rtld.c revision 296939
1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5 * Copyright 2012 John Marino <draco@marino.st>.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * $FreeBSD: stable/10/libexec/rtld-elf/rtld.c 296939 2016-03-16 15:34:16Z kib $
29 */
30
31/*
32 * Dynamic linker for ELF.
33 *
34 * John Polstra <jdp@polstra.com>.
35 */
36
37#include <sys/param.h>
38#include <sys/mount.h>
39#include <sys/mman.h>
40#include <sys/stat.h>
41#include <sys/sysctl.h>
42#include <sys/uio.h>
43#include <sys/utsname.h>
44#include <sys/ktrace.h>
45
46#include <dlfcn.h>
47#include <err.h>
48#include <errno.h>
49#include <fcntl.h>
50#include <stdarg.h>
51#include <stdio.h>
52#include <stdlib.h>
53#include <string.h>
54#include <unistd.h>
55
56#include "debug.h"
57#include "rtld.h"
58#include "libmap.h"
59#include "rtld_tls.h"
60#include "rtld_printf.h"
61#include "notes.h"
62
63#ifndef COMPAT_32BIT
64#define PATH_RTLD	"/libexec/ld-elf.so.1"
65#else
66#define PATH_RTLD	"/libexec/ld-elf32.so.1"
67#endif
68
69/* Types. */
70typedef void (*func_ptr_type)();
71typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
72
73/*
74 * Function declarations.
75 */
76static const char *basename(const char *);
77static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
78    const Elf_Dyn **, const Elf_Dyn **);
79static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
80    const Elf_Dyn *);
81static void digest_dynamic(Obj_Entry *, int);
82static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
83static Obj_Entry *dlcheck(void *);
84static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
85    int lo_flags, int mode, RtldLockState *lockstate);
86static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
87static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
88static bool donelist_check(DoneList *, const Obj_Entry *);
89static void errmsg_restore(char *);
90static char *errmsg_save(void);
91static void *fill_search_info(const char *, size_t, void *);
92static char *find_library(const char *, const Obj_Entry *);
93static const char *gethints(bool);
94static void init_dag(Obj_Entry *);
95static void init_pagesizes(Elf_Auxinfo **aux_info);
96static void init_rtld(caddr_t, Elf_Auxinfo **);
97static void initlist_add_neededs(Needed_Entry *, Objlist *);
98static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
99static void linkmap_add(Obj_Entry *);
100static void linkmap_delete(Obj_Entry *);
101static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
102static void unload_filtees(Obj_Entry *);
103static int load_needed_objects(Obj_Entry *, int);
104static int load_preload_objects(void);
105static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
106static void map_stacks_exec(RtldLockState *);
107static Obj_Entry *obj_from_addr(const void *);
108static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
109static void objlist_call_init(Objlist *, RtldLockState *);
110static void objlist_clear(Objlist *);
111static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
112static void objlist_init(Objlist *);
113static void objlist_push_head(Objlist *, Obj_Entry *);
114static void objlist_push_tail(Objlist *, Obj_Entry *);
115static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
116static void objlist_remove(Objlist *, Obj_Entry *);
117static void *path_enumerate(const char *, path_enum_proc, void *);
118static int relocate_object_dag(Obj_Entry *root, bool bind_now,
119    Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
120static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
121    int flags, RtldLockState *lockstate);
122static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
123    RtldLockState *);
124static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
125    int flags, RtldLockState *lockstate);
126static int rtld_dirname(const char *, char *);
127static int rtld_dirname_abs(const char *, char *);
128static void *rtld_dlopen(const char *name, int fd, int mode);
129static void rtld_exit(void);
130static char *search_library_path(const char *, const char *);
131static const void **get_program_var_addr(const char *, RtldLockState *);
132static void set_program_var(const char *, const void *);
133static int symlook_default(SymLook *, const Obj_Entry *refobj);
134static int symlook_global(SymLook *, DoneList *);
135static void symlook_init_from_req(SymLook *, const SymLook *);
136static int symlook_list(SymLook *, const Objlist *, DoneList *);
137static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
138static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
139static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
140static void trace_loaded_objects(Obj_Entry *);
141static void unlink_object(Obj_Entry *);
142static void unload_object(Obj_Entry *);
143static void unref_dag(Obj_Entry *);
144static void ref_dag(Obj_Entry *);
145static char *origin_subst_one(Obj_Entry *, char *, const char *,
146    const char *, bool);
147static char *origin_subst(Obj_Entry *, char *);
148static bool obj_resolve_origin(Obj_Entry *obj);
149static void preinit_main(void);
150static int  rtld_verify_versions(const Objlist *);
151static int  rtld_verify_object_versions(Obj_Entry *);
152static void object_add_name(Obj_Entry *, const char *);
153static int  object_match_name(const Obj_Entry *, const char *);
154static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
155static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
156    struct dl_phdr_info *phdr_info);
157static uint32_t gnu_hash(const char *);
158static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
159    const unsigned long);
160
161void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
162void _r_debug_postinit(struct link_map *) __noinline __exported;
163
164/*
165 * Data declarations.
166 */
167static char *error_message;	/* Message for dlerror(), or NULL */
168struct r_debug r_debug __exported;	/* for GDB; */
169static bool libmap_disable;	/* Disable libmap */
170static bool ld_loadfltr;	/* Immediate filters processing */
171static char *libmap_override;	/* Maps to use in addition to libmap.conf */
172static bool trust;		/* False for setuid and setgid programs */
173static bool dangerous_ld_env;	/* True if environment variables have been
174				   used to affect the libraries loaded */
175static char *ld_bind_now;	/* Environment variable for immediate binding */
176static char *ld_debug;		/* Environment variable for debugging */
177static char *ld_library_path;	/* Environment variable for search path */
178static char *ld_preload;	/* Environment variable for libraries to
179				   load first */
180static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
181static char *ld_tracing;	/* Called from ldd to print libs */
182static char *ld_utrace;		/* Use utrace() to log events. */
183static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
184static Obj_Entry *obj_main;	/* The main program shared object */
185static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
186static unsigned int obj_count;	/* Number of objects in obj_list */
187static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
188
189static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
190  STAILQ_HEAD_INITIALIZER(list_global);
191static Objlist list_main =	/* Objects loaded at program startup */
192  STAILQ_HEAD_INITIALIZER(list_main);
193static Objlist list_fini =	/* Objects needing fini() calls */
194  STAILQ_HEAD_INITIALIZER(list_fini);
195
196Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
197
198#define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
199
200extern Elf_Dyn _DYNAMIC;
201#pragma weak _DYNAMIC
202#ifndef RTLD_IS_DYNAMIC
203#define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
204#endif
205
206int dlclose(void *) __exported;
207char *dlerror(void) __exported;
208void *dlopen(const char *, int) __exported;
209void *fdlopen(int, int) __exported;
210void *dlsym(void *, const char *) __exported;
211dlfunc_t dlfunc(void *, const char *) __exported;
212void *dlvsym(void *, const char *, const char *) __exported;
213int dladdr(const void *, Dl_info *) __exported;
214void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
215    void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
216int dlinfo(void *, int , void *) __exported;
217int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
218int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
219int _rtld_get_stack_prot(void) __exported;
220int _rtld_is_dlopened(void *) __exported;
221void _rtld_error(const char *, ...) __exported;
222
223int npagesizes, osreldate;
224size_t *pagesizes;
225
226long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
227
228static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
229static int max_stack_flags;
230
231/*
232 * Global declarations normally provided by crt1.  The dynamic linker is
233 * not built with crt1, so we have to provide them ourselves.
234 */
235char *__progname;
236char **environ;
237
238/*
239 * Used to pass argc, argv to init functions.
240 */
241int main_argc;
242char **main_argv;
243
244/*
245 * Globals to control TLS allocation.
246 */
247size_t tls_last_offset;		/* Static TLS offset of last module */
248size_t tls_last_size;		/* Static TLS size of last module */
249size_t tls_static_space;	/* Static TLS space allocated */
250size_t tls_static_max_align;
251int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
252int tls_max_index = 1;		/* Largest module index allocated */
253
254bool ld_library_path_rpath = false;
255
256/*
257 * Fill in a DoneList with an allocation large enough to hold all of
258 * the currently-loaded objects.  Keep this as a macro since it calls
259 * alloca and we want that to occur within the scope of the caller.
260 */
261#define donelist_init(dlp)					\
262    ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
263    assert((dlp)->objs != NULL),				\
264    (dlp)->num_alloc = obj_count,				\
265    (dlp)->num_used = 0)
266
267#define	UTRACE_DLOPEN_START		1
268#define	UTRACE_DLOPEN_STOP		2
269#define	UTRACE_DLCLOSE_START		3
270#define	UTRACE_DLCLOSE_STOP		4
271#define	UTRACE_LOAD_OBJECT		5
272#define	UTRACE_UNLOAD_OBJECT		6
273#define	UTRACE_ADD_RUNDEP		7
274#define	UTRACE_PRELOAD_FINISHED		8
275#define	UTRACE_INIT_CALL		9
276#define	UTRACE_FINI_CALL		10
277#define	UTRACE_DLSYM_START		11
278#define	UTRACE_DLSYM_STOP		12
279
280struct utrace_rtld {
281	char sig[4];			/* 'RTLD' */
282	int event;
283	void *handle;
284	void *mapbase;			/* Used for 'parent' and 'init/fini' */
285	size_t mapsize;
286	int refcnt;			/* Used for 'mode' */
287	char name[MAXPATHLEN];
288};
289
290#define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
291	if (ld_utrace != NULL)					\
292		ld_utrace_log(e, h, mb, ms, r, n);		\
293} while (0)
294
295static void
296ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
297    int refcnt, const char *name)
298{
299	struct utrace_rtld ut;
300
301	ut.sig[0] = 'R';
302	ut.sig[1] = 'T';
303	ut.sig[2] = 'L';
304	ut.sig[3] = 'D';
305	ut.event = event;
306	ut.handle = handle;
307	ut.mapbase = mapbase;
308	ut.mapsize = mapsize;
309	ut.refcnt = refcnt;
310	bzero(ut.name, sizeof(ut.name));
311	if (name)
312		strlcpy(ut.name, name, sizeof(ut.name));
313	utrace(&ut, sizeof(ut));
314}
315
316/*
317 * Main entry point for dynamic linking.  The first argument is the
318 * stack pointer.  The stack is expected to be laid out as described
319 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
320 * Specifically, the stack pointer points to a word containing
321 * ARGC.  Following that in the stack is a null-terminated sequence
322 * of pointers to argument strings.  Then comes a null-terminated
323 * sequence of pointers to environment strings.  Finally, there is a
324 * sequence of "auxiliary vector" entries.
325 *
326 * The second argument points to a place to store the dynamic linker's
327 * exit procedure pointer and the third to a place to store the main
328 * program's object.
329 *
330 * The return value is the main program's entry point.
331 */
332func_ptr_type
333_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
334{
335    Elf_Auxinfo *aux_info[AT_COUNT];
336    int i;
337    int argc;
338    char **argv;
339    char **env;
340    Elf_Auxinfo *aux;
341    Elf_Auxinfo *auxp;
342    const char *argv0;
343    Objlist_Entry *entry;
344    Obj_Entry *obj;
345    Obj_Entry *preload_tail;
346    Obj_Entry *last_interposer;
347    Objlist initlist;
348    RtldLockState lockstate;
349    char *library_path_rpath;
350    int mib[2];
351    size_t len;
352
353    /*
354     * On entry, the dynamic linker itself has not been relocated yet.
355     * Be very careful not to reference any global data until after
356     * init_rtld has returned.  It is OK to reference file-scope statics
357     * and string constants, and to call static and global functions.
358     */
359
360    /* Find the auxiliary vector on the stack. */
361    argc = *sp++;
362    argv = (char **) sp;
363    sp += argc + 1;	/* Skip over arguments and NULL terminator */
364    env = (char **) sp;
365    while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
366	;
367    aux = (Elf_Auxinfo *) sp;
368
369    /* Digest the auxiliary vector. */
370    for (i = 0;  i < AT_COUNT;  i++)
371	aux_info[i] = NULL;
372    for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
373	if (auxp->a_type < AT_COUNT)
374	    aux_info[auxp->a_type] = auxp;
375    }
376
377    /* Initialize and relocate ourselves. */
378    assert(aux_info[AT_BASE] != NULL);
379    init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
380
381    __progname = obj_rtld.path;
382    argv0 = argv[0] != NULL ? argv[0] : "(null)";
383    environ = env;
384    main_argc = argc;
385    main_argv = argv;
386
387    if (aux_info[AT_CANARY] != NULL &&
388	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
389	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
390	    if (i > sizeof(__stack_chk_guard))
391		    i = sizeof(__stack_chk_guard);
392	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
393    } else {
394	mib[0] = CTL_KERN;
395	mib[1] = KERN_ARND;
396
397	len = sizeof(__stack_chk_guard);
398	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
399	    len != sizeof(__stack_chk_guard)) {
400		/* If sysctl was unsuccessful, use the "terminator canary". */
401		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
402		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
403		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
404		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
405	}
406    }
407
408    trust = !issetugid();
409
410    ld_bind_now = getenv(LD_ "BIND_NOW");
411    /*
412     * If the process is tainted, then we un-set the dangerous environment
413     * variables.  The process will be marked as tainted until setuid(2)
414     * is called.  If any child process calls setuid(2) we do not want any
415     * future processes to honor the potentially un-safe variables.
416     */
417    if (!trust) {
418        if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
419	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
420	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
421	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
422		_rtld_error("environment corrupt; aborting");
423		rtld_die();
424	}
425    }
426    ld_debug = getenv(LD_ "DEBUG");
427    libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
428    libmap_override = getenv(LD_ "LIBMAP");
429    ld_library_path = getenv(LD_ "LIBRARY_PATH");
430    ld_preload = getenv(LD_ "PRELOAD");
431    ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
432    ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
433    library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
434    if (library_path_rpath != NULL) {
435	    if (library_path_rpath[0] == 'y' ||
436		library_path_rpath[0] == 'Y' ||
437		library_path_rpath[0] == '1')
438		    ld_library_path_rpath = true;
439	    else
440		    ld_library_path_rpath = false;
441    }
442    dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
443	(ld_library_path != NULL) || (ld_preload != NULL) ||
444	(ld_elf_hints_path != NULL) || ld_loadfltr;
445    ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
446    ld_utrace = getenv(LD_ "UTRACE");
447
448    if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
449	ld_elf_hints_path = _PATH_ELF_HINTS;
450
451    if (ld_debug != NULL && *ld_debug != '\0')
452	debug = 1;
453    dbg("%s is initialized, base address = %p", __progname,
454	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
455    dbg("RTLD dynamic = %p", obj_rtld.dynamic);
456    dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
457
458    dbg("initializing thread locks");
459    lockdflt_init();
460
461    /*
462     * Load the main program, or process its program header if it is
463     * already loaded.
464     */
465    if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
466	int fd = aux_info[AT_EXECFD]->a_un.a_val;
467	dbg("loading main program");
468	obj_main = map_object(fd, argv0, NULL);
469	close(fd);
470	if (obj_main == NULL)
471	    rtld_die();
472	max_stack_flags = obj->stack_flags;
473    } else {				/* Main program already loaded. */
474	const Elf_Phdr *phdr;
475	int phnum;
476	caddr_t entry;
477
478	dbg("processing main program's program header");
479	assert(aux_info[AT_PHDR] != NULL);
480	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
481	assert(aux_info[AT_PHNUM] != NULL);
482	phnum = aux_info[AT_PHNUM]->a_un.a_val;
483	assert(aux_info[AT_PHENT] != NULL);
484	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
485	assert(aux_info[AT_ENTRY] != NULL);
486	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
487	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
488	    rtld_die();
489    }
490
491    if (aux_info[AT_EXECPATH] != 0) {
492	    char *kexecpath;
493	    char buf[MAXPATHLEN];
494
495	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
496	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
497	    if (kexecpath[0] == '/')
498		    obj_main->path = kexecpath;
499	    else if (getcwd(buf, sizeof(buf)) == NULL ||
500		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
501		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
502		    obj_main->path = xstrdup(argv0);
503	    else
504		    obj_main->path = xstrdup(buf);
505    } else {
506	    dbg("No AT_EXECPATH");
507	    obj_main->path = xstrdup(argv0);
508    }
509    dbg("obj_main path %s", obj_main->path);
510    obj_main->mainprog = true;
511
512    if (aux_info[AT_STACKPROT] != NULL &&
513      aux_info[AT_STACKPROT]->a_un.a_val != 0)
514	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
515
516#ifndef COMPAT_32BIT
517    /*
518     * Get the actual dynamic linker pathname from the executable if
519     * possible.  (It should always be possible.)  That ensures that
520     * gdb will find the right dynamic linker even if a non-standard
521     * one is being used.
522     */
523    if (obj_main->interp != NULL &&
524      strcmp(obj_main->interp, obj_rtld.path) != 0) {
525	free(obj_rtld.path);
526	obj_rtld.path = xstrdup(obj_main->interp);
527        __progname = obj_rtld.path;
528    }
529#endif
530
531    digest_dynamic(obj_main, 0);
532    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
533	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
534	obj_main->dynsymcount);
535
536    linkmap_add(obj_main);
537    linkmap_add(&obj_rtld);
538
539    /* Link the main program into the list of objects. */
540    TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
541    obj_count++;
542    obj_loads++;
543
544    /* Initialize a fake symbol for resolving undefined weak references. */
545    sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
546    sym_zero.st_shndx = SHN_UNDEF;
547    sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
548
549    if (!libmap_disable)
550        libmap_disable = (bool)lm_init(libmap_override);
551
552    dbg("loading LD_PRELOAD libraries");
553    if (load_preload_objects() == -1)
554	rtld_die();
555    preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
556
557    dbg("loading needed objects");
558    if (load_needed_objects(obj_main, 0) == -1)
559	rtld_die();
560
561    /* Make a list of all objects loaded at startup. */
562    last_interposer = obj_main;
563    TAILQ_FOREACH(obj, &obj_list, next) {
564	if (obj->marker)
565	    continue;
566	if (obj->z_interpose && obj != obj_main) {
567	    objlist_put_after(&list_main, last_interposer, obj);
568	    last_interposer = obj;
569	} else {
570	    objlist_push_tail(&list_main, obj);
571	}
572    	obj->refcount++;
573    }
574
575    dbg("checking for required versions");
576    if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
577	rtld_die();
578
579    if (ld_tracing) {		/* We're done */
580	trace_loaded_objects(obj_main);
581	exit(0);
582    }
583
584    if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
585       dump_relocations(obj_main);
586       exit (0);
587    }
588
589    /*
590     * Processing tls relocations requires having the tls offsets
591     * initialized.  Prepare offsets before starting initial
592     * relocation processing.
