mkfs.c revision 322860
1/*
2 * Copyright (c) 2002 Networks Associates Technology, Inc.
3 * All rights reserved.
4 *
5 * This software was developed for the FreeBSD Project by Marshall
6 * Kirk McKusick and Network Associates Laboratories, the Security
7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9 * research program.
10 *
11 * Copyright (c) 1980, 1989, 1993
12 *	The Regents of the University of California.  All rights reserved.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39#if 0
40#ifndef lint
41static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
42#endif /* not lint */
43#endif
44#include <sys/cdefs.h>
45__FBSDID("$FreeBSD: stable/10/sbin/newfs/mkfs.c 322860 2017-08-24 21:44:23Z mckusick $");
46
47#include <sys/param.h>
48#include <sys/disklabel.h>
49#include <sys/file.h>
50#include <sys/ioctl.h>
51#include <sys/mman.h>
52#include <sys/resource.h>
53#include <sys/stat.h>
54#include <sys/wait.h>
55#include <err.h>
56#include <grp.h>
57#include <limits.h>
58#include <signal.h>
59#include <stdlib.h>
60#include <string.h>
61#include <stdint.h>
62#include <stdio.h>
63#include <time.h>
64#include <unistd.h>
65#include <ufs/ufs/dinode.h>
66#include <ufs/ufs/dir.h>
67#include <ufs/ffs/fs.h>
68#include "newfs.h"
69
70/*
71 * make file system for cylinder-group style file systems
72 */
73#define UMASK		0755
74#define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
75
76static struct	csum *fscs;
77#define	sblock	disk.d_fs
78#define	acg	disk.d_cg
79
80union dinode {
81	struct ufs1_dinode dp1;
82	struct ufs2_dinode dp2;
83};
84#define DIP(dp, field) \
85	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
86	(dp)->dp1.field : (dp)->dp2.field)
87
88static caddr_t iobuf;
89static long iobufsize;
90static ufs2_daddr_t alloc(int size, int mode);
91static int charsperline(void);
92static void clrblock(struct fs *, unsigned char *, int);
93static void fsinit(time_t);
94static int ilog2(int);
95static void initcg(int, time_t);
96static int isblock(struct fs *, unsigned char *, int);
97static void iput(union dinode *, ino_t);
98static int makedir(struct direct *, int);
99static void setblock(struct fs *, unsigned char *, int);
100static void wtfs(ufs2_daddr_t, int, char *);
101static u_int32_t newfs_random(void);
102
103static int
104do_sbwrite(struct uufsd *disk)
105{
106	if (!disk->d_sblock)
107		disk->d_sblock = disk->d_fs.fs_sblockloc / disk->d_bsize;
108	return (pwrite(disk->d_fd, &disk->d_fs, SBLOCKSIZE, (off_t)((part_ofs +
109	    disk->d_sblock) * disk->d_bsize)));
110}
111
112void
113mkfs(struct partition *pp, char *fsys)
114{
115	int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
116	long i, j, csfrags;
117	uint cg;
118	time_t utime;
119	quad_t sizepb;
120	int width;
121	ino_t maxinum;
122	int minfragsperinode;	/* minimum ratio of frags to inodes */
123	char tmpbuf[100];	/* XXX this will break in about 2,500 years */
124	struct fsrecovery fsr;
125	union {
126		struct fs fdummy;
127		char cdummy[SBLOCKSIZE];
128	} dummy;
129#define fsdummy dummy.fdummy
130#define chdummy dummy.cdummy
131
132	/*
133	 * Our blocks == sector size, and the version of UFS we are using is
134	 * specified by Oflag.
135	 */
136	disk.d_bsize = sectorsize;
137	disk.d_ufs = Oflag;
138	if (Rflag) {
139		utime = 1000000000;
140	} else {
141		time(&utime);
142		arc4random_stir();
143	}
144	sblock.fs_old_flags = FS_FLAGS_UPDATED;
145	sblock.fs_flags = 0;
146	if (Uflag)
147		sblock.fs_flags |= FS_DOSOFTDEP;
148	if (Lflag)
149		strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN);
150	if (Jflag)
151		sblock.fs_flags |= FS_GJOURNAL;
152	if (lflag)
153		sblock.fs_flags |= FS_MULTILABEL;
154	if (tflag)
155		sblock.fs_flags |= FS_TRIM;
156	/*
157	 * Validate the given file system size.
158	 * Verify that its last block can actually be accessed.
159	 * Convert to file system fragment sized units.
