fpu.c revision 267418
1/*-
2 * Copyright (c) 1990 William Jolitz.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 4. Neither the name of the University nor the names of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: stable/10/sys/amd64/amd64/fpu.c 267418 2014-06-12 17:15:56Z jhb $");
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/bus.h>
39#include <sys/kernel.h>
40#include <sys/lock.h>
41#include <sys/malloc.h>
42#include <sys/module.h>
43#include <sys/mutex.h>
44#include <sys/mutex.h>
45#include <sys/proc.h>
46#include <sys/sysctl.h>
47#include <machine/bus.h>
48#include <sys/rman.h>
49#include <sys/signalvar.h>
50#include <vm/uma.h>
51
52#include <machine/cputypes.h>
53#include <machine/frame.h>
54#include <machine/intr_machdep.h>
55#include <machine/md_var.h>
56#include <machine/pcb.h>
57#include <machine/psl.h>
58#include <machine/resource.h>
59#include <machine/specialreg.h>
60#include <machine/segments.h>
61#include <machine/ucontext.h>
62
63/*
64 * Floating point support.
65 */
66
67#if defined(__GNUCLIKE_ASM) && !defined(lint)
68
69#define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
70#define	fnclex()		__asm __volatile("fnclex")
71#define	fninit()		__asm __volatile("fninit")
72#define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
73#define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
74#define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
75#define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
76#define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
77#define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : : "m" (*(addr)))
78
79static __inline void
80xrstor(char *addr, uint64_t mask)
81{
82	uint32_t low, hi;
83
84	low = mask;
85	hi = mask >> 32;
86	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
87}
88
89static __inline void
90xsave(char *addr, uint64_t mask)
91{
92	uint32_t low, hi;
93
94	low = mask;
95	hi = mask >> 32;
96	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
97	    "memory");
98}
99
100#else	/* !(__GNUCLIKE_ASM && !lint) */
101
102void	fldcw(u_short cw);
103void	fnclex(void);
104void	fninit(void);
105void	fnstcw(caddr_t addr);
106void	fnstsw(caddr_t addr);
107void	fxsave(caddr_t addr);
108void	fxrstor(caddr_t addr);
109void	ldmxcsr(u_int csr);
110void	stmxcsr(u_int *csr);
111void	xrstor(char *addr, uint64_t mask);
112void	xsave(char *addr, uint64_t mask);
113
114#endif	/* __GNUCLIKE_ASM && !lint */
115
116#define	start_emulating()	load_cr0(rcr0() | CR0_TS)
117#define	stop_emulating()	clts()
118
119CTASSERT(sizeof(struct savefpu) == 512);
120CTASSERT(sizeof(struct xstate_hdr) == 64);
121CTASSERT(sizeof(struct savefpu_ymm) == 832);
122
123/*
124 * This requirement is to make it easier for asm code to calculate
125 * offset of the fpu save area from the pcb address. FPU save area
126 * must be 64-byte aligned.
127 */
128CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
129
130static	void	fpu_clean_state(void);
131
132SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
133    NULL, 1, "Floating point instructions executed in hardware");
134
135int use_xsave;			/* non-static for cpu_switch.S */
136uint64_t xsave_mask;		/* the same */
137static	uma_zone_t fpu_save_area_zone;
138static	struct savefpu *fpu_initialstate;
139
140struct xsave_area_elm_descr {
141	u_int	offset;
142	u_int	size;
143} *xsave_area_desc;
144
145void
146fpusave(void *addr)
147{
148
149	if (use_xsave)
150		xsave((char *)addr, xsave_mask);
151	else
152		fxsave((char *)addr);
153}
154
155void
156fpurestore(void *addr)
157{
158
159	if (use_xsave)
160		xrstor((char *)addr, xsave_mask);
161	else
162		fxrstor((char *)addr);
163}
164
165void
166fpususpend(void *addr)
167{
168	u_long cr0;
169
170	cr0 = rcr0();
171	stop_emulating();
172	fpusave(addr);
173	load_cr0(cr0);
174}
175
176/*
177 * Enable XSAVE if supported and allowed by user.
