rtld.c revision 293317
1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5 * Copyright 2012 John Marino <draco@marino.st>.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * $FreeBSD: stable/10/libexec/rtld-elf/rtld.c 293317 2016-01-07 14:52:32Z emaste $
29 */
30
31/*
32 * Dynamic linker for ELF.
33 *
34 * John Polstra <jdp@polstra.com>.
35 */
36
37#include <sys/param.h>
38#include <sys/mount.h>
39#include <sys/mman.h>
40#include <sys/stat.h>
41#include <sys/sysctl.h>
42#include <sys/uio.h>
43#include <sys/utsname.h>
44#include <sys/ktrace.h>
45
46#include <dlfcn.h>
47#include <err.h>
48#include <errno.h>
49#include <fcntl.h>
50#include <stdarg.h>
51#include <stdio.h>
52#include <stdlib.h>
53#include <string.h>
54#include <unistd.h>
55
56#include "debug.h"
57#include "rtld.h"
58#include "libmap.h"
59#include "rtld_tls.h"
60#include "rtld_printf.h"
61#include "notes.h"
62
63#ifndef COMPAT_32BIT
64#define PATH_RTLD	"/libexec/ld-elf.so.1"
65#else
66#define PATH_RTLD	"/libexec/ld-elf32.so.1"
67#endif
68
69/* Types. */
70typedef void (*func_ptr_type)();
71typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
72
73/*
74 * Function declarations.
75 */
76static const char *basename(const char *);
77static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
78    const Elf_Dyn **, const Elf_Dyn **);
79static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
80    const Elf_Dyn *);
81static void digest_dynamic(Obj_Entry *, int);
82static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
83static Obj_Entry *dlcheck(void *);
84static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
85    int lo_flags, int mode, RtldLockState *lockstate);
86static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
87static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
88static bool donelist_check(DoneList *, const Obj_Entry *);
89static void errmsg_restore(char *);
90static char *errmsg_save(void);
91static void *fill_search_info(const char *, size_t, void *);
92static char *find_library(const char *, const Obj_Entry *);
93static const char *gethints(bool);
94static void init_dag(Obj_Entry *);
95static void init_pagesizes(Elf_Auxinfo **aux_info);
96static void init_rtld(caddr_t, Elf_Auxinfo **);
97static void initlist_add_neededs(Needed_Entry *, Objlist *);
98static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
99static void linkmap_add(Obj_Entry *);
100static void linkmap_delete(Obj_Entry *);
101static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
102static void unload_filtees(Obj_Entry *);
103static int load_needed_objects(Obj_Entry *, int);
104static int load_preload_objects(void);
105static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
106static void map_stacks_exec(RtldLockState *);
107static Obj_Entry *obj_from_addr(const void *);
108static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
109static void objlist_call_init(Objlist *, RtldLockState *);
110static void objlist_clear(Objlist *);
111static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
112static void objlist_init(Objlist *);
113static void objlist_push_head(Objlist *, Obj_Entry *);
114static void objlist_push_tail(Objlist *, Obj_Entry *);
115static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
116static void objlist_remove(Objlist *, Obj_Entry *);
117static void *path_enumerate(const char *, path_enum_proc, void *);
118static int relocate_object_dag(Obj_Entry *root, bool bind_now,
119    Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
120static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
121    int flags, RtldLockState *lockstate);
122static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
123    RtldLockState *);
124static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
125    int flags, RtldLockState *lockstate);
126static int rtld_dirname(const char *, char *);
127static int rtld_dirname_abs(const char *, char *);
128static void *rtld_dlopen(const char *name, int fd, int mode);
129static void rtld_exit(void);
130static char *search_library_path(const char *, const char *);
131static const void **get_program_var_addr(const char *, RtldLockState *);
132static void set_program_var(const char *, const void *);
133static int symlook_default(SymLook *, const Obj_Entry *refobj);
134static int symlook_global(SymLook *, DoneList *);
135static void symlook_init_from_req(SymLook *, const SymLook *);
136static int symlook_list(SymLook *, const Objlist *, DoneList *);
137static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
138static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
139static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
140static void trace_loaded_objects(Obj_Entry *);
141static void unlink_object(Obj_Entry *);
142static void unload_object(Obj_Entry *);
143static void unref_dag(Obj_Entry *);
144static void ref_dag(Obj_Entry *);
145static char *origin_subst_one(Obj_Entry *, char *, const char *,
146    const char *, bool);
147static char *origin_subst(Obj_Entry *, char *);
148static bool obj_resolve_origin(Obj_Entry *obj);
149static void preinit_main(void);
150static int  rtld_verify_versions(const Objlist *);
151static int  rtld_verify_object_versions(Obj_Entry *);
152static void object_add_name(Obj_Entry *, const char *);
153static int  object_match_name(const Obj_Entry *, const char *);
154static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
155static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
156    struct dl_phdr_info *phdr_info);
157static uint32_t gnu_hash(const char *);
158static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
159    const unsigned long);
160
161void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
162void _r_debug_postinit(struct link_map *) __noinline __exported;
163
164/*
165 * Data declarations.
166 */
167static char *error_message;	/* Message for dlerror(), or NULL */
168struct r_debug r_debug __exported;	/* for GDB; */
169static bool libmap_disable;	/* Disable libmap */
170static bool ld_loadfltr;	/* Immediate filters processing */
171static char *libmap_override;	/* Maps to use in addition to libmap.conf */
172static bool trust;		/* False for setuid and setgid programs */
173static bool dangerous_ld_env;	/* True if environment variables have been
174				   used to affect the libraries loaded */
175static char *ld_bind_now;	/* Environment variable for immediate binding */
176static char *ld_debug;		/* Environment variable for debugging */
177static char *ld_library_path;	/* Environment variable for search path */
178static char *ld_preload;	/* Environment variable for libraries to
179				   load first */
180static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
181static char *ld_tracing;	/* Called from ldd to print libs */
182static char *ld_utrace;		/* Use utrace() to log events. */
183static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
184static Obj_Entry **obj_tail;	/* Link field of last object in list */
185static Obj_Entry *obj_main;	/* The main program shared object */
186static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
187static unsigned int obj_count;	/* Number of objects in obj_list */
188static unsigned int obj_loads;	/* Number of objects in obj_list */
189
190static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
191  STAILQ_HEAD_INITIALIZER(list_global);
192static Objlist list_main =	/* Objects loaded at program startup */
193  STAILQ_HEAD_INITIALIZER(list_main);
194static Objlist list_fini =	/* Objects needing fini() calls */
195  STAILQ_HEAD_INITIALIZER(list_fini);
196
197Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
198
199#define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
200
201extern Elf_Dyn _DYNAMIC;
202#pragma weak _DYNAMIC
203#ifndef RTLD_IS_DYNAMIC
204#define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
205#endif
206
207int dlclose(void *) __exported;
208char *dlerror(void) __exported;
209void *dlopen(const char *, int) __exported;
210void *fdlopen(int, int) __exported;
211void *dlsym(void *, const char *) __exported;
212dlfunc_t dlfunc(void *, const char *) __exported;
213void *dlvsym(void *, const char *, const char *) __exported;
214int dladdr(const void *, Dl_info *) __exported;
215void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
216    void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
217int dlinfo(void *, int , void *) __exported;
218int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
219int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
220int _rtld_get_stack_prot(void) __exported;
221int _rtld_is_dlopened(void *) __exported;
222void _rtld_error(const char *, ...) __exported;
223
224int npagesizes, osreldate;
225size_t *pagesizes;
226
227long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
228
229static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
230static int max_stack_flags;
231
232/*
233 * Global declarations normally provided by crt1.  The dynamic linker is
234 * not built with crt1, so we have to provide them ourselves.
235 */
236char *__progname;
237char **environ;
238
239/*
240 * Used to pass argc, argv to init functions.
241 */
242int main_argc;
243char **main_argv;
244
245/*
246 * Globals to control TLS allocation.
247 */
248size_t tls_last_offset;		/* Static TLS offset of last module */
249size_t tls_last_size;		/* Static TLS size of last module */
250size_t tls_static_space;	/* Static TLS space allocated */
251size_t tls_static_max_align;
252int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
253int tls_max_index = 1;		/* Largest module index allocated */
254
255bool ld_library_path_rpath = false;
256
257/*
258 * Fill in a DoneList with an allocation large enough to hold all of
259 * the currently-loaded objects.  Keep this as a macro since it calls
260 * alloca and we want that to occur within the scope of the caller.
261 */
262#define donelist_init(dlp)					\
263    ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
264    assert((dlp)->objs != NULL),				\
265    (dlp)->num_alloc = obj_count,				\
266    (dlp)->num_used = 0)
267
268#define	UTRACE_DLOPEN_START		1
269#define	UTRACE_DLOPEN_STOP		2
270#define	UTRACE_DLCLOSE_START		3
271#define	UTRACE_DLCLOSE_STOP		4
272#define	UTRACE_LOAD_OBJECT		5
273#define	UTRACE_UNLOAD_OBJECT		6
274#define	UTRACE_ADD_RUNDEP		7
275#define	UTRACE_PRELOAD_FINISHED		8
276#define	UTRACE_INIT_CALL		9
277#define	UTRACE_FINI_CALL		10
278#define	UTRACE_DLSYM_START		11
279#define	UTRACE_DLSYM_STOP		12
280
281struct utrace_rtld {
282	char sig[4];			/* 'RTLD' */
283	int event;
284	void *handle;
285	void *mapbase;			/* Used for 'parent' and 'init/fini' */
286	size_t mapsize;
287	int refcnt;			/* Used for 'mode' */
288	char name[MAXPATHLEN];
289};
290
291#define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
292	if (ld_utrace != NULL)					\
293		ld_utrace_log(e, h, mb, ms, r, n);		\
294} while (0)
295
296static void
297ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
298    int refcnt, const char *name)
299{
300	struct utrace_rtld ut;
301
302	ut.sig[0] = 'R';
303	ut.sig[1] = 'T';
304	ut.sig[2] = 'L';
305	ut.sig[3] = 'D';
306	ut.event = event;
307	ut.handle = handle;
308	ut.mapbase = mapbase;
309	ut.mapsize = mapsize;
310	ut.refcnt = refcnt;
311	bzero(ut.name, sizeof(ut.name));
312	if (name)
313		strlcpy(ut.name, name, sizeof(ut.name));
314	utrace(&ut, sizeof(ut));
315}
316
317/*
318 * Main entry point for dynamic linking.  The first argument is the
319 * stack pointer.  The stack is expected to be laid out as described
320 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
321 * Specifically, the stack pointer points to a word containing
322 * ARGC.  Following that in the stack is a null-terminated sequence
323 * of pointers to argument strings.  Then comes a null-terminated
324 * sequence of pointers to environment strings.  Finally, there is a
325 * sequence of "auxiliary vector" entries.
326 *
327 * The second argument points to a place to store the dynamic linker's
328 * exit procedure pointer and the third to a place to store the main
329 * program's object.
330 *
331 * The return value is the main program's entry point.
332 */
333func_ptr_type
334_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
335{
336    Elf_Auxinfo *aux_info[AT_COUNT];
337    int i;
338    int argc;
339    char **argv;
340    char **env;
341    Elf_Auxinfo *aux;
342    Elf_Auxinfo *auxp;
343    const char *argv0;
344    Objlist_Entry *entry;
345    Obj_Entry *obj;
346    Obj_Entry **preload_tail;
347    Obj_Entry *last_interposer;
348    Objlist initlist;
349    RtldLockState lockstate;
350    char *library_path_rpath;
351    int mib[2];
352    size_t len;
353
354    /*
355     * On entry, the dynamic linker itself has not been relocated yet.
356     * Be very careful not to reference any global data until after
357     * init_rtld has returned.  It is OK to reference file-scope statics
358     * and string constants, and to call static and global functions.
359     */
360
361    /* Find the auxiliary vector on the stack. */
362    argc = *sp++;
363    argv = (char **) sp;
364    sp += argc + 1;	/* Skip over arguments and NULL terminator */
365    env = (char **) sp;
366    while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
367	;
368    aux = (Elf_Auxinfo *) sp;
369
370    /* Digest the auxiliary vector. */
371    for (i = 0;  i < AT_COUNT;  i++)
372	aux_info[i] = NULL;
373    for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
374	if (auxp->a_type < AT_COUNT)
375	    aux_info[auxp->a_type] = auxp;
376    }
377
378    /* Initialize and relocate ourselves. */
379    assert(aux_info[AT_BASE] != NULL);
380    init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
381
382    __progname = obj_rtld.path;
383    argv0 = argv[0] != NULL ? argv[0] : "(null)";
384    environ = env;
385    main_argc = argc;
386    main_argv = argv;
387
388    if (aux_info[AT_CANARY] != NULL &&
389	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
390	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
391	    if (i > sizeof(__stack_chk_guard))
392		    i = sizeof(__stack_chk_guard);
393	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
394    } else {
395	mib[0] = CTL_KERN;
396	mib[1] = KERN_ARND;
397
398	len = sizeof(__stack_chk_guard);
399	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
400	    len != sizeof(__stack_chk_guard)) {
401		/* If sysctl was unsuccessful, use the "terminator canary". */
402		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
403		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
404		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
405		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
406	}
407    }
408
409    trust = !issetugid();
410
411    ld_bind_now = getenv(LD_ "BIND_NOW");
412    /*
413     * If the process is tainted, then we un-set the dangerous environment
414     * variables.  The process will be marked as tainted until setuid(2)
415     * is called.  If any child process calls setuid(2) we do not want any
416     * future processes to honor the potentially un-safe variables.
417     */
418    if (!trust) {
419        if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
420	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
421	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
422	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
423		_rtld_error("environment corrupt; aborting");
424		rtld_die();
425	}
426    }
427    ld_debug = getenv(LD_ "DEBUG");
428    libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
429    libmap_override = getenv(LD_ "LIBMAP");
430    ld_library_path = getenv(LD_ "LIBRARY_PATH");
431    ld_preload = getenv(LD_ "PRELOAD");
432    ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
433    ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
434    library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
435    if (library_path_rpath != NULL) {
436	    if (library_path_rpath[0] == 'y' ||
437		library_path_rpath[0] == 'Y' ||
438		library_path_rpath[0] == '1')
439		    ld_library_path_rpath = true;
440	    else
441		    ld_library_path_rpath = false;
442    }
443    dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
444	(ld_library_path != NULL) || (ld_preload != NULL) ||
445	(ld_elf_hints_path != NULL) || ld_loadfltr;
446    ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
447    ld_utrace = getenv(LD_ "UTRACE");
448
449    if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
450	ld_elf_hints_path = _PATH_ELF_HINTS;
451
452    if (ld_debug != NULL && *ld_debug != '\0')
453	debug = 1;
454    dbg("%s is initialized, base address = %p", __progname,
455	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
456    dbg("RTLD dynamic = %p", obj_rtld.dynamic);
457    dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
458
459    dbg("initializing thread locks");
460    lockdflt_init();
461
462    /*
463     * Load the main program, or process its program header if it is
464     * already loaded.
465     */
466    if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
467	int fd = aux_info[AT_EXECFD]->a_un.a_val;
468	dbg("loading main program");
469	obj_main = map_object(fd, argv0, NULL);
470	close(fd);
471	if (obj_main == NULL)
472	    rtld_die();
473	max_stack_flags = obj->stack_flags;
474    } else {				/* Main program already loaded. */
475	const Elf_Phdr *phdr;
476	int phnum;
477	caddr_t entry;
478
479	dbg("processing main program's program header");
480	assert(aux_info[AT_PHDR] != NULL);
481	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
482	assert(aux_info[AT_PHNUM] != NULL);
483	phnum = aux_info[AT_PHNUM]->a_un.a_val;
484	assert(aux_info[AT_PHENT] != NULL);
485	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
486	assert(aux_info[AT_ENTRY] != NULL);
487	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
488	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
489	    rtld_die();
490    }
491
492    if (aux_info[AT_EXECPATH] != 0) {
493	    char *kexecpath;
494	    char buf[MAXPATHLEN];
495
496	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
497	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
498	    if (kexecpath[0] == '/')
499		    obj_main->path = kexecpath;
500	    else if (getcwd(buf, sizeof(buf)) == NULL ||
501		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
502		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
503		    obj_main->path = xstrdup(argv0);
504	    else
505		    obj_main->path = xstrdup(buf);
506    } else {
507	    dbg("No AT_EXECPATH");
508	    obj_main->path = xstrdup(argv0);
509    }
510    dbg("obj_main path %s", obj_main->path);
511    obj_main->mainprog = true;
512
513    if (aux_info[AT_STACKPROT] != NULL &&
514      aux_info[AT_STACKPROT]->a_un.a_val != 0)
515	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
516
517#ifndef COMPAT_32BIT
518    /*
519     * Get the actual dynamic linker pathname from the executable if
520     * possible.  (It should always be possible.)  That ensures that
521     * gdb will find the right dynamic linker even if a non-standard
522     * one is being used.
523     */
524    if (obj_main->interp != NULL &&
525      strcmp(obj_main->interp, obj_rtld.path) != 0) {
526	free(obj_rtld.path);
527	obj_rtld.path = xstrdup(obj_main->interp);
528        __progname = obj_rtld.path;
529    }
530#endif
531
532    digest_dynamic(obj_main, 0);
533    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
534	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
535	obj_main->dynsymcount);
536
537    linkmap_add(obj_main);
538    linkmap_add(&obj_rtld);
539
540    /* Link the main program into the list of objects. */
541    *obj_tail = obj_main;
542    obj_tail = &obj_main->next;
543    obj_count++;
544    obj_loads++;
545
546    /* Initialize a fake symbol for resolving undefined weak references. */
547    sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
548    sym_zero.st_shndx = SHN_UNDEF;
549    sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
550
551    if (!libmap_disable)
552        libmap_disable = (bool)lm_init(libmap_override);
553
554    dbg("loading LD_PRELOAD libraries");
555    if (load_preload_objects() == -1)
556	rtld_die();
557    preload_tail = obj_tail;
558
559    dbg("loading needed objects");
560    if (load_needed_objects(obj_main, 0) == -1)
561	rtld_die();
562
563    /* Make a list of all objects loaded at startup. */
564    last_interposer = obj_main;
565    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
566	if (obj->z_interpose && obj != obj_main) {
567	    objlist_put_after(&list_main, last_interposer, obj);
568	    last_interposer = obj;
569	} else {
570	    objlist_push_tail(&list_main, obj);
571	}
572    	obj->refcount++;
573    }
574
575    dbg("checking for required versions");
576    if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
577	rtld_die();
578
579    if (ld_tracing) {		/* We're done */
580	trace_loaded_objects(obj_main);
581	exit(0);
582    }
583
584    if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
585       dump_relocations(obj_main);
586       exit (0);
587    }
588
589    /*
590     * Processing tls relocations requires having the tls offsets
591     * initialized.  Prepare offsets before starting initial
592     * relocation processing.