593     */
594    dbg("initializing initial thread local storage offsets");
595    STAILQ_FOREACH(entry, &list_main, link) {
596	/*
597	 * Allocate all the initial objects out of the static TLS
598	 * block even if they didn't ask for it.
599	 */
600	allocate_tls_offset(entry->obj);
601    }
602
603    if (relocate_objects(obj_main,
604      ld_bind_now != NULL && *ld_bind_now != '\0',
605      &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
606	rtld_die();
607
608    dbg("doing copy relocations");
609    if (do_copy_relocations(obj_main) == -1)
610	rtld_die();
611
612    if (getenv(LD_ "DUMP_REL_POST") != NULL) {
613       dump_relocations(obj_main);
614       exit (0);
615    }
616
617    /*
618     * Setup TLS for main thread.  This must be done after the
619     * relocations are processed, since tls initialization section
620     * might be the subject for relocations.
621     */
622    dbg("initializing initial thread local storage");
623    allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
624
625    dbg("initializing key program variables");
626    set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
627    set_program_var("environ", env);
628    set_program_var("__elf_aux_vector", aux);
629
630    /* Make a list of init functions to call. */
631    objlist_init(&initlist);
632    initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
633      preload_tail, &initlist);
634
635    r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
636
637    map_stacks_exec(NULL);
638
639    dbg("resolving ifuncs");
640    if (resolve_objects_ifunc(obj_main,
641      ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
642      NULL) == -1)
643	rtld_die();
644
645    if (!obj_main->crt_no_init) {
646	/*
647	 * Make sure we don't call the main program's init and fini
648	 * functions for binaries linked with old crt1 which calls
649	 * _init itself.
650	 */
651	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
652	obj_main->preinit_array = obj_main->init_array =
653	    obj_main->fini_array = (Elf_Addr)NULL;
654    }
655
656    wlock_acquire(rtld_bind_lock, &lockstate);
657    if (obj_main->crt_no_init)
658	preinit_main();
659    objlist_call_init(&initlist, &lockstate);
660    _r_debug_postinit(&obj_main->linkmap);
661    objlist_clear(&initlist);
662    dbg("loading filtees");
663    TAILQ_FOREACH(obj, &obj_list, next) {
664	if (obj->marker)
665	    continue;
666	if (ld_loadfltr || obj->z_loadfltr)
667	    load_filtees(obj, 0, &lockstate);
668    }
669    lock_release(rtld_bind_lock, &lockstate);
670
671    dbg("transferring control to program entry point = %p", obj_main->entry);
672
673    /* Return the exit procedure and the program entry point. */
674    *exit_proc = rtld_exit;
675    *objp = obj_main;
676    return (func_ptr_type) obj_main->entry;
677}
678
679void *
680rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
681{
682	void *ptr;
683	Elf_Addr target;
684
685	ptr = (void *)make_function_pointer(def, obj);
686	target = ((Elf_Addr (*)(void))ptr)();
687	return ((void *)target);
688}
689
690Elf_Addr
691_rtld_bind(Obj_Entry *obj, Elf_Size reloff)
692{
693    const Elf_Rel *rel;
694    const Elf_Sym *def;
695    const Obj_Entry *defobj;
696    Elf_Addr *where;
697    Elf_Addr target;
698    RtldLockState lockstate;
699
700    rlock_acquire(rtld_bind_lock, &lockstate);
701    if (sigsetjmp(lockstate.env, 0) != 0)
702	    lock_upgrade(rtld_bind_lock, &lockstate);
703    if (obj->pltrel)
704	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
705    else
706	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
707
708    where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
709    def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
710	&lockstate);
711    if (def == NULL)
712	rtld_die();
713    if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
714	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
715    else
716	target = (Elf_Addr)(defobj->relocbase + def->st_value);
717
718    dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
719      defobj->strtab + def->st_name, basename(obj->path),
720      (void *)target, basename(defobj->path));
721
722    /*
723     * Write the new contents for the jmpslot. Note that depending on
724     * architecture, the value which we need to return back to the
725     * lazy binding trampoline may or may not be the target
726     * address. The value returned from reloc_jmpslot() is the value
727     * that the trampoline needs.
728     */
729    target = reloc_jmpslot(where, target, defobj, obj, rel);
730    lock_release(rtld_bind_lock, &lockstate);
731    return target;
732}
733
734/*
735 * Error reporting function.  Use it like printf.  If formats the message
736 * into a buffer, and sets things up so that the next call to dlerror()
737 * will return the message.
738 */
739void
740_rtld_error(const char *fmt, ...)
741{
742    static char buf[512];
743    va_list ap;
744
745    va_start(ap, fmt);
746    rtld_vsnprintf(buf, sizeof buf, fmt, ap);
747    error_message = buf;
748    va_end(ap);
749}
750
751/*
752 * Return a dynamically-allocated copy of the current error message, if any.
753 */
754static char *
755errmsg_save(void)
756{
757    return error_message == NULL ? NULL : xstrdup(error_message);
758}
759
760/*
761 * Restore the current error message from a copy which was previously saved
762 * by errmsg_save().  The copy is freed.
763 */
764static void
765errmsg_restore(char *saved_msg)
766{
767    if (saved_msg == NULL)
768	error_message = NULL;
769    else {
770	_rtld_error("%s", saved_msg);
771	free(saved_msg);
772    }
773}
774
775static const char *
776basename(const char *name)
777{
778    const char *p = strrchr(name, '/');
779    return p != NULL ? p + 1 : name;
780}
781
782static struct utsname uts;
783
784static char *
785origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
786    const char *subst, bool may_free)
787{
788	char *p, *p1, *res, *resp;
789	int subst_len, kw_len, subst_count, old_len, new_len;
790
791	kw_len = strlen(kw);
792
793	/*
794	 * First, count the number of the keyword occurences, to
795	 * preallocate the final string.
796	 */
797	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
798		p1 = strstr(p, kw);
799		if (p1 == NULL)
800			break;
801	}
802
803	/*
804	 * If the keyword is not found, just return.
805	 *
806	 * Return non-substituted string if resolution failed.  We
807	 * cannot do anything more reasonable, the failure mode of the
808	 * caller is unresolved library anyway.
809	 */
810	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
811		return (may_free ? real : xstrdup(real));
812	if (obj != NULL)
813		subst = obj->origin_path;
814
815	/*
816	 * There is indeed something to substitute.  Calculate the
817	 * length of the resulting string, and allocate it.
818	 */
819	subst_len = strlen(subst);
820	old_len = strlen(real);
821	new_len = old_len + (subst_len - kw_len) * subst_count;
822	res = xmalloc(new_len + 1);
823
824	/*
825	 * Now, execute the substitution loop.
826	 */
827	for (p = real, resp = res, *resp = '\0';;) {
828		p1 = strstr(p, kw);
829		if (p1 != NULL) {
830			/* Copy the prefix before keyword. */
831			memcpy(resp, p, p1 - p);
832			resp += p1 - p;
833			/* Keyword replacement. */
834			memcpy(resp, subst, subst_len);
835			resp += subst_len;
836			*resp = '\0';
837			p = p1 + kw_len;
838		} else
839			break;
840	}
841
842	/* Copy to the end of string and finish. */
843	strcat(resp, p);
844	if (may_free)
845		free(real);
846	return (res);
847}
848
849static char *
850origin_subst(Obj_Entry *obj, char *real)
851{
852	char *res1, *res2, *res3, *res4;
853
854	if (obj == NULL || !trust)
855		return (xstrdup(real));
856	if (uts.sysname[0] == '\0') {
857		if (uname(&uts) != 0) {
858			_rtld_error("utsname failed: %d", errno);
859			return (NULL);
860		}
861	}
862	res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false);
863	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
864	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
865	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
866	return (res4);
867}
868
869void
870rtld_die(void)
871{
872    const char *msg = dlerror();
873
874    if (msg == NULL)
875	msg = "Fatal error";
876    rtld_fdputstr(STDERR_FILENO, msg);
877    rtld_fdputchar(STDERR_FILENO, '\n');
878    _exit(1);
879}
880
881/*
882 * Process a shared object's DYNAMIC section, and save the important
883 * information in its Obj_Entry structure.
884 */
885static void
886digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
887    const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
888{
889    const Elf_Dyn *dynp;
890    Needed_Entry **needed_tail = &obj->needed;
891    Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
892    Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
893    const Elf_Hashelt *hashtab;
894    const Elf32_Word *hashval;
895    Elf32_Word bkt, nmaskwords;
896    int bloom_size32;
897    int plttype = DT_REL;
898
899    *dyn_rpath = NULL;
900    *dyn_soname = NULL;
901    *dyn_runpath = NULL;
902
903    obj->bind_now = false;
904    for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
905	switch (dynp->d_tag) {
906
907	case DT_REL:
908	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
909	    break;
910
911	case DT_RELSZ:
912	    obj->relsize = dynp->d_un.d_val;
913	    break;
914
915	case DT_RELENT:
916	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
917	    break;
918
919	case DT_JMPREL:
920	    obj->pltrel = (const Elf_Rel *)
921	      (obj->relocbase + dynp->d_un.d_ptr);
922	    break;
923
924	case DT_PLTRELSZ:
925	    obj->pltrelsize = dynp->d_un.d_val;
926	    break;
927
928	case DT_RELA:
929	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
930	    break;
931
932	case DT_RELASZ:
933	    obj->relasize = dynp->d_un.d_val;
934	    break;
935
936	case DT_RELAENT:
937	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
938	    break;
939
940	case DT_PLTREL:
941	    plttype = dynp->d_un.d_val;
942	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
943	    break;
944
945	case DT_SYMTAB:
946	    obj->symtab = (const Elf_Sym *)
947	      (obj->relocbase + dynp->d_un.d_ptr);
948	    break;
949
950	case DT_SYMENT:
951	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
952	    break;
953
954	case DT_STRTAB:
955	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
956	    break;
957
958	case DT_STRSZ:
959	    obj->strsize = dynp->d_un.d_val;
960	    break;
961
962	case DT_VERNEED:
963	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
964		dynp->d_un.d_val);
965	    break;
966
967	case DT_VERNEEDNUM:
968	    obj->verneednum = dynp->d_un.d_val;
969	    break;
970
971	case DT_VERDEF:
972	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
973		dynp->d_un.d_val);
974	    break;
975
976	case DT_VERDEFNUM:
977	    obj->verdefnum = dynp->d_un.d_val;
978	    break;
979
980	case DT_VERSYM:
981	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
982		dynp->d_un.d_val);
983	    break;
984
985	case DT_HASH:
986	    {
987		hashtab = (const Elf_Hashelt *)(obj->relocbase +
988		    dynp->d_un.d_ptr);
989		obj->nbuckets = hashtab[0];
990		obj->nchains = hashtab[1];
991		obj->buckets = hashtab + 2;
992		obj->chains = obj->buckets + obj->nbuckets;
993		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
994		  obj->buckets != NULL;
995	    }
996	    break;
997
998	case DT_GNU_HASH:
999	    {
1000		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1001		    dynp->d_un.d_ptr);
1002		obj->nbuckets_gnu = hashtab[0];
1003		obj->symndx_gnu = hashtab[1];
1004		nmaskwords = hashtab[2];
1005		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1006		obj->maskwords_bm_gnu = nmaskwords - 1;
1007		obj->shift2_gnu = hashtab[3];
1008		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1009		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1010		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1011		  obj->symndx_gnu;
1012		/* Number of bitmask words is required to be power of 2 */
1013		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1014		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1015	    }
1016	    break;
1017
1018	case DT_NEEDED:
1019	    if (!obj->rtld) {
1020		Needed_Entry *nep = NEW(Needed_Entry);
1021		nep->name = dynp->d_un.d_val;
1022		nep->obj = NULL;
1023		nep->next = NULL;
1024
1025		*needed_tail = nep;
1026		needed_tail = &nep->next;
1027	    }
1028	    break;
1029
1030	case DT_FILTER:
1031	    if (!obj->rtld) {
1032		Needed_Entry *nep = NEW(Needed_Entry);
1033		nep->name = dynp->d_un.d_val;
1034		nep->obj = NULL;
1035		nep->next = NULL;
1036
1037		*needed_filtees_tail = nep;
1038		needed_filtees_tail = &nep->next;
1039	    }
1040	    break;
1041
1042	case DT_AUXILIARY:
1043	    if (!obj->rtld) {
1044		Needed_Entry *nep = NEW(Needed_Entry);
1045		nep->name = dynp->d_un.d_val;
1046		nep->obj = NULL;
1047		nep->next = NULL;
1048
1049		*needed_aux_filtees_tail = nep;
1050		needed_aux_filtees_tail = &nep->next;
1051	    }
1052	    break;
1053
1054	case DT_PLTGOT:
1055	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1056	    break;
1057
1058	case DT_TEXTREL:
1059	    obj->textrel = true;
1060	    break;
1061
1062	case DT_SYMBOLIC:
1063	    obj->symbolic = true;
1064	    break;
1065
1066	case DT_RPATH:
1067	    /*
1068	     * We have to wait until later to process this, because we
1069	     * might not have gotten the address of the string table yet.
1070	     */
1071	    *dyn_rpath = dynp;
1072	    break;
1073
1074	case DT_SONAME:
1075	    *dyn_soname = dynp;
1076	    break;
1077
1078	case DT_RUNPATH:
1079	    *dyn_runpath = dynp;
1080	    break;
1081
1082	case DT_INIT:
1083	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1084	    break;
1085
1086	case DT_PREINIT_ARRAY:
1087	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1088	    break;
1089
1090	case DT_PREINIT_ARRAYSZ:
1091	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1092	    break;
1093
1094	case DT_INIT_ARRAY:
1095	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1096	    break;
1097
1098	case DT_INIT_ARRAYSZ:
1099	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1100	    break;
1101
1102	case DT_FINI:
1103	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1104	    break;
1105
1106	case DT_FINI_ARRAY:
1107	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1108	    break;
1109
1110	case DT_FINI_ARRAYSZ:
1111	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1112	    break;
1113
1114	/*
1115	 * Don't process DT_DEBUG on MIPS as the dynamic section
1116	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1117	 */
1118
1119#ifndef __mips__
1120	case DT_DEBUG:
1121	    if (!early)
1122		dbg("Filling in DT_DEBUG entry");
1123	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1124	    break;
1125#endif
1126
1127	case DT_FLAGS:
1128		if (dynp->d_un.d_val & DF_ORIGIN)
1129		    obj->z_origin = true;
1130		if (dynp->d_un.d_val & DF_SYMBOLIC)
1131		    obj->symbolic = true;
1132		if (dynp->d_un.d_val & DF_TEXTREL)
1133		    obj->textrel = true;
1134		if (dynp->d_un.d_val & DF_BIND_NOW)
1135		    obj->bind_now = true;
1136		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1137		    ;*/
1138	    break;
1139#ifdef __mips__
1140	case DT_MIPS_LOCAL_GOTNO:
1141		obj->local_gotno = dynp->d_un.d_val;
1142	    break;
1143
1144	case DT_MIPS_SYMTABNO:
1145		obj->symtabno = dynp->d_un.d_val;
1146		break;
1147
1148	case DT_MIPS_GOTSYM:
1149		obj->gotsym = dynp->d_un.d_val;
1150		break;
1151
1152	case DT_MIPS_RLD_MAP:
1153		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1154		break;
1155#endif
1156
1157	case DT_FLAGS_1:
1158		if (dynp->d_un.d_val & DF_1_NOOPEN)
1159		    obj->z_noopen = true;
1160		if (dynp->d_un.d_val & DF_1_ORIGIN)
1161		    obj->z_origin = true;
1162		if (dynp->d_un.d_val & DF_1_GLOBAL)
1163		    obj->z_global = true;
1164		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1165		    obj->bind_now = true;
1166		if (dynp->d_un.d_val & DF_1_NODELETE)
1167		    obj->z_nodelete = true;
1168		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1169		    obj->z_loadfltr = true;
1170		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1171		    obj->z_interpose = true;
1172		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1173		    obj->z_nodeflib = true;
1174	    break;
1175
1176	default:
1177	    if (!early) {
1178		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1179		    (long)dynp->d_tag);
1180	    }
1181	    break;
1182	}
1183    }
1184
1185    obj->traced = false;
1186
1187    if (plttype == DT_RELA) {
1188	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1189	obj->pltrel = NULL;
1190	obj->pltrelasize = obj->pltrelsize;
1191	obj->pltrelsize = 0;
1192    }
1193
1194    /* Determine size of dynsym table (equal to nchains of sysv hash) */
1195    if (obj->valid_hash_sysv)
1196	obj->dynsymcount = obj->nchains;
1197    else if (obj->valid_hash_gnu) {
1198	obj->dynsymcount = 0;
1199	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1200	    if (obj->buckets_gnu[bkt] == 0)
1201		continue;
1202	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1203	    do
1204		obj->dynsymcount++;
1205	    while ((*hashval++ & 1u) == 0);
1206	}
1207	obj->dynsymcount += obj->symndx_gnu;
1208    }
1209}
1210
1211static bool
1212obj_resolve_origin(Obj_Entry *obj)
1213{
1214
1215	if (obj->origin_path != NULL)
1216		return (true);
1217	obj->origin_path = xmalloc(PATH_MAX);
1218	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1219}
1220
1221static void
1222digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1223    const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1224{
1225
1226	if (obj->z_origin && !obj_resolve_origin(obj))
1227		rtld_die();
1228
1229	if (dyn_runpath != NULL) {
1230		obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1231		obj->runpath = origin_subst(obj, obj->runpath);
1232	} else if (dyn_rpath != NULL) {
1233		obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1234		obj->rpath = origin_subst(obj, obj->rpath);
1235	}
1236	if (dyn_soname != NULL)
1237		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1238}
1239
1240static void
1241digest_dynamic(Obj_Entry *obj, int early)
1242{
1243	const Elf_Dyn *dyn_rpath;
1244	const Elf_Dyn *dyn_soname;
1245	const Elf_Dyn *dyn_runpath;
1246
1247	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1248	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1249}
1250
1251/*
1252 * Process a shared object's program header.  This is used only for the
1253 * main program, when the kernel has already loaded the main program
1254 * into memory before calling the dynamic linker.  It creates and
1255 * returns an Obj_Entry structure.
