sfp.c revision 297640
1/*-
2 * Copyright (c) 2014 Alexander V. Chernikov. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#ifndef lint
27static const char rcsid[] =
28  "$FreeBSD: stable/10/sbin/ifconfig/sfp.c 297640 2016-04-07 07:12:14Z hselasky $";
29#endif /* not lint */
30
31#include <sys/types.h>
32#include <sys/param.h>
33#include <sys/ioctl.h>
34#include <sys/socket.h>
35
36#include <net/if.h>
37#include <net/sff8436.h>
38#include <net/sff8472.h>
39
40#include <math.h>
41#include <err.h>
42#include <errno.h>
43#include <fcntl.h>
44#include <stdio.h>
45#include <stdlib.h>
46#include <string.h>
47#include <unistd.h>
48
49#include "ifconfig.h"
50
51struct i2c_info {
52	int fd;			/* fd to issue SIOCGI2C */
53	int error;		/* Store first error */
54	int qsfp;		/* True if transceiver is QSFP */
55	int do_diag;		/* True if we need to request DDM */
56	struct ifreq *ifr;	/* Pointer to pre-filled ifreq */
57};
58
59static int read_i2c(struct i2c_info *ii, uint8_t addr, uint8_t off,
60    uint8_t len, uint8_t *buf);
61static void dump_i2c_data(struct i2c_info *ii, uint8_t addr, uint8_t off,
62    uint8_t len);
63
64struct _nv {
65	int v;
66	const char *n;
67};
68
69const char *find_value(struct _nv *x, int value);
70const char *find_zero_bit(struct _nv *x, int value, int sz);
71
72/* SFF-8472 Rev. 11.4 table 3.4: Connector values */
73static struct _nv conn[] = {
74	{ 0x00, "Unknown" },
75	{ 0x01, "SC" },
76	{ 0x02, "Fibre Channel Style 1 copper" },
77	{ 0x03, "Fibre Channel Style 2 copper" },
78	{ 0x04, "BNC/TNC" },
79	{ 0x05, "Fibre Channel coaxial" },
80	{ 0x06, "FiberJack" },
81	{ 0x07, "LC" },
82	{ 0x08, "MT-RJ" },
83	{ 0x09, "MU" },
84	{ 0x0A, "SG" },
85	{ 0x0B, "Optical pigtail" },
86	{ 0x0C, "MPO Parallel Optic" },
87	{ 0x20, "HSSDC II" },
88	{ 0x21, "Copper pigtail" },
89	{ 0x22, "RJ45" },
90	{ 0x23, "No separate connector" }, /* SFF-8436 */
91	{ 0, NULL }
92};
93
94/* SFF-8472 Rev. 11.4 table 3.5: Transceiver codes */
95/* 10G Ethernet/IB compliance codes, byte 3 */
96static struct _nv eth_10g[] = {
97	{ 0x80, "10G Base-ER" },
98	{ 0x40, "10G Base-LRM" },
99	{ 0x20, "10G Base-LR" },
100	{ 0x10, "10G Base-SR" },
101	{ 0x08, "1X SX" },
102	{ 0x04, "1X LX" },
103	{ 0x02, "1X Copper Active" },
104	{ 0x01, "1X Copper Passive" },
105	{ 0, NULL }
106};
107
108/* Ethernet compliance codes, byte 6 */
109static struct _nv eth_compat[] = {
110	{ 0x80, "BASE-PX" },
111	{ 0x40, "BASE-BX10" },
112	{ 0x20, "100BASE-FX" },
113	{ 0x10, "100BASE-LX/LX10" },
114	{ 0x08, "1000BASE-T" },
115	{ 0x04, "1000BASE-CX" },
116	{ 0x02, "1000BASE-LX" },
117	{ 0x01, "1000BASE-SX" },
118	{ 0, NULL }
119};
120
121/* FC link length, byte 7 */
122static struct _nv fc_len[] = {
123	{ 0x80, "very long distance" },
124	{ 0x40, "short distance" },
125	{ 0x20, "intermediate distance" },
126	{ 0x10, "long distance" },
127	{ 0x08, "medium distance" },
128	{ 0, NULL }
129};
130
131/* Channel/Cable technology, byte 7-8 */
132static struct _nv cab_tech[] = {
