machdep.c revision 258559
12965Swollman/*-
227624Scharnier * Copyright (c) 2003 Peter Wemm.
32965Swollman * Copyright (c) 1992 Terrence R. Lambert.
42965Swollman * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
57094Swollman * All rights reserved.
62965Swollman *
72965Swollman * This code is derived from software contributed to Berkeley by
899112Sobrien * William Jolitz.
999112Sobrien *
1099112Sobrien * Redistribution and use in source and binary forms, with or without
1132593Sbde * modification, are permitted provided that the following conditions
1232593Sbde * are met:
132965Swollman * 1. Redistributions of source code must retain the above copyright
142965Swollman *    notice, this list of conditions and the following disclaimer.
1523350Sbde * 2. Redistributions in binary form must reproduce the above copyright
1623350Sbde *    notice, this list of conditions and the following disclaimer in the
172965Swollman *    documentation and/or other materials provided with the distribution.
1823350Sbde * 3. All advertising materials mentioning features or use of this software
192965Swollman *    must display the following acknowledgement:
2038619Sbde *	This product includes software developed by the University of
2138619Sbde *	California, Berkeley and its contributors.
2238619Sbde * 4. Neither the name of the University nor the names of its contributors
232965Swollman *    may be used to endorse or promote products derived from this software
247094Swollman *    without specific prior written permission.
257094Swollman *
262965Swollman * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
272965Swollman * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
282965Swollman * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
292965Swollman * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
3032593Sbde * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3132593Sbde * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
322965Swollman * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
332965Swollman * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
342965Swollman * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
352965Swollman * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3638619Sbde * SUCH DAMAGE.
372965Swollman *
382965Swollman *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
392965Swollman */
402965Swollman
4147701Sru#include <sys/cdefs.h>
4238619Sbde__FBSDID("$FreeBSD: stable/10/sys/amd64/amd64/machdep.c 258559 2013-11-25 15:58:48Z emaste $");
432965Swollman
442984Swollman#include "opt_atalk.h"
452965Swollman#include "opt_atpic.h"
462965Swollman#include "opt_compat.h"
472965Swollman#include "opt_cpu.h"
482965Swollman#include "opt_ddb.h"
4978716Sdd#include "opt_inet.h"
5038619Sbde#include "opt_ipx.h"
5132593Sbde#include "opt_isa.h"
522965Swollman#include "opt_kstack_pages.h"
532965Swollman#include "opt_maxmem.h"
542965Swollman#include "opt_mp_watchdog.h"
552965Swollman#include "opt_perfmon.h"
562965Swollman#include "opt_platform.h"
572965Swollman#include "opt_sched.h"
582965Swollman#include "opt_kdtrace.h"
597094Swollman
607094Swollman#include <sys/param.h>
617094Swollman#include <sys/proc.h>
627096Swollman#include <sys/systm.h>
637096Swollman#include <sys/bio.h>
647096Swollman#include <sys/buf.h>
6523350Sbde#include <sys/bus.h>
6623350Sbde#include <sys/callout.h>
677096Swollman#include <sys/cons.h>
687096Swollman#include <sys/cpu.h>
697096Swollman#include <sys/eventhandler.h>
707096Swollman#include <sys/exec.h>
717096Swollman#include <sys/imgact.h>
727096Swollman#include <sys/kdb.h>
737096Swollman#include <sys/kernel.h>
747096Swollman#include <sys/ktr.h>
757096Swollman#include <sys/linker.h>
767096Swollman#include <sys/lock.h>
777096Swollman#include <sys/malloc.h>
787096Swollman#include <sys/memrange.h>
797096Swollman#include <sys/msgbuf.h>
807096Swollman#include <sys/mutex.h>
817096Swollman#include <sys/pcpu.h>
827096Swollman#include <sys/ptrace.h>
837096Swollman#include <sys/reboot.h>
847096Swollman#include <sys/rwlock.h>
857096Swollman#include <sys/sched.h>
867096Swollman#include <sys/signalvar.h>
877096Swollman#ifdef SMP
887096Swollman#include <sys/smp.h>
897096Swollman#endif
907096Swollman#include <sys/syscallsubr.h>
917096Swollman#include <sys/sysctl.h>
927096Swollman#include <sys/sysent.h>
937096Swollman#include <sys/sysproto.h>
947096Swollman#include <sys/ucontext.h>
957096Swollman#include <sys/vmmeter.h>
9623350Sbde
9723350Sbde#include <vm/vm.h>
9823350Sbde#include <vm/vm_extern.h>
9923350Sbde#include <vm/vm_kern.h>
10023350Sbde#include <vm/vm_page.h>
1017096Swollman#include <vm/vm_map.h>
1027094Swollman#include <vm/vm_object.h>
103#include <vm/vm_pager.h>
104#include <vm/vm_param.h>
105
106#ifdef DDB
107#ifndef KDB
108#error KDB must be enabled in order for DDB to work!
109#endif
110#include <ddb/ddb.h>
111#include <ddb/db_sym.h>
112#endif
113
114#include <net/netisr.h>
115
116#include <machine/clock.h>
117#include <machine/cpu.h>
118#include <machine/cputypes.h>
119#include <machine/intr_machdep.h>
120#include <x86/mca.h>
121#include <machine/md_var.h>
122#include <machine/metadata.h>
123#include <machine/mp_watchdog.h>
124#include <machine/pc/bios.h>
125#include <machine/pcb.h>
126#include <machine/proc.h>
127#include <machine/reg.h>
128#include <machine/sigframe.h>
129#include <machine/specialreg.h>
130#ifdef PERFMON
131#include <machine/perfmon.h>
132#endif
133#include <machine/tss.h>
134#ifdef SMP
135#include <machine/smp.h>
136#endif
137#ifdef FDT
138#include <x86/fdt.h>
139#endif
140
141#ifdef DEV_ATPIC
142#include <x86/isa/icu.h>
143#else
144#include <machine/apicvar.h>
145#endif
146
147#include <isa/isareg.h>
148#include <isa/rtc.h>
149
150/* Sanity check for __curthread() */
151CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
152
153extern u_int64_t hammer_time(u_int64_t, u_int64_t);
154
155extern void printcpuinfo(void);	/* XXX header file */
156extern void identify_cpu(void);
157extern void panicifcpuunsupported(void);
158
159#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
160#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
161
162static void cpu_startup(void *);
163static void get_fpcontext(struct thread *td, mcontext_t *mcp,
164    char *xfpusave, size_t xfpusave_len);
165static int  set_fpcontext(struct thread *td, const mcontext_t *mcp,
166    char *xfpustate, size_t xfpustate_len);
167SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
168
169/*
170 * The file "conf/ldscript.amd64" defines the symbol "kernphys".  Its value is
171 * the physical address at which the kernel is loaded.
172 */
173extern char kernphys[];
174#ifdef DDB
175extern vm_offset_t ksym_start, ksym_end;
176#endif
177
178struct msgbuf *msgbufp;
179
180/* Intel ICH registers */
181#define ICH_PMBASE	0x400
182#define ICH_SMI_EN	ICH_PMBASE + 0x30
183
184int	_udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
185
186int cold = 1;
187
188long Maxmem = 0;
189long realmem = 0;
190
191/*
192 * The number of PHYSMAP entries must be one less than the number of
193 * PHYSSEG entries because the PHYSMAP entry that spans the largest
194 * physical address that is accessible by ISA DMA is split into two
195 * PHYSSEG entries.
196 */
197#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
198
199vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
200vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
201
202/* must be 2 less so 0 0 can signal end of chunks */
203#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
204#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
205
206struct kva_md_info kmi;
207
208static struct trapframe proc0_tf;
209struct region_descriptor r_gdt, r_idt;
210
211struct pcpu __pcpu[MAXCPU];
212
213struct mtx icu_lock;
214
215struct mem_range_softc mem_range_softc;
216
217struct mtx dt_lock;	/* lock for GDT and LDT */
218
219static void
220cpu_startup(dummy)
221	void *dummy;
222{
223	uintmax_t memsize;
224	char *sysenv;
225
226	/*
227	 * On MacBooks, we need to disallow the legacy USB circuit to
228	 * generate an SMI# because this can cause several problems,
229	 * namely: incorrect CPU frequency detection and failure to
230	 * start the APs.
231	 * We do this by disabling a bit in the SMI_EN (SMI Control and
232	 * Enable register) of the Intel ICH LPC Interface Bridge.
233	 */
234	sysenv = getenv("smbios.system.product");
235	if (sysenv != NULL) {
236		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
237		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
238		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
239		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
240		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
241		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
242			if (bootverbose)
243				printf("Disabling LEGACY_USB_EN bit on "
244				    "Intel ICH.\n");
245			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
246		}
247		freeenv(sysenv);
248	}
249
250	/*
251	 * Good {morning,afternoon,evening,night}.
252	 */
253	startrtclock();
254	printcpuinfo();
255	panicifcpuunsupported();
256#ifdef PERFMON
257	perfmon_init();
258#endif
259	realmem = Maxmem;
260
261	/*
262	 * Display physical memory if SMBIOS reports reasonable amount.
263	 */
264	memsize = 0;
265	sysenv = getenv("smbios.memory.enabled");
266	if (sysenv != NULL) {
267		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
268		freeenv(sysenv);
269	}
270	if (memsize < ptoa((uintmax_t)cnt.v_free_count))
271		memsize = ptoa((uintmax_t)Maxmem);
272	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
273
274	/*
275	 * Display any holes after the first chunk of extended memory.
276	 */
277	if (bootverbose) {
278		int indx;
279
280		printf("Physical memory chunk(s):\n");
281		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
282			vm_paddr_t size;
283
284			size = phys_avail[indx + 1] - phys_avail[indx];
285			printf(
286			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
287			    (uintmax_t)phys_avail[indx],
288			    (uintmax_t)phys_avail[indx + 1] - 1,
289			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
290		}
291	}
292
293	vm_ksubmap_init(&kmi);
294
295	printf("avail memory = %ju (%ju MB)\n",
296	    ptoa((uintmax_t)cnt.v_free_count),
297	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
298
299	/*
300	 * Set up buffers, so they can be used to read disk labels.
301	 */
302	bufinit();
303	vm_pager_bufferinit();
304
305	cpu_setregs();
306}
307
308/*
309 * Send an interrupt to process.
310 *
311 * Stack is set up to allow sigcode stored
312 * at top to call routine, followed by call
313 * to sigreturn routine below.  After sigreturn
314 * resets the signal mask, the stack, and the
315 * frame pointer, it returns to the user
316 * specified pc, psl.
