machdep.c revision 276070
1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: stable/10/sys/amd64/amd64/machdep.c 276070 2014-12-22 18:40:59Z jhb $");
43
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_mp_watchdog.h"
55#include "opt_perfmon.h"
56#include "opt_platform.h"
57#include "opt_sched.h"
58#include "opt_kdtrace.h"
59
60#include <sys/param.h>
61#include <sys/proc.h>
62#include <sys/systm.h>
63#include <sys/bio.h>
64#include <sys/buf.h>
65#include <sys/bus.h>
66#include <sys/callout.h>
67#include <sys/cons.h>
68#include <sys/cpu.h>
69#include <sys/efi.h>
70#include <sys/eventhandler.h>
71#include <sys/exec.h>
72#include <sys/imgact.h>
73#include <sys/kdb.h>
74#include <sys/kernel.h>
75#include <sys/ktr.h>
76#include <sys/linker.h>
77#include <sys/lock.h>
78#include <sys/malloc.h>
79#include <sys/memrange.h>
80#include <sys/msgbuf.h>
81#include <sys/mutex.h>
82#include <sys/pcpu.h>
83#include <sys/ptrace.h>
84#include <sys/reboot.h>
85#include <sys/rwlock.h>
86#include <sys/sched.h>
87#include <sys/signalvar.h>
88#ifdef SMP
89#include <sys/smp.h>
90#endif
91#include <sys/syscallsubr.h>
92#include <sys/sysctl.h>
93#include <sys/sysent.h>
94#include <sys/sysproto.h>
95#include <sys/ucontext.h>
96#include <sys/vmmeter.h>
97
98#include <vm/vm.h>
99#include <vm/vm_extern.h>
100#include <vm/vm_kern.h>
101#include <vm/vm_page.h>
102#include <vm/vm_map.h>
103#include <vm/vm_object.h>
104#include <vm/vm_pager.h>
105#include <vm/vm_param.h>
106
107#ifdef DDB
108#ifndef KDB
109#error KDB must be enabled in order for DDB to work!
110#endif
111#include <ddb/ddb.h>
112#include <ddb/db_sym.h>
113#endif
114
115#include <net/netisr.h>
116
117#include <machine/clock.h>
118#include <machine/cpu.h>
119#include <machine/cputypes.h>
120#include <machine/intr_machdep.h>
121#include <x86/mca.h>
122#include <machine/md_var.h>
123#include <machine/metadata.h>
124#include <machine/mp_watchdog.h>
125#include <machine/pc/bios.h>
126#include <machine/pcb.h>
127#include <machine/proc.h>
128#include <machine/reg.h>
129#include <machine/sigframe.h>
130#include <machine/specialreg.h>
131#ifdef PERFMON
132#include <machine/perfmon.h>
133#endif
134#include <machine/tss.h>
135#ifdef SMP
136#include <machine/smp.h>
137#endif
138#ifdef FDT
139#include <x86/fdt.h>
140#endif
141
142#ifdef DEV_ATPIC
143#include <x86/isa/icu.h>
144#else
145#include <machine/apicvar.h>
146#endif
147
148#include <isa/isareg.h>
149#include <isa/rtc.h>
150
151/* Sanity check for __curthread() */
152CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
153
154extern u_int64_t hammer_time(u_int64_t, u_int64_t);
155
156#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
157#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
158
159static void cpu_startup(void *);
160static void get_fpcontext(struct thread *td, mcontext_t *mcp,
161    char *xfpusave, size_t xfpusave_len);
162static int  set_fpcontext(struct thread *td, const mcontext_t *mcp,
163    char *xfpustate, size_t xfpustate_len);
164SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
165
166/*
167 * The file "conf/ldscript.amd64" defines the symbol "kernphys".  Its value is
168 * the physical address at which the kernel is loaded.
169 */
170extern char kernphys[];
171#ifdef DDB
172extern vm_offset_t ksym_start, ksym_end;
173#endif
174
175struct msgbuf *msgbufp;
176
177/* Intel ICH registers */
178#define ICH_PMBASE	0x400
179#define ICH_SMI_EN	ICH_PMBASE + 0x30
180
181int	_udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
182
183int cold = 1;
184
185long Maxmem = 0;
186long realmem = 0;
187
188/*
189 * The number of PHYSMAP entries must be one less than the number of
190 * PHYSSEG entries because the PHYSMAP entry that spans the largest
191 * physical address that is accessible by ISA DMA is split into two
192 * PHYSSEG entries.
193 */
194#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
195
196vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
197vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
198
199/* must be 2 less so 0 0 can signal end of chunks */
200#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
201#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
202
203struct kva_md_info kmi;
204
205static struct trapframe proc0_tf;
206struct region_descriptor r_gdt, r_idt;
207
208struct pcpu __pcpu[MAXCPU];
209
210struct mtx icu_lock;
211
212struct mem_range_softc mem_range_softc;
213
214struct mtx dt_lock;	/* lock for GDT and LDT */
215
216void (*vmm_resume_p)(void);
217
218static void
219cpu_startup(dummy)
220	void *dummy;
221{
222	uintmax_t memsize;
223	char *sysenv;
224
225	/*
226	 * On MacBooks, we need to disallow the legacy USB circuit to
227	 * generate an SMI# because this can cause several problems,
228	 * namely: incorrect CPU frequency detection and failure to
229	 * start the APs.
230	 * We do this by disabling a bit in the SMI_EN (SMI Control and
231	 * Enable register) of the Intel ICH LPC Interface Bridge.
232	 */
233	sysenv = getenv("smbios.system.product");
234	if (sysenv != NULL) {
235		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
236		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
237		    strncmp(sysenv, "MacBook4,1", 10) == 0 ||
238		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
239		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
240		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
241		    strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
242		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
243			if (bootverbose)
244				printf("Disabling LEGACY_USB_EN bit on "
245				    "Intel ICH.\n");
246			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
247		}
248		freeenv(sysenv);
249	}
250
251	/*
252	 * Good {morning,afternoon,evening,night}.
253	 */
254	startrtclock();
255	printcpuinfo();
256	panicifcpuunsupported();
257#ifdef PERFMON
258	perfmon_init();
259#endif
260
261	/*
262	 * Display physical memory if SMBIOS reports reasonable amount.
263	 */
264	memsize = 0;
265	sysenv = getenv("smbios.memory.enabled");
266	if (sysenv != NULL) {
267		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
268		freeenv(sysenv);
269	}
270	if (memsize < ptoa((uintmax_t)cnt.v_free_count))
271		memsize = ptoa((uintmax_t)Maxmem);
272	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
273	realmem = atop(memsize);
274
275	/*
276	 * Display any holes after the first chunk of extended memory.
277	 */
278	if (bootverbose) {
279		int indx;
280
281		printf("Physical memory chunk(s):\n");
282		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
283			vm_paddr_t size;
284
285			size = phys_avail[indx + 1] - phys_avail[indx];
286			printf(
287			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
288			    (uintmax_t)phys_avail[indx],
289			    (uintmax_t)phys_avail[indx + 1] - 1,
290			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
291		}
292	}
293
294	vm_ksubmap_init(&kmi);
295
296	printf("avail memory = %ju (%ju MB)\n",
297	    ptoa((uintmax_t)cnt.v_free_count),
298	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
299
300	/*
301	 * Set up buffers, so they can be used to read disk labels.
302	 */
303	bufinit();
304	vm_pager_bufferinit();
305
306	cpu_setregs();
307}
308
309/*
310 * Send an interrupt to process.
311 *
312 * Stack is set up to allow sigcode stored
313 * at top to call routine, followed by call
314 * to sigreturn routine below.  After sigreturn
315 * resets the signal mask, the stack, and the
316 * frame pointer, it returns to the user
317 * specified pc, psl.
318 */
319void
320sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
321{
322	struct sigframe sf, *sfp;
323	struct pcb *pcb;
324	struct proc *p;
325	struct thread *td;
326	struct sigacts *psp;
327	char *sp;
328	struct trapframe *regs;
329	char *xfpusave;
330	size_t xfpusave_len;
331	int sig;
332	int oonstack;
333
334	td = curthread;
335	pcb = td->td_pcb;
336	p = td->td_proc;
337	PROC_LOCK_ASSERT(p, MA_OWNED);
338	sig = ksi->ksi_signo;
339	psp = p->p_sigacts;
340	mtx_assert(&psp->ps_mtx, MA_OWNED);
341	regs = td->td_frame;
342	oonstack = sigonstack(regs->tf_rsp);
343
344	if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) {
345		xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu);
346		xfpusave = __builtin_alloca(xfpusave_len);
347	} else {
348		xfpusave_len = 0;
349		xfpusave = NULL;
350	}
351
352	/* Save user context. */
353	bzero(&sf, sizeof(sf));
354	sf.sf_uc.uc_sigmask = *mask;
355	sf.sf_uc.uc_stack = td->td_sigstk;
356	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
357	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
358	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
359	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
360	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
361	get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
362	fpstate_drop(td);
363	sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
364	sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
365	bzero(sf.sf_uc.uc_mcontext.mc_spare,
366	    sizeof(sf.sf_uc.uc_mcontext.mc_spare));
367	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
368
369	/* Allocate space for the signal handler context. */
370	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
371	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
372		sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
373#if defined(COMPAT_43)
374		td->td_sigstk.ss_flags |= SS_ONSTACK;
375#endif
376	} else
377		sp = (char *)regs->tf_rsp - 128;
378	if (xfpusave != NULL) {
379		sp -= xfpusave_len;
380		sp = (char *)((unsigned long)sp & ~0x3Ful);
381		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
382	}
383	sp -= sizeof(struct sigframe);
384	/* Align to 16 bytes. */
385	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
386
387	/* Translate the signal if appropriate. */
388	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
389		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
390
391	/* Build the argument list for the signal handler. */
392	regs->tf_rdi = sig;			/* arg 1 in %rdi */
393	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
394	bzero(&sf.sf_si, sizeof(sf.sf_si));
395	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
396		/* Signal handler installed with SA_SIGINFO. */
397		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
398		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
399
400		/* Fill in POSIX parts */
401		sf.sf_si = ksi->ksi_info;
402		sf.sf_si.si_signo = sig; /* maybe a translated signal */
403		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
404	} else {
405		/* Old FreeBSD-style arguments. */
406		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
407		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
408		sf.sf_ahu.sf_handler = catcher;
409	}
410	mtx_unlock(&psp->ps_mtx);
411	PROC_UNLOCK(p);
412
413	/*
414	 * Copy the sigframe out to the user's stack.
