rtld.c revision 284954
1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5 * Copyright 2012 John Marino <draco@marino.st>.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * $FreeBSD: stable/10/libexec/rtld-elf/rtld.c 284954 2015-06-30 14:17:02Z des $
29 */
30
31/*
32 * Dynamic linker for ELF.
33 *
34 * John Polstra <jdp@polstra.com>.
35 */
36
37#ifndef __GNUC__
38#error "GCC is needed to compile this file"
39#endif
40
41#include <sys/param.h>
42#include <sys/mount.h>
43#include <sys/mman.h>
44#include <sys/stat.h>
45#include <sys/sysctl.h>
46#include <sys/uio.h>
47#include <sys/utsname.h>
48#include <sys/ktrace.h>
49
50#include <dlfcn.h>
51#include <err.h>
52#include <errno.h>
53#include <fcntl.h>
54#include <stdarg.h>
55#include <stdio.h>
56#include <stdlib.h>
57#include <string.h>
58#include <unistd.h>
59
60#include "debug.h"
61#include "rtld.h"
62#include "libmap.h"
63#include "rtld_tls.h"
64#include "rtld_printf.h"
65#include "notes.h"
66
67#ifndef COMPAT_32BIT
68#define PATH_RTLD	"/libexec/ld-elf.so.1"
69#else
70#define PATH_RTLD	"/libexec/ld-elf32.so.1"
71#endif
72
73/* Types. */
74typedef void (*func_ptr_type)();
75typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76
77/*
78 * Function declarations.
79 */
80static const char *basename(const char *);
81static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
82    const Elf_Dyn **, const Elf_Dyn **);
83static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
84    const Elf_Dyn *);
85static void digest_dynamic(Obj_Entry *, int);
86static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
87static Obj_Entry *dlcheck(void *);
88static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
89    int lo_flags, int mode, RtldLockState *lockstate);
90static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
91static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
92static bool donelist_check(DoneList *, const Obj_Entry *);
93static void errmsg_restore(char *);
94static char *errmsg_save(void);
95static void *fill_search_info(const char *, size_t, void *);
96static char *find_library(const char *, const Obj_Entry *);
97static const char *gethints(bool);
98static void init_dag(Obj_Entry *);
99static void init_pagesizes(Elf_Auxinfo **aux_info);
100static void init_rtld(caddr_t, Elf_Auxinfo **);
101static void initlist_add_neededs(Needed_Entry *, Objlist *);
102static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
103static void linkmap_add(Obj_Entry *);
104static void linkmap_delete(Obj_Entry *);
105static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
106static void unload_filtees(Obj_Entry *);
107static int load_needed_objects(Obj_Entry *, int);
108static int load_preload_objects(void);
109static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
110static void map_stacks_exec(RtldLockState *);
111static Obj_Entry *obj_from_addr(const void *);
112static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
113static void objlist_call_init(Objlist *, RtldLockState *);
114static void objlist_clear(Objlist *);
115static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
116static void objlist_init(Objlist *);
117static void objlist_push_head(Objlist *, Obj_Entry *);
118static void objlist_push_tail(Objlist *, Obj_Entry *);
119static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
120static void objlist_remove(Objlist *, Obj_Entry *);
121static void *path_enumerate(const char *, path_enum_proc, void *);
122static int relocate_object_dag(Obj_Entry *root, bool bind_now,
123    Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
124static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
125    int flags, RtldLockState *lockstate);
126static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
127    RtldLockState *);
128static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
129    int flags, RtldLockState *lockstate);
130static int rtld_dirname(const char *, char *);
131static int rtld_dirname_abs(const char *, char *);
132static void *rtld_dlopen(const char *name, int fd, int mode);
133static void rtld_exit(void);
134static char *search_library_path(const char *, const char *);
135static const void **get_program_var_addr(const char *, RtldLockState *);
136static void set_program_var(const char *, const void *);
137static int symlook_default(SymLook *, const Obj_Entry *refobj);
138static int symlook_global(SymLook *, DoneList *);
139static void symlook_init_from_req(SymLook *, const SymLook *);
140static int symlook_list(SymLook *, const Objlist *, DoneList *);
141static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
142static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
143static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
144static void trace_loaded_objects(Obj_Entry *);
145static void unlink_object(Obj_Entry *);
146static void unload_object(Obj_Entry *);
147static void unref_dag(Obj_Entry *);
148static void ref_dag(Obj_Entry *);
149static char *origin_subst_one(Obj_Entry *, char *, const char *,
150    const char *, bool);
151static char *origin_subst(Obj_Entry *, char *);
152static bool obj_resolve_origin(Obj_Entry *obj);
153static void preinit_main(void);
154static int  rtld_verify_versions(const Objlist *);
155static int  rtld_verify_object_versions(Obj_Entry *);
156static void object_add_name(Obj_Entry *, const char *);
157static int  object_match_name(const Obj_Entry *, const char *);
158static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
159static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
160    struct dl_phdr_info *phdr_info);
161static uint32_t gnu_hash(const char *);
162static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
163    const unsigned long);
164
165void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
166void _r_debug_postinit(struct link_map *) __noinline __exported;
167
168/*
169 * Data declarations.
170 */
171static char *error_message;	/* Message for dlerror(), or NULL */
172struct r_debug r_debug __exported;	/* for GDB; */
173static bool libmap_disable;	/* Disable libmap */
174static bool ld_loadfltr;	/* Immediate filters processing */
175static char *libmap_override;	/* Maps to use in addition to libmap.conf */
176static bool trust;		/* False for setuid and setgid programs */
177static bool dangerous_ld_env;	/* True if environment variables have been
178				   used to affect the libraries loaded */
179static char *ld_bind_now;	/* Environment variable for immediate binding */
180static char *ld_debug;		/* Environment variable for debugging */
181static char *ld_library_path;	/* Environment variable for search path */
182static char *ld_preload;	/* Environment variable for libraries to
183				   load first */
184static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
185static char *ld_tracing;	/* Called from ldd to print libs */
186static char *ld_utrace;		/* Use utrace() to log events. */
187static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
188static Obj_Entry **obj_tail;	/* Link field of last object in list */
189static Obj_Entry *obj_main;	/* The main program shared object */
190static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
191static unsigned int obj_count;	/* Number of objects in obj_list */
192static unsigned int obj_loads;	/* Number of objects in obj_list */
193
194static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
195  STAILQ_HEAD_INITIALIZER(list_global);
196static Objlist list_main =	/* Objects loaded at program startup */
197  STAILQ_HEAD_INITIALIZER(list_main);
198static Objlist list_fini =	/* Objects needing fini() calls */
199  STAILQ_HEAD_INITIALIZER(list_fini);
200
201Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
202
203#define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
204
205extern Elf_Dyn _DYNAMIC;
206#pragma weak _DYNAMIC
207#ifndef RTLD_IS_DYNAMIC
208#define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
209#endif
210
211int dlclose(void *) __exported;
212char *dlerror(void) __exported;
213void *dlopen(const char *, int) __exported;
214void *fdlopen(int, int) __exported;
215void *dlsym(void *, const char *) __exported;
216dlfunc_t dlfunc(void *, const char *) __exported;
217void *dlvsym(void *, const char *, const char *) __exported;
218int dladdr(const void *, Dl_info *) __exported;
219void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
220    void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
221int dlinfo(void *, int , void *) __exported;
222int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
223int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
224int _rtld_get_stack_prot(void) __exported;
225int _rtld_is_dlopened(void *) __exported;
226void _rtld_error(const char *, ...) __exported;
227
228int npagesizes, osreldate;
229size_t *pagesizes;
230
231long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
232
233static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
234static int max_stack_flags;
235
236/*
237 * Global declarations normally provided by crt1.  The dynamic linker is
238 * not built with crt1, so we have to provide them ourselves.
239 */
240char *__progname;
241char **environ;
242
243/*
244 * Used to pass argc, argv to init functions.
245 */
246int main_argc;
247char **main_argv;
248
249/*
250 * Globals to control TLS allocation.
251 */
252size_t tls_last_offset;		/* Static TLS offset of last module */
253size_t tls_last_size;		/* Static TLS size of last module */
254size_t tls_static_space;	/* Static TLS space allocated */
255size_t tls_static_max_align;
256int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
257int tls_max_index = 1;		/* Largest module index allocated */
258
259bool ld_library_path_rpath = false;
260
261/*
262 * Fill in a DoneList with an allocation large enough to hold all of
263 * the currently-loaded objects.  Keep this as a macro since it calls
264 * alloca and we want that to occur within the scope of the caller.
265 */
266#define donelist_init(dlp)					\
267    ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
268    assert((dlp)->objs != NULL),				\
269    (dlp)->num_alloc = obj_count,				\
270    (dlp)->num_used = 0)
271
272#define	UTRACE_DLOPEN_START		1
273#define	UTRACE_DLOPEN_STOP		2
274#define	UTRACE_DLCLOSE_START		3
275#define	UTRACE_DLCLOSE_STOP		4
276#define	UTRACE_LOAD_OBJECT		5
277#define	UTRACE_UNLOAD_OBJECT		6
278#define	UTRACE_ADD_RUNDEP		7
279#define	UTRACE_PRELOAD_FINISHED		8
280#define	UTRACE_INIT_CALL		9
281#define	UTRACE_FINI_CALL		10
282#define	UTRACE_DLSYM_START		11
283#define	UTRACE_DLSYM_STOP		12
284
285struct utrace_rtld {
286	char sig[4];			/* 'RTLD' */
287	int event;
288	void *handle;
289	void *mapbase;			/* Used for 'parent' and 'init/fini' */
290	size_t mapsize;
291	int refcnt;			/* Used for 'mode' */
292	char name[MAXPATHLEN];
293};
294
295#define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
296	if (ld_utrace != NULL)					\
297		ld_utrace_log(e, h, mb, ms, r, n);		\
298} while (0)
299
300static void
301ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
302    int refcnt, const char *name)
303{
304	struct utrace_rtld ut;
305
306	ut.sig[0] = 'R';
307	ut.sig[1] = 'T';
308	ut.sig[2] = 'L';
309	ut.sig[3] = 'D';
310	ut.event = event;
311	ut.handle = handle;
312	ut.mapbase = mapbase;
313	ut.mapsize = mapsize;
314	ut.refcnt = refcnt;
315	bzero(ut.name, sizeof(ut.name));
316	if (name)
317		strlcpy(ut.name, name, sizeof(ut.name));
318	utrace(&ut, sizeof(ut));
319}
320
321/*
322 * Main entry point for dynamic linking.  The first argument is the
323 * stack pointer.  The stack is expected to be laid out as described
324 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
325 * Specifically, the stack pointer points to a word containing
326 * ARGC.  Following that in the stack is a null-terminated sequence
327 * of pointers to argument strings.  Then comes a null-terminated
328 * sequence of pointers to environment strings.  Finally, there is a
329 * sequence of "auxiliary vector" entries.
330 *
331 * The second argument points to a place to store the dynamic linker's
332 * exit procedure pointer and the third to a place to store the main
333 * program's object.
334 *
335 * The return value is the main program's entry point.
336 */
337func_ptr_type
338_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
339{
340    Elf_Auxinfo *aux_info[AT_COUNT];
341    int i;
342    int argc;
343    char **argv;
344    char **env;
345    Elf_Auxinfo *aux;
346    Elf_Auxinfo *auxp;
347    const char *argv0;
348    Objlist_Entry *entry;
349    Obj_Entry *obj;
350    Obj_Entry **preload_tail;
351    Obj_Entry *last_interposer;
352    Objlist initlist;
353    RtldLockState lockstate;
354    char *library_path_rpath;
355    int mib[2];
356    size_t len;
357
358    /*
359     * On entry, the dynamic linker itself has not been relocated yet.
360     * Be very careful not to reference any global data until after
361     * init_rtld has returned.  It is OK to reference file-scope statics
362     * and string constants, and to call static and global functions.
363     */
364
365    /* Find the auxiliary vector on the stack. */
366    argc = *sp++;
367    argv = (char **) sp;
368    sp += argc + 1;	/* Skip over arguments and NULL terminator */
369    env = (char **) sp;
370    while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
371	;
372    aux = (Elf_Auxinfo *) sp;
373
374    /* Digest the auxiliary vector. */
375    for (i = 0;  i < AT_COUNT;  i++)
376	aux_info[i] = NULL;
377    for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
378	if (auxp->a_type < AT_COUNT)
379	    aux_info[auxp->a_type] = auxp;
380    }
381
382    /* Initialize and relocate ourselves. */
383    assert(aux_info[AT_BASE] != NULL);
384    init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
385
386    __progname = obj_rtld.path;
387    argv0 = argv[0] != NULL ? argv[0] : "(null)";
388    environ = env;
389    main_argc = argc;
390    main_argv = argv;
391
392    if (aux_info[AT_CANARY] != NULL &&
393	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
394	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
395	    if (i > sizeof(__stack_chk_guard))
396		    i = sizeof(__stack_chk_guard);
397	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
398    } else {
399	mib[0] = CTL_KERN;
400	mib[1] = KERN_ARND;
401
402	len = sizeof(__stack_chk_guard);
403	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
404	    len != sizeof(__stack_chk_guard)) {
405		/* If sysctl was unsuccessful, use the "terminator canary". */
406		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
407		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
408		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
409		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
410	}
411    }
412
413    trust = !issetugid();
414
415    ld_bind_now = getenv(LD_ "BIND_NOW");
416    /*
417     * If the process is tainted, then we un-set the dangerous environment
418     * variables.  The process will be marked as tainted until setuid(2)
419     * is called.  If any child process calls setuid(2) we do not want any
420     * future processes to honor the potentially un-safe variables.