1256 */
1257static Obj_Entry *
1258digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1259{
1260    Obj_Entry *obj;
1261    const Elf_Phdr *phlimit = phdr + phnum;
1262    const Elf_Phdr *ph;
1263    Elf_Addr note_start, note_end;
1264    int nsegs = 0;
1265
1266    obj = obj_new();
1267    for (ph = phdr;  ph < phlimit;  ph++) {
1268	if (ph->p_type != PT_PHDR)
1269	    continue;
1270
1271	obj->phdr = phdr;
1272	obj->phsize = ph->p_memsz;
1273	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1274	break;
1275    }
1276
1277    obj->stack_flags = PF_X | PF_R | PF_W;
1278
1279    for (ph = phdr;  ph < phlimit;  ph++) {
1280	switch (ph->p_type) {
1281
1282	case PT_INTERP:
1283	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1284	    break;
1285
1286	case PT_LOAD:
1287	    if (nsegs == 0) {	/* First load segment */
1288		obj->vaddrbase = trunc_page(ph->p_vaddr);
1289		obj->mapbase = obj->vaddrbase + obj->relocbase;
1290		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1291		  obj->vaddrbase;
1292	    } else {		/* Last load segment */
1293		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1294		  obj->vaddrbase;
1295	    }
1296	    nsegs++;
1297	    break;
1298
1299	case PT_DYNAMIC:
1300	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1301	    break;
1302
1303	case PT_TLS:
1304	    obj->tlsindex = 1;
1305	    obj->tlssize = ph->p_memsz;
1306	    obj->tlsalign = ph->p_align;
1307	    obj->tlsinitsize = ph->p_filesz;
1308	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1309	    break;
1310
1311	case PT_GNU_STACK:
1312	    obj->stack_flags = ph->p_flags;
1313	    break;
1314
1315	case PT_GNU_RELRO:
1316	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1317	    obj->relro_size = round_page(ph->p_memsz);
1318	    break;
1319
1320	case PT_NOTE:
1321	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1322	    note_end = note_start + ph->p_filesz;
1323	    digest_notes(obj, note_start, note_end);
1324	    break;
1325	}
1326    }
1327    if (nsegs < 1) {
1328	_rtld_error("%s: too few PT_LOAD segments", path);
1329	return NULL;
1330    }
1331
1332    obj->entry = entry;
1333    return obj;
1334}
1335
1336void
1337digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1338{
1339	const Elf_Note *note;
1340	const char *note_name;
1341	uintptr_t p;
1342
1343	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1344	    note = (const Elf_Note *)((const char *)(note + 1) +
1345	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1346	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1347		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1348		    note->n_descsz != sizeof(int32_t))
1349			continue;
1350		if (note->n_type != ABI_NOTETYPE &&
1351		    note->n_type != CRT_NOINIT_NOTETYPE)
1352			continue;
1353		note_name = (const char *)(note + 1);
1354		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1355		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1356			continue;
1357		switch (note->n_type) {
1358		case ABI_NOTETYPE:
1359			/* FreeBSD osrel note */
1360			p = (uintptr_t)(note + 1);
1361			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1362			obj->osrel = *(const int32_t *)(p);
1363			dbg("note osrel %d", obj->osrel);
1364			break;
1365		case CRT_NOINIT_NOTETYPE:
1366			/* FreeBSD 'crt does not call init' note */
1367			obj->crt_no_init = true;
1368			dbg("note crt_no_init");
1369			break;
1370		}
1371	}
1372}
1373
1374static Obj_Entry *
1375dlcheck(void *handle)
1376{
1377    Obj_Entry *obj;
1378
1379    TAILQ_FOREACH(obj, &obj_list, next) {
1380	if (obj == (Obj_Entry *) handle)
1381	    break;
1382    }
1383
1384    if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1385	_rtld_error("Invalid shared object handle %p", handle);
1386	return NULL;
1387    }
1388    return obj;
1389}
1390
1391/*
1392 * If the given object is already in the donelist, return true.  Otherwise
1393 * add the object to the list and return false.
1394 */
1395static bool
1396donelist_check(DoneList *dlp, const Obj_Entry *obj)
1397{
1398    unsigned int i;
1399
1400    for (i = 0;  i < dlp->num_used;  i++)
1401	if (dlp->objs[i] == obj)
1402	    return true;
1403    /*
1404     * Our donelist allocation should always be sufficient.  But if
1405     * our threads locking isn't working properly, more shared objects
1406     * could have been loaded since we allocated the list.  That should
1407     * never happen, but we'll handle it properly just in case it does.
1408     */
1409    if (dlp->num_used < dlp->num_alloc)
1410	dlp->objs[dlp->num_used++] = obj;
1411    return false;
1412}
1413
1414/*
1415 * Hash function for symbol table lookup.  Don't even think about changing
1416 * this.  It is specified by the System V ABI.
1417 */
1418unsigned long
1419elf_hash(const char *name)
1420{
1421    const unsigned char *p = (const unsigned char *) name;
1422    unsigned long h = 0;
1423    unsigned long g;
1424
1425    while (*p != '\0') {
1426	h = (h << 4) + *p++;
1427	if ((g = h & 0xf0000000) != 0)
1428	    h ^= g >> 24;
1429	h &= ~g;
1430    }
1431    return h;
1432}
1433
1434/*
1435 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1436 * unsigned in case it's implemented with a wider type.
1437 */
1438static uint32_t
1439gnu_hash(const char *s)
1440{
1441	uint32_t h;
1442	unsigned char c;
1443
1444	h = 5381;
1445	for (c = *s; c != '\0'; c = *++s)
1446		h = h * 33 + c;
1447	return (h & 0xffffffff);
1448}
1449
1450/*
1451 * Find the library with the given name, and return its full pathname.
1452 * The returned string is dynamically allocated.  Generates an error
1453 * message and returns NULL if the library cannot be found.
1454 *
1455 * If the second argument is non-NULL, then it refers to an already-
1456 * loaded shared object, whose library search path will be searched.
1457 *
1458 * The search order is:
1459 *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1460 *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1461 *   LD_LIBRARY_PATH
1462 *   DT_RUNPATH in the referencing file
1463 *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1464 *	 from list)
1465 *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1466 *
1467 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1468 */
1469static char *
1470find_library(const char *xname, const Obj_Entry *refobj)
1471{
1472    char *pathname;
1473    char *name;
1474    bool nodeflib, objgiven;
1475
1476    objgiven = refobj != NULL;
1477    if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1478	if (xname[0] != '/' && !trust) {
1479	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1480	      xname);
1481	    return NULL;
1482	}
1483	return (origin_subst(__DECONST(Obj_Entry *, refobj),
1484	  __DECONST(char *, xname)));
1485    }
1486
1487    if (libmap_disable || !objgiven ||
1488	(name = lm_find(refobj->path, xname)) == NULL)
1489	name = (char *)xname;
1490
1491    dbg(" Searching for \"%s\"", name);
1492
1493    /*
1494     * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1495     * back to pre-conforming behaviour if user requested so with
1496     * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1497     * nodeflib.
1498     */
1499    if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1500	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1501	  (refobj != NULL &&
1502	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1503          (pathname = search_library_path(name, gethints(false))) != NULL ||
1504	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1505	    return (pathname);
1506    } else {
1507	nodeflib = objgiven ? refobj->z_nodeflib : false;
1508	if ((objgiven &&
1509	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1510	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1511	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1512	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1513	  (objgiven &&
1514	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1515	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1516	  (objgiven && !nodeflib &&
1517	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1518	    return (pathname);
1519    }
1520
1521    if (objgiven && refobj->path != NULL) {
1522	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1523	  name, basename(refobj->path));
1524    } else {
1525	_rtld_error("Shared object \"%s\" not found", name);
1526    }
1527    return NULL;
1528}
1529
1530/*
1531 * Given a symbol number in a referencing object, find the corresponding
1532 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1533 * no definition was found.  Returns a pointer to the Obj_Entry of the
1534 * defining object via the reference parameter DEFOBJ_OUT.
1535 */
1536const Elf_Sym *
1537find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1538    const Obj_Entry **defobj_out, int flags, SymCache *cache,
1539    RtldLockState *lockstate)
1540{
1541    const Elf_Sym *ref;
1542    const Elf_Sym *def;
1543    const Obj_Entry *defobj;
1544    SymLook req;
1545    const char *name;
1546    int res;
1547
1548    /*
1549     * If we have already found this symbol, get the information from
1550     * the cache.
1551     */
1552    if (symnum >= refobj->dynsymcount)
1553	return NULL;	/* Bad object */
1554    if (cache != NULL && cache[symnum].sym != NULL) {
1555	*defobj_out = cache[symnum].obj;
1556	return cache[symnum].sym;
1557    }
1558
1559    ref = refobj->symtab + symnum;
1560    name = refobj->strtab + ref->st_name;
1561    def = NULL;
1562    defobj = NULL;
1563
1564    /*
1565     * We don't have to do a full scale lookup if the symbol is local.
1566     * We know it will bind to the instance in this load module; to
1567     * which we already have a pointer (ie ref). By not doing a lookup,
1568     * we not only improve performance, but it also avoids unresolvable
1569     * symbols when local symbols are not in the hash table. This has
1570     * been seen with the ia64 toolchain.
1571     */
1572    if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1573	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1574	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1575		symnum);
1576	}
1577	symlook_init(&req, name);
1578	req.flags = flags;
1579	req.ventry = fetch_ventry(refobj, symnum);
1580	req.lockstate = lockstate;
1581	res = symlook_default(&req, refobj);
1582	if (res == 0) {
1583	    def = req.sym_out;
1584	    defobj = req.defobj_out;
1585	}
1586    } else {
1587	def = ref;
1588	defobj = refobj;
1589    }
1590
1591    /*
1592     * If we found no definition and the reference is weak, treat the
1593     * symbol as having the value zero.
1594     */
1595    if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1596	def = &sym_zero;
1597	defobj = obj_main;
1598    }
1599
1600    if (def != NULL) {
1601	*defobj_out = defobj;
1602	/* Record the information in the cache to avoid subsequent lookups. */
1603	if (cache != NULL) {
1604	    cache[symnum].sym = def;
1605	    cache[symnum].obj = defobj;
1606	}
1607    } else {
1608	if (refobj != &obj_rtld)
1609	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1610    }
1611    return def;
1612}
1613
1614/*
1615 * Return the search path from the ldconfig hints file, reading it if
1616 * necessary.  If nostdlib is true, then the default search paths are
1617 * not added to result.
1618 *
1619 * Returns NULL if there are problems with the hints file,
1620 * or if the search path there is empty.
1621 */
1622static const char *
1623gethints(bool nostdlib)
1624{
1625	static char *hints, *filtered_path;
1626	struct elfhints_hdr hdr;
1627	struct fill_search_info_args sargs, hargs;
1628	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1629	struct dl_serpath *SLPpath, *hintpath;
1630	char *p;
1631	unsigned int SLPndx, hintndx, fndx, fcount;
1632	int fd;
1633	size_t flen;
1634	bool skip;
1635
1636	/* First call, read the hints file */
1637	if (hints == NULL) {
1638		/* Keep from trying again in case the hints file is bad. */
1639		hints = "";
1640
1641		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1642			return (NULL);
1643		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1644		    hdr.magic != ELFHINTS_MAGIC ||
1645		    hdr.version != 1) {
1646			close(fd);
1647			return (NULL);
1648		}
1649		p = xmalloc(hdr.dirlistlen + 1);
1650		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1651		    read(fd, p, hdr.dirlistlen + 1) !=
1652		    (ssize_t)hdr.dirlistlen + 1) {
1653			free(p);
1654			close(fd);
1655			return (NULL);
1656		}
1657		hints = p;
1658		close(fd);
1659	}
1660
1661	/*
1662	 * If caller agreed to receive list which includes the default
1663	 * paths, we are done. Otherwise, if we still did not
1664	 * calculated filtered result, do it now.
1665	 */
1666	if (!nostdlib)
1667		return (hints[0] != '\0' ? hints : NULL);
1668	if (filtered_path != NULL)
1669		goto filt_ret;
1670
1671	/*
1672	 * Obtain the list of all configured search paths, and the
1673	 * list of the default paths.
1674	 *
1675	 * First estimate the size of the results.
1676	 */
1677	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1678	smeta.dls_cnt = 0;
1679	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1680	hmeta.dls_cnt = 0;
1681
1682	sargs.request = RTLD_DI_SERINFOSIZE;
1683	sargs.serinfo = &smeta;
1684	hargs.request = RTLD_DI_SERINFOSIZE;
1685	hargs.serinfo = &hmeta;
1686
1687	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1688	path_enumerate(p, fill_search_info, &hargs);
1689
1690	SLPinfo = xmalloc(smeta.dls_size);
1691	hintinfo = xmalloc(hmeta.dls_size);
1692
1693	/*
1694	 * Next fetch both sets of paths.
1695	 */
1696	sargs.request = RTLD_DI_SERINFO;
1697	sargs.serinfo = SLPinfo;
1698	sargs.serpath = &SLPinfo->dls_serpath[0];
1699	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1700
1701	hargs.request = RTLD_DI_SERINFO;
1702	hargs.serinfo = hintinfo;
1703	hargs.serpath = &hintinfo->dls_serpath[0];
1704	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1705
1706	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1707	path_enumerate(p, fill_search_info, &hargs);
1708
1709	/*
1710	 * Now calculate the difference between two sets, by excluding
1711	 * standard paths from the full set.
1712	 */
1713	fndx = 0;
1714	fcount = 0;
1715	filtered_path = xmalloc(hdr.dirlistlen + 1);
1716	hintpath = &hintinfo->dls_serpath[0];
1717	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1718		skip = false;
1719		SLPpath = &SLPinfo->dls_serpath[0];
1720		/*
1721		 * Check each standard path against current.
1722		 */
1723		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1724			/* matched, skip the path */
1725			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1726				skip = true;
1727				break;
1728			}
1729		}
1730		if (skip)
1731			continue;
1732		/*
1733		 * Not matched against any standard path, add the path
1734		 * to result. Separate consequtive paths with ':'.
1735		 */
1736		if (fcount > 0) {
1737			filtered_path[fndx] = ':';
1738			fndx++;
1739		}
1740		fcount++;
1741		flen = strlen(hintpath->dls_name);
1742		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1743		fndx += flen;
1744	}
1745	filtered_path[fndx] = '\0';
1746
1747	free(SLPinfo);
1748	free(hintinfo);
1749
1750filt_ret:
1751	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1752}
1753
1754static void
1755init_dag(Obj_Entry *root)
1756{
1757    const Needed_Entry *needed;
1758    const Objlist_Entry *elm;
1759    DoneList donelist;
1760
1761    if (root->dag_inited)
1762	return;
1763    donelist_init(&donelist);
1764
1765    /* Root object belongs to own DAG. */
1766    objlist_push_tail(&root->dldags, root);
1767    objlist_push_tail(&root->dagmembers, root);
1768    donelist_check(&donelist, root);
1769
1770    /*
1771     * Add dependencies of root object to DAG in breadth order
1772     * by exploiting the fact that each new object get added
1773     * to the tail of the dagmembers list.
1774     */
1775    STAILQ_FOREACH(elm, &root->dagmembers, link) {
1776	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1777	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1778		continue;
1779	    objlist_push_tail(&needed->obj->dldags, root);
1780	    objlist_push_tail(&root->dagmembers, needed->obj);
1781	}
1782    }
1783    root->dag_inited = true;
1784}
1785
1786Obj_Entry *
1787globallist_curr(const Obj_Entry *obj)
1788{
1789
1790	for (;;) {
1791		if (obj == NULL)
1792			return (NULL);
1793		if (!obj->marker)
1794			return (__DECONST(Obj_Entry *, obj));
1795		obj = TAILQ_PREV(obj, obj_entry_q, next);
1796	}
1797}
1798
1799Obj_Entry *
1800globallist_next(const Obj_Entry *obj)
1801{
1802
1803	for (;;) {
1804		obj = TAILQ_NEXT(obj, next);
1805		if (obj == NULL)
1806			return (NULL);
1807		if (!obj->marker)
1808			return (__DECONST(Obj_Entry *, obj));
1809	}
1810}
1811
1812static void
1813process_z(Obj_Entry *root)
1814{
1815	const Objlist_Entry *elm;
1816	Obj_Entry *obj;
1817
1818	/*
1819	 * Walk over object DAG and process every dependent object
1820	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
1821	 * to grow their own DAG.
1822	 *
1823	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
1824	 * symlook_global() to work.
1825	 *
1826	 * For DF_1_NODELETE, the DAG should have its reference upped.
1827	 */
1828	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1829		obj = elm->obj;
1830		if (obj == NULL)
1831			continue;
1832		if (obj->z_nodelete && !obj->ref_nodel) {
1833			dbg("obj %s -z nodelete", obj->path);
1834			init_dag(obj);
1835			ref_dag(obj);
1836			obj->ref_nodel = true;
1837		}
1838		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
1839			dbg("obj %s -z global", obj->path);
1840			objlist_push_tail(&list_global, obj);
1841			init_dag(obj);
1842		}
1843	}
1844}
1845/*
1846 * Initialize the dynamic linker.  The argument is the address at which
1847 * the dynamic linker has been mapped into memory.  The primary task of
1848 * this function is to relocate the dynamic linker.
1849 */
1850static void
1851init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1852{
1853    Obj_Entry objtmp;	/* Temporary rtld object */
1854    const Elf_Dyn *dyn_rpath;
1855    const Elf_Dyn *dyn_soname;
1856    const Elf_Dyn *dyn_runpath;
1857
1858#ifdef RTLD_INIT_PAGESIZES_EARLY
1859    /* The page size is required by the dynamic memory allocator. */
1860    init_pagesizes(aux_info);
1861#endif
1862
1863    /*
1864     * Conjure up an Obj_Entry structure for the dynamic linker.
1865     *
1866     * The "path" member can't be initialized yet because string constants
1867     * cannot yet be accessed. Below we will set it correctly.
1868     */
1869    memset(&objtmp, 0, sizeof(objtmp));
1870    objtmp.path = NULL;
1871    objtmp.rtld = true;
1872    objtmp.mapbase = mapbase;
1873#ifdef PIC
1874    objtmp.relocbase = mapbase;
1875#endif
1876    if (RTLD_IS_DYNAMIC()) {
1877	objtmp.dynamic = rtld_dynamic(&objtmp);
1878	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1879	assert(objtmp.needed == NULL);
1880#if !defined(__mips__)
1881	/* MIPS has a bogus DT_TEXTREL. */
1882	assert(!objtmp.textrel);
1883#endif
1884
1885	/*
1886	 * Temporarily put the dynamic linker entry into the object list, so
1887	 * that symbols can be found.