160	 */
161	if (fssize <= 0) {
162		printf("preposterous size %jd\n", (intmax_t)fssize);
163		exit(13);
164	}
165	wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
166	    (char *)&sblock);
167	/*
168	 * collect and verify the file system density info
169	 */
170	sblock.fs_avgfilesize = avgfilesize;
171	sblock.fs_avgfpdir = avgfilesperdir;
172	if (sblock.fs_avgfilesize <= 0)
173		printf("illegal expected average file size %d\n",
174		    sblock.fs_avgfilesize), exit(14);
175	if (sblock.fs_avgfpdir <= 0)
176		printf("illegal expected number of files per directory %d\n",
177		    sblock.fs_avgfpdir), exit(15);
178
179restart:
180	/*
181	 * collect and verify the block and fragment sizes
182	 */
183	sblock.fs_bsize = bsize;
184	sblock.fs_fsize = fsize;
185	if (!POWEROF2(sblock.fs_bsize)) {
186		printf("block size must be a power of 2, not %d\n",
187		    sblock.fs_bsize);
188		exit(16);
189	}
190	if (!POWEROF2(sblock.fs_fsize)) {
191		printf("fragment size must be a power of 2, not %d\n",
192		    sblock.fs_fsize);
193		exit(17);
194	}
195	if (sblock.fs_fsize < sectorsize) {
196		printf("increasing fragment size from %d to sector size (%d)\n",
197		    sblock.fs_fsize, sectorsize);
198		sblock.fs_fsize = sectorsize;
199	}
200	if (sblock.fs_bsize > MAXBSIZE) {
201		printf("decreasing block size from %d to maximum (%d)\n",
202		    sblock.fs_bsize, MAXBSIZE);
203		sblock.fs_bsize = MAXBSIZE;
204	}
205	if (sblock.fs_bsize < MINBSIZE) {
206		printf("increasing block size from %d to minimum (%d)\n",
207		    sblock.fs_bsize, MINBSIZE);
208		sblock.fs_bsize = MINBSIZE;
209	}
210	if (sblock.fs_fsize > MAXBSIZE) {
211		printf("decreasing fragment size from %d to maximum (%d)\n",
212		    sblock.fs_fsize, MAXBSIZE);
213		sblock.fs_fsize = MAXBSIZE;
214	}
215	if (sblock.fs_bsize < sblock.fs_fsize) {
216		printf("increasing block size from %d to fragment size (%d)\n",
217		    sblock.fs_bsize, sblock.fs_fsize);
218		sblock.fs_bsize = sblock.fs_fsize;
219	}
220	if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) {
221		printf(
222		"increasing fragment size from %d to block size / %d (%d)\n",
223		    sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG);
224		sblock.fs_fsize = sblock.fs_bsize / MAXFRAG;
225	}
226	if (maxbsize == 0)
227		maxbsize = bsize;
228	if (maxbsize < bsize || !POWEROF2(maxbsize)) {
229		sblock.fs_maxbsize = sblock.fs_bsize;
230		printf("Extent size set to %d\n", sblock.fs_maxbsize);
231	} else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
232		sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
233		printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
234	} else {
235		sblock.fs_maxbsize = maxbsize;
236	}
237	/*
238	 * Maxcontig sets the default for the maximum number of blocks
239	 * that may be allocated sequentially. With file system clustering
240	 * it is possible to allocate contiguous blocks up to the maximum
241	 * transfer size permitted by the controller or buffering.
242	 */
243	if (maxcontig == 0)
244		maxcontig = MAX(1, MAXPHYS / bsize);
245	sblock.fs_maxcontig = maxcontig;
246	if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
247		sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
248		printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
249	}
250	if (sblock.fs_maxcontig > 1)
251		sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
252	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
253	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
254	sblock.fs_qbmask = ~sblock.fs_bmask;
255	sblock.fs_qfmask = ~sblock.fs_fmask;
256	sblock.fs_bshift = ilog2(sblock.fs_bsize);
257	sblock.fs_fshift = ilog2(sblock.fs_fsize);
258	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
259	sblock.fs_fragshift = ilog2(sblock.fs_frag);
260	if (sblock.fs_frag > MAXFRAG) {
261		printf("fragment size %d is still too small (can't happen)\n",
262		    sblock.fs_bsize / MAXFRAG);
263		exit(21);
264	}
265	sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
266	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
267	sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize);
268
269	/*
270	 * Before the filesystem is finally initialized, mark it
271	 * as incompletely initialized.
272	 */
273	sblock.fs_magic = FS_BAD_MAGIC;
274
275	if (Oflag == 1) {
276		sblock.fs_sblockloc = SBLOCK_UFS1;
277		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t);
278		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
279		sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
280		    sizeof(ufs1_daddr_t));
281		sblock.fs_old_inodefmt = FS_44INODEFMT;
282		sblock.fs_old_cgoffset = 0;
283		sblock.fs_old_cgmask = 0xffffffff;
284		sblock.fs_old_size = sblock.fs_size;
285		sblock.fs_old_rotdelay = 0;
286		sblock.fs_old_rps = 60;
287		sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
288		sblock.fs_old_cpg = 1;
289		sblock.fs_old_interleave = 1;
290		sblock.fs_old_trackskew = 0;
291		sblock.fs_old_cpc = 0;
292		sblock.fs_old_postblformat = 1;
293		sblock.fs_old_nrpos = 1;
294	} else {
295		sblock.fs_sblockloc = SBLOCK_UFS2;
296		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t);
297		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
298		sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
299		    sizeof(ufs2_daddr_t));
300	}
301	sblock.fs_sblkno =
302	    roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
303		sblock.fs_frag);
304	sblock.fs_cblkno = sblock.fs_sblkno +
305	    roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag);
306	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
307	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
308	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
309		sizepb *= NINDIR(&sblock);
310		sblock.fs_maxfilesize += sizepb;
311	}
312
313	/*
314	 * It's impossible to create a snapshot in case that fs_maxfilesize
315	 * is smaller than the fssize.