421     */
422    if (!trust) {
423        if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
424	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
425	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
426	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
427		_rtld_error("environment corrupt; aborting");
428		rtld_die();
429	}
430    }
431    ld_debug = getenv(LD_ "DEBUG");
432    libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
433    libmap_override = getenv(LD_ "LIBMAP");
434    ld_library_path = getenv(LD_ "LIBRARY_PATH");
435    ld_preload = getenv(LD_ "PRELOAD");
436    ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
437    ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
438    library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
439    if (library_path_rpath != NULL) {
440	    if (library_path_rpath[0] == 'y' ||
441		library_path_rpath[0] == 'Y' ||
442		library_path_rpath[0] == '1')
443		    ld_library_path_rpath = true;
444	    else
445		    ld_library_path_rpath = false;
446    }
447    dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
448	(ld_library_path != NULL) || (ld_preload != NULL) ||
449	(ld_elf_hints_path != NULL) || ld_loadfltr;
450    ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
451    ld_utrace = getenv(LD_ "UTRACE");
452
453    if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
454	ld_elf_hints_path = _PATH_ELF_HINTS;
455
456    if (ld_debug != NULL && *ld_debug != '\0')
457	debug = 1;
458    dbg("%s is initialized, base address = %p", __progname,
459	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
460    dbg("RTLD dynamic = %p", obj_rtld.dynamic);
461    dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
462
463    dbg("initializing thread locks");
464    lockdflt_init();
465
466    /*
467     * Load the main program, or process its program header if it is
468     * already loaded.
469     */
470    if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
471	int fd = aux_info[AT_EXECFD]->a_un.a_val;
472	dbg("loading main program");
473	obj_main = map_object(fd, argv0, NULL);
474	close(fd);
475	if (obj_main == NULL)
476	    rtld_die();
477	max_stack_flags = obj->stack_flags;
478    } else {				/* Main program already loaded. */
479	const Elf_Phdr *phdr;
480	int phnum;
481	caddr_t entry;
482
483	dbg("processing main program's program header");
484	assert(aux_info[AT_PHDR] != NULL);
485	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
486	assert(aux_info[AT_PHNUM] != NULL);
487	phnum = aux_info[AT_PHNUM]->a_un.a_val;
488	assert(aux_info[AT_PHENT] != NULL);
489	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
490	assert(aux_info[AT_ENTRY] != NULL);
491	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
492	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
493	    rtld_die();
494    }
495
496    if (aux_info[AT_EXECPATH] != 0) {
497	    char *kexecpath;
498	    char buf[MAXPATHLEN];
499
500	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
501	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
502	    if (kexecpath[0] == '/')
503		    obj_main->path = kexecpath;
504	    else if (getcwd(buf, sizeof(buf)) == NULL ||
505		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
506		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
507		    obj_main->path = xstrdup(argv0);
508	    else
509		    obj_main->path = xstrdup(buf);
510    } else {
511	    dbg("No AT_EXECPATH");
512	    obj_main->path = xstrdup(argv0);
513    }
514    dbg("obj_main path %s", obj_main->path);
515    obj_main->mainprog = true;
516
517    if (aux_info[AT_STACKPROT] != NULL &&
518      aux_info[AT_STACKPROT]->a_un.a_val != 0)
519	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
520
521#ifndef COMPAT_32BIT
522    /*
523     * Get the actual dynamic linker pathname from the executable if
524     * possible.  (It should always be possible.)  That ensures that
525     * gdb will find the right dynamic linker even if a non-standard
526     * one is being used.
527     */
528    if (obj_main->interp != NULL &&
529      strcmp(obj_main->interp, obj_rtld.path) != 0) {
530	free(obj_rtld.path);
531	obj_rtld.path = xstrdup(obj_main->interp);
532        __progname = obj_rtld.path;
533    }
534#endif
535
536    digest_dynamic(obj_main, 0);
537    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
538	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
539	obj_main->dynsymcount);
540
541    linkmap_add(obj_main);
542    linkmap_add(&obj_rtld);
543
544    /* Link the main program into the list of objects. */
545    *obj_tail = obj_main;
546    obj_tail = &obj_main->next;
547    obj_count++;
548    obj_loads++;
549
550    /* Initialize a fake symbol for resolving undefined weak references. */
551    sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
552    sym_zero.st_shndx = SHN_UNDEF;
553    sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
554
555    if (!libmap_disable)
556        libmap_disable = (bool)lm_init(libmap_override);
557
558    dbg("loading LD_PRELOAD libraries");
559    if (load_preload_objects() == -1)
560	rtld_die();
561    preload_tail = obj_tail;
562
563    dbg("loading needed objects");
564    if (load_needed_objects(obj_main, 0) == -1)
565	rtld_die();
566
567    /* Make a list of all objects loaded at startup. */
568    last_interposer = obj_main;
569    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
570	if (obj->z_interpose && obj != obj_main) {
571	    objlist_put_after(&list_main, last_interposer, obj);
572	    last_interposer = obj;
573	} else {
574	    objlist_push_tail(&list_main, obj);
575	}
576    	obj->refcount++;
577    }
578
579    dbg("checking for required versions");
580    if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
581	rtld_die();
582
583    if (ld_tracing) {		/* We're done */
584	trace_loaded_objects(obj_main);
585	exit(0);
586    }
587
588    if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
589       dump_relocations(obj_main);
590       exit (0);
591    }
592
593    /*
594     * Processing tls relocations requires having the tls offsets
595     * initialized.  Prepare offsets before starting initial
596     * relocation processing.
597     */
598    dbg("initializing initial thread local storage offsets");
599    STAILQ_FOREACH(entry, &list_main, link) {
600	/*
601	 * Allocate all the initial objects out of the static TLS
602	 * block even if they didn't ask for it.
603	 */
604	allocate_tls_offset(entry->obj);
605    }
606
607    if (relocate_objects(obj_main,
608      ld_bind_now != NULL && *ld_bind_now != '\0',
609      &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
610	rtld_die();
611
612    dbg("doing copy relocations");
613    if (do_copy_relocations(obj_main) == -1)
614	rtld_die();
615
616    if (getenv(LD_ "DUMP_REL_POST") != NULL) {
617       dump_relocations(obj_main);
618       exit (0);
619    }
620
621    /*
622     * Setup TLS for main thread.  This must be done after the
623     * relocations are processed, since tls initialization section
624     * might be the subject for relocations.
625     */
626    dbg("initializing initial thread local storage");
627    allocate_initial_tls(obj_list);
628
629    dbg("initializing key program variables");
630    set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
631    set_program_var("environ", env);
632    set_program_var("__elf_aux_vector", aux);
633
634    /* Make a list of init functions to call. */
635    objlist_init(&initlist);
636    initlist_add_objects(obj_list, preload_tail, &initlist);
637
638    r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
639
640    map_stacks_exec(NULL);
641
642    dbg("resolving ifuncs");
643    if (resolve_objects_ifunc(obj_main,
644      ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
645      NULL) == -1)
646	rtld_die();
647
648    if (!obj_main->crt_no_init) {
649	/*
650	 * Make sure we don't call the main program's init and fini
651	 * functions for binaries linked with old crt1 which calls
652	 * _init itself.
653	 */
654	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
655	obj_main->preinit_array = obj_main->init_array =
656	    obj_main->fini_array = (Elf_Addr)NULL;
657    }
658
659    wlock_acquire(rtld_bind_lock, &lockstate);
660    if (obj_main->crt_no_init)
661	preinit_main();
662    objlist_call_init(&initlist, &lockstate);
663    _r_debug_postinit(&obj_main->linkmap);
664    objlist_clear(&initlist);
665    dbg("loading filtees");
666    for (obj = obj_list->next; obj != NULL; obj = obj->next) {
667	if (ld_loadfltr || obj->z_loadfltr)
668	    load_filtees(obj, 0, &lockstate);
669    }
670    lock_release(rtld_bind_lock, &lockstate);
671
672    dbg("transferring control to program entry point = %p", obj_main->entry);
673
674    /* Return the exit procedure and the program entry point. */
675    *exit_proc = rtld_exit;
676    *objp = obj_main;
677    return (func_ptr_type) obj_main->entry;
678}
679
680void *
681rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
682{
683	void *ptr;
684	Elf_Addr target;
685
686	ptr = (void *)make_function_pointer(def, obj);
687	target = ((Elf_Addr (*)(void))ptr)();
688	return ((void *)target);
689}
690
691Elf_Addr
692_rtld_bind(Obj_Entry *obj, Elf_Size reloff)
693{
694    const Elf_Rel *rel;
695    const Elf_Sym *def;
696    const Obj_Entry *defobj;
697    Elf_Addr *where;
698    Elf_Addr target;
699    RtldLockState lockstate;
700
701    rlock_acquire(rtld_bind_lock, &lockstate);
702    if (sigsetjmp(lockstate.env, 0) != 0)
703	    lock_upgrade(rtld_bind_lock, &lockstate);
704    if (obj->pltrel)
705	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
706    else
707	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
708
709    where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
710    def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
711	&lockstate);
712    if (def == NULL)
713	rtld_die();
714    if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
715	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
716    else
717	target = (Elf_Addr)(defobj->relocbase + def->st_value);
718
719    dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
720      defobj->strtab + def->st_name, basename(obj->path),
721      (void *)target, basename(defobj->path));
722
723    /*
724     * Write the new contents for the jmpslot. Note that depending on
725     * architecture, the value which we need to return back to the
726     * lazy binding trampoline may or may not be the target
727     * address. The value returned from reloc_jmpslot() is the value
728     * that the trampoline needs.
729     */
730    target = reloc_jmpslot(where, target, defobj, obj, rel);
731    lock_release(rtld_bind_lock, &lockstate);
732    return target;
733}
734
735/*
736 * Error reporting function.  Use it like printf.  If formats the message
737 * into a buffer, and sets things up so that the next call to dlerror()
738 * will return the message.
739 */
740void
741_rtld_error(const char *fmt, ...)
742{
743    static char buf[512];
744    va_list ap;
745
746    va_start(ap, fmt);
747    rtld_vsnprintf(buf, sizeof buf, fmt, ap);
748    error_message = buf;
749    va_end(ap);
750}
751
752/*
753 * Return a dynamically-allocated copy of the current error message, if any.
754 */
755static char *
756errmsg_save(void)
757{
758    return error_message == NULL ? NULL : xstrdup(error_message);
759}
760
761/*
762 * Restore the current error message from a copy which was previously saved
763 * by errmsg_save().  The copy is freed.
764 */
765static void
766errmsg_restore(char *saved_msg)
767{
768    if (saved_msg == NULL)
769	error_message = NULL;
770    else {
771	_rtld_error("%s", saved_msg);
772	free(saved_msg);
773    }
774}
775
776static const char *
777basename(const char *name)
778{
779    const char *p = strrchr(name, '/');
780    return p != NULL ? p + 1 : name;
781}
782
783static struct utsname uts;
784
785static char *
786origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
787    const char *subst, bool may_free)
788{
789	char *p, *p1, *res, *resp;
790	int subst_len, kw_len, subst_count, old_len, new_len;
791
792	kw_len = strlen(kw);
793
794	/*
795	 * First, count the number of the keyword occurences, to
796	 * preallocate the final string.
797	 */
798	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
799		p1 = strstr(p, kw);
800		if (p1 == NULL)
801			break;
802	}
803
804	/*
805	 * If the keyword is not found, just return.
806	 *
807	 * Return non-substituted string if resolution failed.  We
808	 * cannot do anything more reasonable, the failure mode of the
809	 * caller is unresolved library anyway.
810	 */
811	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
812		return (may_free ? real : xstrdup(real));
813	if (obj != NULL)
814		subst = obj->origin_path;
815
816	/*
817	 * There is indeed something to substitute.  Calculate the
818	 * length of the resulting string, and allocate it.
819	 */
820	subst_len = strlen(subst);
821	old_len = strlen(real);
822	new_len = old_len + (subst_len - kw_len) * subst_count;
823	res = xmalloc(new_len + 1);
824
825	/*
826	 * Now, execute the substitution loop.
827	 */
828	for (p = real, resp = res, *resp = '\0';;) {
829		p1 = strstr(p, kw);
830		if (p1 != NULL) {
831			/* Copy the prefix before keyword. */
832			memcpy(resp, p, p1 - p);
833			resp += p1 - p;
834			/* Keyword replacement. */
835			memcpy(resp, subst, subst_len);
836			resp += subst_len;
837			*resp = '\0';
838			p = p1 + kw_len;
839		} else
840			break;
841	}
842
843	/* Copy to the end of string and finish. */
844	strcat(resp, p);
845	if (may_free)
846		free(real);
847	return (res);
848}
849
850static char *
851origin_subst(Obj_Entry *obj, char *real)
852{
853	char *res1, *res2, *res3, *res4;
854
855	if (obj == NULL || !trust)
856		return (xstrdup(real));
857	if (uts.sysname[0] == '\0') {
858		if (uname(&uts) != 0) {
859			_rtld_error("utsname failed: %d", errno);
860			return (NULL);
861		}
862	}
863	res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false);
864	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
865	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
866	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
867	return (res4);
868}
869
870void
871rtld_die(void)
872{
873    const char *msg = dlerror();
874
875    if (msg == NULL)
876	msg = "Fatal error";
877    rtld_fdputstr(STDERR_FILENO, msg);
878    rtld_fdputchar(STDERR_FILENO, '\n');
879    _exit(1);
880}
881
882/*
883 * Process a shared object's DYNAMIC section, and save the important
884 * information in its Obj_Entry structure.