1888	 */
1889
1890	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1891    }
1892
1893    /* Initialize the object list. */
1894    TAILQ_INIT(&obj_list);
1895
1896    /* Now that non-local variables can be accesses, copy out obj_rtld. */
1897    memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1898
1899#ifndef RTLD_INIT_PAGESIZES_EARLY
1900    /* The page size is required by the dynamic memory allocator. */
1901    init_pagesizes(aux_info);
1902#endif
1903
1904    if (aux_info[AT_OSRELDATE] != NULL)
1905	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1906
1907    digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1908
1909    /* Replace the path with a dynamically allocated copy. */
1910    obj_rtld.path = xstrdup(PATH_RTLD);
1911
1912    r_debug.r_brk = r_debug_state;
1913    r_debug.r_state = RT_CONSISTENT;
1914}
1915
1916/*
1917 * Retrieve the array of supported page sizes.  The kernel provides the page
1918 * sizes in increasing order.
1919 */
1920static void
1921init_pagesizes(Elf_Auxinfo **aux_info)
1922{
1923	static size_t psa[MAXPAGESIZES];
1924	int mib[2];
1925	size_t len, size;
1926
1927	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
1928	    NULL) {
1929		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
1930		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
1931	} else {
1932		len = 2;
1933		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
1934			size = sizeof(psa);
1935		else {
1936			/* As a fallback, retrieve the base page size. */
1937			size = sizeof(psa[0]);
1938			if (aux_info[AT_PAGESZ] != NULL) {
1939				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
1940				goto psa_filled;
1941			} else {
1942				mib[0] = CTL_HW;
1943				mib[1] = HW_PAGESIZE;
1944				len = 2;
1945			}
1946		}
1947		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
1948			_rtld_error("sysctl for hw.pagesize(s) failed");
1949			rtld_die();
1950		}
1951psa_filled:
1952		pagesizes = psa;
1953	}
1954	npagesizes = size / sizeof(pagesizes[0]);
1955	/* Discard any invalid entries at the end of the array. */
1956	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
1957		npagesizes--;
1958}
1959
1960/*
1961 * Add the init functions from a needed object list (and its recursive
1962 * needed objects) to "list".  This is not used directly; it is a helper
1963 * function for initlist_add_objects().  The write lock must be held
1964 * when this function is called.
1965 */
1966static void
1967initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1968{
1969    /* Recursively process the successor needed objects. */
1970    if (needed->next != NULL)
1971	initlist_add_neededs(needed->next, list);
1972
1973    /* Process the current needed object. */
1974    if (needed->obj != NULL)
1975	initlist_add_objects(needed->obj, needed->obj, list);
1976}
1977
1978/*
1979 * Scan all of the DAGs rooted in the range of objects from "obj" to
1980 * "tail" and add their init functions to "list".  This recurses over
1981 * the DAGs and ensure the proper init ordering such that each object's
1982 * needed libraries are initialized before the object itself.  At the
1983 * same time, this function adds the objects to the global finalization
1984 * list "list_fini" in the opposite order.  The write lock must be
1985 * held when this function is called.
1986 */
1987static void
1988initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
1989{
1990    Obj_Entry *nobj;
1991
1992    if (obj->init_scanned || obj->init_done)
1993	return;
1994    obj->init_scanned = true;
1995
1996    /* Recursively process the successor objects. */
1997    nobj = globallist_next(obj);
1998    if (nobj != NULL && obj != tail)
1999	initlist_add_objects(nobj, tail, list);
2000
2001    /* Recursively process the needed objects. */
2002    if (obj->needed != NULL)
2003	initlist_add_neededs(obj->needed, list);
2004    if (obj->needed_filtees != NULL)
2005	initlist_add_neededs(obj->needed_filtees, list);
2006    if (obj->needed_aux_filtees != NULL)
2007	initlist_add_neededs(obj->needed_aux_filtees, list);
2008
2009    /* Add the object to the init list. */
2010    if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
2011      obj->init_array != (Elf_Addr)NULL)
2012	objlist_push_tail(list, obj);
2013
2014    /* Add the object to the global fini list in the reverse order. */
2015    if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2016      && !obj->on_fini_list) {
2017	objlist_push_head(&list_fini, obj);
2018	obj->on_fini_list = true;
2019    }
2020}
2021
2022#ifndef FPTR_TARGET
2023#define FPTR_TARGET(f)	((Elf_Addr) (f))
2024#endif
2025
2026static void
2027free_needed_filtees(Needed_Entry *n)
2028{
2029    Needed_Entry *needed, *needed1;
2030
2031    for (needed = n; needed != NULL; needed = needed->next) {
2032	if (needed->obj != NULL) {
2033	    dlclose(needed->obj);
2034	    needed->obj = NULL;
2035	}
2036    }
2037    for (needed = n; needed != NULL; needed = needed1) {
2038	needed1 = needed->next;
2039	free(needed);
2040    }
2041}
2042
2043static void
2044unload_filtees(Obj_Entry *obj)
2045{
2046
2047    free_needed_filtees(obj->needed_filtees);
2048    obj->needed_filtees = NULL;
2049    free_needed_filtees(obj->needed_aux_filtees);
2050    obj->needed_aux_filtees = NULL;
2051    obj->filtees_loaded = false;
2052}
2053
2054static void
2055load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2056    RtldLockState *lockstate)
2057{
2058
2059    for (; needed != NULL; needed = needed->next) {
2060	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2061	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2062	  RTLD_LOCAL, lockstate);
2063    }
2064}
2065
2066static void
2067load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2068{
2069
2070    lock_restart_for_upgrade(lockstate);
2071    if (!obj->filtees_loaded) {
2072	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2073	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2074	obj->filtees_loaded = true;
2075    }
2076}
2077
2078static int
2079process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2080{
2081    Obj_Entry *obj1;
2082
2083    for (; needed != NULL; needed = needed->next) {
2084	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2085	  flags & ~RTLD_LO_NOLOAD);
2086	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2087	    return (-1);
2088    }
2089    return (0);
2090}
2091
2092/*
2093 * Given a shared object, traverse its list of needed objects, and load
2094 * each of them.  Returns 0 on success.  Generates an error message and
2095 * returns -1 on failure.
2096 */
2097static int
2098load_needed_objects(Obj_Entry *first, int flags)
2099{
2100    Obj_Entry *obj;
2101
2102    obj = first;
2103    TAILQ_FOREACH_FROM(obj, &obj_list, next) {
2104	if (obj->marker)
2105	    continue;
2106	if (process_needed(obj, obj->needed, flags) == -1)
2107	    return (-1);
2108    }
2109    return (0);
2110}
2111
2112static int
2113load_preload_objects(void)
2114{
2115    char *p = ld_preload;
2116    Obj_Entry *obj;
2117    static const char delim[] = " \t:;";
2118
2119    if (p == NULL)
2120	return 0;
2121
2122    p += strspn(p, delim);
2123    while (*p != '\0') {
2124	size_t len = strcspn(p, delim);
2125	char savech;
2126
2127	savech = p[len];
2128	p[len] = '\0';
2129	obj = load_object(p, -1, NULL, 0);
2130	if (obj == NULL)
2131	    return -1;	/* XXX - cleanup */
2132	obj->z_interpose = true;
2133	p[len] = savech;
2134	p += len;
2135	p += strspn(p, delim);
2136    }
2137    LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2138    return 0;
2139}
2140
2141static const char *
2142printable_path(const char *path)
2143{
2144
2145	return (path == NULL ? "<unknown>" : path);
2146}
2147
2148/*
2149 * Load a shared object into memory, if it is not already loaded.  The
2150 * object may be specified by name or by user-supplied file descriptor
2151 * fd_u. In the later case, the fd_u descriptor is not closed, but its
2152 * duplicate is.
2153 *
2154 * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2155 * on failure.
2156 */
2157static Obj_Entry *
2158load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2159{
2160    Obj_Entry *obj;
2161    int fd;
2162    struct stat sb;
2163    char *path;
2164
2165    if (name != NULL) {
2166	TAILQ_FOREACH(obj, &obj_list, next) {
2167	    if (obj->marker)
2168		continue;
2169	    if (object_match_name(obj, name))
2170		return (obj);
2171	}
2172
2173	path = find_library(name, refobj);
2174	if (path == NULL)
2175	    return (NULL);
2176    } else
2177	path = NULL;
2178
2179    /*
2180     * If we didn't find a match by pathname, or the name is not
2181     * supplied, open the file and check again by device and inode.
2182     * This avoids false mismatches caused by multiple links or ".."
2183     * in pathnames.
2184     *
2185     * To avoid a race, we open the file and use fstat() rather than
2186     * using stat().
2187     */
2188    fd = -1;
2189    if (fd_u == -1) {
2190	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2191	    _rtld_error("Cannot open \"%s\"", path);
2192	    free(path);
2193	    return (NULL);
2194	}
2195    } else {
2196	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2197	if (fd == -1) {
2198	    _rtld_error("Cannot dup fd");
2199	    free(path);
2200	    return (NULL);
2201	}
2202    }
2203    if (fstat(fd, &sb) == -1) {
2204	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2205	close(fd);
2206	free(path);
2207	return NULL;
2208    }
2209    TAILQ_FOREACH(obj, &obj_list, next) {
2210	if (obj->marker)
2211	    continue;
2212	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2213	    break;
2214    }
2215    if (obj != NULL && name != NULL) {
2216	object_add_name(obj, name);
2217	free(path);
2218	close(fd);
2219	return obj;
2220    }
2221    if (flags & RTLD_LO_NOLOAD) {
2222	free(path);
2223	close(fd);
2224	return (NULL);
2225    }
2226
2227    /* First use of this object, so we must map it in */
2228    obj = do_load_object(fd, name, path, &sb, flags);
2229    if (obj == NULL)
2230	free(path);
2231    close(fd);
2232
2233    return obj;
2234}
2235
2236static Obj_Entry *
2237do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2238  int flags)
2239{
2240    Obj_Entry *obj;
2241    struct statfs fs;
2242
2243    /*
2244     * but first, make sure that environment variables haven't been
2245     * used to circumvent the noexec flag on a filesystem.
2246     */
2247    if (dangerous_ld_env) {
2248	if (fstatfs(fd, &fs) != 0) {
2249	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2250	    return NULL;
2251	}
2252	if (fs.f_flags & MNT_NOEXEC) {
2253	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2254	    return NULL;
2255	}
2256    }
2257    dbg("loading \"%s\"", printable_path(path));
2258    obj = map_object(fd, printable_path(path), sbp);
2259    if (obj == NULL)
2260        return NULL;
2261
2262    /*
2263     * If DT_SONAME is present in the object, digest_dynamic2 already
2264     * added it to the object names.
2265     */
2266    if (name != NULL)
2267	object_add_name(obj, name);
2268    obj->path = path;
2269    digest_dynamic(obj, 0);
2270    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2271	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2272    if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2273      RTLD_LO_DLOPEN) {
2274	dbg("refusing to load non-loadable \"%s\"", obj->path);
2275	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2276	munmap(obj->mapbase, obj->mapsize);
2277	obj_free(obj);
2278	return (NULL);
2279    }
2280
2281    obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2282    TAILQ_INSERT_TAIL(&obj_list, obj, next);
2283    obj_count++;
2284    obj_loads++;
2285    linkmap_add(obj);	/* for GDB & dlinfo() */
2286    max_stack_flags |= obj->stack_flags;
2287
2288    dbg("  %p .. %p: %s", obj->mapbase,
2289         obj->mapbase + obj->mapsize - 1, obj->path);
2290    if (obj->textrel)
2291	dbg("  WARNING: %s has impure text", obj->path);
2292    LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2293	obj->path);
2294
2295    return obj;
2296}
2297
2298static Obj_Entry *
2299obj_from_addr(const void *addr)
2300{
2301    Obj_Entry *obj;
2302
2303    TAILQ_FOREACH(obj, &obj_list, next) {
2304	if (obj->marker)
2305	    continue;
2306	if (addr < (void *) obj->mapbase)
2307	    continue;
2308	if (addr < (void *) (obj->mapbase + obj->mapsize))
2309	    return obj;
2310    }
2311    return NULL;
2312}
2313
2314static void
2315preinit_main(void)
2316{
2317    Elf_Addr *preinit_addr;
2318    int index;
2319
2320    preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2321    if (preinit_addr == NULL)
2322	return;
2323
2324    for (index = 0; index < obj_main->preinit_array_num; index++) {
2325	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2326	    dbg("calling preinit function for %s at %p", obj_main->path,
2327	      (void *)preinit_addr[index]);
2328	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2329	      0, 0, obj_main->path);
2330	    call_init_pointer(obj_main, preinit_addr[index]);
2331	}
2332    }
2333}
2334
2335/*
2336 * Call the finalization functions for each of the objects in "list"
2337 * belonging to the DAG of "root" and referenced once. If NULL "root"
2338 * is specified, every finalization function will be called regardless
2339 * of the reference count and the list elements won't be freed. All of
2340 * the objects are expected to have non-NULL fini functions.
2341 */
2342static void
2343objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2344{
2345    Objlist_Entry *elm;
2346    char *saved_msg;
2347    Elf_Addr *fini_addr;
2348    int index;
2349
2350    assert(root == NULL || root->refcount == 1);
2351
2352    /*
2353     * Preserve the current error message since a fini function might
2354     * call into the dynamic linker and overwrite it.
2355     */
2356    saved_msg = errmsg_save();
2357    do {
2358	STAILQ_FOREACH(elm, list, link) {
2359	    if (root != NULL && (elm->obj->refcount != 1 ||
2360	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2361		continue;
2362	    /* Remove object from fini list to prevent recursive invocation. */
2363	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2364	    /*
2365	     * XXX: If a dlopen() call references an object while the
2366	     * fini function is in progress, we might end up trying to
2367	     * unload the referenced object in dlclose() or the object
2368	     * won't be unloaded although its fini function has been
2369	     * called.
2370	     */
2371	    lock_release(rtld_bind_lock, lockstate);
2372
2373	    /*
2374	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2375	     * When this happens, DT_FINI_ARRAY is processed first.
2376	     */
2377	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2378	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2379		for (index = elm->obj->fini_array_num - 1; index >= 0;
2380		  index--) {
2381		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2382			dbg("calling fini function for %s at %p",
2383			    elm->obj->path, (void *)fini_addr[index]);
2384			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2385			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2386			call_initfini_pointer(elm->obj, fini_addr[index]);
2387		    }
2388		}
2389	    }
2390	    if (elm->obj->fini != (Elf_Addr)NULL) {
2391		dbg("calling fini function for %s at %p", elm->obj->path,
2392		    (void *)elm->obj->fini);
2393		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2394		    0, 0, elm->obj->path);
2395		call_initfini_pointer(elm->obj, elm->obj->fini);
2396	    }
2397	    wlock_acquire(rtld_bind_lock, lockstate);
2398	    /* No need to free anything if process is going down. */
2399	    if (root != NULL)
2400	    	free(elm);
2401	    /*
2402	     * We must restart the list traversal after every fini call
2403	     * because a dlclose() call from the fini function or from
2404	     * another thread might have modified the reference counts.
2405	     */
2406	    break;
2407	}
2408    } while (elm != NULL);
2409    errmsg_restore(saved_msg);
2410}
2411
2412/*
2413 * Call the initialization functions for each of the objects in
2414 * "list".  All of the objects are expected to have non-NULL init
2415 * functions.
2416 */
2417static void
2418objlist_call_init(Objlist *list, RtldLockState *lockstate)
2419{
2420    Objlist_Entry *elm;
2421    Obj_Entry *obj;
2422    char *saved_msg;
2423    Elf_Addr *init_addr;
2424    int index;
2425
2426    /*
2427     * Clean init_scanned flag so that objects can be rechecked and
2428     * possibly initialized earlier if any of vectors called below
2429     * cause the change by using dlopen.
2430     */
2431    TAILQ_FOREACH(obj, &obj_list, next) {
2432	if (obj->marker)
2433	    continue;
2434	obj->init_scanned = false;
2435    }
2436
2437    /*
2438     * Preserve the current error message since an init function might
2439     * call into the dynamic linker and overwrite it.
2440     */
2441    saved_msg = errmsg_save();
2442    STAILQ_FOREACH(elm, list, link) {
2443	if (elm->obj->init_done) /* Initialized early. */
2444	    continue;
2445	/*
2446	 * Race: other thread might try to use this object before current
2447	 * one completes the initilization. Not much can be done here
2448	 * without better locking.
2449	 */
2450	elm->obj->init_done = true;
2451	lock_release(rtld_bind_lock, lockstate);
2452
2453        /*
2454         * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2455         * When this happens, DT_INIT is processed first.
2456         */
2457	if (elm->obj->init != (Elf_Addr)NULL) {
2458	    dbg("calling init function for %s at %p", elm->obj->path,
2459	        (void *)elm->obj->init);
2460	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2461	        0, 0, elm->obj->path);
2462	    call_initfini_pointer(elm->obj, elm->obj->init);
2463	}
2464	init_addr = (Elf_Addr *)elm->obj->init_array;
2465	if (init_addr != NULL) {
2466	    for (index = 0; index < elm->obj->init_array_num; index++) {
2467		if (init_addr[index] != 0 && init_addr[index] != 1) {
2468		    dbg("calling init function for %s at %p", elm->obj->path,
2469			(void *)init_addr[index]);
2470		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2471			(void *)init_addr[index], 0, 0, elm->obj->path);
2472		    call_init_pointer(elm->obj, init_addr[index]);
2473		}
2474	    }
2475	}
2476	wlock_acquire(rtld_bind_lock, lockstate);
2477    }
2478    errmsg_restore(saved_msg);
2479}
2480
2481static void
2482objlist_clear(Objlist *list)
2483{
2484    Objlist_Entry *elm;
2485
2486    while (!STAILQ_EMPTY(list)) {
2487	elm = STAILQ_FIRST(list);
2488	STAILQ_REMOVE_HEAD(list, link);
2489	free(elm);
2490    }
2491}
2492
2493static Objlist_Entry *
2494objlist_find(Objlist *list, const Obj_Entry *obj)
2495{
2496    Objlist_Entry *elm;
2497
2498    STAILQ_FOREACH(elm, list, link)
2499	if (elm->obj == obj)
2500	    return elm;
2501    return NULL;
2502}
2503
2504static void
2505objlist_init(Objlist *list)
2506{
2507    STAILQ_INIT(list);
2508}
2509
2510static void
2511objlist_push_head(Objlist *list, Obj_Entry *obj)
2512{
2513    Objlist_Entry *elm;
2514
2515    elm = NEW(Objlist_Entry);
2516    elm->obj = obj;
2517    STAILQ_INSERT_HEAD(list, elm, link);
2518}
2519
2520static void
2521objlist_push_tail(Objlist *list, Obj_Entry *obj)
2522{
2523    Objlist_Entry *elm;
2524
2525    elm = NEW(Objlist_Entry);
2526    elm->obj = obj;
2527    STAILQ_INSERT_TAIL(list, elm, link);
2528}
2529
2530static void
2531objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2532{
2533	Objlist_Entry *elm, *listelm;
2534
2535	STAILQ_FOREACH(listelm, list, link) {
2536		if (listelm->obj == listobj)
2537			break;
2538	}
2539	elm = NEW(Objlist_Entry);
2540	elm->obj = obj;
2541	if (listelm != NULL)
2542		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2543	else
2544		STAILQ_INSERT_TAIL(list, elm, link);
2545}
2546
2547static void
2548objlist_remove(Objlist *list, Obj_Entry *obj)
2549{
2550    Objlist_Entry *elm;
2551
2552    if ((elm = objlist_find(list, obj)) != NULL) {
2553	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2554	free(elm);
2555    }
2556}
2557
2558/*
2559 * Relocate dag rooted in the specified object.