317 */
318void
319sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
320{
321	struct sigframe sf, *sfp;
322	struct pcb *pcb;
323	struct proc *p;
324	struct thread *td;
325	struct sigacts *psp;
326	char *sp;
327	struct trapframe *regs;
328	char *xfpusave;
329	size_t xfpusave_len;
330	int sig;
331	int oonstack;
332
333	td = curthread;
334	pcb = td->td_pcb;
335	p = td->td_proc;
336	PROC_LOCK_ASSERT(p, MA_OWNED);
337	sig = ksi->ksi_signo;
338	psp = p->p_sigacts;
339	mtx_assert(&psp->ps_mtx, MA_OWNED);
340	regs = td->td_frame;
341	oonstack = sigonstack(regs->tf_rsp);
342
343	if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) {
344		xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu);
345		xfpusave = __builtin_alloca(xfpusave_len);
346	} else {
347		xfpusave_len = 0;
348		xfpusave = NULL;
349	}
350
351	/* Save user context. */
352	bzero(&sf, sizeof(sf));
353	sf.sf_uc.uc_sigmask = *mask;
354	sf.sf_uc.uc_stack = td->td_sigstk;
355	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
356	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
357	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
358	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
359	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
360	get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
361	fpstate_drop(td);
362	sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
363	sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
364	bzero(sf.sf_uc.uc_mcontext.mc_spare,
365	    sizeof(sf.sf_uc.uc_mcontext.mc_spare));
366	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
367
368	/* Allocate space for the signal handler context. */
369	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
370	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
371		sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
372#if defined(COMPAT_43)
373		td->td_sigstk.ss_flags |= SS_ONSTACK;
374#endif
375	} else
376		sp = (char *)regs->tf_rsp - 128;
377	if (xfpusave != NULL) {
378		sp -= xfpusave_len;
379		sp = (char *)((unsigned long)sp & ~0x3Ful);
380		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
381	}
382	sp -= sizeof(struct sigframe);
383	/* Align to 16 bytes. */
384	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
385
386	/* Translate the signal if appropriate. */
387	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
388		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
389
390	/* Build the argument list for the signal handler. */
391	regs->tf_rdi = sig;			/* arg 1 in %rdi */
392	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
393	bzero(&sf.sf_si, sizeof(sf.sf_si));
394	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
395		/* Signal handler installed with SA_SIGINFO. */
396		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
397		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
398
399		/* Fill in POSIX parts */
400		sf.sf_si = ksi->ksi_info;
401		sf.sf_si.si_signo = sig; /* maybe a translated signal */
402		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
403	} else {
404		/* Old FreeBSD-style arguments. */
405		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
406		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
407		sf.sf_ahu.sf_handler = catcher;
408	}
409	mtx_unlock(&psp->ps_mtx);
410	PROC_UNLOCK(p);
411
412	/*
413	 * Copy the sigframe out to the user's stack.
414	 */
415	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
416	    (xfpusave != NULL && copyout(xfpusave,
417	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
418	    != 0)) {
419#ifdef DEBUG
420		printf("process %ld has trashed its stack\n", (long)p->p_pid);
421#endif
422		PROC_LOCK(p);
423		sigexit(td, SIGILL);
424	}
425
426	regs->tf_rsp = (long)sfp;
427	regs->tf_rip = p->p_sysent->sv_sigcode_base;
428	regs->tf_rflags &= ~(PSL_T | PSL_D);
429	regs->tf_cs = _ucodesel;
430	regs->tf_ds = _udatasel;
431	regs->tf_es = _udatasel;
432	regs->tf_fs = _ufssel;
433	regs->tf_gs = _ugssel;
434	regs->tf_flags = TF_HASSEGS;
435	set_pcb_flags(pcb, PCB_FULL_IRET);
436	PROC_LOCK(p);
437	mtx_lock(&psp->ps_mtx);
438}
439
440/*
441 * System call to cleanup state after a signal
442 * has been taken.  Reset signal mask and
443 * stack state from context left by sendsig (above).
444 * Return to previous pc and psl as specified by
445 * context left by sendsig. Check carefully to
446 * make sure that the user has not modified the
447 * state to gain improper privileges.
448 *
449 * MPSAFE
450 */
451int
452sys_sigreturn(td, uap)
453	struct thread *td;
454	struct sigreturn_args /* {
455		const struct __ucontext *sigcntxp;
456	} */ *uap;
457{
458	ucontext_t uc;
459	struct pcb *pcb;
460	struct proc *p;
461	struct trapframe *regs;
462	ucontext_t *ucp;
463	char *xfpustate;
464	size_t xfpustate_len;
465	long rflags;
466	int cs, error, ret;
467	ksiginfo_t ksi;
468
469	pcb = td->td_pcb;
470	p = td->td_proc;
471
472	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
473	if (error != 0) {
474		uprintf("pid %d (%s): sigreturn copyin failed\n",
475		    p->p_pid, td->td_name);
476		return (error);
477	}
478	ucp = &uc;
479	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
480		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
481		    td->td_name, ucp->uc_mcontext.mc_flags);
482		return (EINVAL);
483	}
484	regs = td->td_frame;
485	rflags = ucp->uc_mcontext.mc_rflags;
486	/*
487	 * Don't allow users to change privileged or reserved flags.
488	 */
489	if (!EFL_SECURE(rflags, regs->tf_rflags)) {
490		uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
491		    td->td_name, rflags);
492		return (EINVAL);
493	}
494
495	/*
496	 * Don't allow users to load a valid privileged %cs.  Let the
497	 * hardware check for invalid selectors, excess privilege in
498	 * other selectors, invalid %eip's and invalid %esp's.
499	 */
500	cs = ucp->uc_mcontext.mc_cs;
501	if (!CS_SECURE(cs)) {
502		uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
503		    td->td_name, cs);
504		ksiginfo_init_trap(&ksi);
505		ksi.ksi_signo = SIGBUS;
506		ksi.ksi_code = BUS_OBJERR;
507		ksi.ksi_trapno = T_PROTFLT;
508		ksi.ksi_addr = (void *)regs->tf_rip;
509		trapsignal(td, &ksi);
510		return (EINVAL);
511	}
512
513	if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
514		xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
515		if (xfpustate_len > cpu_max_ext_state_size -
516		    sizeof(struct savefpu)) {
517			uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
518			    p->p_pid, td->td_name, xfpustate_len);
519			return (EINVAL);
520		}
521		xfpustate = __builtin_alloca(xfpustate_len);
522		error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
523		    xfpustate, xfpustate_len);
524		if (error != 0) {
525			uprintf(
526	"pid %d (%s): sigreturn copying xfpustate failed\n",
527			    p->p_pid, td->td_name);
528			return (error);
529		}
530	} else {
531		xfpustate = NULL;
532		xfpustate_len = 0;
533	}
534	ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len);
535	if (ret != 0) {
536		uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
537		    p->p_pid, td->td_name, ret);
538		return (ret);
539	}
540	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
541	pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
542	pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
543
544#if defined(COMPAT_43)
545	if (ucp->uc_mcontext.mc_onstack & 1)
546		td->td_sigstk.ss_flags |= SS_ONSTACK;
547	else
548		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
549#endif
550
551	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
552	set_pcb_flags(pcb, PCB_FULL_IRET);
553	return (EJUSTRETURN);
554}
555
556#ifdef COMPAT_FREEBSD4
557int
558freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
559{
560
561	return sys_sigreturn(td, (struct sigreturn_args *)uap);
562}
563#endif
564
565
566/*
567 * Machine dependent boot() routine
568 *
569 * I haven't seen anything to put here yet
570 * Possibly some stuff might be grafted back here from boot()
571 */
572void
573cpu_boot(int howto)
574{
575}
576
577/*
578 * Flush the D-cache for non-DMA I/O so that the I-cache can
579 * be made coherent later.
580 */
581void
582cpu_flush_dcache(void *ptr, size_t len)
583{
584	/* Not applicable */
585}
586
587/* Get current clock frequency for the given cpu id. */
588int
589cpu_est_clockrate(int cpu_id, uint64_t *rate)
590{
591	uint64_t tsc1, tsc2;
592	uint64_t acnt, mcnt, perf;
593	register_t reg;
594
595	if (pcpu_find(cpu_id) == NULL || rate == NULL)
596		return (EINVAL);
597
598	/*
599	 * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
600	 * DELAY(9) based logic fails.
601	 */
602	if (tsc_is_invariant && !tsc_perf_stat)
603		return (EOPNOTSUPP);
604
605#ifdef SMP
606	if (smp_cpus > 1) {
607		/* Schedule ourselves on the indicated cpu. */
608		thread_lock(curthread);
609		sched_bind(curthread, cpu_id);
610		thread_unlock(curthread);
611	}
612#endif
613
614	/* Calibrate by measuring a short delay. */
615	reg = intr_disable();
616	if (tsc_is_invariant) {
617		wrmsr(MSR_MPERF, 0);
618		wrmsr(MSR_APERF, 0);
619		tsc1 = rdtsc();
620		DELAY(1000);
621		mcnt = rdmsr(MSR_MPERF);
622		acnt = rdmsr(MSR_APERF);
623		tsc2 = rdtsc();
624		intr_restore(reg);
625		perf = 1000 * acnt / mcnt;
626		*rate = (tsc2 - tsc1) * perf;
627	} else {
628		tsc1 = rdtsc();
629		DELAY(1000);
630		tsc2 = rdtsc();
631		intr_restore(reg);
632		*rate = (tsc2 - tsc1) * 1000;
633	}
634
635#ifdef SMP
636	if (smp_cpus > 1) {
637		thread_lock(curthread);
638		sched_unbind(curthread);
639		thread_unlock(curthread);
640	}
641#endif
642
643	return (0);
644}
645
646/*
647 * Shutdown the CPU as much as possible
648 */
649void
650cpu_halt(void)
651{
652	for (;;)
653		halt();
654}
655
656void (*cpu_idle_hook)(sbintime_t) = NULL;	/* ACPI idle hook. */
657static int	cpu_ident_amdc1e = 0;	/* AMD C1E supported. */
658static int	idle_mwait = 1;		/* Use MONITOR/MWAIT for short idle. */
659TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
660SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
661    0, "Use MONITOR/MWAIT for short idle");
662
663#define	STATE_RUNNING	0x0
664#define	STATE_MWAIT	0x1
665#define	STATE_SLEEPING	0x2
666
667static void
668cpu_idle_acpi(sbintime_t sbt)
669{
670	int *state;
671
672	state = (int *)PCPU_PTR(monitorbuf);
673	*state = STATE_SLEEPING;
674
675	/* See comments in cpu_idle_hlt(). */
676	disable_intr();
677	if (sched_runnable())
678		enable_intr();
679	else if (cpu_idle_hook)
680		cpu_idle_hook(sbt);
681	else
682		__asm __volatile("sti; hlt");
683	*state = STATE_RUNNING;
684}
685
686static void
687cpu_idle_hlt(sbintime_t sbt)
688{
689	int *state;
690
691	state = (int *)PCPU_PTR(monitorbuf);
692	*state = STATE_SLEEPING;
693
694	/*
695	 * Since we may be in a critical section from cpu_idle(), if
696	 * an interrupt fires during that critical section we may have
697	 * a pending preemption.  If the CPU halts, then that thread
698	 * may not execute until a later interrupt awakens the CPU.
