machdep.c revision 261275
1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: stable/10/sys/amd64/amd64/machdep.c 261275 2014-01-29 21:23:37Z jhb $");
43
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_mp_watchdog.h"
55#include "opt_perfmon.h"
56#include "opt_platform.h"
57#include "opt_sched.h"
58#include "opt_kdtrace.h"
59
60#include <sys/param.h>
61#include <sys/proc.h>
62#include <sys/systm.h>
63#include <sys/bio.h>
64#include <sys/buf.h>
65#include <sys/bus.h>
66#include <sys/callout.h>
67#include <sys/cons.h>
68#include <sys/cpu.h>
69#include <sys/eventhandler.h>
70#include <sys/exec.h>
71#include <sys/imgact.h>
72#include <sys/kdb.h>
73#include <sys/kernel.h>
74#include <sys/ktr.h>
75#include <sys/linker.h>
76#include <sys/lock.h>
77#include <sys/malloc.h>
78#include <sys/memrange.h>
79#include <sys/msgbuf.h>
80#include <sys/mutex.h>
81#include <sys/pcpu.h>
82#include <sys/ptrace.h>
83#include <sys/reboot.h>
84#include <sys/rwlock.h>
85#include <sys/sched.h>
86#include <sys/signalvar.h>
87#ifdef SMP
88#include <sys/smp.h>
89#endif
90#include <sys/syscallsubr.h>
91#include <sys/sysctl.h>
92#include <sys/sysent.h>
93#include <sys/sysproto.h>
94#include <sys/ucontext.h>
95#include <sys/vmmeter.h>
96
97#include <vm/vm.h>
98#include <vm/vm_extern.h>
99#include <vm/vm_kern.h>
100#include <vm/vm_page.h>
101#include <vm/vm_map.h>
102#include <vm/vm_object.h>
103#include <vm/vm_pager.h>
104#include <vm/vm_param.h>
105
106#ifdef DDB
107#ifndef KDB
108#error KDB must be enabled in order for DDB to work!
109#endif
110#include <ddb/ddb.h>
111#include <ddb/db_sym.h>
112#endif
113
114#include <net/netisr.h>
115
116#include <machine/clock.h>
117#include <machine/cpu.h>
118#include <machine/cputypes.h>
119#include <machine/intr_machdep.h>
120#include <x86/mca.h>
121#include <machine/md_var.h>
122#include <machine/metadata.h>
123#include <machine/mp_watchdog.h>
124#include <machine/pc/bios.h>
125#include <machine/pcb.h>
126#include <machine/proc.h>
127#include <machine/reg.h>
128#include <machine/sigframe.h>
129#include <machine/specialreg.h>
130#ifdef PERFMON
131#include <machine/perfmon.h>
132#endif
133#include <machine/tss.h>
134#ifdef SMP
135#include <machine/smp.h>
136#endif
137#ifdef FDT
138#include <x86/fdt.h>
139#endif
140
141#ifdef DEV_ATPIC
142#include <x86/isa/icu.h>
143#else
144#include <machine/apicvar.h>
145#endif
146
147#include <isa/isareg.h>
148#include <isa/rtc.h>
149
150/* Sanity check for __curthread() */
151CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
152
153extern u_int64_t hammer_time(u_int64_t, u_int64_t);
154
155extern void printcpuinfo(void);	/* XXX header file */
156extern void identify_cpu(void);
157extern void panicifcpuunsupported(void);
158
159#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
160#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
161
162static void cpu_startup(void *);
163static void get_fpcontext(struct thread *td, mcontext_t *mcp,
164    char *xfpusave, size_t xfpusave_len);
165static int  set_fpcontext(struct thread *td, const mcontext_t *mcp,
166    char *xfpustate, size_t xfpustate_len);
167SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
168
169/*
170 * The file "conf/ldscript.amd64" defines the symbol "kernphys".  Its value is
171 * the physical address at which the kernel is loaded.
172 */
173extern char kernphys[];
174#ifdef DDB
175extern vm_offset_t ksym_start, ksym_end;
176#endif
177
178struct msgbuf *msgbufp;
179
180/* Intel ICH registers */
181#define ICH_PMBASE	0x400
182#define ICH_SMI_EN	ICH_PMBASE + 0x30
183
184int	_udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
185
186int cold = 1;
187
188long Maxmem = 0;
189long realmem = 0;
190
191/*
192 * The number of PHYSMAP entries must be one less than the number of
193 * PHYSSEG entries because the PHYSMAP entry that spans the largest
194 * physical address that is accessible by ISA DMA is split into two
195 * PHYSSEG entries.
196 */
197#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
198
199vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
200vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
201
202/* must be 2 less so 0 0 can signal end of chunks */
203#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
204#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
205
206struct kva_md_info kmi;
207
208static struct trapframe proc0_tf;
209struct region_descriptor r_gdt, r_idt;
210
211struct pcpu __pcpu[MAXCPU];
212
213struct mtx icu_lock;
214
215struct mem_range_softc mem_range_softc;
216
217struct mtx dt_lock;	/* lock for GDT and LDT */
218
219void (*vmm_resume_p)(void);
220
221static void
222cpu_startup(dummy)
223	void *dummy;
224{
225	uintmax_t memsize;
226	char *sysenv;
227
228	/*
229	 * On MacBooks, we need to disallow the legacy USB circuit to
230	 * generate an SMI# because this can cause several problems,
231	 * namely: incorrect CPU frequency detection and failure to
232	 * start the APs.
233	 * We do this by disabling a bit in the SMI_EN (SMI Control and
234	 * Enable register) of the Intel ICH LPC Interface Bridge.
235	 */
236	sysenv = getenv("smbios.system.product");
237	if (sysenv != NULL) {
238		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
239		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
240		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
241		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
242		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
243		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
244			if (bootverbose)
245				printf("Disabling LEGACY_USB_EN bit on "
246				    "Intel ICH.\n");
247			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
248		}
249		freeenv(sysenv);
250	}
251
252	/*
253	 * Good {morning,afternoon,evening,night}.
254	 */
255	startrtclock();
256	printcpuinfo();
257	panicifcpuunsupported();
258#ifdef PERFMON
259	perfmon_init();
260#endif
261
262	/*
263	 * Display physical memory if SMBIOS reports reasonable amount.
264	 */
265	memsize = 0;
266	sysenv = getenv("smbios.memory.enabled");
267	if (sysenv != NULL) {
268		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
269		freeenv(sysenv);
270	}
271	if (memsize < ptoa((uintmax_t)cnt.v_free_count))
272		memsize = ptoa((uintmax_t)Maxmem);
273	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
274	realmem = atop(memsize);
275
276	/*
277	 * Display any holes after the first chunk of extended memory.
278	 */
279	if (bootverbose) {
280		int indx;
281
282		printf("Physical memory chunk(s):\n");
283		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
284			vm_paddr_t size;
285
286			size = phys_avail[indx + 1] - phys_avail[indx];
287			printf(
288			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
289			    (uintmax_t)phys_avail[indx],
290			    (uintmax_t)phys_avail[indx + 1] - 1,
291			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
292		}
293	}
294
295	vm_ksubmap_init(&kmi);
296
297	printf("avail memory = %ju (%ju MB)\n",
298	    ptoa((uintmax_t)cnt.v_free_count),
299	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
300
301	/*
302	 * Set up buffers, so they can be used to read disk labels.
303	 */
304	bufinit();
305	vm_pager_bufferinit();
306
307	cpu_setregs();
308}
309
310/*
311 * Send an interrupt to process.
312 *
313 * Stack is set up to allow sigcode stored
314 * at top to call routine, followed by call
315 * to sigreturn routine below.  After sigreturn
316 * resets the signal mask, the stack, and the
317 * frame pointer, it returns to the user
318 * specified pc, psl.
319 */
320void
321sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
322{
323	struct sigframe sf, *sfp;
324	struct pcb *pcb;
325	struct proc *p;
326	struct thread *td;
327	struct sigacts *psp;
328	char *sp;
329	struct trapframe *regs;
330	char *xfpusave;
331	size_t xfpusave_len;
332	int sig;
333	int oonstack;
334
335	td = curthread;
336	pcb = td->td_pcb;
337	p = td->td_proc;
338	PROC_LOCK_ASSERT(p, MA_OWNED);
339	sig = ksi->ksi_signo;
340	psp = p->p_sigacts;
341	mtx_assert(&psp->ps_mtx, MA_OWNED);
342	regs = td->td_frame;
343	oonstack = sigonstack(regs->tf_rsp);
344
345	if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) {
346		xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu);
347		xfpusave = __builtin_alloca(xfpusave_len);
348	} else {
349		xfpusave_len = 0;
350		xfpusave = NULL;
351	}
352
353	/* Save user context. */
354	bzero(&sf, sizeof(sf));
355	sf.sf_uc.uc_sigmask = *mask;
356	sf.sf_uc.uc_stack = td->td_sigstk;
357	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
358	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
359	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
360	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
361	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
362	get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
363	fpstate_drop(td);
364	sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
365	sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
366	bzero(sf.sf_uc.uc_mcontext.mc_spare,
367	    sizeof(sf.sf_uc.uc_mcontext.mc_spare));
368	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
369
370	/* Allocate space for the signal handler context. */
371	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
372	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
373		sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
374#if defined(COMPAT_43)
375		td->td_sigstk.ss_flags |= SS_ONSTACK;
376#endif
377	} else
378		sp = (char *)regs->tf_rsp - 128;
379	if (xfpusave != NULL) {
380		sp -= xfpusave_len;
381		sp = (char *)((unsigned long)sp & ~0x3Ful);
382		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
383	}
384	sp -= sizeof(struct sigframe);
385	/* Align to 16 bytes. */
386	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
387
388	/* Translate the signal if appropriate. */
389	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
390		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
391
392	/* Build the argument list for the signal handler. */
393	regs->tf_rdi = sig;			/* arg 1 in %rdi */
394	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
395	bzero(&sf.sf_si, sizeof(sf.sf_si));
396	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
397		/* Signal handler installed with SA_SIGINFO. */
398		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
399		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
400
401		/* Fill in POSIX parts */
402		sf.sf_si = ksi->ksi_info;
403		sf.sf_si.si_signo = sig; /* maybe a translated signal */
404		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
405	} else {
406		/* Old FreeBSD-style arguments. */
407		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
408		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
409		sf.sf_ahu.sf_handler = catcher;
410	}
411	mtx_unlock(&psp->ps_mtx);
412	PROC_UNLOCK(p);
413
414	/*
415	 * Copy the sigframe out to the user's stack.