2560 * Returns 0 on success, or -1 on failure.
2561 */
2562
2563static int
2564relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2565    int flags, RtldLockState *lockstate)
2566{
2567	Objlist_Entry *elm;
2568	int error;
2569
2570	error = 0;
2571	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2572		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2573		    lockstate);
2574		if (error == -1)
2575			break;
2576	}
2577	return (error);
2578}
2579
2580/*
2581 * Prepare for, or clean after, relocating an object marked with
2582 * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2583 * segments are remapped read-write.  After relocations are done, the
2584 * segment's permissions are returned back to the modes specified in
2585 * the phdrs.  If any relocation happened, or always for wired
2586 * program, COW is triggered.
2587 */
2588static int
2589reloc_textrel_prot(Obj_Entry *obj, bool before)
2590{
2591	const Elf_Phdr *ph;
2592	void *base;
2593	size_t l, sz;
2594	int prot;
2595
2596	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2597	    l--, ph++) {
2598		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2599			continue;
2600		base = obj->relocbase + trunc_page(ph->p_vaddr);
2601		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2602		    trunc_page(ph->p_vaddr);
2603		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2604		if (mprotect(base, sz, prot) == -1) {
2605			_rtld_error("%s: Cannot write-%sable text segment: %s",
2606			    obj->path, before ? "en" : "dis",
2607			    rtld_strerror(errno));
2608			return (-1);
2609		}
2610	}
2611	return (0);
2612}
2613
2614/*
2615 * Relocate single object.
2616 * Returns 0 on success, or -1 on failure.
2617 */
2618static int
2619relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2620    int flags, RtldLockState *lockstate)
2621{
2622
2623	if (obj->relocated)
2624		return (0);
2625	obj->relocated = true;
2626	if (obj != rtldobj)
2627		dbg("relocating \"%s\"", obj->path);
2628
2629	if (obj->symtab == NULL || obj->strtab == NULL ||
2630	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2631		_rtld_error("%s: Shared object has no run-time symbol table",
2632			    obj->path);
2633		return (-1);
2634	}
2635
2636	/* There are relocations to the write-protected text segment. */
2637	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2638		return (-1);
2639
2640	/* Process the non-PLT non-IFUNC relocations. */
2641	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2642		return (-1);
2643
2644	/* Re-protected the text segment. */
2645	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2646		return (-1);
2647
2648	/* Set the special PLT or GOT entries. */
2649	init_pltgot(obj);
2650
2651	/* Process the PLT relocations. */
2652	if (reloc_plt(obj) == -1)
2653		return (-1);
2654	/* Relocate the jump slots if we are doing immediate binding. */
2655	if (obj->bind_now || bind_now)
2656		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2657			return (-1);
2658
2659	/*
2660	 * Process the non-PLT IFUNC relocations.  The relocations are
2661	 * processed in two phases, because IFUNC resolvers may
2662	 * reference other symbols, which must be readily processed
2663	 * before resolvers are called.
2664	 */
2665	if (obj->non_plt_gnu_ifunc &&
2666	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2667		return (-1);
2668
2669	if (obj->relro_size > 0) {
2670		if (mprotect(obj->relro_page, obj->relro_size,
2671		    PROT_READ) == -1) {
2672			_rtld_error("%s: Cannot enforce relro protection: %s",
2673			    obj->path, rtld_strerror(errno));
2674			return (-1);
2675		}
2676	}
2677
2678	/*
2679	 * Set up the magic number and version in the Obj_Entry.  These
2680	 * were checked in the crt1.o from the original ElfKit, so we
2681	 * set them for backward compatibility.
2682	 */
2683	obj->magic = RTLD_MAGIC;
2684	obj->version = RTLD_VERSION;
2685
2686	return (0);
2687}
2688
2689/*
2690 * Relocate newly-loaded shared objects.  The argument is a pointer to
2691 * the Obj_Entry for the first such object.  All objects from the first
2692 * to the end of the list of objects are relocated.  Returns 0 on success,
2693 * or -1 on failure.
2694 */
2695static int
2696relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2697    int flags, RtldLockState *lockstate)
2698{
2699	Obj_Entry *obj;
2700	int error;
2701
2702	error = 0;
2703	obj = first;
2704	TAILQ_FOREACH_FROM(obj, &obj_list, next) {
2705		if (obj->marker)
2706			continue;
2707		error = relocate_object(obj, bind_now, rtldobj, flags,
2708		    lockstate);
2709		if (error == -1)
2710			break;
2711	}
2712	return (error);
2713}
2714
2715/*
2716 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2717 * referencing STT_GNU_IFUNC symbols is postponed till the other
2718 * relocations are done.  The indirect functions specified as
2719 * ifunc are allowed to call other symbols, so we need to have
2720 * objects relocated before asking for resolution from indirects.
2721 *
2722 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2723 * instead of the usual lazy handling of PLT slots.  It is
2724 * consistent with how GNU does it.
2725 */
2726static int
2727resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2728    RtldLockState *lockstate)
2729{
2730	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2731		return (-1);
2732	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2733	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2734		return (-1);
2735	return (0);
2736}
2737
2738static int
2739resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2740    RtldLockState *lockstate)
2741{
2742	Obj_Entry *obj;
2743
2744	obj = first;
2745	TAILQ_FOREACH_FROM(obj, &obj_list, next) {
2746		if (obj->marker)
2747			continue;
2748		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2749			return (-1);
2750	}
2751	return (0);
2752}
2753
2754static int
2755initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2756    RtldLockState *lockstate)
2757{
2758	Objlist_Entry *elm;
2759
2760	STAILQ_FOREACH(elm, list, link) {
2761		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2762		    lockstate) == -1)
2763			return (-1);
2764	}
2765	return (0);
2766}
2767
2768/*
2769 * Cleanup procedure.  It will be called (by the atexit mechanism) just
2770 * before the process exits.
2771 */
2772static void
2773rtld_exit(void)
2774{
2775    RtldLockState lockstate;
2776
2777    wlock_acquire(rtld_bind_lock, &lockstate);
2778    dbg("rtld_exit()");
2779    objlist_call_fini(&list_fini, NULL, &lockstate);
2780    /* No need to remove the items from the list, since we are exiting. */
2781    if (!libmap_disable)
2782        lm_fini();
2783    lock_release(rtld_bind_lock, &lockstate);
2784}
2785
2786/*
2787 * Iterate over a search path, translate each element, and invoke the
2788 * callback on the result.
2789 */
2790static void *
2791path_enumerate(const char *path, path_enum_proc callback, void *arg)
2792{
2793    const char *trans;
2794    if (path == NULL)
2795	return (NULL);
2796
2797    path += strspn(path, ":;");
2798    while (*path != '\0') {
2799	size_t len;
2800	char  *res;
2801
2802	len = strcspn(path, ":;");
2803	trans = lm_findn(NULL, path, len);
2804	if (trans)
2805	    res = callback(trans, strlen(trans), arg);
2806	else
2807	    res = callback(path, len, arg);
2808
2809	if (res != NULL)
2810	    return (res);
2811
2812	path += len;
2813	path += strspn(path, ":;");
2814    }
2815
2816    return (NULL);
2817}
2818
2819struct try_library_args {
2820    const char	*name;
2821    size_t	 namelen;
2822    char	*buffer;
2823    size_t	 buflen;
2824};
2825
2826static void *
2827try_library_path(const char *dir, size_t dirlen, void *param)
2828{
2829    struct try_library_args *arg;
2830
2831    arg = param;
2832    if (*dir == '/' || trust) {
2833	char *pathname;
2834
2835	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2836		return (NULL);
2837
2838	pathname = arg->buffer;
2839	strncpy(pathname, dir, dirlen);
2840	pathname[dirlen] = '/';
2841	strcpy(pathname + dirlen + 1, arg->name);
2842
2843	dbg("  Trying \"%s\"", pathname);
2844	if (access(pathname, F_OK) == 0) {		/* We found it */
2845	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2846	    strcpy(pathname, arg->buffer);
2847	    return (pathname);
2848	}
2849    }
2850    return (NULL);
2851}
2852
2853static char *
2854search_library_path(const char *name, const char *path)
2855{
2856    char *p;
2857    struct try_library_args arg;
2858
2859    if (path == NULL)
2860	return NULL;
2861
2862    arg.name = name;
2863    arg.namelen = strlen(name);
2864    arg.buffer = xmalloc(PATH_MAX);
2865    arg.buflen = PATH_MAX;
2866
2867    p = path_enumerate(path, try_library_path, &arg);
2868
2869    free(arg.buffer);
2870
2871    return (p);
2872}
2873
2874int
2875dlclose(void *handle)
2876{
2877    Obj_Entry *root;
2878    RtldLockState lockstate;
2879
2880    wlock_acquire(rtld_bind_lock, &lockstate);
2881    root = dlcheck(handle);
2882    if (root == NULL) {
2883	lock_release(rtld_bind_lock, &lockstate);
2884	return -1;
2885    }
2886    LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2887	root->path);
2888
2889    /* Unreference the object and its dependencies. */
2890    root->dl_refcount--;
2891
2892    if (root->refcount == 1) {
2893	/*
2894	 * The object will be no longer referenced, so we must unload it.
2895	 * First, call the fini functions.
2896	 */
2897	objlist_call_fini(&list_fini, root, &lockstate);
2898
2899	unref_dag(root);
2900
2901	/* Finish cleaning up the newly-unreferenced objects. */
2902	GDB_STATE(RT_DELETE,&root->linkmap);
2903	unload_object(root);
2904	GDB_STATE(RT_CONSISTENT,NULL);
2905    } else
2906	unref_dag(root);
2907
2908    LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2909    lock_release(rtld_bind_lock, &lockstate);
2910    return 0;
2911}
2912
2913char *
2914dlerror(void)
2915{
2916    char *msg = error_message;
2917    error_message = NULL;
2918    return msg;
2919}
2920
2921/*
2922 * This function is deprecated and has no effect.
2923 */
2924void
2925dllockinit(void *context,
2926	   void *(*lock_create)(void *context),
2927           void (*rlock_acquire)(void *lock),
2928           void (*wlock_acquire)(void *lock),
2929           void (*lock_release)(void *lock),
2930           void (*lock_destroy)(void *lock),
2931	   void (*context_destroy)(void *context))
2932{
2933    static void *cur_context;
2934    static void (*cur_context_destroy)(void *);
2935
2936    /* Just destroy the context from the previous call, if necessary. */
2937    if (cur_context_destroy != NULL)
2938	cur_context_destroy(cur_context);
2939    cur_context = context;
2940    cur_context_destroy = context_destroy;
2941}
2942
2943void *
2944dlopen(const char *name, int mode)
2945{
2946
2947	return (rtld_dlopen(name, -1, mode));
2948}
2949
2950void *
2951fdlopen(int fd, int mode)
2952{
2953
2954	return (rtld_dlopen(NULL, fd, mode));
2955}
2956
2957static void *
2958rtld_dlopen(const char *name, int fd, int mode)
2959{
2960    RtldLockState lockstate;
2961    int lo_flags;
2962
2963    LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2964    ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2965    if (ld_tracing != NULL) {
2966	rlock_acquire(rtld_bind_lock, &lockstate);
2967	if (sigsetjmp(lockstate.env, 0) != 0)
2968	    lock_upgrade(rtld_bind_lock, &lockstate);
2969	environ = (char **)*get_program_var_addr("environ", &lockstate);
2970	lock_release(rtld_bind_lock, &lockstate);
2971    }
2972    lo_flags = RTLD_LO_DLOPEN;
2973    if (mode & RTLD_NODELETE)
2974	    lo_flags |= RTLD_LO_NODELETE;
2975    if (mode & RTLD_NOLOAD)
2976	    lo_flags |= RTLD_LO_NOLOAD;
2977    if (ld_tracing != NULL)
2978	    lo_flags |= RTLD_LO_TRACE;
2979
2980    return (dlopen_object(name, fd, obj_main, lo_flags,
2981      mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2982}
2983
2984static void
2985dlopen_cleanup(Obj_Entry *obj)
2986{
2987
2988	obj->dl_refcount--;
2989	unref_dag(obj);
2990	if (obj->refcount == 0)
2991		unload_object(obj);
2992}
2993
2994static Obj_Entry *
2995dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2996    int mode, RtldLockState *lockstate)
2997{
2998    Obj_Entry *old_obj_tail;
2999    Obj_Entry *obj;
3000    Objlist initlist;
3001    RtldLockState mlockstate;
3002    int result;
3003
3004    objlist_init(&initlist);
3005
3006    if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3007	wlock_acquire(rtld_bind_lock, &mlockstate);
3008	lockstate = &mlockstate;
3009    }
3010    GDB_STATE(RT_ADD,NULL);
3011
3012    old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3013    obj = NULL;
3014    if (name == NULL && fd == -1) {
3015	obj = obj_main;
3016	obj->refcount++;
3017    } else {
3018	obj = load_object(name, fd, refobj, lo_flags);
3019    }
3020
3021    if (obj) {
3022	obj->dl_refcount++;
3023	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3024	    objlist_push_tail(&list_global, obj);
3025	if (globallist_next(old_obj_tail) != NULL) {
3026	    /* We loaded something new. */
3027	    assert(globallist_next(old_obj_tail) == obj);
3028	    result = load_needed_objects(obj,
3029		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3030	    init_dag(obj);
3031	    ref_dag(obj);
3032	    if (result != -1)
3033		result = rtld_verify_versions(&obj->dagmembers);
3034	    if (result != -1 && ld_tracing)
3035		goto trace;
3036	    if (result == -1 || relocate_object_dag(obj,
3037	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3038	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3039	      lockstate) == -1) {
3040		dlopen_cleanup(obj);
3041		obj = NULL;
3042	    } else if (lo_flags & RTLD_LO_EARLY) {
3043		/*
3044		 * Do not call the init functions for early loaded
3045		 * filtees.  The image is still not initialized enough
3046		 * for them to work.
3047		 *
3048		 * Our object is found by the global object list and
3049		 * will be ordered among all init calls done right
3050		 * before transferring control to main.
3051		 */
3052	    } else {
3053		/* Make list of init functions to call. */
3054		initlist_add_objects(obj, obj, &initlist);
3055	    }
3056	    /*
3057	     * Process all no_delete or global objects here, given
3058	     * them own DAGs to prevent their dependencies from being
3059	     * unloaded.  This has to be done after we have loaded all
3060	     * of the dependencies, so that we do not miss any.
3061	     */
3062	    if (obj != NULL)
3063		process_z(obj);
3064	} else {
3065	    /*
3066	     * Bump the reference counts for objects on this DAG.  If
3067	     * this is the first dlopen() call for the object that was
3068	     * already loaded as a dependency, initialize the dag
3069	     * starting at it.
3070	     */
3071	    init_dag(obj);
3072	    ref_dag(obj);
3073
3074	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3075		goto trace;
3076	}
3077	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3078	  obj->z_nodelete) && !obj->ref_nodel) {
3079	    dbg("obj %s nodelete", obj->path);
3080	    ref_dag(obj);
3081	    obj->z_nodelete = obj->ref_nodel = true;
3082	}
3083    }
3084
3085    LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3086	name);
3087    GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3088
3089    if (!(lo_flags & RTLD_LO_EARLY)) {
3090	map_stacks_exec(lockstate);
3091    }
3092
3093    if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3094      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3095      lockstate) == -1) {
3096	objlist_clear(&initlist);
3097	dlopen_cleanup(obj);
3098	if (lockstate == &mlockstate)
3099	    lock_release(rtld_bind_lock, lockstate);
3100	return (NULL);
3101    }
3102
3103    if (!(lo_flags & RTLD_LO_EARLY)) {
3104	/* Call the init functions. */
3105	objlist_call_init(&initlist, lockstate);
3106    }
3107    objlist_clear(&initlist);
3108    if (lockstate == &mlockstate)
3109	lock_release(rtld_bind_lock, lockstate);
3110    return obj;
3111trace:
3112    trace_loaded_objects(obj);
3113    if (lockstate == &mlockstate)
3114	lock_release(rtld_bind_lock, lockstate);
3115    exit(0);
3116}
3117
3118static void *
3119do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3120    int flags)
3121{
3122    DoneList donelist;
3123    const Obj_Entry *obj, *defobj;
3124    const Elf_Sym *def;
3125    SymLook req;
3126    RtldLockState lockstate;
3127#ifndef __ia64__
3128    tls_index ti;
3129#endif
3130    void *sym;
3131    int res;
3132
3133    def = NULL;
3134    defobj = NULL;
3135    symlook_init(&req, name);
3136    req.ventry = ve;
3137    req.flags = flags | SYMLOOK_IN_PLT;
3138    req.lockstate = &lockstate;
3139
3140    LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3141    rlock_acquire(rtld_bind_lock, &lockstate);
3142    if (sigsetjmp(lockstate.env, 0) != 0)
3143	    lock_upgrade(rtld_bind_lock, &lockstate);
3144    if (handle == NULL || handle == RTLD_NEXT ||
3145	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3146
3147	if ((obj = obj_from_addr(retaddr)) == NULL) {
3148	    _rtld_error("Cannot determine caller's shared object");
3149	    lock_release(rtld_bind_lock, &lockstate);
3150	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3151	    return NULL;
3152	}
3153	if (handle == NULL) {	/* Just the caller's shared object. */
3154	    res = symlook_obj(&req, obj);
3155	    if (res == 0) {
3156		def = req.sym_out;
3157		defobj = req.defobj_out;
3158	    }
3159	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3160		   handle == RTLD_SELF) { /* ... caller included */
3161	    if (handle == RTLD_NEXT)
3162		obj = globallist_next(obj);
3163	    TAILQ_FOREACH_FROM(obj, &obj_list, next) {
3164		if (obj->marker)
3165		    continue;
3166		res = symlook_obj(&req, obj);
3167		if (res == 0) {
3168		    if (def == NULL ||
3169		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3170			def = req.sym_out;
3171			defobj = req.defobj_out;
3172			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3173			    break;
3174		    }
3175		}
3176	    }
3177	    /*
3178	     * Search the dynamic linker itself, and possibly resolve the
3179	     * symbol from there.  This is how the application links to
3180	     * dynamic linker services such as dlopen.