316	 */
317	if (sblock.fs_maxfilesize < (u_quad_t)fssize) {
318		warnx("WARNING: You will be unable to create snapshots on this "
319		      "file system.  Correct by using a larger blocksize.");
320	}
321
322	/*
323	 * Calculate the number of blocks to put into each cylinder group.
324	 *
325	 * This algorithm selects the number of blocks per cylinder
326	 * group. The first goal is to have at least enough data blocks
327	 * in each cylinder group to meet the density requirement. Once
328	 * this goal is achieved we try to expand to have at least
329	 * MINCYLGRPS cylinder groups. Once this goal is achieved, we
330	 * pack as many blocks into each cylinder group map as will fit.
331	 *
332	 * We start by calculating the smallest number of blocks that we
333	 * can put into each cylinder group. If this is too big, we reduce
334	 * the density until it fits.
335	 */
336	maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock);
337	minfragsperinode = 1 + fssize / maxinum;
338	if (density == 0) {
339		density = MAX(NFPI, minfragsperinode) * fsize;
340	} else if (density < minfragsperinode * fsize) {
341		origdensity = density;
342		density = minfragsperinode * fsize;
343		fprintf(stderr, "density increased from %d to %d\n",
344		    origdensity, density);
345	}
346	origdensity = density;
347	for (;;) {
348		fragsperinode = MAX(numfrags(&sblock, density), 1);
349		if (fragsperinode < minfragsperinode) {
350			bsize <<= 1;
351			fsize <<= 1;
352			printf("Block size too small for a file system %s %d\n",
353			     "of this size. Increasing blocksize to", bsize);
354			goto restart;
355		}
356		minfpg = fragsperinode * INOPB(&sblock);
357		if (minfpg > sblock.fs_size)
358			minfpg = sblock.fs_size;
359		sblock.fs_ipg = INOPB(&sblock);
360		sblock.fs_fpg = roundup(sblock.fs_iblkno +
361		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
362		if (sblock.fs_fpg < minfpg)
363			sblock.fs_fpg = minfpg;
364		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
365		    INOPB(&sblock));
366		sblock.fs_fpg = roundup(sblock.fs_iblkno +
367		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
368		if (sblock.fs_fpg < minfpg)
369			sblock.fs_fpg = minfpg;
370		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
371		    INOPB(&sblock));
372		if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
373			break;
374		density -= sblock.fs_fsize;
375	}
376	if (density != origdensity)
377		printf("density reduced from %d to %d\n", origdensity, density);
378	/*
379	 * Start packing more blocks into the cylinder group until
380	 * it cannot grow any larger, the number of cylinder groups
381	 * drops below MINCYLGRPS, or we reach the size requested.
382	 * For UFS1 inodes per cylinder group are stored in an int16_t
383	 * so fs_ipg is limited to 2^15 - 1.
384	 */
385	for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
386		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
387		    INOPB(&sblock));
388		if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) {
389			if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS)
390				break;
391			if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
392				continue;
393			if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
394				break;
395		}
396		sblock.fs_fpg -= sblock.fs_frag;
397		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
398		    INOPB(&sblock));
399		break;
400	}
401	/*
402	 * Check to be sure that the last cylinder group has enough blocks
403	 * to be viable. If it is too small, reduce the number of blocks
404	 * per cylinder group which will have the effect of moving more
405	 * blocks into the last cylinder group.