416	 */
417	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
418	    (xfpusave != NULL && copyout(xfpusave,
419	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
420	    != 0)) {
421#ifdef DEBUG
422		printf("process %ld has trashed its stack\n", (long)p->p_pid);
423#endif
424		PROC_LOCK(p);
425		sigexit(td, SIGILL);
426	}
427
428	regs->tf_rsp = (long)sfp;
429	regs->tf_rip = p->p_sysent->sv_sigcode_base;
430	regs->tf_rflags &= ~(PSL_T | PSL_D);
431	regs->tf_cs = _ucodesel;
432	regs->tf_ds = _udatasel;
433	regs->tf_es = _udatasel;
434	regs->tf_fs = _ufssel;
435	regs->tf_gs = _ugssel;
436	regs->tf_flags = TF_HASSEGS;
437	set_pcb_flags(pcb, PCB_FULL_IRET);
438	PROC_LOCK(p);
439	mtx_lock(&psp->ps_mtx);
440}
441
442/*
443 * System call to cleanup state after a signal
444 * has been taken.  Reset signal mask and
445 * stack state from context left by sendsig (above).
446 * Return to previous pc and psl as specified by
447 * context left by sendsig. Check carefully to
448 * make sure that the user has not modified the
449 * state to gain improper privileges.
450 *
451 * MPSAFE
452 */
453int
454sys_sigreturn(td, uap)
455	struct thread *td;
456	struct sigreturn_args /* {
457		const struct __ucontext *sigcntxp;
458	} */ *uap;
459{
460	ucontext_t uc;
461	struct pcb *pcb;
462	struct proc *p;
463	struct trapframe *regs;
464	ucontext_t *ucp;
465	char *xfpustate;
466	size_t xfpustate_len;
467	long rflags;
468	int cs, error, ret;
469	ksiginfo_t ksi;
470
471	pcb = td->td_pcb;
472	p = td->td_proc;
473
474	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
475	if (error != 0) {
476		uprintf("pid %d (%s): sigreturn copyin failed\n",
477		    p->p_pid, td->td_name);
478		return (error);
479	}
480	ucp = &uc;
481	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
482		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
483		    td->td_name, ucp->uc_mcontext.mc_flags);
484		return (EINVAL);
485	}
486	regs = td->td_frame;
487	rflags = ucp->uc_mcontext.mc_rflags;
488	/*
489	 * Don't allow users to change privileged or reserved flags.
490	 */
491	if (!EFL_SECURE(rflags, regs->tf_rflags)) {
492		uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
493		    td->td_name, rflags);
494		return (EINVAL);
495	}
496
497	/*
498	 * Don't allow users to load a valid privileged %cs.  Let the
499	 * hardware check for invalid selectors, excess privilege in
500	 * other selectors, invalid %eip's and invalid %esp's.
501	 */
502	cs = ucp->uc_mcontext.mc_cs;
503	if (!CS_SECURE(cs)) {
504		uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
505		    td->td_name, cs);
506		ksiginfo_init_trap(&ksi);
507		ksi.ksi_signo = SIGBUS;
508		ksi.ksi_code = BUS_OBJERR;
509		ksi.ksi_trapno = T_PROTFLT;
510		ksi.ksi_addr = (void *)regs->tf_rip;
511		trapsignal(td, &ksi);
512		return (EINVAL);
513	}
514
515	if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
516		xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
517		if (xfpustate_len > cpu_max_ext_state_size -
518		    sizeof(struct savefpu)) {
519			uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
520			    p->p_pid, td->td_name, xfpustate_len);
521			return (EINVAL);
522		}
523		xfpustate = __builtin_alloca(xfpustate_len);
524		error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
525		    xfpustate, xfpustate_len);
526		if (error != 0) {
527			uprintf(
528	"pid %d (%s): sigreturn copying xfpustate failed\n",
529			    p->p_pid, td->td_name);
530			return (error);
531		}
532	} else {
533		xfpustate = NULL;
534		xfpustate_len = 0;
535	}
536	ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len);
537	if (ret != 0) {
538		uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
539		    p->p_pid, td->td_name, ret);
540		return (ret);
541	}
542	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
543	pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
544	pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
545
546#if defined(COMPAT_43)
547	if (ucp->uc_mcontext.mc_onstack & 1)
548		td->td_sigstk.ss_flags |= SS_ONSTACK;
549	else
550		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
551#endif
552
553	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
554	set_pcb_flags(pcb, PCB_FULL_IRET);
555	return (EJUSTRETURN);
556}
557
558#ifdef COMPAT_FREEBSD4
559int
560freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
561{
562
563	return sys_sigreturn(td, (struct sigreturn_args *)uap);
564}
565#endif
566
567
568/*
569 * Machine dependent boot() routine
570 *
571 * I haven't seen anything to put here yet
572 * Possibly some stuff might be grafted back here from boot()
573 */
574void
575cpu_boot(int howto)
576{
577}
578
579/*
580 * Flush the D-cache for non-DMA I/O so that the I-cache can
581 * be made coherent later.
582 */
583void
584cpu_flush_dcache(void *ptr, size_t len)
585{
586	/* Not applicable */
587}
588
589/* Get current clock frequency for the given cpu id. */
590int
591cpu_est_clockrate(int cpu_id, uint64_t *rate)
592{
593	uint64_t tsc1, tsc2;
594	uint64_t acnt, mcnt, perf;
595	register_t reg;
596
597	if (pcpu_find(cpu_id) == NULL || rate == NULL)
598		return (EINVAL);
599
600	/*
601	 * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
602	 * DELAY(9) based logic fails.
603	 */
604	if (tsc_is_invariant && !tsc_perf_stat)
605		return (EOPNOTSUPP);
606
607#ifdef SMP
608	if (smp_cpus > 1) {
609		/* Schedule ourselves on the indicated cpu. */
610		thread_lock(curthread);
611		sched_bind(curthread, cpu_id);
612		thread_unlock(curthread);
613	}
614#endif
615
616	/* Calibrate by measuring a short delay. */
617	reg = intr_disable();
618	if (tsc_is_invariant) {
619		wrmsr(MSR_MPERF, 0);
620		wrmsr(MSR_APERF, 0);
621		tsc1 = rdtsc();
622		DELAY(1000);
623		mcnt = rdmsr(MSR_MPERF);
624		acnt = rdmsr(MSR_APERF);
625		tsc2 = rdtsc();
626		intr_restore(reg);
627		perf = 1000 * acnt / mcnt;
628		*rate = (tsc2 - tsc1) * perf;
629	} else {
630		tsc1 = rdtsc();
631		DELAY(1000);
632		tsc2 = rdtsc();
633		intr_restore(reg);
634		*rate = (tsc2 - tsc1) * 1000;
635	}
636
637#ifdef SMP
638	if (smp_cpus > 1) {
639		thread_lock(curthread);
640		sched_unbind(curthread);
641		thread_unlock(curthread);
642	}
643#endif
644
645	return (0);
646}
647
648/*
649 * Shutdown the CPU as much as possible
650 */
651void
652cpu_halt(void)
653{
654	for (;;)
655		halt();
656}
657
658void (*cpu_idle_hook)(sbintime_t) = NULL;	/* ACPI idle hook. */
659static int	cpu_ident_amdc1e = 0;	/* AMD C1E supported. */
660static int	idle_mwait = 1;		/* Use MONITOR/MWAIT for short idle. */
661TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
662SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
663    0, "Use MONITOR/MWAIT for short idle");
664
665#define	STATE_RUNNING	0x0
666#define	STATE_MWAIT	0x1
667#define	STATE_SLEEPING	0x2
668
669static void
670cpu_idle_acpi(sbintime_t sbt)
671{
672	int *state;
673
674	state = (int *)PCPU_PTR(monitorbuf);
675	*state = STATE_SLEEPING;
676
677	/* See comments in cpu_idle_hlt(). */
678	disable_intr();
679	if (sched_runnable())
680		enable_intr();
681	else if (cpu_idle_hook)
682		cpu_idle_hook(sbt);
683	else
684		__asm __volatile("sti; hlt");
685	*state = STATE_RUNNING;
686}
687
688static void
689cpu_idle_hlt(sbintime_t sbt)
690{
691	int *state;
692
693	state = (int *)PCPU_PTR(monitorbuf);
694	*state = STATE_SLEEPING;
695
696	/*
697	 * Since we may be in a critical section from cpu_idle(), if
698	 * an interrupt fires during that critical section we may have
699	 * a pending preemption.  If the CPU halts, then that thread
700	 * may not execute until a later interrupt awakens the CPU.
701	 * To handle this race, check for a runnable thread after
702	 * disabling interrupts and immediately return if one is
703	 * found.  Also, we must absolutely guarentee that hlt is
704	 * the next instruction after sti.  This ensures that any
705	 * interrupt that fires after the call to disable_intr() will
706	 * immediately awaken the CPU from hlt.  Finally, please note
707	 * that on x86 this works fine because of interrupts enabled only
708	 * after the instruction following sti takes place, while IF is set
709	 * to 1 immediately, allowing hlt instruction to acknowledge the
710	 * interrupt.
711	 */
712	disable_intr();
713	if (sched_runnable())
714		enable_intr();
715	else
716		__asm __volatile("sti; hlt");
717	*state = STATE_RUNNING;
718}
719
720/*
721 * MWAIT cpu power states.  Lower 4 bits are sub-states.