593     */
594    dbg("initializing initial thread local storage offsets");
595    STAILQ_FOREACH(entry, &list_main, link) {
596	/*
597	 * Allocate all the initial objects out of the static TLS
598	 * block even if they didn't ask for it.
599	 */
600	allocate_tls_offset(entry->obj);
601    }
602
603    if (relocate_objects(obj_main,
604      ld_bind_now != NULL && *ld_bind_now != '\0',
605      &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
606	rtld_die();
607
608    dbg("doing copy relocations");
609    if (do_copy_relocations(obj_main) == -1)
610	rtld_die();
611
612    if (getenv(LD_ "DUMP_REL_POST") != NULL) {
613       dump_relocations(obj_main);
614       exit (0);
615    }
616
617    /*
618     * Setup TLS for main thread.  This must be done after the
619     * relocations are processed, since tls initialization section
620     * might be the subject for relocations.
621     */
622    dbg("initializing initial thread local storage");
623    allocate_initial_tls(obj_list);
624
625    dbg("initializing key program variables");
626    set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
627    set_program_var("environ", env);
628    set_program_var("__elf_aux_vector", aux);
629
630    /* Make a list of init functions to call. */
631    objlist_init(&initlist);
632    initlist_add_objects(obj_list, preload_tail, &initlist);
633
634    r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
635
636    map_stacks_exec(NULL);
637
638    dbg("resolving ifuncs");
639    if (resolve_objects_ifunc(obj_main,
640      ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
641      NULL) == -1)
642	rtld_die();
643
644    if (!obj_main->crt_no_init) {
645	/*
646	 * Make sure we don't call the main program's init and fini
647	 * functions for binaries linked with old crt1 which calls
648	 * _init itself.
649	 */
650	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
651	obj_main->preinit_array = obj_main->init_array =
652	    obj_main->fini_array = (Elf_Addr)NULL;
653    }
654
655    wlock_acquire(rtld_bind_lock, &lockstate);
656    if (obj_main->crt_no_init)
657	preinit_main();
658    objlist_call_init(&initlist, &lockstate);
659    _r_debug_postinit(&obj_main->linkmap);
660    objlist_clear(&initlist);
661    dbg("loading filtees");
662    for (obj = obj_list->next; obj != NULL; obj = obj->next) {
663	if (ld_loadfltr || obj->z_loadfltr)
664	    load_filtees(obj, 0, &lockstate);
665    }
666    lock_release(rtld_bind_lock, &lockstate);
667
668    dbg("transferring control to program entry point = %p", obj_main->entry);
669
670    /* Return the exit procedure and the program entry point. */
671    *exit_proc = rtld_exit;
672    *objp = obj_main;
673    return (func_ptr_type) obj_main->entry;
674}
675
676void *
677rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
678{
679	void *ptr;
680	Elf_Addr target;
681
682	ptr = (void *)make_function_pointer(def, obj);
683	target = ((Elf_Addr (*)(void))ptr)();
684	return ((void *)target);
685}
686
687Elf_Addr
688_rtld_bind(Obj_Entry *obj, Elf_Size reloff)
689{
690    const Elf_Rel *rel;
691    const Elf_Sym *def;
692    const Obj_Entry *defobj;
693    Elf_Addr *where;
694    Elf_Addr target;
695    RtldLockState lockstate;
696
697    rlock_acquire(rtld_bind_lock, &lockstate);
698    if (sigsetjmp(lockstate.env, 0) != 0)
699	    lock_upgrade(rtld_bind_lock, &lockstate);
700    if (obj->pltrel)
701	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
702    else
703	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
704
705    where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
706    def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
707	&lockstate);
708    if (def == NULL)
709	rtld_die();
710    if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
711	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
712    else
713	target = (Elf_Addr)(defobj->relocbase + def->st_value);
714
715    dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
716      defobj->strtab + def->st_name, basename(obj->path),
717      (void *)target, basename(defobj->path));
718
719    /*
720     * Write the new contents for the jmpslot. Note that depending on
721     * architecture, the value which we need to return back to the
722     * lazy binding trampoline may or may not be the target
723     * address. The value returned from reloc_jmpslot() is the value
724     * that the trampoline needs.
725     */
726    target = reloc_jmpslot(where, target, defobj, obj, rel);
727    lock_release(rtld_bind_lock, &lockstate);
728    return target;
729}
730
731/*
732 * Error reporting function.  Use it like printf.  If formats the message
733 * into a buffer, and sets things up so that the next call to dlerror()
734 * will return the message.
735 */
736void
737_rtld_error(const char *fmt, ...)
738{
739    static char buf[512];
740    va_list ap;
741
742    va_start(ap, fmt);
743    rtld_vsnprintf(buf, sizeof buf, fmt, ap);
744    error_message = buf;
745    va_end(ap);
746}
747
748/*
749 * Return a dynamically-allocated copy of the current error message, if any.
750 */
751static char *
752errmsg_save(void)
753{
754    return error_message == NULL ? NULL : xstrdup(error_message);
755}
756
757/*
758 * Restore the current error message from a copy which was previously saved
759 * by errmsg_save().  The copy is freed.
760 */
761static void
762errmsg_restore(char *saved_msg)
763{
764    if (saved_msg == NULL)
765	error_message = NULL;
766    else {
767	_rtld_error("%s", saved_msg);
768	free(saved_msg);
769    }
770}
771
772static const char *
773basename(const char *name)
774{
775    const char *p = strrchr(name, '/');
776    return p != NULL ? p + 1 : name;
777}
778
779static struct utsname uts;
780
781static char *
782origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
783    const char *subst, bool may_free)
784{
785	char *p, *p1, *res, *resp;
786	int subst_len, kw_len, subst_count, old_len, new_len;
787
788	kw_len = strlen(kw);
789
790	/*
791	 * First, count the number of the keyword occurences, to
792	 * preallocate the final string.
793	 */
794	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
795		p1 = strstr(p, kw);
796		if (p1 == NULL)
797			break;
798	}
799
800	/*
801	 * If the keyword is not found, just return.
802	 *
803	 * Return non-substituted string if resolution failed.  We
804	 * cannot do anything more reasonable, the failure mode of the
805	 * caller is unresolved library anyway.
806	 */
807	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
808		return (may_free ? real : xstrdup(real));
809	if (obj != NULL)
810		subst = obj->origin_path;
811
812	/*
813	 * There is indeed something to substitute.  Calculate the
814	 * length of the resulting string, and allocate it.
815	 */
816	subst_len = strlen(subst);
817	old_len = strlen(real);
818	new_len = old_len + (subst_len - kw_len) * subst_count;
819	res = xmalloc(new_len + 1);
820
821	/*
822	 * Now, execute the substitution loop.
823	 */
824	for (p = real, resp = res, *resp = '\0';;) {
825		p1 = strstr(p, kw);
826		if (p1 != NULL) {
827			/* Copy the prefix before keyword. */
828			memcpy(resp, p, p1 - p);
829			resp += p1 - p;
830			/* Keyword replacement. */
831			memcpy(resp, subst, subst_len);
832			resp += subst_len;
833			*resp = '\0';
834			p = p1 + kw_len;
835		} else
836			break;
837	}
838
839	/* Copy to the end of string and finish. */
840	strcat(resp, p);
841	if (may_free)
842		free(real);
843	return (res);
844}
845
846static char *
847origin_subst(Obj_Entry *obj, char *real)
848{
849	char *res1, *res2, *res3, *res4;
850
851	if (obj == NULL || !trust)
852		return (xstrdup(real));
853	if (uts.sysname[0] == '\0') {
854		if (uname(&uts) != 0) {
855			_rtld_error("utsname failed: %d", errno);
856			return (NULL);
857		}
858	}
859	res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false);
860	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
861	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
862	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
863	return (res4);
864}
865
866void
867rtld_die(void)
868{
869    const char *msg = dlerror();
870
871    if (msg == NULL)
872	msg = "Fatal error";
873    rtld_fdputstr(STDERR_FILENO, msg);
874    rtld_fdputchar(STDERR_FILENO, '\n');
875    _exit(1);
876}
877
878/*
879 * Process a shared object's DYNAMIC section, and save the important
880 * information in its Obj_Entry structure.
881 */
882static void
883digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
884    const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
885{
886    const Elf_Dyn *dynp;
887    Needed_Entry **needed_tail = &obj->needed;
888    Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
889    Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
890    const Elf_Hashelt *hashtab;
891    const Elf32_Word *hashval;
892    Elf32_Word bkt, nmaskwords;
893    int bloom_size32;
894    int plttype = DT_REL;
895
896    *dyn_rpath = NULL;
897    *dyn_soname = NULL;
898    *dyn_runpath = NULL;
899
900    obj->bind_now = false;
901    for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
902	switch (dynp->d_tag) {
903
904	case DT_REL:
905	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
906	    break;
907
908	case DT_RELSZ:
909	    obj->relsize = dynp->d_un.d_val;
910	    break;
911
912	case DT_RELENT:
913	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
914	    break;
915
916	case DT_JMPREL:
917	    obj->pltrel = (const Elf_Rel *)
918	      (obj->relocbase + dynp->d_un.d_ptr);
919	    break;
920
921	case DT_PLTRELSZ:
922	    obj->pltrelsize = dynp->d_un.d_val;
923	    break;
924
925	case DT_RELA:
926	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
927	    break;
928
929	case DT_RELASZ:
930	    obj->relasize = dynp->d_un.d_val;
931	    break;
932
933	case DT_RELAENT:
934	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
935	    break;
936
937	case DT_PLTREL:
938	    plttype = dynp->d_un.d_val;
939	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
940	    break;
941
942	case DT_SYMTAB:
943	    obj->symtab = (const Elf_Sym *)
944	      (obj->relocbase + dynp->d_un.d_ptr);
945	    break;
946
947	case DT_SYMENT:
948	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
949	    break;
950
951	case DT_STRTAB:
952	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
953	    break;
954
955	case DT_STRSZ:
956	    obj->strsize = dynp->d_un.d_val;
957	    break;
958
959	case DT_VERNEED:
960	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
961		dynp->d_un.d_val);
962	    break;
963
964	case DT_VERNEEDNUM:
965	    obj->verneednum = dynp->d_un.d_val;
966	    break;
967
968	case DT_VERDEF:
969	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
970		dynp->d_un.d_val);
971	    break;
972
973	case DT_VERDEFNUM:
974	    obj->verdefnum = dynp->d_un.d_val;
975	    break;
976
977	case DT_VERSYM:
978	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
979		dynp->d_un.d_val);
980	    break;
981
982	case DT_HASH:
983	    {
984		hashtab = (const Elf_Hashelt *)(obj->relocbase +
985		    dynp->d_un.d_ptr);
986		obj->nbuckets = hashtab[0];
987		obj->nchains = hashtab[1];
988		obj->buckets = hashtab + 2;
989		obj->chains = obj->buckets + obj->nbuckets;
990		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
991		  obj->buckets != NULL;
992	    }
993	    break;
994
995	case DT_GNU_HASH:
996	    {
997		hashtab = (const Elf_Hashelt *)(obj->relocbase +
998		    dynp->d_un.d_ptr);
999		obj->nbuckets_gnu = hashtab[0];
1000		obj->symndx_gnu = hashtab[1];
1001		nmaskwords = hashtab[2];
1002		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1003		obj->maskwords_bm_gnu = nmaskwords - 1;
1004		obj->shift2_gnu = hashtab[3];
1005		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1006		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1007		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1008		  obj->symndx_gnu;
1009		/* Number of bitmask words is required to be power of 2 */
1010		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1011		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1012	    }
1013	    break;
1014
1015	case DT_NEEDED:
1016	    if (!obj->rtld) {
1017		Needed_Entry *nep = NEW(Needed_Entry);
1018		nep->name = dynp->d_un.d_val;
1019		nep->obj = NULL;
1020		nep->next = NULL;
1021
1022		*needed_tail = nep;
1023		needed_tail = &nep->next;
1024	    }
1025	    break;
1026
1027	case DT_FILTER:
1028	    if (!obj->rtld) {
1029		Needed_Entry *nep = NEW(Needed_Entry);
1030		nep->name = dynp->d_un.d_val;
1031		nep->obj = NULL;
1032		nep->next = NULL;
1033
1034		*needed_filtees_tail = nep;
1035		needed_filtees_tail = &nep->next;
1036	    }
1037	    break;
1038
1039	case DT_AUXILIARY:
1040	    if (!obj->rtld) {
1041		Needed_Entry *nep = NEW(Needed_Entry);
1042		nep->name = dynp->d_un.d_val;
1043		nep->obj = NULL;
1044		nep->next = NULL;
1045
1046		*needed_aux_filtees_tail = nep;
1047		needed_aux_filtees_tail = &nep->next;
1048	    }
1049	    break;
1050
1051	case DT_PLTGOT:
1052	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1053	    break;
1054
1055	case DT_TEXTREL:
1056	    obj->textrel = true;
1057	    break;
1058
1059	case DT_SYMBOLIC:
1060	    obj->symbolic = true;
1061	    break;
1062
1063	case DT_RPATH:
1064	    /*
1065	     * We have to wait until later to process this, because we
1066	     * might not have gotten the address of the string table yet.
1067	     */
1068	    *dyn_rpath = dynp;
1069	    break;
1070
1071	case DT_SONAME:
1072	    *dyn_soname = dynp;
1073	    break;
1074
1075	case DT_RUNPATH:
1076	    *dyn_runpath = dynp;
1077	    break;
1078
1079	case DT_INIT:
1080	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1081	    break;
1082
1083	case DT_PREINIT_ARRAY:
1084	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1085	    break;
1086
1087	case DT_PREINIT_ARRAYSZ:
1088	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1089	    break;
1090
1091	case DT_INIT_ARRAY:
1092	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1093	    break;
1094
1095	case DT_INIT_ARRAYSZ:
1096	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1097	    break;
1098
1099	case DT_FINI:
1100	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1101	    break;
1102
1103	case DT_FINI_ARRAY:
1104	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1105	    break;
1106
1107	case DT_FINI_ARRAYSZ:
1108	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1109	    break;
1110
1111	/*
1112	 * Don't process DT_DEBUG on MIPS as the dynamic section
1113	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1114	 */
1115
1116#ifndef __mips__
1117	case DT_DEBUG:
1118	    if (!early)
1119		dbg("Filling in DT_DEBUG entry");
1120	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1121	    break;
1122#endif
1123
1124	case DT_FLAGS:
1125		if (dynp->d_un.d_val & DF_ORIGIN)
1126		    obj->z_origin = true;
1127		if (dynp->d_un.d_val & DF_SYMBOLIC)
1128		    obj->symbolic = true;
1129		if (dynp->d_un.d_val & DF_TEXTREL)
1130		    obj->textrel = true;
1131		if (dynp->d_un.d_val & DF_BIND_NOW)
1132		    obj->bind_now = true;
1133		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1134		    ;*/
1135	    break;
1136#ifdef __mips__
1137	case DT_MIPS_LOCAL_GOTNO:
1138		obj->local_gotno = dynp->d_un.d_val;
1139	    break;
1140
1141	case DT_MIPS_SYMTABNO:
1142		obj->symtabno = dynp->d_un.d_val;
1143		break;
1144
1145	case DT_MIPS_GOTSYM:
1146		obj->gotsym = dynp->d_un.d_val;
1147		break;
1148
1149	case DT_MIPS_RLD_MAP:
1150		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1151		break;
1152#endif
1153
1154	case DT_FLAGS_1:
1155		if (dynp->d_un.d_val & DF_1_NOOPEN)
1156		    obj->z_noopen = true;
1157		if (dynp->d_un.d_val & DF_1_ORIGIN)
1158		    obj->z_origin = true;
1159		if (dynp->d_un.d_val & DF_1_GLOBAL)
1160		    obj->z_global = true;
1161		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1162		    obj->bind_now = true;
1163		if (dynp->d_un.d_val & DF_1_NODELETE)
1164		    obj->z_nodelete = true;
1165		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1166		    obj->z_loadfltr = true;
1167		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1168		    obj->z_interpose = true;
1169		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1170		    obj->z_nodeflib = true;
1171	    break;
1172
1173	default:
1174	    if (!early) {
1175		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1176		    (long)dynp->d_tag);
1177	    }
1178	    break;
1179	}
1180    }
1181
1182    obj->traced = false;
1183
1184    if (plttype == DT_RELA) {
1185	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1186	obj->pltrel = NULL;
1187	obj->pltrelasize = obj->pltrelsize;
1188	obj->pltrelsize = 0;
1189    }
1190
1191    /* Determine size of dynsym table (equal to nchains of sysv hash) */
1192    if (obj->valid_hash_sysv)
1193	obj->dynsymcount = obj->nchains;
1194    else if (obj->valid_hash_gnu) {
1195	obj->dynsymcount = 0;
1196	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1197	    if (obj->buckets_gnu[bkt] == 0)
1198		continue;
1199	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1200	    do
1201		obj->dynsymcount++;
1202	    while ((*hashval++ & 1u) == 0);
1203	}
1204	obj->dynsymcount += obj->symndx_gnu;
1205    }
1206}
1207
1208static bool
1209obj_resolve_origin(Obj_Entry *obj)
1210{
1211
1212	if (obj->origin_path != NULL)
1213		return (true);
1214	obj->origin_path = xmalloc(PATH_MAX);
1215	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1216}
1217
1218static void
1219digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1220    const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1221{
1222
1223	if (obj->z_origin && !obj_resolve_origin(obj))
1224		rtld_die();
1225
1226	if (dyn_runpath != NULL) {
1227		obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1228		obj->runpath = origin_subst(obj, obj->runpath);
1229	} else if (dyn_rpath != NULL) {
1230		obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1231		obj->rpath = origin_subst(obj, obj->rpath);
1232	}
1233	if (dyn_soname != NULL)
1234		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1235}
1236
1237static void
1238digest_dynamic(Obj_Entry *obj, int early)
1239{
1240	const Elf_Dyn *dyn_rpath;
1241	const Elf_Dyn *dyn_soname;
1242	const Elf_Dyn *dyn_runpath;
1243
1244	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1245	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1246}
1247
1248/*
1249 * Process a shared object's program header.  This is used only for the
1250 * main program, when the kernel has already loaded the main program
1251 * into memory before calling the dynamic linker.  It creates and
1252 * returns an Obj_Entry structure.
