r12;
2206	regs->r_r11 = tp->tf_r11;
2207	regs->r_r10 = tp->tf_r10;
2208	regs->r_r9  = tp->tf_r9;
2209	regs->r_r8  = tp->tf_r8;
2210	regs->r_rdi = tp->tf_rdi;
2211	regs->r_rsi = tp->tf_rsi;
2212	regs->r_rbp = tp->tf_rbp;
2213	regs->r_rbx = tp->tf_rbx;
2214	regs->r_rdx = tp->tf_rdx;
2215	regs->r_rcx = tp->tf_rcx;
2216	regs->r_rax = tp->tf_rax;
2217	regs->r_rip = tp->tf_rip;
2218	regs->r_cs = tp->tf_cs;
2219	regs->r_rflags = tp->tf_rflags;
2220	regs->r_rsp = tp->tf_rsp;
2221	regs->r_ss = tp->tf_ss;
2222	if (tp->tf_flags & TF_HASSEGS) {
2223		regs->r_ds = tp->tf_ds;
2224		regs->r_es = tp->tf_es;
2225		regs->r_fs = tp->tf_fs;
2226		regs->r_gs = tp->tf_gs;
2227	} else {
2228		regs->r_ds = 0;
2229		regs->r_es = 0;
2230		regs->r_fs = 0;
2231		regs->r_gs = 0;
2232	}
2233	return (0);
2234}
2235
2236int
2237set_regs(struct thread *td, struct reg *regs)
2238{
2239	struct trapframe *tp;
2240	register_t rflags;
2241
2242	tp = td->td_frame;
2243	rflags = regs->r_rflags & 0xffffffff;
2244	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
2245		return (EINVAL);
2246	tp->tf_r15 = regs->r_r15;
2247	tp->tf_r14 = regs->r_r14;
2248	tp->tf_r13 = regs->r_r13;
2249	tp->tf_r12 = regs->r_r12;
2250	tp->tf_r11 = regs->r_r11;
2251	tp->tf_r10 = regs->r_r10;
2252	tp->tf_r9  = regs->r_r9;
2253	tp->tf_r8  = regs->r_r8;
2254	tp->tf_rdi = regs->r_rdi;
2255	tp->tf_rsi = regs->r_rsi;
2256	tp->tf_rbp = regs->r_rbp;
2257	tp->tf_rbx = regs->r_rbx;
2258	tp->tf_rdx = regs->r_rdx;
2259	tp->tf_rcx = regs->r_rcx;
2260	tp->tf_rax = regs->r_rax;
2261	tp->tf_rip = regs->r_rip;
2262	tp->tf_cs = regs->r_cs;
2263	tp->tf_rflags = rflags;
2264	tp->tf_rsp = regs->r_rsp;
2265	tp->tf_ss = regs->r_ss;
2266	if (0) {	/* XXXKIB */
2267		tp->tf_ds = regs->r_ds;
2268		tp->tf_es = regs->r_es;
2269		tp->tf_fs = regs->r_fs;
2270		tp->tf_gs = regs->r_gs;
2271		tp->tf_flags = TF_HASSEGS;
2272	}
2273	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
2274	return (0);
2275}
2276
2277/* XXX check all this stuff! */
2278/* externalize from sv_xmm */
2279static void
2280fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
2281{
2282	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2283	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2284	int i;
2285
2286	/* pcb -> fpregs */
2287	bzero(fpregs, sizeof(*fpregs));
2288
2289	/* FPU control/status */
2290	penv_fpreg->en_cw = penv_xmm->en_cw;
2291	penv_fpreg->en_sw = penv_xmm->en_sw;
2292	penv_fpreg->en_tw = penv_xmm->en_tw;
2293	penv_fpreg->en_opcode = penv_xmm->en_opcode;
2294	penv_fpreg->en_rip = penv_xmm->en_rip;
2295	penv_fpreg->en_rdp = penv_xmm->en_rdp;
2296	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
2297	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
2298
2299	/* FPU registers */
2300	for (i = 0; i < 8; ++i)
2301		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
2302
2303	/* SSE registers */
2304	for (i = 0; i < 16; ++i)
2305		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
2306}
2307
2308/* internalize from fpregs into sv_xmm */
2309static void