133	{ 0x0400, "Shortwave laser (SA)" },
134	{ 0x0200, "Longwave laser (LC)" },
135	{ 0x0100, "Electrical inter-enclosure (EL)" },
136	{ 0x80, "Electrical intra-enclosure (EL)" },
137	{ 0x40, "Shortwave laser (SN)" },
138	{ 0x20, "Shortwave laser (SL)" },
139	{ 0x10, "Longwave laser (LL)" },
140	{ 0x08, "Active Cable" },
141	{ 0x04, "Passive Cable" },
142	{ 0, NULL }
143};
144
145/* FC Transmission media, byte 9 */
146static struct _nv fc_media[] = {
147	{ 0x80, "Twin Axial Pair" },
148	{ 0x40, "Twisted Pair" },
149	{ 0x20, "Miniature Coax" },
150	{ 0x10, "Viao Coax" },
151	{ 0x08, "Miltimode, 62.5um" },
152	{ 0x04, "Multimode, 50um" },
153	{ 0x02, "" },
154	{ 0x01, "Single Mode" },
155	{ 0, NULL }
156};
157
158/* FC Speed, byte 10 */
159static struct _nv fc_speed[] = {
160	{ 0x80, "1200 MBytes/sec" },
161	{ 0x40, "800 MBytes/sec" },
162	{ 0x20, "1600 MBytes/sec" },
163	{ 0x10, "400 MBytes/sec" },
164	{ 0x08, "3200 MBytes/sec" },
165	{ 0x04, "200 MBytes/sec" },
166	{ 0x01, "100 MBytes/sec" },
167	{ 0, NULL }
168};
169
170/* SFF-8436 Rev. 4.8 table 33: Specification compliance  */
171
172/* 10/40G Ethernet compliance codes, byte 128 + 3 */
173static struct _nv eth_1040g[] = {
174	{ 0x80, "Extended" },
175	{ 0x40, "10GBASE-LRM" },
176	{ 0x20, "10GBASE-LR" },
177	{ 0x10, "10GBASE-SR" },
178	{ 0x08, "40GBASE-CR4" },
179	{ 0x04, "40GBASE-SR4" },
180	{ 0x02, "40GBASE-LR4" },
181	{ 0x01, "40G Active Cable" },
182	{ 0, NULL }
183};
184#define	SFF_8636_EXT_COMPLIANCE	0x80
185
186/* SFF-8024 Rev. 3.4 table 4.4: Extended Specification Compliance */
187static struct _nv eth_extended_comp[] = {
188	{ 0xFF, "Reserved" },
189	{ 0x1A, "2 lambda DWDM 100G" },
190	{ 0x19, "100G ACC or 25GAUI C2M ACC" },
191	{ 0x18, "100G AOC or 25GAUI C2M AOC" },
192	{ 0x17, "100G CLR4" },
193	{ 0x16, "10GBASE-T with SFI electrical interface" },
194	{ 0x15, "G959.1 profile P1L1-2D2" },
195	{ 0x14, "G959.1 profile P1S1-2D2" },
196	{ 0x13, "G959.1 profile P1I1-2D1" },
197	{ 0x12, "40G PSM4 Parallel SMF" },
198	{ 0x11, "4 x 10GBASE-SR" },
199	{ 0x10, "40GBASE-ER4" },
200	{ 0x0F, "Reserved" },
201	{ 0x0D, "25GBASE-CR CA-N" },
202	{ 0x0C, "25GBASE-CR CA-S" },
203	{ 0x0B, "100GBASE-CR4 or 25GBASE-CR CA-L" },
204	{ 0x0A, "Reserved" },
205	{ 0x09, "100G CWDM4 MSA without FEC" },
206	{ 0x08, "100G ACC (Active Copper Cable)" },
207	{ 0x07, "100G PSM4 Parallel SMF" },
208	{ 0x06, "100G CWDM4 MSA with FEC" },
209	{ 0x05, "100GBASE-SR10" },
210	{ 0x04, "100GBASE-ER4" },
211	{ 0x03, "100GBASE-LR4" },
212	{ 0x02, "100GBASE-SR4" },
213	{ 0x01, "100G AOC (Active Optical Cable) or 25GAUI C2M ACC" },
214	{ 0x00, "Unspecified" }
215};
216
217/* SFF-8636 Rev. 2.5 table 6.3: Revision compliance */
218static struct _nv rev_compl[] = {
219	{ 0x1, "SFF-8436 rev <=4.8" },
220	{ 0x2, "SFF-8436 rev <=4.8" },
221	{ 0x3, "SFF-8636 rev <=1.3" },
222	{ 0x4, "SFF-8636 rev <=1.4" },
223	{ 0x5, "SFF-8636 rev <=1.5" },
224	{ 0x6, "SFF-8636 rev <=2.0" },
225	{ 0x7, "SFF-8636 rev <=2.5" },
226	{ 0x0, "Unspecified" }