1253 */
1254static Obj_Entry *
1255digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1256{
1257    Obj_Entry *obj;
1258    const Elf_Phdr *phlimit = phdr + phnum;
1259    const Elf_Phdr *ph;
1260    Elf_Addr note_start, note_end;
1261    int nsegs = 0;
1262
1263    obj = obj_new();
1264    for (ph = phdr;  ph < phlimit;  ph++) {
1265	if (ph->p_type != PT_PHDR)
1266	    continue;
1267
1268	obj->phdr = phdr;
1269	obj->phsize = ph->p_memsz;
1270	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1271	break;
1272    }
1273
1274    obj->stack_flags = PF_X | PF_R | PF_W;
1275
1276    for (ph = phdr;  ph < phlimit;  ph++) {
1277	switch (ph->p_type) {
1278
1279	case PT_INTERP:
1280	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1281	    break;
1282
1283	case PT_LOAD:
1284	    if (nsegs == 0) {	/* First load segment */
1285		obj->vaddrbase = trunc_page(ph->p_vaddr);
1286		obj->mapbase = obj->vaddrbase + obj->relocbase;
1287		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1288		  obj->vaddrbase;
1289	    } else {		/* Last load segment */
1290		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1291		  obj->vaddrbase;
1292	    }
1293	    nsegs++;
1294	    break;
1295
1296	case PT_DYNAMIC:
1297	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1298	    break;
1299
1300	case PT_TLS:
1301	    obj->tlsindex = 1;
1302	    obj->tlssize = ph->p_memsz;
1303	    obj->tlsalign = ph->p_align;
1304	    obj->tlsinitsize = ph->p_filesz;
1305	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1306	    break;
1307
1308	case PT_GNU_STACK:
1309	    obj->stack_flags = ph->p_flags;
1310	    break;
1311
1312	case PT_GNU_RELRO:
1313	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1314	    obj->relro_size = round_page(ph->p_memsz);
1315	    break;
1316
1317	case PT_NOTE:
1318	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1319	    note_end = note_start + ph->p_filesz;
1320	    digest_notes(obj, note_start, note_end);
1321	    break;
1322	}
1323    }
1324    if (nsegs < 1) {
1325	_rtld_error("%s: too few PT_LOAD segments", path);
1326	return NULL;
1327    }
1328
1329    obj->entry = entry;
1330    return obj;
1331}
1332
1333void
1334digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1335{
1336	const Elf_Note *note;
1337	const char *note_name;
1338	uintptr_t p;
1339
1340	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1341	    note = (const Elf_Note *)((const char *)(note + 1) +
1342	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1343	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1344		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1345		    note->n_descsz != sizeof(int32_t))
1346			continue;
1347		if (note->n_type != ABI_NOTETYPE &&
1348		    note->n_type != CRT_NOINIT_NOTETYPE)
1349			continue;
1350		note_name = (const char *)(note + 1);
1351		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1352		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1353			continue;
1354		switch (note->n_type) {
1355		case ABI_NOTETYPE:
1356			/* FreeBSD osrel note */
1357			p = (uintptr_t)(note + 1);
1358			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1359			obj->osrel = *(const int32_t *)(p);
1360			dbg("note osrel %d", obj->osrel);
1361			break;
1362		case CRT_NOINIT_NOTETYPE:
1363			/* FreeBSD 'crt does not call init' note */
1364			obj->crt_no_init = true;
1365			dbg("note crt_no_init");
1366			break;
1367		}
1368	}
1369}
1370
1371static Obj_Entry *
1372dlcheck(void *handle)
1373{
1374    Obj_Entry *obj;
1375
1376    for (obj = obj_list;  obj != NULL;  obj = obj->next)
1377	if (obj == (Obj_Entry *) handle)
1378	    break;
1379
1380    if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1381	_rtld_error("Invalid shared object handle %p", handle);
1382	return NULL;
1383    }
1384    return obj;
1385}
1386
1387/*
1388 * If the given object is already in the donelist, return true.  Otherwise
1389 * add the object to the list and return false.
1390 */
1391static bool
1392donelist_check(DoneList *dlp, const Obj_Entry *obj)
1393{
1394    unsigned int i;
1395
1396    for (i = 0;  i < dlp->num_used;  i++)
1397	if (dlp->objs[i] == obj)
1398	    return true;
1399    /*
1400     * Our donelist allocation should always be sufficient.  But if
1401     * our threads locking isn't working properly, more shared objects
1402     * could have been loaded since we allocated the list.  That should
1403     * never happen, but we'll handle it properly just in case it does.
1404     */
1405    if (dlp->num_used < dlp->num_alloc)
1406	dlp->objs[dlp->num_used++] = obj;
1407    return false;
1408}
1409
1410/*
1411 * Hash function for symbol table lookup.  Don't even think about changing
1412 * this.  It is specified by the System V ABI.
1413 */
1414unsigned long
1415elf_hash(const char *name)
1416{
1417    const unsigned char *p = (const unsigned char *) name;
1418    unsigned long h = 0;
1419    unsigned long g;
1420
1421    while (*p != '\0') {
1422	h = (h << 4) + *p++;
1423	if ((g = h & 0xf0000000) != 0)
1424	    h ^= g >> 24;
1425	h &= ~g;
1426    }
1427    return h;
1428}
1429
1430/*
1431 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1432 * unsigned in case it's implemented with a wider type.
1433 */
1434static uint32_t
1435gnu_hash(const char *s)
1436{
1437	uint32_t h;
1438	unsigned char c;
1439
1440	h = 5381;
1441	for (c = *s; c != '\0'; c = *++s)
1442		h = h * 33 + c;
1443	return (h & 0xffffffff);
1444}
1445
1446/*
1447 * Find the library with the given name, and return its full pathname.
1448 * The returned string is dynamically allocated.  Generates an error
1449 * message and returns NULL if the library cannot be found.
1450 *
1451 * If the second argument is non-NULL, then it refers to an already-
1452 * loaded shared object, whose library search path will be searched.
1453 *
1454 * The search order is:
1455 *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1456 *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1457 *   LD_LIBRARY_PATH
1458 *   DT_RUNPATH in the referencing file
1459 *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1460 *	 from list)
1461 *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1462 *
1463 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1464 */
1465static char *
1466find_library(const char *xname, const Obj_Entry *refobj)
1467{
1468    char *pathname;
1469    char *name;
1470    bool nodeflib, objgiven;
1471
1472    objgiven = refobj != NULL;
1473    if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1474	if (xname[0] != '/' && !trust) {
1475	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1476	      xname);
1477	    return NULL;
1478	}
1479	return (origin_subst(__DECONST(Obj_Entry *, refobj),
1480	  __DECONST(char *, xname)));
1481    }
1482
1483    if (libmap_disable || !objgiven ||
1484	(name = lm_find(refobj->path, xname)) == NULL)
1485	name = (char *)xname;
1486
1487    dbg(" Searching for \"%s\"", name);
1488
1489    /*
1490     * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1491     * back to pre-conforming behaviour if user requested so with
1492     * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1493     * nodeflib.
1494     */
1495    if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1496	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1497	  (refobj != NULL &&
1498	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1499          (pathname = search_library_path(name, gethints(false))) != NULL ||
1500	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1501	    return (pathname);
1502    } else {
1503	nodeflib = objgiven ? refobj->z_nodeflib : false;
1504	if ((objgiven &&
1505	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1506	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1507	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1508	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1509	  (objgiven &&
1510	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1511	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1512	  (objgiven && !nodeflib &&
1513	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1514	    return (pathname);
1515    }
1516
1517    if (objgiven && refobj->path != NULL) {
1518	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1519	  name, basename(refobj->path));
1520    } else {
1521	_rtld_error("Shared object \"%s\" not found", name);
1522    }
1523    return NULL;
1524}
1525
1526/*
1527 * Given a symbol number in a referencing object, find the corresponding
1528 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1529 * no definition was found.  Returns a pointer to the Obj_Entry of the
1530 * defining object via the reference parameter DEFOBJ_OUT.
1531 */
1532const Elf_Sym *
1533find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1534    const Obj_Entry **defobj_out, int flags, SymCache *cache,
1535    RtldLockState *lockstate)
1536{
1537    const Elf_Sym *ref;
1538    const Elf_Sym *def;
1539    const Obj_Entry *defobj;
1540    SymLook req;
1541    const char *name;
1542    int res;
1543
1544    /*
1545     * If we have already found this symbol, get the information from
1546     * the cache.
1547     */
1548    if (symnum >= refobj->dynsymcount)
1549	return NULL;	/* Bad object */
1550    if (cache != NULL && cache[symnum].sym != NULL) {
1551	*defobj_out = cache[symnum].obj;
1552	return cache[symnum].sym;
1553    }
1554
1555    ref = refobj->symtab + symnum;
1556    name = refobj->strtab + ref->st_name;
1557    def = NULL;
1558    defobj = NULL;
1559
1560    /*
1561     * We don't have to do a full scale lookup if the symbol is local.
1562     * We know it will bind to the instance in this load module; to
1563     * which we already have a pointer (ie ref). By not doing a lookup,
1564     * we not only improve performance, but it also avoids unresolvable
1565     * symbols when local symbols are not in the hash table. This has
1566     * been seen with the ia64 toolchain.
1567     */
1568    if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1569	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1570	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1571		symnum);
1572	}
1573	symlook_init(&req, name);
1574	req.flags = flags;
1575	req.ventry = fetch_ventry(refobj, symnum);
1576	req.lockstate = lockstate;
1577	res = symlook_default(&req, refobj);
1578	if (res == 0) {
1579	    def = req.sym_out;
1580	    defobj = req.defobj_out;
1581	}
1582    } else {
1583	def = ref;
1584	defobj = refobj;
1585    }
1586
1587    /*
1588     * If we found no definition and the reference is weak, treat the
1589     * symbol as having the value zero.
1590     */
1591    if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1592	def = &sym_zero;
1593	defobj = obj_main;
1594    }
1595
1596    if (def != NULL) {
1597	*defobj_out = defobj;
1598	/* Record the information in the cache to avoid subsequent lookups. */
1599	if (cache != NULL) {
1600	    cache[symnum].sym = def;
1601	    cache[symnum].obj = defobj;
1602	}
1603    } else {
1604	if (refobj != &obj_rtld)
1605	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1606    }
1607    return def;
1608}
1609
1610/*
1611 * Return the search path from the ldconfig hints file, reading it if
1612 * necessary.  If nostdlib is true, then the default search paths are
1613 * not added to result.
1614 *
1615 * Returns NULL if there are problems with the hints file,
1616 * or if the search path there is empty.
1617 */
1618static const char *
1619gethints(bool nostdlib)
1620{
1621	static char *hints, *filtered_path;
1622	struct elfhints_hdr hdr;
1623	struct fill_search_info_args sargs, hargs;
1624	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1625	struct dl_serpath *SLPpath, *hintpath;
1626	char *p;
1627	unsigned int SLPndx, hintndx, fndx, fcount;
1628	int fd;
1629	size_t flen;
1630	bool skip;
1631
1632	/* First call, read the hints file */
1633	if (hints == NULL) {
1634		/* Keep from trying again in case the hints file is bad. */
1635		hints = "";
1636
1637		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1638			return (NULL);
1639		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1640		    hdr.magic != ELFHINTS_MAGIC ||
1641		    hdr.version != 1) {
1642			close(fd);
1643			return (NULL);
1644		}
1645		p = xmalloc(hdr.dirlistlen + 1);
1646		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1647		    read(fd, p, hdr.dirlistlen + 1) !=
1648		    (ssize_t)hdr.dirlistlen + 1) {
1649			free(p);
1650			close(fd);
1651			return (NULL);
1652		}
1653		hints = p;
1654		close(fd);
1655	}
1656
1657	/*
1658	 * If caller agreed to receive list which includes the default
1659	 * paths, we are done. Otherwise, if we still did not
1660	 * calculated filtered result, do it now.
1661	 */
1662	if (!nostdlib)
1663		return (hints[0] != '\0' ? hints : NULL);
1664	if (filtered_path != NULL)
1665		goto filt_ret;
1666
1667	/*
1668	 * Obtain the list of all configured search paths, and the
1669	 * list of the default paths.
1670	 *
1671	 * First estimate the size of the results.
1672	 */
1673	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1674	smeta.dls_cnt = 0;
1675	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1676	hmeta.dls_cnt = 0;
1677
1678	sargs.request = RTLD_DI_SERINFOSIZE;
1679	sargs.serinfo = &smeta;
1680	hargs.request = RTLD_DI_SERINFOSIZE;
1681	hargs.serinfo = &hmeta;
1682
1683	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1684	path_enumerate(p, fill_search_info, &hargs);
1685
1686	SLPinfo = xmalloc(smeta.dls_size);
1687	hintinfo = xmalloc(hmeta.dls_size);
1688
1689	/*
1690	 * Next fetch both sets of paths.
1691	 */
1692	sargs.request = RTLD_DI_SERINFO;
1693	sargs.serinfo = SLPinfo;
1694	sargs.serpath = &SLPinfo->dls_serpath[0];
1695	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1696
1697	hargs.request = RTLD_DI_SERINFO;
1698	hargs.serinfo = hintinfo;
1699	hargs.serpath = &hintinfo->dls_serpath[0];
1700	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1701
1702	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1703	path_enumerate(p, fill_search_info, &hargs);
1704
1705	/*
1706	 * Now calculate the difference between two sets, by excluding
1707	 * standard paths from the full set.
1708	 */
1709	fndx = 0;
1710	fcount = 0;
1711	filtered_path = xmalloc(hdr.dirlistlen + 1);
1712	hintpath = &hintinfo->dls_serpath[0];
1713	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1714		skip = false;
1715		SLPpath = &SLPinfo->dls_serpath[0];
1716		/*
1717		 * Check each standard path against current.
1718		 */
1719		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1720			/* matched, skip the path */
1721			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1722				skip = true;
1723				break;
1724			}
1725		}
1726		if (skip)
1727			continue;
1728		/*
1729		 * Not matched against any standard path, add the path
1730		 * to result. Separate consequtive paths with ':'.
1731		 */
1732		if (fcount > 0) {
1733			filtered_path[fndx] = ':';
1734			fndx++;
1735		}
1736		fcount++;
1737		flen = strlen(hintpath->dls_name);
1738		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1739		fndx += flen;
1740	}
1741	filtered_path[fndx] = '\0';
1742
1743	free(SLPinfo);
1744	free(hintinfo);
1745
1746filt_ret:
1747	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1748}
1749
1750static void
1751init_dag(Obj_Entry *root)
1752{
1753    const Needed_Entry *needed;
1754    const Objlist_Entry *elm;
1755    DoneList donelist;
1756
1757    if (root->dag_inited)
1758	return;
1759    donelist_init(&donelist);
1760
1761    /* Root object belongs to own DAG. */
1762    objlist_push_tail(&root->dldags, root);
1763    objlist_push_tail(&root->dagmembers, root);
1764    donelist_check(&donelist, root);
1765
1766    /*
1767     * Add dependencies of root object to DAG in breadth order
1768     * by exploiting the fact that each new object get added
1769     * to the tail of the dagmembers list.
1770     */
1771    STAILQ_FOREACH(elm, &root->dagmembers, link) {
1772	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1773	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1774		continue;
1775	    objlist_push_tail(&needed->obj->dldags, root);
1776	    objlist_push_tail(&root->dagmembers, needed->obj);
1777	}
1778    }
1779    root->dag_inited = true;
1780}
1781
1782static void
1783process_z(Obj_Entry *root)
1784{
1785	const Objlist_Entry *elm;
1786	Obj_Entry *obj;
1787
1788	/*
1789	 * Walk over object DAG and process every dependent object
1790	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
1791	 * to grow their own DAG.
1792	 *
1793	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
1794	 * symlook_global() to work.
1795	 *
1796	 * For DF_1_NODELETE, the DAG should have its reference upped.
1797	 */
1798	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1799		obj = elm->obj;
1800		if (obj == NULL)
1801			continue;
1802		if (obj->z_nodelete && !obj->ref_nodel) {
1803			dbg("obj %s -z nodelete", obj->path);
1804			init_dag(obj);
1805			ref_dag(obj);
1806			obj->ref_nodel = true;
1807		}
1808		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
1809			dbg("obj %s -z global", obj->path);
1810			objlist_push_tail(&list_global, obj);
1811			init_dag(obj);
1812		}
1813	}
1814}
1815/*
1816 * Initialize the dynamic linker.  The argument is the address at which
1817 * the dynamic linker has been mapped into memory.  The primary task of
1818 * this function is to relocate the dynamic linker.
1819 */
1820static void
1821init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1822{
1823    Obj_Entry objtmp;	/* Temporary rtld object */
1824    const Elf_Dyn *dyn_rpath;
1825    const Elf_Dyn *dyn_soname;
1826    const Elf_Dyn *dyn_runpath;
1827
1828#ifdef RTLD_INIT_PAGESIZES_EARLY
1829    /* The page size is required by the dynamic memory allocator. */
1830    init_pagesizes(aux_info);
1831#endif
1832
1833    /*
1834     * Conjure up an Obj_Entry structure for the dynamic linker.
1835     *
1836     * The "path" member can't be initialized yet because string constants
1837     * cannot yet be accessed. Below we will set it correctly.