178 * Calculate the xsave_mask.
179 */
180static void
181fpuinit_bsp1(void)
182{
183	u_int cp[4];
184	uint64_t xsave_mask_user;
185
186	if ((cpu_feature2 & CPUID2_XSAVE) != 0) {
187		use_xsave = 1;
188		TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
189	}
190	if (!use_xsave)
191		return;
192
193	cpuid_count(0xd, 0x0, cp);
194	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
195	if ((cp[0] & xsave_mask) != xsave_mask)
196		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
197	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
198	xsave_mask_user = xsave_mask;
199	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
200	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
201	xsave_mask &= xsave_mask_user;
202	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
203		xsave_mask &= ~XFEATURE_AVX512;
204	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
205		xsave_mask &= ~XFEATURE_MPX;
206
207	cpuid_count(0xd, 0x1, cp);
208	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
209		/*
210		 * Patch the XSAVE instruction in the cpu_switch code
211		 * to XSAVEOPT.  We assume that XSAVE encoding used
212		 * REX byte, and set the bit 4 of the r/m byte.
213		 */
214		ctx_switch_xsave[3] |= 0x10;
215	}
216}
217
218/*
219 * Calculate the fpu save area size.
220 */
221static void
222fpuinit_bsp2(void)
223{
224	u_int cp[4];
225
226	if (use_xsave) {
227		cpuid_count(0xd, 0x0, cp);
228		cpu_max_ext_state_size = cp[1];
229
230		/*
231		 * Reload the cpu_feature2, since we enabled OSXSAVE.
232		 */
233		do_cpuid(1, cp);
234		cpu_feature2 = cp[2];
235	} else
236		cpu_max_ext_state_size = sizeof(struct savefpu);
237}
238
239/*
240 * Initialize the floating point unit.
241 */
242void
243fpuinit(void)
244{
245	register_t saveintr;
246	u_int mxcsr;
247	u_short control;
248
249	if (IS_BSP())
250		fpuinit_bsp1();
251
252	if (use_xsave) {
253		load_cr4(rcr4() | CR4_XSAVE);
254		load_xcr(XCR0, xsave_mask);
255	}
256
257	/*
258	 * XCR0 shall be set up before CPU can report the save area size.
259	 */
260	if (IS_BSP())
261		fpuinit_bsp2();
262
263	/*
264	 * It is too early for critical_enter() to work on AP.
265	 */
266	saveintr = intr_disable();
267	stop_emulating();
268	fninit();
269	control = __INITIAL_FPUCW__;
270	fldcw(control);
271	mxcsr = __INITIAL_MXCSR__;
272	ldmxcsr(mxcsr);
273	start_emulating();
274	intr_restore(saveintr);
275}
276
277/*
278 * On the boot CPU we generate a clean state that is used to
279 * initialize the floating point unit when it is first used by a
280 * process.
281 */
282static void
283fpuinitstate(void *arg __unused)
284{
285	register_t saveintr;
286	int cp[4], i, max_ext_n;
287
288	fpu_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
289	    M_WAITOK | M_ZERO);
290	saveintr = intr_disable();
291	stop_emulating();
292
293	fpusave(fpu_initialstate);
294	if (fpu_initialstate->sv_env.en_mxcsr_mask)
295		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
296	else
297		cpu_mxcsr_mask = 0xFFBF;
298
299	/*
300	 * The fninit instruction does not modify XMM registers.  The
301	 * fpusave call dumped the garbage contained in the registers
302	 * after reset to the initial state saved.  Clear XMM
303	 * registers file image to make the startup program state and
304	 * signal handler XMM register content predictable.
305	 */
306	bzero(&fpu_initialstate->sv_xmm[0], sizeof(struct xmmacc));
307
308	/*
309	 * Create a table describing the layout of the CPU Extended
310	 * Save Area.