415	 */
416	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
417	    (xfpusave != NULL && copyout(xfpusave,
418	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
419	    != 0)) {
420#ifdef DEBUG
421		printf("process %ld has trashed its stack\n", (long)p->p_pid);
422#endif
423		PROC_LOCK(p);
424		sigexit(td, SIGILL);
425	}
426
427	regs->tf_rsp = (long)sfp;
428	regs->tf_rip = p->p_sysent->sv_sigcode_base;
429	regs->tf_rflags &= ~(PSL_T | PSL_D);
430	regs->tf_cs = _ucodesel;
431	regs->tf_ds = _udatasel;
432	regs->tf_es = _udatasel;
433	regs->tf_fs = _ufssel;
434	regs->tf_gs = _ugssel;
435	regs->tf_flags = TF_HASSEGS;
436	set_pcb_flags(pcb, PCB_FULL_IRET);
437	PROC_LOCK(p);
438	mtx_lock(&psp->ps_mtx);
439}
440
441/*
442 * System call to cleanup state after a signal
443 * has been taken.  Reset signal mask and
444 * stack state from context left by sendsig (above).
445 * Return to previous pc and psl as specified by
446 * context left by sendsig. Check carefully to
447 * make sure that the user has not modified the
448 * state to gain improper privileges.
449 *
450 * MPSAFE
451 */
452int
453sys_sigreturn(td, uap)
454	struct thread *td;
455	struct sigreturn_args /* {
456		const struct __ucontext *sigcntxp;
457	} */ *uap;
458{
459	ucontext_t uc;
460	struct pcb *pcb;
461	struct proc *p;
462	struct trapframe *regs;
463	ucontext_t *ucp;
464	char *xfpustate;
465	size_t xfpustate_len;
466	long rflags;
467	int cs, error, ret;
468	ksiginfo_t ksi;
469
470	pcb = td->td_pcb;
471	p = td->td_proc;
472
473	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
474	if (error != 0) {
475		uprintf("pid %d (%s): sigreturn copyin failed\n",
476		    p->p_pid, td->td_name);
477		return (error);
478	}
479	ucp = &uc;
480	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
481		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
482		    td->td_name, ucp->uc_mcontext.mc_flags);
483		return (EINVAL);
484	}
485	regs = td->td_frame;
486	rflags = ucp->uc_mcontext.mc_rflags;
487	/*
488	 * Don't allow users to change privileged or reserved flags.
489	 */
490	if (!EFL_SECURE(rflags, regs->tf_rflags)) {
491		uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
492		    td->td_name, rflags);
493		return (EINVAL);
494	}
495
496	/*
497	 * Don't allow users to load a valid privileged %cs.  Let the
498	 * hardware check for invalid selectors, excess privilege in
499	 * other selectors, invalid %eip's and invalid %esp's.
500	 */
501	cs = ucp->uc_mcontext.mc_cs;
502	if (!CS_SECURE(cs)) {
503		uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
504		    td->td_name, cs);
505		ksiginfo_init_trap(&ksi);
506		ksi.ksi_signo = SIGBUS;
507		ksi.ksi_code = BUS_OBJERR;
508		ksi.ksi_trapno = T_PROTFLT;
509		ksi.ksi_addr = (void *)regs->tf_rip;
510		trapsignal(td, &ksi);
511		return (EINVAL);
512	}
513
514	if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
515		xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
516		if (xfpustate_len > cpu_max_ext_state_size -
517		    sizeof(struct savefpu)) {
518			uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
519			    p->p_pid, td->td_name, xfpustate_len);
520			return (EINVAL);
521		}
522		xfpustate = __builtin_alloca(xfpustate_len);
523		error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
524		    xfpustate, xfpustate_len);
525		if (error != 0) {
526			uprintf(
527	"pid %d (%s): sigreturn copying xfpustate failed\n",
528			    p->p_pid, td->td_name);
529			return (error);
530		}
531	} else {
532		xfpustate = NULL;
533		xfpustate_len = 0;
534	}
535	ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len);
536	if (ret != 0) {
537		uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
538		    p->p_pid, td->td_name, ret);
539		return (ret);
540	}
541	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
542	pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
543	pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
544
545#if defined(COMPAT_43)
546	if (ucp->uc_mcontext.mc_onstack & 1)
547		td->td_sigstk.ss_flags |= SS_ONSTACK;
548	else
549		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
550#endif
551
552	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
553	set_pcb_flags(pcb, PCB_FULL_IRET);
554	return (EJUSTRETURN);
555}
556
557#ifdef COMPAT_FREEBSD4
558int
559freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
560{
561
562	return sys_sigreturn(td, (struct sigreturn_args *)uap);
563}
564#endif
565
566
567/*
568 * Machine dependent boot() routine
569 *
570 * I haven't seen anything to put here yet
571 * Possibly some stuff might be grafted back here from boot()
572 */
573void
574cpu_boot(int howto)
575{
576}
577
578/*
579 * Flush the D-cache for non-DMA I/O so that the I-cache can
580 * be made coherent later.
581 */
582void
583cpu_flush_dcache(void *ptr, size_t len)
584{
585	/* Not applicable */
586}
587
588/* Get current clock frequency for the given cpu id. */
589int
590cpu_est_clockrate(int cpu_id, uint64_t *rate)
591{
592	uint64_t tsc1, tsc2;
593	uint64_t acnt, mcnt, perf;
594	register_t reg;
595
596	if (pcpu_find(cpu_id) == NULL || rate == NULL)
597		return (EINVAL);
598
599	/*
600	 * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
601	 * DELAY(9) based logic fails.
602	 */
603	if (tsc_is_invariant && !tsc_perf_stat)
604		return (EOPNOTSUPP);
605
606#ifdef SMP
607	if (smp_cpus > 1) {
608		/* Schedule ourselves on the indicated cpu. */
609		thread_lock(curthread);
610		sched_bind(curthread, cpu_id);
611		thread_unlock(curthread);
612	}
613#endif
614
615	/* Calibrate by measuring a short delay. */
616	reg = intr_disable();
617	if (tsc_is_invariant) {
618		wrmsr(MSR_MPERF, 0);
619		wrmsr(MSR_APERF, 0);
620		tsc1 = rdtsc();
621		DELAY(1000);
622		mcnt = rdmsr(MSR_MPERF);
623		acnt = rdmsr(MSR_APERF);
624		tsc2 = rdtsc();
625		intr_restore(reg);
626		perf = 1000 * acnt / mcnt;
627		*rate = (tsc2 - tsc1) * perf;
628	} else {
629		tsc1 = rdtsc();
630		DELAY(1000);
631		tsc2 = rdtsc();
632		intr_restore(reg);
633		*rate = (tsc2 - tsc1) * 1000;
634	}
635
636#ifdef SMP
637	if (smp_cpus > 1) {
638		thread_lock(curthread);
639		sched_unbind(curthread);
640		thread_unlock(curthread);
641	}
642#endif
643
644	return (0);
645}
646
647/*
648 * Shutdown the CPU as much as possible
649 */
650void
651cpu_halt(void)
652{
653	for (;;)
654		halt();
655}
656
657void (*cpu_idle_hook)(sbintime_t) = NULL;	/* ACPI idle hook. */
658static int	cpu_ident_amdc1e = 0;	/* AMD C1E supported. */
659static int	idle_mwait = 1;		/* Use MONITOR/MWAIT for short idle. */
660TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
661SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
662    0, "Use MONITOR/MWAIT for short idle");
663
664#define	STATE_RUNNING	0x0
665#define	STATE_MWAIT	0x1
666#define	STATE_SLEEPING	0x2
667
668static void
669cpu_idle_acpi(sbintime_t sbt)
670{
671	int *state;
672
673	state = (int *)PCPU_PTR(monitorbuf);
674	*state = STATE_SLEEPING;
675
676	/* See comments in cpu_idle_hlt(). */
677	disable_intr();
678	if (sched_runnable())
679		enable_intr();
680	else if (cpu_idle_hook)
681		cpu_idle_hook(sbt);
682	else
683		__asm __volatile("sti; hlt");
684	*state = STATE_RUNNING;
685}
686
687static void
688cpu_idle_hlt(sbintime_t sbt)
689{
690	int *state;
691
692	state = (int *)PCPU_PTR(monitorbuf);
693	*state = STATE_SLEEPING;
694
695	/*
696	 * Since we may be in a critical section from cpu_idle(), if
697	 * an interrupt fires during that critical section we may have
698	 * a pending preemption.  If the CPU halts, then that thread
699	 * may not execute until a later interrupt awakens the CPU.
700	 * To handle this race, check for a runnable thread after
701	 * disabling interrupts and immediately return if one is
702	 * found.  Also, we must absolutely guarentee that hlt is
703	 * the next instruction after sti.  This ensures that any
704	 * interrupt that fires after the call to disable_intr() will
705	 * immediately awaken the CPU from hlt.  Finally, please note
706	 * that on x86 this works fine because of interrupts enabled only
707	 * after the instruction following sti takes place, while IF is set
708	 * to 1 immediately, allowing hlt instruction to acknowledge the
709	 * interrupt.
710	 */
711	disable_intr();
712	if (sched_runnable())
713		enable_intr();
714	else
715		__asm __volatile("sti; hlt");
716	*state = STATE_RUNNING;
717}
718
719/*
720 * MWAIT cpu power states.  Lower 4 bits are sub-states.
721 */
722#define	MWAIT_C0	0xf0
723#define	MWAIT_C1	0x00
724#define	MWAIT_C2	0x10
725#define	MWAIT_C3	0x20
726#define	MWAIT_C4	0x30
727
728static void
729cpu_idle_mwait(sbintime_t sbt)
730{
731	int *state;
732
733	state = (int *)PCPU_PTR(monitorbuf);
734	*state = STATE_MWAIT;
735
736	/* See comments in cpu_idle_hlt(). */
737	disable_intr();
738	if (sched_runnable()) {
739		enable_intr();
740		*state = STATE_RUNNING;
741		return;
742	}
743	cpu_monitor(state, 0, 0);
744	if (*state == STATE_MWAIT)
745		__asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
746	else
747		enable_intr();
748	*state = STATE_RUNNING;
749}
750
751static void
752cpu_idle_spin(sbintime_t sbt)
753{
754	int *state;
755	int i;
756
757	state = (int *)PCPU_PTR(monitorbuf);
758	*state = STATE_RUNNING;
759
760	/*
761	 * The sched_runnable() call is racy but as long as there is
762	 * a loop missing it one time will have just a little impact if any
763	 * (and it is much better than missing the check at all).
764	 */
765	for (i = 0; i < 1000; i++) {
766		if (sched_runnable())
767			return;
768		cpu_spinwait();
769	}
770}
771
772/*
773 * C1E renders the local APIC timer dead, so we disable it by
774 * reading the Interrupt Pending Message register and clearing
775 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
776 *
777 * Reference:
778 *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
779 *   #32559 revision 3.00+
780 */
781#define	MSR_AMDK8_IPM		0xc0010055
782#define	AMDK8_SMIONCMPHALT	(1ULL << 27)
783#define	AMDK8_C1EONCMPHALT	(1ULL << 28)
784#define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
785
786static void
787cpu_probe_amdc1e(void)
788{
789
790	/*
791	 * Detect the presence of C1E capability mostly on latest
792	 * dual-cores (or future) k8 family.