1838     */
1839    memset(&objtmp, 0, sizeof(objtmp));
1840    objtmp.path = NULL;
1841    objtmp.rtld = true;
1842    objtmp.mapbase = mapbase;
1843#ifdef PIC
1844    objtmp.relocbase = mapbase;
1845#endif
1846    if (RTLD_IS_DYNAMIC()) {
1847	objtmp.dynamic = rtld_dynamic(&objtmp);
1848	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1849	assert(objtmp.needed == NULL);
1850#if !defined(__mips__)
1851	/* MIPS has a bogus DT_TEXTREL. */
1852	assert(!objtmp.textrel);
1853#endif
1854
1855	/*
1856	 * Temporarily put the dynamic linker entry into the object list, so
1857	 * that symbols can be found.
1858	 */
1859
1860	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1861    }
1862
1863    /* Initialize the object list. */
1864    obj_tail = &obj_list;
1865
1866    /* Now that non-local variables can be accesses, copy out obj_rtld. */
1867    memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1868
1869#ifndef RTLD_INIT_PAGESIZES_EARLY
1870    /* The page size is required by the dynamic memory allocator. */
1871    init_pagesizes(aux_info);
1872#endif
1873
1874    if (aux_info[AT_OSRELDATE] != NULL)
1875	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1876
1877    digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1878
1879    /* Replace the path with a dynamically allocated copy. */
1880    obj_rtld.path = xstrdup(PATH_RTLD);
1881
1882    r_debug.r_brk = r_debug_state;
1883    r_debug.r_state = RT_CONSISTENT;
1884}
1885
1886/*
1887 * Retrieve the array of supported page sizes.  The kernel provides the page
1888 * sizes in increasing order.
1889 */
1890static void
1891init_pagesizes(Elf_Auxinfo **aux_info)
1892{
1893	static size_t psa[MAXPAGESIZES];
1894	int mib[2];
1895	size_t len, size;
1896
1897	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
1898	    NULL) {
1899		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
1900		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
1901	} else {
1902		len = 2;
1903		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
1904			size = sizeof(psa);
1905		else {
1906			/* As a fallback, retrieve the base page size. */
1907			size = sizeof(psa[0]);
1908			if (aux_info[AT_PAGESZ] != NULL) {
1909				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
1910				goto psa_filled;
1911			} else {
1912				mib[0] = CTL_HW;
1913				mib[1] = HW_PAGESIZE;
1914				len = 2;
1915			}
1916		}
1917		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
1918			_rtld_error("sysctl for hw.pagesize(s) failed");
1919			rtld_die();
1920		}
1921psa_filled:
1922		pagesizes = psa;
1923	}
1924	npagesizes = size / sizeof(pagesizes[0]);
1925	/* Discard any invalid entries at the end of the array. */
1926	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
1927		npagesizes--;
1928}
1929
1930/*
1931 * Add the init functions from a needed object list (and its recursive
1932 * needed objects) to "list".  This is not used directly; it is a helper
1933 * function for initlist_add_objects().  The write lock must be held
1934 * when this function is called.
1935 */
1936static void
1937initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1938{
1939    /* Recursively process the successor needed objects. */
1940    if (needed->next != NULL)
1941	initlist_add_neededs(needed->next, list);
1942
1943    /* Process the current needed object. */
1944    if (needed->obj != NULL)
1945	initlist_add_objects(needed->obj, &needed->obj->next, list);
1946}
1947
1948/*
1949 * Scan all of the DAGs rooted in the range of objects from "obj" to
1950 * "tail" and add their init functions to "list".  This recurses over
1951 * the DAGs and ensure the proper init ordering such that each object's
1952 * needed libraries are initialized before the object itself.  At the
1953 * same time, this function adds the objects to the global finalization
1954 * list "list_fini" in the opposite order.  The write lock must be
1955 * held when this function is called.
1956 */
1957static void
1958initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1959{
1960
1961    if (obj->init_scanned || obj->init_done)
1962	return;
1963    obj->init_scanned = true;
1964
1965    /* Recursively process the successor objects. */
1966    if (&obj->next != tail)
1967	initlist_add_objects(obj->next, tail, list);
1968
1969    /* Recursively process the needed objects. */
1970    if (obj->needed != NULL)
1971	initlist_add_neededs(obj->needed, list);
1972    if (obj->needed_filtees != NULL)
1973	initlist_add_neededs(obj->needed_filtees, list);
1974    if (obj->needed_aux_filtees != NULL)
1975	initlist_add_neededs(obj->needed_aux_filtees, list);
1976
1977    /* Add the object to the init list. */
1978    if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1979      obj->init_array != (Elf_Addr)NULL)
1980	objlist_push_tail(list, obj);
1981
1982    /* Add the object to the global fini list in the reverse order. */
1983    if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1984      && !obj->on_fini_list) {
1985	objlist_push_head(&list_fini, obj);
1986	obj->on_fini_list = true;
1987    }
1988}
1989
1990#ifndef FPTR_TARGET
1991#define FPTR_TARGET(f)	((Elf_Addr) (f))
1992#endif
1993
1994static void
1995free_needed_filtees(Needed_Entry *n)
1996{
1997    Needed_Entry *needed, *needed1;
1998
1999    for (needed = n; needed != NULL; needed = needed->next) {
2000	if (needed->obj != NULL) {
2001	    dlclose(needed->obj);
2002	    needed->obj = NULL;
2003	}
2004    }
2005    for (needed = n; needed != NULL; needed = needed1) {
2006	needed1 = needed->next;
2007	free(needed);
2008    }
2009}
2010
2011static void
2012unload_filtees(Obj_Entry *obj)
2013{
2014
2015    free_needed_filtees(obj->needed_filtees);
2016    obj->needed_filtees = NULL;
2017    free_needed_filtees(obj->needed_aux_filtees);
2018    obj->needed_aux_filtees = NULL;
2019    obj->filtees_loaded = false;
2020}
2021
2022static void
2023load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2024    RtldLockState *lockstate)
2025{
2026
2027    for (; needed != NULL; needed = needed->next) {
2028	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2029	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2030	  RTLD_LOCAL, lockstate);
2031    }
2032}
2033
2034static void
2035load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2036{
2037
2038    lock_restart_for_upgrade(lockstate);
2039    if (!obj->filtees_loaded) {
2040	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2041	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2042	obj->filtees_loaded = true;
2043    }
2044}
2045
2046static int
2047process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2048{
2049    Obj_Entry *obj1;
2050
2051    for (; needed != NULL; needed = needed->next) {
2052	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2053	  flags & ~RTLD_LO_NOLOAD);
2054	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2055	    return (-1);
2056    }
2057    return (0);
2058}
2059
2060/*
2061 * Given a shared object, traverse its list of needed objects, and load
2062 * each of them.  Returns 0 on success.  Generates an error message and
2063 * returns -1 on failure.
2064 */
2065static int
2066load_needed_objects(Obj_Entry *first, int flags)
2067{
2068    Obj_Entry *obj;
2069
2070    for (obj = first;  obj != NULL;  obj = obj->next) {
2071	if (process_needed(obj, obj->needed, flags) == -1)
2072	    return (-1);
2073    }
2074    return (0);
2075}
2076
2077static int
2078load_preload_objects(void)
2079{
2080    char *p = ld_preload;
2081    Obj_Entry *obj;
2082    static const char delim[] = " \t:;";
2083
2084    if (p == NULL)
2085	return 0;
2086
2087    p += strspn(p, delim);
2088    while (*p != '\0') {
2089	size_t len = strcspn(p, delim);
2090	char savech;
2091
2092	savech = p[len];
2093	p[len] = '\0';
2094	obj = load_object(p, -1, NULL, 0);
2095	if (obj == NULL)
2096	    return -1;	/* XXX - cleanup */
2097	obj->z_interpose = true;
2098	p[len] = savech;
2099	p += len;
2100	p += strspn(p, delim);
2101    }
2102    LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2103    return 0;
2104}
2105
2106static const char *
2107printable_path(const char *path)
2108{
2109
2110	return (path == NULL ? "<unknown>" : path);
2111}
2112
2113/*
2114 * Load a shared object into memory, if it is not already loaded.  The
2115 * object may be specified by name or by user-supplied file descriptor
2116 * fd_u. In the later case, the fd_u descriptor is not closed, but its
2117 * duplicate is.
2118 *
2119 * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2120 * on failure.
2121 */
2122static Obj_Entry *
2123load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2124{
2125    Obj_Entry *obj;
2126    int fd;
2127    struct stat sb;
2128    char *path;
2129
2130    if (name != NULL) {
2131	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2132	    if (object_match_name(obj, name))
2133		return (obj);
2134	}
2135
2136	path = find_library(name, refobj);
2137	if (path == NULL)
2138	    return (NULL);
2139    } else
2140	path = NULL;
2141
2142    /*
2143     * If we didn't find a match by pathname, or the name is not
2144     * supplied, open the file and check again by device and inode.
2145     * This avoids false mismatches caused by multiple links or ".."
2146     * in pathnames.
2147     *
2148     * To avoid a race, we open the file and use fstat() rather than
2149     * using stat().
2150     */
2151    fd = -1;
2152    if (fd_u == -1) {
2153	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2154	    _rtld_error("Cannot open \"%s\"", path);
2155	    free(path);
2156	    return (NULL);
2157	}
2158    } else {
2159	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2160	if (fd == -1) {
2161	    _rtld_error("Cannot dup fd");
2162	    free(path);
2163	    return (NULL);
2164	}
2165    }
2166    if (fstat(fd, &sb) == -1) {
2167	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2168	close(fd);
2169	free(path);
2170	return NULL;
2171    }
2172    for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2173	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2174	    break;
2175    if (obj != NULL && name != NULL) {
2176	object_add_name(obj, name);
2177	free(path);
2178	close(fd);
2179	return obj;
2180    }
2181    if (flags & RTLD_LO_NOLOAD) {
2182	free(path);
2183	close(fd);
2184	return (NULL);
2185    }
2186
2187    /* First use of this object, so we must map it in */
2188    obj = do_load_object(fd, name, path, &sb, flags);
2189    if (obj == NULL)
2190	free(path);
2191    close(fd);
2192
2193    return obj;
2194}
2195
2196static Obj_Entry *
2197do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2198  int flags)
2199{
2200    Obj_Entry *obj;
2201    struct statfs fs;
2202
2203    /*
2204     * but first, make sure that environment variables haven't been
2205     * used to circumvent the noexec flag on a filesystem.
2206     */
2207    if (dangerous_ld_env) {
2208	if (fstatfs(fd, &fs) != 0) {
2209	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2210	    return NULL;
2211	}
2212	if (fs.f_flags & MNT_NOEXEC) {
2213	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2214	    return NULL;
2215	}
2216    }
2217    dbg("loading \"%s\"", printable_path(path));
2218    obj = map_object(fd, printable_path(path), sbp);
2219    if (obj == NULL)
2220        return NULL;
2221
2222    /*
2223     * If DT_SONAME is present in the object, digest_dynamic2 already
2224     * added it to the object names.
2225     */
2226    if (name != NULL)
2227	object_add_name(obj, name);
2228    obj->path = path;
2229    digest_dynamic(obj, 0);
2230    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2231	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2232    if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2233      RTLD_LO_DLOPEN) {
2234	dbg("refusing to load non-loadable \"%s\"", obj->path);
2235	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2236	munmap(obj->mapbase, obj->mapsize);
2237	obj_free(obj);
2238	return (NULL);
2239    }
2240
2241    obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2242    *obj_tail = obj;
2243    obj_tail = &obj->next;
2244    obj_count++;
2245    obj_loads++;
2246    linkmap_add(obj);	/* for GDB & dlinfo() */
2247    max_stack_flags |= obj->stack_flags;
2248
2249    dbg("  %p .. %p: %s", obj->mapbase,
2250         obj->mapbase + obj->mapsize - 1, obj->path);
2251    if (obj->textrel)
2252	dbg("  WARNING: %s has impure text", obj->path);
2253    LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2254	obj->path);
2255
2256    return obj;
2257}
2258
2259static Obj_Entry *
2260obj_from_addr(const void *addr)
2261{
2262    Obj_Entry *obj;
2263
2264    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2265	if (addr < (void *) obj->mapbase)
2266	    continue;
2267	if (addr < (void *) (obj->mapbase + obj->mapsize))
2268	    return obj;
2269    }
2270    return NULL;
2271}
2272
2273static void
2274preinit_main(void)
2275{
2276    Elf_Addr *preinit_addr;
2277    int index;
2278
2279    preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2280    if (preinit_addr == NULL)
2281	return;
2282
2283    for (index = 0; index < obj_main->preinit_array_num; index++) {
2284	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2285	    dbg("calling preinit function for %s at %p", obj_main->path,
2286	      (void *)preinit_addr[index]);
2287	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2288	      0, 0, obj_main->path);
2289	    call_init_pointer(obj_main, preinit_addr[index]);
2290	}
2291    }
2292}
2293
2294/*
2295 * Call the finalization functions for each of the objects in "list"
2296 * belonging to the DAG of "root" and referenced once. If NULL "root"
2297 * is specified, every finalization function will be called regardless
2298 * of the reference count and the list elements won't be freed. All of
2299 * the objects are expected to have non-NULL fini functions.
2300 */
2301static void
2302objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2303{
2304    Objlist_Entry *elm;
2305    char *saved_msg;
2306    Elf_Addr *fini_addr;
2307    int index;
2308
2309    assert(root == NULL || root->refcount == 1);
2310
2311    /*
2312     * Preserve the current error message since a fini function might
2313     * call into the dynamic linker and overwrite it.
2314     */
2315    saved_msg = errmsg_save();
2316    do {
2317	STAILQ_FOREACH(elm, list, link) {
2318	    if (root != NULL && (elm->obj->refcount != 1 ||
2319	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2320		continue;
2321	    /* Remove object from fini list to prevent recursive invocation. */
2322	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2323	    /*
2324	     * XXX: If a dlopen() call references an object while the
2325	     * fini function is in progress, we might end up trying to
2326	     * unload the referenced object in dlclose() or the object
2327	     * won't be unloaded although its fini function has been
2328	     * called.
2329	     */
2330	    lock_release(rtld_bind_lock, lockstate);
2331
2332	    /*
2333	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2334	     * When this happens, DT_FINI_ARRAY is processed first.
2335	     */
2336	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2337	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2338		for (index = elm->obj->fini_array_num - 1; index >= 0;
2339		  index--) {
2340		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2341			dbg("calling fini function for %s at %p",
2342			    elm->obj->path, (void *)fini_addr[index]);
2343			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2344			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2345			call_initfini_pointer(elm->obj, fini_addr[index]);
2346		    }
2347		}
2348	    }
2349	    if (elm->obj->fini != (Elf_Addr)NULL) {
2350		dbg("calling fini function for %s at %p", elm->obj->path,
2351		    (void *)elm->obj->fini);
2352		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2353		    0, 0, elm->obj->path);
2354		call_initfini_pointer(elm->obj, elm->obj->fini);
2355	    }
2356	    wlock_acquire(rtld_bind_lock, lockstate);
2357	    /* No need to free anything if process is going down. */
2358	    if (root != NULL)
2359	    	free(elm);
2360	    /*
2361	     * We must restart the list traversal after every fini call
2362	     * because a dlclose() call from the fini function or from
2363	     * another thread might have modified the reference counts.
2364	     */
2365	    break;
2366	}
2367    } while (elm != NULL);
2368    errmsg_restore(saved_msg);
2369}
2370
2371/*
2372 * Call the initialization functions for each of the objects in
2373 * "list".  All of the objects are expected to have non-NULL init
2374 * functions.
2375 */
2376static void
2377objlist_call_init(Objlist *list, RtldLockState *lockstate)
2378{
2379    Objlist_Entry *elm;
2380    Obj_Entry *obj;
2381    char *saved_msg;
2382    Elf_Addr *init_addr;
2383    int index;
2384
2385    /*
2386     * Clean init_scanned flag so that objects can be rechecked and
2387     * possibly initialized earlier if any of vectors called below
2388     * cause the change by using dlopen.
2389     */
2390    for (obj = obj_list;  obj != NULL;  obj = obj->next)
2391	obj->init_scanned = false;
2392
2393    /*
2394     * Preserve the current error message since an init function might
2395     * call into the dynamic linker and overwrite it.
2396     */
2397    saved_msg = errmsg_save();
2398    STAILQ_FOREACH(elm, list, link) {
2399	if (elm->obj->init_done) /* Initialized early. */
2400	    continue;
2401	/*
2402	 * Race: other thread might try to use this object before current
2403	 * one completes the initilization. Not much can be done here
2404	 * without better locking.
2405	 */
2406	elm->obj->init_done = true;
2407	lock_release(rtld_bind_lock, lockstate);
2408
2409        /*
2410         * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2411         * When this happens, DT_INIT is processed first.