2310set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
2311{
2312	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2313	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2314	int i;
2315
2316	/* fpregs -> pcb */
2317	/* FPU control/status */
2318	penv_xmm->en_cw = penv_fpreg->en_cw;
2319	penv_xmm->en_sw = penv_fpreg->en_sw;
2320	penv_xmm->en_tw = penv_fpreg->en_tw;
2321	penv_xmm->en_opcode = penv_fpreg->en_opcode;
2322	penv_xmm->en_rip = penv_fpreg->en_rip;
2323	penv_xmm->en_rdp = penv_fpreg->en_rdp;
2324	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
2325	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
2326
2327	/* FPU registers */
2328	for (i = 0; i < 8; ++i)
2329		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
2330
2331	/* SSE registers */
2332	for (i = 0; i < 16; ++i)
2333		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
2334}
2335
2336/* externalize from td->pcb */
2337int
2338fill_fpregs(struct thread *td, struct fpreg *fpregs)
2339{
2340
2341	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
2342	    P_SHOULDSTOP(td->td_proc),
2343	    ("not suspended thread %p", td));
2344	fpugetregs(td);
2345	fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs);
2346	return (0);
2347}
2348
2349/* internalize to td->pcb */
2350int
2351set_fpregs(struct thread *td, struct fpreg *fpregs)
2352{
2353
2354	set_fpregs_xmm(fpregs, get_pcb_user_save_td(td));
2355	fpuuserinited(td);
2356	return (0);
2357}
2358
2359/*
2360 * Get machine context.
2361 */
2362int
2363get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
2364{
2365	struct pcb *pcb;
2366	struct trapframe *tp;
2367
2368	pcb = td->td_pcb;
2369	tp = td->td_frame;
2370	PROC_LOCK(curthread->td_proc);
2371	mcp->mc_onstack = sigonstack(tp->tf_rsp);
2372	PROC_UNLOCK(curthread->td_proc);
2373	mcp->mc_r15 = tp->tf_r15;
2374	mcp->mc_r14 = tp->tf_r14;
2375	mcp->mc_r13 = tp->tf_r13;
2376	mcp->mc_r12 = tp->tf_r12;
2377	mcp->mc_r11 = tp->tf_r11;
2378	mcp->mc_r10 = tp->tf_r10;
2379	mcp->mc_r9  = tp->tf_r9;
2380	mcp->mc_r8  = tp->tf_r8;
2381	mcp->mc_rdi = tp->tf_rdi;
2382	mcp->mc_rsi = tp->tf_rsi;
2383	mcp->mc_rbp = tp->tf_rbp;
2384	mcp->mc_rbx = tp->tf_rbx;
2385	mcp->mc_rcx = tp->tf_rcx;
2386	mcp->mc_rflags = tp->tf_rflags;
2387	if (flags & GET_MC_CLEAR_RET) {
2388		mcp->mc_rax = 0;
2389		mcp->mc_rdx = 0;
2390		mcp->mc_rflags &= ~PSL_C;
2391	} else {
2392		mcp->mc_rax = tp->tf_rax;
2393		mcp->mc_rdx = tp->tf_rdx;
2394	}
2395	mcp->mc_rip = tp->tf_rip;
2396	mcp->mc_cs = tp->tf_cs;
2397	mcp->mc_rsp = tp->tf_rsp;
2398	mcp->mc_ss = tp->tf_ss;
2399	mcp->mc_ds = tp->tf_ds;
2400	mcp->mc_es = tp->tf_es;
2401	mcp->mc_fs = tp->tf_fs;
2402	mcp->mc_gs = tp->tf_gs;
2403	mcp->mc_flags = tp->tf_flags;
2404	mcp->mc_len = sizeof(*mcp);
2405	get_fpcontext(td, mcp, NULL, 0);
2406	mcp->mc_fsbase = pcb->pcb_fsbase;
2407	mcp->mc_gsbase = pcb->pcb_gsbase;
2408	mcp->mc_xfpustate = 0;
2409	mcp->mc_xfpustate_len = 0;
2410	bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
2411	return (0);
2412}
2413
2414/*
2415 * Set machine context.