311	 */
312	if (use_xsave) {
313		max_ext_n = flsl(xsave_mask);
314		xsave_area_desc = malloc(max_ext_n * sizeof(struct
315		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
316		/* x87 state */
317		xsave_area_desc[0].offset = 0;
318		xsave_area_desc[0].size = 160;
319		/* XMM */
320		xsave_area_desc[1].offset = 160;
321		xsave_area_desc[1].size = 288 - 160;
322
323		for (i = 2; i < max_ext_n; i++) {
324			cpuid_count(0xd, i, cp);
325			xsave_area_desc[i].offset = cp[1];
326			xsave_area_desc[i].size = cp[0];
327		}
328	}
329
330	fpu_save_area_zone = uma_zcreate("FPU_save_area",
331	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
332	    XSAVE_AREA_ALIGN - 1, 0);
333
334	start_emulating();
335	intr_restore(saveintr);
336}
337SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, fpuinitstate, NULL);
338
339/*
340 * Free coprocessor (if we have it).
341 */
342void
343fpuexit(struct thread *td)
344{
345
346	critical_enter();
347	if (curthread == PCPU_GET(fpcurthread)) {
348		stop_emulating();
349		fpusave(curpcb->pcb_save);
350		start_emulating();
351		PCPU_SET(fpcurthread, 0);
352	}
353	critical_exit();
354}
355
356int
357fpuformat()
358{
359
360	return (_MC_FPFMT_XMM);
361}
362
363/*
364 * The following mechanism is used to ensure that the FPE_... value
365 * that is passed as a trapcode to the signal handler of the user
366 * process does not have more than one bit set.
367 *
368 * Multiple bits may be set if the user process modifies the control
369 * word while a status word bit is already set.  While this is a sign
370 * of bad coding, we have no choise than to narrow them down to one
371 * bit, since we must not send a trapcode that is not exactly one of
372 * the FPE_ macros.
373 *
374 * The mechanism has a static table with 127 entries.  Each combination
375 * of the 7 FPU status word exception bits directly translates to a
376 * position in this table, where a single FPE_... value is stored.
377 * This FPE_... value stored there is considered the "most important"
378 * of the exception bits and will be sent as the signal code.  The
379 * precedence of the bits is based upon Intel Document "Numerical
380 * Applications", Chapter "Special Computational Situations".
381 *
382 * The macro to choose one of these values does these steps: 1) Throw
383 * away status word bits that cannot be masked.  2) Throw away the bits
384 * currently masked in the control word, assuming the user isn't
385 * interested in them anymore.  3) Reinsert status word bit 7 (stack
386 * fault) if it is set, which cannot be masked but must be presered.
387 * 4) Use the remaining bits to point into the trapcode table.
388 *
389 * The 6 maskable bits in order of their preference, as stated in the
390 * above referenced Intel manual:
391 * 1  Invalid operation (FP_X_INV)
392 * 1a   Stack underflow
393 * 1b   Stack overflow
394 * 1c   Operand of unsupported format
395 * 1d   SNaN operand.