227};
228
229const char *
230find_value(struct _nv *x, int value)
231{
232	for (; x->n != NULL; x++)
233		if (x->v == value)
234			return (x->n);
235	return (NULL);
236}
237
238const char *
239find_zero_bit(struct _nv *x, int value, int sz)
240{
241	int v, m;
242	const char *s;
243
244	v = 1;
245	for (v = 1, m = 1 << (8 * sz); v < m; v *= 2) {
246		if ((value & v) == 0)
247			continue;
248		if ((s = find_value(x, value & v)) != NULL) {
249			value &= ~v;
250			return (s);
251		}
252	}
253
254	return (NULL);
255}
256
257static void
258convert_sff_identifier(char *buf, size_t size, uint8_t value)
259{
260	const char *x;
261
262	x = NULL;
263	if (value <= SFF_8024_ID_LAST)
264		x = sff_8024_id[value];
265	else {
266		if (value > 0x80)
267			x = "Vendor specific";
268		else
269			x = "Reserved";
270	}
271
272	snprintf(buf, size, "%s", x);
273}
274
275static void
276convert_sff_connector(char *buf, size_t size, uint8_t value)
277{
278	const char *x;
279
280	if ((x = find_value(conn, value)) == NULL) {
281		if (value >= 0x0D && value <= 0x1F)
282			x = "Unallocated";
283		else if (value >= 0x24 && value <= 0x7F)
284			x = "Unallocated";
285		else
286			x = "Vendor specific";
287	}
288
289	snprintf(buf, size, "%s", x);
290}
291
292static void
293convert_sff_rev_compliance(char *buf, size_t size, uint8_t value)
294{
295	const char *x;
296
297	if (value > 0x07)
298		x = "Unallocated";
299	else
300		x = find_value(rev_compl, value);
301
302	snprintf(buf, size, "%s", x);
303}
304
305static void
306get_sfp_identifier(struct i2c_info *ii, char *buf, size_t size)
307{
308	uint8_t data;
309
310	read_i2c(ii, SFF_8472_BASE, SFF_8472_ID, 1, &data);
311	convert_sff_identifier(buf, size, data);
312}
313
314static void
315get_sfp_connector(struct i2c_info *ii, char *buf, size_t size)
316{
317	uint8_t data;
318
319	read_i2c(ii, SFF_8472_BASE, SFF_8472_CONNECTOR, 1, &data);
320	convert_sff_connector(buf, size, data);
321}
322
323static void
324get_qsfp_identifier(struct i2c_info *ii, char *buf, size_t size)
325{
326	uint8_t data;
327
328	read_i2c(ii, SFF_8436_BASE, SFF_8436_ID, 1, &data);
329	convert_sff_identifier(buf, size, data);
330}
331
332static void
333get_qsfp_connector(struct i2c_info *ii, char *buf, size_t size)
334{
335	uint8_t data;
336
337	read_i2c(ii, SFF_8436_BASE, SFF_8436_CONNECTOR, 1, &data);
338	convert_sff_connector(buf, size, data);
339}
340
341static void
342printf_sfp_transceiver_descr(struct i2c_info *ii, char *buf, size_t size)
343{
344	char xbuf[12];
345	const char *tech_class, *tech_len, *tech_tech, *tech_media, *tech_speed;
346
347	tech_class = NULL;
348	tech_len = NULL;
349	tech_tech = NULL;
350	tech_media = NULL;
351	tech_speed = NULL;
352
353	/* Read bytes 3-10 at once */
354	read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 8, &xbuf[3]);
355
356	/* Check 10G ethernet first */
357	tech_class = find_zero_bit(eth_10g, xbuf[3], 1);
358	if (tech_class == NULL) {
359		/* No match. Try 1G */