722 */
723#define	MWAIT_C0	0xf0
724#define	MWAIT_C1	0x00
725#define	MWAIT_C2	0x10
726#define	MWAIT_C3	0x20
727#define	MWAIT_C4	0x30
728
729static void
730cpu_idle_mwait(sbintime_t sbt)
731{
732	int *state;
733
734	state = (int *)PCPU_PTR(monitorbuf);
735	*state = STATE_MWAIT;
736
737	/* See comments in cpu_idle_hlt(). */
738	disable_intr();
739	if (sched_runnable()) {
740		enable_intr();
741		*state = STATE_RUNNING;
742		return;
743	}
744	cpu_monitor(state, 0, 0);
745	if (*state == STATE_MWAIT)
746		__asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
747	else
748		enable_intr();
749	*state = STATE_RUNNING;
750}
751
752static void
753cpu_idle_spin(sbintime_t sbt)
754{
755	int *state;
756	int i;
757
758	state = (int *)PCPU_PTR(monitorbuf);
759	*state = STATE_RUNNING;
760
761	/*
762	 * The sched_runnable() call is racy but as long as there is
763	 * a loop missing it one time will have just a little impact if any
764	 * (and it is much better than missing the check at all).
765	 */
766	for (i = 0; i < 1000; i++) {
767		if (sched_runnable())
768			return;
769		cpu_spinwait();
770	}
771}
772
773/*
774 * C1E renders the local APIC timer dead, so we disable it by
775 * reading the Interrupt Pending Message register and clearing
776 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
777 *
778 * Reference:
779 *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
780 *   #32559 revision 3.00+
781 */
782#define	MSR_AMDK8_IPM		0xc0010055
783#define	AMDK8_SMIONCMPHALT	(1ULL << 27)
784#define	AMDK8_C1EONCMPHALT	(1ULL << 28)
785#define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
786
787static void
788cpu_probe_amdc1e(void)
789{
790
791	/*
792	 * Detect the presence of C1E capability mostly on latest
793	 * dual-cores (or future) k8 family.
794	 */
795	if (cpu_vendor_id == CPU_VENDOR_AMD &&
796	    (cpu_id & 0x00000f00) == 0x00000f00 &&
797	    (cpu_id & 0x0fff0000) >=  0x00040000) {
798		cpu_ident_amdc1e = 1;
799	}
800}
801
802void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi;
803
804void
805cpu_idle(int busy)
806{
807	uint64_t msr;
808	sbintime_t sbt = -1;
809
810	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
811	    busy, curcpu);
812#ifdef MP_WATCHDOG
813	ap_watchdog(PCPU_GET(cpuid));
814#endif
815	/* If we are busy - try to use fast methods. */
816	if (busy) {
817		if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
818			cpu_idle_mwait(busy);
819			goto out;
820		}
821	}
822
823	/* If we have time - switch timers into idle mode. */
824	if (!busy) {
825		critical_enter();
826		sbt = cpu_idleclock();
827	}
828
829	/* Apply AMD APIC timer C1E workaround. */
830	if (cpu_ident_amdc1e && cpu_disable_deep_sleep) {
831		msr = rdmsr(MSR_AMDK8_IPM);
832		if (msr & AMDK8_CMPHALT)
833			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
834	}
835
836	/* Call main idle method. */
837	cpu_idle_fn(sbt);
838
839	/* Switch timers mack into active mode. */
840	if (!busy) {
841		cpu_activeclock();
842		critical_exit();
843	}
844out:
845	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
846	    busy, curcpu);
847}
848
849int
850cpu_idle_wakeup(int cpu)
851{
852	struct pcpu *pcpu;
853	int *state;
854
855	pcpu = pcpu_find(cpu);
856	state = (int *)pcpu->pc_monitorbuf;
857	/*
858	 * This doesn't need to be atomic since missing the race will
859	 * simply result in unnecessary IPIs.
860	 */
861	if (*state == STATE_SLEEPING)
862		return (0);
863	if (*state == STATE_MWAIT)
864		*state = STATE_RUNNING;
865	return (1);
866}
867
868/*
869 * Ordered by speed/power consumption.
870 */
871struct {
872	void	*id_fn;
873	char	*id_name;
874} idle_tbl[] = {
875	{ cpu_idle_spin, "spin" },
876	{ cpu_idle_mwait, "mwait" },
877	{ cpu_idle_hlt, "hlt" },
878	{ cpu_idle_acpi, "acpi" },
879	{ NULL, NULL }
880};
881
882static int
883idle_sysctl_available(SYSCTL_HANDLER_ARGS)
884{
885	char *avail, *p;
886	int error;
887	int i;
888
889	avail = malloc(256, M_TEMP, M_WAITOK);
890	p = avail;
891	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
892		if (strstr(idle_tbl[i].id_name, "mwait") &&
893		    (cpu_feature2 & CPUID2_MON) == 0)
894			continue;
895		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
896		    cpu_idle_hook == NULL)
897			continue;
898		p += sprintf(p, "%s%s", p != avail ? ", " : "",
899		    idle_tbl[i].id_name);
900	}
901	error = sysctl_handle_string(oidp, avail, 0, req);
902	free(avail, M_TEMP);
903	return (error);
904}
905
906SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
907    0, 0, idle_sysctl_available, "A", "list of available idle functions");
908
909static int
910idle_sysctl(SYSCTL_HANDLER_ARGS)
911{
912	char buf[16];
913	int error;
914	char *p;
915	int i;
916
917	p = "unknown";
918	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
919		if (idle_tbl[i].id_fn == cpu_idle_fn) {
920			p = idle_tbl[i].id_name;
921			break;
922		}
923	}
924	strncpy(buf, p, sizeof(buf));
925	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
926	if (error != 0 || req->newptr == NULL)
927		return (error);
928	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
929		if (strstr(idle_tbl[i].id_name, "mwait") &&
930		    (cpu_feature2 & CPUID2_MON) == 0)
931			continue;
932		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
933		    cpu_idle_hook == NULL)
934			continue;
935		if (strcmp(idle_tbl[i].id_name, buf))
936			continue;
937		cpu_idle_fn = idle_tbl[i].id_fn;
938		return (0);
939	}
940	return (EINVAL);
941}
942
943SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
944    idle_sysctl, "A", "currently selected idle function");
945
946/*
947 * Reset registers to default values on exec.
948 */
949void
950exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
951{
952	struct trapframe *regs = td->td_frame;
953	struct pcb *pcb = td->td_pcb;
954
955	mtx_lock(&dt_lock);
956	if (td->td_proc->p_md.md_ldt != NULL)
957		user_ldt_free(td);
958	else
959		mtx_unlock(&dt_lock);
960
961	pcb->pcb_fsbase = 0;
962	pcb->pcb_gsbase = 0;
963	clear_pcb_flags(pcb, PCB_32BIT);
964	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
965	set_pcb_flags(pcb, PCB_FULL_IRET);
966
967	bzero((char *)regs, sizeof(struct trapframe));
968	regs->tf_rip = imgp->entry_addr;
969	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
970	regs->tf_rdi = stack;		/* argv */
971	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
972	regs->tf_ss = _udatasel;
973	regs->tf_cs = _ucodesel;
974	regs->tf_ds = _udatasel;
975	regs->tf_es = _udatasel;
976	regs->tf_fs = _ufssel;
977	regs->tf_gs = _ugssel;
978	regs->tf_flags = TF_HASSEGS;
979	td->td_retval[1] = 0;
980
981	/*
982	 * Reset the hardware debug registers if they were in use.
983	 * They won't have any meaning for the newly exec'd process.
984	 */
985	if (pcb->pcb_flags & PCB_DBREGS) {
986		pcb->pcb_dr0 = 0;
987		pcb->pcb_dr1 = 0;
988		pcb->pcb_dr2 = 0;
989		pcb->pcb_dr3 = 0;
990		pcb->pcb_dr6 = 0;
991		pcb->pcb_dr7 = 0;
992		if (pcb == curpcb) {
993			/*
994			 * Clear the debug registers on the running
995			 * CPU, otherwise they will end up affecting
996			 * the next process we switch to.
997			 */
998			reset_dbregs();
999		}
1000		clear_pcb_flags(pcb, PCB_DBREGS);
1001	}
1002
1003	/*
1004	 * Drop the FP state if we hold it, so that the process gets a
1005	 * clean FP state if it uses the FPU again.
1006	 */
1007	fpstate_drop(td);
1008}
1009
1010void
1011cpu_setregs(void)
1012{
1013	register_t cr0;
1014
1015	cr0 = rcr0();
1016	/*
1017	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
1018	 * BSP.  See the comments there about why we set them.
1019	 */
1020	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
1021	load_cr0(cr0);
1022}
1023
1024/*
1025 * Initialize amd64 and configure to run kernel
1026 */
1027
1028/*
1029 * Initialize segments & interrupt table
1030 */
1031
1032struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
1033static struct gate_descriptor idt0[NIDT];
1034struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1035
1036static char dblfault_stack[PAGE_SIZE] __aligned(16);
1037
1038static char nmi0_stack[PAGE_SIZE] __aligned(16);
1039CTASSERT(sizeof(struct nmi_pcpu) == 16);
1040
1041struct amd64tss common_tss[MAXCPU];
1042
1043/*
1044 * Software prototypes -- in more palatable form.
1045 *
1046 * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
1047 * slots as corresponding segments for i386 kernel.