396 * 2  QNaN operand (not an exception, irrelavant here)
397 * 3  Any other invalid-operation not mentioned above or zero divide
398 *      (FP_X_INV, FP_X_DZ)
399 * 4  Denormal operand (FP_X_DNML)
400 * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
401 * 6  Inexact result (FP_X_IMP)
402 */
403static char fpetable[128] = {
404	0,
405	FPE_FLTINV,	/*  1 - INV */
406	FPE_FLTUND,	/*  2 - DNML */
407	FPE_FLTINV,	/*  3 - INV | DNML */
408	FPE_FLTDIV,	/*  4 - DZ */
409	FPE_FLTINV,	/*  5 - INV | DZ */
410	FPE_FLTDIV,	/*  6 - DNML | DZ */
411	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
412	FPE_FLTOVF,	/*  8 - OFL */
413	FPE_FLTINV,	/*  9 - INV | OFL */
414	FPE_FLTUND,	/*  A - DNML | OFL */
415	FPE_FLTINV,	/*  B - INV | DNML | OFL */
416	FPE_FLTDIV,	/*  C - DZ | OFL */
417	FPE_FLTINV,	/*  D - INV | DZ | OFL */
418	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
419	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
420	FPE_FLTUND,	/* 10 - UFL */
421	FPE_FLTINV,	/* 11 - INV | UFL */
422	FPE_FLTUND,	/* 12 - DNML | UFL */
423	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
424	FPE_FLTDIV,	/* 14 - DZ | UFL */
425	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
426	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
427	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
428	FPE_FLTOVF,	/* 18 - OFL | UFL */
429	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
430	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
431	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
432	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
433	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
434	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
435	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
436	FPE_FLTRES,	/* 20 - IMP */
437	FPE_FLTINV,	/* 21 - INV | IMP */
438	FPE_FLTUND,	/* 22 - DNML | IMP */
439	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
440	FPE_FLTDIV,	/* 24 - DZ | IMP */
441	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
442	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
443	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
444	FPE_FLTOVF,	/* 28 - OFL | IMP */
445	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
446	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
447	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
448	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
449	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
450	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
451	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
452	FPE_FLTUND,	/* 30 - UFL | IMP */
453	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
454	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
455	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
456	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
457	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
458	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
459	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
460	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
461	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
462	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
463	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
464	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
465	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
466	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
467	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
468	FPE_FLTSUB,	/* 40 - STK */
469	FPE_FLTSUB,	/* 41 - INV | STK */
470	FPE_FLTUND,	/* 42 - DNML | STK */
471	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
472	FPE_FLTDIV,	/* 44 - DZ | STK */
473	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
474	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
475	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
476	FPE_FLTOVF,	/* 48 - OFL | STK */
477	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
478	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
479	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
480	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
481	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
482	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
483	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
484	FPE_FLTUND,	/* 50 - UFL | STK */
485	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
486	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
487	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
488	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
489	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
490	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
491	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
492	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
493	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
494	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
495	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
496	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
497	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
498	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
499	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
500	FPE_FLTRES,	/* 60 - IMP | STK */
501	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
502	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
503	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
504	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
505	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
506	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
507	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
508	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
509	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
510	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
511	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
512	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
513	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
514	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
515	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
516	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
517	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
518	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
519	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
520	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
521	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
522	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
523	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
524	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
525	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
526	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
527	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
528	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
529	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
530	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
531	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
532};
533
534/*
535 * Read the FP status and control words, then generate si_code value
536 * for SIGFPE.  The error code chosen will be one of the
537 * FPE_... macros.  It will be sent as the second argument to old
538 * BSD-style signal handlers and as "siginfo_t->si_code" (second
539 * argument) to SA_SIGINFO signal handlers.
540 *
541 * Some time ago, we cleared the x87 exceptions with FNCLEX there.
542 * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
543 * usermode code which understands the FPU hardware enough to enable
544 * the exceptions, can also handle clearing the exception state in the
545 * handler.  The only consequence of not clearing the exception is the
546 * rethrow of the SIGFPE on return from the signal handler and
547 * reexecution of the corresponding instruction.
548 *
549 * For XMM traps, the exceptions were never cleared.
550 */
551int
552fputrap_x87(void)
553{
554	struct savefpu *pcb_save;
555	u_short control, status;
556
557	critical_enter();
558
559	/*
560	 * Interrupt handling (for another interrupt) may have pushed the
561	 * state to memory.  Fetch the relevant parts of the state from
562	 * wherever they are.