699	 * To handle this race, check for a runnable thread after
700	 * disabling interrupts and immediately return if one is
701	 * found.  Also, we must absolutely guarentee that hlt is
702	 * the next instruction after sti.  This ensures that any
703	 * interrupt that fires after the call to disable_intr() will
704	 * immediately awaken the CPU from hlt.  Finally, please note
705	 * that on x86 this works fine because of interrupts enabled only
706	 * after the instruction following sti takes place, while IF is set
707	 * to 1 immediately, allowing hlt instruction to acknowledge the
708	 * interrupt.
709	 */
710	disable_intr();
711	if (sched_runnable())
712		enable_intr();
713	else
714		__asm __volatile("sti; hlt");
715	*state = STATE_RUNNING;
716}
717
718/*
719 * MWAIT cpu power states.  Lower 4 bits are sub-states.
720 */
721#define	MWAIT_C0	0xf0
722#define	MWAIT_C1	0x00
723#define	MWAIT_C2	0x10
724#define	MWAIT_C3	0x20
725#define	MWAIT_C4	0x30
726
727static void
728cpu_idle_mwait(sbintime_t sbt)
729{
730	int *state;
731
732	state = (int *)PCPU_PTR(monitorbuf);
733	*state = STATE_MWAIT;
734
735	/* See comments in cpu_idle_hlt(). */
736	disable_intr();
737	if (sched_runnable()) {
738		enable_intr();
739		*state = STATE_RUNNING;
740		return;
741	}
742	cpu_monitor(state, 0, 0);
743	if (*state == STATE_MWAIT)
744		__asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
745	else
746		enable_intr();
747	*state = STATE_RUNNING;
748}
749
750static void
751cpu_idle_spin(sbintime_t sbt)
752{
753	int *state;
754	int i;
755
756	state = (int *)PCPU_PTR(monitorbuf);
757	*state = STATE_RUNNING;
758
759	/*
760	 * The sched_runnable() call is racy but as long as there is
761	 * a loop missing it one time will have just a little impact if any
762	 * (and it is much better than missing the check at all).
763	 */
764	for (i = 0; i < 1000; i++) {
765		if (sched_runnable())
766			return;
767		cpu_spinwait();
768	}
769}
770
771/*
772 * C1E renders the local APIC timer dead, so we disable it by
773 * reading the Interrupt Pending Message register and clearing
774 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
775 *
776 * Reference:
777 *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
778 *   #32559 revision 3.00+
779 */
780#define	MSR_AMDK8_IPM		0xc0010055
781#define	AMDK8_SMIONCMPHALT	(1ULL << 27)
782#define	AMDK8_C1EONCMPHALT	(1ULL << 28)
783#define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
784
785static void
786cpu_probe_amdc1e(void)
787{
788
789	/*
790	 * Detect the presence of C1E capability mostly on latest
791	 * dual-cores (or future) k8 family.
792	 */
793	if (cpu_vendor_id == CPU_VENDOR_AMD &&
794	    (cpu_id & 0x00000f00) == 0x00000f00 &&
795	    (cpu_id & 0x0fff0000) >=  0x00040000) {
796		cpu_ident_amdc1e = 1;
797	}
798}
799
800void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi;
801
802void
803cpu_idle(int busy)
804{
805	uint64_t msr;
806	sbintime_t sbt = -1;
807
808	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
809	    busy, curcpu);
810#ifdef MP_WATCHDOG
811	ap_watchdog(PCPU_GET(cpuid));
812#endif
813	/* If we are busy - try to use fast methods. */
814	if (busy) {
815		if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
816			cpu_idle_mwait(busy);
817			goto out;
818		}
819	}
820
821	/* If we have time - switch timers into idle mode. */
822	if (!busy) {
823		critical_enter();
824		sbt = cpu_idleclock();
825	}
826
827	/* Apply AMD APIC timer C1E workaround. */
828	if (cpu_ident_amdc1e && cpu_disable_deep_sleep) {
829		msr = rdmsr(MSR_AMDK8_IPM);
830		if (msr & AMDK8_CMPHALT)
831			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
832	}
833
834	/* Call main idle method. */
835	cpu_idle_fn(sbt);
836
837	/* Switch timers mack into active mode. */
838	if (!busy) {
839		cpu_activeclock();
840		critical_exit();
841	}
842out:
843	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
844	    busy, curcpu);
845}
846
847int
848cpu_idle_wakeup(int cpu)
849{
850	struct pcpu *pcpu;
851	int *state;
852
853	pcpu = pcpu_find(cpu);
854	state = (int *)pcpu->pc_monitorbuf;
855	/*
856	 * This doesn't need to be atomic since missing the race will
857	 * simply result in unnecessary IPIs.
858	 */
859	if (*state == STATE_SLEEPING)
860		return (0);
861	if (*state == STATE_MWAIT)
862		*state = STATE_RUNNING;
863	return (1);
864}
865
866/*
867 * Ordered by speed/power consumption.
868 */
869struct {
870	void	*id_fn;
871	char	*id_name;
872} idle_tbl[] = {
873	{ cpu_idle_spin, "spin" },
874	{ cpu_idle_mwait, "mwait" },
875	{ cpu_idle_hlt, "hlt" },
876	{ cpu_idle_acpi, "acpi" },
877	{ NULL, NULL }
878};
879
880static int
881idle_sysctl_available(SYSCTL_HANDLER_ARGS)
882{
883	char *avail, *p;
884	int error;
885	int i;
886
887	avail = malloc(256, M_TEMP, M_WAITOK);
888	p = avail;
889	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
890		if (strstr(idle_tbl[i].id_name, "mwait") &&
891		    (cpu_feature2 & CPUID2_MON) == 0)
892			continue;
893		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
894		    cpu_idle_hook == NULL)
895			continue;
896		p += sprintf(p, "%s%s", p != avail ? ", " : "",
897		    idle_tbl[i].id_name);
898	}
899	error = sysctl_handle_string(oidp, avail, 0, req);
900	free(avail, M_TEMP);
901	return (error);
902}
903
904SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
905    0, 0, idle_sysctl_available, "A", "list of available idle functions");
906
907static int
908idle_sysctl(SYSCTL_HANDLER_ARGS)
909{
910	char buf[16];
911	int error;
912	char *p;
913	int i;
914
915	p = "unknown";
916	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
917		if (idle_tbl[i].id_fn == cpu_idle_fn) {
918			p = idle_tbl[i].id_name;
919			break;
920		}
921	}
922	strncpy(buf, p, sizeof(buf));
923	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
924	if (error != 0 || req->newptr == NULL)
925		return (error);
926	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
927		if (strstr(idle_tbl[i].id_name, "mwait") &&
928		    (cpu_feature2 & CPUID2_MON) == 0)
929			continue;
930		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
931		    cpu_idle_hook == NULL)
932			continue;
933		if (strcmp(idle_tbl[i].id_name, buf))
934			continue;
935		cpu_idle_fn = idle_tbl[i].id_fn;
936		return (0);
937	}
938	return (EINVAL);
939}
940
941SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
942    idle_sysctl, "A", "currently selected idle function");
943
944/*
945 * Reset registers to default values on exec.
946 */
947void
948exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
949{
950	struct trapframe *regs = td->td_frame;
951	struct pcb *pcb = td->td_pcb;
952
953	mtx_lock(&dt_lock);
954	if (td->td_proc->p_md.md_ldt != NULL)
955		user_ldt_free(td);
956	else
957		mtx_unlock(&dt_lock);
958
959	pcb->pcb_fsbase = 0;
960	pcb->pcb_gsbase = 0;
961	clear_pcb_flags(pcb, PCB_32BIT);
962	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
963	set_pcb_flags(pcb, PCB_FULL_IRET);
964
965	bzero((char *)regs, sizeof(struct trapframe));
966	regs->tf_rip = imgp->entry_addr;
967	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
968	regs->tf_rdi = stack;		/* argv */
969	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
970	regs->tf_ss = _udatasel;
971	regs->tf_cs = _ucodesel;
972	regs->tf_ds = _udatasel;
973	regs->tf_es = _udatasel;
974	regs->tf_fs = _ufssel;
975	regs->tf_gs = _ugssel;
976	regs->tf_flags = TF_HASSEGS;
977	td->td_retval[1] = 0;
978
979	/*
980	 * Reset the hardware debug registers if they were in use.
981	 * They won't have any meaning for the newly exec'd process.
982	 */
983	if (pcb->pcb_flags & PCB_DBREGS) {
984		pcb->pcb_dr0 = 0;
985		pcb->pcb_dr1 = 0;
986		pcb->pcb_dr2 = 0;
987		pcb->pcb_dr3 = 0;
988		pcb->pcb_dr6 = 0;
989		pcb->pcb_dr7 = 0;
990		if (pcb == curpcb) {
991			/*
992			 * Clear the debug registers on the running
993			 * CPU, otherwise they will end up affecting
994			 * the next process we switch to.
995			 */
996			reset_dbregs();
997		}
998		clear_pcb_flags(pcb, PCB_DBREGS);
999	}
1000
1001	/*
1002	 * Drop the FP state if we hold it, so that the process gets a
1003	 * clean FP state if it uses the FPU again.
1004	 */
1005	fpstate_drop(td);
1006}
1007
1008void
1009cpu_setregs(void)
1010{
1011	register_t cr0;
1012
1013	cr0 = rcr0();
1014	/*
1015	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
1016	 * BSP.  See the comments there about why we set them.