2412         */
2413	if (elm->obj->init != (Elf_Addr)NULL) {
2414	    dbg("calling init function for %s at %p", elm->obj->path,
2415	        (void *)elm->obj->init);
2416	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2417	        0, 0, elm->obj->path);
2418	    call_initfini_pointer(elm->obj, elm->obj->init);
2419	}
2420	init_addr = (Elf_Addr *)elm->obj->init_array;
2421	if (init_addr != NULL) {
2422	    for (index = 0; index < elm->obj->init_array_num; index++) {
2423		if (init_addr[index] != 0 && init_addr[index] != 1) {
2424		    dbg("calling init function for %s at %p", elm->obj->path,
2425			(void *)init_addr[index]);
2426		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2427			(void *)init_addr[index], 0, 0, elm->obj->path);
2428		    call_init_pointer(elm->obj, init_addr[index]);
2429		}
2430	    }
2431	}
2432	wlock_acquire(rtld_bind_lock, lockstate);
2433    }
2434    errmsg_restore(saved_msg);
2435}
2436
2437static void
2438objlist_clear(Objlist *list)
2439{
2440    Objlist_Entry *elm;
2441
2442    while (!STAILQ_EMPTY(list)) {
2443	elm = STAILQ_FIRST(list);
2444	STAILQ_REMOVE_HEAD(list, link);
2445	free(elm);
2446    }
2447}
2448
2449static Objlist_Entry *
2450objlist_find(Objlist *list, const Obj_Entry *obj)
2451{
2452    Objlist_Entry *elm;
2453
2454    STAILQ_FOREACH(elm, list, link)
2455	if (elm->obj == obj)
2456	    return elm;
2457    return NULL;
2458}
2459
2460static void
2461objlist_init(Objlist *list)
2462{
2463    STAILQ_INIT(list);
2464}
2465
2466static void
2467objlist_push_head(Objlist *list, Obj_Entry *obj)
2468{
2469    Objlist_Entry *elm;
2470
2471    elm = NEW(Objlist_Entry);
2472    elm->obj = obj;
2473    STAILQ_INSERT_HEAD(list, elm, link);
2474}
2475
2476static void
2477objlist_push_tail(Objlist *list, Obj_Entry *obj)
2478{
2479    Objlist_Entry *elm;
2480
2481    elm = NEW(Objlist_Entry);
2482    elm->obj = obj;
2483    STAILQ_INSERT_TAIL(list, elm, link);
2484}
2485
2486static void
2487objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2488{
2489	Objlist_Entry *elm, *listelm;
2490
2491	STAILQ_FOREACH(listelm, list, link) {
2492		if (listelm->obj == listobj)
2493			break;
2494	}
2495	elm = NEW(Objlist_Entry);
2496	elm->obj = obj;
2497	if (listelm != NULL)
2498		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2499	else
2500		STAILQ_INSERT_TAIL(list, elm, link);
2501}
2502
2503static void
2504objlist_remove(Objlist *list, Obj_Entry *obj)
2505{
2506    Objlist_Entry *elm;
2507
2508    if ((elm = objlist_find(list, obj)) != NULL) {
2509	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2510	free(elm);
2511    }
2512}
2513
2514/*
2515 * Relocate dag rooted in the specified object.
2516 * Returns 0 on success, or -1 on failure.
2517 */
2518
2519static int
2520relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2521    int flags, RtldLockState *lockstate)
2522{
2523	Objlist_Entry *elm;
2524	int error;
2525
2526	error = 0;
2527	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2528		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2529		    lockstate);
2530		if (error == -1)
2531			break;
2532	}
2533	return (error);
2534}
2535
2536/*
2537 * Relocate single object.
2538 * Returns 0 on success, or -1 on failure.
2539 */
2540static int
2541relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2542    int flags, RtldLockState *lockstate)
2543{
2544
2545	if (obj->relocated)
2546		return (0);
2547	obj->relocated = true;
2548	if (obj != rtldobj)
2549		dbg("relocating \"%s\"", obj->path);
2550
2551	if (obj->symtab == NULL || obj->strtab == NULL ||
2552	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2553		_rtld_error("%s: Shared object has no run-time symbol table",
2554			    obj->path);
2555		return (-1);
2556	}
2557
2558	if (obj->textrel) {
2559		/* There are relocations to the write-protected text segment. */
2560		if (mprotect(obj->mapbase, obj->textsize,
2561		    PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2562			_rtld_error("%s: Cannot write-enable text segment: %s",
2563			    obj->path, rtld_strerror(errno));
2564			return (-1);
2565		}
2566	}
2567
2568	/* Process the non-PLT non-IFUNC relocations. */
2569	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2570		return (-1);
2571
2572	if (obj->textrel) {	/* Re-protected the text segment. */
2573		if (mprotect(obj->mapbase, obj->textsize,
2574		    PROT_READ|PROT_EXEC) == -1) {
2575			_rtld_error("%s: Cannot write-protect text segment: %s",
2576			    obj->path, rtld_strerror(errno));
2577			return (-1);
2578		}
2579	}
2580
2581	/* Set the special PLT or GOT entries. */
2582	init_pltgot(obj);
2583
2584	/* Process the PLT relocations. */
2585	if (reloc_plt(obj) == -1)
2586		return (-1);
2587	/* Relocate the jump slots if we are doing immediate binding. */
2588	if (obj->bind_now || bind_now)
2589		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2590			return (-1);
2591
2592	/*
2593	 * Process the non-PLT IFUNC relocations.  The relocations are
2594	 * processed in two phases, because IFUNC resolvers may
2595	 * reference other symbols, which must be readily processed
2596	 * before resolvers are called.
2597	 */
2598	if (obj->non_plt_gnu_ifunc &&
2599	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2600		return (-1);
2601
2602	if (obj->relro_size > 0) {
2603		if (mprotect(obj->relro_page, obj->relro_size,
2604		    PROT_READ) == -1) {
2605			_rtld_error("%s: Cannot enforce relro protection: %s",
2606			    obj->path, rtld_strerror(errno));
2607			return (-1);
2608		}
2609	}
2610
2611	/*
2612	 * Set up the magic number and version in the Obj_Entry.  These
2613	 * were checked in the crt1.o from the original ElfKit, so we
2614	 * set them for backward compatibility.
2615	 */
2616	obj->magic = RTLD_MAGIC;
2617	obj->version = RTLD_VERSION;
2618
2619	return (0);
2620}
2621
2622/*
2623 * Relocate newly-loaded shared objects.  The argument is a pointer to
2624 * the Obj_Entry for the first such object.  All objects from the first
2625 * to the end of the list of objects are relocated.  Returns 0 on success,
2626 * or -1 on failure.
2627 */
2628static int
2629relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2630    int flags, RtldLockState *lockstate)
2631{
2632	Obj_Entry *obj;
2633	int error;
2634
2635	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2636		error = relocate_object(obj, bind_now, rtldobj, flags,
2637		    lockstate);
2638		if (error == -1)
2639			break;
2640	}
2641	return (error);
2642}
2643
2644/*
2645 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2646 * referencing STT_GNU_IFUNC symbols is postponed till the other
2647 * relocations are done.  The indirect functions specified as
2648 * ifunc are allowed to call other symbols, so we need to have
2649 * objects relocated before asking for resolution from indirects.
2650 *
2651 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2652 * instead of the usual lazy handling of PLT slots.  It is
2653 * consistent with how GNU does it.
2654 */
2655static int
2656resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2657    RtldLockState *lockstate)
2658{
2659	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2660		return (-1);
2661	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2662	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2663		return (-1);
2664	return (0);
2665}
2666
2667static int
2668resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2669    RtldLockState *lockstate)
2670{
2671	Obj_Entry *obj;
2672
2673	for (obj = first;  obj != NULL;  obj = obj->next) {
2674		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2675			return (-1);
2676	}
2677	return (0);
2678}
2679
2680static int
2681initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2682    RtldLockState *lockstate)
2683{
2684	Objlist_Entry *elm;
2685
2686	STAILQ_FOREACH(elm, list, link) {
2687		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2688		    lockstate) == -1)
2689			return (-1);
2690	}
2691	return (0);
2692}
2693
2694/*
2695 * Cleanup procedure.  It will be called (by the atexit mechanism) just
2696 * before the process exits.
2697 */
2698static void
2699rtld_exit(void)
2700{
2701    RtldLockState lockstate;
2702
2703    wlock_acquire(rtld_bind_lock, &lockstate);
2704    dbg("rtld_exit()");
2705    objlist_call_fini(&list_fini, NULL, &lockstate);
2706    /* No need to remove the items from the list, since we are exiting. */
2707    if (!libmap_disable)
2708        lm_fini();
2709    lock_release(rtld_bind_lock, &lockstate);
2710}
2711
2712/*
2713 * Iterate over a search path, translate each element, and invoke the
2714 * callback on the result.
2715 */
2716static void *
2717path_enumerate(const char *path, path_enum_proc callback, void *arg)
2718{
2719    const char *trans;
2720    if (path == NULL)
2721	return (NULL);
2722
2723    path += strspn(path, ":;");
2724    while (*path != '\0') {
2725	size_t len;
2726	char  *res;
2727
2728	len = strcspn(path, ":;");
2729	trans = lm_findn(NULL, path, len);
2730	if (trans)
2731	    res = callback(trans, strlen(trans), arg);
2732	else
2733	    res = callback(path, len, arg);
2734
2735	if (res != NULL)
2736	    return (res);
2737
2738	path += len;
2739	path += strspn(path, ":;");
2740    }
2741
2742    return (NULL);
2743}
2744
2745struct try_library_args {
2746    const char	*name;
2747    size_t	 namelen;
2748    char	*buffer;
2749    size_t	 buflen;
2750};
2751
2752static void *
2753try_library_path(const char *dir, size_t dirlen, void *param)
2754{
2755    struct try_library_args *arg;
2756
2757    arg = param;
2758    if (*dir == '/' || trust) {
2759	char *pathname;
2760
2761	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2762		return (NULL);
2763
2764	pathname = arg->buffer;
2765	strncpy(pathname, dir, dirlen);
2766	pathname[dirlen] = '/';
2767	strcpy(pathname + dirlen + 1, arg->name);
2768
2769	dbg("  Trying \"%s\"", pathname);
2770	if (access(pathname, F_OK) == 0) {		/* We found it */
2771	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2772	    strcpy(pathname, arg->buffer);
2773	    return (pathname);
2774	}
2775    }
2776    return (NULL);
2777}
2778
2779static char *
2780search_library_path(const char *name, const char *path)
2781{
2782    char *p;
2783    struct try_library_args arg;
2784
2785    if (path == NULL)
2786	return NULL;
2787
2788    arg.name = name;
2789    arg.namelen = strlen(name);
2790    arg.buffer = xmalloc(PATH_MAX);
2791    arg.buflen = PATH_MAX;
2792
2793    p = path_enumerate(path, try_library_path, &arg);
2794
2795    free(arg.buffer);
2796
2797    return (p);
2798}
2799
2800int
2801dlclose(void *handle)
2802{
2803    Obj_Entry *root;
2804    RtldLockState lockstate;
2805
2806    wlock_acquire(rtld_bind_lock, &lockstate);
2807    root = dlcheck(handle);
2808    if (root == NULL) {
2809	lock_release(rtld_bind_lock, &lockstate);
2810	return -1;
2811    }
2812    LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2813	root->path);
2814
2815    /* Unreference the object and its dependencies. */
2816    root->dl_refcount--;
2817
2818    if (root->refcount == 1) {
2819	/*
2820	 * The object will be no longer referenced, so we must unload it.
2821	 * First, call the fini functions.
2822	 */
2823	objlist_call_fini(&list_fini, root, &lockstate);
2824
2825	unref_dag(root);
2826
2827	/* Finish cleaning up the newly-unreferenced objects. */
2828	GDB_STATE(RT_DELETE,&root->linkmap);
2829	unload_object(root);
2830	GDB_STATE(RT_CONSISTENT,NULL);
2831    } else
2832	unref_dag(root);
2833
2834    LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2835    lock_release(rtld_bind_lock, &lockstate);
2836    return 0;
2837}
2838
2839char *
2840dlerror(void)
2841{
2842    char *msg = error_message;
2843    error_message = NULL;
2844    return msg;
2845}
2846
2847/*
2848 * This function is deprecated and has no effect.
2849 */
2850void
2851dllockinit(void *context,
2852	   void *(*lock_create)(void *context),
2853           void (*rlock_acquire)(void *lock),
2854           void (*wlock_acquire)(void *lock),
2855           void (*lock_release)(void *lock),
2856           void (*lock_destroy)(void *lock),
2857	   void (*context_destroy)(void *context))
2858{
2859    static void *cur_context;
2860    static void (*cur_context_destroy)(void *);
2861
2862    /* Just destroy the context from the previous call, if necessary. */
2863    if (cur_context_destroy != NULL)
2864	cur_context_destroy(cur_context);
2865    cur_context = context;
2866    cur_context_destroy = context_destroy;
2867}
2868
2869void *
2870dlopen(const char *name, int mode)
2871{
2872
2873	return (rtld_dlopen(name, -1, mode));
2874}
2875
2876void *
2877fdlopen(int fd, int mode)
2878{
2879
2880	return (rtld_dlopen(NULL, fd, mode));
2881}
2882
2883static void *
2884rtld_dlopen(const char *name, int fd, int mode)
2885{
2886    RtldLockState lockstate;
2887    int lo_flags;
2888
2889    LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2890    ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2891    if (ld_tracing != NULL) {
2892	rlock_acquire(rtld_bind_lock, &lockstate);
2893	if (sigsetjmp(lockstate.env, 0) != 0)
2894	    lock_upgrade(rtld_bind_lock, &lockstate);
2895	environ = (char **)*get_program_var_addr("environ", &lockstate);
2896	lock_release(rtld_bind_lock, &lockstate);
2897    }
2898    lo_flags = RTLD_LO_DLOPEN;
2899    if (mode & RTLD_NODELETE)
2900	    lo_flags |= RTLD_LO_NODELETE;
2901    if (mode & RTLD_NOLOAD)
2902	    lo_flags |= RTLD_LO_NOLOAD;
2903    if (ld_tracing != NULL)
2904	    lo_flags |= RTLD_LO_TRACE;
2905
2906    return (dlopen_object(name, fd, obj_main, lo_flags,
2907      mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2908}
2909
2910static void
2911dlopen_cleanup(Obj_Entry *obj)
2912{
2913
2914	obj->dl_refcount--;
2915	unref_dag(obj);
2916	if (obj->refcount == 0)
2917		unload_object(obj);
2918}
2919
2920static Obj_Entry *
2921dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2922    int mode, RtldLockState *lockstate)
2923{
2924    Obj_Entry **old_obj_tail;
2925    Obj_Entry *obj;
2926    Objlist initlist;
2927    RtldLockState mlockstate;
2928    int result;
2929
2930    objlist_init(&initlist);
2931
2932    if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2933	wlock_acquire(rtld_bind_lock, &mlockstate);
2934	lockstate = &mlockstate;
2935    }
2936    GDB_STATE(RT_ADD,NULL);
2937
2938    old_obj_tail = obj_tail;
2939    obj = NULL;
2940    if (name == NULL && fd == -1) {
2941	obj = obj_main;
2942	obj->refcount++;
2943    } else {
2944	obj = load_object(name, fd, refobj, lo_flags);
2945    }
2946
2947    if (obj) {
2948	obj->dl_refcount++;
2949	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2950	    objlist_push_tail(&list_global, obj);
2951	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2952	    assert(*old_obj_tail == obj);
2953	    result = load_needed_objects(obj,
2954		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
2955	    init_dag(obj);
2956	    ref_dag(obj);
2957	    if (result != -1)
2958		result = rtld_verify_versions(&obj->dagmembers);
2959	    if (result != -1 && ld_tracing)
2960		goto trace;
2961	    if (result == -1 || relocate_object_dag(obj,
2962	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
2963	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2964	      lockstate) == -1) {
2965		dlopen_cleanup(obj);
2966		obj = NULL;
2967	    } else if (lo_flags & RTLD_LO_EARLY) {
2968		/*
2969		 * Do not call the init functions for early loaded
2970		 * filtees.  The image is still not initialized enough
2971		 * for them to work.
2972		 *
2973		 * Our object is found by the global object list and
2974		 * will be ordered among all init calls done right
2975		 * before transferring control to main.
2976		 */
2977	    } else {
2978		/* Make list of init functions to call. */
2979		initlist_add_objects(obj, &obj->next, &initlist);
2980	    }
2981	    /*
2982	     * Process all no_delete or global objects here, given
2983	     * them own DAGs to prevent their dependencies from being
2984	     * unloaded.  This has to be done after we have loaded all
2985	     * of the dependencies, so that we do not miss any.
2986	     */
2987	    if (obj != NULL)
2988		process_z(obj);
2989	} else {
2990	    /*
2991	     * Bump the reference counts for objects on this DAG.  If
2992	     * this is the first dlopen() call for the object that was
2993	     * already loaded as a dependency, initialize the dag
2994	     * starting at it.
2995	     */
2996	    init_dag(obj);
2997	    ref_dag(obj);
2998
2999	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3000		goto trace;
3001	}
3002	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3003	  obj->z_nodelete) && !obj->ref_nodel) {
3004	    dbg("obj %s nodelete", obj->path);
3005	    ref_dag(obj);
3006	    obj->z_nodelete = obj->ref_nodel = true;
3007	}
3008    }
3009
3010    LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3011	name);
3012    GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3013
3014    if (!(lo_flags & RTLD_LO_EARLY)) {
3015	map_stacks_exec(lockstate);
3016    }
3017
3018    if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3019      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3020      lockstate) == -1) {
3021	objlist_clear(&initlist);
3022	dlopen_cleanup(obj);
3023	if (lockstate == &mlockstate)
3024	    lock_release(rtld_bind_lock, lockstate);
3025	return (NULL);
3026    }
3027
3028    if (!(lo_flags & RTLD_LO_EARLY)) {
3029	/* Call the init functions. */
3030	objlist_call_init(&initlist, lockstate);
3031    }
3032    objlist_clear(&initlist);
3033    if (lockstate == &mlockstate)
3034	lock_release(rtld_bind_lock, lockstate);
3035    return obj;
3036trace:
3037    trace_loaded_objects(obj);
3038    if (lockstate == &mlockstate)
3039	lock_release(rtld_bind_lock, lockstate);
3040    exit(0);
3041}
3042
3043static void *
3044do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3045    int flags)
3046{
3047    DoneList donelist;
3048    const Obj_Entry *obj, *defobj;
3049    const Elf_Sym *def;
3050    SymLook req;
3051    RtldLockState lockstate;
3052#ifndef __ia64__
3053    tls_index ti;
3054#endif
3055    void *sym;
3056    int res;
3057
3058    def = NULL;
3059    defobj = NULL;
3060    symlook_init(&req, name);
3061    req.ventry = ve;
3062    req.flags = flags | SYMLOOK_IN_PLT;
3063    req.lockstate = &lockstate;
3064
3065    LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3066    rlock_acquire(rtld_bind_lock, &lockstate);
3067    if (sigsetjmp(lockstate.env, 0) != 0)
3068	    lock_upgrade(rtld_bind_lock, &lockstate);
3069    if (handle == NULL || handle == RTLD_NEXT ||
3070	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3071
3072	if ((obj = obj_from_addr(retaddr)) == NULL) {
3073	    _rtld_error("Cannot determine caller's shared object");
3074	    lock_release(rtld_bind_lock, &lockstate);
3075	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3076	    return NULL;
3077	}
3078	if (handle == NULL) {	/* Just the caller's shared object. */
3079	    res = symlook_obj(&req, obj);
3080	    if (res == 0) {
3081		def = req.sym_out;
3082		defobj = req.defobj_out;
3083	    }
3084	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3085		   handle == RTLD_SELF) { /* ... caller included */
3086	    if (handle == RTLD_NEXT)
3087		obj = obj->next;
3088	    for (; obj != NULL; obj = obj->next) {
3089		res = symlook_obj(&req, obj);
3090		if (res == 0) {
3091		    if (def == NULL ||
3092		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3093			def = req.sym_out;
3094			defobj = req.defobj_out;
3095			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3096			    break;
3097		    }
3098		}
3099	    }
3100	    /*
3101	     * Search the dynamic linker itself, and possibly resolve the
3102	     * symbol from there.  This is how the application links to
3103	     * dynamic linker services such as dlopen.