563	 */
564	if (PCPU_GET(fpcurthread) != curthread) {
565		pcb_save = curpcb->pcb_save;
566		control = pcb_save->sv_env.en_cw;
567		status = pcb_save->sv_env.en_sw;
568	} else {
569		fnstcw(&control);
570		fnstsw(&status);
571	}
572
573	critical_exit();
574	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
575}
576
577int
578fputrap_sse(void)
579{
580	u_int mxcsr;
581
582	critical_enter();
583	if (PCPU_GET(fpcurthread) != curthread)
584		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
585	else
586		stmxcsr(&mxcsr);
587	critical_exit();
588	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
589}
590
591/*
592 * Implement device not available (DNA) exception
593 *
594 * It would be better to switch FP context here (if curthread != fpcurthread)
595 * and not necessarily for every context switch, but it is too hard to
596 * access foreign pcb's.
597 */
598
599static int err_count = 0;
600
601void
602fpudna(void)
603{
604
605	critical_enter();
606	if (PCPU_GET(fpcurthread) == curthread) {
607		printf("fpudna: fpcurthread == curthread %d times\n",
608		    ++err_count);
609		stop_emulating();
610		critical_exit();
611		return;
612	}
613	if (PCPU_GET(fpcurthread) != NULL) {
614		printf("fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
615		       PCPU_GET(fpcurthread),
616		       PCPU_GET(fpcurthread)->td_proc->p_pid,
617		       curthread, curthread->td_proc->p_pid);
618		panic("fpudna");
619	}
620	stop_emulating();
621	/*
622	 * Record new context early in case frstor causes a trap.
623	 */
624	PCPU_SET(fpcurthread, curthread);
625
626	fpu_clean_state();
627
628	if ((curpcb->pcb_flags & PCB_FPUINITDONE) == 0) {
629		/*
630		 * This is the first time this thread has used the FPU or
631		 * the PCB doesn't contain a clean FPU state.  Explicitly
632		 * load an initial state.
633		 *
634		 * We prefer to restore the state from the actual save
635		 * area in PCB instead of directly loading from
636		 * fpu_initialstate, to ignite the XSAVEOPT
637		 * tracking engine.
638		 */
639		bcopy(fpu_initialstate, curpcb->pcb_save, cpu_max_ext_state_size);
640		fpurestore(curpcb->pcb_save);
641		if (curpcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
642			fldcw(curpcb->pcb_initial_fpucw);
643		if (PCB_USER_FPU(curpcb))
644			set_pcb_flags(curpcb,
645			    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
646		else
647			set_pcb_flags(curpcb, PCB_FPUINITDONE);
648	} else
649		fpurestore(curpcb->pcb_save);
650	critical_exit();
651}
652
653void
654fpudrop()
655{
656	struct thread *td;
657
658	td = PCPU_GET(fpcurthread);
659	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
660	CRITICAL_ASSERT(td);
661	PCPU_SET(fpcurthread, NULL);
662	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
663	start_emulating();
664}
665
666/*
667 * Get the user state of the FPU into pcb->pcb_user_save without
668 * dropping ownership (if possible).  It returns the FPU ownership
669 * status.
670 */
671int
672fpugetregs(struct thread *td)
673{
674	struct pcb *pcb;
675	uint64_t *xstate_bv, bit;
676	char *sa;
677	int max_ext_n, i, owned;
678
679	pcb = td->td_pcb;
680	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
681		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
682		    cpu_max_ext_state_size);
683		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
684		    pcb->pcb_initial_fpucw;
685		fpuuserinited(td);
686		return (_MC_FPOWNED_PCB);
687	}
688	critical_enter();
689	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
690		fpusave(get_pcb_user_save_pcb(pcb));
691		owned = _MC_FPOWNED_FPU;
692	} else {
693		owned = _MC_FPOWNED_PCB;
694	}
695	critical_exit();
696	if (use_xsave) {
697		/*
698		 * Handle partially saved state.