406	 */
407	optimalfpg = sblock.fs_fpg;
408	for (;;) {
409		sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
410		lastminfpg = roundup(sblock.fs_iblkno +
411		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
412		if (sblock.fs_size < lastminfpg) {
413			printf("Filesystem size %jd < minimum size of %d\n",
414			    (intmax_t)sblock.fs_size, lastminfpg);
415			exit(28);
416		}
417		if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
418		    sblock.fs_size % sblock.fs_fpg == 0)
419			break;
420		sblock.fs_fpg -= sblock.fs_frag;
421		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
422		    INOPB(&sblock));
423	}
424	if (optimalfpg != sblock.fs_fpg)
425		printf("Reduced frags per cylinder group from %d to %d %s\n",
426		   optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
427	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
428	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
429	if (Oflag == 1) {
430		sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
431		sblock.fs_old_nsect = sblock.fs_old_spc;
432		sblock.fs_old_npsect = sblock.fs_old_spc;
433		sblock.fs_old_ncyl = sblock.fs_ncg;
434	}
435	/*
436	 * fill in remaining fields of the super block
437	 */
438	sblock.fs_csaddr = cgdmin(&sblock, 0);
439	sblock.fs_cssize =
440	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
441	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
442	if (fscs == NULL)
443		errx(31, "calloc failed");
444	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
445	if (sblock.fs_sbsize > SBLOCKSIZE)
446		sblock.fs_sbsize = SBLOCKSIZE;
447	sblock.fs_minfree = minfree;
448	if (metaspace > 0 && metaspace < sblock.fs_fpg / 2)
449		sblock.fs_metaspace = blknum(&sblock, metaspace);
450	else if (metaspace != -1)
451		/* reserve half of minfree for metadata blocks */
452		sblock.fs_metaspace = blknum(&sblock,
453		    (sblock.fs_fpg * minfree) / 200);
454	if (maxbpg == 0)
455		sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize);
456	else
457		sblock.fs_maxbpg = maxbpg;
458	sblock.fs_optim = opt;
459	sblock.fs_cgrotor = 0;
460	sblock.fs_pendingblocks = 0;
461	sblock.fs_pendinginodes = 0;
462	sblock.fs_fmod = 0;
463	sblock.fs_ronly = 0;
464	sblock.fs_state = 0;
465	sblock.fs_clean = 1;
466	sblock.fs_id[0] = (long)utime;
467	sblock.fs_id[1] = newfs_random();
468	sblock.fs_fsmnt[0] = '\0';
469	csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
470	sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
471	    sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
472	sblock.fs_cstotal.cs_nbfree =
473	    fragstoblks(&sblock, sblock.fs_dsize) -
474	    howmany(csfrags, sblock.fs_frag);
475	sblock.fs_cstotal.cs_nffree =
476	    fragnum(&sblock, sblock.fs_size) +
477	    (fragnum(&sblock, csfrags) > 0 ?
478	     sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
479	sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO;
480	sblock.fs_cstotal.cs_ndir = 0;
481	sblock.fs_dsize -= csfrags;
482	sblock.fs_time = utime;
483	if (Oflag == 1) {
484		sblock.fs_old_time = utime;
485		sblock.fs_old_dsize = sblock.fs_dsize;
486		sblock.fs_old_csaddr = sblock.fs_csaddr;
487		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
488		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
489		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
490		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
491	}
492
493	/*
494	 * Dump out summary information about file system.
495	 */
496#	define B2MBFACTOR (1 / (1024.0 * 1024.0))
497	printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
498	    fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
499	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
500	    sblock.fs_fsize);
501	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
502	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
503	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
504	if (sblock.fs_flags & FS_DOSOFTDEP)
505		printf("\twith soft updates\n");
506#	undef B2MBFACTOR
507
508	if (Eflag && !Nflag) {
509		printf("Erasing sectors [%jd...%jd]\n",
510		    sblock.fs_sblockloc / disk.d_bsize,
511		    fsbtodb(&sblock, sblock.fs_size) - 1);
512		berase(&disk, sblock.fs_sblockloc / disk.d_bsize,
513		    sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc);
514	}
515	/*
516	 * Wipe out old UFS1 superblock(s) if necessary.
517	 */
518	if (!Nflag && Oflag != 1) {
519		i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE);
520		if (i == -1)
521			err(1, "can't read old UFS1 superblock: %s", disk.d_error);
522
523		if (fsdummy.fs_magic == FS_UFS1_MAGIC) {
524			fsdummy.fs_magic = 0;
525			bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize,
526			    chdummy, SBLOCKSIZE);
527			for (cg = 0; cg < fsdummy.fs_ncg; cg++) {
528				if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > fssize)
529					break;
530				bwrite(&disk, part_ofs + fsbtodb(&fsdummy,
531				  cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE);
532			}
533		}
534	}
535	if (!Nflag)
536		do_sbwrite(&disk);
537	if (Xflag == 1) {
538		printf("** Exiting on Xflag 1\n");
539		exit(0);
540	}
541	if (Xflag == 2)
542		printf("** Leaving BAD MAGIC on Xflag 2\n");
543	else
544		sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC;
545
546	/*
547	 * Now build the cylinders group blocks and
548	 * then print out indices of cylinder groups.
549	 */
550	printf("super-block backups (for fsck_ffs -b #) at:\n");
551	i = 0;
552	width = charsperline();
553	/*
554	 * allocate space for superblock, cylinder group map, and
555	 * two sets of inode blocks.
556	 */
557	if (sblock.fs_bsize < SBLOCKSIZE)
558		iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
559	else
560		iobufsize = 4 * sblock.fs_bsize;
561	if ((iobuf = calloc(1, iobufsize)) == 0) {
562		printf("Cannot allocate I/O buffer\n");
563		exit(38);
564	}
565	/*
566	 * Make a copy of the superblock into the buffer that we will be
567	 * writing out in each cylinder group.