1017	 */
1018	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
1019	load_cr0(cr0);
1020}
1021
1022/*
1023 * Initialize amd64 and configure to run kernel
1024 */
1025
1026/*
1027 * Initialize segments & interrupt table
1028 */
1029
1030struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
1031static struct gate_descriptor idt0[NIDT];
1032struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1033
1034static char dblfault_stack[PAGE_SIZE] __aligned(16);
1035
1036static char nmi0_stack[PAGE_SIZE] __aligned(16);
1037CTASSERT(sizeof(struct nmi_pcpu) == 16);
1038
1039struct amd64tss common_tss[MAXCPU];
1040
1041/*
1042 * Software prototypes -- in more palatable form.
1043 *
1044 * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
1045 * slots as corresponding segments for i386 kernel.
1046 */
1047struct soft_segment_descriptor gdt_segs[] = {
1048/* GNULL_SEL	0 Null Descriptor */
1049{	.ssd_base = 0x0,
1050	.ssd_limit = 0x0,
1051	.ssd_type = 0,
1052	.ssd_dpl = 0,
1053	.ssd_p = 0,
1054	.ssd_long = 0,
1055	.ssd_def32 = 0,
1056	.ssd_gran = 0		},
1057/* GNULL2_SEL	1 Null Descriptor */
1058{	.ssd_base = 0x0,
1059	.ssd_limit = 0x0,
1060	.ssd_type = 0,
1061	.ssd_dpl = 0,
1062	.ssd_p = 0,
1063	.ssd_long = 0,
1064	.ssd_def32 = 0,
1065	.ssd_gran = 0		},
1066/* GUFS32_SEL	2 32 bit %gs Descriptor for user */
1067{	.ssd_base = 0x0,
1068	.ssd_limit = 0xfffff,
1069	.ssd_type = SDT_MEMRWA,
1070	.ssd_dpl = SEL_UPL,
1071	.ssd_p = 1,
1072	.ssd_long = 0,
1073	.ssd_def32 = 1,
1074	.ssd_gran = 1		},
1075/* GUGS32_SEL	3 32 bit %fs Descriptor for user */
1076{	.ssd_base = 0x0,
1077	.ssd_limit = 0xfffff,
1078	.ssd_type = SDT_MEMRWA,
1079	.ssd_dpl = SEL_UPL,
1080	.ssd_p = 1,
1081	.ssd_long = 0,
1082	.ssd_def32 = 1,
1083	.ssd_gran = 1		},
1084/* GCODE_SEL	4 Code Descriptor for kernel */
1085{	.ssd_base = 0x0,
1086	.ssd_limit = 0xfffff,
1087	.ssd_type = SDT_MEMERA,
1088	.ssd_dpl = SEL_KPL,
1089	.ssd_p = 1,
1090	.ssd_long = 1,
1091	.ssd_def32 = 0,
1092	.ssd_gran = 1		},
1093/* GDATA_SEL	5 Data Descriptor for kernel */
1094{	.ssd_base = 0x0,
1095	.ssd_limit = 0xfffff,
1096	.ssd_type = SDT_MEMRWA,
1097	.ssd_dpl = SEL_KPL,
1098	.ssd_p = 1,
1099	.ssd_long = 1,
1100	.ssd_def32 = 0,
1101	.ssd_gran = 1		},
1102/* GUCODE32_SEL	6 32 bit Code Descriptor for user */
1103{	.ssd_base = 0x0,
1104	.ssd_limit = 0xfffff,
1105	.ssd_type = SDT_MEMERA,
1106	.ssd_dpl = SEL_UPL,
1107	.ssd_p = 1,
1108	.ssd_long = 0,
1109	.ssd_def32 = 1,
1110	.ssd_gran = 1		},
1111/* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
1112{	.ssd_base = 0x0,
1113	.ssd_limit = 0xfffff,
1114	.ssd_type = SDT_MEMRWA,
1115	.ssd_dpl = SEL_UPL,
1116	.ssd_p = 1,
1117	.ssd_long = 0,
1118	.ssd_def32 = 1,
1119	.ssd_gran = 1		},
1120/* GUCODE_SEL	8 64 bit Code Descriptor for user */
1121{	.ssd_base = 0x0,
1122	.ssd_limit = 0xfffff,
1123	.ssd_type = SDT_MEMERA,
1124	.ssd_dpl = SEL_UPL,
1125	.ssd_p = 1,
1126	.ssd_long = 1,
1127	.ssd_def32 = 0,
1128	.ssd_gran = 1		},
1129/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1130{	.ssd_base = 0x0,
1131	.ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
1132	.ssd_type = SDT_SYSTSS,
1133	.ssd_dpl = SEL_KPL,
1134	.ssd_p = 1,
1135	.ssd_long = 0,
1136	.ssd_def32 = 0,
1137	.ssd_gran = 0		},
1138/* Actually, the TSS is a system descriptor which is double size */
1139{	.ssd_base = 0x0,
1140	.ssd_limit = 0x0,
1141	.ssd_type = 0,
1142	.ssd_dpl = 0,
1143	.ssd_p = 0,
1144	.ssd_long = 0,
1145	.ssd_def32 = 0,
1146	.ssd_gran = 0		},
1147/* GUSERLDT_SEL	11 LDT Descriptor */
1148{	.ssd_base = 0x0,
1149	.ssd_limit = 0x0,
1150	.ssd_type = 0,
1151	.ssd_dpl = 0,
1152	.ssd_p = 0,
1153	.ssd_long = 0,
1154	.ssd_def32 = 0,
1155	.ssd_gran = 0		},
1156/* GUSERLDT_SEL	12 LDT Descriptor, double size */
1157{	.ssd_base = 0x0,
1158	.ssd_limit = 0x0,
1159	.ssd_type = 0,
1160	.ssd_dpl = 0,
1161	.ssd_p = 0,
1162	.ssd_long = 0,
1163	.ssd_def32 = 0,
1164	.ssd_gran = 0		},
1165};
1166
1167void
1168setidt(idx, func, typ, dpl, ist)
1169	int idx;
1170	inthand_t *func;
1171	int typ;
1172	int dpl;
1173	int ist;
1174{
1175	struct gate_descriptor *ip;
1176
1177	ip = idt + idx;
1178	ip->gd_looffset = (uintptr_t)func;
1179	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1180	ip->gd_ist = ist;
1181	ip->gd_xx = 0;
1182	ip->gd_type = typ;
1183	ip->gd_dpl = dpl;
1184	ip->gd_p = 1;
1185	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1186}
1187
1188extern inthand_t
1189	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1190	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1191	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1192	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1193	IDTVEC(xmm), IDTVEC(dblfault),
1194#ifdef KDTRACE_HOOKS
1195	IDTVEC(dtrace_ret),
1196#endif
1197#ifdef XENHVM
1198	IDTVEC(xen_intr_upcall),
1199#endif
1200	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1201
1202#ifdef DDB
1203/*
1204 * Display the index and function name of any IDT entries that don't use
1205 * the default 'rsvd' entry point.
1206 */
1207DB_SHOW_COMMAND(idt, db_show_idt)
1208{
1209	struct gate_descriptor *ip;
1210	int idx;
1211	uintptr_t func;
1212
1213	ip = idt;
1214	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1215		func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
1216		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1217			db_printf("%3d\t", idx);
1218			db_printsym(func, DB_STGY_PROC);
1219			db_printf("\n");
1220		}
1221		ip++;
1222	}
1223}
1224
1225/* Show privileged registers. */
1226DB_SHOW_COMMAND(sysregs, db_show_sysregs)
1227{
1228	struct {
1229		uint16_t limit;
1230		uint64_t base;
1231	} __packed idtr, gdtr;
1232	uint16_t ldt, tr;
1233
1234	__asm __volatile("sidt %0" : "=m" (idtr));
1235	db_printf("idtr\t0x%016lx/%04x\n",
1236	    (u_long)idtr.base, (u_int)idtr.limit);
1237	__asm __volatile("sgdt %0" : "=m" (gdtr));
1238	db_printf("gdtr\t0x%016lx/%04x\n",
1239	    (u_long)gdtr.base, (u_int)gdtr.limit);
1240	__asm __volatile("sldt %0" : "=r" (ldt));
1241	db_printf("ldtr\t0x%04x\n", ldt);
1242	__asm __volatile("str %0" : "=r" (tr));
1243	db_printf("tr\t0x%04x\n", tr);
1244	db_printf("cr0\t0x%016lx\n", rcr0());
1245	db_printf("cr2\t0x%016lx\n", rcr2());
1246	db_printf("cr3\t0x%016lx\n", rcr3());
1247	db_printf("cr4\t0x%016lx\n", rcr4());
1248	db_printf("EFER\t%016lx\n", rdmsr(MSR_EFER));
1249	db_printf("FEATURES_CTL\t%016lx\n", rdmsr(MSR_IA32_FEATURE_CONTROL));
1250	db_printf("DEBUG_CTL\t%016lx\n", rdmsr(MSR_DEBUGCTLMSR));
1251	db_printf("PAT\t%016lx\n", rdmsr(MSR_PAT));
1252	db_printf("GSBASE\t%016lx\n", rdmsr(MSR_GSBASE));
1253}
1254#endif
1255
1256void
1257sdtossd(sd, ssd)
1258	struct user_segment_descriptor *sd;
1259	struct soft_segment_descriptor *ssd;
1260{
1261
1262	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1263	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1264	ssd->ssd_type  = sd->sd_type;
1265	ssd->ssd_dpl   = sd->sd_dpl;
1266	ssd->ssd_p     = sd->sd_p;
1267	ssd->ssd_long  = sd->sd_long;
1268	ssd->ssd_def32 = sd->sd_def32;
1269	ssd->ssd_gran  = sd->sd_gran;
1270}
1271
1272void
1273ssdtosd(ssd, sd)
1274	struct soft_segment_descriptor *ssd;
1275	struct user_segment_descriptor *sd;
1276{
1277
1278	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1279	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1280	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1281	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1282	sd->sd_type  = ssd->ssd_type;
1283	sd->sd_dpl   = ssd->ssd_dpl;
1284	sd->sd_p     = ssd->ssd_p;
1285	sd->sd_long  = ssd->ssd_long;
1286	sd->sd_def32 = ssd->ssd_def32;
1287	sd->sd_gran  = ssd->ssd_gran;
1288}
1289
1290void
1291ssdtosyssd(ssd, sd)
1292	struct soft_segment_descriptor *ssd;
1293	struct system_segment_descriptor *sd;
1294{
1295
1296	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1297	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1298	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1299	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1300	sd->sd_type  = ssd->ssd_type;
1301	sd->sd_dpl   = ssd->ssd_dpl;
1302	sd->sd_p     = ssd->ssd_p;
1303	sd->sd_gran  = ssd->ssd_gran;
1304}
1305
1306#if !defined(DEV_ATPIC) && defined(DEV_ISA)
1307#include <isa/isavar.h>
1308#include <isa/isareg.h>
1309/*
1310 * Return a bitmap of the current interrupt requests.  This is 8259-specific
1311 * and is only suitable for use at probe time.