360		tech_class = find_zero_bit(eth_compat, xbuf[6], 1);
361	}
362
363	tech_len = find_zero_bit(fc_len, xbuf[7], 1);
364	tech_tech = find_zero_bit(cab_tech, xbuf[7] << 8 | xbuf[8], 2);
365	tech_media = find_zero_bit(fc_media, xbuf[9], 1);
366	tech_speed = find_zero_bit(fc_speed, xbuf[10], 1);
367
368	printf("Class: %s\n", tech_class);
369	printf("Length: %s\n", tech_len);
370	printf("Tech: %s\n", tech_tech);
371	printf("Media: %s\n", tech_media);
372	printf("Speed: %s\n", tech_speed);
373}
374
375static void
376get_sfp_transceiver_class(struct i2c_info *ii, char *buf, size_t size)
377{
378	const char *tech_class;
379	uint8_t code;
380
381	unsigned char qbuf[8];
382	read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 8, (uint8_t *)qbuf);
383
384	/* Check 10G Ethernet/IB first */
385	read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 1, &code);
386	tech_class = find_zero_bit(eth_10g, code, 1);
387	if (tech_class == NULL) {
388		/* No match. Try Ethernet 1G */
389		read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START + 3,
390		    1, (caddr_t)&code);
391		tech_class = find_zero_bit(eth_compat, code, 1);
392	}
393
394	if (tech_class == NULL)
395		tech_class = "Unknown";
396
397	snprintf(buf, size, "%s", tech_class);
398}
399
400static void
401get_qsfp_transceiver_class(struct i2c_info *ii, char *buf, size_t size)
402{
403	const char *tech_class;
404	uint8_t code;
405
406	read_i2c(ii, SFF_8436_BASE, SFF_8436_CODE_E1040100G, 1, &code);
407
408	/* Check for extended specification compliance */
409	if (code & SFF_8636_EXT_COMPLIANCE) {
410		read_i2c(ii, SFF_8436_BASE, SFF_8436_OPTIONS_START, 1, &code);
411		tech_class = find_value(eth_extended_comp, code);
412	} else
413		/* Check 10/40G Ethernet class only */
414		tech_class = find_zero_bit(eth_1040g, code, 1);
415
416	if (tech_class == NULL)
417		tech_class = "Unknown";
418
419	snprintf(buf, size, "%s", tech_class);
420}
421
422/*
423 * Print SFF-8472/SFF-8436 string to supplied buffer.
424 * All (vendor-specific) strings are padded right with '0x20'.
425 */
426static void
427convert_sff_name(char *buf, size_t size, char *xbuf)
428{
429	char *p;
430
431	for (p = &xbuf[16]; *(p - 1) == 0x20; p--)
432		;
433	*p = '\0';
434	snprintf(buf, size, "%s", xbuf);
435}
436
437static void
438convert_sff_date(char *buf, size_t size, char *xbuf)
439{
440
441	snprintf(buf, size, "20%c%c-%c%c-%c%c", xbuf[0], xbuf[1],
442	    xbuf[2], xbuf[3], xbuf[4], xbuf[5]);
443}
444
445static void
446get_sfp_vendor_name(struct i2c_info *ii, char *buf, size_t size)
447{
448	char xbuf[17];
449
450	memset(xbuf, 0, sizeof(xbuf));
451	read_i2c(ii, SFF_8472_BASE, SFF_8472_VENDOR_START, 16, (uint8_t *)xbuf);
452	convert_sff_name(buf, size, xbuf);
453}
454
455static void
456get_sfp_vendor_pn(struct i2c_info *ii, char *buf, size_t size)
457{
458	char xbuf[17];
459
460	memset(xbuf, 0, sizeof(xbuf));
461	read_i2c(ii, SFF_8472_BASE, SFF_8472_PN_START, 16, (uint8_t *)xbuf);
462	convert_sff_name(buf, size, xbuf);
463}