885 */
886static void
887digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
888    const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
889{
890    const Elf_Dyn *dynp;
891    Needed_Entry **needed_tail = &obj->needed;
892    Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
893    Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
894    const Elf_Hashelt *hashtab;
895    const Elf32_Word *hashval;
896    Elf32_Word bkt, nmaskwords;
897    int bloom_size32;
898    int plttype = DT_REL;
899
900    *dyn_rpath = NULL;
901    *dyn_soname = NULL;
902    *dyn_runpath = NULL;
903
904    obj->bind_now = false;
905    for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
906	switch (dynp->d_tag) {
907
908	case DT_REL:
909	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
910	    break;
911
912	case DT_RELSZ:
913	    obj->relsize = dynp->d_un.d_val;
914	    break;
915
916	case DT_RELENT:
917	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
918	    break;
919
920	case DT_JMPREL:
921	    obj->pltrel = (const Elf_Rel *)
922	      (obj->relocbase + dynp->d_un.d_ptr);
923	    break;
924
925	case DT_PLTRELSZ:
926	    obj->pltrelsize = dynp->d_un.d_val;
927	    break;
928
929	case DT_RELA:
930	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
931	    break;
932
933	case DT_RELASZ:
934	    obj->relasize = dynp->d_un.d_val;
935	    break;
936
937	case DT_RELAENT:
938	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
939	    break;
940
941	case DT_PLTREL:
942	    plttype = dynp->d_un.d_val;
943	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
944	    break;
945
946	case DT_SYMTAB:
947	    obj->symtab = (const Elf_Sym *)
948	      (obj->relocbase + dynp->d_un.d_ptr);
949	    break;
950
951	case DT_SYMENT:
952	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
953	    break;
954
955	case DT_STRTAB:
956	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
957	    break;
958
959	case DT_STRSZ:
960	    obj->strsize = dynp->d_un.d_val;
961	    break;
962
963	case DT_VERNEED:
964	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
965		dynp->d_un.d_val);
966	    break;
967
968	case DT_VERNEEDNUM:
969	    obj->verneednum = dynp->d_un.d_val;
970	    break;
971
972	case DT_VERDEF:
973	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
974		dynp->d_un.d_val);
975	    break;
976
977	case DT_VERDEFNUM:
978	    obj->verdefnum = dynp->d_un.d_val;
979	    break;
980
981	case DT_VERSYM:
982	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
983		dynp->d_un.d_val);
984	    break;
985
986	case DT_HASH:
987	    {
988		hashtab = (const Elf_Hashelt *)(obj->relocbase +
989		    dynp->d_un.d_ptr);
990		obj->nbuckets = hashtab[0];
991		obj->nchains = hashtab[1];
992		obj->buckets = hashtab + 2;
993		obj->chains = obj->buckets + obj->nbuckets;
994		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
995		  obj->buckets != NULL;
996	    }
997	    break;
998
999	case DT_GNU_HASH:
1000	    {
1001		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1002		    dynp->d_un.d_ptr);
1003		obj->nbuckets_gnu = hashtab[0];
1004		obj->symndx_gnu = hashtab[1];
1005		nmaskwords = hashtab[2];
1006		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1007		obj->maskwords_bm_gnu = nmaskwords - 1;
1008		obj->shift2_gnu = hashtab[3];
1009		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1010		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1011		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1012		  obj->symndx_gnu;
1013		/* Number of bitmask words is required to be power of 2 */
1014		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1015		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1016	    }
1017	    break;
1018
1019	case DT_NEEDED:
1020	    if (!obj->rtld) {
1021		Needed_Entry *nep = NEW(Needed_Entry);
1022		nep->name = dynp->d_un.d_val;
1023		nep->obj = NULL;
1024		nep->next = NULL;
1025
1026		*needed_tail = nep;
1027		needed_tail = &nep->next;
1028	    }
1029	    break;
1030
1031	case DT_FILTER:
1032	    if (!obj->rtld) {
1033		Needed_Entry *nep = NEW(Needed_Entry);
1034		nep->name = dynp->d_un.d_val;
1035		nep->obj = NULL;
1036		nep->next = NULL;
1037
1038		*needed_filtees_tail = nep;
1039		needed_filtees_tail = &nep->next;
1040	    }
1041	    break;
1042
1043	case DT_AUXILIARY:
1044	    if (!obj->rtld) {
1045		Needed_Entry *nep = NEW(Needed_Entry);
1046		nep->name = dynp->d_un.d_val;
1047		nep->obj = NULL;
1048		nep->next = NULL;
1049
1050		*needed_aux_filtees_tail = nep;
1051		needed_aux_filtees_tail = &nep->next;
1052	    }
1053	    break;
1054
1055	case DT_PLTGOT:
1056	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1057	    break;
1058
1059	case DT_TEXTREL:
1060	    obj->textrel = true;
1061	    break;
1062
1063	case DT_SYMBOLIC:
1064	    obj->symbolic = true;
1065	    break;
1066
1067	case DT_RPATH:
1068	    /*
1069	     * We have to wait until later to process this, because we
1070	     * might not have gotten the address of the string table yet.
1071	     */
1072	    *dyn_rpath = dynp;
1073	    break;
1074
1075	case DT_SONAME:
1076	    *dyn_soname = dynp;
1077	    break;
1078
1079	case DT_RUNPATH:
1080	    *dyn_runpath = dynp;
1081	    break;
1082
1083	case DT_INIT:
1084	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1085	    break;
1086
1087	case DT_PREINIT_ARRAY:
1088	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1089	    break;
1090
1091	case DT_PREINIT_ARRAYSZ:
1092	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1093	    break;
1094
1095	case DT_INIT_ARRAY:
1096	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1097	    break;
1098
1099	case DT_INIT_ARRAYSZ:
1100	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1101	    break;
1102
1103	case DT_FINI:
1104	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1105	    break;
1106
1107	case DT_FINI_ARRAY:
1108	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1109	    break;
1110
1111	case DT_FINI_ARRAYSZ:
1112	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1113	    break;
1114
1115	/*
1116	 * Don't process DT_DEBUG on MIPS as the dynamic section
1117	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1118	 */
1119
1120#ifndef __mips__
1121	case DT_DEBUG:
1122	    /* XXX - not implemented yet */
1123	    if (!early)
1124		dbg("Filling in DT_DEBUG entry");
1125	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1126	    break;
1127#endif
1128
1129	case DT_FLAGS:
1130		if (dynp->d_un.d_val & DF_ORIGIN)
1131		    obj->z_origin = true;
1132		if (dynp->d_un.d_val & DF_SYMBOLIC)
1133		    obj->symbolic = true;
1134		if (dynp->d_un.d_val & DF_TEXTREL)
1135		    obj->textrel = true;
1136		if (dynp->d_un.d_val & DF_BIND_NOW)
1137		    obj->bind_now = true;
1138		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1139		    ;*/
1140	    break;
1141#ifdef __mips__
1142	case DT_MIPS_LOCAL_GOTNO:
1143		obj->local_gotno = dynp->d_un.d_val;
1144	    break;
1145
1146	case DT_MIPS_SYMTABNO:
1147		obj->symtabno = dynp->d_un.d_val;
1148		break;
1149
1150	case DT_MIPS_GOTSYM:
1151		obj->gotsym = dynp->d_un.d_val;
1152		break;
1153
1154	case DT_MIPS_RLD_MAP:
1155		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1156		break;
1157#endif
1158
1159	case DT_FLAGS_1:
1160		if (dynp->d_un.d_val & DF_1_NOOPEN)
1161		    obj->z_noopen = true;
1162		if (dynp->d_un.d_val & DF_1_ORIGIN)
1163		    obj->z_origin = true;
1164		if (dynp->d_un.d_val & DF_1_GLOBAL)
1165		    obj->z_global = true;
1166		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1167		    obj->bind_now = true;
1168		if (dynp->d_un.d_val & DF_1_NODELETE)
1169		    obj->z_nodelete = true;
1170		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1171		    obj->z_loadfltr = true;
1172		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1173		    obj->z_interpose = true;
1174		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1175		    obj->z_nodeflib = true;
1176	    break;
1177
1178	default:
1179	    if (!early) {
1180		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1181		    (long)dynp->d_tag);
1182	    }
1183	    break;
1184	}
1185    }
1186
1187    obj->traced = false;
1188
1189    if (plttype == DT_RELA) {
1190	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1191	obj->pltrel = NULL;
1192	obj->pltrelasize = obj->pltrelsize;
1193	obj->pltrelsize = 0;
1194    }
1195
1196    /* Determine size of dynsym table (equal to nchains of sysv hash) */
1197    if (obj->valid_hash_sysv)
1198	obj->dynsymcount = obj->nchains;
1199    else if (obj->valid_hash_gnu) {
1200	obj->dynsymcount = 0;
1201	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1202	    if (obj->buckets_gnu[bkt] == 0)
1203		continue;
1204	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1205	    do
1206		obj->dynsymcount++;
1207	    while ((*hashval++ & 1u) == 0);
1208	}
1209	obj->dynsymcount += obj->symndx_gnu;
1210    }
1211}
1212
1213static bool
1214obj_resolve_origin(Obj_Entry *obj)
1215{
1216
1217	if (obj->origin_path != NULL)
1218		return (true);
1219	obj->origin_path = xmalloc(PATH_MAX);
1220	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1221}
1222
1223static void
1224digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1225    const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1226{
1227
1228	if (obj->z_origin && !obj_resolve_origin(obj))
1229		rtld_die();
1230
1231	if (dyn_runpath != NULL) {
1232		obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1233		obj->runpath = origin_subst(obj, obj->runpath);
1234	} else if (dyn_rpath != NULL) {
1235		obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1236		obj->rpath = origin_subst(obj, obj->rpath);
1237	}
1238	if (dyn_soname != NULL)
1239		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1240}
1241
1242static void
1243digest_dynamic(Obj_Entry *obj, int early)
1244{
1245	const Elf_Dyn *dyn_rpath;
1246	const Elf_Dyn *dyn_soname;
1247	const Elf_Dyn *dyn_runpath;
1248
1249	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1250	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1251}
1252
1253/*
1254 * Process a shared object's program header.  This is used only for the
1255 * main program, when the kernel has already loaded the main program
1256 * into memory before calling the dynamic linker.  It creates and
1257 * returns an Obj_Entry structure.
1258 */
1259static Obj_Entry *
1260digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1261{
1262    Obj_Entry *obj;
1263    const Elf_Phdr *phlimit = phdr + phnum;
1264    const Elf_Phdr *ph;
1265    Elf_Addr note_start, note_end;
1266    int nsegs = 0;
1267
1268    obj = obj_new();
1269    for (ph = phdr;  ph < phlimit;  ph++) {
1270	if (ph->p_type != PT_PHDR)
1271	    continue;
1272
1273	obj->phdr = phdr;
1274	obj->phsize = ph->p_memsz;
1275	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1276	break;
1277    }
1278
1279    obj->stack_flags = PF_X | PF_R | PF_W;
1280
1281    for (ph = phdr;  ph < phlimit;  ph++) {
1282	switch (ph->p_type) {
1283
1284	case PT_INTERP:
1285	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1286	    break;
1287
1288	case PT_LOAD:
1289	    if (nsegs == 0) {	/* First load segment */
1290		obj->vaddrbase = trunc_page(ph->p_vaddr);
1291		obj->mapbase = obj->vaddrbase + obj->relocbase;
1292		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1293		  obj->vaddrbase;
1294	    } else {		/* Last load segment */
1295		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1296		  obj->vaddrbase;
1297	    }
1298	    nsegs++;
1299	    break;
1300
1301	case PT_DYNAMIC:
1302	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1303	    break;
1304
1305	case PT_TLS:
1306	    obj->tlsindex = 1;
1307	    obj->tlssize = ph->p_memsz;
1308	    obj->tlsalign = ph->p_align;
1309	    obj->tlsinitsize = ph->p_filesz;
1310	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1311	    break;
1312
1313	case PT_GNU_STACK:
1314	    obj->stack_flags = ph->p_flags;
1315	    break;
1316
1317	case PT_GNU_RELRO:
1318	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1319	    obj->relro_size = round_page(ph->p_memsz);
1320	    break;
1321
1322	case PT_NOTE:
1323	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1324	    note_end = note_start + ph->p_filesz;
1325	    digest_notes(obj, note_start, note_end);
1326	    break;
1327	}
1328    }
1329    if (nsegs < 1) {
1330	_rtld_error("%s: too few PT_LOAD segments", path);
1331	return NULL;
1332    }
1333
1334    obj->entry = entry;
1335    return obj;
1336}
1337
1338void
1339digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1340{
1341	const Elf_Note *note;
1342	const char *note_name;
1343	uintptr_t p;
1344
1345	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1346	    note = (const Elf_Note *)((const char *)(note + 1) +
1347	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1348	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1349		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1350		    note->n_descsz != sizeof(int32_t))
1351			continue;
1352		if (note->n_type != ABI_NOTETYPE &&
1353		    note->n_type != CRT_NOINIT_NOTETYPE)
1354			continue;
1355		note_name = (const char *)(note + 1);
1356		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1357		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1358			continue;
1359		switch (note->n_type) {
1360		case ABI_NOTETYPE:
1361			/* FreeBSD osrel note */
1362			p = (uintptr_t)(note + 1);
1363			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1364			obj->osrel = *(const int32_t *)(p);
1365			dbg("note osrel %d", obj->osrel);
1366			break;
1367		case CRT_NOINIT_NOTETYPE:
1368			/* FreeBSD 'crt does not call init' note */
1369			obj->crt_no_init = true;
1370			dbg("note crt_no_init");
1371			break;
1372		}
1373	}
1374}
1375
1376static Obj_Entry *
1377dlcheck(void *handle)
1378{
1379    Obj_Entry *obj;
1380
1381    for (obj = obj_list;  obj != NULL;  obj = obj->next)
1382	if (obj == (Obj_Entry *) handle)
1383	    break;
1384
1385    if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1386	_rtld_error("Invalid shared object handle %p", handle);
1387	return NULL;
1388    }
1389    return obj;
1390}
1391
1392/*
1393 * If the given object is already in the donelist, return true.  Otherwise
1394 * add the object to the list and return false.