793	 */
794	if (cpu_vendor_id == CPU_VENDOR_AMD &&
795	    (cpu_id & 0x00000f00) == 0x00000f00 &&
796	    (cpu_id & 0x0fff0000) >=  0x00040000) {
797		cpu_ident_amdc1e = 1;
798	}
799}
800
801void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi;
802
803void
804cpu_idle(int busy)
805{
806	uint64_t msr;
807	sbintime_t sbt = -1;
808
809	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
810	    busy, curcpu);
811#ifdef MP_WATCHDOG
812	ap_watchdog(PCPU_GET(cpuid));
813#endif
814	/* If we are busy - try to use fast methods. */
815	if (busy) {
816		if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
817			cpu_idle_mwait(busy);
818			goto out;
819		}
820	}
821
822	/* If we have time - switch timers into idle mode. */
823	if (!busy) {
824		critical_enter();
825		sbt = cpu_idleclock();
826	}
827
828	/* Apply AMD APIC timer C1E workaround. */
829	if (cpu_ident_amdc1e && cpu_disable_deep_sleep) {
830		msr = rdmsr(MSR_AMDK8_IPM);
831		if (msr & AMDK8_CMPHALT)
832			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
833	}
834
835	/* Call main idle method. */
836	cpu_idle_fn(sbt);
837
838	/* Switch timers mack into active mode. */
839	if (!busy) {
840		cpu_activeclock();
841		critical_exit();
842	}
843out:
844	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
845	    busy, curcpu);
846}
847
848int
849cpu_idle_wakeup(int cpu)
850{
851	struct pcpu *pcpu;
852	int *state;
853
854	pcpu = pcpu_find(cpu);
855	state = (int *)pcpu->pc_monitorbuf;
856	/*
857	 * This doesn't need to be atomic since missing the race will
858	 * simply result in unnecessary IPIs.
859	 */
860	if (*state == STATE_SLEEPING)
861		return (0);
862	if (*state == STATE_MWAIT)
863		*state = STATE_RUNNING;
864	return (1);
865}
866
867/*
868 * Ordered by speed/power consumption.
869 */
870struct {
871	void	*id_fn;
872	char	*id_name;
873} idle_tbl[] = {
874	{ cpu_idle_spin, "spin" },
875	{ cpu_idle_mwait, "mwait" },
876	{ cpu_idle_hlt, "hlt" },
877	{ cpu_idle_acpi, "acpi" },
878	{ NULL, NULL }
879};
880
881static int
882idle_sysctl_available(SYSCTL_HANDLER_ARGS)
883{
884	char *avail, *p;
885	int error;
886	int i;
887
888	avail = malloc(256, M_TEMP, M_WAITOK);
889	p = avail;
890	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
891		if (strstr(idle_tbl[i].id_name, "mwait") &&
892		    (cpu_feature2 & CPUID2_MON) == 0)
893			continue;
894		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
895		    cpu_idle_hook == NULL)
896			continue;
897		p += sprintf(p, "%s%s", p != avail ? ", " : "",
898		    idle_tbl[i].id_name);
899	}
900	error = sysctl_handle_string(oidp, avail, 0, req);
901	free(avail, M_TEMP);
902	return (error);
903}
904
905SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
906    0, 0, idle_sysctl_available, "A", "list of available idle functions");
907
908static int
909idle_sysctl(SYSCTL_HANDLER_ARGS)
910{
911	char buf[16];
912	int error;
913	char *p;
914	int i;
915
916	p = "unknown";
917	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
918		if (idle_tbl[i].id_fn == cpu_idle_fn) {
919			p = idle_tbl[i].id_name;
920			break;
921		}
922	}
923	strncpy(buf, p, sizeof(buf));
924	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
925	if (error != 0 || req->newptr == NULL)
926		return (error);
927	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
928		if (strstr(idle_tbl[i].id_name, "mwait") &&
929		    (cpu_feature2 & CPUID2_MON) == 0)
930			continue;
931		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
932		    cpu_idle_hook == NULL)
933			continue;
934		if (strcmp(idle_tbl[i].id_name, buf))
935			continue;
936		cpu_idle_fn = idle_tbl[i].id_fn;
937		return (0);
938	}
939	return (EINVAL);
940}
941
942SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
943    idle_sysctl, "A", "currently selected idle function");
944
945/*
946 * Reset registers to default values on exec.
947 */
948void
949exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
950{
951	struct trapframe *regs = td->td_frame;
952	struct pcb *pcb = td->td_pcb;
953
954	mtx_lock(&dt_lock);
955	if (td->td_proc->p_md.md_ldt != NULL)
956		user_ldt_free(td);
957	else
958		mtx_unlock(&dt_lock);
959
960	pcb->pcb_fsbase = 0;
961	pcb->pcb_gsbase = 0;
962	clear_pcb_flags(pcb, PCB_32BIT);
963	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
964	set_pcb_flags(pcb, PCB_FULL_IRET);
965
966	bzero((char *)regs, sizeof(struct trapframe));
967	regs->tf_rip = imgp->entry_addr;
968	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
969	regs->tf_rdi = stack;		/* argv */
970	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
971	regs->tf_ss = _udatasel;
972	regs->tf_cs = _ucodesel;
973	regs->tf_ds = _udatasel;
974	regs->tf_es = _udatasel;
975	regs->tf_fs = _ufssel;
976	regs->tf_gs = _ugssel;
977	regs->tf_flags = TF_HASSEGS;
978	td->td_retval[1] = 0;
979
980	/*
981	 * Reset the hardware debug registers if they were in use.
982	 * They won't have any meaning for the newly exec'd process.
983	 */
984	if (pcb->pcb_flags & PCB_DBREGS) {
985		pcb->pcb_dr0 = 0;
986		pcb->pcb_dr1 = 0;
987		pcb->pcb_dr2 = 0;
988		pcb->pcb_dr3 = 0;
989		pcb->pcb_dr6 = 0;
990		pcb->pcb_dr7 = 0;
991		if (pcb == curpcb) {
992			/*
993			 * Clear the debug registers on the running
994			 * CPU, otherwise they will end up affecting
995			 * the next process we switch to.
996			 */
997			reset_dbregs();
998		}
999		clear_pcb_flags(pcb, PCB_DBREGS);
1000	}
1001
1002	/*
1003	 * Drop the FP state if we hold it, so that the process gets a
1004	 * clean FP state if it uses the FPU again.
1005	 */
1006	fpstate_drop(td);
1007}
1008
1009void
1010cpu_setregs(void)
1011{
1012	register_t cr0;
1013
1014	cr0 = rcr0();
1015	/*
1016	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
1017	 * BSP.  See the comments there about why we set them.
1018	 */
1019	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
1020	load_cr0(cr0);
1021}
1022
1023/*
1024 * Initialize amd64 and configure to run kernel
1025 */
1026
1027/*
1028 * Initialize segments & interrupt table
1029 */
1030
1031struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
1032static struct gate_descriptor idt0[NIDT];
1033struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1034
1035static char dblfault_stack[PAGE_SIZE] __aligned(16);
1036
1037static char nmi0_stack[PAGE_SIZE] __aligned(16);
1038CTASSERT(sizeof(struct nmi_pcpu) == 16);
1039
1040struct amd64tss common_tss[MAXCPU];
1041
1042/*
1043 * Software prototypes -- in more palatable form.
1044 *
1045 * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
1046 * slots as corresponding segments for i386 kernel.
1047 */
1048struct soft_segment_descriptor gdt_segs[] = {
1049/* GNULL_SEL	0 Null Descriptor */
1050{	.ssd_base = 0x0,
1051	.ssd_limit = 0x0,
1052	.ssd_type = 0,
1053	.ssd_dpl = 0,
1054	.ssd_p = 0,
1055	.ssd_long = 0,
1056	.ssd_def32 = 0,
1057	.ssd_gran = 0		},
1058/* GNULL2_SEL	1 Null Descriptor */
1059{	.ssd_base = 0x0,
1060	.ssd_limit = 0x0,
1061	.ssd_type = 0,
1062	.ssd_dpl = 0,
1063	.ssd_p = 0,
1064	.ssd_long = 0,
1065	.ssd_def32 = 0,
1066	.ssd_gran = 0		},
1067/* GUFS32_SEL	2 32 bit %gs Descriptor for user */
1068{	.ssd_base = 0x0,
1069	.ssd_limit = 0xfffff,
1070	.ssd_type = SDT_MEMRWA,
1071	.ssd_dpl = SEL_UPL,
1072	.ssd_p = 1,
1073	.ssd_long = 0,
1074	.ssd_def32 = 1,
1075	.ssd_gran = 1		},
1076/* GUGS32_SEL	3 32 bit %fs Descriptor for user */
1077{	.ssd_base = 0x0,
1078	.ssd_limit = 0xfffff,
1079	.ssd_type = SDT_MEMRWA,
1080	.ssd_dpl = SEL_UPL,
1081	.ssd_p = 1,
1082	.ssd_long = 0,
1083	.ssd_def32 = 1,
1084	.ssd_gran = 1		},
1085/* GCODE_SEL	4 Code Descriptor for kernel */
1086{	.ssd_base = 0x0,
1087	.ssd_limit = 0xfffff,
1088	.ssd_type = SDT_MEMERA,
1089	.ssd_dpl = SEL_KPL,
1090	.ssd_p = 1,
1091	.ssd_long = 1,
1092	.ssd_def32 = 0,
1093	.ssd_gran = 1		},
1094/* GDATA_SEL	5 Data Descriptor for kernel */
1095{	.ssd_base = 0x0,
1096	.ssd_limit = 0xfffff,
1097	.ssd_type = SDT_MEMRWA,
1098	.ssd_dpl = SEL_KPL,
1099	.ssd_p = 1,
1100	.ssd_long = 1,
1101	.ssd_def32 = 0,
1102	.ssd_gran = 1		},
1103/* GUCODE32_SEL	6 32 bit Code Descriptor for user */
1104{	.ssd_base = 0x0,
1105	.ssd_limit = 0xfffff,
1106	.ssd_type = SDT_MEMERA,
1107	.ssd_dpl = SEL_UPL,
1108	.ssd_p = 1,
1109	.ssd_long = 0,
1110	.ssd_def32 = 1,
1111	.ssd_gran = 1		},
1112/* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
1113{	.ssd_base = 0x0,
1114	.ssd_limit = 0xfffff,
1115	.ssd_type = SDT_MEMRWA,
1116	.ssd_dpl = SEL_UPL,
1117	.ssd_p = 1,
1118	.ssd_long = 0,
1119	.ssd_def32 = 1,
1120	.ssd_gran = 1		},
1121/* GUCODE_SEL	8 64 bit Code Descriptor for user */
1122{	.ssd_base = 0x0,
1123	.ssd_limit = 0xfffff,
1124	.ssd_type = SDT_MEMERA,
1125	.ssd_dpl = SEL_UPL,
1126	.ssd_p = 1,
1127	.ssd_long = 1,
1128	.ssd_def32 = 0,
1129	.ssd_gran = 1		},
1130/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1131{	.ssd_base = 0x0,
1132	.ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
1133	.ssd_type = SDT_SYSTSS,
1134	.ssd_dpl = SEL_KPL,
1135	.ssd_p = 1,
1136	.ssd_long = 0,
1137	.ssd_def32 = 0,
1138	.ssd_gran = 0		},
1139/* Actually, the TSS is a system descriptor which is double size */
1140{	.ssd_base = 0x0,
1141	.ssd_limit = 0x0,
1142	.ssd_type = 0,
1143	.ssd_dpl = 0,
1144	.ssd_p = 0,
1145	.ssd_long = 0,
1146	.ssd_def32 = 0,
1147	.ssd_gran = 0		},
1148/* GUSERLDT_SEL	11 LDT Descriptor */
1149{	.ssd_base = 0x0,
1150	.ssd_limit = 0x0,
1151	.ssd_type = 0,
1152	.ssd_dpl = 0,
1153	.ssd_p = 0,
1154	.ssd_long = 0,
1155	.ssd_def32 = 0,
1156	.ssd_gran = 0		},
1157/* GUSERLDT_SEL	12 LDT Descriptor, double size */
1158{	.ssd_base = 0x0,
1159	.ssd_limit = 0x0,
1160	.ssd_type = 0,
1161	.ssd_dpl = 0,
1162	.ssd_p = 0,
1163	.ssd_long = 0,
1164	.ssd_def32 = 0,
1165	.ssd_gran = 0		},
1166};
1167
1168void
1169setidt(idx, func, typ, dpl, ist)
1170	int idx;
1171	inthand_t *func;
1172	int typ;
1173	int dpl;
1174	int ist;
1175{
1176	struct gate_descriptor *ip;
1177
1178	ip = idt + idx;
1179	ip->gd_looffset = (uintptr_t)func;
1180	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1181	ip->gd_ist = ist;
1182	ip->gd_xx = 0;
1183	ip->gd_type = typ;
1184	ip->gd_dpl = dpl;
1185	ip->gd_p = 1;
1186	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1187}
1188
1189extern inthand_t
1190	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1191	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1192	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1193	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1194	IDTVEC(xmm), IDTVEC(dblfault),
1195#ifdef KDTRACE_HOOKS
1196	IDTVEC(dtrace_ret),
1197#endif
1198#ifdef XENHVM
1199	IDTVEC(xen_intr_upcall),
1200#endif
1201	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1202
1203#ifdef DDB
1204/*
1205 * Display the index and function name of any IDT entries that don't use
1206 * the default 'rsvd' entry point.