3104	     */
3105	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3106		res = symlook_obj(&req, &obj_rtld);
3107		if (res == 0) {
3108		    def = req.sym_out;
3109		    defobj = req.defobj_out;
3110		}
3111	    }
3112	} else {
3113	    assert(handle == RTLD_DEFAULT);
3114	    res = symlook_default(&req, obj);
3115	    if (res == 0) {
3116		defobj = req.defobj_out;
3117		def = req.sym_out;
3118	    }
3119	}
3120    } else {
3121	if ((obj = dlcheck(handle)) == NULL) {
3122	    lock_release(rtld_bind_lock, &lockstate);
3123	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3124	    return NULL;
3125	}
3126
3127	donelist_init(&donelist);
3128	if (obj->mainprog) {
3129            /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3130	    res = symlook_global(&req, &donelist);
3131	    if (res == 0) {
3132		def = req.sym_out;
3133		defobj = req.defobj_out;
3134	    }
3135	    /*
3136	     * Search the dynamic linker itself, and possibly resolve the
3137	     * symbol from there.  This is how the application links to
3138	     * dynamic linker services such as dlopen.
3139	     */
3140	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3141		res = symlook_obj(&req, &obj_rtld);
3142		if (res == 0) {
3143		    def = req.sym_out;
3144		    defobj = req.defobj_out;
3145		}
3146	    }
3147	}
3148	else {
3149	    /* Search the whole DAG rooted at the given object. */
3150	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3151	    if (res == 0) {
3152		def = req.sym_out;
3153		defobj = req.defobj_out;
3154	    }
3155	}
3156    }
3157
3158    if (def != NULL) {
3159	lock_release(rtld_bind_lock, &lockstate);
3160
3161	/*
3162	 * The value required by the caller is derived from the value
3163	 * of the symbol. For the ia64 architecture, we need to
3164	 * construct a function descriptor which the caller can use to
3165	 * call the function with the right 'gp' value. For other
3166	 * architectures and for non-functions, the value is simply
3167	 * the relocated value of the symbol.
3168	 */
3169	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3170	    sym = make_function_pointer(def, defobj);
3171	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3172	    sym = rtld_resolve_ifunc(defobj, def);
3173	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3174#ifdef __ia64__
3175	    return (__tls_get_addr(defobj->tlsindex, def->st_value));
3176#else
3177	    ti.ti_module = defobj->tlsindex;
3178	    ti.ti_offset = def->st_value;
3179	    sym = __tls_get_addr(&ti);
3180#endif
3181	} else
3182	    sym = defobj->relocbase + def->st_value;
3183	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3184	return (sym);
3185    }
3186
3187    _rtld_error("Undefined symbol \"%s\"", name);
3188    lock_release(rtld_bind_lock, &lockstate);
3189    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3190    return NULL;
3191}
3192
3193void *
3194dlsym(void *handle, const char *name)
3195{
3196	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3197	    SYMLOOK_DLSYM);
3198}
3199
3200dlfunc_t
3201dlfunc(void *handle, const char *name)
3202{
3203	union {
3204		void *d;
3205		dlfunc_t f;
3206	} rv;
3207
3208	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3209	    SYMLOOK_DLSYM);
3210	return (rv.f);
3211}
3212
3213void *
3214dlvsym(void *handle, const char *name, const char *version)
3215{
3216	Ver_Entry ventry;
3217
3218	ventry.name = version;
3219	ventry.file = NULL;
3220	ventry.hash = elf_hash(version);
3221	ventry.flags= 0;
3222	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3223	    SYMLOOK_DLSYM);
3224}
3225
3226int
3227_rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3228{
3229    const Obj_Entry *obj;
3230    RtldLockState lockstate;
3231
3232    rlock_acquire(rtld_bind_lock, &lockstate);
3233    obj = obj_from_addr(addr);
3234    if (obj == NULL) {
3235        _rtld_error("No shared object contains address");
3236	lock_release(rtld_bind_lock, &lockstate);
3237        return (0);
3238    }
3239    rtld_fill_dl_phdr_info(obj, phdr_info);
3240    lock_release(rtld_bind_lock, &lockstate);
3241    return (1);
3242}
3243
3244int
3245dladdr(const void *addr, Dl_info *info)
3246{
3247    const Obj_Entry *obj;
3248    const Elf_Sym *def;
3249    void *symbol_addr;
3250    unsigned long symoffset;
3251    RtldLockState lockstate;
3252
3253    rlock_acquire(rtld_bind_lock, &lockstate);
3254    obj = obj_from_addr(addr);
3255    if (obj == NULL) {
3256        _rtld_error("No shared object contains address");
3257	lock_release(rtld_bind_lock, &lockstate);
3258        return 0;
3259    }
3260    info->dli_fname = obj->path;
3261    info->dli_fbase = obj->mapbase;
3262    info->dli_saddr = (void *)0;
3263    info->dli_sname = NULL;
3264
3265    /*
3266     * Walk the symbol list looking for the symbol whose address is
3267     * closest to the address sent in.
3268     */
3269    for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3270        def = obj->symtab + symoffset;
3271
3272        /*
3273         * For skip the symbol if st_shndx is either SHN_UNDEF or
3274         * SHN_COMMON.
3275         */
3276        if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3277            continue;
3278
3279        /*
3280         * If the symbol is greater than the specified address, or if it
3281         * is further away from addr than the current nearest symbol,
3282         * then reject it.
3283         */
3284        symbol_addr = obj->relocbase + def->st_value;
3285        if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3286            continue;
3287
3288        /* Update our idea of the nearest symbol. */
3289        info->dli_sname = obj->strtab + def->st_name;
3290        info->dli_saddr = symbol_addr;
3291
3292        /* Exact match? */
3293        if (info->dli_saddr == addr)
3294            break;
3295    }
3296    lock_release(rtld_bind_lock, &lockstate);
3297    return 1;
3298}
3299
3300int
3301dlinfo(void *handle, int request, void *p)
3302{
3303    const Obj_Entry *obj;
3304    RtldLockState lockstate;
3305    int error;
3306
3307    rlock_acquire(rtld_bind_lock, &lockstate);
3308
3309    if (handle == NULL || handle == RTLD_SELF) {
3310	void *retaddr;
3311
3312	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3313	if ((obj = obj_from_addr(retaddr)) == NULL)
3314	    _rtld_error("Cannot determine caller's shared object");
3315    } else
3316	obj = dlcheck(handle);
3317
3318    if (obj == NULL) {
3319	lock_release(rtld_bind_lock, &lockstate);
3320	return (-1);
3321    }
3322
3323    error = 0;
3324    switch (request) {
3325    case RTLD_DI_LINKMAP:
3326	*((struct link_map const **)p) = &obj->linkmap;
3327	break;
3328    case RTLD_DI_ORIGIN:
3329	error = rtld_dirname(obj->path, p);
3330	break;
3331
3332    case RTLD_DI_SERINFOSIZE:
3333    case RTLD_DI_SERINFO:
3334	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3335	break;
3336
3337    default:
3338	_rtld_error("Invalid request %d passed to dlinfo()", request);
3339	error = -1;
3340    }
3341
3342    lock_release(rtld_bind_lock, &lockstate);
3343
3344    return (error);
3345}
3346
3347static void
3348rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3349{
3350
3351	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3352	phdr_info->dlpi_name = obj->path;
3353	phdr_info->dlpi_phdr = obj->phdr;
3354	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3355	phdr_info->dlpi_tls_modid = obj->tlsindex;
3356	phdr_info->dlpi_tls_data = obj->tlsinit;
3357	phdr_info->dlpi_adds = obj_loads;
3358	phdr_info->dlpi_subs = obj_loads - obj_count;
3359}
3360
3361int
3362dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3363{
3364    struct dl_phdr_info phdr_info;
3365    const Obj_Entry *obj;
3366    RtldLockState bind_lockstate, phdr_lockstate;
3367    int error;
3368
3369    wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3370    rlock_acquire(rtld_bind_lock, &bind_lockstate);
3371
3372    error = 0;
3373
3374    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3375	rtld_fill_dl_phdr_info(obj, &phdr_info);
3376	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3377		break;
3378
3379    }
3380    lock_release(rtld_bind_lock, &bind_lockstate);
3381    lock_release(rtld_phdr_lock, &phdr_lockstate);
3382
3383    return (error);
3384}
3385
3386static void *
3387fill_search_info(const char *dir, size_t dirlen, void *param)
3388{
3389    struct fill_search_info_args *arg;
3390
3391    arg = param;
3392
3393    if (arg->request == RTLD_DI_SERINFOSIZE) {
3394	arg->serinfo->dls_cnt ++;
3395	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3396    } else {
3397	struct dl_serpath *s_entry;
3398
3399	s_entry = arg->serpath;
3400	s_entry->dls_name  = arg->strspace;
3401	s_entry->dls_flags = arg->flags;
3402
3403	strncpy(arg->strspace, dir, dirlen);
3404	arg->strspace[dirlen] = '\0';
3405
3406	arg->strspace += dirlen + 1;
3407	arg->serpath++;
3408    }
3409
3410    return (NULL);
3411}
3412
3413static int
3414do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3415{
3416    struct dl_serinfo _info;
3417    struct fill_search_info_args args;
3418
3419    args.request = RTLD_DI_SERINFOSIZE;
3420    args.serinfo = &_info;
3421
3422    _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3423    _info.dls_cnt  = 0;
3424
3425    path_enumerate(obj->rpath, fill_search_info, &args);
3426    path_enumerate(ld_library_path, fill_search_info, &args);
3427    path_enumerate(obj->runpath, fill_search_info, &args);
3428    path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3429    if (!obj->z_nodeflib)
3430      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3431
3432
3433    if (request == RTLD_DI_SERINFOSIZE) {
3434	info->dls_size = _info.dls_size;
3435	info->dls_cnt = _info.dls_cnt;
3436	return (0);
3437    }
3438
3439    if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3440	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3441	return (-1);
3442    }
3443
3444    args.request  = RTLD_DI_SERINFO;
3445    args.serinfo  = info;
3446    args.serpath  = &info->dls_serpath[0];
3447    args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3448
3449    args.flags = LA_SER_RUNPATH;
3450    if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3451	return (-1);
3452
3453    args.flags = LA_SER_LIBPATH;
3454    if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3455	return (-1);
3456
3457    args.flags = LA_SER_RUNPATH;
3458    if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3459	return (-1);
3460
3461    args.flags = LA_SER_CONFIG;
3462    if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3463      != NULL)
3464	return (-1);
3465
3466    args.flags = LA_SER_DEFAULT;
3467    if (!obj->z_nodeflib &&
3468      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3469	return (-1);
3470    return (0);
3471}
3472
3473static int
3474rtld_dirname(const char *path, char *bname)
3475{
3476    const char *endp;
3477
3478    /* Empty or NULL string gets treated as "." */
3479    if (path == NULL || *path == '\0') {
3480	bname[0] = '.';
3481	bname[1] = '\0';
3482	return (0);
3483    }
3484
3485    /* Strip trailing slashes */
3486    endp = path + strlen(path) - 1;
3487    while (endp > path && *endp == '/')
3488	endp--;
3489
3490    /* Find the start of the dir */
3491    while (endp > path && *endp != '/')
3492	endp--;
3493
3494    /* Either the dir is "/" or there are no slashes */
3495    if (endp == path) {
3496	bname[0] = *endp == '/' ? '/' : '.';
3497	bname[1] = '\0';
3498	return (0);
3499    } else {
3500	do {
3501	    endp--;
3502	} while (endp > path && *endp == '/');
3503    }
3504
3505    if (endp - path + 2 > PATH_MAX)
3506    {
3507	_rtld_error("Filename is too long: %s", path);
3508	return(-1);
3509    }
3510
3511    strncpy(bname, path, endp - path + 1);
3512    bname[endp - path + 1] = '\0';
3513    return (0);
3514}
3515
3516static int
3517rtld_dirname_abs(const char *path, char *base)
3518{
3519	char *last;
3520
3521	if (realpath(path, base) == NULL)
3522		return (-1);
3523	dbg("%s -> %s", path, base);
3524	last = strrchr(base, '/');
3525	if (last == NULL)
3526		return (-1);
3527	if (last != base)
3528		*last = '\0';
3529	return (0);
3530}
3531
3532static void
3533linkmap_add(Obj_Entry *obj)
3534{
3535    struct link_map *l = &obj->linkmap;
3536    struct link_map *prev;
3537
3538    obj->linkmap.l_name = obj->path;
3539    obj->linkmap.l_addr = obj->mapbase;
3540    obj->linkmap.l_ld = obj->dynamic;
3541#ifdef __mips__
3542    /* GDB needs load offset on MIPS to use the symbols */
3543    obj->linkmap.l_offs = obj->relocbase;
3544#endif
3545
3546    if (r_debug.r_map == NULL) {
3547	r_debug.r_map = l;
3548	return;
3549    }
3550
3551    /*
3552     * Scan to the end of the list, but not past the entry for the
3553     * dynamic linker, which we want to keep at the very end.
3554     */
3555    for (prev = r_debug.r_map;
3556      prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3557      prev = prev->l_next)
3558	;
3559
3560    /* Link in the new entry. */
3561    l->l_prev = prev;
3562    l->l_next = prev->l_next;
3563    if (l->l_next != NULL)
3564	l->l_next->l_prev = l;
3565    prev->l_next = l;
3566}
3567
3568static void
3569linkmap_delete(Obj_Entry *obj)
3570{
3571    struct link_map *l = &obj->linkmap;
3572
3573    if (l->l_prev == NULL) {
3574	if ((r_debug.r_map = l->l_next) != NULL)
3575	    l->l_next->l_prev = NULL;
3576	return;
3577    }
3578
3579    if ((l->l_prev->l_next = l->l_next) != NULL)
3580	l->l_next->l_prev = l->l_prev;
3581}
3582
3583/*
3584 * Function for the debugger to set a breakpoint on to gain control.
3585 *
3586 * The two parameters allow the debugger to easily find and determine
3587 * what the runtime loader is doing and to whom it is doing it.
3588 *
3589 * When the loadhook trap is hit (r_debug_state, set at program
3590 * initialization), the arguments can be found on the stack:
3591 *
3592 *  +8   struct link_map *m
3593 *  +4   struct r_debug  *rd
3594 *  +0   RetAddr
3595 */
3596void
3597r_debug_state(struct r_debug* rd, struct link_map *m)
3598{
3599    /*
3600     * The following is a hack to force the compiler to emit calls to
3601     * this function, even when optimizing.  If the function is empty,
3602     * the compiler is not obliged to emit any code for calls to it,
3603     * even when marked __noinline.  However, gdb depends on those
3604     * calls being made.
3605     */
3606    __compiler_membar();
3607}
3608
3609/*
3610 * A function called after init routines have completed. This can be used to
3611 * break before a program's entry routine is called, and can be used when
3612 * main is not available in the symbol table.
3613 */
3614void
3615_r_debug_postinit(struct link_map *m)
3616{
3617
3618	/* See r_debug_state(). */
3619	__compiler_membar();
3620}
3621
3622/*
3623 * Get address of the pointer variable in the main program.
3624 * Prefer non-weak symbol over the weak one.
3625 */
3626static const void **
3627get_program_var_addr(const char *name, RtldLockState *lockstate)
3628{
3629    SymLook req;
3630    DoneList donelist;
3631
3632    symlook_init(&req, name);
3633    req.lockstate = lockstate;
3634    donelist_init(&donelist);
3635    if (symlook_global(&req, &donelist) != 0)
3636	return (NULL);
3637    if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3638	return ((const void **)make_function_pointer(req.sym_out,
3639	  req.defobj_out));
3640    else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3641	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3642    else
3643	return ((const void **)(req.defobj_out->relocbase +
3644	  req.sym_out->st_value));
3645}
3646
3647/*
3648 * Set a pointer variable in the main program to the given value.  This
3649 * is used to set key variables such as "environ" before any of the
3650 * init functions are called.
3651 */
3652static void
3653set_program_var(const char *name, const void *value)
3654{
3655    const void **addr;
3656
3657    if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3658	dbg("\"%s\": *%p <-- %p", name, addr, value);
3659	*addr = value;
3660    }
3661}
3662
3663/*
3664 * Search the global objects, including dependencies and main object,
3665 * for the given symbol.
3666 */
3667static int
3668symlook_global(SymLook *req, DoneList *donelist)
3669{
3670    SymLook req1;
3671    const Objlist_Entry *elm;
3672    int res;
3673
3674    symlook_init_from_req(&req1, req);
3675
3676    /* Search all objects loaded at program start up. */
3677    if (req->defobj_out == NULL ||
3678      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3679	res = symlook_list(&req1, &list_main, donelist);
3680	if (res == 0 && (req->defobj_out == NULL ||
3681	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3682	    req->sym_out = req1.sym_out;
3683	    req->defobj_out = req1.defobj_out;
3684	    assert(req->defobj_out != NULL);
3685	}
3686    }
3687
3688    /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3689    STAILQ_FOREACH(elm, &list_global, link) {
3690	if (req->defobj_out != NULL &&
3691	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3692	    break;
3693	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3694	if (res == 0 && (req->defobj_out == NULL ||
3695	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3696	    req->sym_out = req1.sym_out;
3697	    req->defobj_out = req1.defobj_out;
3698	    assert(req->defobj_out != NULL);
3699	}
3700    }
3701
3702    return (req->sym_out != NULL ? 0 : ESRCH);
3703}
3704
3705/*
3706 * Given a symbol name in a referencing object, find the corresponding
3707 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3708 * no definition was found.  Returns a pointer to the Obj_Entry of the
3709 * defining object via the reference parameter DEFOBJ_OUT.