1395 */
1396static bool
1397donelist_check(DoneList *dlp, const Obj_Entry *obj)
1398{
1399    unsigned int i;
1400
1401    for (i = 0;  i < dlp->num_used;  i++)
1402	if (dlp->objs[i] == obj)
1403	    return true;
1404    /*
1405     * Our donelist allocation should always be sufficient.  But if
1406     * our threads locking isn't working properly, more shared objects
1407     * could have been loaded since we allocated the list.  That should
1408     * never happen, but we'll handle it properly just in case it does.
1409     */
1410    if (dlp->num_used < dlp->num_alloc)
1411	dlp->objs[dlp->num_used++] = obj;
1412    return false;
1413}
1414
1415/*
1416 * Hash function for symbol table lookup.  Don't even think about changing
1417 * this.  It is specified by the System V ABI.
1418 */
1419unsigned long
1420elf_hash(const char *name)
1421{
1422    const unsigned char *p = (const unsigned char *) name;
1423    unsigned long h = 0;
1424    unsigned long g;
1425
1426    while (*p != '\0') {
1427	h = (h << 4) + *p++;
1428	if ((g = h & 0xf0000000) != 0)
1429	    h ^= g >> 24;
1430	h &= ~g;
1431    }
1432    return h;
1433}
1434
1435/*
1436 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1437 * unsigned in case it's implemented with a wider type.
1438 */
1439static uint32_t
1440gnu_hash(const char *s)
1441{
1442	uint32_t h;
1443	unsigned char c;
1444
1445	h = 5381;
1446	for (c = *s; c != '\0'; c = *++s)
1447		h = h * 33 + c;
1448	return (h & 0xffffffff);
1449}
1450
1451/*
1452 * Find the library with the given name, and return its full pathname.
1453 * The returned string is dynamically allocated.  Generates an error
1454 * message and returns NULL if the library cannot be found.
1455 *
1456 * If the second argument is non-NULL, then it refers to an already-
1457 * loaded shared object, whose library search path will be searched.
1458 *
1459 * The search order is:
1460 *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1461 *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1462 *   LD_LIBRARY_PATH
1463 *   DT_RUNPATH in the referencing file
1464 *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1465 *	 from list)
1466 *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1467 *
1468 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1469 */
1470static char *
1471find_library(const char *xname, const Obj_Entry *refobj)
1472{
1473    char *pathname;
1474    char *name;
1475    bool nodeflib, objgiven;
1476
1477    objgiven = refobj != NULL;
1478    if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1479	if (xname[0] != '/' && !trust) {
1480	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1481	      xname);
1482	    return NULL;
1483	}
1484	return (origin_subst(__DECONST(Obj_Entry *, refobj),
1485	  __DECONST(char *, xname)));
1486    }
1487
1488    if (libmap_disable || !objgiven ||
1489	(name = lm_find(refobj->path, xname)) == NULL)
1490	name = (char *)xname;
1491
1492    dbg(" Searching for \"%s\"", name);
1493
1494    /*
1495     * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1496     * back to pre-conforming behaviour if user requested so with
1497     * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1498     * nodeflib.
1499     */
1500    if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1501	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1502	  (refobj != NULL &&
1503	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1504          (pathname = search_library_path(name, gethints(false))) != NULL ||
1505	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1506	    return (pathname);
1507    } else {
1508	nodeflib = objgiven ? refobj->z_nodeflib : false;
1509	if ((objgiven &&
1510	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1511	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1512	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1513	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1514	  (objgiven &&
1515	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1516	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1517	  (objgiven && !nodeflib &&
1518	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1519	    return (pathname);
1520    }
1521
1522    if (objgiven && refobj->path != NULL) {
1523	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1524	  name, basename(refobj->path));
1525    } else {
1526	_rtld_error("Shared object \"%s\" not found", name);
1527    }
1528    return NULL;
1529}
1530
1531/*
1532 * Given a symbol number in a referencing object, find the corresponding
1533 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1534 * no definition was found.  Returns a pointer to the Obj_Entry of the
1535 * defining object via the reference parameter DEFOBJ_OUT.
1536 */
1537const Elf_Sym *
1538find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1539    const Obj_Entry **defobj_out, int flags, SymCache *cache,
1540    RtldLockState *lockstate)
1541{
1542    const Elf_Sym *ref;
1543    const Elf_Sym *def;
1544    const Obj_Entry *defobj;
1545    SymLook req;
1546    const char *name;
1547    int res;
1548
1549    /*
1550     * If we have already found this symbol, get the information from
1551     * the cache.
1552     */
1553    if (symnum >= refobj->dynsymcount)
1554	return NULL;	/* Bad object */
1555    if (cache != NULL && cache[symnum].sym != NULL) {
1556	*defobj_out = cache[symnum].obj;
1557	return cache[symnum].sym;
1558    }
1559
1560    ref = refobj->symtab + symnum;
1561    name = refobj->strtab + ref->st_name;
1562    def = NULL;
1563    defobj = NULL;
1564
1565    /*
1566     * We don't have to do a full scale lookup if the symbol is local.
1567     * We know it will bind to the instance in this load module; to
1568     * which we already have a pointer (ie ref). By not doing a lookup,
1569     * we not only improve performance, but it also avoids unresolvable
1570     * symbols when local symbols are not in the hash table. This has
1571     * been seen with the ia64 toolchain.
1572     */
1573    if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1574	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1575	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1576		symnum);
1577	}
1578	symlook_init(&req, name);
1579	req.flags = flags;
1580	req.ventry = fetch_ventry(refobj, symnum);
1581	req.lockstate = lockstate;
1582	res = symlook_default(&req, refobj);
1583	if (res == 0) {
1584	    def = req.sym_out;
1585	    defobj = req.defobj_out;
1586	}
1587    } else {
1588	def = ref;
1589	defobj = refobj;
1590    }
1591
1592    /*
1593     * If we found no definition and the reference is weak, treat the
1594     * symbol as having the value zero.
1595     */
1596    if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1597	def = &sym_zero;
1598	defobj = obj_main;
1599    }
1600
1601    if (def != NULL) {
1602	*defobj_out = defobj;
1603	/* Record the information in the cache to avoid subsequent lookups. */
1604	if (cache != NULL) {
1605	    cache[symnum].sym = def;
1606	    cache[symnum].obj = defobj;
1607	}
1608    } else {
1609	if (refobj != &obj_rtld)
1610	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1611    }
1612    return def;
1613}
1614
1615/*
1616 * Return the search path from the ldconfig hints file, reading it if
1617 * necessary.  If nostdlib is true, then the default search paths are
1618 * not added to result.
1619 *
1620 * Returns NULL if there are problems with the hints file,
1621 * or if the search path there is empty.
1622 */
1623static const char *
1624gethints(bool nostdlib)
1625{
1626	static char *hints, *filtered_path;
1627	struct elfhints_hdr hdr;
1628	struct fill_search_info_args sargs, hargs;
1629	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1630	struct dl_serpath *SLPpath, *hintpath;
1631	char *p;
1632	unsigned int SLPndx, hintndx, fndx, fcount;
1633	int fd;
1634	size_t flen;
1635	bool skip;
1636
1637	/* First call, read the hints file */
1638	if (hints == NULL) {
1639		/* Keep from trying again in case the hints file is bad. */
1640		hints = "";
1641
1642		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1643			return (NULL);
1644		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1645		    hdr.magic != ELFHINTS_MAGIC ||
1646		    hdr.version != 1) {
1647			close(fd);
1648			return (NULL);
1649		}
1650		p = xmalloc(hdr.dirlistlen + 1);
1651		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1652		    read(fd, p, hdr.dirlistlen + 1) !=
1653		    (ssize_t)hdr.dirlistlen + 1) {
1654			free(p);
1655			close(fd);
1656			return (NULL);
1657		}
1658		hints = p;
1659		close(fd);
1660	}
1661
1662	/*
1663	 * If caller agreed to receive list which includes the default
1664	 * paths, we are done. Otherwise, if we still did not
1665	 * calculated filtered result, do it now.
1666	 */
1667	if (!nostdlib)
1668		return (hints[0] != '\0' ? hints : NULL);
1669	if (filtered_path != NULL)
1670		goto filt_ret;
1671
1672	/*
1673	 * Obtain the list of all configured search paths, and the
1674	 * list of the default paths.
1675	 *
1676	 * First estimate the size of the results.
1677	 */
1678	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1679	smeta.dls_cnt = 0;
1680	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1681	hmeta.dls_cnt = 0;
1682
1683	sargs.request = RTLD_DI_SERINFOSIZE;
1684	sargs.serinfo = &smeta;
1685	hargs.request = RTLD_DI_SERINFOSIZE;
1686	hargs.serinfo = &hmeta;
1687
1688	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1689	path_enumerate(p, fill_search_info, &hargs);
1690
1691	SLPinfo = xmalloc(smeta.dls_size);
1692	hintinfo = xmalloc(hmeta.dls_size);
1693
1694	/*
1695	 * Next fetch both sets of paths.
1696	 */
1697	sargs.request = RTLD_DI_SERINFO;
1698	sargs.serinfo = SLPinfo;
1699	sargs.serpath = &SLPinfo->dls_serpath[0];
1700	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1701
1702	hargs.request = RTLD_DI_SERINFO;
1703	hargs.serinfo = hintinfo;
1704	hargs.serpath = &hintinfo->dls_serpath[0];
1705	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1706
1707	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1708	path_enumerate(p, fill_search_info, &hargs);
1709
1710	/*
1711	 * Now calculate the difference between two sets, by excluding
1712	 * standard paths from the full set.
1713	 */
1714	fndx = 0;
1715	fcount = 0;
1716	filtered_path = xmalloc(hdr.dirlistlen + 1);
1717	hintpath = &hintinfo->dls_serpath[0];
1718	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1719		skip = false;
1720		SLPpath = &SLPinfo->dls_serpath[0];
1721		/*
1722		 * Check each standard path against current.
1723		 */
1724		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1725			/* matched, skip the path */
1726			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1727				skip = true;
1728				break;
1729			}
1730		}
1731		if (skip)
1732			continue;
1733		/*
1734		 * Not matched against any standard path, add the path
1735		 * to result. Separate consequtive paths with ':'.
1736		 */
1737		if (fcount > 0) {
1738			filtered_path[fndx] = ':';
1739			fndx++;
1740		}
1741		fcount++;
1742		flen = strlen(hintpath->dls_name);
1743		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1744		fndx += flen;
1745	}
1746	filtered_path[fndx] = '\0';
1747
1748	free(SLPinfo);
1749	free(hintinfo);
1750
1751filt_ret:
1752	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1753}
1754
1755static void
1756init_dag(Obj_Entry *root)
1757{
1758    const Needed_Entry *needed;
1759    const Objlist_Entry *elm;
1760    DoneList donelist;
1761
1762    if (root->dag_inited)
1763	return;
1764    donelist_init(&donelist);
1765
1766    /* Root object belongs to own DAG. */
1767    objlist_push_tail(&root->dldags, root);
1768    objlist_push_tail(&root->dagmembers, root);
1769    donelist_check(&donelist, root);
1770
1771    /*
1772     * Add dependencies of root object to DAG in breadth order
1773     * by exploiting the fact that each new object get added
1774     * to the tail of the dagmembers list.
1775     */
1776    STAILQ_FOREACH(elm, &root->dagmembers, link) {
1777	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1778	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1779		continue;
1780	    objlist_push_tail(&needed->obj->dldags, root);
1781	    objlist_push_tail(&root->dagmembers, needed->obj);
1782	}
1783    }
1784    root->dag_inited = true;
1785}
1786
1787static void
1788process_z(Obj_Entry *root)
1789{
1790	const Objlist_Entry *elm;
1791	Obj_Entry *obj;
1792
1793	/*
1794	 * Walk over object DAG and process every dependent object
1795	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
1796	 * to grow their own DAG.
1797	 *
1798	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
1799	 * symlook_global() to work.
1800	 *
1801	 * For DF_1_NODELETE, the DAG should have its reference upped.
1802	 */
1803	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1804		obj = elm->obj;
1805		if (obj == NULL)
1806			continue;
1807		if (obj->z_nodelete && !obj->ref_nodel) {
1808			dbg("obj %s -z nodelete", obj->path);
1809			init_dag(obj);
1810			ref_dag(obj);
1811			obj->ref_nodel = true;
1812		}
1813		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
1814			dbg("obj %s -z global", obj->path);
1815			objlist_push_tail(&list_global, obj);
1816			init_dag(obj);
1817		}
1818	}
1819}
1820/*
1821 * Initialize the dynamic linker.  The argument is the address at which
1822 * the dynamic linker has been mapped into memory.  The primary task of
1823 * this function is to relocate the dynamic linker.
1824 */
1825static void
1826init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1827{
1828    Obj_Entry objtmp;	/* Temporary rtld object */
1829    const Elf_Dyn *dyn_rpath;
1830    const Elf_Dyn *dyn_soname;
1831    const Elf_Dyn *dyn_runpath;
1832
1833#ifdef RTLD_INIT_PAGESIZES_EARLY
1834    /* The page size is required by the dynamic memory allocator. */
1835    init_pagesizes(aux_info);
1836#endif
1837
1838    /*
1839     * Conjure up an Obj_Entry structure for the dynamic linker.
1840     *
1841     * The "path" member can't be initialized yet because string constants
1842     * cannot yet be accessed. Below we will set it correctly.
1843     */
1844    memset(&objtmp, 0, sizeof(objtmp));
1845    objtmp.path = NULL;
1846    objtmp.rtld = true;
1847    objtmp.mapbase = mapbase;
1848#ifdef PIC
1849    objtmp.relocbase = mapbase;
1850#endif
1851    if (RTLD_IS_DYNAMIC()) {
1852	objtmp.dynamic = rtld_dynamic(&objtmp);
1853	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1854	assert(objtmp.needed == NULL);
1855#if !defined(__mips__)
1856	/* MIPS has a bogus DT_TEXTREL. */
1857	assert(!objtmp.textrel);
1858#endif
1859
1860	/*
1861	 * Temporarily put the dynamic linker entry into the object list, so
1862	 * that symbols can be found.