568	 */
569	bcopy((char *)&sblock, iobuf, SBLOCKSIZE);
570	for (cg = 0; cg < sblock.fs_ncg; cg++) {
571		initcg(cg, utime);
572		j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s",
573		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)),
574		    cg < (sblock.fs_ncg-1) ? "," : "");
575		if (j < 0)
576			tmpbuf[j = 0] = '\0';
577		if (i + j >= width) {
578			printf("\n");
579			i = 0;
580		}
581		i += j;
582		printf("%s", tmpbuf);
583		fflush(stdout);
584	}
585	printf("\n");
586	if (Nflag)
587		exit(0);
588	/*
589	 * Now construct the initial file system,
590	 * then write out the super-block.
591	 */
592	fsinit(utime);
593	if (Oflag == 1) {
594		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
595		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
596		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
597		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
598	}
599	if (Xflag == 3) {
600		printf("** Exiting on Xflag 3\n");
601		exit(0);
602	}
603	if (!Nflag) {
604		do_sbwrite(&disk);
605		/*
606		 * For UFS1 filesystems with a blocksize of 64K, the first
607		 * alternate superblock resides at the location used for
608		 * the default UFS2 superblock. As there is a valid
609		 * superblock at this location, the boot code will use
610		 * it as its first choice. Thus we have to ensure that
611		 * all of its statistcs on usage are correct.
612		 */
613		if (Oflag == 1 && sblock.fs_bsize == 65536)
614			wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)),
615			    sblock.fs_bsize, (char *)&sblock);
616	}
617	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
618		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
619			sblock.fs_cssize - i < sblock.fs_bsize ?
620			sblock.fs_cssize - i : sblock.fs_bsize,
621			((char *)fscs) + i);
622	/*
623	 * Read the last sector of the boot block, replace the last
624	 * 20 bytes with the recovery information, then write it back.
625	 * The recovery information only works for UFS2 filesystems.
626	 */
627	if (sblock.fs_magic == FS_UFS2_MAGIC) {
628		i = bread(&disk,
629		    part_ofs + (SBLOCK_UFS2 - sizeof(fsr)) / disk.d_bsize,
630		    (char *)&fsr, sizeof(fsr));
631		if (i == -1)
632			err(1, "can't read recovery area: %s", disk.d_error);
633		fsr.fsr_magic = sblock.fs_magic;
634		fsr.fsr_fpg = sblock.fs_fpg;
635		fsr.fsr_fsbtodb = sblock.fs_fsbtodb;
636		fsr.fsr_sblkno = sblock.fs_sblkno;
637		fsr.fsr_ncg = sblock.fs_ncg;
638		wtfs((SBLOCK_UFS2 - sizeof(fsr)) / disk.d_bsize, sizeof(fsr),
639		    (char *)&fsr);
640	}
641	/*
642	 * Update information about this partition in pack
643	 * label, to that it may be updated on disk.
644	 */
645	if (pp != NULL) {
646		pp->p_fstype = FS_BSDFFS;
647		pp->p_fsize = sblock.fs_fsize;
648		pp->p_frag = sblock.fs_frag;
649		pp->p_cpg = sblock.fs_fpg;
650	}
651}
652
653/*
654 * Initialize a cylinder group.
655 */
656void
657initcg(int cylno, time_t utime)
658{
659	long blkno, start;
660	uint i, j, d, dlower, dupper;
661	ufs2_daddr_t cbase, dmax;
662	struct ufs1_dinode *dp1;
663	struct ufs2_dinode *dp2;
664	struct csum *cs;
665
666	/*
667	 * Determine block bounds for cylinder group.
668	 * Allow space for super block summary information in first
669	 * cylinder group.
670	 */
671	cbase = cgbase(&sblock, cylno);
672	dmax = cbase + sblock.fs_fpg;
673	if (dmax > sblock.fs_size)
674		dmax = sblock.fs_size;
675	dlower = cgsblock(&sblock, cylno) - cbase;
676	dupper = cgdmin(&sblock, cylno) - cbase;
677	if (cylno == 0)
678		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
679	cs = &fscs[cylno];
680	memset(&acg, 0, sblock.fs_cgsize);
681	acg.cg_time = utime;
682	acg.cg_magic = CG_MAGIC;
683	acg.cg_cgx = cylno;
684	acg.cg_niblk = sblock.fs_ipg;
685	acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ?