3710 */
3711static int
3712symlook_default(SymLook *req, const Obj_Entry *refobj)
3713{
3714    DoneList donelist;
3715    const Objlist_Entry *elm;
3716    SymLook req1;
3717    int res;
3718
3719    donelist_init(&donelist);
3720    symlook_init_from_req(&req1, req);
3721
3722    /* Look first in the referencing object if linked symbolically. */
3723    if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3724	res = symlook_obj(&req1, refobj);
3725	if (res == 0) {
3726	    req->sym_out = req1.sym_out;
3727	    req->defobj_out = req1.defobj_out;
3728	    assert(req->defobj_out != NULL);
3729	}
3730    }
3731
3732    symlook_global(req, &donelist);
3733
3734    /* Search all dlopened DAGs containing the referencing object. */
3735    STAILQ_FOREACH(elm, &refobj->dldags, link) {
3736	if (req->sym_out != NULL &&
3737	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3738	    break;
3739	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3740	if (res == 0 && (req->sym_out == NULL ||
3741	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3742	    req->sym_out = req1.sym_out;
3743	    req->defobj_out = req1.defobj_out;
3744	    assert(req->defobj_out != NULL);
3745	}
3746    }
3747
3748    /*
3749     * Search the dynamic linker itself, and possibly resolve the
3750     * symbol from there.  This is how the application links to
3751     * dynamic linker services such as dlopen.
3752     */
3753    if (req->sym_out == NULL ||
3754      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3755	res = symlook_obj(&req1, &obj_rtld);
3756	if (res == 0) {
3757	    req->sym_out = req1.sym_out;
3758	    req->defobj_out = req1.defobj_out;
3759	    assert(req->defobj_out != NULL);
3760	}
3761    }
3762
3763    return (req->sym_out != NULL ? 0 : ESRCH);
3764}
3765
3766static int
3767symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3768{
3769    const Elf_Sym *def;
3770    const Obj_Entry *defobj;
3771    const Objlist_Entry *elm;
3772    SymLook req1;
3773    int res;
3774
3775    def = NULL;
3776    defobj = NULL;
3777    STAILQ_FOREACH(elm, objlist, link) {
3778	if (donelist_check(dlp, elm->obj))
3779	    continue;
3780	symlook_init_from_req(&req1, req);
3781	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3782	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3783		def = req1.sym_out;
3784		defobj = req1.defobj_out;
3785		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3786		    break;
3787	    }
3788	}
3789    }
3790    if (def != NULL) {
3791	req->sym_out = def;
3792	req->defobj_out = defobj;
3793	return (0);
3794    }
3795    return (ESRCH);
3796}
3797
3798/*
3799 * Search the chain of DAGS cointed to by the given Needed_Entry
3800 * for a symbol of the given name.  Each DAG is scanned completely
3801 * before advancing to the next one.  Returns a pointer to the symbol,
3802 * or NULL if no definition was found.
3803 */
3804static int
3805symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3806{
3807    const Elf_Sym *def;
3808    const Needed_Entry *n;
3809    const Obj_Entry *defobj;
3810    SymLook req1;
3811    int res;
3812
3813    def = NULL;
3814    defobj = NULL;
3815    symlook_init_from_req(&req1, req);
3816    for (n = needed; n != NULL; n = n->next) {
3817	if (n->obj == NULL ||
3818	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3819	    continue;
3820	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3821	    def = req1.sym_out;
3822	    defobj = req1.defobj_out;
3823	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3824		break;
3825	}
3826    }
3827    if (def != NULL) {
3828	req->sym_out = def;
3829	req->defobj_out = defobj;
3830	return (0);
3831    }
3832    return (ESRCH);
3833}
3834
3835/*
3836 * Search the symbol table of a single shared object for a symbol of
3837 * the given name and version, if requested.  Returns a pointer to the
3838 * symbol, or NULL if no definition was found.  If the object is
3839 * filter, return filtered symbol from filtee.
3840 *
3841 * The symbol's hash value is passed in for efficiency reasons; that
3842 * eliminates many recomputations of the hash value.
3843 */
3844int
3845symlook_obj(SymLook *req, const Obj_Entry *obj)
3846{
3847    DoneList donelist;
3848    SymLook req1;
3849    int flags, res, mres;
3850
3851    /*
3852     * If there is at least one valid hash at this point, we prefer to
3853     * use the faster GNU version if available.
3854     */
3855    if (obj->valid_hash_gnu)
3856	mres = symlook_obj1_gnu(req, obj);
3857    else if (obj->valid_hash_sysv)
3858	mres = symlook_obj1_sysv(req, obj);
3859    else
3860	return (EINVAL);
3861
3862    if (mres == 0) {
3863	if (obj->needed_filtees != NULL) {
3864	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3865	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3866	    donelist_init(&donelist);
3867	    symlook_init_from_req(&req1, req);
3868	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3869	    if (res == 0) {
3870		req->sym_out = req1.sym_out;
3871		req->defobj_out = req1.defobj_out;
3872	    }
3873	    return (res);
3874	}
3875	if (obj->needed_aux_filtees != NULL) {
3876	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3877	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3878	    donelist_init(&donelist);
3879	    symlook_init_from_req(&req1, req);
3880	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3881	    if (res == 0) {
3882		req->sym_out = req1.sym_out;
3883		req->defobj_out = req1.defobj_out;
3884		return (res);
3885	    }
3886	}
3887    }
3888    return (mres);
3889}
3890
3891/* Symbol match routine common to both hash functions */
3892static bool
3893matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3894    const unsigned long symnum)
3895{
3896	Elf_Versym verndx;
3897	const Elf_Sym *symp;
3898	const char *strp;
3899
3900	symp = obj->symtab + symnum;
3901	strp = obj->strtab + symp->st_name;
3902
3903	switch (ELF_ST_TYPE(symp->st_info)) {
3904	case STT_FUNC:
3905	case STT_NOTYPE:
3906	case STT_OBJECT:
3907	case STT_COMMON:
3908	case STT_GNU_IFUNC:
3909		if (symp->st_value == 0)
3910			return (false);
3911		/* fallthrough */
3912	case STT_TLS:
3913		if (symp->st_shndx != SHN_UNDEF)
3914			break;
3915#ifndef __mips__
3916		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3917		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3918			break;
3919		/* fallthrough */
3920#endif
3921	default:
3922		return (false);
3923	}
3924	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3925		return (false);
3926
3927	if (req->ventry == NULL) {
3928		if (obj->versyms != NULL) {
3929			verndx = VER_NDX(obj->versyms[symnum]);
3930			if (verndx > obj->vernum) {
3931				_rtld_error(
3932				    "%s: symbol %s references wrong version %d",
3933				    obj->path, obj->strtab + symnum, verndx);
3934				return (false);
3935			}
3936			/*
3937			 * If we are not called from dlsym (i.e. this
3938			 * is a normal relocation from unversioned
3939			 * binary), accept the symbol immediately if
3940			 * it happens to have first version after this
3941			 * shared object became versioned.  Otherwise,
3942			 * if symbol is versioned and not hidden,
3943			 * remember it. If it is the only symbol with
3944			 * this name exported by the shared object, it
3945			 * will be returned as a match by the calling
3946			 * function. If symbol is global (verndx < 2)
3947			 * accept it unconditionally.
3948			 */
3949			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3950			    verndx == VER_NDX_GIVEN) {
3951				result->sym_out = symp;
3952				return (true);
3953			}
3954			else if (verndx >= VER_NDX_GIVEN) {
3955				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
3956				    == 0) {
3957					if (result->vsymp == NULL)
3958						result->vsymp = symp;
3959					result->vcount++;
3960				}
3961				return (false);
3962			}
3963		}
3964		result->sym_out = symp;
3965		return (true);
3966	}
3967	if (obj->versyms == NULL) {
3968		if (object_match_name(obj, req->ventry->name)) {
3969			_rtld_error("%s: object %s should provide version %s "
3970			    "for symbol %s", obj_rtld.path, obj->path,
3971			    req->ventry->name, obj->strtab + symnum);
3972			return (false);
3973		}
3974	} else {
3975		verndx = VER_NDX(obj->versyms[symnum]);
3976		if (verndx > obj->vernum) {
3977			_rtld_error("%s: symbol %s references wrong version %d",
3978			    obj->path, obj->strtab + symnum, verndx);
3979			return (false);
3980		}
3981		if (obj->vertab[verndx].hash != req->ventry->hash ||
3982		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3983			/*
3984			 * Version does not match. Look if this is a
3985			 * global symbol and if it is not hidden. If
3986			 * global symbol (verndx < 2) is available,
3987			 * use it. Do not return symbol if we are
3988			 * called by dlvsym, because dlvsym looks for
3989			 * a specific version and default one is not
3990			 * what dlvsym wants.
3991			 */
3992			if ((req->flags & SYMLOOK_DLSYM) ||
3993			    (verndx >= VER_NDX_GIVEN) ||
3994			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
3995				return (false);
3996		}
3997	}
3998	result->sym_out = symp;
3999	return (true);
4000}
4001
4002/*
4003 * Search for symbol using SysV hash function.
4004 * obj->buckets is known not to be NULL at this point; the test for this was
4005 * performed with the obj->valid_hash_sysv assignment.
4006 */
4007static int
4008symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4009{
4010	unsigned long symnum;
4011	Sym_Match_Result matchres;
4012
4013	matchres.sym_out = NULL;
4014	matchres.vsymp = NULL;
4015	matchres.vcount = 0;
4016
4017	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4018	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4019		if (symnum >= obj->nchains)
4020			return (ESRCH);	/* Bad object */
4021
4022		if (matched_symbol(req, obj, &matchres, symnum)) {
4023			req->sym_out = matchres.sym_out;
4024			req->defobj_out = obj;
4025			return (0);
4026		}
4027	}
4028	if (matchres.vcount == 1) {
4029		req->sym_out = matchres.vsymp;
4030		req->defobj_out = obj;
4031		return (0);
4032	}
4033	return (ESRCH);
4034}
4035
4036/* Search for symbol using GNU hash function */
4037static int
4038symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4039{
4040	Elf_Addr bloom_word;
4041	const Elf32_Word *hashval;
4042	Elf32_Word bucket;
4043	Sym_Match_Result matchres;
4044	unsigned int h1, h2;
4045	unsigned long symnum;
4046
4047	matchres.sym_out = NULL;
4048	matchres.vsymp = NULL;
4049	matchres.vcount = 0;
4050
4051	/* Pick right bitmask word from Bloom filter array */
4052	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4053	    obj->maskwords_bm_gnu];
4054
4055	/* Calculate modulus word size of gnu hash and its derivative */
4056	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4057	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4058
4059	/* Filter out the "definitely not in set" queries */
4060	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4061		return (ESRCH);
4062
4063	/* Locate hash chain and corresponding value element*/
4064	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4065	if (bucket == 0)
4066		return (ESRCH);
4067	hashval = &obj->chain_zero_gnu[bucket];
4068	do {
4069		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4070			symnum = hashval - obj->chain_zero_gnu;
4071			if (matched_symbol(req, obj, &matchres, symnum)) {
4072				req->sym_out = matchres.sym_out;
4073				req->defobj_out = obj;
4074				return (0);
4075			}
4076		}
4077	} while ((*hashval++ & 1) == 0);
4078	if (matchres.vcount == 1) {
4079		req->sym_out = matchres.vsymp;
4080		req->defobj_out = obj;
4081		return (0);
4082	}
4083	return (ESRCH);
4084}
4085
4086static void
4087trace_loaded_objects(Obj_Entry *obj)
4088{
4089    char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4090    int		c;
4091
4092    if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4093	main_local = "";
4094
4095    if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4096	fmt1 = "\t%o => %p (%x)\n";
4097
4098    if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4099	fmt2 = "\t%o (%x)\n";
4100
4101    list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
4102
4103    for (; obj; obj = obj->next) {
4104	Needed_Entry		*needed;
4105	char			*name, *path;
4106	bool			is_lib;
4107
4108	if (list_containers && obj->needed != NULL)
4109	    rtld_printf("%s:\n", obj->path);
4110	for (needed = obj->needed; needed; needed = needed->next) {
4111	    if (needed->obj != NULL) {
4112		if (needed->obj->traced && !list_containers)
4113		    continue;
4114		needed->obj->traced = true;
4115		path = needed->obj->path;
4116	    } else
4117		path = "not found";
4118
4119	    name = (char *)obj->strtab + needed->name;
4120	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4121
4122	    fmt = is_lib ? fmt1 : fmt2;
4123	    while ((c = *fmt++) != '\0') {
4124		switch (c) {
4125		default:
4126		    rtld_putchar(c);
4127		    continue;
4128		case '\\':
4129		    switch (c = *fmt) {
4130		    case '\0':
4131			continue;
4132		    case 'n':
4133			rtld_putchar('\n');
4134			break;
4135		    case 't':
4136			rtld_putchar('\t');
4137			break;
4138		    }
4139		    break;
4140		case '%':
4141		    switch (c = *fmt) {
4142		    case '\0':
4143			continue;
4144		    case '%':
4145		    default:
4146			rtld_putchar(c);
4147			break;
4148		    case 'A':
4149			rtld_putstr(main_local);
4150			break;
4151		    case 'a':
4152			rtld_putstr(obj_main->path);
4153			break;
4154		    case 'o':
4155			rtld_putstr(name);
4156			break;
4157#if 0
4158		    case 'm':
4159			rtld_printf("%d", sodp->sod_major);
4160			break;
4161		    case 'n':
4162			rtld_printf("%d", sodp->sod_minor);
4163			break;
4164#endif
4165		    case 'p':
4166			rtld_putstr(path);
4167			break;
4168		    case 'x':
4169			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4170			  0);
4171			break;
4172		    }
4173		    break;
4174		}
4175		++fmt;
4176	    }
4177	}
4178    }
4179}
4180
4181/*
4182 * Unload a dlopened object and its dependencies from memory and from
4183 * our data structures.  It is assumed that the DAG rooted in the
4184 * object has already been unreferenced, and that the object has a
4185 * reference count of 0.
4186 */
4187static void
4188unload_object(Obj_Entry *root)
4189{
4190    Obj_Entry *obj;
4191    Obj_Entry **linkp;
4192
4193    assert(root->refcount == 0);
4194
4195    /*
4196     * Pass over the DAG removing unreferenced objects from
4197     * appropriate lists.
4198     */
4199    unlink_object(root);
4200
4201    /* Unmap all objects that are no longer referenced. */
4202    linkp = &obj_list->next;
4203    while ((obj = *linkp) != NULL) {
4204	if (obj->refcount == 0) {
4205	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4206		obj->path);
4207	    dbg("unloading \"%s\"", obj->path);
4208	    unload_filtees(root);
4209	    munmap(obj->mapbase, obj->mapsize);
4210	    linkmap_delete(obj);
4211	    *linkp = obj->next;
4212	    obj_count--;
4213	    obj_free(obj);
4214	} else
4215	    linkp = &obj->next;
4216    }
4217    obj_tail = linkp;
4218}
4219
4220static void
4221unlink_object(Obj_Entry *root)
4222{
4223    Objlist_Entry *elm;
4224
4225    if (root->refcount == 0) {
4226	/* Remove the object from the RTLD_GLOBAL list. */
4227	objlist_remove(&list_global, root);
4228
4229    	/* Remove the object from all objects' DAG lists. */
4230    	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4231	    objlist_remove(&elm->obj->dldags, root);
4232	    if (elm->obj != root)
4233		unlink_object(elm->obj);
4234	}
4235    }
4236}
4237
4238static void
4239ref_dag(Obj_Entry *root)
4240{
4241    Objlist_Entry *elm;
4242
4243    assert(root->dag_inited);
4244    STAILQ_FOREACH(elm, &root->dagmembers, link)
4245	elm->obj->refcount++;
4246}
4247
4248static void
4249unref_dag(Obj_Entry *root)
4250{
4251    Objlist_Entry *elm;
4252
4253    assert(root->dag_inited);
4254    STAILQ_FOREACH(elm, &root->dagmembers, link)
4255	elm->obj->refcount--;
4256}
4257
4258/*
4259 * Common code for MD __tls_get_addr().
4260 */
4261static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4262static void *
4263tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4264{
4265    Elf_Addr *newdtv, *dtv;
4266    RtldLockState lockstate;
4267    int to_copy;
4268
4269    dtv = *dtvp;
4270    /* Check dtv generation in case new modules have arrived */
4271    if (dtv[0] != tls_dtv_generation) {
4272	wlock_acquire(rtld_bind_lock, &lockstate);
4273	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4274	to_copy = dtv[1];
4275	if (to_copy > tls_max_index)
4276	    to_copy = tls_max_index;
4277	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4278	newdtv[0] = tls_dtv_generation;
4279	newdtv[1] = tls_max_index;
4280	free(dtv);
4281	lock_release(rtld_bind_lock, &lockstate);
4282	dtv = *dtvp = newdtv;
4283    }
4284
4285    /* Dynamically allocate module TLS if necessary */
4286    if (dtv[index + 1] == 0) {
4287	/* Signal safe, wlock will block out signals. */
4288	wlock_acquire(rtld_bind_lock, &lockstate);
4289	if (!dtv[index + 1])
4290	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4291	lock_release(rtld_bind_lock, &lockstate);
4292    }
4293    return ((void *)(dtv[index + 1] + offset));
4294}
4295
4296void *
4297tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4298{
4299	Elf_Addr *dtv;
4300
4301	dtv = *dtvp;
4302	/* Check dtv generation in case new modules have arrived */
4303	if (__predict_true(dtv[0] == tls_dtv_generation &&
4304	    dtv[index + 1] != 0))
4305		return ((void *)(dtv[index + 1] + offset));
4306	return (tls_get_addr_slow(dtvp, index, offset));
4307}
4308
4309#if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
4310
4311/*
4312 * Allocate Static TLS using the Variant I method.