699		 */
700		sa = (char *)get_pcb_user_save_pcb(pcb);
701		xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
702		    offsetof(struct xstate_hdr, xstate_bv));
703		max_ext_n = flsl(xsave_mask);
704		for (i = 0; i < max_ext_n; i++) {
705			bit = 1ULL << i;
706			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
707				continue;
708			bcopy((char *)fpu_initialstate +
709			    xsave_area_desc[i].offset,
710			    sa + xsave_area_desc[i].offset,
711			    xsave_area_desc[i].size);
712			*xstate_bv |= bit;
713		}
714	}
715	return (owned);
716}
717
718void
719fpuuserinited(struct thread *td)
720{
721	struct pcb *pcb;
722
723	pcb = td->td_pcb;
724	if (PCB_USER_FPU(pcb))
725		set_pcb_flags(pcb,
726		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
727	else
728		set_pcb_flags(pcb, PCB_FPUINITDONE);
729}
730
731int
732fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
733{
734	struct xstate_hdr *hdr, *ehdr;
735	size_t len, max_len;
736	uint64_t bv;
737
738	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
739	if (xfpustate == NULL)
740		return (0);
741	if (!use_xsave)
742		return (EOPNOTSUPP);
743
744	len = xfpustate_size;
745	if (len < sizeof(struct xstate_hdr))
746		return (EINVAL);
747	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
748	if (len > max_len)
749		return (EINVAL);
750
751	ehdr = (struct xstate_hdr *)xfpustate;
752	bv = ehdr->xstate_bv;
753
754	/*
755	 * Avoid #gp.
756	 */
757	if (bv & ~xsave_mask)
758		return (EINVAL);
759
760	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
761
762	hdr->xstate_bv = bv;
763	bcopy(xfpustate + sizeof(struct xstate_hdr),
764	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
765
766	return (0);
767}
768
769/*
770 * Set the state of the FPU.
771 */
772int
773fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
774    size_t xfpustate_size)
775{
776	struct pcb *pcb;
777	int error;
778
779	pcb = td->td_pcb;
780	critical_enter();
781	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
782		error = fpusetxstate(td, xfpustate, xfpustate_size);
783		if (error != 0) {
784			critical_exit();
785			return (error);
786		}
787		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
788		fpurestore(get_pcb_user_save_td(td));
789		critical_exit();
790		set_pcb_flags(pcb, PCB_FPUINITDONE | PCB_USERFPUINITDONE);
791	} else {
792		critical_exit();
793		error = fpusetxstate(td, xfpustate, xfpustate_size);
794		if (error != 0)
795			return (error);
796		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
797		fpuuserinited(td);
798	}
799	return (0);
800}
801
802/*
803 * On AuthenticAMD processors, the fxrstor instruction does not restore
804 * the x87's stored last instruction pointer, last data pointer, and last
805 * opcode values, except in the rare case in which the exception summary
806 * (ES) bit in the x87 status word is set to 1.
807 *
808 * In order to avoid leaking this information across processes, we clean
809 * these values by performing a dummy load before executing fxrstor().
810 */
811static void
812fpu_clean_state(void)
813{
814	static float dummy_variable = 0.0;
815	u_short status;
816
817	/*
818	 * Clear the ES bit in the x87 status word if it is currently
819	 * set, in order to avoid causing a fault in the upcoming load.
820	 */
821	fnstsw(&status);
822	if (status & 0x80)
823		fnclex();
824
825	/*
826	 * Load the dummy variable into the x87 stack.  This mangles
827	 * the x87 stack, but we don't care since we're about to call
828	 * fxrstor() anyway.
829	 */
830	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
831}
832
833/*
834 * This really sucks.  We want the acpi version only, but it requires
835 * the isa_if.h file in order to get the definitions.