1863	 */
1864
1865	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1866    }
1867
1868    /* Initialize the object list. */
1869    obj_tail = &obj_list;
1870
1871    /* Now that non-local variables can be accesses, copy out obj_rtld. */
1872    memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1873
1874#ifndef RTLD_INIT_PAGESIZES_EARLY
1875    /* The page size is required by the dynamic memory allocator. */
1876    init_pagesizes(aux_info);
1877#endif
1878
1879    if (aux_info[AT_OSRELDATE] != NULL)
1880	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1881
1882    digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1883
1884    /* Replace the path with a dynamically allocated copy. */
1885    obj_rtld.path = xstrdup(PATH_RTLD);
1886
1887    r_debug.r_brk = r_debug_state;
1888    r_debug.r_state = RT_CONSISTENT;
1889}
1890
1891/*
1892 * Retrieve the array of supported page sizes.  The kernel provides the page
1893 * sizes in increasing order.
1894 */
1895static void
1896init_pagesizes(Elf_Auxinfo **aux_info)
1897{
1898	static size_t psa[MAXPAGESIZES];
1899	int mib[2];
1900	size_t len, size;
1901
1902	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
1903	    NULL) {
1904		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
1905		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
1906	} else {
1907		len = 2;
1908		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
1909			size = sizeof(psa);
1910		else {
1911			/* As a fallback, retrieve the base page size. */
1912			size = sizeof(psa[0]);
1913			if (aux_info[AT_PAGESZ] != NULL) {
1914				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
1915				goto psa_filled;
1916			} else {
1917				mib[0] = CTL_HW;
1918				mib[1] = HW_PAGESIZE;
1919				len = 2;
1920			}
1921		}
1922		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
1923			_rtld_error("sysctl for hw.pagesize(s) failed");
1924			rtld_die();
1925		}
1926psa_filled:
1927		pagesizes = psa;
1928	}
1929	npagesizes = size / sizeof(pagesizes[0]);
1930	/* Discard any invalid entries at the end of the array. */
1931	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
1932		npagesizes--;
1933}
1934
1935/*
1936 * Add the init functions from a needed object list (and its recursive
1937 * needed objects) to "list".  This is not used directly; it is a helper
1938 * function for initlist_add_objects().  The write lock must be held
1939 * when this function is called.
1940 */
1941static void
1942initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1943{
1944    /* Recursively process the successor needed objects. */
1945    if (needed->next != NULL)
1946	initlist_add_neededs(needed->next, list);
1947
1948    /* Process the current needed object. */
1949    if (needed->obj != NULL)
1950	initlist_add_objects(needed->obj, &needed->obj->next, list);
1951}
1952
1953/*
1954 * Scan all of the DAGs rooted in the range of objects from "obj" to
1955 * "tail" and add their init functions to "list".  This recurses over
1956 * the DAGs and ensure the proper init ordering such that each object's
1957 * needed libraries are initialized before the object itself.  At the
1958 * same time, this function adds the objects to the global finalization
1959 * list "list_fini" in the opposite order.  The write lock must be
1960 * held when this function is called.
1961 */
1962static void
1963initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1964{
1965
1966    if (obj->init_scanned || obj->init_done)
1967	return;
1968    obj->init_scanned = true;
1969
1970    /* Recursively process the successor objects. */
1971    if (&obj->next != tail)
1972	initlist_add_objects(obj->next, tail, list);
1973
1974    /* Recursively process the needed objects. */
1975    if (obj->needed != NULL)
1976	initlist_add_neededs(obj->needed, list);
1977    if (obj->needed_filtees != NULL)
1978	initlist_add_neededs(obj->needed_filtees, list);
1979    if (obj->needed_aux_filtees != NULL)
1980	initlist_add_neededs(obj->needed_aux_filtees, list);
1981
1982    /* Add the object to the init list. */
1983    if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1984      obj->init_array != (Elf_Addr)NULL)
1985	objlist_push_tail(list, obj);
1986
1987    /* Add the object to the global fini list in the reverse order. */
1988    if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1989      && !obj->on_fini_list) {
1990	objlist_push_head(&list_fini, obj);
1991	obj->on_fini_list = true;
1992    }
1993}
1994
1995#ifndef FPTR_TARGET
1996#define FPTR_TARGET(f)	((Elf_Addr) (f))
1997#endif
1998
1999static void
2000free_needed_filtees(Needed_Entry *n)
2001{
2002    Needed_Entry *needed, *needed1;
2003
2004    for (needed = n; needed != NULL; needed = needed->next) {
2005	if (needed->obj != NULL) {
2006	    dlclose(needed->obj);
2007	    needed->obj = NULL;
2008	}
2009    }
2010    for (needed = n; needed != NULL; needed = needed1) {
2011	needed1 = needed->next;
2012	free(needed);
2013    }
2014}
2015
2016static void
2017unload_filtees(Obj_Entry *obj)
2018{
2019
2020    free_needed_filtees(obj->needed_filtees);
2021    obj->needed_filtees = NULL;
2022    free_needed_filtees(obj->needed_aux_filtees);
2023    obj->needed_aux_filtees = NULL;
2024    obj->filtees_loaded = false;
2025}
2026
2027static void
2028load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2029    RtldLockState *lockstate)
2030{
2031
2032    for (; needed != NULL; needed = needed->next) {
2033	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2034	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2035	  RTLD_LOCAL, lockstate);
2036    }
2037}
2038
2039static void
2040load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2041{
2042
2043    lock_restart_for_upgrade(lockstate);
2044    if (!obj->filtees_loaded) {
2045	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2046	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2047	obj->filtees_loaded = true;
2048    }
2049}
2050
2051static int
2052process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2053{
2054    Obj_Entry *obj1;
2055
2056    for (; needed != NULL; needed = needed->next) {
2057	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2058	  flags & ~RTLD_LO_NOLOAD);
2059	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2060	    return (-1);
2061    }
2062    return (0);
2063}
2064
2065/*
2066 * Given a shared object, traverse its list of needed objects, and load
2067 * each of them.  Returns 0 on success.  Generates an error message and
2068 * returns -1 on failure.
2069 */
2070static int
2071load_needed_objects(Obj_Entry *first, int flags)
2072{
2073    Obj_Entry *obj;
2074
2075    for (obj = first;  obj != NULL;  obj = obj->next) {
2076	if (process_needed(obj, obj->needed, flags) == -1)
2077	    return (-1);
2078    }
2079    return (0);
2080}
2081
2082static int
2083load_preload_objects(void)
2084{
2085    char *p = ld_preload;
2086    Obj_Entry *obj;
2087    static const char delim[] = " \t:;";
2088
2089    if (p == NULL)
2090	return 0;
2091
2092    p += strspn(p, delim);
2093    while (*p != '\0') {
2094	size_t len = strcspn(p, delim);
2095	char savech;
2096
2097	savech = p[len];
2098	p[len] = '\0';
2099	obj = load_object(p, -1, NULL, 0);
2100	if (obj == NULL)
2101	    return -1;	/* XXX - cleanup */
2102	obj->z_interpose = true;
2103	p[len] = savech;
2104	p += len;
2105	p += strspn(p, delim);
2106    }
2107    LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2108    return 0;
2109}
2110
2111static const char *
2112printable_path(const char *path)
2113{
2114
2115	return (path == NULL ? "<unknown>" : path);
2116}
2117
2118/*
2119 * Load a shared object into memory, if it is not already loaded.  The
2120 * object may be specified by name or by user-supplied file descriptor
2121 * fd_u. In the later case, the fd_u descriptor is not closed, but its
2122 * duplicate is.
2123 *
2124 * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2125 * on failure.
2126 */
2127static Obj_Entry *
2128load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2129{
2130    Obj_Entry *obj;
2131    int fd;
2132    struct stat sb;
2133    char *path;
2134
2135    if (name != NULL) {
2136	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2137	    if (object_match_name(obj, name))
2138		return (obj);
2139	}
2140
2141	path = find_library(name, refobj);
2142	if (path == NULL)
2143	    return (NULL);
2144    } else
2145	path = NULL;
2146
2147    /*
2148     * If we didn't find a match by pathname, or the name is not
2149     * supplied, open the file and check again by device and inode.
2150     * This avoids false mismatches caused by multiple links or ".."
2151     * in pathnames.
2152     *
2153     * To avoid a race, we open the file and use fstat() rather than
2154     * using stat().
2155     */
2156    fd = -1;
2157    if (fd_u == -1) {
2158	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2159	    _rtld_error("Cannot open \"%s\"", path);
2160	    free(path);
2161	    return (NULL);
2162	}
2163    } else {
2164	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2165	if (fd == -1) {
2166	    _rtld_error("Cannot dup fd");
2167	    free(path);
2168	    return (NULL);
2169	}
2170    }
2171    if (fstat(fd, &sb) == -1) {
2172	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2173	close(fd);
2174	free(path);
2175	return NULL;
2176    }
2177    for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2178	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2179	    break;
2180    if (obj != NULL && name != NULL) {
2181	object_add_name(obj, name);
2182	free(path);
2183	close(fd);
2184	return obj;
2185    }
2186    if (flags & RTLD_LO_NOLOAD) {
2187	free(path);
2188	close(fd);
2189	return (NULL);
2190    }
2191
2192    /* First use of this object, so we must map it in */
2193    obj = do_load_object(fd, name, path, &sb, flags);
2194    if (obj == NULL)
2195	free(path);
2196    close(fd);
2197
2198    return obj;
2199}
2200
2201static Obj_Entry *
2202do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2203  int flags)
2204{
2205    Obj_Entry *obj;
2206    struct statfs fs;
2207
2208    /*
2209     * but first, make sure that environment variables haven't been
2210     * used to circumvent the noexec flag on a filesystem.
2211     */
2212    if (dangerous_ld_env) {
2213	if (fstatfs(fd, &fs) != 0) {
2214	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2215	    return NULL;
2216	}
2217	if (fs.f_flags & MNT_NOEXEC) {
2218	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2219	    return NULL;
2220	}
2221    }
2222    dbg("loading \"%s\"", printable_path(path));
2223    obj = map_object(fd, printable_path(path), sbp);
2224    if (obj == NULL)
2225        return NULL;
2226
2227    /*
2228     * If DT_SONAME is present in the object, digest_dynamic2 already
2229     * added it to the object names.
2230     */
2231    if (name != NULL)
2232	object_add_name(obj, name);
2233    obj->path = path;
2234    digest_dynamic(obj, 0);
2235    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2236	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2237    if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2238      RTLD_LO_DLOPEN) {
2239	dbg("refusing to load non-loadable \"%s\"", obj->path);
2240	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2241	munmap(obj->mapbase, obj->mapsize);
2242	obj_free(obj);
2243	return (NULL);
2244    }
2245
2246    obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2247    *obj_tail = obj;
2248    obj_tail = &obj->next;
2249    obj_count++;
2250    obj_loads++;
2251    linkmap_add(obj);	/* for GDB & dlinfo() */
2252    max_stack_flags |= obj->stack_flags;
2253
2254    dbg("  %p .. %p: %s", obj->mapbase,
2255         obj->mapbase + obj->mapsize - 1, obj->path);
2256    if (obj->textrel)
2257	dbg("  WARNING: %s has impure text", obj->path);
2258    LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2259	obj->path);
2260
2261    return obj;
2262}
2263
2264static Obj_Entry *
2265obj_from_addr(const void *addr)
2266{
2267    Obj_Entry *obj;
2268
2269    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2270	if (addr < (void *) obj->mapbase)
2271	    continue;
2272	if (addr < (void *) (obj->mapbase + obj->mapsize))
2273	    return obj;
2274    }
2275    return NULL;
2276}
2277
2278static void
2279preinit_main(void)
2280{
2281    Elf_Addr *preinit_addr;
2282    int index;
2283
2284    preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2285    if (preinit_addr == NULL)
2286	return;
2287
2288    for (index = 0; index < obj_main->preinit_array_num; index++) {
2289	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2290	    dbg("calling preinit function for %s at %p", obj_main->path,
2291	      (void *)preinit_addr[index]);
2292	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2293	      0, 0, obj_main->path);
2294	    call_init_pointer(obj_main, preinit_addr[index]);
2295	}
2296    }
2297}
2298
2299/*
2300 * Call the finalization functions for each of the objects in "list"
2301 * belonging to the DAG of "root" and referenced once. If NULL "root"
2302 * is specified, every finalization function will be called regardless
2303 * of the reference count and the list elements won't be freed. All of
2304 * the objects are expected to have non-NULL fini functions.
2305 */
2306static void
2307objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2308{
2309    Objlist_Entry *elm;
2310    char *saved_msg;
2311    Elf_Addr *fini_addr;
2312    int index;
2313
2314    assert(root == NULL || root->refcount == 1);
2315
2316    /*
2317     * Preserve the current error message since a fini function might
2318     * call into the dynamic linker and overwrite it.
2319     */
2320    saved_msg = errmsg_save();
2321    do {
2322	STAILQ_FOREACH(elm, list, link) {
2323	    if (root != NULL && (elm->obj->refcount != 1 ||
2324	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2325		continue;
2326	    /* Remove object from fini list to prevent recursive invocation. */
2327	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2328	    /*
2329	     * XXX: If a dlopen() call references an object while the
2330	     * fini function is in progress, we might end up trying to
2331	     * unload the referenced object in dlclose() or the object
2332	     * won't be unloaded although its fini function has been
2333	     * called.
2334	     */
2335	    lock_release(rtld_bind_lock, lockstate);
2336
2337	    /*
2338	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2339	     * When this happens, DT_FINI_ARRAY is processed first.