464
465static void
466get_sfp_vendor_sn(struct i2c_info *ii, char *buf, size_t size)
467{
468	char xbuf[17];
469
470	memset(xbuf, 0, sizeof(xbuf));
471	read_i2c(ii, SFF_8472_BASE, SFF_8472_SN_START, 16, (uint8_t *)xbuf);
472	convert_sff_name(buf, size, xbuf);
473}
474
475static void
476get_sfp_vendor_date(struct i2c_info *ii, char *buf, size_t size)
477{
478	char xbuf[6];
479
480	memset(xbuf, 0, sizeof(xbuf));
481	/* Date code, see Table 3.8 for description */
482	read_i2c(ii, SFF_8472_BASE, SFF_8472_DATE_START, 6, (uint8_t *)xbuf);
483	convert_sff_date(buf, size, xbuf);
484}
485
486static void
487get_qsfp_vendor_name(struct i2c_info *ii, char *buf, size_t size)
488{
489	char xbuf[17];
490
491	memset(xbuf, 0, sizeof(xbuf));
492	read_i2c(ii, SFF_8436_BASE, SFF_8436_VENDOR_START, 16, (uint8_t *)xbuf);
493	convert_sff_name(buf, size, xbuf);
494}
495
496static void
497get_qsfp_vendor_pn(struct i2c_info *ii, char *buf, size_t size)
498{
499	char xbuf[17];
500
501	memset(xbuf, 0, sizeof(xbuf));
502	read_i2c(ii, SFF_8436_BASE, SFF_8436_PN_START, 16, (uint8_t *)xbuf);
503	convert_sff_name(buf, size, xbuf);
504}
505
506static void
507get_qsfp_vendor_sn(struct i2c_info *ii, char *buf, size_t size)
508{
509	char xbuf[17];
510
511	memset(xbuf, 0, sizeof(xbuf));
512	read_i2c(ii, SFF_8436_BASE, SFF_8436_SN_START, 16, (uint8_t *)xbuf);
513	convert_sff_name(buf, size, xbuf);
514}
515
516static void
517get_qsfp_vendor_date(struct i2c_info *ii, char *buf, size_t size)
518{
519	char xbuf[6];
520
521	memset(xbuf, 0, sizeof(xbuf));
522	read_i2c(ii, SFF_8436_BASE, SFF_8436_DATE_START, 6, (uint8_t *)xbuf);
523	convert_sff_date(buf, size, xbuf);
524}
525
526static void
527print_sfp_vendor(struct i2c_info *ii, char *buf, size_t size)
528{
529	char xbuf[80];
530
531	memset(xbuf, 0, sizeof(xbuf));
532	if (ii->qsfp != 0) {
533		get_qsfp_vendor_name(ii, xbuf, 20);
534		get_qsfp_vendor_pn(ii, &xbuf[20], 20);
535		get_qsfp_vendor_sn(ii, &xbuf[40], 20);
536		get_qsfp_vendor_date(ii, &xbuf[60], 20);
537	} else {
538		get_sfp_vendor_name(ii, xbuf, 20);
539		get_sfp_vendor_pn(ii, &xbuf[20], 20);
540		get_sfp_vendor_sn(ii, &xbuf[40], 20);
541		get_sfp_vendor_date(ii, &xbuf[60], 20);
542	}
543
544	snprintf(buf, size, "vendor: %s PN: %s SN: %s DATE: %s",
545	    xbuf, &xbuf[20],  &xbuf[40], &xbuf[60]);
546}
547
548/*
549 * Converts internal templerature (SFF-8472, SFF-8436)
550 * 16-bit unsigned value to human-readable representation:
551 *
552 * Internally measured Module temperature are represented
553 * as a 16-bit signed twos complement value in increments of
554 * 1/256 degrees Celsius, yielding a total range of ���128C to +128C
555 * that is considered valid between ���40 and +125C.
556 *
557 */
558static void
559convert_sff_temp(char *buf, size_t size, uint8_t *xbuf)
560{
561	double d;
562
563	d = (double)xbuf[0];
564	d += (double)xbuf[1] / 256;
565
566	snprintf(buf, size, "%.2f C", d);
567}
568
569/*
570 * Retrieves supplied voltage (SFF-8472, SFF-8436).