2416 *
2417 * However, we don't set any but the user modifiable flags, and we won't
2418 * touch the cs selector.
2419 */
2420int
2421set_mcontext(struct thread *td, mcontext_t *mcp)
2422{
2423	struct pcb *pcb;
2424	struct trapframe *tp;
2425	char *xfpustate;
2426	long rflags;
2427	int ret;
2428
2429	pcb = td->td_pcb;
2430	tp = td->td_frame;
2431	if (mcp->mc_len != sizeof(*mcp) ||
2432	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2433		return (EINVAL);
2434	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2435	    (tp->tf_rflags & ~PSL_USERCHANGE);
2436	if (mcp->mc_flags & _MC_HASFPXSTATE) {
2437		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
2438		    sizeof(struct savefpu))
2439			return (EINVAL);
2440		xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
2441		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
2442		    mcp->mc_xfpustate_len);
2443		if (ret != 0)
2444			return (ret);
2445	} else
2446		xfpustate = NULL;
2447	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
2448	if (ret != 0)
2449		return (ret);
2450	tp->tf_r15 = mcp->mc_r15;
2451	tp->tf_r14 = mcp->mc_r14;
2452	tp->tf_r13 = mcp->mc_r13;
2453	tp->tf_r12 = mcp->mc_r12;
2454	tp->tf_r11 = mcp->mc_r11;
2455	tp->tf_r10 = mcp->mc_r10;
2456	tp->tf_r9  = mcp->mc_r9;
2457	tp->tf_r8  = mcp->mc_r8;
2458	tp->tf_rdi = mcp->mc_rdi;
2459	tp->tf_rsi = mcp->mc_rsi;
2460	tp->tf_rbp = mcp->mc_rbp;
2461	tp->tf_rbx = mcp->mc_rbx;
2462	tp->tf_rdx = mcp->mc_rdx;
2463	tp->tf_rcx = mcp->mc_rcx;
2464	tp->tf_rax = mcp->mc_rax;
2465	tp->tf_rip = mcp->mc_rip;
2466	tp->tf_rflags = rflags;
2467	tp->tf_rsp = mcp->mc_rsp;
2468	tp->tf_ss = mcp->mc_ss;
2469	tp->tf_flags = mcp->mc_flags;
2470	if (tp->tf_flags & TF_HASSEGS) {
2471		tp->tf_ds = mcp->mc_ds;
2472		tp->tf_es = mcp->mc_es;
2473		tp->tf_fs = mcp->mc_fs;
2474		tp->tf_gs = mcp->mc_gs;
2475	}
2476	if (mcp->mc_flags & _MC_HASBASES) {
2477		pcb->pcb_fsbase = mcp->mc_fsbase;
2478		pcb->pcb_gsbase = mcp->mc_gsbase;
2479	}
2480	set_pcb_flags(pcb, PCB_FULL_IRET);
2481	return (0);
2482}
2483
2484static void
2485get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
2486    size_t xfpusave_len)
2487{
2488	size_t max_len, len;
2489
2490	mcp->mc_ownedfp = fpugetregs(td);
2491	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
2492	    sizeof(mcp->mc_fpstate));
2493	mcp->mc_fpformat = fpuformat();
2494	if (!use_xsave || xfpusave_len == 0)
2495		return;
2496	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
2497	len = xfpusave_len;
2498	if (len > max_len) {
2499		len = max_len;
2500		bzero(xfpusave + max_len, len - max_len);
2501	}
2502	mcp->mc_flags |= _MC_HASFPXSTATE;
2503	mcp->mc_xfpustate_len = len;
2504	bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
2505}
2506
2507static int
2508set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate,
2509    size_t xfpustate_len)
2510{
2511	struct savefpu *fpstate;
2512	int error;
2513
2514	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2515		return (0);
2516	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2517		return (EINVAL);
2518	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
2519		/* We don't care what state is left in the FPU or PCB. */
2520		fpstate_drop(td);
2521		error = 0;
2522	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2523	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2524		fpstate = (struct savefpu *)&mcp->mc_fpstate;
2525		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2526		error = fpusetregs(td, fpstate, xfpustate, xfpustate_len);
2527	} else
2528		return (EINVAL);
2529	return (error);
2530}
2531
2532void
2533fpstate_drop(struct thread *td)
2534{
2535
2536	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
2537	critical_enter();
2538	if (PCPU_GET(fpcurthread) == td)
2539		fpudrop();
2540	/*
2541	 * XXX force a full drop of the fpu.  The above only drops it if we
2542	 * owned it.