3181	     */
3182	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3183		res = symlook_obj(&req, &obj_rtld);
3184		if (res == 0) {
3185		    def = req.sym_out;
3186		    defobj = req.defobj_out;
3187		}
3188	    }
3189	} else {
3190	    assert(handle == RTLD_DEFAULT);
3191	    res = symlook_default(&req, obj);
3192	    if (res == 0) {
3193		defobj = req.defobj_out;
3194		def = req.sym_out;
3195	    }
3196	}
3197    } else {
3198	if ((obj = dlcheck(handle)) == NULL) {
3199	    lock_release(rtld_bind_lock, &lockstate);
3200	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3201	    return NULL;
3202	}
3203
3204	donelist_init(&donelist);
3205	if (obj->mainprog) {
3206            /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3207	    res = symlook_global(&req, &donelist);
3208	    if (res == 0) {
3209		def = req.sym_out;
3210		defobj = req.defobj_out;
3211	    }
3212	    /*
3213	     * Search the dynamic linker itself, and possibly resolve the
3214	     * symbol from there.  This is how the application links to
3215	     * dynamic linker services such as dlopen.
3216	     */
3217	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3218		res = symlook_obj(&req, &obj_rtld);
3219		if (res == 0) {
3220		    def = req.sym_out;
3221		    defobj = req.defobj_out;
3222		}
3223	    }
3224	}
3225	else {
3226	    /* Search the whole DAG rooted at the given object. */
3227	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3228	    if (res == 0) {
3229		def = req.sym_out;
3230		defobj = req.defobj_out;
3231	    }
3232	}
3233    }
3234
3235    if (def != NULL) {
3236	lock_release(rtld_bind_lock, &lockstate);
3237
3238	/*
3239	 * The value required by the caller is derived from the value
3240	 * of the symbol. For the ia64 architecture, we need to
3241	 * construct a function descriptor which the caller can use to
3242	 * call the function with the right 'gp' value. For other
3243	 * architectures and for non-functions, the value is simply
3244	 * the relocated value of the symbol.
3245	 */
3246	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3247	    sym = make_function_pointer(def, defobj);
3248	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3249	    sym = rtld_resolve_ifunc(defobj, def);
3250	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3251#ifdef __ia64__
3252	    return (__tls_get_addr(defobj->tlsindex, def->st_value));
3253#else
3254	    ti.ti_module = defobj->tlsindex;
3255	    ti.ti_offset = def->st_value;
3256	    sym = __tls_get_addr(&ti);
3257#endif
3258	} else
3259	    sym = defobj->relocbase + def->st_value;
3260	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3261	return (sym);
3262    }
3263
3264    _rtld_error("Undefined symbol \"%s\"", name);
3265    lock_release(rtld_bind_lock, &lockstate);
3266    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3267    return NULL;
3268}
3269
3270void *
3271dlsym(void *handle, const char *name)
3272{
3273	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3274	    SYMLOOK_DLSYM);
3275}
3276
3277dlfunc_t
3278dlfunc(void *handle, const char *name)
3279{
3280	union {
3281		void *d;
3282		dlfunc_t f;
3283	} rv;
3284
3285	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3286	    SYMLOOK_DLSYM);
3287	return (rv.f);
3288}
3289
3290void *
3291dlvsym(void *handle, const char *name, const char *version)
3292{
3293	Ver_Entry ventry;
3294
3295	ventry.name = version;
3296	ventry.file = NULL;
3297	ventry.hash = elf_hash(version);
3298	ventry.flags= 0;
3299	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3300	    SYMLOOK_DLSYM);
3301}
3302
3303int
3304_rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3305{
3306    const Obj_Entry *obj;
3307    RtldLockState lockstate;
3308
3309    rlock_acquire(rtld_bind_lock, &lockstate);
3310    obj = obj_from_addr(addr);
3311    if (obj == NULL) {
3312        _rtld_error("No shared object contains address");
3313	lock_release(rtld_bind_lock, &lockstate);
3314        return (0);
3315    }
3316    rtld_fill_dl_phdr_info(obj, phdr_info);
3317    lock_release(rtld_bind_lock, &lockstate);
3318    return (1);
3319}
3320
3321int
3322dladdr(const void *addr, Dl_info *info)
3323{
3324    const Obj_Entry *obj;
3325    const Elf_Sym *def;
3326    void *symbol_addr;
3327    unsigned long symoffset;
3328    RtldLockState lockstate;
3329
3330    rlock_acquire(rtld_bind_lock, &lockstate);
3331    obj = obj_from_addr(addr);
3332    if (obj == NULL) {
3333        _rtld_error("No shared object contains address");
3334	lock_release(rtld_bind_lock, &lockstate);
3335        return 0;
3336    }
3337    info->dli_fname = obj->path;
3338    info->dli_fbase = obj->mapbase;
3339    info->dli_saddr = (void *)0;
3340    info->dli_sname = NULL;
3341
3342    /*
3343     * Walk the symbol list looking for the symbol whose address is
3344     * closest to the address sent in.
3345     */
3346    for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3347        def = obj->symtab + symoffset;
3348
3349        /*
3350         * For skip the symbol if st_shndx is either SHN_UNDEF or
3351         * SHN_COMMON.
3352         */
3353        if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3354            continue;
3355
3356        /*
3357         * If the symbol is greater than the specified address, or if it
3358         * is further away from addr than the current nearest symbol,
3359         * then reject it.
3360         */
3361        symbol_addr = obj->relocbase + def->st_value;
3362        if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3363            continue;
3364
3365        /* Update our idea of the nearest symbol. */
3366        info->dli_sname = obj->strtab + def->st_name;
3367        info->dli_saddr = symbol_addr;
3368
3369        /* Exact match? */
3370        if (info->dli_saddr == addr)
3371            break;
3372    }
3373    lock_release(rtld_bind_lock, &lockstate);
3374    return 1;
3375}
3376
3377int
3378dlinfo(void *handle, int request, void *p)
3379{
3380    const Obj_Entry *obj;
3381    RtldLockState lockstate;
3382    int error;
3383
3384    rlock_acquire(rtld_bind_lock, &lockstate);
3385
3386    if (handle == NULL || handle == RTLD_SELF) {
3387	void *retaddr;
3388
3389	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3390	if ((obj = obj_from_addr(retaddr)) == NULL)
3391	    _rtld_error("Cannot determine caller's shared object");
3392    } else
3393	obj = dlcheck(handle);
3394
3395    if (obj == NULL) {
3396	lock_release(rtld_bind_lock, &lockstate);
3397	return (-1);
3398    }
3399
3400    error = 0;
3401    switch (request) {
3402    case RTLD_DI_LINKMAP:
3403	*((struct link_map const **)p) = &obj->linkmap;
3404	break;
3405    case RTLD_DI_ORIGIN:
3406	error = rtld_dirname(obj->path, p);
3407	break;
3408
3409    case RTLD_DI_SERINFOSIZE:
3410    case RTLD_DI_SERINFO:
3411	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3412	break;
3413
3414    default:
3415	_rtld_error("Invalid request %d passed to dlinfo()", request);
3416	error = -1;
3417    }
3418
3419    lock_release(rtld_bind_lock, &lockstate);
3420
3421    return (error);
3422}
3423
3424static void
3425rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3426{
3427
3428	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3429	phdr_info->dlpi_name = obj->path;
3430	phdr_info->dlpi_phdr = obj->phdr;
3431	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3432	phdr_info->dlpi_tls_modid = obj->tlsindex;
3433	phdr_info->dlpi_tls_data = obj->tlsinit;
3434	phdr_info->dlpi_adds = obj_loads;
3435	phdr_info->dlpi_subs = obj_loads - obj_count;
3436}
3437
3438int
3439dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3440{
3441	struct dl_phdr_info phdr_info;
3442	Obj_Entry *obj, marker;
3443	RtldLockState bind_lockstate, phdr_lockstate;
3444	int error;
3445
3446	bzero(&marker, sizeof(marker));
3447	marker.marker = true;
3448	error = 0;
3449
3450	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3451	rlock_acquire(rtld_bind_lock, &bind_lockstate);
3452	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3453		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3454		rtld_fill_dl_phdr_info(obj, &phdr_info);
3455		lock_release(rtld_bind_lock, &bind_lockstate);
3456
3457		error = callback(&phdr_info, sizeof phdr_info, param);
3458
3459		rlock_acquire(rtld_bind_lock, &bind_lockstate);
3460		obj = globallist_next(&marker);
3461		TAILQ_REMOVE(&obj_list, &marker, next);
3462		if (error != 0) {
3463			lock_release(rtld_bind_lock, &bind_lockstate);
3464			lock_release(rtld_phdr_lock, &phdr_lockstate);
3465			return (error);
3466		}
3467	}
3468
3469	if (error == 0) {
3470		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3471		lock_release(rtld_bind_lock, &bind_lockstate);
3472		error = callback(&phdr_info, sizeof(phdr_info), param);
3473	}
3474	lock_release(rtld_phdr_lock, &phdr_lockstate);
3475	return (error);
3476}
3477
3478static void *
3479fill_search_info(const char *dir, size_t dirlen, void *param)
3480{
3481    struct fill_search_info_args *arg;
3482
3483    arg = param;
3484
3485    if (arg->request == RTLD_DI_SERINFOSIZE) {
3486	arg->serinfo->dls_cnt ++;
3487	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3488    } else {
3489	struct dl_serpath *s_entry;
3490
3491	s_entry = arg->serpath;
3492	s_entry->dls_name  = arg->strspace;
3493	s_entry->dls_flags = arg->flags;
3494
3495	strncpy(arg->strspace, dir, dirlen);
3496	arg->strspace[dirlen] = '\0';
3497
3498	arg->strspace += dirlen + 1;
3499	arg->serpath++;
3500    }
3501
3502    return (NULL);
3503}
3504
3505static int
3506do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3507{
3508    struct dl_serinfo _info;
3509    struct fill_search_info_args args;
3510
3511    args.request = RTLD_DI_SERINFOSIZE;
3512    args.serinfo = &_info;
3513
3514    _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3515    _info.dls_cnt  = 0;
3516
3517    path_enumerate(obj->rpath, fill_search_info, &args);
3518    path_enumerate(ld_library_path, fill_search_info, &args);
3519    path_enumerate(obj->runpath, fill_search_info, &args);
3520    path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3521    if (!obj->z_nodeflib)
3522      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3523
3524
3525    if (request == RTLD_DI_SERINFOSIZE) {
3526	info->dls_size = _info.dls_size;
3527	info->dls_cnt = _info.dls_cnt;
3528	return (0);
3529    }
3530
3531    if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3532	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3533	return (-1);
3534    }
3535
3536    args.request  = RTLD_DI_SERINFO;
3537    args.serinfo  = info;
3538    args.serpath  = &info->dls_serpath[0];
3539    args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3540
3541    args.flags = LA_SER_RUNPATH;
3542    if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3543	return (-1);
3544
3545    args.flags = LA_SER_LIBPATH;
3546    if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3547	return (-1);
3548
3549    args.flags = LA_SER_RUNPATH;
3550    if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3551	return (-1);
3552
3553    args.flags = LA_SER_CONFIG;
3554    if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3555      != NULL)
3556	return (-1);
3557
3558    args.flags = LA_SER_DEFAULT;
3559    if (!obj->z_nodeflib &&
3560      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3561	return (-1);
3562    return (0);
3563}
3564
3565static int
3566rtld_dirname(const char *path, char *bname)
3567{
3568    const char *endp;
3569
3570    /* Empty or NULL string gets treated as "." */
3571    if (path == NULL || *path == '\0') {
3572	bname[0] = '.';
3573	bname[1] = '\0';
3574	return (0);
3575    }
3576
3577    /* Strip trailing slashes */
3578    endp = path + strlen(path) - 1;
3579    while (endp > path && *endp == '/')
3580	endp--;
3581
3582    /* Find the start of the dir */
3583    while (endp > path && *endp != '/')
3584	endp--;
3585
3586    /* Either the dir is "/" or there are no slashes */
3587    if (endp == path) {
3588	bname[0] = *endp == '/' ? '/' : '.';
3589	bname[1] = '\0';
3590	return (0);
3591    } else {
3592	do {
3593	    endp--;
3594	} while (endp > path && *endp == '/');
3595    }
3596
3597    if (endp - path + 2 > PATH_MAX)
3598    {
3599	_rtld_error("Filename is too long: %s", path);
3600	return(-1);
3601    }
3602
3603    strncpy(bname, path, endp - path + 1);
3604    bname[endp - path + 1] = '\0';
3605    return (0);
3606}
3607
3608static int
3609rtld_dirname_abs(const char *path, char *base)
3610{
3611	char *last;
3612
3613	if (realpath(path, base) == NULL)
3614		return (-1);
3615	dbg("%s -> %s", path, base);
3616	last = strrchr(base, '/');
3617	if (last == NULL)
3618		return (-1);
3619	if (last != base)
3620		*last = '\0';
3621	return (0);
3622}
3623
3624static void
3625linkmap_add(Obj_Entry *obj)
3626{
3627    struct link_map *l = &obj->linkmap;
3628    struct link_map *prev;
3629
3630    obj->linkmap.l_name = obj->path;
3631    obj->linkmap.l_addr = obj->mapbase;
3632    obj->linkmap.l_ld = obj->dynamic;
3633#ifdef __mips__
3634    /* GDB needs load offset on MIPS to use the symbols */
3635    obj->linkmap.l_offs = obj->relocbase;
3636#endif
3637
3638    if (r_debug.r_map == NULL) {
3639	r_debug.r_map = l;
3640	return;
3641    }
3642
3643    /*
3644     * Scan to the end of the list, but not past the entry for the
3645     * dynamic linker, which we want to keep at the very end.
3646     */
3647    for (prev = r_debug.r_map;
3648      prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3649      prev = prev->l_next)
3650	;
3651
3652    /* Link in the new entry. */
3653    l->l_prev = prev;
3654    l->l_next = prev->l_next;
3655    if (l->l_next != NULL)
3656	l->l_next->l_prev = l;
3657    prev->l_next = l;
3658}
3659
3660static void
3661linkmap_delete(Obj_Entry *obj)
3662{
3663    struct link_map *l = &obj->linkmap;
3664
3665    if (l->l_prev == NULL) {
3666	if ((r_debug.r_map = l->l_next) != NULL)
3667	    l->l_next->l_prev = NULL;
3668	return;
3669    }
3670
3671    if ((l->l_prev->l_next = l->l_next) != NULL)
3672	l->l_next->l_prev = l->l_prev;
3673}
3674
3675/*
3676 * Function for the debugger to set a breakpoint on to gain control.
3677 *
3678 * The two parameters allow the debugger to easily find and determine
3679 * what the runtime loader is doing and to whom it is doing it.
3680 *
3681 * When the loadhook trap is hit (r_debug_state, set at program
3682 * initialization), the arguments can be found on the stack:
3683 *
3684 *  +8   struct link_map *m
3685 *  +4   struct r_debug  *rd
3686 *  +0   RetAddr
3687 */
3688void
3689r_debug_state(struct r_debug* rd, struct link_map *m)
3690{
3691    /*
3692     * The following is a hack to force the compiler to emit calls to
3693     * this function, even when optimizing.  If the function is empty,
3694     * the compiler is not obliged to emit any code for calls to it,
3695     * even when marked __noinline.  However, gdb depends on those
3696     * calls being made.
3697     */
3698    __compiler_membar();
3699}
3700
3701/*
3702 * A function called after init routines have completed. This can be used to
3703 * break before a program's entry routine is called, and can be used when
3704 * main is not available in the symbol table.
3705 */
3706void
3707_r_debug_postinit(struct link_map *m)
3708{
3709
3710	/* See r_debug_state(). */
3711	__compiler_membar();
3712}
3713
3714/*
3715 * Get address of the pointer variable in the main program.
3716 * Prefer non-weak symbol over the weak one.
3717 */
3718static const void **
3719get_program_var_addr(const char *name, RtldLockState *lockstate)
3720{
3721    SymLook req;
3722    DoneList donelist;
3723
3724    symlook_init(&req, name);
3725    req.lockstate = lockstate;
3726    donelist_init(&donelist);
3727    if (symlook_global(&req, &donelist) != 0)
3728	return (NULL);
3729    if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3730	return ((const void **)make_function_pointer(req.sym_out,
3731	  req.defobj_out));
3732    else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3733	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3734    else
3735	return ((const void **)(req.defobj_out->relocbase +
3736	  req.sym_out->st_value));
3737}
3738
3739/*
3740 * Set a pointer variable in the main program to the given value.  This
3741 * is used to set key variables such as "environ" before any of the
3742 * init functions are called.
3743 */
3744static void
3745set_program_var(const char *name, const void *value)
3746{
3747    const void **addr;
3748
3749    if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3750	dbg("\"%s\": *%p <-- %p", name, addr, value);
3751	*addr = value;
3752    }
3753}
3754
3755/*
3756 * Search the global objects, including dependencies and main object,
3757 * for the given symbol.
3758 */
3759static int
3760symlook_global(SymLook *req, DoneList *donelist)
3761{
3762    SymLook req1;
3763    const Objlist_Entry *elm;
3764    int res;
3765
3766    symlook_init_from_req(&req1, req);
3767
3768    /* Search all objects loaded at program start up. */
3769    if (req->defobj_out == NULL ||
3770      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3771	res = symlook_list(&req1, &list_main, donelist);
3772	if (res == 0 && (req->defobj_out == NULL ||
3773	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3774	    req->sym_out = req1.sym_out;
3775	    req->defobj_out = req1.defobj_out;
3776	    assert(req->defobj_out != NULL);
3777	}
3778    }
3779
3780    /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3781    STAILQ_FOREACH(elm, &list_global, link) {
3782	if (req->defobj_out != NULL &&
3783	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3784	    break;
3785	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3786	if (res == 0 && (req->defobj_out == NULL ||
3787	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3788	    req->sym_out = req1.sym_out;
3789	    req->defobj_out = req1.defobj_out;
3790	    assert(req->defobj_out != NULL);
3791	}
3792    }
3793
3794    return (req->sym_out != NULL ? 0 : ESRCH);
3795}
3796
3797/*
3798 * Given a symbol name in a referencing object, find the corresponding
3799 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3800 * no definition was found.  Returns a pointer to the Obj_Entry of the
3801 * defining object via the reference parameter DEFOBJ_OUT.