1207 */
1208DB_SHOW_COMMAND(idt, db_show_idt)
1209{
1210	struct gate_descriptor *ip;
1211	int idx;
1212	uintptr_t func;
1213
1214	ip = idt;
1215	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1216		func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
1217		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1218			db_printf("%3d\t", idx);
1219			db_printsym(func, DB_STGY_PROC);
1220			db_printf("\n");
1221		}
1222		ip++;
1223	}
1224}
1225
1226/* Show privileged registers. */
1227DB_SHOW_COMMAND(sysregs, db_show_sysregs)
1228{
1229	struct {
1230		uint16_t limit;
1231		uint64_t base;
1232	} __packed idtr, gdtr;
1233	uint16_t ldt, tr;
1234
1235	__asm __volatile("sidt %0" : "=m" (idtr));
1236	db_printf("idtr\t0x%016lx/%04x\n",
1237	    (u_long)idtr.base, (u_int)idtr.limit);
1238	__asm __volatile("sgdt %0" : "=m" (gdtr));
1239	db_printf("gdtr\t0x%016lx/%04x\n",
1240	    (u_long)gdtr.base, (u_int)gdtr.limit);
1241	__asm __volatile("sldt %0" : "=r" (ldt));
1242	db_printf("ldtr\t0x%04x\n", ldt);
1243	__asm __volatile("str %0" : "=r" (tr));
1244	db_printf("tr\t0x%04x\n", tr);
1245	db_printf("cr0\t0x%016lx\n", rcr0());
1246	db_printf("cr2\t0x%016lx\n", rcr2());
1247	db_printf("cr3\t0x%016lx\n", rcr3());
1248	db_printf("cr4\t0x%016lx\n", rcr4());
1249	db_printf("EFER\t%016lx\n", rdmsr(MSR_EFER));
1250	db_printf("FEATURES_CTL\t%016lx\n", rdmsr(MSR_IA32_FEATURE_CONTROL));
1251	db_printf("DEBUG_CTL\t%016lx\n", rdmsr(MSR_DEBUGCTLMSR));
1252	db_printf("PAT\t%016lx\n", rdmsr(MSR_PAT));
1253	db_printf("GSBASE\t%016lx\n", rdmsr(MSR_GSBASE));
1254}
1255#endif
1256
1257void
1258sdtossd(sd, ssd)
1259	struct user_segment_descriptor *sd;
1260	struct soft_segment_descriptor *ssd;
1261{
1262
1263	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1264	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1265	ssd->ssd_type  = sd->sd_type;
1266	ssd->ssd_dpl   = sd->sd_dpl;
1267	ssd->ssd_p     = sd->sd_p;
1268	ssd->ssd_long  = sd->sd_long;
1269	ssd->ssd_def32 = sd->sd_def32;
1270	ssd->ssd_gran  = sd->sd_gran;
1271}
1272
1273void
1274ssdtosd(ssd, sd)
1275	struct soft_segment_descriptor *ssd;
1276	struct user_segment_descriptor *sd;
1277{
1278
1279	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1280	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1281	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1282	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1283	sd->sd_type  = ssd->ssd_type;
1284	sd->sd_dpl   = ssd->ssd_dpl;
1285	sd->sd_p     = ssd->ssd_p;
1286	sd->sd_long  = ssd->ssd_long;
1287	sd->sd_def32 = ssd->ssd_def32;
1288	sd->sd_gran  = ssd->ssd_gran;
1289}
1290
1291void
1292ssdtosyssd(ssd, sd)
1293	struct soft_segment_descriptor *ssd;
1294	struct system_segment_descriptor *sd;
1295{
1296
1297	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1298	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1299	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1300	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1301	sd->sd_type  = ssd->ssd_type;
1302	sd->sd_dpl   = ssd->ssd_dpl;
1303	sd->sd_p     = ssd->ssd_p;
1304	sd->sd_gran  = ssd->ssd_gran;
1305}
1306
1307#if !defined(DEV_ATPIC) && defined(DEV_ISA)
1308#include <isa/isavar.h>
1309#include <isa/isareg.h>
1310/*
1311 * Return a bitmap of the current interrupt requests.  This is 8259-specific
1312 * and is only suitable for use at probe time.
1313 * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
1314 * It shouldn't be here.  There should probably be an APIC centric
1315 * implementation in the apic driver code, if at all.
1316 */
1317intrmask_t
1318isa_irq_pending(void)
1319{
1320	u_char irr1;
1321	u_char irr2;
1322
1323	irr1 = inb(IO_ICU1);
1324	irr2 = inb(IO_ICU2);
1325	return ((irr2 << 8) | irr1);
1326}
1327#endif
1328
1329u_int basemem;
1330
1331static int
1332add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
1333    int *physmap_idxp)
1334{
1335	int i, insert_idx, physmap_idx;
1336
1337	physmap_idx = *physmap_idxp;
1338
1339	if (length == 0)
1340		return (1);
1341
1342	/*
1343	 * Find insertion point while checking for overlap.  Start off by
1344	 * assuming the new entry will be added to the end.
1345	 */
1346	insert_idx = physmap_idx + 2;
1347	for (i = 0; i <= physmap_idx; i += 2) {
1348		if (base < physmap[i + 1]) {
1349			if (base + length <= physmap[i]) {
1350				insert_idx = i;
1351				break;
1352			}
1353			if (boothowto & RB_VERBOSE)
1354				printf(
1355		    "Overlapping memory regions, ignoring second region\n");
1356			return (1);
1357		}
1358	}
1359
1360	/* See if we can prepend to the next entry. */
1361	if (insert_idx <= physmap_idx && base + length == physmap[insert_idx]) {
1362		physmap[insert_idx] = base;
1363		return (1);
1364	}
1365
1366	/* See if we can append to the previous entry. */
1367	if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
1368		physmap[insert_idx - 1] += length;
1369		return (1);
1370	}
1371
1372	physmap_idx += 2;
1373	*physmap_idxp = physmap_idx;
1374	if (physmap_idx == PHYSMAP_SIZE) {
1375		printf(
1376		"Too many segments in the physical address map, giving up\n");
1377		return (0);
1378	}
1379
1380	/*
1381	 * Move the last 'N' entries down to make room for the new
1382	 * entry if needed.
1383	 */
1384	for (i = physmap_idx; i > insert_idx; i -= 2) {
1385		physmap[i] = physmap[i - 2];
1386		physmap[i + 1] = physmap[i - 1];
1387	}
1388
1389	/* Insert the new entry. */
1390	physmap[insert_idx] = base;
1391	physmap[insert_idx + 1] = base + length;
1392	return (1);
1393}
1394
1395static void
1396add_smap_entries(struct bios_smap *smapbase, vm_paddr_t *physmap,
1397    int *physmap_idx)
1398{
1399	struct bios_smap *smap, *smapend;
1400	u_int32_t smapsize;
1401
1402	/*
1403	 * Memory map from INT 15:E820.
1404	 *
1405	 * subr_module.c says:
1406	 * "Consumer may safely assume that size value precedes data."
1407	 * ie: an int32_t immediately precedes smap.
1408	 */
1409	smapsize = *((u_int32_t *)smapbase - 1);
1410	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1411
1412	for (smap = smapbase; smap < smapend; smap++) {
1413		if (boothowto & RB_VERBOSE)
1414			printf("SMAP type=%02x base=%016lx len=%016lx\n",
1415			    smap->type, smap->base, smap->length);
1416
1417		if (smap->type != SMAP_TYPE_MEMORY)
1418			continue;
1419
1420		if (!add_physmap_entry(smap->base, smap->length, physmap,
1421		    physmap_idx))
1422			break;
1423	}
1424}
1425
1426#define efi_next_descriptor(ptr, size) \
1427	((struct efi_md *)(((uint8_t *) ptr) + size))
1428
1429static void
1430add_efi_map_entries(struct efi_map_header *efihdr, vm_paddr_t *physmap,
1431    int *physmap_idx)
1432{
1433	struct efi_md *map, *p;
1434	const char *type;
1435	size_t efisz;
1436	int ndesc, i;
1437
1438	static const char *types[] = {
1439		"Reserved",
1440		"LoaderCode",
1441		"LoaderData",
1442		"BootServicesCode",
1443		"BootServicesData",
1444		"RuntimeServicesCode",
1445		"RuntimeServicesData",
1446		"ConventionalMemory",
1447		"UnusableMemory",
1448		"ACPIReclaimMemory",
1449		"ACPIMemoryNVS",
1450		"MemoryMappedIO",
1451		"MemoryMappedIOPortSpace",
1452		"PalCode"
1453	};
1454
1455	/*
1456	 * Memory map data provided by UEFI via the GetMemoryMap
1457	 * Boot Services API.