1312 * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
1313 * It shouldn't be here.  There should probably be an APIC centric
1314 * implementation in the apic driver code, if at all.
1315 */
1316intrmask_t
1317isa_irq_pending(void)
1318{
1319	u_char irr1;
1320	u_char irr2;
1321
1322	irr1 = inb(IO_ICU1);
1323	irr2 = inb(IO_ICU2);
1324	return ((irr2 << 8) | irr1);
1325}
1326#endif
1327
1328u_int basemem;
1329
1330static int
1331add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
1332{
1333	int i, insert_idx, physmap_idx;
1334
1335	physmap_idx = *physmap_idxp;
1336
1337	if (boothowto & RB_VERBOSE)
1338		printf("SMAP type=%02x base=%016lx len=%016lx\n",
1339		    smap->type, smap->base, smap->length);
1340
1341	if (smap->type != SMAP_TYPE_MEMORY)
1342		return (1);
1343
1344	if (smap->length == 0)
1345		return (0);
1346
1347	/*
1348	 * Find insertion point while checking for overlap.  Start off by
1349	 * assuming the new entry will be added to the end.
1350	 */
1351	insert_idx = physmap_idx + 2;
1352	for (i = 0; i <= physmap_idx; i += 2) {
1353		if (smap->base < physmap[i + 1]) {
1354			if (smap->base + smap->length <= physmap[i]) {
1355				insert_idx = i;
1356				break;
1357			}
1358			if (boothowto & RB_VERBOSE)
1359				printf(
1360		    "Overlapping memory regions, ignoring second region\n");
1361			return (1);
1362		}
1363	}
1364
1365	/* See if we can prepend to the next entry. */
1366	if (insert_idx <= physmap_idx &&
1367	    smap->base + smap->length == physmap[insert_idx]) {
1368		physmap[insert_idx] = smap->base;
1369		return (1);
1370	}
1371
1372	/* See if we can append to the previous entry. */
1373	if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
1374		physmap[insert_idx - 1] += smap->length;
1375		return (1);
1376	}
1377
1378	physmap_idx += 2;
1379	*physmap_idxp = physmap_idx;
1380	if (physmap_idx == PHYSMAP_SIZE) {
1381		printf(
1382		"Too many segments in the physical address map, giving up\n");
1383		return (0);
1384	}
1385
1386	/*
1387	 * Move the last 'N' entries down to make room for the new
1388	 * entry if needed.
1389	 */
1390	for (i = physmap_idx; i > insert_idx; i -= 2) {
1391		physmap[i] = physmap[i - 2];
1392		physmap[i + 1] = physmap[i - 1];
1393	}
1394
1395	/* Insert the new entry. */
1396	physmap[insert_idx] = smap->base;
1397	physmap[insert_idx + 1] = smap->base + smap->length;
1398	return (1);
1399}
1400
1401/*
1402 * Populate the (physmap) array with base/bound pairs describing the
1403 * available physical memory in the system, then test this memory and
1404 * build the phys_avail array describing the actually-available memory.
1405 *
1406 * Total memory size may be set by the kernel environment variable
1407 * hw.physmem or the compile-time define MAXMEM.
1408 *
1409 * XXX first should be vm_paddr_t.
1410 */
1411static void
1412getmemsize(caddr_t kmdp, u_int64_t first)
1413{
1414	int i, physmap_idx, pa_indx, da_indx;
1415	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1416	u_long physmem_start, physmem_tunable, memtest;
1417	pt_entry_t *pte;
1418	struct bios_smap *smapbase, *smap, *smapend;
1419	u_int32_t smapsize;
1420	quad_t dcons_addr, dcons_size;
1421
1422	bzero(physmap, sizeof(physmap));
1423	basemem = 0;
1424	physmap_idx = 0;
1425
1426	/*
1427	 * get memory map from INT 15:E820, kindly supplied by the loader.
1428	 *
1429	 * subr_module.c says:
1430	 * "Consumer may safely assume that size value precedes data."
1431	 * ie: an int32_t immediately precedes smap.
1432	 */
1433	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1434	    MODINFO_METADATA | MODINFOMD_SMAP);
1435	if (smapbase == NULL)
1436		panic("No BIOS smap info from loader!");
1437
1438	smapsize = *((u_int32_t *)smapbase - 1);
1439	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1440
1441	for (smap = smapbase; smap < smapend; smap++)
1442		if (!add_smap_entry(smap, physmap, &physmap_idx))
1443			break;
1444
1445	/*
1446	 * Find the 'base memory' segment for SMP
1447	 */
1448	basemem = 0;
1449	for (i = 0; i <= physmap_idx; i += 2) {
1450		if (physmap[i] == 0x00000000) {
1451			basemem = physmap[i + 1] / 1024;
1452			break;
1453		}
1454	}
1455	if (basemem == 0)
1456		panic("BIOS smap did not include a basemem segment!");
1457
1458#ifdef SMP
1459	/* make hole for AP bootstrap code */
1460	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1461#endif
1462
1463	/*
1464	 * Maxmem isn't the "maximum memory", it's one larger than the
1465	 * highest page of the physical address space.  It should be
1466	 * called something like "Maxphyspage".  We may adjust this
1467	 * based on ``hw.physmem'' and the results of the memory test.
1468	 */
1469	Maxmem = atop(physmap[physmap_idx + 1]);
1470
1471#ifdef MAXMEM
1472	Maxmem = MAXMEM / 4;
1473#endif
1474
1475	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1476		Maxmem = atop(physmem_tunable);
1477
1478	/*
1479	 * By default enable the memory test on real hardware, and disable
1480	 * it if we appear to be running in a VM.  This avoids touching all
1481	 * pages unnecessarily, which doesn't matter on real hardware but is
1482	 * bad for shared VM hosts.  Use a general name so that
1483	 * one could eventually do more with the code than just disable it.
1484	 */
1485	memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
1486	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
1487
1488	/*
1489	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1490	 * in the system.
1491	 */
1492	if (Maxmem > atop(physmap[physmap_idx + 1]))
1493		Maxmem = atop(physmap[physmap_idx + 1]);
1494
1495	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1496	    (boothowto & RB_VERBOSE))
1497		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1498
1499	/* call pmap initialization to make new kernel address space */
1500	pmap_bootstrap(&first);
1501
1502	/*
1503	 * Size up each available chunk of physical memory.
1504	 *
1505	 * XXX Some BIOSes corrupt low 64KB between suspend and resume.
1506	 * By default, mask off the first 16 pages unless we appear to be
1507	 * running in a VM.
1508	 */
1509	physmem_start = (vm_guest > VM_GUEST_NO ? 1 : 16) << PAGE_SHIFT;
1510	TUNABLE_ULONG_FETCH("hw.physmem.start", &physmem_start);
1511	if (physmem_start < PAGE_SIZE)
1512		physmap[0] = PAGE_SIZE;
1513	else if (physmem_start >= physmap[1])
1514		physmap[0] = round_page(physmap[1] - PAGE_SIZE);
1515	else
1516		physmap[0] = round_page(physmem_start);
1517	pa_indx = 0;
1518	da_indx = 1;
1519	phys_avail[pa_indx++] = physmap[0];
1520	phys_avail[pa_indx] = physmap[0];
1521	dump_avail[da_indx] = physmap[0];
1522	pte = CMAP1;
1523
1524	/*
1525	 * Get dcons buffer address
1526	 */
1527	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1528	    getenv_quad("dcons.size", &dcons_size) == 0)
1529		dcons_addr = 0;
1530
1531	/*
1532	 * physmap is in bytes, so when converting to page boundaries,
1533	 * round up the start address and round down the end address.
1534	 */
1535	for (i = 0; i <= physmap_idx; i += 2) {
1536		vm_paddr_t end;
1537
1538		end = ptoa((vm_paddr_t)Maxmem);
1539		if (physmap[i + 1] < end)
1540			end = trunc_page(physmap[i + 1]);
1541		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1542			int tmp, page_bad, full;
1543			int *ptr = (int *)CADDR1;
1544
1545			full = FALSE;
1546			/*
1547			 * block out kernel memory as not available.
1548			 */
1549			if (pa >= (vm_paddr_t)kernphys && pa < first)
1550				goto do_dump_avail;
1551
1552			/*
1553			 * block out dcons buffer
1554			 */
1555			if (dcons_addr > 0
1556			    && pa >= trunc_page(dcons_addr)
1557			    && pa < dcons_addr + dcons_size)
1558				goto do_dump_avail;
1559
1560			page_bad = FALSE;
1561			if (memtest == 0)
1562				goto skip_memtest;
1563
1564			/*
1565			 * map page into kernel: valid, read/write,non-cacheable
1566			 */
1567			*pte = pa | PG_V | PG_RW | PG_NC_PWT | PG_NC_PCD;
1568			invltlb();
1569
1570			tmp = *(int *)ptr;
1571			/*
1572			 * Test for alternating 1's and 0's
1573			 */
1574			*(volatile int *)ptr = 0xaaaaaaaa;
1575			if (*(volatile int *)ptr != 0xaaaaaaaa)
1576				page_bad = TRUE;
1577			/*
1578			 * Test for alternating 0's and 1's
1579			 */
1580			*(volatile int *)ptr = 0x55555555;
1581			if (*(volatile int *)ptr != 0x55555555)
1582				page_bad = TRUE;
1583			/*
1584			 * Test for all 1's
1585			 */
1586			*(volatile int *)ptr = 0xffffffff;
1587			if (*(volatile int *)ptr != 0xffffffff)
1588				page_bad = TRUE;
1589			/*
1590			 * Test for all 0's
1591			 */
1592			*(volatile int *)ptr = 0x0;
1593			if (*(volatile int *)ptr != 0x0)
1594				page_bad = TRUE;
1595			/*
1596			 * Restore original value.
1597			 */
1598			*(int *)ptr = tmp;
1599
1600skip_memtest:
1601			/*
1602			 * Adjust array of valid/good pages.
1603			 */
1604			if (page_bad == TRUE)
1605				continue;
1606			/*
1607			 * If this good page is a continuation of the
1608			 * previous set of good pages, then just increase
1609			 * the end pointer. Otherwise start a new chunk.
1610			 * Note that "end" points one higher than end,
1611			 * making the range >= start and < end.