2340	     */
2341	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2342	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2343		for (index = elm->obj->fini_array_num - 1; index >= 0;
2344		  index--) {
2345		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2346			dbg("calling fini function for %s at %p",
2347			    elm->obj->path, (void *)fini_addr[index]);
2348			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2349			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2350			call_initfini_pointer(elm->obj, fini_addr[index]);
2351		    }
2352		}
2353	    }
2354	    if (elm->obj->fini != (Elf_Addr)NULL) {
2355		dbg("calling fini function for %s at %p", elm->obj->path,
2356		    (void *)elm->obj->fini);
2357		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2358		    0, 0, elm->obj->path);
2359		call_initfini_pointer(elm->obj, elm->obj->fini);
2360	    }
2361	    wlock_acquire(rtld_bind_lock, lockstate);
2362	    /* No need to free anything if process is going down. */
2363	    if (root != NULL)
2364	    	free(elm);
2365	    /*
2366	     * We must restart the list traversal after every fini call
2367	     * because a dlclose() call from the fini function or from
2368	     * another thread might have modified the reference counts.
2369	     */
2370	    break;
2371	}
2372    } while (elm != NULL);
2373    errmsg_restore(saved_msg);
2374}
2375
2376/*
2377 * Call the initialization functions for each of the objects in
2378 * "list".  All of the objects are expected to have non-NULL init
2379 * functions.
2380 */
2381static void
2382objlist_call_init(Objlist *list, RtldLockState *lockstate)
2383{
2384    Objlist_Entry *elm;
2385    Obj_Entry *obj;
2386    char *saved_msg;
2387    Elf_Addr *init_addr;
2388    int index;
2389
2390    /*
2391     * Clean init_scanned flag so that objects can be rechecked and
2392     * possibly initialized earlier if any of vectors called below
2393     * cause the change by using dlopen.
2394     */
2395    for (obj = obj_list;  obj != NULL;  obj = obj->next)
2396	obj->init_scanned = false;
2397
2398    /*
2399     * Preserve the current error message since an init function might
2400     * call into the dynamic linker and overwrite it.
2401     */
2402    saved_msg = errmsg_save();
2403    STAILQ_FOREACH(elm, list, link) {
2404	if (elm->obj->init_done) /* Initialized early. */
2405	    continue;
2406	/*
2407	 * Race: other thread might try to use this object before current
2408	 * one completes the initilization. Not much can be done here
2409	 * without better locking.
2410	 */
2411	elm->obj->init_done = true;
2412	lock_release(rtld_bind_lock, lockstate);
2413
2414        /*
2415         * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2416         * When this happens, DT_INIT is processed first.
2417         */
2418	if (elm->obj->init != (Elf_Addr)NULL) {
2419	    dbg("calling init function for %s at %p", elm->obj->path,
2420	        (void *)elm->obj->init);
2421	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2422	        0, 0, elm->obj->path);
2423	    call_initfini_pointer(elm->obj, elm->obj->init);
2424	}
2425	init_addr = (Elf_Addr *)elm->obj->init_array;
2426	if (init_addr != NULL) {
2427	    for (index = 0; index < elm->obj->init_array_num; index++) {
2428		if (init_addr[index] != 0 && init_addr[index] != 1) {
2429		    dbg("calling init function for %s at %p", elm->obj->path,
2430			(void *)init_addr[index]);
2431		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2432			(void *)init_addr[index], 0, 0, elm->obj->path);
2433		    call_init_pointer(elm->obj, init_addr[index]);
2434		}
2435	    }
2436	}
2437	wlock_acquire(rtld_bind_lock, lockstate);
2438    }
2439    errmsg_restore(saved_msg);
2440}
2441
2442static void
2443objlist_clear(Objlist *list)
2444{
2445    Objlist_Entry *elm;
2446
2447    while (!STAILQ_EMPTY(list)) {
2448	elm = STAILQ_FIRST(list);
2449	STAILQ_REMOVE_HEAD(list, link);
2450	free(elm);
2451    }
2452}
2453
2454static Objlist_Entry *
2455objlist_find(Objlist *list, const Obj_Entry *obj)
2456{
2457    Objlist_Entry *elm;
2458
2459    STAILQ_FOREACH(elm, list, link)
2460	if (elm->obj == obj)
2461	    return elm;
2462    return NULL;
2463}
2464
2465static void
2466objlist_init(Objlist *list)
2467{
2468    STAILQ_INIT(list);
2469}
2470
2471static void
2472objlist_push_head(Objlist *list, Obj_Entry *obj)
2473{
2474    Objlist_Entry *elm;
2475
2476    elm = NEW(Objlist_Entry);
2477    elm->obj = obj;
2478    STAILQ_INSERT_HEAD(list, elm, link);
2479}
2480
2481static void
2482objlist_push_tail(Objlist *list, Obj_Entry *obj)
2483{
2484    Objlist_Entry *elm;
2485
2486    elm = NEW(Objlist_Entry);
2487    elm->obj = obj;
2488    STAILQ_INSERT_TAIL(list, elm, link);
2489}
2490
2491static void
2492objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2493{
2494	Objlist_Entry *elm, *listelm;
2495
2496	STAILQ_FOREACH(listelm, list, link) {
2497		if (listelm->obj == listobj)
2498			break;
2499	}
2500	elm = NEW(Objlist_Entry);
2501	elm->obj = obj;
2502	if (listelm != NULL)
2503		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2504	else
2505		STAILQ_INSERT_TAIL(list, elm, link);
2506}
2507
2508static void
2509objlist_remove(Objlist *list, Obj_Entry *obj)
2510{
2511    Objlist_Entry *elm;
2512
2513    if ((elm = objlist_find(list, obj)) != NULL) {
2514	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2515	free(elm);
2516    }
2517}
2518
2519/*
2520 * Relocate dag rooted in the specified object.
2521 * Returns 0 on success, or -1 on failure.
2522 */
2523
2524static int
2525relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2526    int flags, RtldLockState *lockstate)
2527{
2528	Objlist_Entry *elm;
2529	int error;
2530
2531	error = 0;
2532	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2533		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2534		    lockstate);
2535		if (error == -1)
2536			break;
2537	}
2538	return (error);
2539}
2540
2541/*
2542 * Relocate single object.
2543 * Returns 0 on success, or -1 on failure.
2544 */
2545static int
2546relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2547    int flags, RtldLockState *lockstate)
2548{
2549
2550	if (obj->relocated)
2551		return (0);
2552	obj->relocated = true;
2553	if (obj != rtldobj)
2554		dbg("relocating \"%s\"", obj->path);
2555
2556	if (obj->symtab == NULL || obj->strtab == NULL ||
2557	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2558		_rtld_error("%s: Shared object has no run-time symbol table",
2559			    obj->path);
2560		return (-1);
2561	}
2562
2563	if (obj->textrel) {
2564		/* There are relocations to the write-protected text segment. */
2565		if (mprotect(obj->mapbase, obj->textsize,
2566		    PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2567			_rtld_error("%s: Cannot write-enable text segment: %s",
2568			    obj->path, rtld_strerror(errno));
2569			return (-1);
2570		}
2571	}
2572
2573	/* Process the non-PLT non-IFUNC relocations. */
2574	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2575		return (-1);
2576
2577	if (obj->textrel) {	/* Re-protected the text segment. */
2578		if (mprotect(obj->mapbase, obj->textsize,
2579		    PROT_READ|PROT_EXEC) == -1) {
2580			_rtld_error("%s: Cannot write-protect text segment: %s",
2581			    obj->path, rtld_strerror(errno));
2582			return (-1);
2583		}
2584	}
2585
2586	/* Set the special PLT or GOT entries. */
2587	init_pltgot(obj);
2588
2589	/* Process the PLT relocations. */
2590	if (reloc_plt(obj) == -1)
2591		return (-1);
2592	/* Relocate the jump slots if we are doing immediate binding. */
2593	if (obj->bind_now || bind_now)
2594		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2595			return (-1);
2596
2597	/*
2598	 * Process the non-PLT IFUNC relocations.  The relocations are
2599	 * processed in two phases, because IFUNC resolvers may
2600	 * reference other symbols, which must be readily processed
2601	 * before resolvers are called.
2602	 */
2603	if (obj->non_plt_gnu_ifunc &&
2604	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2605		return (-1);
2606
2607	if (obj->relro_size > 0) {
2608		if (mprotect(obj->relro_page, obj->relro_size,
2609		    PROT_READ) == -1) {
2610			_rtld_error("%s: Cannot enforce relro protection: %s",
2611			    obj->path, rtld_strerror(errno));
2612			return (-1);
2613		}
2614	}
2615
2616	/*
2617	 * Set up the magic number and version in the Obj_Entry.  These
2618	 * were checked in the crt1.o from the original ElfKit, so we
2619	 * set them for backward compatibility.
2620	 */
2621	obj->magic = RTLD_MAGIC;
2622	obj->version = RTLD_VERSION;
2623
2624	return (0);
2625}
2626
2627/*
2628 * Relocate newly-loaded shared objects.  The argument is a pointer to
2629 * the Obj_Entry for the first such object.  All objects from the first
2630 * to the end of the list of objects are relocated.  Returns 0 on success,
2631 * or -1 on failure.
2632 */
2633static int
2634relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2635    int flags, RtldLockState *lockstate)
2636{
2637	Obj_Entry *obj;
2638	int error;
2639
2640	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2641		error = relocate_object(obj, bind_now, rtldobj, flags,
2642		    lockstate);
2643		if (error == -1)
2644			break;
2645	}
2646	return (error);
2647}
2648
2649/*
2650 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2651 * referencing STT_GNU_IFUNC symbols is postponed till the other
2652 * relocations are done.  The indirect functions specified as
2653 * ifunc are allowed to call other symbols, so we need to have
2654 * objects relocated before asking for resolution from indirects.
2655 *
2656 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2657 * instead of the usual lazy handling of PLT slots.  It is
2658 * consistent with how GNU does it.
2659 */
2660static int
2661resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2662    RtldLockState *lockstate)
2663{
2664	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2665		return (-1);
2666	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2667	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2668		return (-1);
2669	return (0);
2670}
2671
2672static int
2673resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2674    RtldLockState *lockstate)
2675{
2676	Obj_Entry *obj;
2677
2678	for (obj = first;  obj != NULL;  obj = obj->next) {
2679		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2680			return (-1);
2681	}
2682	return (0);
2683}
2684
2685static int
2686initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2687    RtldLockState *lockstate)
2688{
2689	Objlist_Entry *elm;
2690
2691	STAILQ_FOREACH(elm, list, link) {
2692		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2693		    lockstate) == -1)
2694			return (-1);
2695	}
2696	return (0);
2697}
2698
2699/*
2700 * Cleanup procedure.  It will be called (by the atexit mechanism) just
2701 * before the process exits.
2702 */
2703static void
2704rtld_exit(void)
2705{
2706    RtldLockState lockstate;
2707
2708    wlock_acquire(rtld_bind_lock, &lockstate);
2709    dbg("rtld_exit()");
2710    objlist_call_fini(&list_fini, NULL, &lockstate);
2711    /* No need to remove the items from the list, since we are exiting. */
2712    if (!libmap_disable)
2713        lm_fini();
2714    lock_release(rtld_bind_lock, &lockstate);
2715}
2716
2717/*
2718 * Iterate over a search path, translate each element, and invoke the
2719 * callback on the result.
2720 */
2721static void *
2722path_enumerate(const char *path, path_enum_proc callback, void *arg)
2723{
2724    const char *trans;
2725    if (path == NULL)
2726	return (NULL);
2727
2728    path += strspn(path, ":;");
2729    while (*path != '\0') {
2730	size_t len;
2731	char  *res;
2732
2733	len = strcspn(path, ":;");
2734	trans = lm_findn(NULL, path, len);
2735	if (trans)
2736	    res = callback(trans, strlen(trans), arg);
2737	else
2738	    res = callback(path, len, arg);
2739
2740	if (res != NULL)
2741	    return (res);
2742
2743	path += len;
2744	path += strspn(path, ":;");
2745    }
2746
2747    return (NULL);
2748}
2749
2750struct try_library_args {
2751    const char	*name;
2752    size_t	 namelen;
2753    char	*buffer;
2754    size_t	 buflen;
2755};
2756
2757static void *
2758try_library_path(const char *dir, size_t dirlen, void *param)
2759{
2760    struct try_library_args *arg;
2761
2762    arg = param;
2763    if (*dir == '/' || trust) {
2764	char *pathname;
2765
2766	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2767		return (NULL);
2768
2769	pathname = arg->buffer;
2770	strncpy(pathname, dir, dirlen);
2771	pathname[dirlen] = '/';
2772	strcpy(pathname + dirlen + 1, arg->name);
2773
2774	dbg("  Trying \"%s\"", pathname);
2775	if (access(pathname, F_OK) == 0) {		/* We found it */
2776	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2777	    strcpy(pathname, arg->buffer);
2778	    return (pathname);
2779	}
2780    }
2781    return (NULL);
2782}
2783
2784static char *
2785search_library_path(const char *name, const char *path)
2786{
2787    char *p;
2788    struct try_library_args arg;
2789
2790    if (path == NULL)
2791	return NULL;
2792
2793    arg.name = name;
2794    arg.namelen = strlen(name);
2795    arg.buffer = xmalloc(PATH_MAX);
2796    arg.buflen = PATH_MAX;
2797
2798    p = path_enumerate(path, try_library_path, &arg);
2799
2800    free(arg.buffer);
2801
2802    return (p);
2803}
2804
2805int
2806dlclose(void *handle)
2807{
2808    Obj_Entry *root;
2809    RtldLockState lockstate;
2810
2811    wlock_acquire(rtld_bind_lock, &lockstate);
2812    root = dlcheck(handle);
2813    if (root == NULL) {
2814	lock_release(rtld_bind_lock, &lockstate);
2815	return -1;
2816    }
2817    LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2818	root->path);
2819
2820    /* Unreference the object and its dependencies. */
2821    root->dl_refcount--;
2822
2823    if (root->refcount == 1) {
2824	/*
2825	 * The object will be no longer referenced, so we must unload it.