1458	 */
1459	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1460	map = (struct efi_md *)((uint8_t *)efihdr + efisz);
1461
1462	if (efihdr->descriptor_size == 0)
1463		return;
1464	ndesc = efihdr->memory_size / efihdr->descriptor_size;
1465
1466	if (boothowto & RB_VERBOSE)
1467		printf("%23s %12s %12s %8s %4s\n",
1468		    "Type", "Physical", "Virtual", "#Pages", "Attr");
1469
1470	for (i = 0, p = map; i < ndesc; i++,
1471	    p = efi_next_descriptor(p, efihdr->descriptor_size)) {
1472		if (boothowto & RB_VERBOSE) {
1473			if (p->md_type <= EFI_MD_TYPE_PALCODE)
1474				type = types[p->md_type];
1475			else
1476				type = "<INVALID>";
1477			printf("%23s %012lx %12p %08lx ", type, p->md_phys,
1478			    p->md_virt, p->md_pages);
1479			if (p->md_attr & EFI_MD_ATTR_UC)
1480				printf("UC ");
1481			if (p->md_attr & EFI_MD_ATTR_WC)
1482				printf("WC ");
1483			if (p->md_attr & EFI_MD_ATTR_WT)
1484				printf("WT ");
1485			if (p->md_attr & EFI_MD_ATTR_WB)
1486				printf("WB ");
1487			if (p->md_attr & EFI_MD_ATTR_UCE)
1488				printf("UCE ");
1489			if (p->md_attr & EFI_MD_ATTR_WP)
1490				printf("WP ");
1491			if (p->md_attr & EFI_MD_ATTR_RP)
1492				printf("RP ");
1493			if (p->md_attr & EFI_MD_ATTR_XP)
1494				printf("XP ");
1495			if (p->md_attr & EFI_MD_ATTR_RT)
1496				printf("RUNTIME");
1497			printf("\n");
1498		}
1499
1500		switch (p->md_type) {
1501		case EFI_MD_TYPE_CODE:
1502		case EFI_MD_TYPE_DATA:
1503		case EFI_MD_TYPE_BS_CODE:
1504		case EFI_MD_TYPE_BS_DATA:
1505		case EFI_MD_TYPE_FREE:
1506			/*
1507			 * We're allowed to use any entry with these types.
1508			 */
1509			break;
1510		default:
1511			continue;
1512		}
1513
1514		if (!add_physmap_entry(p->md_phys, (p->md_pages * PAGE_SIZE),
1515		    physmap, physmap_idx))
1516			break;
1517	}
1518}
1519
1520static char bootmethod[16] = "";
1521SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0,
1522    "System firmware boot method");
1523
1524/*
1525 * Populate the (physmap) array with base/bound pairs describing the
1526 * available physical memory in the system, then test this memory and
1527 * build the phys_avail array describing the actually-available memory.
1528 *
1529 * Total memory size may be set by the kernel environment variable
1530 * hw.physmem or the compile-time define MAXMEM.
1531 *
1532 * XXX first should be vm_paddr_t.
1533 */
1534static void
1535getmemsize(caddr_t kmdp, u_int64_t first)
1536{
1537	int i, physmap_idx, pa_indx, da_indx;
1538	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1539	u_long physmem_start, physmem_tunable, memtest;
1540	pt_entry_t *pte;
1541	struct bios_smap *smapbase;
1542	struct efi_map_header *efihdr;
1543	quad_t dcons_addr, dcons_size;
1544
1545	bzero(physmap, sizeof(physmap));
1546	basemem = 0;
1547	physmap_idx = 0;
1548
1549	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1550	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1551	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1552	    MODINFO_METADATA | MODINFOMD_SMAP);
1553
1554	if (efihdr != NULL) {
1555		add_efi_map_entries(efihdr, physmap, &physmap_idx);
1556		strlcpy(bootmethod, "UEFI", sizeof(bootmethod));
1557	} else if (smapbase != NULL) {
1558		add_smap_entries(smapbase, physmap, &physmap_idx);
1559		strlcpy(bootmethod, "BIOS", sizeof(bootmethod));
1560	} else {
1561		panic("No BIOS smap or EFI map info from loader!");
1562	}
1563
1564	/*
1565	 * Find the 'base memory' segment for SMP
1566	 */
1567	basemem = 0;
1568	for (i = 0; i <= physmap_idx; i += 2) {
1569		if (physmap[i] == 0x00000000) {
1570			basemem = physmap[i + 1] / 1024;
1571			break;
1572		}
1573	}
1574	if (basemem == 0)
1575		panic("BIOS smap did not include a basemem segment!");
1576
1577#ifdef SMP
1578	/* make hole for AP bootstrap code */
1579	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1580#endif
1581
1582	/*
1583	 * Maxmem isn't the "maximum memory", it's one larger than the
1584	 * highest page of the physical address space.  It should be
1585	 * called something like "Maxphyspage".  We may adjust this
1586	 * based on ``hw.physmem'' and the results of the memory test.
1587	 */
1588	Maxmem = atop(physmap[physmap_idx + 1]);
1589
1590#ifdef MAXMEM
1591	Maxmem = MAXMEM / 4;
1592#endif
1593
1594	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1595		Maxmem = atop(physmem_tunable);
1596
1597	/*
1598	 * By default enable the memory test on real hardware, and disable
1599	 * it if we appear to be running in a VM.  This avoids touching all
1600	 * pages unnecessarily, which doesn't matter on real hardware but is
1601	 * bad for shared VM hosts.  Use a general name so that
1602	 * one could eventually do more with the code than just disable it.
1603	 */
1604	memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
1605	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
1606
1607	/*
1608	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1609	 * in the system.
1610	 */
1611	if (Maxmem > atop(physmap[physmap_idx + 1]))
1612		Maxmem = atop(physmap[physmap_idx + 1]);
1613
1614	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1615	    (boothowto & RB_VERBOSE))
1616		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1617
1618	/* call pmap initialization to make new kernel address space */
1619	pmap_bootstrap(&first);
1620
1621	/*
1622	 * Size up each available chunk of physical memory.
1623	 *
1624	 * XXX Some BIOSes corrupt low 64KB between suspend and resume.
1625	 * By default, mask off the first 16 pages unless we appear to be
1626	 * running in a VM.
1627	 */
1628	physmem_start = (vm_guest > VM_GUEST_NO ? 1 : 16) << PAGE_SHIFT;
1629	TUNABLE_ULONG_FETCH("hw.physmem.start", &physmem_start);
1630	if (physmem_start < PAGE_SIZE)
1631		physmap[0] = PAGE_SIZE;
1632	else if (physmem_start >= physmap[1])
1633		physmap[0] = round_page(physmap[1] - PAGE_SIZE);
1634	else
1635		physmap[0] = round_page(physmem_start);
1636	pa_indx = 0;
1637	da_indx = 1;
1638	phys_avail[pa_indx++] = physmap[0];
1639	phys_avail[pa_indx] = physmap[0];
1640	dump_avail[da_indx] = physmap[0];
1641	pte = CMAP1;
1642
1643	/*
1644	 * Get dcons buffer address
1645	 */
1646	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1647	    getenv_quad("dcons.size", &dcons_size) == 0)
1648		dcons_addr = 0;
1649
1650	/*
1651	 * physmap is in bytes, so when converting to page boundaries,
1652	 * round up the start address and round down the end address.
1653	 */
1654	for (i = 0; i <= physmap_idx; i += 2) {
1655		vm_paddr_t end;
1656
1657		end = ptoa((vm_paddr_t)Maxmem);
1658		if (physmap[i + 1] < end)
1659			end = trunc_page(physmap[i + 1]);
1660		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1661			int tmp, page_bad, full;
1662			int *ptr = (int *)CADDR1;
1663
1664			full = FALSE;
1665			/*
1666			 * block out kernel memory as not available.
1667			 */
1668			if (pa >= (vm_paddr_t)kernphys && pa < first)
1669				goto do_dump_avail;
1670
1671			/*
1672			 * block out dcons buffer
1673			 */
1674			if (dcons_addr > 0
1675			    && pa >= trunc_page(dcons_addr)
1676			    && pa < dcons_addr + dcons_size)
1677				goto do_dump_avail;
1678
1679			page_bad = FALSE;
1680			if (memtest == 0)
1681				goto skip_memtest;
1682
1683			/*
1684			 * map page into kernel: valid, read/write,non-cacheable
1685			 */
1686			*pte = pa | PG_V | PG_RW | PG_NC_PWT | PG_NC_PCD;
1687			invltlb();
1688
1689			tmp = *(int *)ptr;
1690			/*
1691			 * Test for alternating 1's and 0's
1692			 */
1693			*(volatile int *)ptr = 0xaaaaaaaa;
1694			if (*(volatile int *)ptr != 0xaaaaaaaa)
1695				page_bad = TRUE;
1696			/*
1697			 * Test for alternating 0's and 1's
1698			 */
1699			*(volatile int *)ptr = 0x55555555;
1700			if (*(volatile int *)ptr != 0x55555555)
1701				page_bad = TRUE;
1702			/*
1703			 * Test for all 1's
1704			 */
1705			*(volatile int *)ptr = 0xffffffff;
1706			if (*(volatile int *)ptr != 0xffffffff)
1707				page_bad = TRUE;
1708			/*
1709			 * Test for all 0's
1710			 */
1711			*(volatile int *)ptr = 0x0;
1712			if (*(volatile int *)ptr != 0x0)
1713				page_bad = TRUE;
1714			/*
1715			 * Restore original value.
1716			 */
1717			*(int *)ptr = tmp;
1718
1719skip_memtest:
1720			/*
1721			 * Adjust array of valid/good pages.
1722			 */
1723			if (page_bad == TRUE)
1724				continue;
1725			/*
1726			 * If this good page is a continuation of the
1727			 * previous set of good pages, then just increase
1728			 * the end pointer. Otherwise start a new chunk.
1729			 * Note that "end" points one higher than end,
1730			 * making the range >= start and < end.
1731			 * If we're also doing a speculative memory
1732			 * test and we at or past the end, bump up Maxmem
1733			 * so that we keep going. The first bad page
1734			 * will terminate the loop.
1735			 */
1736			if (phys_avail[pa_indx] == pa) {
1737				phys_avail[pa_indx] += PAGE_SIZE;
1738			} else {
1739				pa_indx++;
1740				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1741					printf(
1742		"Too many holes in the physical address space, giving up\n");
1743					pa_indx--;
1744					full = TRUE;
1745					goto do_dump_avail;
1746				}
1747				phys_avail[pa_indx++] = pa;	/* start */
1748				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1749			}
1750			physmem++;
1751do_dump_avail:
1752			if (dump_avail[da_indx] == pa) {
1753				dump_avail[da_indx] += PAGE_SIZE;
1754			} else {
1755				da_indx++;
1756				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1757					da_indx--;
1758					goto do_next;
1759				}
1760				dump_avail[da_indx++] = pa; /* start */
1761				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1762			}
1763do_next:
1764			if (full)
1765				break;
1766		}
1767	}
1768	*pte = 0;
1769	invltlb();
1770
1771	/*
1772	 * XXX
1773	 * The last chunk must contain at least one page plus the message
1774	 * buffer to avoid complicating other code (message buffer address
1775	 * calculation, etc.).