1612			 * If we're also doing a speculative memory
1613			 * test and we at or past the end, bump up Maxmem
1614			 * so that we keep going. The first bad page
1615			 * will terminate the loop.
1616			 */
1617			if (phys_avail[pa_indx] == pa) {
1618				phys_avail[pa_indx] += PAGE_SIZE;
1619			} else {
1620				pa_indx++;
1621				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1622					printf(
1623		"Too many holes in the physical address space, giving up\n");
1624					pa_indx--;
1625					full = TRUE;
1626					goto do_dump_avail;
1627				}
1628				phys_avail[pa_indx++] = pa;	/* start */
1629				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1630			}
1631			physmem++;
1632do_dump_avail:
1633			if (dump_avail[da_indx] == pa) {
1634				dump_avail[da_indx] += PAGE_SIZE;
1635			} else {
1636				da_indx++;
1637				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1638					da_indx--;
1639					goto do_next;
1640				}
1641				dump_avail[da_indx++] = pa; /* start */
1642				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1643			}
1644do_next:
1645			if (full)
1646				break;
1647		}
1648	}
1649	*pte = 0;
1650	invltlb();
1651
1652	/*
1653	 * XXX
1654	 * The last chunk must contain at least one page plus the message
1655	 * buffer to avoid complicating other code (message buffer address
1656	 * calculation, etc.).
1657	 */
1658	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1659	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
1660		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1661		phys_avail[pa_indx--] = 0;
1662		phys_avail[pa_indx--] = 0;
1663	}
1664
1665	Maxmem = atop(phys_avail[pa_indx]);
1666
1667	/* Trim off space for the message buffer. */
1668	phys_avail[pa_indx] -= round_page(msgbufsize);
1669
1670	/* Map the message buffer. */
1671	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
1672}
1673
1674u_int64_t
1675hammer_time(u_int64_t modulep, u_int64_t physfree)
1676{
1677	caddr_t kmdp;
1678	int gsel_tss, x;
1679	struct pcpu *pc;
1680	struct nmi_pcpu *np;
1681	struct xstate_hdr *xhdr;
1682	u_int64_t msr;
1683	char *env;
1684	size_t kstack0_sz;
1685
1686	thread0.td_kstack = physfree + KERNBASE;
1687	thread0.td_kstack_pages = KSTACK_PAGES;
1688	kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
1689	bzero((void *)thread0.td_kstack, kstack0_sz);
1690	physfree += kstack0_sz;
1691
1692	/*
1693 	 * This may be done better later if it gets more high level
1694 	 * components in it. If so just link td->td_proc here.
1695	 */
1696	proc_linkup0(&proc0, &thread0);
1697
1698	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1699	preload_bootstrap_relocate(KERNBASE);
1700	kmdp = preload_search_by_type("elf kernel");
1701	if (kmdp == NULL)
1702		kmdp = preload_search_by_type("elf64 kernel");
1703	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1704	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1705#ifdef DDB
1706	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1707	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1708#endif
1709
1710	/* Init basic tunables, hz etc */
1711	init_param1();
1712
1713	/*
1714	 * make gdt memory segments
1715	 */
1716	for (x = 0; x < NGDT; x++) {
1717		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1718		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1719			ssdtosd(&gdt_segs[x], &gdt[x]);
1720	}
1721	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1722	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1723	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1724
1725	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1726	r_gdt.rd_base =  (long) gdt;
1727	lgdt(&r_gdt);
1728	pc = &__pcpu[0];
1729
1730	wrmsr(MSR_FSBASE, 0);		/* User value */
1731	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1732	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1733
1734	pcpu_init(pc, 0, sizeof(struct pcpu));
1735	dpcpu_init((void *)(physfree + KERNBASE), 0);
1736	physfree += DPCPU_SIZE;
1737	PCPU_SET(prvspace, pc);
1738	PCPU_SET(curthread, &thread0);
1739	PCPU_SET(tssp, &common_tss[0]);
1740	PCPU_SET(commontssp, &common_tss[0]);
1741	PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1742	PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1743	PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1744	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1745
1746	/*
1747	 * Initialize mutexes.
1748	 *
1749	 * icu_lock: in order to allow an interrupt to occur in a critical
1750	 * 	     section, to set pcpu->ipending (etc...) properly, we
1751	 *	     must be able to get the icu lock, so it can't be
1752	 *	     under witness.
1753	 */
1754	mutex_init();
1755	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1756	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1757
1758	/* exceptions */
1759	for (x = 0; x < NIDT; x++)
1760		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1761	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1762	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1763	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1764 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1765	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1766	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1767	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1768	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1769	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1770	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1771	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1772	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1773	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1774	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1775	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1776	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1777	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1778	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1779	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1780#ifdef KDTRACE_HOOKS
1781	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
1782#endif
1783#ifdef XENHVM
1784	setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYSIGT, SEL_UPL, 0);
1785#endif
1786
1787	r_idt.rd_limit = sizeof(idt0) - 1;
1788	r_idt.rd_base = (long) idt;
1789	lidt(&r_idt);
1790
1791	/*
1792	 * Initialize the i8254 before the console so that console
1793	 * initialization can use DELAY().
1794	 */
1795	i8254_init();
1796
1797	/*
1798	 * Initialize the console before we print anything out.
1799	 */
1800	cninit();
1801
1802#ifdef DEV_ISA
1803#ifdef DEV_ATPIC
1804	elcr_probe();
1805	atpic_startup();
1806#else
1807	/* Reset and mask the atpics and leave them shut down. */
1808	atpic_reset();
1809
1810	/*
1811	 * Point the ICU spurious interrupt vectors at the APIC spurious
1812	 * interrupt handler.
1813	 */
1814	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1815	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1816#endif
1817#else
1818#error "have you forgotten the isa device?";
1819#endif
1820
1821	kdb_init();
1822
1823#ifdef KDB
1824	if (boothowto & RB_KDB)
1825		kdb_enter(KDB_WHY_BOOTFLAGS,
1826		    "Boot flags requested debugger");
1827#endif
1828
1829	identify_cpu();		/* Final stage of CPU initialization */
1830	initializecpu();	/* Initialize CPU registers */
1831	initializecpucache();
1832
1833	/* doublefault stack space, runs on ist1 */
1834	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1835
1836	/*
1837	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1838	 * above the start of the ist2 stack.
1839	 */
1840	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1841	np->np_pcpu = (register_t) pc;
1842	common_tss[0].tss_ist2 = (long) np;
1843
1844	/* Set the IO permission bitmap (empty due to tss seg limit) */
1845	common_tss[0].tss_iobase = sizeof(struct amd64tss) +
1846	    IOPAGES * PAGE_SIZE;
1847
1848	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1849	ltr(gsel_tss);
1850
1851	/* Set up the fast syscall stuff */
1852	msr = rdmsr(MSR_EFER) | EFER_SCE;
1853	wrmsr(MSR_EFER, msr);
1854	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1855	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1856	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1857	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1858	wrmsr(MSR_STAR, msr);
1859	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1860
1861	getmemsize(kmdp, physfree);
1862	init_param2(physmem);
1863
1864	/* now running on new page tables, configured,and u/iom is accessible */
1865
1866	msgbufinit(msgbufp, msgbufsize);
1867	fpuinit();
1868
1869	/*
1870	 * Set up thread0 pcb after fpuinit calculated pcb + fpu save
1871	 * area size.  Zero out the extended state header in fpu save
1872	 * area.
1873	 */
1874	thread0.td_pcb = get_pcb_td(&thread0);
1875	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
1876	if (use_xsave) {
1877		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
1878		    1);
1879		xhdr->xstate_bv = xsave_mask;
1880	}
1881	/* make an initial tss so cpu can get interrupt stack on syscall! */
1882	common_tss[0].tss_rsp0 = (vm_offset_t)thread0.td_pcb;
1883	/* Ensure the stack is aligned to 16 bytes */
1884	common_tss[0].tss_rsp0 &= ~0xFul;
1885	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1886	PCPU_SET(curpcb, thread0.td_pcb);
1887
1888	/* transfer to user mode */
1889
1890	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1891	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1892	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1893	_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
1894	_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
1895
1896	load_ds(_udatasel);
1897	load_es(_udatasel);
1898	load_fs(_ufssel);
1899
1900	/* setup proc 0's pcb */
1901	thread0.td_pcb->pcb_flags = 0;
1902	thread0.td_pcb->pcb_cr3 = KPML4phys; /* PCID 0 is reserved for kernel */
1903	thread0.td_frame = &proc0_tf;
1904
1905        env = getenv("kernelname");
1906	if (env != NULL)
1907		strlcpy(kernelname, env, sizeof(kernelname));
1908
1909	cpu_probe_amdc1e();
1910
1911#ifdef FDT
1912	x86_init_fdt();
1913#endif
1914
1915	/* Location of kernel stack for locore */
1916	return ((u_int64_t)thread0.td_pcb);
1917}
1918
1919void
1920cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1921{
1922
1923	pcpu->pc_acpi_id = 0xffffffff;
1924}
1925
1926void
1927spinlock_enter(void)
1928{
1929	struct thread *td;
1930	register_t flags;
1931
1932	td = curthread;
1933	if (td->td_md.md_spinlock_count == 0) {
1934		flags = intr_disable();
1935		td->td_md.md_spinlock_count = 1;
1936		td->td_md.md_saved_flags = flags;
1937	} else
1938		td->td_md.md_spinlock_count++;
1939	critical_enter();
1940}
1941
1942void
1943spinlock_exit(void)
1944{
1945	struct thread *td;
1946	register_t flags;
1947
1948	td = curthread;
1949	critical_exit();
1950	flags = td->td_md.md_saved_flags;
1951	td->td_md.md_spinlock_count--;
1952	if (td->td_md.md_spinlock_count == 0)
1953		intr_restore(flags);
1954}
1955
1956/*
1957 * Construct a PCB from a trapframe. This is called from kdb_trap() where
1958 * we want to start a backtrace from the function that caused us to enter
1959 * the debugger. We have the context in the trapframe, but base the trace
1960 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1961 * enough for a backtrace.