1048 */
1049struct soft_segment_descriptor gdt_segs[] = {
1050/* GNULL_SEL	0 Null Descriptor */
1051{	.ssd_base = 0x0,
1052	.ssd_limit = 0x0,
1053	.ssd_type = 0,
1054	.ssd_dpl = 0,
1055	.ssd_p = 0,
1056	.ssd_long = 0,
1057	.ssd_def32 = 0,
1058	.ssd_gran = 0		},
1059/* GNULL2_SEL	1 Null Descriptor */
1060{	.ssd_base = 0x0,
1061	.ssd_limit = 0x0,
1062	.ssd_type = 0,
1063	.ssd_dpl = 0,
1064	.ssd_p = 0,
1065	.ssd_long = 0,
1066	.ssd_def32 = 0,
1067	.ssd_gran = 0		},
1068/* GUFS32_SEL	2 32 bit %gs Descriptor for user */
1069{	.ssd_base = 0x0,
1070	.ssd_limit = 0xfffff,
1071	.ssd_type = SDT_MEMRWA,
1072	.ssd_dpl = SEL_UPL,
1073	.ssd_p = 1,
1074	.ssd_long = 0,
1075	.ssd_def32 = 1,
1076	.ssd_gran = 1		},
1077/* GUGS32_SEL	3 32 bit %fs Descriptor for user */
1078{	.ssd_base = 0x0,
1079	.ssd_limit = 0xfffff,
1080	.ssd_type = SDT_MEMRWA,
1081	.ssd_dpl = SEL_UPL,
1082	.ssd_p = 1,
1083	.ssd_long = 0,
1084	.ssd_def32 = 1,
1085	.ssd_gran = 1		},
1086/* GCODE_SEL	4 Code Descriptor for kernel */
1087{	.ssd_base = 0x0,
1088	.ssd_limit = 0xfffff,
1089	.ssd_type = SDT_MEMERA,
1090	.ssd_dpl = SEL_KPL,
1091	.ssd_p = 1,
1092	.ssd_long = 1,
1093	.ssd_def32 = 0,
1094	.ssd_gran = 1		},
1095/* GDATA_SEL	5 Data Descriptor for kernel */
1096{	.ssd_base = 0x0,
1097	.ssd_limit = 0xfffff,
1098	.ssd_type = SDT_MEMRWA,
1099	.ssd_dpl = SEL_KPL,
1100	.ssd_p = 1,
1101	.ssd_long = 1,
1102	.ssd_def32 = 0,
1103	.ssd_gran = 1		},
1104/* GUCODE32_SEL	6 32 bit Code Descriptor for user */
1105{	.ssd_base = 0x0,
1106	.ssd_limit = 0xfffff,
1107	.ssd_type = SDT_MEMERA,
1108	.ssd_dpl = SEL_UPL,
1109	.ssd_p = 1,
1110	.ssd_long = 0,
1111	.ssd_def32 = 1,
1112	.ssd_gran = 1		},
1113/* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
1114{	.ssd_base = 0x0,
1115	.ssd_limit = 0xfffff,
1116	.ssd_type = SDT_MEMRWA,
1117	.ssd_dpl = SEL_UPL,
1118	.ssd_p = 1,
1119	.ssd_long = 0,
1120	.ssd_def32 = 1,
1121	.ssd_gran = 1		},
1122/* GUCODE_SEL	8 64 bit Code Descriptor for user */
1123{	.ssd_base = 0x0,
1124	.ssd_limit = 0xfffff,
1125	.ssd_type = SDT_MEMERA,
1126	.ssd_dpl = SEL_UPL,
1127	.ssd_p = 1,
1128	.ssd_long = 1,
1129	.ssd_def32 = 0,
1130	.ssd_gran = 1		},
1131/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1132{	.ssd_base = 0x0,
1133	.ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
1134	.ssd_type = SDT_SYSTSS,
1135	.ssd_dpl = SEL_KPL,
1136	.ssd_p = 1,
1137	.ssd_long = 0,
1138	.ssd_def32 = 0,
1139	.ssd_gran = 0		},
1140/* Actually, the TSS is a system descriptor which is double size */
1141{	.ssd_base = 0x0,
1142	.ssd_limit = 0x0,
1143	.ssd_type = 0,
1144	.ssd_dpl = 0,
1145	.ssd_p = 0,
1146	.ssd_long = 0,
1147	.ssd_def32 = 0,
1148	.ssd_gran = 0		},
1149/* GUSERLDT_SEL	11 LDT Descriptor */
1150{	.ssd_base = 0x0,
1151	.ssd_limit = 0x0,
1152	.ssd_type = 0,
1153	.ssd_dpl = 0,
1154	.ssd_p = 0,
1155	.ssd_long = 0,
1156	.ssd_def32 = 0,
1157	.ssd_gran = 0		},
1158/* GUSERLDT_SEL	12 LDT Descriptor, double size */
1159{	.ssd_base = 0x0,
1160	.ssd_limit = 0x0,
1161	.ssd_type = 0,
1162	.ssd_dpl = 0,
1163	.ssd_p = 0,
1164	.ssd_long = 0,
1165	.ssd_def32 = 0,
1166	.ssd_gran = 0		},
1167};
1168
1169void
1170setidt(idx, func, typ, dpl, ist)
1171	int idx;
1172	inthand_t *func;
1173	int typ;
1174	int dpl;
1175	int ist;
1176{
1177	struct gate_descriptor *ip;
1178
1179	ip = idt + idx;
1180	ip->gd_looffset = (uintptr_t)func;
1181	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1182	ip->gd_ist = ist;
1183	ip->gd_xx = 0;
1184	ip->gd_type = typ;
1185	ip->gd_dpl = dpl;
1186	ip->gd_p = 1;
1187	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1188}
1189
1190extern inthand_t
1191	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1192	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1193	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1194	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1195	IDTVEC(xmm), IDTVEC(dblfault),
1196#ifdef KDTRACE_HOOKS
1197	IDTVEC(dtrace_ret),
1198#endif
1199#ifdef XENHVM
1200	IDTVEC(xen_intr_upcall),
1201#endif
1202	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1203
1204#ifdef DDB
1205/*
1206 * Display the index and function name of any IDT entries that don't use
1207 * the default 'rsvd' entry point.
1208 */
1209DB_SHOW_COMMAND(idt, db_show_idt)
1210{
1211	struct gate_descriptor *ip;
1212	int idx;
1213	uintptr_t func;
1214
1215	ip = idt;
1216	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1217		func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
1218		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1219			db_printf("%3d\t", idx);
1220			db_printsym(func, DB_STGY_PROC);
1221			db_printf("\n");
1222		}
1223		ip++;
1224	}
1225}
1226
1227/* Show privileged registers. */
1228DB_SHOW_COMMAND(sysregs, db_show_sysregs)
1229{
1230	struct {
1231		uint16_t limit;
1232		uint64_t base;
1233	} __packed idtr, gdtr;
1234	uint16_t ldt, tr;
1235
1236	__asm __volatile("sidt %0" : "=m" (idtr));
1237	db_printf("idtr\t0x%016lx/%04x\n",
1238	    (u_long)idtr.base, (u_int)idtr.limit);
1239	__asm __volatile("sgdt %0" : "=m" (gdtr));
1240	db_printf("gdtr\t0x%016lx/%04x\n",
1241	    (u_long)gdtr.base, (u_int)gdtr.limit);
1242	__asm __volatile("sldt %0" : "=r" (ldt));
1243	db_printf("ldtr\t0x%04x\n", ldt);
1244	__asm __volatile("str %0" : "=r" (tr));
1245	db_printf("tr\t0x%04x\n", tr);
1246	db_printf("cr0\t0x%016lx\n", rcr0());
1247	db_printf("cr2\t0x%016lx\n", rcr2());
1248	db_printf("cr3\t0x%016lx\n", rcr3());
1249	db_printf("cr4\t0x%016lx\n", rcr4());
1250	db_printf("EFER\t%016lx\n", rdmsr(MSR_EFER));
1251	db_printf("FEATURES_CTL\t%016lx\n", rdmsr(MSR_IA32_FEATURE_CONTROL));
1252	db_printf("DEBUG_CTL\t%016lx\n", rdmsr(MSR_DEBUGCTLMSR));
1253	db_printf("PAT\t%016lx\n", rdmsr(MSR_PAT));
1254	db_printf("GSBASE\t%016lx\n", rdmsr(MSR_GSBASE));
1255}
1256#endif
1257
1258void
1259sdtossd(sd, ssd)
1260	struct user_segment_descriptor *sd;
1261	struct soft_segment_descriptor *ssd;
1262{
1263
1264	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1265	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1266	ssd->ssd_type  = sd->sd_type;
1267	ssd->ssd_dpl   = sd->sd_dpl;
1268	ssd->ssd_p     = sd->sd_p;
1269	ssd->ssd_long  = sd->sd_long;
1270	ssd->ssd_def32 = sd->sd_def32;
1271	ssd->ssd_gran  = sd->sd_gran;
1272}
1273
1274void
1275ssdtosd(ssd, sd)
1276	struct soft_segment_descriptor *ssd;
1277	struct user_segment_descriptor *sd;
1278{
1279
1280	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1281	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1282	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1283	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1284	sd->sd_type  = ssd->ssd_type;
1285	sd->sd_dpl   = ssd->ssd_dpl;
1286	sd->sd_p     = ssd->ssd_p;
1287	sd->sd_long  = ssd->ssd_long;
1288	sd->sd_def32 = ssd->ssd_def32;
1289	sd->sd_gran  = ssd->ssd_gran;
1290}
1291
1292void
1293ssdtosyssd(ssd, sd)
1294	struct soft_segment_descriptor *ssd;
1295	struct system_segment_descriptor *sd;
1296{
1297
1298	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1299	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1300	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1301	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1302	sd->sd_type  = ssd->ssd_type;
1303	sd->sd_dpl   = ssd->ssd_dpl;
1304	sd->sd_p     = ssd->ssd_p;
1305	sd->sd_gran  = ssd->ssd_gran;
1306}
1307
1308#if !defined(DEV_ATPIC) && defined(DEV_ISA)
1309#include <isa/isavar.h>
1310#include <isa/isareg.h>
1311/*
1312 * Return a bitmap of the current interrupt requests.  This is 8259-specific
1313 * and is only suitable for use at probe time.
1314 * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
1315 * It shouldn't be here.  There should probably be an APIC centric
1316 * implementation in the apic driver code, if at all.
1317 */
1318intrmask_t
1319isa_irq_pending(void)
1320{
1321	u_char irr1;
1322	u_char irr2;
1323
1324	irr1 = inb(IO_ICU1);
1325	irr2 = inb(IO_ICU2);
1326	return ((irr2 << 8) | irr1);
1327}
1328#endif
1329
1330u_int basemem;
1331
1332static int
1333add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
1334{
1335	int i, insert_idx, physmap_idx;
1336
1337	physmap_idx = *physmap_idxp;
1338
1339	if (boothowto & RB_VERBOSE)
1340		printf("SMAP type=%02x base=%016lx len=%016lx\n",
1341		    smap->type, smap->base, smap->length);
1342
1343	if (smap->type != SMAP_TYPE_MEMORY)
1344		return (1);
1345
1346	if (smap->length == 0)
1347		return (0);
1348
1349	/*
1350	 * Find insertion point while checking for overlap.  Start off by
1351	 * assuming the new entry will be added to the end.