1776	 */
1777	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1778	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
1779		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1780		phys_avail[pa_indx--] = 0;
1781		phys_avail[pa_indx--] = 0;
1782	}
1783
1784	Maxmem = atop(phys_avail[pa_indx]);
1785
1786	/* Trim off space for the message buffer. */
1787	phys_avail[pa_indx] -= round_page(msgbufsize);
1788
1789	/* Map the message buffer. */
1790	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
1791}
1792
1793u_int64_t
1794hammer_time(u_int64_t modulep, u_int64_t physfree)
1795{
1796	caddr_t kmdp;
1797	int gsel_tss, x;
1798	struct pcpu *pc;
1799	struct nmi_pcpu *np;
1800	struct xstate_hdr *xhdr;
1801	u_int64_t msr;
1802	char *env;
1803	size_t kstack0_sz;
1804
1805	thread0.td_kstack = physfree + KERNBASE;
1806	thread0.td_kstack_pages = KSTACK_PAGES;
1807	kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
1808	bzero((void *)thread0.td_kstack, kstack0_sz);
1809	physfree += kstack0_sz;
1810
1811	/*
1812 	 * This may be done better later if it gets more high level
1813 	 * components in it. If so just link td->td_proc here.
1814	 */
1815	proc_linkup0(&proc0, &thread0);
1816
1817	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1818	preload_bootstrap_relocate(KERNBASE);
1819	kmdp = preload_search_by_type("elf kernel");
1820	if (kmdp == NULL)
1821		kmdp = preload_search_by_type("elf64 kernel");
1822	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1823	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1824#ifdef DDB
1825	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1826	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1827#endif
1828
1829	/* Init basic tunables, hz etc */
1830	init_param1();
1831
1832	/*
1833	 * make gdt memory segments
1834	 */
1835	for (x = 0; x < NGDT; x++) {
1836		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1837		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1838			ssdtosd(&gdt_segs[x], &gdt[x]);
1839	}
1840	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1841	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1842	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1843
1844	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1845	r_gdt.rd_base =  (long) gdt;
1846	lgdt(&r_gdt);
1847	pc = &__pcpu[0];
1848
1849	wrmsr(MSR_FSBASE, 0);		/* User value */
1850	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1851	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1852
1853	pcpu_init(pc, 0, sizeof(struct pcpu));
1854	dpcpu_init((void *)(physfree + KERNBASE), 0);
1855	physfree += DPCPU_SIZE;
1856	PCPU_SET(prvspace, pc);
1857	PCPU_SET(curthread, &thread0);
1858	PCPU_SET(tssp, &common_tss[0]);
1859	PCPU_SET(commontssp, &common_tss[0]);
1860	PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1861	PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1862	PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1863	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1864
1865	/*
1866	 * Initialize mutexes.
1867	 *
1868	 * icu_lock: in order to allow an interrupt to occur in a critical
1869	 * 	     section, to set pcpu->ipending (etc...) properly, we
1870	 *	     must be able to get the icu lock, so it can't be
1871	 *	     under witness.
1872	 */
1873	mutex_init();
1874	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1875	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1876
1877	/* exceptions */
1878	for (x = 0; x < NIDT; x++)
1879		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1880	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1881	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1882	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1883 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1884	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1885	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1886	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1887	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1888	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1889	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1890	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1891	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1892	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1893	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1894	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1895	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1896	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1897	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1898	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1899#ifdef KDTRACE_HOOKS
1900	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
1901#endif
1902#ifdef XENHVM
1903	setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYSIGT, SEL_UPL, 0);
1904#endif
1905
1906	r_idt.rd_limit = sizeof(idt0) - 1;
1907	r_idt.rd_base = (long) idt;
1908	lidt(&r_idt);
1909
1910	/*
1911	 * Initialize the i8254 before the console so that console
1912	 * initialization can use DELAY().
1913	 */
1914	i8254_init();
1915
1916	/*
1917	 * Use vt(4) by default for UEFI boot (during the sc(4)/vt(4)
1918	 * transition).
1919	 */
1920	if (kmdp != NULL && preload_search_info(kmdp,
1921	    MODINFO_METADATA | MODINFOMD_EFI_MAP) != NULL)
1922		vty_set_preferred(VTY_VT);
1923
1924	/*
1925	 * Initialize the console before we print anything out.
1926	 */
1927	cninit();
1928
1929#ifdef DEV_ISA
1930#ifdef DEV_ATPIC
1931	elcr_probe();
1932	atpic_startup();
1933#else
1934	/* Reset and mask the atpics and leave them shut down. */
1935	atpic_reset();
1936
1937	/*
1938	 * Point the ICU spurious interrupt vectors at the APIC spurious
1939	 * interrupt handler.
1940	 */
1941	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1942	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1943#endif
1944#else
1945#error "have you forgotten the isa device?";
1946#endif
1947
1948	kdb_init();
1949
1950#ifdef KDB
1951	if (boothowto & RB_KDB)
1952		kdb_enter(KDB_WHY_BOOTFLAGS,
1953		    "Boot flags requested debugger");
1954#endif
1955
1956	identify_cpu();		/* Final stage of CPU initialization */
1957	initializecpu();	/* Initialize CPU registers */
1958	initializecpucache();
1959
1960	/* doublefault stack space, runs on ist1 */
1961	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1962
1963	/*
1964	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1965	 * above the start of the ist2 stack.
1966	 */
1967	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1968	np->np_pcpu = (register_t) pc;
1969	common_tss[0].tss_ist2 = (long) np;
1970
1971	/* Set the IO permission bitmap (empty due to tss seg limit) */
1972	common_tss[0].tss_iobase = sizeof(struct amd64tss) +
1973	    IOPAGES * PAGE_SIZE;
1974
1975	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1976	ltr(gsel_tss);
1977
1978	/* Set up the fast syscall stuff */
1979	msr = rdmsr(MSR_EFER) | EFER_SCE;
1980	wrmsr(MSR_EFER, msr);
1981	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1982	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1983	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1984	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1985	wrmsr(MSR_STAR, msr);
1986	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1987
1988	getmemsize(kmdp, physfree);
1989	init_param2(physmem);
1990
1991	/* now running on new page tables, configured,and u/iom is accessible */
1992
1993	msgbufinit(msgbufp, msgbufsize);
1994	fpuinit();
1995
1996	/*
1997	 * Set up thread0 pcb after fpuinit calculated pcb + fpu save
1998	 * area size.  Zero out the extended state header in fpu save
1999	 * area.
2000	 */
2001	thread0.td_pcb = get_pcb_td(&thread0);
2002	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
2003	if (use_xsave) {
2004		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
2005		    1);
2006		xhdr->xstate_bv = xsave_mask;
2007	}
2008	/* make an initial tss so cpu can get interrupt stack on syscall! */
2009	common_tss[0].tss_rsp0 = (vm_offset_t)thread0.td_pcb;
2010	/* Ensure the stack is aligned to 16 bytes */
2011	common_tss[0].tss_rsp0 &= ~0xFul;
2012	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
2013	PCPU_SET(curpcb, thread0.td_pcb);
2014
2015	/* transfer to user mode */
2016
2017	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2018	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2019	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2020	_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
2021	_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
2022
2023	load_ds(_udatasel);
2024	load_es(_udatasel);
2025	load_fs(_ufssel);
2026
2027	/* setup proc 0's pcb */
2028	thread0.td_pcb->pcb_flags = 0;
2029	thread0.td_pcb->pcb_cr3 = KPML4phys; /* PCID 0 is reserved for kernel */
2030	thread0.td_frame = &proc0_tf;
2031
2032        env = getenv("kernelname");
2033	if (env != NULL)
2034		strlcpy(kernelname, env, sizeof(kernelname));
2035
2036	cpu_probe_amdc1e();
2037
2038#ifdef FDT
2039	x86_init_fdt();
2040#endif
2041
2042	/* Location of kernel stack for locore */
2043	return ((u_int64_t)thread0.td_pcb);
2044}
2045
2046void
2047cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
2048{
2049
2050	pcpu->pc_acpi_id = 0xffffffff;
2051}
2052
2053static int
2054smap_sysctl_handler(SYSCTL_HANDLER_ARGS)
2055{
2056	struct bios_smap *smapbase;
2057	struct bios_smap_xattr smap;
2058	caddr_t kmdp;
2059	uint32_t *smapattr;
2060	int count, error, i;
2061
2062	/* Retrieve the system memory map from the loader. */
2063	kmdp = preload_search_by_type("elf kernel");
2064	if (kmdp == NULL)
2065		kmdp = preload_search_by_type("elf64 kernel");
2066	smapbase = (struct bios_smap *)preload_search_info(kmdp,
2067	    MODINFO_METADATA | MODINFOMD_SMAP);
2068	if (smapbase == NULL)
2069		return (0);
2070	smapattr = (uint32_t *)preload_search_info(kmdp,
2071	    MODINFO_METADATA | MODINFOMD_SMAP_XATTR);
2072	count = *((uint32_t *)smapbase - 1) / sizeof(*smapbase);
2073	error = 0;
2074	for (i = 0; i < count; i++) {
2075		smap.base = smapbase[i].base;
2076		smap.length = smapbase[i].length;
2077		smap.type = smapbase[i].type;
2078		if (smapattr != NULL)
2079			smap.xattr = smapattr[i];
2080		else
2081			smap.xattr = 0;
2082		error = SYSCTL_OUT(req, &smap, sizeof(smap));
2083	}
2084	return (error);
2085}
2086SYSCTL_PROC(_machdep, OID_AUTO, smap, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
2087    smap_sysctl_handler, "S,bios_smap_xattr", "Raw BIOS SMAP data");
2088
2089static int
2090efi_map_sysctl_handler(SYSCTL_HANDLER_ARGS)
2091{
2092	struct efi_map_header *efihdr;
2093	caddr_t kmdp;
2094	uint32_t efisize;
2095
2096	kmdp = preload_search_by_type("elf kernel");
2097	if (kmdp == NULL)
2098		kmdp = preload_search_by_type("elf64 kernel");
2099	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
2100	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
2101	if (efihdr == NULL)
2102		return (0);
2103	efisize = *((uint32_t *)efihdr - 1);
2104	return (SYSCTL_OUT(req, efihdr, efisize));
2105}
2106SYSCTL_PROC(_machdep, OID_AUTO, efi_map, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
2107    efi_map_sysctl_handler, "S,efi_map_header", "Raw EFI Memory Map");
2108
2109void
2110spinlock_enter(void)
2111{
2112	struct thread *td;
2113	register_t flags;
2114
2115	td = curthread;
2116	if (td->td_md.md_spinlock_count == 0) {
2117		flags = intr_disable();
2118		td->td_md.md_spinlock_count = 1;
2119		td->td_md.md_saved_flags = flags;
2120	} else
2121		td->td_md.md_spinlock_count++;
2122	critical_enter();
2123}
2124
2125void
2126spinlock_exit(void)
2127{
2128	struct thread *td;
2129	register_t flags;
2130
2131	td = curthread;
2132	critical_exit();
2133	flags = td->td_md.md_saved_flags;
2134	td->td_md.md_spinlock_count--;
2135	if (td->td_md.md_spinlock_count == 0)
2136		intr_restore(flags);
2137}
2138
2139/*
2140 * Construct a PCB from a trapframe. This is called from kdb_trap() where
2141 * we want to start a backtrace from the function that caused us to enter
2142 * the debugger. We have the context in the trapframe, but base the trace
2143 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
2144 * enough for a backtrace.