571 * 16-bit usigned value, treated as range 0..+6.55 Volts
572 */
573static void
574convert_sff_voltage(char *buf, size_t size, uint8_t *xbuf)
575{
576	double d;
577
578	d = (double)((xbuf[0] << 8) | xbuf[1]);
579	snprintf(buf, size, "%.2f Volts", d / 10000);
580}
581
582/*
583 * Converts value in @xbuf to both milliwats and dBm
584 * human representation.
585 */
586static void
587convert_sff_power(struct i2c_info *ii, char *buf, size_t size, uint8_t *xbuf)
588{
589	uint16_t mW;
590	double dbm;
591
592	mW = (xbuf[0] << 8) + xbuf[1];
593
594	/* Convert mw to dbm */
595	dbm = 10.0 * log10(1.0 * mW / 10000);
596
597	/*
598	 * Assume internally-calibrated data.
599	 * This is always true for SFF-8346, and explicitly
600	 * checked for SFF-8472.
601	 */
602
603	/* Table 3.9, bit 5 is set, internally calibrated */
604	snprintf(buf, size, "%d.%02d mW (%.2f dBm)",
605    	    mW / 10000, (mW % 10000) / 100, dbm);
606}
607
608static void
609get_sfp_temp(struct i2c_info *ii, char *buf, size_t size)
610{
611	uint8_t xbuf[2];
612
613	memset(xbuf, 0, sizeof(xbuf));
614	read_i2c(ii, SFF_8472_DIAG, SFF_8472_TEMP, 2, xbuf);
615	convert_sff_temp(buf, size, xbuf);
616}
617
618static void
619get_sfp_voltage(struct i2c_info *ii, char *buf, size_t size)
620{
621	uint8_t xbuf[2];
622
623	memset(xbuf, 0, sizeof(xbuf));
624	read_i2c(ii, SFF_8472_DIAG, SFF_8472_VCC, 2, xbuf);
625	convert_sff_voltage(buf, size, xbuf);
626}
627
628static int
629get_qsfp_temp(struct i2c_info *ii, char *buf, size_t size)
630{
631	uint8_t xbuf[2];
632
633	memset(xbuf, 0, sizeof(xbuf));
634	read_i2c(ii, SFF_8436_BASE, SFF_8436_TEMP, 2, xbuf);
635	if ((xbuf[0] == 0xFF && xbuf[1] == 0xFF) || (xbuf[0] == 0 && xbuf[1] == 0))
636		return (-1);
637	convert_sff_temp(buf, size, xbuf);
638	return (0);
639}
640
641static void
642get_qsfp_voltage(struct i2c_info *ii, char *buf, size_t size)
643{
644	uint8_t xbuf[2];
645
646	memset(xbuf, 0, sizeof(xbuf));
647	read_i2c(ii, SFF_8436_BASE, SFF_8436_VCC, 2, xbuf);
648	convert_sff_voltage(buf, size, xbuf);
649}
650
651static void
652get_sfp_rx_power(struct i2c_info *ii, char *buf, size_t size)
653{
654	uint8_t xbuf[2];
655
656	memset(xbuf, 0, sizeof(xbuf));
657	read_i2c(ii, SFF_8472_DIAG, SFF_8472_RX_POWER, 2, xbuf);
658	convert_sff_power(ii, buf, size, xbuf);
659}
660
661static void
662get_sfp_tx_power(struct i2c_info *ii, char *buf, size_t size)
663{
664	uint8_t xbuf[2];
665
666	memset(xbuf, 0, sizeof(xbuf));
667	read_i2c(ii, SFF_8472_DIAG, SFF_8472_TX_POWER, 2, xbuf);
668	convert_sff_power(ii, buf, size, xbuf);
669}
670
671static void
672get_qsfp_rx_power(struct i2c_info *ii, char *buf, size_t size, int chan)
673{
674	uint8_t xbuf[2];
675
676	memset(xbuf, 0, sizeof(xbuf));
677	read_i2c(ii, SFF_8436_BASE, SFF_8436_RX_CH1_MSB + (chan-1)*2, 2, xbuf);
678	convert_sff_power(ii, buf, size, xbuf);
679}
680
681static void
682get_qsfp_tx_power(struct i2c_info *ii, char *buf, size_t size, int chan)
683{
684	uint8_t xbuf[2];
685
686	memset(xbuf, 0, sizeof(xbuf));
687	read_i2c(ii, SFF_8436_BASE, SFF_8436_TX_CH1_MSB + (chan-1)*2, 2, xbuf);
688	convert_sff_power(ii, buf, size, xbuf);
689}
690
691static void
692get_qsfp_rev_compliance(struct i2c_info *ii, char *buf, size_t size)
693{
694	uint8_t xbuf;
695
696	xbuf = 0;
697	read_i2c(ii, SFF_8436_BASE, SFF_8436_STATUS, 1, &xbuf);
698	convert_sff_rev_compliance(buf, size, xbuf);
699}
700
701static uint32_t
702get_qsfp_br(struct i2c_info *ii)
703{
704	uint8_t xbuf;
705	uint32_t rate;
706
707	xbuf = 0;
708	read_i2c(ii, SFF_8436_BASE, SFF_8436_BITRATE, 1, &xbuf);
709	rate = xbuf * 100;
710	if (xbuf == 0xFF) {
711		read_i2c(ii, SFF_8436_BASE, SFF_8636_BITRATE, 1, &xbuf);
712		rate = xbuf * 250;
713	}
714
715	return (rate);
716}
717
718/*
719 * Reads i2c data from opened kernel socket.