1352	 */
1353	insert_idx = physmap_idx + 2;
1354	for (i = 0; i <= physmap_idx; i += 2) {
1355		if (smap->base < physmap[i + 1]) {
1356			if (smap->base + smap->length <= physmap[i]) {
1357				insert_idx = i;
1358				break;
1359			}
1360			if (boothowto & RB_VERBOSE)
1361				printf(
1362		    "Overlapping memory regions, ignoring second region\n");
1363			return (1);
1364		}
1365	}
1366
1367	/* See if we can prepend to the next entry. */
1368	if (insert_idx <= physmap_idx &&
1369	    smap->base + smap->length == physmap[insert_idx]) {
1370		physmap[insert_idx] = smap->base;
1371		return (1);
1372	}
1373
1374	/* See if we can append to the previous entry. */
1375	if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
1376		physmap[insert_idx - 1] += smap->length;
1377		return (1);
1378	}
1379
1380	physmap_idx += 2;
1381	*physmap_idxp = physmap_idx;
1382	if (physmap_idx == PHYSMAP_SIZE) {
1383		printf(
1384		"Too many segments in the physical address map, giving up\n");
1385		return (0);
1386	}
1387
1388	/*
1389	 * Move the last 'N' entries down to make room for the new
1390	 * entry if needed.
1391	 */
1392	for (i = physmap_idx; i > insert_idx; i -= 2) {
1393		physmap[i] = physmap[i - 2];
1394		physmap[i + 1] = physmap[i - 1];
1395	}
1396
1397	/* Insert the new entry. */
1398	physmap[insert_idx] = smap->base;
1399	physmap[insert_idx + 1] = smap->base + smap->length;
1400	return (1);
1401}
1402
1403/*
1404 * Populate the (physmap) array with base/bound pairs describing the
1405 * available physical memory in the system, then test this memory and
1406 * build the phys_avail array describing the actually-available memory.
1407 *
1408 * Total memory size may be set by the kernel environment variable
1409 * hw.physmem or the compile-time define MAXMEM.
1410 *
1411 * XXX first should be vm_paddr_t.
1412 */
1413static void
1414getmemsize(caddr_t kmdp, u_int64_t first)
1415{
1416	int i, physmap_idx, pa_indx, da_indx;
1417	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1418	u_long physmem_start, physmem_tunable, memtest;
1419	pt_entry_t *pte;
1420	struct bios_smap *smapbase, *smap, *smapend;
1421	u_int32_t smapsize;
1422	quad_t dcons_addr, dcons_size;
1423
1424	bzero(physmap, sizeof(physmap));
1425	basemem = 0;
1426	physmap_idx = 0;
1427
1428	/*
1429	 * get memory map from INT 15:E820, kindly supplied by the loader.
1430	 *
1431	 * subr_module.c says:
1432	 * "Consumer may safely assume that size value precedes data."
1433	 * ie: an int32_t immediately precedes smap.
1434	 */
1435	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1436	    MODINFO_METADATA | MODINFOMD_SMAP);
1437	if (smapbase == NULL)
1438		panic("No BIOS smap info from loader!");
1439
1440	smapsize = *((u_int32_t *)smapbase - 1);
1441	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1442
1443	for (smap = smapbase; smap < smapend; smap++)
1444		if (!add_smap_entry(smap, physmap, &physmap_idx))
1445			break;
1446
1447	/*
1448	 * Find the 'base memory' segment for SMP
1449	 */
1450	basemem = 0;
1451	for (i = 0; i <= physmap_idx; i += 2) {
1452		if (physmap[i] == 0x00000000) {
1453			basemem = physmap[i + 1] / 1024;
1454			break;
1455		}
1456	}
1457	if (basemem == 0)
1458		panic("BIOS smap did not include a basemem segment!");
1459
1460#ifdef SMP
1461	/* make hole for AP bootstrap code */
1462	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1463#endif
1464
1465	/*
1466	 * Maxmem isn't the "maximum memory", it's one larger than the
1467	 * highest page of the physical address space.  It should be
1468	 * called something like "Maxphyspage".  We may adjust this
1469	 * based on ``hw.physmem'' and the results of the memory test.
1470	 */
1471	Maxmem = atop(physmap[physmap_idx + 1]);
1472
1473#ifdef MAXMEM
1474	Maxmem = MAXMEM / 4;
1475#endif
1476
1477	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1478		Maxmem = atop(physmem_tunable);
1479
1480	/*
1481	 * By default enable the memory test on real hardware, and disable
1482	 * it if we appear to be running in a VM.  This avoids touching all
1483	 * pages unnecessarily, which doesn't matter on real hardware but is
1484	 * bad for shared VM hosts.  Use a general name so that
1485	 * one could eventually do more with the code than just disable it.
1486	 */
1487	memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
1488	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
1489
1490	/*
1491	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1492	 * in the system.
1493	 */
1494	if (Maxmem > atop(physmap[physmap_idx + 1]))
1495		Maxmem = atop(physmap[physmap_idx + 1]);
1496
1497	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1498	    (boothowto & RB_VERBOSE))
1499		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1500
1501	/* call pmap initialization to make new kernel address space */
1502	pmap_bootstrap(&first);
1503
1504	/*
1505	 * Size up each available chunk of physical memory.
1506	 *
1507	 * XXX Some BIOSes corrupt low 64KB between suspend and resume.
1508	 * By default, mask off the first 16 pages unless we appear to be
1509	 * running in a VM.
1510	 */
1511	physmem_start = (vm_guest > VM_GUEST_NO ? 1 : 16) << PAGE_SHIFT;
1512	TUNABLE_ULONG_FETCH("hw.physmem.start", &physmem_start);
1513	if (physmem_start < PAGE_SIZE)
1514		physmap[0] = PAGE_SIZE;
1515	else if (physmem_start >= physmap[1])
1516		physmap[0] = round_page(physmap[1] - PAGE_SIZE);
1517	else
1518		physmap[0] = round_page(physmem_start);
1519	pa_indx = 0;
1520	da_indx = 1;
1521	phys_avail[pa_indx++] = physmap[0];
1522	phys_avail[pa_indx] = physmap[0];
1523	dump_avail[da_indx] = physmap[0];
1524	pte = CMAP1;
1525
1526	/*
1527	 * Get dcons buffer address
1528	 */
1529	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1530	    getenv_quad("dcons.size", &dcons_size) == 0)
1531		dcons_addr = 0;
1532
1533	/*
1534	 * physmap is in bytes, so when converting to page boundaries,
1535	 * round up the start address and round down the end address.
1536	 */
1537	for (i = 0; i <= physmap_idx; i += 2) {
1538		vm_paddr_t end;
1539
1540		end = ptoa((vm_paddr_t)Maxmem);
1541		if (physmap[i + 1] < end)
1542			end = trunc_page(physmap[i + 1]);
1543		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1544			int tmp, page_bad, full;
1545			int *ptr = (int *)CADDR1;
1546
1547			full = FALSE;
1548			/*
1549			 * block out kernel memory as not available.
1550			 */
1551			if (pa >= (vm_paddr_t)kernphys && pa < first)
1552				goto do_dump_avail;
1553
1554			/*
1555			 * block out dcons buffer
1556			 */
1557			if (dcons_addr > 0
1558			    && pa >= trunc_page(dcons_addr)
1559			    && pa < dcons_addr + dcons_size)
1560				goto do_dump_avail;
1561
1562			page_bad = FALSE;
1563			if (memtest == 0)
1564				goto skip_memtest;
1565
1566			/*
1567			 * map page into kernel: valid, read/write,non-cacheable
1568			 */
1569			*pte = pa | PG_V | PG_RW | PG_NC_PWT | PG_NC_PCD;
1570			invltlb();
1571
1572			tmp = *(int *)ptr;
1573			/*
1574			 * Test for alternating 1's and 0's
1575			 */
1576			*(volatile int *)ptr = 0xaaaaaaaa;
1577			if (*(volatile int *)ptr != 0xaaaaaaaa)
1578				page_bad = TRUE;
1579			/*
1580			 * Test for alternating 0's and 1's
1581			 */
1582			*(volatile int *)ptr = 0x55555555;
1583			if (*(volatile int *)ptr != 0x55555555)
1584				page_bad = TRUE;
1585			/*
1586			 * Test for all 1's
1587			 */
1588			*(volatile int *)ptr = 0xffffffff;
1589			if (*(volatile int *)ptr != 0xffffffff)
1590				page_bad = TRUE;
1591			/*
1592			 * Test for all 0's
1593			 */
1594			*(volatile int *)ptr = 0x0;
1595			if (*(volatile int *)ptr != 0x0)
1596				page_bad = TRUE;
1597			/*
1598			 * Restore original value.
1599			 */
1600			*(int *)ptr = tmp;
1601
1602skip_memtest:
1603			/*
1604			 * Adjust array of valid/good pages.
1605			 */
1606			if (page_bad == TRUE)
1607				continue;
1608			/*
1609			 * If this good page is a continuation of the
1610			 * previous set of good pages, then just increase
1611			 * the end pointer. Otherwise start a new chunk.
1612			 * Note that "end" points one higher than end,
1613			 * making the range >= start and < end.
1614			 * If we're also doing a speculative memory
1615			 * test and we at or past the end, bump up Maxmem
1616			 * so that we keep going. The first bad page
1617			 * will terminate the loop.
1618			 */
1619			if (phys_avail[pa_indx] == pa) {
1620				phys_avail[pa_indx] += PAGE_SIZE;
1621			} else {
1622				pa_indx++;
1623				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1624					printf(
1625		"Too many holes in the physical address space, giving up\n");
1626					pa_indx--;
1627					full = TRUE;
1628					goto do_dump_avail;
1629				}
1630				phys_avail[pa_indx++] = pa;	/* start */
1631				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1632			}
1633			physmem++;
1634do_dump_avail:
1635			if (dump_avail[da_indx] == pa) {
1636				dump_avail[da_indx] += PAGE_SIZE;
1637			} else {
1638				da_indx++;
1639				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1640					da_indx--;
1641					goto do_next;
1642				}
1643				dump_avail[da_indx++] = pa; /* start */
1644				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1645			}
1646do_next:
1647			if (full)
1648				break;
1649		}
1650	}
1651	*pte = 0;
1652	invltlb();
1653
1654	/*
1655	 * XXX
1656	 * The last chunk must contain at least one page plus the message
1657	 * buffer to avoid complicating other code (message buffer address
1658	 * calculation, etc.).