2826	 * First, call the fini functions.
2827	 */
2828	objlist_call_fini(&list_fini, root, &lockstate);
2829
2830	unref_dag(root);
2831
2832	/* Finish cleaning up the newly-unreferenced objects. */
2833	GDB_STATE(RT_DELETE,&root->linkmap);
2834	unload_object(root);
2835	GDB_STATE(RT_CONSISTENT,NULL);
2836    } else
2837	unref_dag(root);
2838
2839    LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2840    lock_release(rtld_bind_lock, &lockstate);
2841    return 0;
2842}
2843
2844char *
2845dlerror(void)
2846{
2847    char *msg = error_message;
2848    error_message = NULL;
2849    return msg;
2850}
2851
2852/*
2853 * This function is deprecated and has no effect.
2854 */
2855void
2856dllockinit(void *context,
2857	   void *(*lock_create)(void *context),
2858           void (*rlock_acquire)(void *lock),
2859           void (*wlock_acquire)(void *lock),
2860           void (*lock_release)(void *lock),
2861           void (*lock_destroy)(void *lock),
2862	   void (*context_destroy)(void *context))
2863{
2864    static void *cur_context;
2865    static void (*cur_context_destroy)(void *);
2866
2867    /* Just destroy the context from the previous call, if necessary. */
2868    if (cur_context_destroy != NULL)
2869	cur_context_destroy(cur_context);
2870    cur_context = context;
2871    cur_context_destroy = context_destroy;
2872}
2873
2874void *
2875dlopen(const char *name, int mode)
2876{
2877
2878	return (rtld_dlopen(name, -1, mode));
2879}
2880
2881void *
2882fdlopen(int fd, int mode)
2883{
2884
2885	return (rtld_dlopen(NULL, fd, mode));
2886}
2887
2888static void *
2889rtld_dlopen(const char *name, int fd, int mode)
2890{
2891    RtldLockState lockstate;
2892    int lo_flags;
2893
2894    LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2895    ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2896    if (ld_tracing != NULL) {
2897	rlock_acquire(rtld_bind_lock, &lockstate);
2898	if (sigsetjmp(lockstate.env, 0) != 0)
2899	    lock_upgrade(rtld_bind_lock, &lockstate);
2900	environ = (char **)*get_program_var_addr("environ", &lockstate);
2901	lock_release(rtld_bind_lock, &lockstate);
2902    }
2903    lo_flags = RTLD_LO_DLOPEN;
2904    if (mode & RTLD_NODELETE)
2905	    lo_flags |= RTLD_LO_NODELETE;
2906    if (mode & RTLD_NOLOAD)
2907	    lo_flags |= RTLD_LO_NOLOAD;
2908    if (ld_tracing != NULL)
2909	    lo_flags |= RTLD_LO_TRACE;
2910
2911    return (dlopen_object(name, fd, obj_main, lo_flags,
2912      mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2913}
2914
2915static void
2916dlopen_cleanup(Obj_Entry *obj)
2917{
2918
2919	obj->dl_refcount--;
2920	unref_dag(obj);
2921	if (obj->refcount == 0)
2922		unload_object(obj);
2923}
2924
2925static Obj_Entry *
2926dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2927    int mode, RtldLockState *lockstate)
2928{
2929    Obj_Entry **old_obj_tail;
2930    Obj_Entry *obj;
2931    Objlist initlist;
2932    RtldLockState mlockstate;
2933    int result;
2934
2935    objlist_init(&initlist);
2936
2937    if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2938	wlock_acquire(rtld_bind_lock, &mlockstate);
2939	lockstate = &mlockstate;
2940    }
2941    GDB_STATE(RT_ADD,NULL);
2942
2943    old_obj_tail = obj_tail;
2944    obj = NULL;
2945    if (name == NULL && fd == -1) {
2946	obj = obj_main;
2947	obj->refcount++;
2948    } else {
2949	obj = load_object(name, fd, refobj, lo_flags);
2950    }
2951
2952    if (obj) {
2953	obj->dl_refcount++;
2954	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2955	    objlist_push_tail(&list_global, obj);
2956	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2957	    assert(*old_obj_tail == obj);
2958	    result = load_needed_objects(obj,
2959		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
2960	    init_dag(obj);
2961	    ref_dag(obj);
2962	    if (result != -1)
2963		result = rtld_verify_versions(&obj->dagmembers);
2964	    if (result != -1 && ld_tracing)
2965		goto trace;
2966	    if (result == -1 || relocate_object_dag(obj,
2967	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
2968	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2969	      lockstate) == -1) {
2970		dlopen_cleanup(obj);
2971		obj = NULL;
2972	    } else if (lo_flags & RTLD_LO_EARLY) {
2973		/*
2974		 * Do not call the init functions for early loaded
2975		 * filtees.  The image is still not initialized enough
2976		 * for them to work.
2977		 *
2978		 * Our object is found by the global object list and
2979		 * will be ordered among all init calls done right
2980		 * before transferring control to main.
2981		 */
2982	    } else {
2983		/* Make list of init functions to call. */
2984		initlist_add_objects(obj, &obj->next, &initlist);
2985	    }
2986	    /*
2987	     * Process all no_delete or global objects here, given
2988	     * them own DAGs to prevent their dependencies from being
2989	     * unloaded.  This has to be done after we have loaded all
2990	     * of the dependencies, so that we do not miss any.
2991	     */
2992	    if (obj != NULL)
2993		process_z(obj);
2994	} else {
2995	    /*
2996	     * Bump the reference counts for objects on this DAG.  If
2997	     * this is the first dlopen() call for the object that was
2998	     * already loaded as a dependency, initialize the dag
2999	     * starting at it.
3000	     */
3001	    init_dag(obj);
3002	    ref_dag(obj);
3003
3004	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3005		goto trace;
3006	}
3007	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3008	  obj->z_nodelete) && !obj->ref_nodel) {
3009	    dbg("obj %s nodelete", obj->path);
3010	    ref_dag(obj);
3011	    obj->z_nodelete = obj->ref_nodel = true;
3012	}
3013    }
3014
3015    LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3016	name);
3017    GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3018
3019    if (!(lo_flags & RTLD_LO_EARLY)) {
3020	map_stacks_exec(lockstate);
3021    }
3022
3023    if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3024      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3025      lockstate) == -1) {
3026	objlist_clear(&initlist);
3027	dlopen_cleanup(obj);
3028	if (lockstate == &mlockstate)
3029	    lock_release(rtld_bind_lock, lockstate);
3030	return (NULL);
3031    }
3032
3033    if (!(lo_flags & RTLD_LO_EARLY)) {
3034	/* Call the init functions. */
3035	objlist_call_init(&initlist, lockstate);
3036    }
3037    objlist_clear(&initlist);
3038    if (lockstate == &mlockstate)
3039	lock_release(rtld_bind_lock, lockstate);
3040    return obj;
3041trace:
3042    trace_loaded_objects(obj);
3043    if (lockstate == &mlockstate)
3044	lock_release(rtld_bind_lock, lockstate);
3045    exit(0);
3046}
3047
3048static void *
3049do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3050    int flags)
3051{
3052    DoneList donelist;
3053    const Obj_Entry *obj, *defobj;
3054    const Elf_Sym *def;
3055    SymLook req;
3056    RtldLockState lockstate;
3057#ifndef __ia64__
3058    tls_index ti;
3059#endif
3060    void *sym;
3061    int res;
3062
3063    def = NULL;
3064    defobj = NULL;
3065    symlook_init(&req, name);
3066    req.ventry = ve;
3067    req.flags = flags | SYMLOOK_IN_PLT;
3068    req.lockstate = &lockstate;
3069
3070    LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3071    rlock_acquire(rtld_bind_lock, &lockstate);
3072    if (sigsetjmp(lockstate.env, 0) != 0)
3073	    lock_upgrade(rtld_bind_lock, &lockstate);
3074    if (handle == NULL || handle == RTLD_NEXT ||
3075	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3076
3077	if ((obj = obj_from_addr(retaddr)) == NULL) {
3078	    _rtld_error("Cannot determine caller's shared object");
3079	    lock_release(rtld_bind_lock, &lockstate);
3080	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3081	    return NULL;
3082	}
3083	if (handle == NULL) {	/* Just the caller's shared object. */
3084	    res = symlook_obj(&req, obj);
3085	    if (res == 0) {
3086		def = req.sym_out;
3087		defobj = req.defobj_out;
3088	    }
3089	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3090		   handle == RTLD_SELF) { /* ... caller included */
3091	    if (handle == RTLD_NEXT)
3092		obj = obj->next;
3093	    for (; obj != NULL; obj = obj->next) {
3094		res = symlook_obj(&req, obj);
3095		if (res == 0) {
3096		    if (def == NULL ||
3097		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3098			def = req.sym_out;
3099			defobj = req.defobj_out;
3100			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3101			    break;
3102		    }
3103		}
3104	    }
3105	    /*
3106	     * Search the dynamic linker itself, and possibly resolve the
3107	     * symbol from there.  This is how the application links to
3108	     * dynamic linker services such as dlopen.
3109	     */
3110	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3111		res = symlook_obj(&req, &obj_rtld);
3112		if (res == 0) {
3113		    def = req.sym_out;
3114		    defobj = req.defobj_out;
3115		}
3116	    }
3117	} else {
3118	    assert(handle == RTLD_DEFAULT);
3119	    res = symlook_default(&req, obj);
3120	    if (res == 0) {
3121		defobj = req.defobj_out;
3122		def = req.sym_out;
3123	    }
3124	}
3125    } else {
3126	if ((obj = dlcheck(handle)) == NULL) {
3127	    lock_release(rtld_bind_lock, &lockstate);
3128	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3129	    return NULL;
3130	}
3131
3132	donelist_init(&donelist);
3133	if (obj->mainprog) {
3134            /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3135	    res = symlook_global(&req, &donelist);
3136	    if (res == 0) {
3137		def = req.sym_out;
3138		defobj = req.defobj_out;
3139	    }
3140	    /*
3141	     * Search the dynamic linker itself, and possibly resolve the
3142	     * symbol from there.  This is how the application links to
3143	     * dynamic linker services such as dlopen.
3144	     */
3145	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3146		res = symlook_obj(&req, &obj_rtld);
3147		if (res == 0) {
3148		    def = req.sym_out;
3149		    defobj = req.defobj_out;
3150		}
3151	    }
3152	}
3153	else {
3154	    /* Search the whole DAG rooted at the given object. */
3155	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3156	    if (res == 0) {
3157		def = req.sym_out;
3158		defobj = req.defobj_out;
3159	    }
3160	}
3161    }
3162
3163    if (def != NULL) {
3164	lock_release(rtld_bind_lock, &lockstate);
3165
3166	/*
3167	 * The value required by the caller is derived from the value
3168	 * of the symbol. For the ia64 architecture, we need to
3169	 * construct a function descriptor which the caller can use to
3170	 * call the function with the right 'gp' value. For other
3171	 * architectures and for non-functions, the value is simply
3172	 * the relocated value of the symbol.
3173	 */
3174	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3175	    sym = make_function_pointer(def, defobj);
3176	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3177	    sym = rtld_resolve_ifunc(defobj, def);
3178	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3179#ifdef __ia64__
3180	    return (__tls_get_addr(defobj->tlsindex, def->st_value));
3181#else
3182	    ti.ti_module = defobj->tlsindex;
3183	    ti.ti_offset = def->st_value;
3184	    sym = __tls_get_addr(&ti);
3185#endif
3186	} else
3187	    sym = defobj->relocbase + def->st_value;
3188	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3189	return (sym);
3190    }
3191
3192    _rtld_error("Undefined symbol \"%s\"", name);
3193    lock_release(rtld_bind_lock, &lockstate);
3194    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3195    return NULL;
3196}
3197
3198void *
3199dlsym(void *handle, const char *name)
3200{
3201	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3202	    SYMLOOK_DLSYM);
3203}
3204
3205dlfunc_t
3206dlfunc(void *handle, const char *name)
3207{
3208	union {
3209		void *d;
3210		dlfunc_t f;
3211	} rv;
3212
3213	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3214	    SYMLOOK_DLSYM);
3215	return (rv.f);
3216}
3217
3218void *
3219dlvsym(void *handle, const char *name, const char *version)
3220{
3221	Ver_Entry ventry;
3222
3223	ventry.name = version;
3224	ventry.file = NULL;
3225	ventry.hash = elf_hash(version);
3226	ventry.flags= 0;
3227	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3228	    SYMLOOK_DLSYM);
3229}
3230
3231int
3232_rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3233{
3234    const Obj_Entry *obj;
3235    RtldLockState lockstate;
3236
3237    rlock_acquire(rtld_bind_lock, &lockstate);
3238    obj = obj_from_addr(addr);
3239    if (obj == NULL) {
3240        _rtld_error("No shared object contains address");
3241	lock_release(rtld_bind_lock, &lockstate);
3242        return (0);
3243    }
3244    rtld_fill_dl_phdr_info(obj, phdr_info);
3245    lock_release(rtld_bind_lock, &lockstate);
3246    return (1);
3247}
3248
3249int
3250dladdr(const void *addr, Dl_info *info)
3251{
3252    const Obj_Entry *obj;
3253    const Elf_Sym *def;
3254    void *symbol_addr;
3255    unsigned long symoffset;
3256    RtldLockState lockstate;
3257
3258    rlock_acquire(rtld_bind_lock, &lockstate);
3259    obj = obj_from_addr(addr);
3260    if (obj == NULL) {
3261        _rtld_error("No shared object contains address");
3262	lock_release(rtld_bind_lock, &lockstate);
3263        return 0;
3264    }
3265    info->dli_fname = obj->path;
3266    info->dli_fbase = obj->mapbase;
3267    info->dli_saddr = (void *)0;
3268    info->dli_sname = NULL;
3269
3270    /*
3271     * Walk the symbol list looking for the symbol whose address is
3272     * closest to the address sent in.