3802 */
3803static int
3804symlook_default(SymLook *req, const Obj_Entry *refobj)
3805{
3806    DoneList donelist;
3807    const Objlist_Entry *elm;
3808    SymLook req1;
3809    int res;
3810
3811    donelist_init(&donelist);
3812    symlook_init_from_req(&req1, req);
3813
3814    /* Look first in the referencing object if linked symbolically. */
3815    if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3816	res = symlook_obj(&req1, refobj);
3817	if (res == 0) {
3818	    req->sym_out = req1.sym_out;
3819	    req->defobj_out = req1.defobj_out;
3820	    assert(req->defobj_out != NULL);
3821	}
3822    }
3823
3824    symlook_global(req, &donelist);
3825
3826    /* Search all dlopened DAGs containing the referencing object. */
3827    STAILQ_FOREACH(elm, &refobj->dldags, link) {
3828	if (req->sym_out != NULL &&
3829	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3830	    break;
3831	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3832	if (res == 0 && (req->sym_out == NULL ||
3833	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3834	    req->sym_out = req1.sym_out;
3835	    req->defobj_out = req1.defobj_out;
3836	    assert(req->defobj_out != NULL);
3837	}
3838    }
3839
3840    /*
3841     * Search the dynamic linker itself, and possibly resolve the
3842     * symbol from there.  This is how the application links to
3843     * dynamic linker services such as dlopen.
3844     */
3845    if (req->sym_out == NULL ||
3846      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3847	res = symlook_obj(&req1, &obj_rtld);
3848	if (res == 0) {
3849	    req->sym_out = req1.sym_out;
3850	    req->defobj_out = req1.defobj_out;
3851	    assert(req->defobj_out != NULL);
3852	}
3853    }
3854
3855    return (req->sym_out != NULL ? 0 : ESRCH);
3856}
3857
3858static int
3859symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3860{
3861    const Elf_Sym *def;
3862    const Obj_Entry *defobj;
3863    const Objlist_Entry *elm;
3864    SymLook req1;
3865    int res;
3866
3867    def = NULL;
3868    defobj = NULL;
3869    STAILQ_FOREACH(elm, objlist, link) {
3870	if (donelist_check(dlp, elm->obj))
3871	    continue;
3872	symlook_init_from_req(&req1, req);
3873	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3874	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3875		def = req1.sym_out;
3876		defobj = req1.defobj_out;
3877		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3878		    break;
3879	    }
3880	}
3881    }
3882    if (def != NULL) {
3883	req->sym_out = def;
3884	req->defobj_out = defobj;
3885	return (0);
3886    }
3887    return (ESRCH);
3888}
3889
3890/*
3891 * Search the chain of DAGS cointed to by the given Needed_Entry
3892 * for a symbol of the given name.  Each DAG is scanned completely
3893 * before advancing to the next one.  Returns a pointer to the symbol,
3894 * or NULL if no definition was found.
3895 */
3896static int
3897symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3898{
3899    const Elf_Sym *def;
3900    const Needed_Entry *n;
3901    const Obj_Entry *defobj;
3902    SymLook req1;
3903    int res;
3904
3905    def = NULL;
3906    defobj = NULL;
3907    symlook_init_from_req(&req1, req);
3908    for (n = needed; n != NULL; n = n->next) {
3909	if (n->obj == NULL ||
3910	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3911	    continue;
3912	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3913	    def = req1.sym_out;
3914	    defobj = req1.defobj_out;
3915	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3916		break;
3917	}
3918    }
3919    if (def != NULL) {
3920	req->sym_out = def;
3921	req->defobj_out = defobj;
3922	return (0);
3923    }
3924    return (ESRCH);
3925}
3926
3927/*
3928 * Search the symbol table of a single shared object for a symbol of
3929 * the given name and version, if requested.  Returns a pointer to the
3930 * symbol, or NULL if no definition was found.  If the object is
3931 * filter, return filtered symbol from filtee.
3932 *
3933 * The symbol's hash value is passed in for efficiency reasons; that
3934 * eliminates many recomputations of the hash value.
3935 */
3936int
3937symlook_obj(SymLook *req, const Obj_Entry *obj)
3938{
3939    DoneList donelist;
3940    SymLook req1;
3941    int flags, res, mres;
3942
3943    /*
3944     * If there is at least one valid hash at this point, we prefer to
3945     * use the faster GNU version if available.
3946     */
3947    if (obj->valid_hash_gnu)
3948	mres = symlook_obj1_gnu(req, obj);
3949    else if (obj->valid_hash_sysv)
3950	mres = symlook_obj1_sysv(req, obj);
3951    else
3952	return (EINVAL);
3953
3954    if (mres == 0) {
3955	if (obj->needed_filtees != NULL) {
3956	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3957	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3958	    donelist_init(&donelist);
3959	    symlook_init_from_req(&req1, req);
3960	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3961	    if (res == 0) {
3962		req->sym_out = req1.sym_out;
3963		req->defobj_out = req1.defobj_out;
3964	    }
3965	    return (res);
3966	}
3967	if (obj->needed_aux_filtees != NULL) {
3968	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3969	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3970	    donelist_init(&donelist);
3971	    symlook_init_from_req(&req1, req);
3972	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3973	    if (res == 0) {
3974		req->sym_out = req1.sym_out;
3975		req->defobj_out = req1.defobj_out;
3976		return (res);
3977	    }
3978	}
3979    }
3980    return (mres);
3981}
3982
3983/* Symbol match routine common to both hash functions */
3984static bool
3985matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3986    const unsigned long symnum)
3987{
3988	Elf_Versym verndx;
3989	const Elf_Sym *symp;
3990	const char *strp;
3991
3992	symp = obj->symtab + symnum;
3993	strp = obj->strtab + symp->st_name;
3994
3995	switch (ELF_ST_TYPE(symp->st_info)) {
3996	case STT_FUNC:
3997	case STT_NOTYPE:
3998	case STT_OBJECT:
3999	case STT_COMMON:
4000	case STT_GNU_IFUNC:
4001		if (symp->st_value == 0)
4002			return (false);
4003		/* fallthrough */
4004	case STT_TLS:
4005		if (symp->st_shndx != SHN_UNDEF)
4006			break;
4007#ifndef __mips__
4008		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4009		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4010			break;
4011		/* fallthrough */
4012#endif
4013	default:
4014		return (false);
4015	}
4016	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4017		return (false);
4018
4019	if (req->ventry == NULL) {
4020		if (obj->versyms != NULL) {
4021			verndx = VER_NDX(obj->versyms[symnum]);
4022			if (verndx > obj->vernum) {
4023				_rtld_error(
4024				    "%s: symbol %s references wrong version %d",
4025				    obj->path, obj->strtab + symnum, verndx);
4026				return (false);
4027			}
4028			/*
4029			 * If we are not called from dlsym (i.e. this
4030			 * is a normal relocation from unversioned
4031			 * binary), accept the symbol immediately if
4032			 * it happens to have first version after this
4033			 * shared object became versioned.  Otherwise,
4034			 * if symbol is versioned and not hidden,
4035			 * remember it. If it is the only symbol with
4036			 * this name exported by the shared object, it
4037			 * will be returned as a match by the calling
4038			 * function. If symbol is global (verndx < 2)
4039			 * accept it unconditionally.
4040			 */
4041			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4042			    verndx == VER_NDX_GIVEN) {
4043				result->sym_out = symp;
4044				return (true);
4045			}
4046			else if (verndx >= VER_NDX_GIVEN) {
4047				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4048				    == 0) {
4049					if (result->vsymp == NULL)
4050						result->vsymp = symp;
4051					result->vcount++;
4052				}
4053				return (false);
4054			}
4055		}
4056		result->sym_out = symp;
4057		return (true);
4058	}
4059	if (obj->versyms == NULL) {
4060		if (object_match_name(obj, req->ventry->name)) {
4061			_rtld_error("%s: object %s should provide version %s "
4062			    "for symbol %s", obj_rtld.path, obj->path,
4063			    req->ventry->name, obj->strtab + symnum);
4064			return (false);
4065		}
4066	} else {
4067		verndx = VER_NDX(obj->versyms[symnum]);
4068		if (verndx > obj->vernum) {
4069			_rtld_error("%s: symbol %s references wrong version %d",
4070			    obj->path, obj->strtab + symnum, verndx);
4071			return (false);
4072		}
4073		if (obj->vertab[verndx].hash != req->ventry->hash ||
4074		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4075			/*
4076			 * Version does not match. Look if this is a
4077			 * global symbol and if it is not hidden. If
4078			 * global symbol (verndx < 2) is available,
4079			 * use it. Do not return symbol if we are
4080			 * called by dlvsym, because dlvsym looks for
4081			 * a specific version and default one is not
4082			 * what dlvsym wants.
4083			 */
4084			if ((req->flags & SYMLOOK_DLSYM) ||
4085			    (verndx >= VER_NDX_GIVEN) ||
4086			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4087				return (false);
4088		}
4089	}
4090	result->sym_out = symp;
4091	return (true);
4092}
4093
4094/*
4095 * Search for symbol using SysV hash function.
4096 * obj->buckets is known not to be NULL at this point; the test for this was
4097 * performed with the obj->valid_hash_sysv assignment.
4098 */
4099static int
4100symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4101{
4102	unsigned long symnum;
4103	Sym_Match_Result matchres;
4104
4105	matchres.sym_out = NULL;
4106	matchres.vsymp = NULL;
4107	matchres.vcount = 0;
4108
4109	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4110	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4111		if (symnum >= obj->nchains)
4112			return (ESRCH);	/* Bad object */
4113
4114		if (matched_symbol(req, obj, &matchres, symnum)) {
4115			req->sym_out = matchres.sym_out;
4116			req->defobj_out = obj;
4117			return (0);
4118		}
4119	}
4120	if (matchres.vcount == 1) {
4121		req->sym_out = matchres.vsymp;
4122		req->defobj_out = obj;
4123		return (0);
4124	}
4125	return (ESRCH);
4126}
4127
4128/* Search for symbol using GNU hash function */
4129static int
4130symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4131{
4132	Elf_Addr bloom_word;
4133	const Elf32_Word *hashval;
4134	Elf32_Word bucket;
4135	Sym_Match_Result matchres;
4136	unsigned int h1, h2;
4137	unsigned long symnum;
4138
4139	matchres.sym_out = NULL;
4140	matchres.vsymp = NULL;
4141	matchres.vcount = 0;
4142
4143	/* Pick right bitmask word from Bloom filter array */
4144	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4145	    obj->maskwords_bm_gnu];
4146
4147	/* Calculate modulus word size of gnu hash and its derivative */
4148	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4149	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4150
4151	/* Filter out the "definitely not in set" queries */
4152	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4153		return (ESRCH);
4154
4155	/* Locate hash chain and corresponding value element*/
4156	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4157	if (bucket == 0)
4158		return (ESRCH);
4159	hashval = &obj->chain_zero_gnu[bucket];
4160	do {
4161		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4162			symnum = hashval - obj->chain_zero_gnu;
4163			if (matched_symbol(req, obj, &matchres, symnum)) {
4164				req->sym_out = matchres.sym_out;
4165				req->defobj_out = obj;
4166				return (0);
4167			}
4168		}
4169	} while ((*hashval++ & 1) == 0);
4170	if (matchres.vcount == 1) {
4171		req->sym_out = matchres.vsymp;
4172		req->defobj_out = obj;
4173		return (0);
4174	}
4175	return (ESRCH);
4176}
4177
4178static void
4179trace_loaded_objects(Obj_Entry *obj)
4180{
4181    char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4182    int		c;
4183
4184    if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4185	main_local = "";
4186
4187    if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4188	fmt1 = "\t%o => %p (%x)\n";
4189
4190    if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4191	fmt2 = "\t%o (%x)\n";
4192
4193    list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
4194
4195    TAILQ_FOREACH_FROM(obj, &obj_list, next) {
4196	Needed_Entry		*needed;
4197	char			*name, *path;
4198	bool			is_lib;
4199
4200	if (obj->marker)
4201	    continue;
4202	if (list_containers && obj->needed != NULL)
4203	    rtld_printf("%s:\n", obj->path);
4204	for (needed = obj->needed; needed; needed = needed->next) {
4205	    if (needed->obj != NULL) {
4206		if (needed->obj->traced && !list_containers)
4207		    continue;
4208		needed->obj->traced = true;
4209		path = needed->obj->path;
4210	    } else
4211		path = "not found";
4212
4213	    name = (char *)obj->strtab + needed->name;
4214	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4215
4216	    fmt = is_lib ? fmt1 : fmt2;
4217	    while ((c = *fmt++) != '\0') {
4218		switch (c) {
4219		default:
4220		    rtld_putchar(c);
4221		    continue;
4222		case '\\':
4223		    switch (c = *fmt) {
4224		    case '\0':
4225			continue;
4226		    case 'n':
4227			rtld_putchar('\n');
4228			break;
4229		    case 't':
4230			rtld_putchar('\t');
4231			break;
4232		    }
4233		    break;
4234		case '%':
4235		    switch (c = *fmt) {
4236		    case '\0':
4237			continue;
4238		    case '%':
4239		    default:
4240			rtld_putchar(c);
4241			break;
4242		    case 'A':
4243			rtld_putstr(main_local);
4244			break;
4245		    case 'a':
4246			rtld_putstr(obj_main->path);
4247			break;
4248		    case 'o':
4249			rtld_putstr(name);
4250			break;
4251#if 0
4252		    case 'm':
4253			rtld_printf("%d", sodp->sod_major);
4254			break;
4255		    case 'n':
4256			rtld_printf("%d", sodp->sod_minor);
4257			break;
4258#endif
4259		    case 'p':
4260			rtld_putstr(path);
4261			break;
4262		    case 'x':
4263			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4264			  0);
4265			break;
4266		    }
4267		    break;
4268		}
4269		++fmt;
4270	    }
4271	}
4272    }
4273}
4274
4275/*
4276 * Unload a dlopened object and its dependencies from memory and from
4277 * our data structures.  It is assumed that the DAG rooted in the
4278 * object has already been unreferenced, and that the object has a
4279 * reference count of 0.
4280 */
4281static void
4282unload_object(Obj_Entry *root)
4283{
4284	Obj_Entry *obj, *obj1;
4285
4286	assert(root->refcount == 0);
4287
4288	/*
4289	 * Pass over the DAG removing unreferenced objects from
4290	 * appropriate lists.
4291	 */
4292	unlink_object(root);
4293
4294	/* Unmap all objects that are no longer referenced. */
4295	TAILQ_FOREACH_SAFE(obj, &obj_list, next, obj1) {
4296		if (obj->marker || obj->refcount != 0)
4297			continue;
4298		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4299		    obj->mapsize, 0, obj->path);
4300		dbg("unloading \"%s\"", obj->path);
4301		unload_filtees(root);
4302		munmap(obj->mapbase, obj->mapsize);
4303		linkmap_delete(obj);
4304		TAILQ_REMOVE(&obj_list, obj, next);
4305		obj_count--;
4306		obj_free(obj);
4307	}
4308}
4309
4310static void
4311unlink_object(Obj_Entry *root)
4312{
4313    Objlist_Entry *elm;
4314
4315    if (root->refcount == 0) {
4316	/* Remove the object from the RTLD_GLOBAL list. */
4317	objlist_remove(&list_global, root);
4318
4319    	/* Remove the object from all objects' DAG lists. */
4320    	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4321	    objlist_remove(&elm->obj->dldags, root);
4322	    if (elm->obj != root)
4323		unlink_object(elm->obj);
4324	}
4325    }
4326}
4327
4328static void
4329ref_dag(Obj_Entry *root)
4330{
4331    Objlist_Entry *elm;
4332
4333    assert(root->dag_inited);
4334    STAILQ_FOREACH(elm, &root->dagmembers, link)
4335	elm->obj->refcount++;
4336}
4337
4338static void
4339unref_dag(Obj_Entry *root)
4340{
4341    Objlist_Entry *elm;
4342
4343    assert(root->dag_inited);
4344    STAILQ_FOREACH(elm, &root->dagmembers, link)
4345	elm->obj->refcount--;
4346}
4347
4348/*
4349 * Common code for MD __tls_get_addr().
4350 */
4351static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4352static void *
4353tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4354{
4355    Elf_Addr *newdtv, *dtv;
4356    RtldLockState lockstate;
4357    int to_copy;
4358
4359    dtv = *dtvp;
4360    /* Check dtv generation in case new modules have arrived */
4361    if (dtv[0] != tls_dtv_generation) {
4362	wlock_acquire(rtld_bind_lock, &lockstate);
4363	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4364	to_copy = dtv[1];
4365	if (to_copy > tls_max_index)
4366	    to_copy = tls_max_index;
4367	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4368	newdtv[0] = tls_dtv_generation;
4369	newdtv[1] = tls_max_index;
4370	free(dtv);
4371	lock_release(rtld_bind_lock, &lockstate);
4372	dtv = *dtvp = newdtv;
4373    }
4374
4375    /* Dynamically allocate module TLS if necessary */
4376    if (dtv[index + 1] == 0) {
4377	/* Signal safe, wlock will block out signals. */
4378	wlock_acquire(rtld_bind_lock, &lockstate);
4379	if (!dtv[index + 1])
4380	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4381	lock_release(rtld_bind_lock, &lockstate);
4382    }
4383    return ((void *)(dtv[index + 1] + offset));
4384}
4385
4386void *
4387tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4388{
4389	Elf_Addr *dtv;
4390
4391	dtv = *dtvp;
4392	/* Check dtv generation in case new modules have arrived */
4393	if (__predict_true(dtv[0] == tls_dtv_generation &&
4394	    dtv[index + 1] != 0))
4395		return ((void *)(dtv[index + 1] + offset));
4396	return (tls_get_addr_slow(dtvp, index, offset));
4397}
4398
4399#if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
4400
4401/*
4402 * Allocate Static TLS using the Variant I method.