1659	 */
1660	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1661	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
1662		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1663		phys_avail[pa_indx--] = 0;
1664		phys_avail[pa_indx--] = 0;
1665	}
1666
1667	Maxmem = atop(phys_avail[pa_indx]);
1668
1669	/* Trim off space for the message buffer. */
1670	phys_avail[pa_indx] -= round_page(msgbufsize);
1671
1672	/* Map the message buffer. */
1673	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
1674}
1675
1676u_int64_t
1677hammer_time(u_int64_t modulep, u_int64_t physfree)
1678{
1679	caddr_t kmdp;
1680	int gsel_tss, x;
1681	struct pcpu *pc;
1682	struct nmi_pcpu *np;
1683	struct xstate_hdr *xhdr;
1684	u_int64_t msr;
1685	char *env;
1686	size_t kstack0_sz;
1687
1688	thread0.td_kstack = physfree + KERNBASE;
1689	thread0.td_kstack_pages = KSTACK_PAGES;
1690	kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
1691	bzero((void *)thread0.td_kstack, kstack0_sz);
1692	physfree += kstack0_sz;
1693
1694	/*
1695 	 * This may be done better later if it gets more high level
1696 	 * components in it. If so just link td->td_proc here.
1697	 */
1698	proc_linkup0(&proc0, &thread0);
1699
1700	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1701	preload_bootstrap_relocate(KERNBASE);
1702	kmdp = preload_search_by_type("elf kernel");
1703	if (kmdp == NULL)
1704		kmdp = preload_search_by_type("elf64 kernel");
1705	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1706	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1707#ifdef DDB
1708	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1709	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1710#endif
1711
1712	/* Init basic tunables, hz etc */
1713	init_param1();
1714
1715	/*
1716	 * make gdt memory segments
1717	 */
1718	for (x = 0; x < NGDT; x++) {
1719		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1720		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1721			ssdtosd(&gdt_segs[x], &gdt[x]);
1722	}
1723	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1724	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1725	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1726
1727	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1728	r_gdt.rd_base =  (long) gdt;
1729	lgdt(&r_gdt);
1730	pc = &__pcpu[0];
1731
1732	wrmsr(MSR_FSBASE, 0);		/* User value */
1733	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1734	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1735
1736	pcpu_init(pc, 0, sizeof(struct pcpu));
1737	dpcpu_init((void *)(physfree + KERNBASE), 0);
1738	physfree += DPCPU_SIZE;
1739	PCPU_SET(prvspace, pc);
1740	PCPU_SET(curthread, &thread0);
1741	PCPU_SET(tssp, &common_tss[0]);
1742	PCPU_SET(commontssp, &common_tss[0]);
1743	PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1744	PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1745	PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1746	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1747
1748	/*
1749	 * Initialize mutexes.
1750	 *
1751	 * icu_lock: in order to allow an interrupt to occur in a critical
1752	 * 	     section, to set pcpu->ipending (etc...) properly, we
1753	 *	     must be able to get the icu lock, so it can't be
1754	 *	     under witness.
1755	 */
1756	mutex_init();
1757	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1758	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1759
1760	/* exceptions */
1761	for (x = 0; x < NIDT; x++)
1762		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1763	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1764	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1765	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1766 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1767	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1768	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1769	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1770	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1771	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1772	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1773	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1774	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1775	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1776	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1777	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1778	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1779	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1780	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1781	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1782#ifdef KDTRACE_HOOKS
1783	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
1784#endif
1785#ifdef XENHVM
1786	setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYSIGT, SEL_UPL, 0);
1787#endif
1788
1789	r_idt.rd_limit = sizeof(idt0) - 1;
1790	r_idt.rd_base = (long) idt;
1791	lidt(&r_idt);
1792
1793	/*
1794	 * Initialize the i8254 before the console so that console
1795	 * initialization can use DELAY().
1796	 */
1797	i8254_init();
1798
1799	/*
1800	 * Initialize the console before we print anything out.
1801	 */
1802	cninit();
1803
1804#ifdef DEV_ISA
1805#ifdef DEV_ATPIC
1806	elcr_probe();
1807	atpic_startup();
1808#else
1809	/* Reset and mask the atpics and leave them shut down. */
1810	atpic_reset();
1811
1812	/*
1813	 * Point the ICU spurious interrupt vectors at the APIC spurious
1814	 * interrupt handler.
1815	 */
1816	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1817	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1818#endif
1819#else
1820#error "have you forgotten the isa device?";
1821#endif
1822
1823	kdb_init();
1824
1825#ifdef KDB
1826	if (boothowto & RB_KDB)
1827		kdb_enter(KDB_WHY_BOOTFLAGS,
1828		    "Boot flags requested debugger");
1829#endif
1830
1831	identify_cpu();		/* Final stage of CPU initialization */
1832	initializecpu();	/* Initialize CPU registers */
1833	initializecpucache();
1834
1835	/* doublefault stack space, runs on ist1 */
1836	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1837
1838	/*
1839	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1840	 * above the start of the ist2 stack.
1841	 */
1842	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1843	np->np_pcpu = (register_t) pc;
1844	common_tss[0].tss_ist2 = (long) np;
1845
1846	/* Set the IO permission bitmap (empty due to tss seg limit) */
1847	common_tss[0].tss_iobase = sizeof(struct amd64tss) +
1848	    IOPAGES * PAGE_SIZE;
1849
1850	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1851	ltr(gsel_tss);
1852
1853	/* Set up the fast syscall stuff */
1854	msr = rdmsr(MSR_EFER) | EFER_SCE;
1855	wrmsr(MSR_EFER, msr);
1856	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1857	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1858	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1859	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1860	wrmsr(MSR_STAR, msr);
1861	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1862
1863	getmemsize(kmdp, physfree);
1864	init_param2(physmem);
1865
1866	/* now running on new page tables, configured,and u/iom is accessible */
1867
1868	msgbufinit(msgbufp, msgbufsize);
1869	fpuinit();
1870
1871	/*
1872	 * Set up thread0 pcb after fpuinit calculated pcb + fpu save
1873	 * area size.  Zero out the extended state header in fpu save
1874	 * area.
1875	 */
1876	thread0.td_pcb = get_pcb_td(&thread0);
1877	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
1878	if (use_xsave) {
1879		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
1880		    1);
1881		xhdr->xstate_bv = xsave_mask;
1882	}
1883	/* make an initial tss so cpu can get interrupt stack on syscall! */
1884	common_tss[0].tss_rsp0 = (vm_offset_t)thread0.td_pcb;
1885	/* Ensure the stack is aligned to 16 bytes */
1886	common_tss[0].tss_rsp0 &= ~0xFul;
1887	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1888	PCPU_SET(curpcb, thread0.td_pcb);
1889
1890	/* transfer to user mode */
1891
1892	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1893	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1894	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1895	_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
1896	_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
1897
1898	load_ds(_udatasel);
1899	load_es(_udatasel);
1900	load_fs(_ufssel);
1901
1902	/* setup proc 0's pcb */
1903	thread0.td_pcb->pcb_flags = 0;
1904	thread0.td_pcb->pcb_cr3 = KPML4phys; /* PCID 0 is reserved for kernel */
1905	thread0.td_frame = &proc0_tf;
1906
1907        env = getenv("kernelname");
1908	if (env != NULL)
1909		strlcpy(kernelname, env, sizeof(kernelname));
1910
1911	cpu_probe_amdc1e();
1912
1913#ifdef FDT
1914	x86_init_fdt();
1915#endif
1916
1917	/* Location of kernel stack for locore */
1918	return ((u_int64_t)thread0.td_pcb);
1919}
1920
1921void
1922cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1923{
1924
1925	pcpu->pc_acpi_id = 0xffffffff;
1926}
1927
1928void
1929spinlock_enter(void)
1930{
1931	struct thread *td;
1932	register_t flags;
1933
1934	td = curthread;
1935	if (td->td_md.md_spinlock_count == 0) {
1936		flags = intr_disable();
1937		td->td_md.md_spinlock_count = 1;
1938		td->td_md.md_saved_flags = flags;
1939	} else
1940		td->td_md.md_spinlock_count++;
1941	critical_enter();
1942}
1943
1944void
1945spinlock_exit(void)
1946{
1947	struct thread *td;
1948	register_t flags;
1949
1950	td = curthread;
1951	critical_exit();
1952	flags = td->td_md.md_saved_flags;
1953	td->td_md.md_spinlock_count--;
1954	if (td->td_md.md_spinlock_count == 0)
1955		intr_restore(flags);
1956}
1957
1958/*
1959 * Construct a PCB from a trapframe. This is called from kdb_trap() where
1960 * we want to start a backtrace from the function that caused us to enter
1961 * the debugger. We have the context in the trapframe, but base the trace
1962 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1963 * enough for a backtrace.