686	    sblock.fs_ipg : 2 * INOPB(&sblock);
687	acg.cg_ndblk = dmax - cbase;
688	if (sblock.fs_contigsumsize > 0)
689		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
690	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
691	if (Oflag == 2) {
692		acg.cg_iusedoff = start;
693	} else {
694		acg.cg_old_ncyl = sblock.fs_old_cpg;
695		acg.cg_old_time = acg.cg_time;
696		acg.cg_time = 0;
697		acg.cg_old_niblk = acg.cg_niblk;
698		acg.cg_niblk = 0;
699		acg.cg_initediblk = 0;
700		acg.cg_old_btotoff = start;
701		acg.cg_old_boff = acg.cg_old_btotoff +
702		    sblock.fs_old_cpg * sizeof(int32_t);
703		acg.cg_iusedoff = acg.cg_old_boff +
704		    sblock.fs_old_cpg * sizeof(u_int16_t);
705	}
706	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
707	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
708	if (sblock.fs_contigsumsize > 0) {
709		acg.cg_clustersumoff =
710		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
711		acg.cg_clustersumoff -= sizeof(u_int32_t);
712		acg.cg_clusteroff = acg.cg_clustersumoff +
713		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
714		acg.cg_nextfreeoff = acg.cg_clusteroff +
715		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
716	}
717	if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
718		printf("Panic: cylinder group too big\n");
719		exit(37);
720	}
721	acg.cg_cs.cs_nifree += sblock.fs_ipg;
722	if (cylno == 0)
723		for (i = 0; i < (long)ROOTINO; i++) {
724			setbit(cg_inosused(&acg), i);
725			acg.cg_cs.cs_nifree--;
726		}
727	if (cylno > 0) {
728		/*
729		 * In cylno 0, beginning space is reserved
730		 * for boot and super blocks.
731		 */
732		for (d = 0; d < dlower; d += sblock.fs_frag) {
733			blkno = d / sblock.fs_frag;
734			setblock(&sblock, cg_blksfree(&acg), blkno);
735			if (sblock.fs_contigsumsize > 0)
736				setbit(cg_clustersfree(&acg), blkno);
737			acg.cg_cs.cs_nbfree++;
738		}
739	}
740	if ((i = dupper % sblock.fs_frag)) {
741		acg.cg_frsum[sblock.fs_frag - i]++;
742		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
743			setbit(cg_blksfree(&acg), dupper);
744			acg.cg_cs.cs_nffree++;
745		}
746	}
747	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
748	     d += sblock.fs_frag) {
749		blkno = d / sblock.fs_frag;
750		setblock(&sblock, cg_blksfree(&acg), blkno);
751		if (sblock.fs_contigsumsize > 0)
752			setbit(cg_clustersfree(&acg), blkno);
753		acg.cg_cs.cs_nbfree++;
754	}
755	if (d < acg.cg_ndblk) {
756		acg.cg_frsum[acg.cg_ndblk - d]++;
757		for (; d < acg.cg_ndblk; d++) {
758			setbit(cg_blksfree(&acg), d);
759			acg.cg_cs.cs_nffree++;
760		}
761	}
762	if (sblock.fs_contigsumsize > 0) {
763		int32_t *sump = cg_clustersum(&acg);
764		u_char *mapp = cg_clustersfree(&acg);
765		int map = *mapp++;
766		int bit = 1;
767		int run = 0;
768
769		for (i = 0; i < acg.cg_nclusterblks; i++) {
770			if ((map & bit) != 0)
771				run++;
772			else if (run != 0) {
773				if (run > sblock.fs_contigsumsize)
774					run = sblock.fs_contigsumsize;
775				sump[run]++;
776				run = 0;
777			}
778			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
779				bit <<= 1;
780			else {
781				map = *mapp++;
782				bit = 1;
783			}
784		}
785		if (run != 0) {
786			if (run > sblock.fs_contigsumsize)
787				run = sblock.fs_contigsumsize;
788			sump[run]++;
789		}
790	}
791	*cs = acg.cg_cs;
792	/*
793	 * Write out the duplicate super block, the cylinder group map
794	 * and two blocks worth of inodes in a single write.
795	 */
796	start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
797	bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize);
798	start += sblock.fs_bsize;
799	dp1 = (struct ufs1_dinode *)(&iobuf[start]);
800	dp2 = (struct ufs2_dinode *)(&iobuf[start]);
801	for (i = 0; i < acg.cg_initediblk; i++) {
802		if (sblock.fs_magic == FS_UFS1_MAGIC) {
803			dp1->di_gen = newfs_random();
804			dp1++;
805		} else {
806			dp2->di_gen = newfs_random();
807			dp2++;
808		}
809	}
810	wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf);
811	/*
812	 * For the old file system, we have to initialize all the inodes.