2543	 *
2544	 * XXX I don't much like fpugetuserregs()'s semantics of doing a full
2545	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2546	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2547	 * sendsig() is the only caller of fpugetuserregs()... perhaps we just
2548	 * have too many layers.
2549	 */
2550	clear_pcb_flags(curthread->td_pcb,
2551	    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
2552	critical_exit();
2553}
2554
2555int
2556fill_dbregs(struct thread *td, struct dbreg *dbregs)
2557{
2558	struct pcb *pcb;
2559
2560	if (td == NULL) {
2561		dbregs->dr[0] = rdr0();
2562		dbregs->dr[1] = rdr1();
2563		dbregs->dr[2] = rdr2();
2564		dbregs->dr[3] = rdr3();
2565		dbregs->dr[6] = rdr6();
2566		dbregs->dr[7] = rdr7();
2567	} else {
2568		pcb = td->td_pcb;
2569		dbregs->dr[0] = pcb->pcb_dr0;
2570		dbregs->dr[1] = pcb->pcb_dr1;
2571		dbregs->dr[2] = pcb->pcb_dr2;
2572		dbregs->dr[3] = pcb->pcb_dr3;
2573		dbregs->dr[6] = pcb->pcb_dr6;
2574		dbregs->dr[7] = pcb->pcb_dr7;
2575	}
2576	dbregs->dr[4] = 0;
2577	dbregs->dr[5] = 0;
2578	dbregs->dr[8] = 0;
2579	dbregs->dr[9] = 0;
2580	dbregs->dr[10] = 0;
2581	dbregs->dr[11] = 0;
2582	dbregs->dr[12] = 0;
2583	dbregs->dr[13] = 0;
2584	dbregs->dr[14] = 0;
2585	dbregs->dr[15] = 0;
2586	return (0);
2587}
2588
2589int
2590set_dbregs(struct thread *td, struct dbreg *dbregs)
2591{
2592	struct pcb *pcb;
2593	int i;
2594
2595	if (td == NULL) {
2596		load_dr0(dbregs->dr[0]);
2597		load_dr1(dbregs->dr[1]);
2598		load_dr2(dbregs->dr[2]);
2599		load_dr3(dbregs->dr[3]);
2600		load_dr6(dbregs->dr[6]);
2601		load_dr7(dbregs->dr[7]);
2602	} else {
2603		/*
2604		 * Don't let an illegal value for dr7 get set.  Specifically,
2605		 * check for undefined settings.  Setting these bit patterns
2606		 * result in undefined behaviour and can lead to an unexpected
2607		 * TRCTRAP or a general protection fault right here.
2608		 * Upper bits of dr6 and dr7 must not be set
2609		 */
2610		for (i = 0; i < 4; i++) {
2611			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2612				return (EINVAL);
2613			if (td->td_frame->tf_cs == _ucode32sel &&
2614			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2615				return (EINVAL);
2616		}
2617		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2618		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2619			return (EINVAL);
2620
2621		pcb = td->td_pcb;
2622
2623		/*
2624		 * Don't let a process set a breakpoint that is not within the
2625		 * process's address space.  If a process could do this, it
2626		 * could halt the system by setting a breakpoint in the kernel
2627		 * (if ddb was enabled).  Thus, we need to check to make sure
2628		 * that no breakpoints are being enabled for addresses outside
2629		 * process's address space.