1964 */
1965void
1966makectx(struct trapframe *tf, struct pcb *pcb)
1967{
1968
1969	pcb->pcb_r12 = tf->tf_r12;
1970	pcb->pcb_r13 = tf->tf_r13;
1971	pcb->pcb_r14 = tf->tf_r14;
1972	pcb->pcb_r15 = tf->tf_r15;
1973	pcb->pcb_rbp = tf->tf_rbp;
1974	pcb->pcb_rbx = tf->tf_rbx;
1975	pcb->pcb_rip = tf->tf_rip;
1976	pcb->pcb_rsp = tf->tf_rsp;
1977}
1978
1979int
1980ptrace_set_pc(struct thread *td, unsigned long addr)
1981{
1982	td->td_frame->tf_rip = addr;
1983	return (0);
1984}
1985
1986int
1987ptrace_single_step(struct thread *td)
1988{
1989	td->td_frame->tf_rflags |= PSL_T;
1990	return (0);
1991}
1992
1993int
1994ptrace_clear_single_step(struct thread *td)
1995{
1996	td->td_frame->tf_rflags &= ~PSL_T;
1997	return (0);
1998}
1999
2000int
2001fill_regs(struct thread *td, struct reg *regs)
2002{
2003	struct trapframe *tp;
2004
2005	tp = td->td_frame;
2006	return (fill_frame_regs(tp, regs));
2007}
2008
2009int
2010fill_frame_regs(struct trapframe *tp, struct reg *regs)
2011{
2012	regs->r_r15 = tp->tf_r15;
2013	regs->r_r14 = tp->tf_r14;
2014	regs->r_r13 = tp->tf_r13;
2015	regs->r_r12 = tp->tf_r12;
2016	regs->r_r11 = tp->tf_r11;
2017	regs->r_r10 = tp->tf_r10;
2018	regs->r_r9  = tp->tf_r9;
2019	regs->r_r8  = tp->tf_r8;
2020	regs->r_rdi = tp->tf_rdi;
2021	regs->r_rsi = tp->tf_rsi;
2022	regs->r_rbp = tp->tf_rbp;
2023	regs->r_rbx = tp->tf_rbx;
2024	regs->r_rdx = tp->tf_rdx;
2025	regs->r_rcx = tp->tf_rcx;
2026	regs->r_rax = tp->tf_rax;
2027	regs->r_rip = tp->tf_rip;
2028	regs->r_cs = tp->tf_cs;
2029	regs->r_rflags = tp->tf_rflags;
2030	regs->r_rsp = tp->tf_rsp;
2031	regs->r_ss = tp->tf_ss;
2032	if (tp->tf_flags & TF_HASSEGS) {
2033		regs->r_ds = tp->tf_ds;
2034		regs->r_es = tp->tf_es;
2035		regs->r_fs = tp->tf_fs;
2036		regs->r_gs = tp->tf_gs;
2037	} else {
2038		regs->r_ds = 0;
2039		regs->r_es = 0;
2040		regs->r_fs = 0;
2041		regs->r_gs = 0;
2042	}
2043	return (0);
2044}
2045
2046int
2047set_regs(struct thread *td, struct reg *regs)
2048{
2049	struct trapframe *tp;
2050	register_t rflags;
2051
2052	tp = td->td_frame;
2053	rflags = regs->r_rflags & 0xffffffff;
2054	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
2055		return (EINVAL);
2056	tp->tf_r15 = regs->r_r15;
2057	tp->tf_r14 = regs->r_r14;
2058	tp->tf_r13 = regs->r_r13;
2059	tp->tf_r12 = regs->r_r12;
2060	tp->tf_r11 = regs->r_r11;
2061	tp->tf_r10 = regs->r_r10;
2062	tp->tf_r9  = regs->r_r9;
2063	tp->tf_r8  = regs->r_r8;
2064	tp->tf_rdi = regs->r_rdi;
2065	tp->tf_rsi = regs->r_rsi;
2066	tp->tf_rbp = regs->r_rbp;
2067	tp->tf_rbx = regs->r_rbx;
2068	tp->tf_rdx = regs->r_rdx;
2069	tp->tf_rcx = regs->r_rcx;
2070	tp->tf_rax = regs->r_rax;
2071	tp->tf_rip = regs->r_rip;
2072	tp->tf_cs = regs->r_cs;
2073	tp->tf_rflags = rflags;
2074	tp->tf_rsp = regs->r_rsp;
2075	tp->tf_ss = regs->r_ss;
2076	if (0) {	/* XXXKIB */
2077		tp->tf_ds = regs->r_ds;
2078		tp->tf_es = regs->r_es;
2079		tp->tf_fs = regs->r_fs;
2080		tp->tf_gs = regs->r_gs;
2081		tp->tf_flags = TF_HASSEGS;
2082		set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
2083	}
2084	return (0);
2085}
2086
2087/* XXX check all this stuff! */
2088/* externalize from sv_xmm */
2089static void
2090fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
2091{
2092	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2093	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2094	int i;
2095
2096	/* pcb -> fpregs */
2097	bzero(fpregs, sizeof(*fpregs));
2098
2099	/* FPU control/status */
2100	penv_fpreg->en_cw = penv_xmm->en_cw;
2101	penv_fpreg->en_sw = penv_xmm->en_sw;
2102	penv_fpreg->en_tw = penv_xmm->en_tw;
2103	penv_fpreg->en_opcode = penv_xmm->en_opcode;
2104	penv_fpreg->en_rip = penv_xmm->en_rip;
2105	penv_fpreg->en_rdp = penv_xmm->en_rdp;
2106	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
2107	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
2108
2109	/* FPU registers */
2110	for (i = 0; i < 8; ++i)
2111		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
2112
2113	/* SSE registers */
2114	for (i = 0; i < 16; ++i)
2115		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
2116}
2117
2118/* internalize from fpregs into sv_xmm */
2119static void
2120set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
2121{
2122	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2123	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2124	int i;
2125
2126	/* fpregs -> pcb */
2127	/* FPU control/status */
2128	penv_xmm->en_cw = penv_fpreg->en_cw;
2129	penv_xmm->en_sw = penv_fpreg->en_sw;
2130	penv_xmm->en_tw = penv_fpreg->en_tw;
2131	penv_xmm->en_opcode = penv_fpreg->en_opcode;
2132	penv_xmm->en_rip = penv_fpreg->en_rip;
2133	penv_xmm->en_rdp = penv_fpreg->en_rdp;
2134	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
2135	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
2136
2137	/* FPU registers */
2138	for (i = 0; i < 8; ++i)
2139		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
2140
2141	/* SSE registers */
2142	for (i = 0; i < 16; ++i)
2143		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
2144}
2145
2146/* externalize from td->pcb */
2147int
2148fill_fpregs(struct thread *td, struct fpreg *fpregs)
2149{
2150
2151	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
2152	    P_SHOULDSTOP(td->td_proc),
2153	    ("not suspended thread %p", td));
2154	fpugetregs(td);
2155	fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs);
2156	return (0);
2157}
2158
2159/* internalize to td->pcb */
2160int
2161set_fpregs(struct thread *td, struct fpreg *fpregs)
2162{
2163
2164	set_fpregs_xmm(fpregs, get_pcb_user_save_td(td));
2165	fpuuserinited(td);
2166	return (0);
2167}
2168
2169/*
2170 * Get machine context.
2171 */
2172int
2173get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
2174{
2175	struct pcb *pcb;
2176	struct trapframe *tp;
2177
2178	pcb = td->td_pcb;
2179	tp = td->td_frame;
2180	PROC_LOCK(curthread->td_proc);
2181	mcp->mc_onstack = sigonstack(tp->tf_rsp);
2182	PROC_UNLOCK(curthread->td_proc);
2183	mcp->mc_r15 = tp->tf_r15;
2184	mcp->mc_r14 = tp->tf_r14;
2185	mcp->mc_r13 = tp->tf_r13;
2186	mcp->mc_r12 = tp->tf_r12;
2187	mcp->mc_r11 = tp->tf_r11;
2188	mcp->mc_r10 = tp->tf_r10;
2189	mcp->mc_r9  = tp->tf_r9;
2190	mcp->mc_r8  = tp->tf_r8;
2191	mcp->mc_rdi = tp->tf_rdi;
2192	mcp->mc_rsi = tp->tf_rsi;
2193	mcp->mc_rbp = tp->tf_rbp;
2194	mcp->mc_rbx = tp->tf_rbx;
2195	mcp->mc_rcx = tp->tf_rcx;
2196	mcp->mc_rflags = tp->tf_rflags;
2197	if (flags & GET_MC_CLEAR_RET) {
2198		mcp->mc_rax = 0;
2199		mcp->mc_rdx = 0;
2200		mcp->mc_rflags &= ~PSL_C;
2201	} else {
2202		mcp->mc_rax = tp->tf_rax;
2203		mcp->mc_rdx = tp->tf_rdx;
2204	}
2205	mcp->mc_rip = tp->tf_rip;
2206	mcp->mc_cs = tp->tf_cs;
2207	mcp->mc_rsp = tp->tf_rsp;
2208	mcp->mc_ss = tp->tf_ss;
2209	mcp->mc_ds = tp->tf_ds;
2210	mcp->mc_es = tp->tf_es;
2211	mcp->mc_fs = tp->tf_fs;
2212	mcp->mc_gs = tp->tf_gs;
2213	mcp->mc_flags = tp->tf_flags;
2214	mcp->mc_len = sizeof(*mcp);
2215	get_fpcontext(td, mcp, NULL, 0);
2216	mcp->mc_fsbase = pcb->pcb_fsbase;
2217	mcp->mc_gsbase = pcb->pcb_gsbase;
2218	mcp->mc_xfpustate = 0;
2219	mcp->mc_xfpustate_len = 0;
2220	bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
2221	return (0);
2222}
2223
2224/*
2225 * Set machine context.
2226 *
2227 * However, we don't set any but the user modifiable flags, and we won't
2228 * touch the cs selector.