1962 */
1963void
1964makectx(struct trapframe *tf, struct pcb *pcb)
1965{
1966
1967	pcb->pcb_r12 = tf->tf_r12;
1968	pcb->pcb_r13 = tf->tf_r13;
1969	pcb->pcb_r14 = tf->tf_r14;
1970	pcb->pcb_r15 = tf->tf_r15;
1971	pcb->pcb_rbp = tf->tf_rbp;
1972	pcb->pcb_rbx = tf->tf_rbx;
1973	pcb->pcb_rip = tf->tf_rip;
1974	pcb->pcb_rsp = tf->tf_rsp;
1975}
1976
1977int
1978ptrace_set_pc(struct thread *td, unsigned long addr)
1979{
1980	td->td_frame->tf_rip = addr;
1981	return (0);
1982}
1983
1984int
1985ptrace_single_step(struct thread *td)
1986{
1987	td->td_frame->tf_rflags |= PSL_T;
1988	return (0);
1989}
1990
1991int
1992ptrace_clear_single_step(struct thread *td)
1993{
1994	td->td_frame->tf_rflags &= ~PSL_T;
1995	return (0);
1996}
1997
1998int
1999fill_regs(struct thread *td, struct reg *regs)
2000{
2001	struct trapframe *tp;
2002
2003	tp = td->td_frame;
2004	return (fill_frame_regs(tp, regs));
2005}
2006
2007int
2008fill_frame_regs(struct trapframe *tp, struct reg *regs)
2009{
2010	regs->r_r15 = tp->tf_r15;
2011	regs->r_r14 = tp->tf_r14;
2012	regs->r_r13 = tp->tf_r13;
2013	regs->r_r12 = tp->tf_r12;
2014	regs->r_r11 = tp->tf_r11;
2015	regs->r_r10 = tp->tf_r10;
2016	regs->r_r9  = tp->tf_r9;
2017	regs->r_r8  = tp->tf_r8;
2018	regs->r_rdi = tp->tf_rdi;
2019	regs->r_rsi = tp->tf_rsi;
2020	regs->r_rbp = tp->tf_rbp;
2021	regs->r_rbx = tp->tf_rbx;
2022	regs->r_rdx = tp->tf_rdx;
2023	regs->r_rcx = tp->tf_rcx;
2024	regs->r_rax = tp->tf_rax;
2025	regs->r_rip = tp->tf_rip;
2026	regs->r_cs = tp->tf_cs;
2027	regs->r_rflags = tp->tf_rflags;
2028	regs->r_rsp = tp->tf_rsp;
2029	regs->r_ss = tp->tf_ss;
2030	if (tp->tf_flags & TF_HASSEGS) {
2031		regs->r_ds = tp->tf_ds;
2032		regs->r_es = tp->tf_es;
2033		regs->r_fs = tp->tf_fs;
2034		regs->r_gs = tp->tf_gs;
2035	} else {
2036		regs->r_ds = 0;
2037		regs->r_es = 0;
2038		regs->r_fs = 0;
2039		regs->r_gs = 0;
2040	}
2041	return (0);
2042}
2043
2044int
2045set_regs(struct thread *td, struct reg *regs)
2046{
2047	struct trapframe *tp;
2048	register_t rflags;
2049
2050	tp = td->td_frame;
2051	rflags = regs->r_rflags & 0xffffffff;
2052	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
2053		return (EINVAL);
2054	tp->tf_r15 = regs->r_r15;
2055	tp->tf_r14 = regs->r_r14;
2056	tp->tf_r13 = regs->r_r13;
2057	tp->tf_r12 = regs->r_r12;
2058	tp->tf_r11 = regs->r_r11;
2059	tp->tf_r10 = regs->r_r10;
2060	tp->tf_r9  = regs->r_r9;
2061	tp->tf_r8  = regs->r_r8;
2062	tp->tf_rdi = regs->r_rdi;
2063	tp->tf_rsi = regs->r_rsi;
2064	tp->tf_rbp = regs->r_rbp;
2065	tp->tf_rbx = regs->r_rbx;
2066	tp->tf_rdx = regs->r_rdx;
2067	tp->tf_rcx = regs->r_rcx;
2068	tp->tf_rax = regs->r_rax;
2069	tp->tf_rip = regs->r_rip;
2070	tp->tf_cs = regs->r_cs;
2071	tp->tf_rflags = rflags;
2072	tp->tf_rsp = regs->r_rsp;
2073	tp->tf_ss = regs->r_ss;
2074	if (0) {	/* XXXKIB */
2075		tp->tf_ds = regs->r_ds;
2076		tp->tf_es = regs->r_es;
2077		tp->tf_fs = regs->r_fs;
2078		tp->tf_gs = regs->r_gs;
2079		tp->tf_flags = TF_HASSEGS;
2080		set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
2081	}
2082	return (0);
2083}
2084
2085/* XXX check all this stuff! */
2086/* externalize from sv_xmm */
2087static void
2088fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
2089{
2090	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2091	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2092	int i;
2093
2094	/* pcb -> fpregs */
2095	bzero(fpregs, sizeof(*fpregs));
2096
2097	/* FPU control/status */
2098	penv_fpreg->en_cw = penv_xmm->en_cw;
2099	penv_fpreg->en_sw = penv_xmm->en_sw;
2100	penv_fpreg->en_tw = penv_xmm->en_tw;
2101	penv_fpreg->en_opcode = penv_xmm->en_opcode;
2102	penv_fpreg->en_rip = penv_xmm->en_rip;
2103	penv_fpreg->en_rdp = penv_xmm->en_rdp;
2104	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
2105	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
2106
2107	/* FPU registers */
2108	for (i = 0; i < 8; ++i)
2109		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
2110
2111	/* SSE registers */
2112	for (i = 0; i < 16; ++i)
2113		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
2114}
2115
2116/* internalize from fpregs into sv_xmm */
2117static void
2118set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
2119{
2120	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2121	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2122	int i;
2123
2124	/* fpregs -> pcb */
2125	/* FPU control/status */
2126	penv_xmm->en_cw = penv_fpreg->en_cw;
2127	penv_xmm->en_sw = penv_fpreg->en_sw;
2128	penv_xmm->en_tw = penv_fpreg->en_tw;
2129	penv_xmm->en_opcode = penv_fpreg->en_opcode;
2130	penv_xmm->en_rip = penv_fpreg->en_rip;
2131	penv_xmm->en_rdp = penv_fpreg->en_rdp;
2132	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
2133	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
2134
2135	/* FPU registers */
2136	for (i = 0; i < 8; ++i)
2137		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
2138
2139	/* SSE registers */
2140	for (i = 0; i < 16; ++i)
2141		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
2142}
2143
2144/* externalize from td->pcb */
2145int
2146fill_fpregs(struct thread *td, struct fpreg *fpregs)
2147{
2148
2149	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
2150	    P_SHOULDSTOP(td->td_proc),
2151	    ("not suspended thread %p", td));
2152	fpugetregs(td);
2153	fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs);
2154	return (0);
2155}
2156
2157/* internalize to td->pcb */
2158int
2159set_fpregs(struct thread *td, struct fpreg *fpregs)
2160{
2161
2162	set_fpregs_xmm(fpregs, get_pcb_user_save_td(td));
2163	fpuuserinited(td);
2164	return (0);
2165}
2166
2167/*
2168 * Get machine context.
2169 */
2170int
2171get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
2172{
2173	struct pcb *pcb;
2174	struct trapframe *tp;
2175
2176	pcb = td->td_pcb;
2177	tp = td->td_frame;
2178	PROC_LOCK(curthread->td_proc);
2179	mcp->mc_onstack = sigonstack(tp->tf_rsp);
2180	PROC_UNLOCK(curthread->td_proc);
2181	mcp->mc_r15 = tp->tf_r15;
2182	mcp->mc_r14 = tp->tf_r14;
2183	mcp->mc_r13 = tp->tf_r13;
2184	mcp->mc_r12 = tp->tf_r12;
2185	mcp->mc_r11 = tp->tf_r11;
2186	mcp->mc_r10 = tp->tf_r10;
2187	mcp->mc_r9  = tp->tf_r9;
2188	mcp->mc_r8  = tp->tf_r8;
2189	mcp->mc_rdi = tp->tf_rdi;
2190	mcp->mc_rsi = tp->tf_rsi;
2191	mcp->mc_rbp = tp->tf_rbp;
2192	mcp->mc_rbx = tp->tf_rbx;
2193	mcp->mc_rcx = tp->tf_rcx;
2194	mcp->mc_rflags = tp->tf_rflags;
2195	if (flags & GET_MC_CLEAR_RET) {
2196		mcp->mc_rax = 0;
2197		mcp->mc_rdx = 0;
2198		mcp->mc_rflags &= ~PSL_C;
2199	} else {
2200		mcp->mc_rax = tp->tf_rax;
2201		mcp->mc_rdx = tp->tf_rdx;
2202	}
2203	mcp->mc_rip = tp->tf_rip;
2204	mcp->mc_cs = tp->tf_cs;
2205	mcp->mc_rsp = tp->tf_rsp;
2206	mcp->mc_ss = tp->tf_ss;
2207	mcp->mc_ds = tp->tf_ds;
2208	mcp->mc_es = tp->tf_es;
2209	mcp->mc_fs = tp->tf_fs;
2210	mcp->mc_gs = tp->tf_gs;
2211	mcp->mc_flags = tp->tf_flags;
2212	mcp->mc_len = sizeof(*mcp);
2213	get_fpcontext(td, mcp, NULL, 0);
2214	mcp->mc_fsbase = pcb->pcb_fsbase;
2215	mcp->mc_gsbase = pcb->pcb_gsbase;
2216	mcp->mc_xfpustate = 0;
2217	mcp->mc_xfpustate_len = 0;
2218	bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
2219	return (0);
2220}
2221
2222/*
2223 * Set machine context.
2224 *
2225 * However, we don't set any but the user modifiable flags, and we won't
2226 * touch the cs selector.