813	 */
814	if (Oflag == 1) {
815		for (i = 2 * sblock.fs_frag;
816		     i < sblock.fs_ipg / INOPF(&sblock);
817		     i += sblock.fs_frag) {
818			dp1 = (struct ufs1_dinode *)(&iobuf[start]);
819			for (j = 0; j < INOPB(&sblock); j++) {
820				dp1->di_gen = newfs_random();
821				dp1++;
822			}
823			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
824			    sblock.fs_bsize, &iobuf[start]);
825		}
826	}
827}
828
829/*
830 * initialize the file system
831 */
832#define ROOTLINKCNT 3
833
834static struct direct root_dir[] = {
835	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
836	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
837	{ ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" },
838};
839
840#define SNAPLINKCNT 2
841
842static struct direct snap_dir[] = {
843	{ ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." },
844	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
845};
846
847void
848fsinit(time_t utime)
849{
850	union dinode node;
851	struct group *grp;
852	gid_t gid;
853	int entries;
854
855	memset(&node, 0, sizeof node);
856	if ((grp = getgrnam("operator")) != NULL) {
857		gid = grp->gr_gid;
858	} else {
859		warnx("Cannot retrieve operator gid, using gid 0.");
860		gid = 0;
861	}
862	entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT;
863	if (sblock.fs_magic == FS_UFS1_MAGIC) {
864		/*
865		 * initialize the node
866		 */
867		node.dp1.di_atime = utime;
868		node.dp1.di_mtime = utime;
869		node.dp1.di_ctime = utime;
870		/*
871		 * create the root directory
872		 */
873		node.dp1.di_mode = IFDIR | UMASK;
874		node.dp1.di_nlink = entries;
875		node.dp1.di_size = makedir(root_dir, entries);
876		node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
877		node.dp1.di_blocks =
878		    btodb(fragroundup(&sblock, node.dp1.di_size));
879		wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize,
880		    iobuf);
881		iput(&node, ROOTINO);
882		if (!nflag) {
883			/*
884			 * create the .snap directory
885			 */
886			node.dp1.di_mode |= 020;
887			node.dp1.di_gid = gid;
888			node.dp1.di_nlink = SNAPLINKCNT;
889			node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT);
890				node.dp1.di_db[0] =
891				    alloc(sblock.fs_fsize, node.dp1.di_mode);
892			node.dp1.di_blocks =
893			    btodb(fragroundup(&sblock, node.dp1.di_size));
894				wtfs(fsbtodb(&sblock, node.dp1.di_db[0]),
895				    sblock.fs_fsize, iobuf);
896			iput(&node, ROOTINO + 1);
897		}
898	} else {
899		/*
900		 * initialize the node
901		 */
902		node.dp2.di_atime = utime;
903		node.dp2.di_mtime = utime;
904		node.dp2.di_ctime = utime;
905		node.dp2.di_birthtime = utime;
906		/*
907		 * create the root directory
908		 */
909		node.dp2.di_mode = IFDIR | UMASK;
910		node.dp2.di_nlink = entries;
911		node.dp2.di_size = makedir(root_dir, entries);
912		node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
913		node.dp2.di_blocks =
914		    btodb(fragroundup(&sblock, node.dp2.di_size));
915		wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize,
916		    iobuf);
917		iput(&node, ROOTINO);
918		if (!nflag) {
919			/*
920			 * create the .snap directory
921			 */
922			node.dp2.di_mode |= 020;
923			node.dp2.di_gid = gid;
924			node.dp2.di_nlink = SNAPLINKCNT;
925			node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT);
926				node.dp2.di_db[0] =
927				    alloc(sblock.fs_fsize, node.dp2.di_mode);
928			node.dp2.di_blocks =
929			    btodb(fragroundup(&sblock, node.dp2.di_size));
930				wtfs(fsbtodb(&sblock, node.dp2.di_db[0]),
931				    sblock.fs_fsize, iobuf);
932			iput(&node, ROOTINO + 1);
933		}
934	}
935}
936
937/*
938 * construct a set of directory entries in "iobuf".
939 * return size of directory.
940 */
941int
942makedir(struct direct *protodir, int entries)
943{
944	char *cp;
945	int i, spcleft;
946
947	spcleft = DIRBLKSIZ;
948	memset(iobuf, 0, DIRBLKSIZ);
949	for (cp = iobuf, i = 0; i < entries - 1; i++) {
950		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
951		memmove(cp, &protodir[i], protodir[i].d_reclen);
952		cp += protodir[i].d_reclen;
953		spcleft -= protodir[i].d_reclen;
954	}
955	protodir[i].d_reclen = spcleft;
956	memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
957	return (DIRBLKSIZ);
958}
959
960/*
961 * allocate a block or frag
962 */
963ufs2_daddr_t
964alloc(int size, int mode)
965{
966	int i, blkno, frag;
967	uint d;
968
969	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
970	    sblock.fs_cgsize);
971	if (acg.cg_magic != CG_MAGIC) {
972		printf("cg 0: bad magic number\n");
973		exit(38);
974	}
975	if (acg.cg_cs.cs_nbfree == 0) {
976		printf("first cylinder group ran out of space\n");
977		exit(39);
978	}
979	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
980		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
981			goto goth;
982	printf("internal error: can't find block in cyl 0\n");
983	exit(40);
984goth:
985	blkno = fragstoblks(&sblock, d);