4403 */
4404void *
4405allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4406{
4407    Obj_Entry *obj;
4408    char *tcb;
4409    Elf_Addr **tls;
4410    Elf_Addr *dtv;
4411    Elf_Addr addr;
4412    int i;
4413
4414    if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4415	return (oldtcb);
4416
4417    assert(tcbsize >= TLS_TCB_SIZE);
4418    tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4419    tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4420
4421    if (oldtcb != NULL) {
4422	memcpy(tls, oldtcb, tls_static_space);
4423	free(oldtcb);
4424
4425	/* Adjust the DTV. */
4426	dtv = tls[0];
4427	for (i = 0; i < dtv[1]; i++) {
4428	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4429		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4430		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4431	    }
4432	}
4433    } else {
4434	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4435	tls[0] = dtv;
4436	dtv[0] = tls_dtv_generation;
4437	dtv[1] = tls_max_index;
4438
4439	for (obj = globallist_curr(objs); obj != NULL;
4440	  obj = globallist_next(obj)) {
4441	    if (obj->tlsoffset > 0) {
4442		addr = (Elf_Addr)tls + obj->tlsoffset;
4443		if (obj->tlsinitsize > 0)
4444		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4445		if (obj->tlssize > obj->tlsinitsize)
4446		    memset((void*) (addr + obj->tlsinitsize), 0,
4447			   obj->tlssize - obj->tlsinitsize);
4448		dtv[obj->tlsindex + 1] = addr;
4449	    }
4450	}
4451    }
4452
4453    return (tcb);
4454}
4455
4456void
4457free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4458{
4459    Elf_Addr *dtv;
4460    Elf_Addr tlsstart, tlsend;
4461    int dtvsize, i;
4462
4463    assert(tcbsize >= TLS_TCB_SIZE);
4464
4465    tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4466    tlsend = tlsstart + tls_static_space;
4467
4468    dtv = *(Elf_Addr **)tlsstart;
4469    dtvsize = dtv[1];
4470    for (i = 0; i < dtvsize; i++) {
4471	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4472	    free((void*)dtv[i+2]);
4473	}
4474    }
4475    free(dtv);
4476    free(tcb);
4477}
4478
4479#endif
4480
4481#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4482
4483/*
4484 * Allocate Static TLS using the Variant II method.
4485 */
4486void *
4487allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4488{
4489    Obj_Entry *obj;
4490    size_t size, ralign;
4491    char *tls;
4492    Elf_Addr *dtv, *olddtv;
4493    Elf_Addr segbase, oldsegbase, addr;
4494    int i;
4495
4496    ralign = tcbalign;
4497    if (tls_static_max_align > ralign)
4498	    ralign = tls_static_max_align;
4499    size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4500
4501    assert(tcbsize >= 2*sizeof(Elf_Addr));
4502    tls = malloc_aligned(size, ralign);
4503    dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4504
4505    segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4506    ((Elf_Addr*)segbase)[0] = segbase;
4507    ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4508
4509    dtv[0] = tls_dtv_generation;
4510    dtv[1] = tls_max_index;
4511
4512    if (oldtls) {
4513	/*
4514	 * Copy the static TLS block over whole.
4515	 */
4516	oldsegbase = (Elf_Addr) oldtls;
4517	memcpy((void *)(segbase - tls_static_space),
4518	       (const void *)(oldsegbase - tls_static_space),
4519	       tls_static_space);
4520
4521	/*
4522	 * If any dynamic TLS blocks have been created tls_get_addr(),
4523	 * move them over.
4524	 */
4525	olddtv = ((Elf_Addr**)oldsegbase)[1];
4526	for (i = 0; i < olddtv[1]; i++) {
4527	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4528		dtv[i+2] = olddtv[i+2];
4529		olddtv[i+2] = 0;
4530	    }
4531	}
4532
4533	/*
4534	 * We assume that this block was the one we created with
4535	 * allocate_initial_tls().
4536	 */
4537	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4538    } else {
4539	obj = objs;
4540	TAILQ_FOREACH_FROM(obj, &obj_list, next) {
4541		if (obj->marker || obj->tlsoffset == 0)
4542			continue;
4543		addr = segbase - obj->tlsoffset;
4544		memset((void*) (addr + obj->tlsinitsize),
4545		       0, obj->tlssize - obj->tlsinitsize);
4546		if (obj->tlsinit)
4547		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4548		dtv[obj->tlsindex + 1] = addr;
4549	}
4550    }
4551
4552    return (void*) segbase;
4553}
4554
4555void
4556free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4557{
4558    Elf_Addr* dtv;
4559    size_t size, ralign;
4560    int dtvsize, i;
4561    Elf_Addr tlsstart, tlsend;
4562
4563    /*
4564     * Figure out the size of the initial TLS block so that we can
4565     * find stuff which ___tls_get_addr() allocated dynamically.
4566     */
4567    ralign = tcbalign;
4568    if (tls_static_max_align > ralign)
4569	    ralign = tls_static_max_align;
4570    size = round(tls_static_space, ralign);
4571
4572    dtv = ((Elf_Addr**)tls)[1];
4573    dtvsize = dtv[1];
4574    tlsend = (Elf_Addr) tls;
4575    tlsstart = tlsend - size;
4576    for (i = 0; i < dtvsize; i++) {
4577	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4578		free_aligned((void *)dtv[i + 2]);
4579	}
4580    }
4581
4582    free_aligned((void *)tlsstart);
4583    free((void*) dtv);
4584}
4585
4586#endif
4587
4588/*
4589 * Allocate TLS block for module with given index.
4590 */
4591void *
4592allocate_module_tls(int index)
4593{
4594    Obj_Entry* obj;
4595    char* p;
4596
4597    TAILQ_FOREACH(obj, &obj_list, next) {
4598	if (obj->marker)
4599	    continue;
4600	if (obj->tlsindex == index)
4601	    break;
4602    }
4603    if (!obj) {
4604	_rtld_error("Can't find module with TLS index %d", index);
4605	rtld_die();
4606    }
4607
4608    p = malloc_aligned(obj->tlssize, obj->tlsalign);
4609    memcpy(p, obj->tlsinit, obj->tlsinitsize);
4610    memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4611
4612    return p;
4613}
4614
4615bool
4616allocate_tls_offset(Obj_Entry *obj)
4617{
4618    size_t off;
4619
4620    if (obj->tls_done)
4621	return true;
4622
4623    if (obj->tlssize == 0) {
4624	obj->tls_done = true;
4625	return true;
4626    }
4627
4628    if (tls_last_offset == 0)
4629	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4630    else
4631	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4632				   obj->tlssize, obj->tlsalign);
4633
4634    /*
4635     * If we have already fixed the size of the static TLS block, we
4636     * must stay within that size. When allocating the static TLS, we
4637     * leave a small amount of space spare to be used for dynamically
4638     * loading modules which use static TLS.
4639     */
4640    if (tls_static_space != 0) {
4641	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4642	    return false;
4643    } else if (obj->tlsalign > tls_static_max_align) {
4644	    tls_static_max_align = obj->tlsalign;
4645    }
4646
4647    tls_last_offset = obj->tlsoffset = off;
4648    tls_last_size = obj->tlssize;
4649    obj->tls_done = true;
4650
4651    return true;
4652}
4653
4654void
4655free_tls_offset(Obj_Entry *obj)
4656{
4657
4658    /*
4659     * If we were the last thing to allocate out of the static TLS
4660     * block, we give our space back to the 'allocator'. This is a
4661     * simplistic workaround to allow libGL.so.1 to be loaded and
4662     * unloaded multiple times.
4663     */
4664    if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4665	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4666	tls_last_offset -= obj->tlssize;
4667	tls_last_size = 0;
4668    }
4669}
4670
4671void *
4672_rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4673{
4674    void *ret;
4675    RtldLockState lockstate;
4676
4677    wlock_acquire(rtld_bind_lock, &lockstate);
4678    ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
4679      tcbsize, tcbalign);
4680    lock_release(rtld_bind_lock, &lockstate);
4681    return (ret);
4682}
4683
4684void
4685_rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4686{
4687    RtldLockState lockstate;
4688
4689    wlock_acquire(rtld_bind_lock, &lockstate);
4690    free_tls(tcb, tcbsize, tcbalign);
4691    lock_release(rtld_bind_lock, &lockstate);
4692}
4693
4694static void
4695object_add_name(Obj_Entry *obj, const char *name)
4696{
4697    Name_Entry *entry;
4698    size_t len;
4699
4700    len = strlen(name);
4701    entry = malloc(sizeof(Name_Entry) + len);
4702
4703    if (entry != NULL) {
4704	strcpy(entry->name, name);
4705	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4706    }
4707}
4708
4709static int
4710object_match_name(const Obj_Entry *obj, const char *name)
4711{
4712    Name_Entry *entry;
4713
4714    STAILQ_FOREACH(entry, &obj->names, link) {
4715	if (strcmp(name, entry->name) == 0)
4716	    return (1);
4717    }
4718    return (0);
4719}
4720
4721static Obj_Entry *
4722locate_dependency(const Obj_Entry *obj, const char *name)
4723{
4724    const Objlist_Entry *entry;
4725    const Needed_Entry *needed;
4726
4727    STAILQ_FOREACH(entry, &list_main, link) {
4728	if (object_match_name(entry->obj, name))
4729	    return entry->obj;
4730    }
4731
4732    for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4733	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4734	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4735	    /*
4736	     * If there is DT_NEEDED for the name we are looking for,
4737	     * we are all set.  Note that object might not be found if
4738	     * dependency was not loaded yet, so the function can
4739	     * return NULL here.  This is expected and handled
4740	     * properly by the caller.
4741	     */
4742	    return (needed->obj);
4743	}
4744    }
4745    _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4746	obj->path, name);
4747    rtld_die();
4748}
4749
4750static int
4751check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4752    const Elf_Vernaux *vna)
4753{
4754    const Elf_Verdef *vd;
4755    const char *vername;
4756
4757    vername = refobj->strtab + vna->vna_name;
4758    vd = depobj->verdef;
4759    if (vd == NULL) {
4760	_rtld_error("%s: version %s required by %s not defined",
4761	    depobj->path, vername, refobj->path);
4762	return (-1);
4763    }
4764    for (;;) {
4765	if (vd->vd_version != VER_DEF_CURRENT) {
4766	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4767		depobj->path, vd->vd_version);
4768	    return (-1);
4769	}
4770	if (vna->vna_hash == vd->vd_hash) {
4771	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4772		((char *)vd + vd->vd_aux);
4773	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4774		return (0);
4775	}
4776	if (vd->vd_next == 0)
4777	    break;
4778	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4779    }
4780    if (vna->vna_flags & VER_FLG_WEAK)
4781	return (0);
4782    _rtld_error("%s: version %s required by %s not found",
4783	depobj->path, vername, refobj->path);
4784    return (-1);
4785}
4786
4787static int
4788rtld_verify_object_versions(Obj_Entry *obj)
4789{
4790    const Elf_Verneed *vn;
4791    const Elf_Verdef  *vd;
4792    const Elf_Verdaux *vda;
4793    const Elf_Vernaux *vna;
4794    const Obj_Entry *depobj;
4795    int maxvernum, vernum;
4796
4797    if (obj->ver_checked)
4798	return (0);
4799    obj->ver_checked = true;
4800
4801    maxvernum = 0;
4802    /*
4803     * Walk over defined and required version records and figure out
4804     * max index used by any of them. Do very basic sanity checking
4805     * while there.
4806     */
4807    vn = obj->verneed;
4808    while (vn != NULL) {
4809	if (vn->vn_version != VER_NEED_CURRENT) {
4810	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4811		obj->path, vn->vn_version);
4812	    return (-1);
4813	}
4814	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4815	for (;;) {
4816	    vernum = VER_NEED_IDX(vna->vna_other);
4817	    if (vernum > maxvernum)
4818		maxvernum = vernum;
4819	    if (vna->vna_next == 0)
4820		 break;
4821	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4822	}
4823	if (vn->vn_next == 0)
4824	    break;
4825	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4826    }
4827
4828    vd = obj->verdef;
4829    while (vd != NULL) {
4830	if (vd->vd_version != VER_DEF_CURRENT) {
4831	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4832		obj->path, vd->vd_version);
4833	    return (-1);
4834	}
4835	vernum = VER_DEF_IDX(vd->vd_ndx);
4836	if (vernum > maxvernum)
4837		maxvernum = vernum;
4838	if (vd->vd_next == 0)
4839	    break;
4840	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4841    }
4842
4843    if (maxvernum == 0)
4844	return (0);
4845
4846    /*
4847     * Store version information in array indexable by version index.
4848     * Verify that object version requirements are satisfied along the
4849     * way.
4850     */
4851    obj->vernum = maxvernum + 1;
4852    obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4853
4854    vd = obj->verdef;
4855    while (vd != NULL) {
4856	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4857	    vernum = VER_DEF_IDX(vd->vd_ndx);
4858	    assert(vernum <= maxvernum);
4859	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4860	    obj->vertab[vernum].hash = vd->vd_hash;
4861	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4862	    obj->vertab[vernum].file = NULL;
4863	    obj->vertab[vernum].flags = 0;
4864	}
4865	if (vd->vd_next == 0)
4866	    break;
4867	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4868    }
4869
4870    vn = obj->verneed;
4871    while (vn != NULL) {
4872	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4873	if (depobj == NULL)
4874	    return (-1);
4875	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4876	for (;;) {
4877	    if (check_object_provided_version(obj, depobj, vna))
4878		return (-1);
4879	    vernum = VER_NEED_IDX(vna->vna_other);
4880	    assert(vernum <= maxvernum);
4881	    obj->vertab[vernum].hash = vna->vna_hash;
4882	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4883	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4884	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4885		VER_INFO_HIDDEN : 0;
4886	    if (vna->vna_next == 0)
4887		 break;
4888	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4889	}
4890	if (vn->vn_next == 0)
4891	    break;
4892	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4893    }
4894    return 0;
4895}
4896
4897static int
4898rtld_verify_versions(const Objlist *objlist)
4899{
4900    Objlist_Entry *entry;
4901    int rc;
4902
4903    rc = 0;
4904    STAILQ_FOREACH(entry, objlist, link) {
4905	/*
4906	 * Skip dummy objects or objects that have their version requirements
4907	 * already checked.
4908	 */
4909	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4910	    continue;
4911	if (rtld_verify_object_versions(entry->obj) == -1) {
4912	    rc = -1;
4913	    if (ld_tracing == NULL)
4914		break;
4915	}
4916    }
4917    if (rc == 0 || ld_tracing != NULL)
4918    	rc = rtld_verify_object_versions(&obj_rtld);
4919    return rc;
4920}
4921
4922const Ver_Entry *
4923fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4924{
4925    Elf_Versym vernum;
4926
4927    if (obj->vertab) {
4928	vernum = VER_NDX(obj->versyms[symnum]);
4929	if (vernum >= obj->vernum) {
4930	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4931		obj->path, obj->strtab + symnum, vernum);
4932	} else if (obj->vertab[vernum].hash != 0) {
4933	    return &obj->vertab[vernum];
4934	}
4935    }
4936    return NULL;
4937}
4938
4939int
4940_rtld_get_stack_prot(void)
4941{
4942
4943	return (stack_prot);
4944}
4945
4946int
4947_rtld_is_dlopened(void *arg)
4948{
4949	Obj_Entry *obj;
4950	RtldLockState lockstate;
4951	int res;
4952
4953	rlock_acquire(rtld_bind_lock, &lockstate);
4954	obj = dlcheck(arg);
4955	if (obj == NULL)
4956		obj = obj_from_addr(arg);
4957	if (obj == NULL) {
4958		_rtld_error("No shared object contains address");
4959		lock_release(rtld_bind_lock, &lockstate);
4960		return (-1);
4961	}
4962	res = obj->dlopened ? 1 : 0;
4963	lock_release(rtld_bind_lock, &lockstate);
4964	return (res);
4965}
4966
4967static void
4968map_stacks_exec(RtldLockState *lockstate)
4969{
4970	void (*thr_map_stacks_exec)(void);
4971
4972	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4973		return;
4974	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4975	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4976	if (thr_map_stacks_exec != NULL) {
4977		stack_prot |= PROT_EXEC;
4978		thr_map_stacks_exec();
4979	}
4980}
4981
4982void
4983symlook_init(SymLook *dst, const char *name)
4984{
4985
4986	bzero(dst, sizeof(*dst));
4987	dst->name = name;
4988	dst->hash = elf_hash(name);
4989	dst->hash_gnu = gnu_hash(name);
4990}
4991
4992static void
4993symlook_init_from_req(SymLook *dst, const SymLook *src)
4994{
4995
4996	dst->name = src->name;
4997	dst->hash = src->hash;
4998	dst->hash_gnu = src->hash_gnu;
4999	dst->ventry = src->ventry;
5000	dst->flags = src->flags;
5001	dst->defobj_out = NULL;
5002	dst->sym_out = NULL;
5003	dst->lockstate = src->lockstate;
5004}
5005
5006/*
5007 * Overrides for libc_pic-provided functions.
5008 */
5009
5010int
5011__getosreldate(void)
5012{
5013	size_t len;
5014	int oid[2];
5015	int error, osrel;
5016
5017	if (osreldate != 0)
5018		return (osreldate);
5019
5020	oid[0] = CTL_KERN;
5021	oid[1] = KERN_OSRELDATE;
5022	osrel = 0;
5023	len = sizeof(osrel);
5024	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5025	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5026		osreldate = osrel;
5027	return (osreldate);
5028}
5029
5030void
5031exit(int status)
5032{
5033
5034	_exit(status);
5035}
5036
5037void (*__cleanup)(void);
5038int __isthreaded = 0;
5039int _thread_autoinit_dummy_decl = 1;
5040
5041/*
5042 * No unresolved symbols for rtld.
5043 */
5044void
5045__pthread_cxa_finalize(struct dl_phdr_info *a)
5046{
5047}
5048
5049void
5050__stack_chk_fail(void)
5051{
5052
5053	_rtld_error("stack overflow detected; terminated");
5054	rtld_die();
5055}
5056__weak_reference(__stack_chk_fail, __stack_chk_fail_local);
5057
5058void
5059__chk_fail(void)
5060{
5061
5062	_rtld_error("buffer overflow detected; terminated");
5063	rtld_die();
5064}
5065
5066const char *
5067rtld_strerror(int errnum)
5068{
5069
5070	if (errnum < 0 || errnum >= sys_nerr)
5071		return ("Unknown error");
5072	return (sys_errlist[errnum]);
5073}
5074