2630		 *
2631		 * XXX - what about when the watched area of the user's
2632		 * address space is written into from within the kernel
2633		 * ... wouldn't that still cause a breakpoint to be generated
2634		 * from within kernel mode?
2635		 */
2636
2637		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2638			/* dr0 is enabled */
2639			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2640				return (EINVAL);
2641		}
2642		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2643			/* dr1 is enabled */
2644			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2645				return (EINVAL);
2646		}
2647		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2648			/* dr2 is enabled */
2649			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2650				return (EINVAL);
2651		}
2652		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2653			/* dr3 is enabled */
2654			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2655				return (EINVAL);
2656		}
2657
2658		pcb->pcb_dr0 = dbregs->dr[0];
2659		pcb->pcb_dr1 = dbregs->dr[1];
2660		pcb->pcb_dr2 = dbregs->dr[2];
2661		pcb->pcb_dr3 = dbregs->dr[3];
2662		pcb->pcb_dr6 = dbregs->dr[6];
2663		pcb->pcb_dr7 = dbregs->dr[7];
2664
2665		set_pcb_flags(pcb, PCB_DBREGS);
2666	}
2667
2668	return (0);
2669}
2670
2671void
2672reset_dbregs(void)
2673{
2674
2675	load_dr7(0);	/* Turn off the control bits first */
2676	load_dr0(0);
2677	load_dr1(0);
2678	load_dr2(0);
2679	load_dr3(0);
2680	load_dr6(0);
2681}
2682
2683/*
2684 * Return > 0 if a hardware breakpoint has been hit, and the
2685 * breakpoint was in user space.  Return 0, otherwise.
2686 */
2687int
2688user_dbreg_trap(void)
2689{
2690        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2691        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2692        int nbp;            /* number of breakpoints that triggered */
2693        caddr_t addr[4];    /* breakpoint addresses */
2694        int i;
2695
2696        dr7 = rdr7();
2697        if ((dr7 & 0x000000ff) == 0) {
2698                /*
2699                 * all GE and LE bits in the dr7 register are zero,
2700                 * thus the trap couldn't have been caused by the
2701                 * hardware debug registers
2702                 */
2703                return 0;
2704        }
2705
2706        nbp = 0;
2707        dr6 = rdr6();
2708        bp = dr6 & 0x0000000f;
2709
2710        if (!bp) {
2711                /*
2712                 * None of the breakpoint bits are set meaning this
2713                 * trap was not caused by any of the debug registers
2714                 */
2715                return 0;
2716        }
2717
2718        /*
2719         * at least one of the breakpoints were hit, check to see
2720         * which ones and if any of them are user space addresses
2721         */
2722
2723        if (bp & 0x01) {
2724                addr[nbp++] = (caddr_t)rdr0();
2725        }
2726        if (bp & 0x02) {
2727                addr[nbp++] = (caddr_t)rdr1();
2728        }
2729        if (bp & 0x04) {
2730                addr[nbp++] = (caddr_t)rdr2();
2731        }
2732        if (bp & 0x08) {
2733                addr[nbp++] = (caddr_t)rdr3();
2734        }
2735
2736        for (i = 0; i < nbp; i++) {
2737                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2738                        /*
2739                         * addr[i] is in user space
2740                         */
2741                        return nbp;
2742                }
2743        }
2744
2745        /*
2746         * None of the breakpoints are in user space.
2747         */
2748        return 0;
2749}
2750
2751#ifdef KDB
2752
2753/*
2754 * Provide inb() and outb() as functions.  They are normally only available as
2755 * inline functions, thus cannot be called from the debugger.
2756 */
2757
2758/* silence compiler warnings */
2759u_char inb_(u_short);
2760void outb_(u_short, u_char);
2761
2762u_char
2763inb_(u_short port)
2764{
2765	return inb(port);
2766}
2767
2768void
2769outb_(u_short port, u_char data)
2770{
2771	outb(port, data);
2772}
2773
2774#endif /* KDB */
2775