986	clrblock(&sblock, cg_blksfree(&acg), blkno);
987	if (sblock.fs_contigsumsize > 0)
988		clrbit(cg_clustersfree(&acg), blkno);
989	acg.cg_cs.cs_nbfree--;
990	sblock.fs_cstotal.cs_nbfree--;
991	fscs[0].cs_nbfree--;
992	if (mode & IFDIR) {
993		acg.cg_cs.cs_ndir++;
994		sblock.fs_cstotal.cs_ndir++;
995		fscs[0].cs_ndir++;
996	}
997	if (size != sblock.fs_bsize) {
998		frag = howmany(size, sblock.fs_fsize);
999		fscs[0].cs_nffree += sblock.fs_frag - frag;
1000		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1001		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1002		acg.cg_frsum[sblock.fs_frag - frag]++;
1003		for (i = frag; i < sblock.fs_frag; i++)
1004			setbit(cg_blksfree(&acg), d + i);
1005	}
1006	/* XXX cgwrite(&disk, 0)??? */
1007	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1008	    (char *)&acg);
1009	return ((ufs2_daddr_t)d);
1010}
1011
1012/*
1013 * Allocate an inode on the disk
1014 */
1015void
1016iput(union dinode *ip, ino_t ino)
1017{
1018	ufs2_daddr_t d;
1019
1020	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
1021	    sblock.fs_cgsize);
1022	if (acg.cg_magic != CG_MAGIC) {
1023		printf("cg 0: bad magic number\n");
1024		exit(31);
1025	}
1026	acg.cg_cs.cs_nifree--;
1027	setbit(cg_inosused(&acg), ino);
1028	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1029	    (char *)&acg);
1030	sblock.fs_cstotal.cs_nifree--;
1031	fscs[0].cs_nifree--;
1032	if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) {
1033		printf("fsinit: inode value out of range (%ju).\n",
1034		    (uintmax_t)ino);
1035		exit(32);
1036	}
1037	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1038	bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize);
1039	if (sblock.fs_magic == FS_UFS1_MAGIC)
1040		((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1041		    ip->dp1;
1042	else
1043		((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1044		    ip->dp2;
1045	wtfs(d, sblock.fs_bsize, (char *)iobuf);
1046}
1047
1048/*
1049 * possibly write to disk
1050 */
1051static void
1052wtfs(ufs2_daddr_t bno, int size, char *bf)
1053{
1054	if (Nflag)
1055		return;
1056	if (bwrite(&disk, part_ofs + bno, bf, size) < 0)
1057		err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno);
1058}
1059
1060/*
1061 * check if a block is available
1062 */
1063static int
1064isblock(struct fs *fs, unsigned char *cp, int h)
1065{
1066	unsigned char mask;
1067
1068	switch (fs->fs_frag) {
1069	case 8:
1070		return (cp[h] == 0xff);
1071	case 4:
1072		mask = 0x0f << ((h & 0x1) << 2);
1073		return ((cp[h >> 1] & mask) == mask);
1074	case 2:
1075		mask = 0x03 << ((h & 0x3) << 1);
1076		return ((cp[h >> 2] & mask) == mask);
1077	case 1:
1078		mask = 0x01 << (h & 0x7);
1079		return ((cp[h >> 3] & mask) == mask);
1080	default:
1081		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1082		return (0);
1083	}
1084}
1085
1086/*
1087 * take a block out of the map
1088 */
1089static void
1090clrblock(struct fs *fs, unsigned char *cp, int h)
1091{
1092	switch ((fs)->fs_frag) {
1093	case 8:
1094		cp[h] = 0;
1095		return;
1096	case 4:
1097		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1098		return;
1099	case 2:
1100		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1101		return;
1102	case 1:
1103		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1104		return;
1105	default:
1106		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1107		return;
1108	}
1109}
1110
1111/*
1112 * put a block into the map
1113 */
1114static void
1115setblock(struct fs *fs, unsigned char *cp, int h)
1116{
1117	switch (fs->fs_frag) {
1118	case 8:
1119		cp[h] = 0xff;
1120		return;
1121	case 4:
1122		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1123		return;
1124	case 2:
1125		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1126		return;
1127	case 1:
1128		cp[h >> 3] |= (0x01 << (h & 0x7));
1129		return;
1130	default:
1131		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1132		return;
1133	}
1134}
1135
1136/*
1137 * Determine the number of characters in a
1138 * single line.
1139 */
1140
1141static int
1142charsperline(void)
1143{
1144	int columns;
1145	char *cp;
1146	struct winsize ws;
1147
1148	columns = 0;
1149	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1150		columns = ws.ws_col;
1151	if (columns == 0 && (cp = getenv("COLUMNS")))
1152		columns = atoi(cp);
1153	if (columns == 0)
1154		columns = 80;	/* last resort */
1155	return (columns);
1156}
1157
1158static int
1159ilog2(int val)
1160{
1161	u_int n;
1162
1163	for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
1164		if (1 << n == val)
1165			return (n);
1166	errx(1, "ilog2: %d is not a power of 2\n", val);
1167}
1168
1169/*
1170 * For the regression test, return predictable random values.
1171 * Otherwise use a true random number generator.
1172 */
1173static u_int32_t
1174newfs_random(void)
1175{
1176	static int nextnum = 1;
1177
1178	if (Rflag)
1179		return (nextnum++);
1180	return (arc4random());
1181}
1182