720 */
721static int
722read_i2c(struct i2c_info *ii, uint8_t addr, uint8_t off, uint8_t len,
723    uint8_t *buf)
724{
725	struct ifi2creq req;
726	int i, l;
727
728	if (ii->error != 0)
729		return (ii->error);
730
731	ii->ifr->ifr_data = (caddr_t)&req;
732
733	i = 0;
734	l = 0;
735	memset(&req, 0, sizeof(req));
736	req.dev_addr = addr;
737	req.offset = off;
738	req.len = len;
739
740	while (len > 0) {
741		l = (len > sizeof(req.data)) ? sizeof(req.data) : len;
742		req.len = l;
743		if (ioctl(ii->fd, SIOCGI2C, ii->ifr) != 0) {
744			ii->error = errno;
745			return (errno);
746		}
747
748		memcpy(&buf[i], req.data, l);
749		len -= l;
750		i += l;
751		req.offset += l;
752	}
753
754	return (0);
755}
756
757static void
758dump_i2c_data(struct i2c_info *ii, uint8_t addr, uint8_t off, uint8_t len)
759{
760	unsigned char buf[16];
761	int i, read;
762
763	while (len > 0) {
764		memset(buf, 0, sizeof(buf));
765		read = (len > sizeof(buf)) ? sizeof(buf) : len;
766		read_i2c(ii, addr, off, read, buf);
767		if (ii->error != 0) {
768			fprintf(stderr, "Error reading i2c info\n");
769			return;
770		}
771
772		printf("\t");
773		for (i = 0; i < read; i++)
774			printf("%02X ", buf[i]);
775		printf("\n");
776		len -= read;
777		off += read;
778	}
779}
780
781static void
782print_qsfp_status(struct i2c_info *ii, int verbose)
783{
784	char buf[80], buf2[40], buf3[40];
785	uint32_t bitrate;
786	int i;
787
788	ii->qsfp = 1;
789
790	/* Transceiver type */
791	get_qsfp_identifier(ii, buf, sizeof(buf));
792	get_qsfp_transceiver_class(ii, buf2, sizeof(buf2));
793	get_qsfp_connector(ii, buf3, sizeof(buf3));
794	if (ii->error == 0)
795		printf("\tplugged: %s %s (%s)\n", buf, buf2, buf3);
796	print_sfp_vendor(ii, buf, sizeof(buf));
797	if (ii->error == 0)
798		printf("\t%s\n", buf);
799
800	if (verbose > 1) {
801		get_qsfp_rev_compliance(ii, buf, sizeof(buf));
802		if (ii->error == 0)
803			printf("\tcompliance level: %s\n", buf);
804
805		bitrate = get_qsfp_br(ii);
806		if (ii->error == 0 && bitrate > 0)
807			printf("\tnominal bitrate: %u Mbps\n", bitrate);
808	}
809
810	/*
811	 * The standards in this area are not clear when the
812	 * additional measurements are present or not. Use a valid
813	 * temperature reading as an indicator for the presence of
814	 * voltage and TX/RX power measurements.