2145 */
2146void
2147makectx(struct trapframe *tf, struct pcb *pcb)
2148{
2149
2150	pcb->pcb_r12 = tf->tf_r12;
2151	pcb->pcb_r13 = tf->tf_r13;
2152	pcb->pcb_r14 = tf->tf_r14;
2153	pcb->pcb_r15 = tf->tf_r15;
2154	pcb->pcb_rbp = tf->tf_rbp;
2155	pcb->pcb_rbx = tf->tf_rbx;
2156	pcb->pcb_rip = tf->tf_rip;
2157	pcb->pcb_rsp = tf->tf_rsp;
2158}
2159
2160int
2161ptrace_set_pc(struct thread *td, unsigned long addr)
2162{
2163
2164	td->td_frame->tf_rip = addr;
2165	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
2166	return (0);
2167}
2168
2169int
2170ptrace_single_step(struct thread *td)
2171{
2172	td->td_frame->tf_rflags |= PSL_T;
2173	return (0);
2174}
2175
2176int
2177ptrace_clear_single_step(struct thread *td)
2178{
2179	td->td_frame->tf_rflags &= ~PSL_T;
2180	return (0);
2181}
2182
2183int
2184fill_regs(struct thread *td, struct reg *regs)
2185{
2186	struct trapframe *tp;
2187
2188	tp = td->td_frame;
2189	return (fill_frame_regs(tp, regs));
2190}
2191
2192int
2193fill_frame_regs(struct trapframe *tp, struct reg *regs)
2194{
2195	regs->r_r15 = tp->tf_r15;
2196	regs->r_r14 = tp->tf_r14;
2197	regs->r_r13 = tp->tf_r13;
2198	regs->r_r12 = tp->tf_r12;
2199	regs->r_r11 = tp->tf_r11;
2200	regs->r_r10 = tp->tf_r10;
2201	regs->r_r9  = tp->tf_r9;
2202	regs->r_r8  = tp->tf_r8;
2203	regs->r_rdi = tp->tf_rdi;
2204	regs->r_rsi = tp->tf_rsi;
2205	regs->r_rbp = tp->tf_rbp;
2206	regs->r_rbx = tp->tf_rbx;
2207	regs->r_rdx = tp->tf_rdx;
2208	regs->r_rcx = tp->tf_rcx;
2209	regs->r_rax = tp->tf_rax;
2210	regs->r_rip = tp->tf_rip;
2211	regs->r_cs = tp->tf_cs;
2212	regs->r_rflags = tp->tf_rflags;
2213	regs->r_rsp = tp->tf_rsp;
2214	regs->r_ss = tp->tf_ss;
2215	if (tp->tf_flags & TF_HASSEGS) {
2216		regs->r_ds = tp->tf_ds;
2217		regs->r_es = tp->tf_es;
2218		regs->r_fs = tp->tf_fs;
2219		regs->r_gs = tp->tf_gs;
2220	} else {
2221		regs->r_ds = 0;
2222		regs->r_es = 0;
2223		regs->r_fs = 0;
2224		regs->r_gs = 0;
2225	}
2226	return (0);
2227}
2228
2229int
2230set_regs(struct thread *td, struct reg *regs)
2231{
2232	struct trapframe *tp;
2233	register_t rflags;
2234
2235	tp = td->td_frame;
2236	rflags = regs->r_rflags & 0xffffffff;
2237	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
2238		return (EINVAL);
2239	tp->tf_r15 = regs->r_r15;
2240	tp->tf_r14 = regs->r_r14;
2241	tp->tf_r13 = regs->r_r13;
2242	tp->tf_r12 = regs->r_r12;
2243	tp->tf_r11 = regs->r_r11;
2244	tp->tf_r10 = regs->r_r10;
2245	tp->tf_r9  = regs->r_r9;
2246	tp->tf_r8  = regs->r_r8;
2247	tp->tf_rdi = regs->r_rdi;
2248	tp->tf_rsi = regs->r_rsi;
2249	tp->tf_rbp = regs->r_rbp;
2250	tp->tf_rbx = regs->r_rbx;
2251	tp->tf_rdx = regs->r_rdx;
2252	tp->tf_rcx = regs->r_rcx;
2253	tp->tf_rax = regs->r_rax;
2254	tp->tf_rip = regs->r_rip;
2255	tp->tf_cs = regs->r_cs;
2256	tp->tf_rflags = rflags;
2257	tp->tf_rsp = regs->r_rsp;
2258	tp->tf_ss = regs->r_ss;
2259	if (0) {	/* XXXKIB */
2260		tp->tf_ds = regs->r_ds;
2261		tp->tf_es = regs->r_es;
2262		tp->tf_fs = regs->r_fs;
2263		tp->tf_gs = regs->r_gs;
2264		tp->tf_flags = TF_HASSEGS;
2265	}
2266	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
2267	return (0);
2268}
2269
2270/* XXX check all this stuff! */
2271/* externalize from sv_xmm */
2272static void
2273fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
2274{
2275	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2276	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2277	int i;
2278
2279	/* pcb -> fpregs */
2280	bzero(fpregs, sizeof(*fpregs));
2281
2282	/* FPU control/status */
2283	penv_fpreg->en_cw = penv_xmm->en_cw;
2284	penv_fpreg->en_sw = penv_xmm->en_sw;
2285	penv_fpreg->en_tw = penv_xmm->en_tw;
2286	penv_fpreg->en_opcode = penv_xmm->en_opcode;
2287	penv_fpreg->en_rip = penv_xmm->en_rip;
2288	penv_fpreg->en_rdp = penv_xmm->en_rdp;
2289	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
2290	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
2291
2292	/* FPU registers */
2293	for (i = 0; i < 8; ++i)
2294		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
2295
2296	/* SSE registers */
2297	for (i = 0; i < 16; ++i)
2298		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
2299}
2300
2301/* internalize from fpregs into sv_xmm */
2302static void
2303set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
2304{
2305	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2306	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2307	int i;
2308
2309	/* fpregs -> pcb */
2310	/* FPU control/status */
2311	penv_xmm->en_cw = penv_fpreg->en_cw;
2312	penv_xmm->en_sw = penv_fpreg->en_sw;
2313	penv_xmm->en_tw = penv_fpreg->en_tw;
2314	penv_xmm->en_opcode = penv_fpreg->en_opcode;
2315	penv_xmm->en_rip = penv_fpreg->en_rip;
2316	penv_xmm->en_rdp = penv_fpreg->en_rdp;
2317	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
2318	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
2319
2320	/* FPU registers */
2321	for (i = 0; i < 8; ++i)
2322		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
2323
2324	/* SSE registers */
2325	for (i = 0; i < 16; ++i)
2326		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
2327}
2328
2329/* externalize from td->pcb */
2330int
2331fill_fpregs(struct thread *td, struct fpreg *fpregs)
2332{
2333
2334	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
2335	    P_SHOULDSTOP(td->td_proc),
2336	    ("not suspended thread %p", td));
2337	fpugetregs(td);
2338	fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs);
2339	return (0);
2340}
2341
2342/* internalize to td->pcb */
2343int
2344set_fpregs(struct thread *td, struct fpreg *fpregs)
2345{
2346
2347	set_fpregs_xmm(fpregs, get_pcb_user_save_td(td));
2348	fpuuserinited(td);
2349	return (0);
2350}
2351
2352/*
2353 * Get machine context.
2354 */
2355int
2356get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
2357{
2358	struct pcb *pcb;
2359	struct trapframe *tp;
2360
2361	pcb = td->td_pcb;
2362	tp = td->td_frame;
2363	PROC_LOCK(curthread->td_proc);
2364	mcp->mc_onstack = sigonstack(tp->tf_rsp);
2365	PROC_UNLOCK(curthread->td_proc);
2366	mcp->mc_r15 = tp->tf_r15;
2367	mcp->mc_r14 = tp->tf_r14;
2368	mcp->mc_r13 = tp->tf_r13;
2369	mcp->mc_r12 = tp->tf_r12;
2370	mcp->mc_r11 = tp->tf_r11;
2371	mcp->mc_r10 = tp->tf_r10;
2372	mcp->mc_r9  = tp->tf_r9;
2373	mcp->mc_r8  = tp->tf_r8;
2374	mcp->mc_rdi = tp->tf_rdi;
2375	mcp->mc_rsi = tp->tf_rsi;
2376	mcp->mc_rbp = tp->tf_rbp;
2377	mcp->mc_rbx = tp->tf_rbx;
2378	mcp->mc_rcx = tp->tf_rcx;
2379	mcp->mc_rflags = tp->tf_rflags;
2380	if (flags & GET_MC_CLEAR_RET) {
2381		mcp->mc_rax = 0;
2382		mcp->mc_rdx = 0;
2383		mcp->mc_rflags &= ~PSL_C;
2384	} else {
2385		mcp->mc_rax = tp->tf_rax;
2386		mcp->mc_rdx = tp->tf_rdx;
2387	}
2388	mcp->mc_rip = tp->tf_rip;
2389	mcp->mc_cs = tp->tf_cs;
2390	mcp->mc_rsp = tp->tf_rsp;
2391	mcp->mc_ss = tp->tf_ss;
2392	mcp->mc_ds = tp->tf_ds;
2393	mcp->mc_es = tp->tf_es;
2394	mcp->mc_fs = tp->tf_fs;
2395	mcp->mc_gs = tp->tf_gs;
2396	mcp->mc_flags = tp->tf_flags;
2397	mcp->mc_len = sizeof(*mcp);
2398	get_fpcontext(td, mcp, NULL, 0);
2399	mcp->mc_fsbase = pcb->pcb_fsbase;
2400	mcp->mc_gsbase = pcb->pcb_gsbase;
2401	mcp->mc_xfpustate = 0;
2402	mcp->mc_xfpustate_len = 0;
2403	bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
2404	return (0);
2405}
2406
2407/*
2408 * Set machine context.
2409 *
2410 * However, we don't set any but the user modifiable flags, and we won't
2411 * touch the cs selector.