4313 */
4314void *
4315allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4316{
4317    Obj_Entry *obj;
4318    char *tcb;
4319    Elf_Addr **tls;
4320    Elf_Addr *dtv;
4321    Elf_Addr addr;
4322    int i;
4323
4324    if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4325	return (oldtcb);
4326
4327    assert(tcbsize >= TLS_TCB_SIZE);
4328    tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4329    tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4330
4331    if (oldtcb != NULL) {
4332	memcpy(tls, oldtcb, tls_static_space);
4333	free(oldtcb);
4334
4335	/* Adjust the DTV. */
4336	dtv = tls[0];
4337	for (i = 0; i < dtv[1]; i++) {
4338	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4339		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4340		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4341	    }
4342	}
4343    } else {
4344	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4345	tls[0] = dtv;
4346	dtv[0] = tls_dtv_generation;
4347	dtv[1] = tls_max_index;
4348
4349	for (obj = objs; obj; obj = obj->next) {
4350	    if (obj->tlsoffset > 0) {
4351		addr = (Elf_Addr)tls + obj->tlsoffset;
4352		if (obj->tlsinitsize > 0)
4353		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4354		if (obj->tlssize > obj->tlsinitsize)
4355		    memset((void*) (addr + obj->tlsinitsize), 0,
4356			   obj->tlssize - obj->tlsinitsize);
4357		dtv[obj->tlsindex + 1] = addr;
4358	    }
4359	}
4360    }
4361
4362    return (tcb);
4363}
4364
4365void
4366free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4367{
4368    Elf_Addr *dtv;
4369    Elf_Addr tlsstart, tlsend;
4370    int dtvsize, i;
4371
4372    assert(tcbsize >= TLS_TCB_SIZE);
4373
4374    tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4375    tlsend = tlsstart + tls_static_space;
4376
4377    dtv = *(Elf_Addr **)tlsstart;
4378    dtvsize = dtv[1];
4379    for (i = 0; i < dtvsize; i++) {
4380	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4381	    free((void*)dtv[i+2]);
4382	}
4383    }
4384    free(dtv);
4385    free(tcb);
4386}
4387
4388#endif
4389
4390#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4391
4392/*
4393 * Allocate Static TLS using the Variant II method.
4394 */
4395void *
4396allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4397{
4398    Obj_Entry *obj;
4399    size_t size, ralign;
4400    char *tls;
4401    Elf_Addr *dtv, *olddtv;
4402    Elf_Addr segbase, oldsegbase, addr;
4403    int i;
4404
4405    ralign = tcbalign;
4406    if (tls_static_max_align > ralign)
4407	    ralign = tls_static_max_align;
4408    size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4409
4410    assert(tcbsize >= 2*sizeof(Elf_Addr));
4411    tls = malloc_aligned(size, ralign);
4412    dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4413
4414    segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4415    ((Elf_Addr*)segbase)[0] = segbase;
4416    ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4417
4418    dtv[0] = tls_dtv_generation;
4419    dtv[1] = tls_max_index;
4420
4421    if (oldtls) {
4422	/*
4423	 * Copy the static TLS block over whole.
4424	 */
4425	oldsegbase = (Elf_Addr) oldtls;
4426	memcpy((void *)(segbase - tls_static_space),
4427	       (const void *)(oldsegbase - tls_static_space),
4428	       tls_static_space);
4429
4430	/*
4431	 * If any dynamic TLS blocks have been created tls_get_addr(),
4432	 * move them over.
4433	 */
4434	olddtv = ((Elf_Addr**)oldsegbase)[1];
4435	for (i = 0; i < olddtv[1]; i++) {
4436	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4437		dtv[i+2] = olddtv[i+2];
4438		olddtv[i+2] = 0;
4439	    }
4440	}
4441
4442	/*
4443	 * We assume that this block was the one we created with
4444	 * allocate_initial_tls().
4445	 */
4446	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4447    } else {
4448	for (obj = objs; obj; obj = obj->next) {
4449	    if (obj->tlsoffset) {
4450		addr = segbase - obj->tlsoffset;
4451		memset((void*) (addr + obj->tlsinitsize),
4452		       0, obj->tlssize - obj->tlsinitsize);
4453		if (obj->tlsinit)
4454		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4455		dtv[obj->tlsindex + 1] = addr;
4456	    }
4457	}
4458    }
4459
4460    return (void*) segbase;
4461}
4462
4463void
4464free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4465{
4466    Elf_Addr* dtv;
4467    size_t size, ralign;
4468    int dtvsize, i;
4469    Elf_Addr tlsstart, tlsend;
4470
4471    /*
4472     * Figure out the size of the initial TLS block so that we can
4473     * find stuff which ___tls_get_addr() allocated dynamically.
4474     */
4475    ralign = tcbalign;
4476    if (tls_static_max_align > ralign)
4477	    ralign = tls_static_max_align;
4478    size = round(tls_static_space, ralign);
4479
4480    dtv = ((Elf_Addr**)tls)[1];
4481    dtvsize = dtv[1];
4482    tlsend = (Elf_Addr) tls;
4483    tlsstart = tlsend - size;
4484    for (i = 0; i < dtvsize; i++) {
4485	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4486		free_aligned((void *)dtv[i + 2]);
4487	}
4488    }
4489
4490    free_aligned((void *)tlsstart);
4491    free((void*) dtv);
4492}
4493
4494#endif
4495
4496/*
4497 * Allocate TLS block for module with given index.
4498 */
4499void *
4500allocate_module_tls(int index)
4501{
4502    Obj_Entry* obj;
4503    char* p;
4504
4505    for (obj = obj_list; obj; obj = obj->next) {
4506	if (obj->tlsindex == index)
4507	    break;
4508    }
4509    if (!obj) {
4510	_rtld_error("Can't find module with TLS index %d", index);
4511	rtld_die();
4512    }
4513
4514    p = malloc_aligned(obj->tlssize, obj->tlsalign);
4515    memcpy(p, obj->tlsinit, obj->tlsinitsize);
4516    memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4517
4518    return p;
4519}
4520
4521bool
4522allocate_tls_offset(Obj_Entry *obj)
4523{
4524    size_t off;
4525
4526    if (obj->tls_done)
4527	return true;
4528
4529    if (obj->tlssize == 0) {
4530	obj->tls_done = true;
4531	return true;
4532    }
4533
4534    if (tls_last_offset == 0)
4535	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4536    else
4537	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4538				   obj->tlssize, obj->tlsalign);
4539
4540    /*
4541     * If we have already fixed the size of the static TLS block, we
4542     * must stay within that size. When allocating the static TLS, we
4543     * leave a small amount of space spare to be used for dynamically
4544     * loading modules which use static TLS.
4545     */
4546    if (tls_static_space != 0) {
4547	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4548	    return false;
4549    } else if (obj->tlsalign > tls_static_max_align) {
4550	    tls_static_max_align = obj->tlsalign;
4551    }
4552
4553    tls_last_offset = obj->tlsoffset = off;
4554    tls_last_size = obj->tlssize;
4555    obj->tls_done = true;
4556
4557    return true;
4558}
4559
4560void
4561free_tls_offset(Obj_Entry *obj)
4562{
4563
4564    /*
4565     * If we were the last thing to allocate out of the static TLS
4566     * block, we give our space back to the 'allocator'. This is a
4567     * simplistic workaround to allow libGL.so.1 to be loaded and
4568     * unloaded multiple times.
4569     */
4570    if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4571	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4572	tls_last_offset -= obj->tlssize;
4573	tls_last_size = 0;
4574    }
4575}
4576
4577void *
4578_rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4579{
4580    void *ret;
4581    RtldLockState lockstate;
4582
4583    wlock_acquire(rtld_bind_lock, &lockstate);
4584    ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4585    lock_release(rtld_bind_lock, &lockstate);
4586    return (ret);
4587}
4588
4589void
4590_rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4591{
4592    RtldLockState lockstate;
4593
4594    wlock_acquire(rtld_bind_lock, &lockstate);
4595    free_tls(tcb, tcbsize, tcbalign);
4596    lock_release(rtld_bind_lock, &lockstate);
4597}
4598
4599static void
4600object_add_name(Obj_Entry *obj, const char *name)
4601{
4602    Name_Entry *entry;
4603    size_t len;
4604
4605    len = strlen(name);
4606    entry = malloc(sizeof(Name_Entry) + len);
4607
4608    if (entry != NULL) {
4609	strcpy(entry->name, name);
4610	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4611    }
4612}
4613
4614static int
4615object_match_name(const Obj_Entry *obj, const char *name)
4616{
4617    Name_Entry *entry;
4618
4619    STAILQ_FOREACH(entry, &obj->names, link) {
4620	if (strcmp(name, entry->name) == 0)
4621	    return (1);
4622    }
4623    return (0);
4624}
4625
4626static Obj_Entry *
4627locate_dependency(const Obj_Entry *obj, const char *name)
4628{
4629    const Objlist_Entry *entry;
4630    const Needed_Entry *needed;
4631
4632    STAILQ_FOREACH(entry, &list_main, link) {
4633	if (object_match_name(entry->obj, name))
4634	    return entry->obj;
4635    }
4636
4637    for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4638	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4639	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4640	    /*
4641	     * If there is DT_NEEDED for the name we are looking for,
4642	     * we are all set.  Note that object might not be found if
4643	     * dependency was not loaded yet, so the function can
4644	     * return NULL here.  This is expected and handled
4645	     * properly by the caller.
4646	     */
4647	    return (needed->obj);
4648	}
4649    }
4650    _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4651	obj->path, name);
4652    rtld_die();
4653}
4654
4655static int
4656check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4657    const Elf_Vernaux *vna)
4658{
4659    const Elf_Verdef *vd;
4660    const char *vername;
4661
4662    vername = refobj->strtab + vna->vna_name;
4663    vd = depobj->verdef;
4664    if (vd == NULL) {
4665	_rtld_error("%s: version %s required by %s not defined",
4666	    depobj->path, vername, refobj->path);
4667	return (-1);
4668    }
4669    for (;;) {
4670	if (vd->vd_version != VER_DEF_CURRENT) {
4671	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4672		depobj->path, vd->vd_version);
4673	    return (-1);
4674	}
4675	if (vna->vna_hash == vd->vd_hash) {
4676	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4677		((char *)vd + vd->vd_aux);
4678	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4679		return (0);
4680	}
4681	if (vd->vd_next == 0)
4682	    break;
4683	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4684    }
4685    if (vna->vna_flags & VER_FLG_WEAK)
4686	return (0);
4687    _rtld_error("%s: version %s required by %s not found",
4688	depobj->path, vername, refobj->path);
4689    return (-1);
4690}
4691
4692static int
4693rtld_verify_object_versions(Obj_Entry *obj)
4694{
4695    const Elf_Verneed *vn;
4696    const Elf_Verdef  *vd;
4697    const Elf_Verdaux *vda;
4698    const Elf_Vernaux *vna;
4699    const Obj_Entry *depobj;
4700    int maxvernum, vernum;
4701
4702    if (obj->ver_checked)
4703	return (0);
4704    obj->ver_checked = true;
4705
4706    maxvernum = 0;
4707    /*
4708     * Walk over defined and required version records and figure out
4709     * max index used by any of them. Do very basic sanity checking
4710     * while there.
4711     */
4712    vn = obj->verneed;
4713    while (vn != NULL) {
4714	if (vn->vn_version != VER_NEED_CURRENT) {
4715	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4716		obj->path, vn->vn_version);
4717	    return (-1);
4718	}
4719	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4720	for (;;) {
4721	    vernum = VER_NEED_IDX(vna->vna_other);
4722	    if (vernum > maxvernum)
4723		maxvernum = vernum;
4724	    if (vna->vna_next == 0)
4725		 break;
4726	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4727	}
4728	if (vn->vn_next == 0)
4729	    break;
4730	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4731    }
4732
4733    vd = obj->verdef;
4734    while (vd != NULL) {
4735	if (vd->vd_version != VER_DEF_CURRENT) {
4736	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4737		obj->path, vd->vd_version);
4738	    return (-1);
4739	}
4740	vernum = VER_DEF_IDX(vd->vd_ndx);
4741	if (vernum > maxvernum)
4742		maxvernum = vernum;
4743	if (vd->vd_next == 0)
4744	    break;
4745	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4746    }
4747
4748    if (maxvernum == 0)
4749	return (0);
4750
4751    /*
4752     * Store version information in array indexable by version index.
4753     * Verify that object version requirements are satisfied along the
4754     * way.
4755     */
4756    obj->vernum = maxvernum + 1;
4757    obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4758
4759    vd = obj->verdef;
4760    while (vd != NULL) {
4761	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4762	    vernum = VER_DEF_IDX(vd->vd_ndx);
4763	    assert(vernum <= maxvernum);
4764	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4765	    obj->vertab[vernum].hash = vd->vd_hash;
4766	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4767	    obj->vertab[vernum].file = NULL;
4768	    obj->vertab[vernum].flags = 0;
4769	}
4770	if (vd->vd_next == 0)
4771	    break;
4772	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4773    }
4774
4775    vn = obj->verneed;
4776    while (vn != NULL) {
4777	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4778	if (depobj == NULL)
4779	    return (-1);
4780	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4781	for (;;) {
4782	    if (check_object_provided_version(obj, depobj, vna))
4783		return (-1);
4784	    vernum = VER_NEED_IDX(vna->vna_other);
4785	    assert(vernum <= maxvernum);
4786	    obj->vertab[vernum].hash = vna->vna_hash;
4787	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4788	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4789	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4790		VER_INFO_HIDDEN : 0;
4791	    if (vna->vna_next == 0)
4792		 break;
4793	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4794	}
4795	if (vn->vn_next == 0)
4796	    break;
4797	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4798    }
4799    return 0;
4800}
4801
4802static int
4803rtld_verify_versions(const Objlist *objlist)
4804{
4805    Objlist_Entry *entry;
4806    int rc;
4807
4808    rc = 0;
4809    STAILQ_FOREACH(entry, objlist, link) {
4810	/*
4811	 * Skip dummy objects or objects that have their version requirements
4812	 * already checked.
4813	 */
4814	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4815	    continue;
4816	if (rtld_verify_object_versions(entry->obj) == -1) {
4817	    rc = -1;
4818	    if (ld_tracing == NULL)
4819		break;
4820	}
4821    }
4822    if (rc == 0 || ld_tracing != NULL)
4823    	rc = rtld_verify_object_versions(&obj_rtld);
4824    return rc;
4825}
4826
4827const Ver_Entry *
4828fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4829{
4830    Elf_Versym vernum;
4831
4832    if (obj->vertab) {
4833	vernum = VER_NDX(obj->versyms[symnum]);
4834	if (vernum >= obj->vernum) {
4835	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4836		obj->path, obj->strtab + symnum, vernum);
4837	} else if (obj->vertab[vernum].hash != 0) {
4838	    return &obj->vertab[vernum];
4839	}
4840    }
4841    return NULL;
4842}
4843
4844int
4845_rtld_get_stack_prot(void)
4846{
4847
4848	return (stack_prot);
4849}
4850
4851int
4852_rtld_is_dlopened(void *arg)
4853{
4854	Obj_Entry *obj;
4855	RtldLockState lockstate;
4856	int res;
4857
4858	rlock_acquire(rtld_bind_lock, &lockstate);
4859	obj = dlcheck(arg);
4860	if (obj == NULL)
4861		obj = obj_from_addr(arg);
4862	if (obj == NULL) {
4863		_rtld_error("No shared object contains address");
4864		lock_release(rtld_bind_lock, &lockstate);
4865		return (-1);
4866	}
4867	res = obj->dlopened ? 1 : 0;
4868	lock_release(rtld_bind_lock, &lockstate);
4869	return (res);
4870}
4871
4872static void
4873map_stacks_exec(RtldLockState *lockstate)
4874{
4875	void (*thr_map_stacks_exec)(void);
4876
4877	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4878		return;
4879	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4880	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4881	if (thr_map_stacks_exec != NULL) {
4882		stack_prot |= PROT_EXEC;
4883		thr_map_stacks_exec();
4884	}
4885}
4886
4887void
4888symlook_init(SymLook *dst, const char *name)
4889{
4890
4891	bzero(dst, sizeof(*dst));
4892	dst->name = name;
4893	dst->hash = elf_hash(name);
4894	dst->hash_gnu = gnu_hash(name);
4895}
4896
4897static void
4898symlook_init_from_req(SymLook *dst, const SymLook *src)
4899{
4900
4901	dst->name = src->name;
4902	dst->hash = src->hash;
4903	dst->hash_gnu = src->hash_gnu;
4904	dst->ventry = src->ventry;
4905	dst->flags = src->flags;
4906	dst->defobj_out = NULL;
4907	dst->sym_out = NULL;
4908	dst->lockstate = src->lockstate;
4909}
4910
4911/*
4912 * Overrides for libc_pic-provided functions.
4913 */
4914
4915int
4916__getosreldate(void)
4917{
4918	size_t len;
4919	int oid[2];
4920	int error, osrel;
4921
4922	if (osreldate != 0)
4923		return (osreldate);
4924
4925	oid[0] = CTL_KERN;
4926	oid[1] = KERN_OSRELDATE;
4927	osrel = 0;
4928	len = sizeof(osrel);
4929	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4930	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4931		osreldate = osrel;
4932	return (osreldate);
4933}
4934
4935void
4936exit(int status)
4937{
4938
4939	_exit(status);
4940}
4941
4942void (*__cleanup)(void);
4943int __isthreaded = 0;
4944int _thread_autoinit_dummy_decl = 1;
4945
4946/*
4947 * No unresolved symbols for rtld.
4948 */
4949void
4950__pthread_cxa_finalize(struct dl_phdr_info *a)
4951{
4952}
4953
4954void
4955__stack_chk_fail(void)
4956{
4957
4958	_rtld_error("stack overflow detected; terminated");
4959	rtld_die();
4960}
4961__weak_reference(__stack_chk_fail, __stack_chk_fail_local);
4962
4963void
4964__chk_fail(void)
4965{
4966
4967	_rtld_error("buffer overflow detected; terminated");
4968	rtld_die();
4969}
4970
4971const char *
4972rtld_strerror(int errnum)
4973{
4974
4975	if (errnum < 0 || errnum >= sys_nerr)
4976		return ("Unknown error");
4977	return (sys_errlist[errnum]);
4978}
4979