836 */
837#include "opt_isa.h"
838#ifdef DEV_ISA
839#include <isa/isavar.h>
840/*
841 * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
842 */
843static struct isa_pnp_id fpupnp_ids[] = {
844	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
845	{ 0 }
846};
847
848static int
849fpupnp_probe(device_t dev)
850{
851	int result;
852
853	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
854	if (result <= 0)
855		device_quiet(dev);
856	return (result);
857}
858
859static int
860fpupnp_attach(device_t dev)
861{
862
863	return (0);
864}
865
866static device_method_t fpupnp_methods[] = {
867	/* Device interface */
868	DEVMETHOD(device_probe,		fpupnp_probe),
869	DEVMETHOD(device_attach,	fpupnp_attach),
870	DEVMETHOD(device_detach,	bus_generic_detach),
871	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
872	DEVMETHOD(device_suspend,	bus_generic_suspend),
873	DEVMETHOD(device_resume,	bus_generic_resume),
874
875	{ 0, 0 }
876};
877
878static driver_t fpupnp_driver = {
879	"fpupnp",
880	fpupnp_methods,
881	1,			/* no softc */
882};
883
884static devclass_t fpupnp_devclass;
885
886DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
887#endif	/* DEV_ISA */
888
889static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
890    "Kernel contexts for FPU state");
891
892#define	FPU_KERN_CTX_FPUINITDONE 0x01
893
894struct fpu_kern_ctx {
895	struct savefpu *prev;
896	uint32_t flags;
897	char hwstate1[];
898};
899
900struct fpu_kern_ctx *
901fpu_kern_alloc_ctx(u_int flags)
902{
903	struct fpu_kern_ctx *res;
904	size_t sz;
905
906	sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
907	    cpu_max_ext_state_size;
908	res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
909	    M_NOWAIT : M_WAITOK) | M_ZERO);
910	return (res);
911}
912
913void
914fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
915{
916
917	/* XXXKIB clear the memory ? */
918	free(ctx, M_FPUKERN_CTX);
919}
920
921static struct savefpu *
922fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
923{
924	vm_offset_t p;
925
926	p = (vm_offset_t)&ctx->hwstate1;
927	p = roundup2(p, XSAVE_AREA_ALIGN);
928	return ((struct savefpu *)p);
929}
930
931int
932fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
933{
934	struct pcb *pcb;
935
936	pcb = td->td_pcb;
937	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
938	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
939	ctx->flags = 0;
940	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
941		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
942	fpuexit(td);
943	ctx->prev = pcb->pcb_save;
944	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
945	set_pcb_flags(pcb, PCB_KERNFPU);
946	clear_pcb_flags(pcb, PCB_FPUINITDONE);
947	return (0);
948}
949
950int
951fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
952{
953	struct pcb *pcb;
954
955	pcb = td->td_pcb;
956	critical_enter();
957	if (curthread == PCPU_GET(fpcurthread))
958		fpudrop();
959	critical_exit();
960	pcb->pcb_save = ctx->prev;
961	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
962		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
963			set_pcb_flags(pcb, PCB_FPUINITDONE);
964			clear_pcb_flags(pcb, PCB_KERNFPU);
965		} else
966			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
967	} else {
968		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
969			set_pcb_flags(pcb, PCB_FPUINITDONE);
970		else
971			clear_pcb_flags(pcb, PCB_FPUINITDONE);
972		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
973	}
974	return (0);
975}
976
977int
978fpu_kern_thread(u_int flags)
979{
980
981	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
982	    ("Only kthread may use fpu_kern_thread"));
983	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
984	    ("mangled pcb_save"));
985	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
986
987	set_pcb_flags(curpcb, PCB_KERNFPU);
988	return (0);
989}
990
991int
992is_fpu_kern_thread(u_int flags)
993{
994
995	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
996		return (0);
997	return ((curpcb->pcb_flags & PCB_KERNFPU) != 0);
998}
999
1000/*
1001 * FPU save area alloc/free/init utility routines
1002 */
1003struct savefpu *
1004fpu_save_area_alloc(void)
1005{
1006
1007	return (uma_zalloc(fpu_save_area_zone, 0));
1008}
1009
1010void
1011fpu_save_area_free(struct savefpu *fsa)
1012{
1013
1014	uma_zfree(fpu_save_area_zone, fsa);
1015}
1016
1017void
1018fpu_save_area_reset(struct savefpu *fsa)
1019{
1020
1021	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1022}
1023