2227 */
2228int
2229set_mcontext(struct thread *td, const mcontext_t *mcp)
2230{
2231	struct pcb *pcb;
2232	struct trapframe *tp;
2233	char *xfpustate;
2234	long rflags;
2235	int ret;
2236
2237	pcb = td->td_pcb;
2238	tp = td->td_frame;
2239	if (mcp->mc_len != sizeof(*mcp) ||
2240	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2241		return (EINVAL);
2242	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2243	    (tp->tf_rflags & ~PSL_USERCHANGE);
2244	if (mcp->mc_flags & _MC_HASFPXSTATE) {
2245		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
2246		    sizeof(struct savefpu))
2247			return (EINVAL);
2248		xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
2249		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
2250		    mcp->mc_xfpustate_len);
2251		if (ret != 0)
2252			return (ret);
2253	} else
2254		xfpustate = NULL;
2255	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
2256	if (ret != 0)
2257		return (ret);
2258	tp->tf_r15 = mcp->mc_r15;
2259	tp->tf_r14 = mcp->mc_r14;
2260	tp->tf_r13 = mcp->mc_r13;
2261	tp->tf_r12 = mcp->mc_r12;
2262	tp->tf_r11 = mcp->mc_r11;
2263	tp->tf_r10 = mcp->mc_r10;
2264	tp->tf_r9  = mcp->mc_r9;
2265	tp->tf_r8  = mcp->mc_r8;
2266	tp->tf_rdi = mcp->mc_rdi;
2267	tp->tf_rsi = mcp->mc_rsi;
2268	tp->tf_rbp = mcp->mc_rbp;
2269	tp->tf_rbx = mcp->mc_rbx;
2270	tp->tf_rdx = mcp->mc_rdx;
2271	tp->tf_rcx = mcp->mc_rcx;
2272	tp->tf_rax = mcp->mc_rax;
2273	tp->tf_rip = mcp->mc_rip;
2274	tp->tf_rflags = rflags;
2275	tp->tf_rsp = mcp->mc_rsp;
2276	tp->tf_ss = mcp->mc_ss;
2277	tp->tf_flags = mcp->mc_flags;
2278	if (tp->tf_flags & TF_HASSEGS) {
2279		tp->tf_ds = mcp->mc_ds;
2280		tp->tf_es = mcp->mc_es;
2281		tp->tf_fs = mcp->mc_fs;
2282		tp->tf_gs = mcp->mc_gs;
2283	}
2284	if (mcp->mc_flags & _MC_HASBASES) {
2285		pcb->pcb_fsbase = mcp->mc_fsbase;
2286		pcb->pcb_gsbase = mcp->mc_gsbase;
2287	}
2288	set_pcb_flags(pcb, PCB_FULL_IRET);
2289	return (0);
2290}
2291
2292static void
2293get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
2294    size_t xfpusave_len)
2295{
2296	size_t max_len, len;
2297
2298	mcp->mc_ownedfp = fpugetregs(td);
2299	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
2300	    sizeof(mcp->mc_fpstate));
2301	mcp->mc_fpformat = fpuformat();
2302	if (!use_xsave || xfpusave_len == 0)
2303		return;
2304	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
2305	len = xfpusave_len;
2306	if (len > max_len) {
2307		len = max_len;
2308		bzero(xfpusave + max_len, len - max_len);
2309	}
2310	mcp->mc_flags |= _MC_HASFPXSTATE;
2311	mcp->mc_xfpustate_len = len;
2312	bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
2313}
2314
2315static int
2316set_fpcontext(struct thread *td, const mcontext_t *mcp, char *xfpustate,
2317    size_t xfpustate_len)
2318{
2319	struct savefpu *fpstate;
2320	int error;
2321
2322	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2323		return (0);
2324	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2325		return (EINVAL);
2326	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
2327		/* We don't care what state is left in the FPU or PCB. */
2328		fpstate_drop(td);
2329		error = 0;
2330	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2331	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2332		fpstate = (struct savefpu *)&mcp->mc_fpstate;
2333		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2334		error = fpusetregs(td, fpstate, xfpustate, xfpustate_len);
2335	} else
2336		return (EINVAL);
2337	return (error);
2338}
2339
2340void
2341fpstate_drop(struct thread *td)
2342{
2343
2344	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
2345	critical_enter();
2346	if (PCPU_GET(fpcurthread) == td)
2347		fpudrop();
2348	/*
2349	 * XXX force a full drop of the fpu.  The above only drops it if we
2350	 * owned it.
2351	 *
2352	 * XXX I don't much like fpugetuserregs()'s semantics of doing a full
2353	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2354	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2355	 * sendsig() is the only caller of fpugetuserregs()... perhaps we just
2356	 * have too many layers.
2357	 */
2358	clear_pcb_flags(curthread->td_pcb,
2359	    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
2360	critical_exit();
2361}
2362
2363int
2364fill_dbregs(struct thread *td, struct dbreg *dbregs)
2365{
2366	struct pcb *pcb;
2367
2368	if (td == NULL) {
2369		dbregs->dr[0] = rdr0();
2370		dbregs->dr[1] = rdr1();
2371		dbregs->dr[2] = rdr2();
2372		dbregs->dr[3] = rdr3();
2373		dbregs->dr[6] = rdr6();
2374		dbregs->dr[7] = rdr7();
2375	} else {
2376		pcb = td->td_pcb;
2377		dbregs->dr[0] = pcb->pcb_dr0;
2378		dbregs->dr[1] = pcb->pcb_dr1;
2379		dbregs->dr[2] = pcb->pcb_dr2;
2380		dbregs->dr[3] = pcb->pcb_dr3;
2381		dbregs->dr[6] = pcb->pcb_dr6;
2382		dbregs->dr[7] = pcb->pcb_dr7;
2383	}
2384	dbregs->dr[4] = 0;
2385	dbregs->dr[5] = 0;
2386	dbregs->dr[8] = 0;
2387	dbregs->dr[9] = 0;
2388	dbregs->dr[10] = 0;
2389	dbregs->dr[11] = 0;
2390	dbregs->dr[12] = 0;
2391	dbregs->dr[13] = 0;
2392	dbregs->dr[14] = 0;
2393	dbregs->dr[15] = 0;
2394	return (0);
2395}
2396
2397int
2398set_dbregs(struct thread *td, struct dbreg *dbregs)
2399{
2400	struct pcb *pcb;
2401	int i;
2402
2403	if (td == NULL) {
2404		load_dr0(dbregs->dr[0]);
2405		load_dr1(dbregs->dr[1]);
2406		load_dr2(dbregs->dr[2]);
2407		load_dr3(dbregs->dr[3]);
2408		load_dr6(dbregs->dr[6]);
2409		load_dr7(dbregs->dr[7]);
2410	} else {
2411		/*
2412		 * Don't let an illegal value for dr7 get set.  Specifically,
2413		 * check for undefined settings.  Setting these bit patterns
2414		 * result in undefined behaviour and can lead to an unexpected
2415		 * TRCTRAP or a general protection fault right here.
2416		 * Upper bits of dr6 and dr7 must not be set
2417		 */
2418		for (i = 0; i < 4; i++) {
2419			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2420				return (EINVAL);
2421			if (td->td_frame->tf_cs == _ucode32sel &&
2422			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2423				return (EINVAL);
2424		}
2425		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2426		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2427			return (EINVAL);
2428
2429		pcb = td->td_pcb;
2430
2431		/*
2432		 * Don't let a process set a breakpoint that is not within the
2433		 * process's address space.  If a process could do this, it
2434		 * could halt the system by setting a breakpoint in the kernel
2435		 * (if ddb was enabled).  Thus, we need to check to make sure
2436		 * that no breakpoints are being enabled for addresses outside
2437		 * process's address space.
2438		 *
2439		 * XXX - what about when the watched area of the user's
2440		 * address space is written into from within the kernel
2441		 * ... wouldn't that still cause a breakpoint to be generated
2442		 * from within kernel mode?
2443		 */
2444
2445		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2446			/* dr0 is enabled */
2447			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2448				return (EINVAL);
2449		}
2450		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2451			/* dr1 is enabled */
2452			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2453				return (EINVAL);
2454		}
2455		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2456			/* dr2 is enabled */
2457			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2458				return (EINVAL);
2459		}
2460		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2461			/* dr3 is enabled */
2462			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2463				return (EINVAL);
2464		}
2465
2466		pcb->pcb_dr0 = dbregs->dr[0];
2467		pcb->pcb_dr1 = dbregs->dr[1];
2468		pcb->pcb_dr2 = dbregs->dr[2];
2469		pcb->pcb_dr3 = dbregs->dr[3];
2470		pcb->pcb_dr6 = dbregs->dr[6];
2471		pcb->pcb_dr7 = dbregs->dr[7];
2472
2473		set_pcb_flags(pcb, PCB_DBREGS);
2474	}
2475
2476	return (0);
2477}
2478
2479void
2480reset_dbregs(void)
2481{
2482
2483	load_dr7(0);	/* Turn off the control bits first */
2484	load_dr0(0);
2485	load_dr1(0);
2486	load_dr2(0);
2487	load_dr3(0);
2488	load_dr6(0);
2489}
2490
2491/*
2492 * Return > 0 if a hardware breakpoint has been hit, and the
2493 * breakpoint was in user space.  Return 0, otherwise.
2494 */
2495int
2496user_dbreg_trap(void)
2497{
2498        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2499        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2500        int nbp;            /* number of breakpoints that triggered */
2501        caddr_t addr[4];    /* breakpoint addresses */
2502        int i;
2503
2504        dr7 = rdr7();
2505        if ((dr7 & 0x000000ff) == 0) {
2506                /*
2507                 * all GE and LE bits in the dr7 register are zero,
2508                 * thus the trap couldn't have been caused by the
2509                 * hardware debug registers
2510                 */
2511                return 0;
2512        }
2513
2514        nbp = 0;
2515        dr6 = rdr6();
2516        bp = dr6 & 0x0000000f;
2517
2518        if (!bp) {
2519                /*
2520                 * None of the breakpoint bits are set meaning this
2521                 * trap was not caused by any of the debug registers
2522                 */
2523                return 0;
2524        }
2525
2526        /*
2527         * at least one of the breakpoints were hit, check to see
2528         * which ones and if any of them are user space addresses
2529         */
2530
2531        if (bp & 0x01) {
2532                addr[nbp++] = (caddr_t)rdr0();
2533        }
2534        if (bp & 0x02) {
2535                addr[nbp++] = (caddr_t)rdr1();
2536        }
2537        if (bp & 0x04) {
2538                addr[nbp++] = (caddr_t)rdr2();
2539        }
2540        if (bp & 0x08) {
2541                addr[nbp++] = (caddr_t)rdr3();
2542        }
2543
2544        for (i = 0; i < nbp; i++) {
2545                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2546                        /*
2547                         * addr[i] is in user space
2548                         */
2549                        return nbp;
2550                }
2551        }
2552
2553        /*
2554         * None of the breakpoints are in user space.
2555         */
2556        return 0;
2557}
2558
2559#ifdef KDB
2560
2561/*
2562 * Provide inb() and outb() as functions.  They are normally only available as
2563 * inline functions, thus cannot be called from the debugger.
2564 */
2565
2566/* silence compiler warnings */
2567u_char inb_(u_short);
2568void outb_(u_short, u_char);
2569
2570u_char
2571inb_(u_short port)
2572{
2573	return inb(port);
2574}
2575
2576void
2577outb_(u_short port, u_char data)
2578{
2579	outb(port, data);
2580}
2581
2582#endif /* KDB */
2583