2412 */
2413int
2414set_mcontext(struct thread *td, const mcontext_t *mcp)
2415{
2416	struct pcb *pcb;
2417	struct trapframe *tp;
2418	char *xfpustate;
2419	long rflags;
2420	int ret;
2421
2422	pcb = td->td_pcb;
2423	tp = td->td_frame;
2424	if (mcp->mc_len != sizeof(*mcp) ||
2425	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2426		return (EINVAL);
2427	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2428	    (tp->tf_rflags & ~PSL_USERCHANGE);
2429	if (mcp->mc_flags & _MC_HASFPXSTATE) {
2430		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
2431		    sizeof(struct savefpu))
2432			return (EINVAL);
2433		xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
2434		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
2435		    mcp->mc_xfpustate_len);
2436		if (ret != 0)
2437			return (ret);
2438	} else
2439		xfpustate = NULL;
2440	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
2441	if (ret != 0)
2442		return (ret);
2443	tp->tf_r15 = mcp->mc_r15;
2444	tp->tf_r14 = mcp->mc_r14;
2445	tp->tf_r13 = mcp->mc_r13;
2446	tp->tf_r12 = mcp->mc_r12;
2447	tp->tf_r11 = mcp->mc_r11;
2448	tp->tf_r10 = mcp->mc_r10;
2449	tp->tf_r9  = mcp->mc_r9;
2450	tp->tf_r8  = mcp->mc_r8;
2451	tp->tf_rdi = mcp->mc_rdi;
2452	tp->tf_rsi = mcp->mc_rsi;
2453	tp->tf_rbp = mcp->mc_rbp;
2454	tp->tf_rbx = mcp->mc_rbx;
2455	tp->tf_rdx = mcp->mc_rdx;
2456	tp->tf_rcx = mcp->mc_rcx;
2457	tp->tf_rax = mcp->mc_rax;
2458	tp->tf_rip = mcp->mc_rip;
2459	tp->tf_rflags = rflags;
2460	tp->tf_rsp = mcp->mc_rsp;
2461	tp->tf_ss = mcp->mc_ss;
2462	tp->tf_flags = mcp->mc_flags;
2463	if (tp->tf_flags & TF_HASSEGS) {
2464		tp->tf_ds = mcp->mc_ds;
2465		tp->tf_es = mcp->mc_es;
2466		tp->tf_fs = mcp->mc_fs;
2467		tp->tf_gs = mcp->mc_gs;
2468	}
2469	if (mcp->mc_flags & _MC_HASBASES) {
2470		pcb->pcb_fsbase = mcp->mc_fsbase;
2471		pcb->pcb_gsbase = mcp->mc_gsbase;
2472	}
2473	set_pcb_flags(pcb, PCB_FULL_IRET);
2474	return (0);
2475}
2476
2477static void
2478get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
2479    size_t xfpusave_len)
2480{
2481	size_t max_len, len;
2482
2483	mcp->mc_ownedfp = fpugetregs(td);
2484	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
2485	    sizeof(mcp->mc_fpstate));
2486	mcp->mc_fpformat = fpuformat();
2487	if (!use_xsave || xfpusave_len == 0)
2488		return;
2489	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
2490	len = xfpusave_len;
2491	if (len > max_len) {
2492		len = max_len;
2493		bzero(xfpusave + max_len, len - max_len);
2494	}
2495	mcp->mc_flags |= _MC_HASFPXSTATE;
2496	mcp->mc_xfpustate_len = len;
2497	bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
2498}
2499
2500static int
2501set_fpcontext(struct thread *td, const mcontext_t *mcp, char *xfpustate,
2502    size_t xfpustate_len)
2503{
2504	struct savefpu *fpstate;
2505	int error;
2506
2507	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2508		return (0);
2509	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2510		return (EINVAL);
2511	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
2512		/* We don't care what state is left in the FPU or PCB. */
2513		fpstate_drop(td);
2514		error = 0;
2515	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2516	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2517		fpstate = (struct savefpu *)&mcp->mc_fpstate;
2518		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2519		error = fpusetregs(td, fpstate, xfpustate, xfpustate_len);
2520	} else
2521		return (EINVAL);
2522	return (error);
2523}
2524
2525void
2526fpstate_drop(struct thread *td)
2527{
2528
2529	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
2530	critical_enter();
2531	if (PCPU_GET(fpcurthread) == td)
2532		fpudrop();
2533	/*
2534	 * XXX force a full drop of the fpu.  The above only drops it if we
2535	 * owned it.
2536	 *
2537	 * XXX I don't much like fpugetuserregs()'s semantics of doing a full
2538	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2539	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2540	 * sendsig() is the only caller of fpugetuserregs()... perhaps we just
2541	 * have too many layers.
2542	 */
2543	clear_pcb_flags(curthread->td_pcb,
2544	    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
2545	critical_exit();
2546}
2547
2548int
2549fill_dbregs(struct thread *td, struct dbreg *dbregs)
2550{
2551	struct pcb *pcb;
2552
2553	if (td == NULL) {
2554		dbregs->dr[0] = rdr0();
2555		dbregs->dr[1] = rdr1();
2556		dbregs->dr[2] = rdr2();
2557		dbregs->dr[3] = rdr3();
2558		dbregs->dr[6] = rdr6();
2559		dbregs->dr[7] = rdr7();
2560	} else {
2561		pcb = td->td_pcb;
2562		dbregs->dr[0] = pcb->pcb_dr0;
2563		dbregs->dr[1] = pcb->pcb_dr1;
2564		dbregs->dr[2] = pcb->pcb_dr2;
2565		dbregs->dr[3] = pcb->pcb_dr3;
2566		dbregs->dr[6] = pcb->pcb_dr6;
2567		dbregs->dr[7] = pcb->pcb_dr7;
2568	}
2569	dbregs->dr[4] = 0;
2570	dbregs->dr[5] = 0;
2571	dbregs->dr[8] = 0;
2572	dbregs->dr[9] = 0;
2573	dbregs->dr[10] = 0;
2574	dbregs->dr[11] = 0;
2575	dbregs->dr[12] = 0;
2576	dbregs->dr[13] = 0;
2577	dbregs->dr[14] = 0;
2578	dbregs->dr[15] = 0;
2579	return (0);
2580}
2581
2582int
2583set_dbregs(struct thread *td, struct dbreg *dbregs)
2584{
2585	struct pcb *pcb;
2586	int i;
2587
2588	if (td == NULL) {
2589		load_dr0(dbregs->dr[0]);
2590		load_dr1(dbregs->dr[1]);
2591		load_dr2(dbregs->dr[2]);
2592		load_dr3(dbregs->dr[3]);
2593		load_dr6(dbregs->dr[6]);
2594		load_dr7(dbregs->dr[7]);
2595	} else {
2596		/*
2597		 * Don't let an illegal value for dr7 get set.  Specifically,
2598		 * check for undefined settings.  Setting these bit patterns
2599		 * result in undefined behaviour and can lead to an unexpected
2600		 * TRCTRAP or a general protection fault right here.
2601		 * Upper bits of dr6 and dr7 must not be set
2602		 */
2603		for (i = 0; i < 4; i++) {
2604			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2605				return (EINVAL);
2606			if (td->td_frame->tf_cs == _ucode32sel &&
2607			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2608				return (EINVAL);
2609		}
2610		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2611		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2612			return (EINVAL);
2613
2614		pcb = td->td_pcb;
2615
2616		/*
2617		 * Don't let a process set a breakpoint that is not within the
2618		 * process's address space.  If a process could do this, it
2619		 * could halt the system by setting a breakpoint in the kernel
2620		 * (if ddb was enabled).  Thus, we need to check to make sure
2621		 * that no breakpoints are being enabled for addresses outside
2622		 * process's address space.
2623		 *
2624		 * XXX - what about when the watched area of the user's
2625		 * address space is written into from within the kernel
2626		 * ... wouldn't that still cause a breakpoint to be generated
2627		 * from within kernel mode?
2628		 */
2629
2630		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2631			/* dr0 is enabled */
2632			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2633				return (EINVAL);
2634		}
2635		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2636			/* dr1 is enabled */
2637			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2638				return (EINVAL);
2639		}
2640		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2641			/* dr2 is enabled */
2642			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2643				return (EINVAL);
2644		}
2645		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2646			/* dr3 is enabled */
2647			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2648				return (EINVAL);
2649		}
2650
2651		pcb->pcb_dr0 = dbregs->dr[0];
2652		pcb->pcb_dr1 = dbregs->dr[1];
2653		pcb->pcb_dr2 = dbregs->dr[2];
2654		pcb->pcb_dr3 = dbregs->dr[3];
2655		pcb->pcb_dr6 = dbregs->dr[6];
2656		pcb->pcb_dr7 = dbregs->dr[7];
2657
2658		set_pcb_flags(pcb, PCB_DBREGS);
2659	}
2660
2661	return (0);
2662}
2663
2664void
2665reset_dbregs(void)
2666{
2667
2668	load_dr7(0);	/* Turn off the control bits first */
2669	load_dr0(0);
2670	load_dr1(0);
2671	load_dr2(0);
2672	load_dr3(0);
2673	load_dr6(0);
2674}
2675
2676/*
2677 * Return > 0 if a hardware breakpoint has been hit, and the
2678 * breakpoint was in user space.  Return 0, otherwise.
2679 */
2680int
2681user_dbreg_trap(void)
2682{
2683        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2684        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2685        int nbp;            /* number of breakpoints that triggered */
2686        caddr_t addr[4];    /* breakpoint addresses */
2687        int i;
2688
2689        dr7 = rdr7();
2690        if ((dr7 & 0x000000ff) == 0) {
2691                /*
2692                 * all GE and LE bits in the dr7 register are zero,
2693                 * thus the trap couldn't have been caused by the
2694                 * hardware debug registers
2695                 */
2696                return 0;
2697        }
2698
2699        nbp = 0;
2700        dr6 = rdr6();
2701        bp = dr6 & 0x0000000f;
2702
2703        if (!bp) {
2704                /*
2705                 * None of the breakpoint bits are set meaning this
2706                 * trap was not caused by any of the debug registers
2707                 */
2708                return 0;
2709        }
2710
2711        /*
2712         * at least one of the breakpoints were hit, check to see
2713         * which ones and if any of them are user space addresses
2714         */
2715
2716        if (bp & 0x01) {
2717                addr[nbp++] = (caddr_t)rdr0();
2718        }
2719        if (bp & 0x02) {
2720                addr[nbp++] = (caddr_t)rdr1();
2721        }
2722        if (bp & 0x04) {
2723                addr[nbp++] = (caddr_t)rdr2();
2724        }
2725        if (bp & 0x08) {
2726                addr[nbp++] = (caddr_t)rdr3();
2727        }
2728
2729        for (i = 0; i < nbp; i++) {
2730                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2731                        /*
2732                         * addr[i] is in user space
2733                         */
2734                        return nbp;
2735                }
2736        }
2737
2738        /*
2739         * None of the breakpoints are in user space.
2740         */
2741        return 0;
2742}
2743
2744#ifdef KDB
2745
2746/*
2747 * Provide inb() and outb() as functions.  They are normally only available as
2748 * inline functions, thus cannot be called from the debugger.
2749 */
2750
2751/* silence compiler warnings */
2752u_char inb_(u_short);
2753void outb_(u_short, u_char);
2754
2755u_char
2756inb_(u_short port)
2757{
2758	return inb(port);
2759}
2760
2761void
2762outb_(u_short port, u_char data)
2763{
2764	outb(port, data);
2765}
2766
2767#endif /* KDB */
2768