2229 */
2230int
2231set_mcontext(struct thread *td, const mcontext_t *mcp)
2232{
2233	struct pcb *pcb;
2234	struct trapframe *tp;
2235	char *xfpustate;
2236	long rflags;
2237	int ret;
2238
2239	pcb = td->td_pcb;
2240	tp = td->td_frame;
2241	if (mcp->mc_len != sizeof(*mcp) ||
2242	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2243		return (EINVAL);
2244	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2245	    (tp->tf_rflags & ~PSL_USERCHANGE);
2246	if (mcp->mc_flags & _MC_HASFPXSTATE) {
2247		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
2248		    sizeof(struct savefpu))
2249			return (EINVAL);
2250		xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
2251		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
2252		    mcp->mc_xfpustate_len);
2253		if (ret != 0)
2254			return (ret);
2255	} else
2256		xfpustate = NULL;
2257	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
2258	if (ret != 0)
2259		return (ret);
2260	tp->tf_r15 = mcp->mc_r15;
2261	tp->tf_r14 = mcp->mc_r14;
2262	tp->tf_r13 = mcp->mc_r13;
2263	tp->tf_r12 = mcp->mc_r12;
2264	tp->tf_r11 = mcp->mc_r11;
2265	tp->tf_r10 = mcp->mc_r10;
2266	tp->tf_r9  = mcp->mc_r9;
2267	tp->tf_r8  = mcp->mc_r8;
2268	tp->tf_rdi = mcp->mc_rdi;
2269	tp->tf_rsi = mcp->mc_rsi;
2270	tp->tf_rbp = mcp->mc_rbp;
2271	tp->tf_rbx = mcp->mc_rbx;
2272	tp->tf_rdx = mcp->mc_rdx;
2273	tp->tf_rcx = mcp->mc_rcx;
2274	tp->tf_rax = mcp->mc_rax;
2275	tp->tf_rip = mcp->mc_rip;
2276	tp->tf_rflags = rflags;
2277	tp->tf_rsp = mcp->mc_rsp;
2278	tp->tf_ss = mcp->mc_ss;
2279	tp->tf_flags = mcp->mc_flags;
2280	if (tp->tf_flags & TF_HASSEGS) {
2281		tp->tf_ds = mcp->mc_ds;
2282		tp->tf_es = mcp->mc_es;
2283		tp->tf_fs = mcp->mc_fs;
2284		tp->tf_gs = mcp->mc_gs;
2285	}
2286	if (mcp->mc_flags & _MC_HASBASES) {
2287		pcb->pcb_fsbase = mcp->mc_fsbase;
2288		pcb->pcb_gsbase = mcp->mc_gsbase;
2289	}
2290	set_pcb_flags(pcb, PCB_FULL_IRET);
2291	return (0);
2292}
2293
2294static void
2295get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
2296    size_t xfpusave_len)
2297{
2298	size_t max_len, len;
2299
2300	mcp->mc_ownedfp = fpugetregs(td);
2301	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
2302	    sizeof(mcp->mc_fpstate));
2303	mcp->mc_fpformat = fpuformat();
2304	if (!use_xsave || xfpusave_len == 0)
2305		return;
2306	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
2307	len = xfpusave_len;
2308	if (len > max_len) {
2309		len = max_len;
2310		bzero(xfpusave + max_len, len - max_len);
2311	}
2312	mcp->mc_flags |= _MC_HASFPXSTATE;
2313	mcp->mc_xfpustate_len = len;
2314	bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
2315}
2316
2317static int
2318set_fpcontext(struct thread *td, const mcontext_t *mcp, char *xfpustate,
2319    size_t xfpustate_len)
2320{
2321	struct savefpu *fpstate;
2322	int error;
2323
2324	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2325		return (0);
2326	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2327		return (EINVAL);
2328	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
2329		/* We don't care what state is left in the FPU or PCB. */
2330		fpstate_drop(td);
2331		error = 0;
2332	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2333	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2334		fpstate = (struct savefpu *)&mcp->mc_fpstate;
2335		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2336		error = fpusetregs(td, fpstate, xfpustate, xfpustate_len);
2337	} else
2338		return (EINVAL);
2339	return (error);
2340}
2341
2342void
2343fpstate_drop(struct thread *td)
2344{
2345
2346	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
2347	critical_enter();
2348	if (PCPU_GET(fpcurthread) == td)
2349		fpudrop();
2350	/*
2351	 * XXX force a full drop of the fpu.  The above only drops it if we
2352	 * owned it.
2353	 *
2354	 * XXX I don't much like fpugetuserregs()'s semantics of doing a full
2355	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2356	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2357	 * sendsig() is the only caller of fpugetuserregs()... perhaps we just
2358	 * have too many layers.
2359	 */
2360	clear_pcb_flags(curthread->td_pcb,
2361	    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
2362	critical_exit();
2363}
2364
2365int
2366fill_dbregs(struct thread *td, struct dbreg *dbregs)
2367{
2368	struct pcb *pcb;
2369
2370	if (td == NULL) {
2371		dbregs->dr[0] = rdr0();
2372		dbregs->dr[1] = rdr1();
2373		dbregs->dr[2] = rdr2();
2374		dbregs->dr[3] = rdr3();
2375		dbregs->dr[6] = rdr6();
2376		dbregs->dr[7] = rdr7();
2377	} else {
2378		pcb = td->td_pcb;
2379		dbregs->dr[0] = pcb->pcb_dr0;
2380		dbregs->dr[1] = pcb->pcb_dr1;
2381		dbregs->dr[2] = pcb->pcb_dr2;
2382		dbregs->dr[3] = pcb->pcb_dr3;
2383		dbregs->dr[6] = pcb->pcb_dr6;
2384		dbregs->dr[7] = pcb->pcb_dr7;
2385	}
2386	dbregs->dr[4] = 0;
2387	dbregs->dr[5] = 0;
2388	dbregs->dr[8] = 0;
2389	dbregs->dr[9] = 0;
2390	dbregs->dr[10] = 0;
2391	dbregs->dr[11] = 0;
2392	dbregs->dr[12] = 0;
2393	dbregs->dr[13] = 0;
2394	dbregs->dr[14] = 0;
2395	dbregs->dr[15] = 0;
2396	return (0);
2397}
2398
2399int
2400set_dbregs(struct thread *td, struct dbreg *dbregs)
2401{
2402	struct pcb *pcb;
2403	int i;
2404
2405	if (td == NULL) {
2406		load_dr0(dbregs->dr[0]);
2407		load_dr1(dbregs->dr[1]);
2408		load_dr2(dbregs->dr[2]);
2409		load_dr3(dbregs->dr[3]);
2410		load_dr6(dbregs->dr[6]);
2411		load_dr7(dbregs->dr[7]);
2412	} else {
2413		/*
2414		 * Don't let an illegal value for dr7 get set.  Specifically,
2415		 * check for undefined settings.  Setting these bit patterns
2416		 * result in undefined behaviour and can lead to an unexpected
2417		 * TRCTRAP or a general protection fault right here.
2418		 * Upper bits of dr6 and dr7 must not be set
2419		 */
2420		for (i = 0; i < 4; i++) {
2421			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2422				return (EINVAL);
2423			if (td->td_frame->tf_cs == _ucode32sel &&
2424			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2425				return (EINVAL);
2426		}
2427		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2428		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2429			return (EINVAL);
2430
2431		pcb = td->td_pcb;
2432
2433		/*
2434		 * Don't let a process set a breakpoint that is not within the
2435		 * process's address space.  If a process could do this, it
2436		 * could halt the system by setting a breakpoint in the kernel
2437		 * (if ddb was enabled).  Thus, we need to check to make sure
2438		 * that no breakpoints are being enabled for addresses outside
2439		 * process's address space.
2440		 *
2441		 * XXX - what about when the watched area of the user's
2442		 * address space is written into from within the kernel
2443		 * ... wouldn't that still cause a breakpoint to be generated
2444		 * from within kernel mode?
2445		 */
2446
2447		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2448			/* dr0 is enabled */
2449			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2450				return (EINVAL);
2451		}
2452		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2453			/* dr1 is enabled */
2454			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2455				return (EINVAL);
2456		}
2457		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2458			/* dr2 is enabled */
2459			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2460				return (EINVAL);
2461		}
2462		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2463			/* dr3 is enabled */
2464			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2465				return (EINVAL);
2466		}
2467
2468		pcb->pcb_dr0 = dbregs->dr[0];
2469		pcb->pcb_dr1 = dbregs->dr[1];
2470		pcb->pcb_dr2 = dbregs->dr[2];
2471		pcb->pcb_dr3 = dbregs->dr[3];
2472		pcb->pcb_dr6 = dbregs->dr[6];
2473		pcb->pcb_dr7 = dbregs->dr[7];
2474
2475		set_pcb_flags(pcb, PCB_DBREGS);
2476	}
2477
2478	return (0);
2479}
2480
2481void
2482reset_dbregs(void)
2483{
2484
2485	load_dr7(0);	/* Turn off the control bits first */
2486	load_dr0(0);
2487	load_dr1(0);
2488	load_dr2(0);
2489	load_dr3(0);
2490	load_dr6(0);
2491}
2492
2493/*
2494 * Return > 0 if a hardware breakpoint has been hit, and the
2495 * breakpoint was in user space.  Return 0, otherwise.
2496 */
2497int
2498user_dbreg_trap(void)
2499{
2500        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2501        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2502        int nbp;            /* number of breakpoints that triggered */
2503        caddr_t addr[4];    /* breakpoint addresses */
2504        int i;
2505
2506        dr7 = rdr7();
2507        if ((dr7 & 0x000000ff) == 0) {
2508                /*
2509                 * all GE and LE bits in the dr7 register are zero,
2510                 * thus the trap couldn't have been caused by the
2511                 * hardware debug registers
2512                 */
2513                return 0;
2514        }
2515
2516        nbp = 0;
2517        dr6 = rdr6();
2518        bp = dr6 & 0x0000000f;
2519
2520        if (!bp) {
2521                /*
2522                 * None of the breakpoint bits are set meaning this
2523                 * trap was not caused by any of the debug registers
2524                 */
2525                return 0;
2526        }
2527
2528        /*
2529         * at least one of the breakpoints were hit, check to see
2530         * which ones and if any of them are user space addresses
2531         */
2532
2533        if (bp & 0x01) {
2534                addr[nbp++] = (caddr_t)rdr0();
2535        }
2536        if (bp & 0x02) {
2537                addr[nbp++] = (caddr_t)rdr1();
2538        }
2539        if (bp & 0x04) {
2540                addr[nbp++] = (caddr_t)rdr2();
2541        }
2542        if (bp & 0x08) {
2543                addr[nbp++] = (caddr_t)rdr3();
2544        }
2545
2546        for (i = 0; i < nbp; i++) {
2547                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2548                        /*
2549                         * addr[i] is in user space
2550                         */
2551                        return nbp;
2552                }
2553        }
2554
2555        /*
2556         * None of the breakpoints are in user space.
2557         */
2558        return 0;
2559}
2560
2561#ifdef KDB
2562
2563/*
2564 * Provide inb() and outb() as functions.  They are normally only available as
2565 * inline functions, thus cannot be called from the debugger.
2566 */
2567
2568/* silence compiler warnings */
2569u_char inb_(u_short);
2570void outb_(u_short, u_char);
2571
2572u_char
2573inb_(u_short port)
2574{
2575	return inb(port);
2576}
2577
2578void
2579outb_(u_short port, u_char data)
2580{
2581	outb(port, data);
2582}
2583
2584#endif /* KDB */
2585