815	 */
816	if (get_qsfp_temp(ii, buf, sizeof(buf)) == 0) {
817		get_qsfp_voltage(ii, buf2, sizeof(buf2));
818		printf("\tmodule temperature: %s voltage: %s\n", buf, buf2);
819		for (i = 1; i <= 4; i++) {
820			get_qsfp_rx_power(ii, buf, sizeof(buf), i);
821			get_qsfp_tx_power(ii, buf2, sizeof(buf2), i);
822			printf("\tlane %d: RX: %s TX: %s\n", i, buf, buf2);
823		}
824	}
825
826	if (verbose > 2) {
827		printf("\n\tSFF8436 DUMP (0xA0 128..255 range):\n");
828		dump_i2c_data(ii, SFF_8436_BASE, 128, 128);
829		printf("\n\tSFF8436 DUMP (0xA0 0..81 range):\n");
830		dump_i2c_data(ii, SFF_8436_BASE, 0, 82);
831	}
832}
833
834static void
835print_sfp_status(struct i2c_info *ii, int verbose)
836{
837	char buf[80], buf2[40], buf3[40];
838	uint8_t diag_type, flags;
839
840	/* Read diagnostic monitoring type */
841	read_i2c(ii, SFF_8472_BASE, SFF_8472_DIAG_TYPE, 1, (caddr_t)&diag_type);
842	if (ii->error != 0)
843		return;
844
845	/*
846	 * Read monitoring data IFF it is supplied AND is
847	 * internally calibrated
848	 */
849	flags = SFF_8472_DDM_DONE | SFF_8472_DDM_INTERNAL;
850	if ((diag_type & flags) == flags)
851		ii->do_diag = 1;
852
853	/* Transceiver type */
854	get_sfp_identifier(ii, buf, sizeof(buf));
855	get_sfp_transceiver_class(ii, buf2, sizeof(buf2));
856	get_sfp_connector(ii, buf3, sizeof(buf3));
857	if (ii->error == 0)
858		printf("\tplugged: %s %s (%s)\n", buf, buf2, buf3);
859	print_sfp_vendor(ii, buf, sizeof(buf));
860	if (ii->error == 0)
861		printf("\t%s\n", buf);
862
863	if (verbose > 5)
864		printf_sfp_transceiver_descr(ii, buf, sizeof(buf));
865	/*
866	 * Request current measurements iff they are provided:
867	 */
868	if (ii->do_diag != 0) {
869		get_sfp_temp(ii, buf, sizeof(buf));
870		get_sfp_voltage(ii, buf2, sizeof(buf2));
871		printf("\tmodule temperature: %s Voltage: %s\n", buf, buf2);
872		get_sfp_rx_power(ii, buf, sizeof(buf));
873		get_sfp_tx_power(ii, buf2, sizeof(buf2));
874		printf("\tRX: %s TX: %s\n", buf, buf2);
875	}
876
877	if (verbose > 2) {
878		printf("\n\tSFF8472 DUMP (0xA0 0..127 range):\n");
879		dump_i2c_data(ii, SFF_8472_BASE, 0, 128);
880	}
881}
882
883void
884sfp_status(int s, struct ifreq *ifr, int verbose)
885{
886	struct i2c_info ii;
887	uint8_t id_byte;
888
889	/* Prepare necessary into pass to i2c reader */
890	memset(&ii, 0, sizeof(ii));
891	ii.fd = s;
892	ii.ifr = ifr;
893
894	/*
895	 * Try to read byte 0 from i2c:
896	 * Both SFF-8472 and SFF-8436 use it as
897	 * 'identification byte'.
898	 * Stop reading status on zero as value -
899	 * this might happen in case of empty transceiver slot.
900	 */
901	id_byte = 0;
902	read_i2c(&ii, SFF_8472_BASE, SFF_8472_ID, 1, (caddr_t)&id_byte);
903	if (ii.error != 0 || id_byte == 0)
904		return;
905
906	switch (id_byte) {
907	case SFF_8024_ID_QSFP:
908	case SFF_8024_ID_QSFPPLUS:
909	case SFF_8024_ID_QSFP28:
910		print_qsfp_status(&ii, verbose);
911		break;
912	default:
913		print_sfp_status(&ii, verbose);
914	};
915}
916
917