3273     */
3274    for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3275        def = obj->symtab + symoffset;
3276
3277        /*
3278         * For skip the symbol if st_shndx is either SHN_UNDEF or
3279         * SHN_COMMON.
3280         */
3281        if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3282            continue;
3283
3284        /*
3285         * If the symbol is greater than the specified address, or if it
3286         * is further away from addr than the current nearest symbol,
3287         * then reject it.
3288         */
3289        symbol_addr = obj->relocbase + def->st_value;
3290        if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3291            continue;
3292
3293        /* Update our idea of the nearest symbol. */
3294        info->dli_sname = obj->strtab + def->st_name;
3295        info->dli_saddr = symbol_addr;
3296
3297        /* Exact match? */
3298        if (info->dli_saddr == addr)
3299            break;
3300    }
3301    lock_release(rtld_bind_lock, &lockstate);
3302    return 1;
3303}
3304
3305int
3306dlinfo(void *handle, int request, void *p)
3307{
3308    const Obj_Entry *obj;
3309    RtldLockState lockstate;
3310    int error;
3311
3312    rlock_acquire(rtld_bind_lock, &lockstate);
3313
3314    if (handle == NULL || handle == RTLD_SELF) {
3315	void *retaddr;
3316
3317	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3318	if ((obj = obj_from_addr(retaddr)) == NULL)
3319	    _rtld_error("Cannot determine caller's shared object");
3320    } else
3321	obj = dlcheck(handle);
3322
3323    if (obj == NULL) {
3324	lock_release(rtld_bind_lock, &lockstate);
3325	return (-1);
3326    }
3327
3328    error = 0;
3329    switch (request) {
3330    case RTLD_DI_LINKMAP:
3331	*((struct link_map const **)p) = &obj->linkmap;
3332	break;
3333    case RTLD_DI_ORIGIN:
3334	error = rtld_dirname(obj->path, p);
3335	break;
3336
3337    case RTLD_DI_SERINFOSIZE:
3338    case RTLD_DI_SERINFO:
3339	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3340	break;
3341
3342    default:
3343	_rtld_error("Invalid request %d passed to dlinfo()", request);
3344	error = -1;
3345    }
3346
3347    lock_release(rtld_bind_lock, &lockstate);
3348
3349    return (error);
3350}
3351
3352static void
3353rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3354{
3355
3356	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3357	phdr_info->dlpi_name = obj->path;
3358	phdr_info->dlpi_phdr = obj->phdr;
3359	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3360	phdr_info->dlpi_tls_modid = obj->tlsindex;
3361	phdr_info->dlpi_tls_data = obj->tlsinit;
3362	phdr_info->dlpi_adds = obj_loads;
3363	phdr_info->dlpi_subs = obj_loads - obj_count;
3364}
3365
3366int
3367dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3368{
3369    struct dl_phdr_info phdr_info;
3370    const Obj_Entry *obj;
3371    RtldLockState bind_lockstate, phdr_lockstate;
3372    int error;
3373
3374    wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3375    rlock_acquire(rtld_bind_lock, &bind_lockstate);
3376
3377    error = 0;
3378
3379    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3380	rtld_fill_dl_phdr_info(obj, &phdr_info);
3381	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3382		break;
3383
3384    }
3385    lock_release(rtld_bind_lock, &bind_lockstate);
3386    lock_release(rtld_phdr_lock, &phdr_lockstate);
3387
3388    return (error);
3389}
3390
3391static void *
3392fill_search_info(const char *dir, size_t dirlen, void *param)
3393{
3394    struct fill_search_info_args *arg;
3395
3396    arg = param;
3397
3398    if (arg->request == RTLD_DI_SERINFOSIZE) {
3399	arg->serinfo->dls_cnt ++;
3400	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3401    } else {
3402	struct dl_serpath *s_entry;
3403
3404	s_entry = arg->serpath;
3405	s_entry->dls_name  = arg->strspace;
3406	s_entry->dls_flags = arg->flags;
3407
3408	strncpy(arg->strspace, dir, dirlen);
3409	arg->strspace[dirlen] = '\0';
3410
3411	arg->strspace += dirlen + 1;
3412	arg->serpath++;
3413    }
3414
3415    return (NULL);
3416}
3417
3418static int
3419do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3420{
3421    struct dl_serinfo _info;
3422    struct fill_search_info_args args;
3423
3424    args.request = RTLD_DI_SERINFOSIZE;
3425    args.serinfo = &_info;
3426
3427    _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3428    _info.dls_cnt  = 0;
3429
3430    path_enumerate(obj->rpath, fill_search_info, &args);
3431    path_enumerate(ld_library_path, fill_search_info, &args);
3432    path_enumerate(obj->runpath, fill_search_info, &args);
3433    path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3434    if (!obj->z_nodeflib)
3435      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3436
3437
3438    if (request == RTLD_DI_SERINFOSIZE) {
3439	info->dls_size = _info.dls_size;
3440	info->dls_cnt = _info.dls_cnt;
3441	return (0);
3442    }
3443
3444    if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3445	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3446	return (-1);
3447    }
3448
3449    args.request  = RTLD_DI_SERINFO;
3450    args.serinfo  = info;
3451    args.serpath  = &info->dls_serpath[0];
3452    args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3453
3454    args.flags = LA_SER_RUNPATH;
3455    if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3456	return (-1);
3457
3458    args.flags = LA_SER_LIBPATH;
3459    if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3460	return (-1);
3461
3462    args.flags = LA_SER_RUNPATH;
3463    if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3464	return (-1);
3465
3466    args.flags = LA_SER_CONFIG;
3467    if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3468      != NULL)
3469	return (-1);
3470
3471    args.flags = LA_SER_DEFAULT;
3472    if (!obj->z_nodeflib &&
3473      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3474	return (-1);
3475    return (0);
3476}
3477
3478static int
3479rtld_dirname(const char *path, char *bname)
3480{
3481    const char *endp;
3482
3483    /* Empty or NULL string gets treated as "." */
3484    if (path == NULL || *path == '\0') {
3485	bname[0] = '.';
3486	bname[1] = '\0';
3487	return (0);
3488    }
3489
3490    /* Strip trailing slashes */
3491    endp = path + strlen(path) - 1;
3492    while (endp > path && *endp == '/')
3493	endp--;
3494
3495    /* Find the start of the dir */
3496    while (endp > path && *endp != '/')
3497	endp--;
3498
3499    /* Either the dir is "/" or there are no slashes */
3500    if (endp == path) {
3501	bname[0] = *endp == '/' ? '/' : '.';
3502	bname[1] = '\0';
3503	return (0);
3504    } else {
3505	do {
3506	    endp--;
3507	} while (endp > path && *endp == '/');
3508    }
3509
3510    if (endp - path + 2 > PATH_MAX)
3511    {
3512	_rtld_error("Filename is too long: %s", path);
3513	return(-1);
3514    }
3515
3516    strncpy(bname, path, endp - path + 1);
3517    bname[endp - path + 1] = '\0';
3518    return (0);
3519}
3520
3521static int
3522rtld_dirname_abs(const char *path, char *base)
3523{
3524	char *last;
3525
3526	if (realpath(path, base) == NULL)
3527		return (-1);
3528	dbg("%s -> %s", path, base);
3529	last = strrchr(base, '/');
3530	if (last == NULL)
3531		return (-1);
3532	if (last != base)
3533		*last = '\0';
3534	return (0);
3535}
3536
3537static void
3538linkmap_add(Obj_Entry *obj)
3539{
3540    struct link_map *l = &obj->linkmap;
3541    struct link_map *prev;
3542
3543    obj->linkmap.l_name = obj->path;
3544    obj->linkmap.l_addr = obj->mapbase;
3545    obj->linkmap.l_ld = obj->dynamic;
3546#ifdef __mips__
3547    /* GDB needs load offset on MIPS to use the symbols */
3548    obj->linkmap.l_offs = obj->relocbase;
3549#endif
3550
3551    if (r_debug.r_map == NULL) {
3552	r_debug.r_map = l;
3553	return;
3554    }
3555
3556    /*
3557     * Scan to the end of the list, but not past the entry for the
3558     * dynamic linker, which we want to keep at the very end.
3559     */
3560    for (prev = r_debug.r_map;
3561      prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3562      prev = prev->l_next)
3563	;
3564
3565    /* Link in the new entry. */
3566    l->l_prev = prev;
3567    l->l_next = prev->l_next;
3568    if (l->l_next != NULL)
3569	l->l_next->l_prev = l;
3570    prev->l_next = l;
3571}
3572
3573static void
3574linkmap_delete(Obj_Entry *obj)
3575{
3576    struct link_map *l = &obj->linkmap;
3577
3578    if (l->l_prev == NULL) {
3579	if ((r_debug.r_map = l->l_next) != NULL)
3580	    l->l_next->l_prev = NULL;
3581	return;
3582    }
3583
3584    if ((l->l_prev->l_next = l->l_next) != NULL)
3585	l->l_next->l_prev = l->l_prev;
3586}
3587
3588/*
3589 * Function for the debugger to set a breakpoint on to gain control.
3590 *
3591 * The two parameters allow the debugger to easily find and determine
3592 * what the runtime loader is doing and to whom it is doing it.
3593 *
3594 * When the loadhook trap is hit (r_debug_state, set at program
3595 * initialization), the arguments can be found on the stack:
3596 *
3597 *  +8   struct link_map *m
3598 *  +4   struct r_debug  *rd
3599 *  +0   RetAddr
3600 */
3601void
3602r_debug_state(struct r_debug* rd, struct link_map *m)
3603{
3604    /*
3605     * The following is a hack to force the compiler to emit calls to
3606     * this function, even when optimizing.  If the function is empty,
3607     * the compiler is not obliged to emit any code for calls to it,
3608     * even when marked __noinline.  However, gdb depends on those
3609     * calls being made.
3610     */
3611    __compiler_membar();
3612}
3613
3614/*
3615 * A function called after init routines have completed. This can be used to
3616 * break before a program's entry routine is called, and can be used when
3617 * main is not available in the symbol table.
3618 */
3619void
3620_r_debug_postinit(struct link_map *m)
3621{
3622
3623	/* See r_debug_state(). */
3624	__compiler_membar();
3625}
3626
3627/*
3628 * Get address of the pointer variable in the main program.
3629 * Prefer non-weak symbol over the weak one.
3630 */
3631static const void **
3632get_program_var_addr(const char *name, RtldLockState *lockstate)
3633{
3634    SymLook req;
3635    DoneList donelist;
3636
3637    symlook_init(&req, name);
3638    req.lockstate = lockstate;
3639    donelist_init(&donelist);
3640    if (symlook_global(&req, &donelist) != 0)
3641	return (NULL);
3642    if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3643	return ((const void **)make_function_pointer(req.sym_out,
3644	  req.defobj_out));
3645    else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3646	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3647    else
3648	return ((const void **)(req.defobj_out->relocbase +
3649	  req.sym_out->st_value));
3650}
3651
3652/*
3653 * Set a pointer variable in the main program to the given value.  This
3654 * is used to set key variables such as "environ" before any of the
3655 * init functions are called.
3656 */
3657static void
3658set_program_var(const char *name, const void *value)
3659{
3660    const void **addr;
3661
3662    if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3663	dbg("\"%s\": *%p <-- %p", name, addr, value);
3664	*addr = value;
3665    }
3666}
3667
3668/*
3669 * Search the global objects, including dependencies and main object,
3670 * for the given symbol.
3671 */
3672static int
3673symlook_global(SymLook *req, DoneList *donelist)
3674{
3675    SymLook req1;
3676    const Objlist_Entry *elm;
3677    int res;
3678
3679    symlook_init_from_req(&req1, req);
3680
3681    /* Search all objects loaded at program start up. */
3682    if (req->defobj_out == NULL ||
3683      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3684	res = symlook_list(&req1, &list_main, donelist);
3685	if (res == 0 && (req->defobj_out == NULL ||
3686	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3687	    req->sym_out = req1.sym_out;
3688	    req->defobj_out = req1.defobj_out;
3689	    assert(req->defobj_out != NULL);
3690	}
3691    }
3692
3693    /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3694    STAILQ_FOREACH(elm, &list_global, link) {
3695	if (req->defobj_out != NULL &&
3696	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3697	    break;
3698	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3699	if (res == 0 && (req->defobj_out == NULL ||
3700	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3701	    req->sym_out = req1.sym_out;
3702	    req->defobj_out = req1.defobj_out;
3703	    assert(req->defobj_out != NULL);
3704	}
3705    }
3706
3707    return (req->sym_out != NULL ? 0 : ESRCH);
3708}
3709
3710/*
3711 * Given a symbol name in a referencing object, find the corresponding
3712 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3713 * no definition was found.  Returns a pointer to the Obj_Entry of the
3714 * defining object via the reference parameter DEFOBJ_OUT.
3715 */
3716static int
3717symlook_default(SymLook *req, const Obj_Entry *refobj)
3718{
3719    DoneList donelist;
3720    const Objlist_Entry *elm;
3721    SymLook req1;
3722    int res;
3723
3724    donelist_init(&donelist);
3725    symlook_init_from_req(&req1, req);
3726
3727    /* Look first in the referencing object if linked symbolically. */
3728    if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3729	res = symlook_obj(&req1, refobj);
3730	if (res == 0) {
3731	    req->sym_out = req1.sym_out;
3732	    req->defobj_out = req1.defobj_out;
3733	    assert(req->defobj_out != NULL);
3734	}
3735    }
3736
3737    symlook_global(req, &donelist);
3738
3739    /* Search all dlopened DAGs containing the referencing object. */
3740    STAILQ_FOREACH(elm, &refobj->dldags, link) {
3741	if (req->sym_out != NULL &&
3742	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3743	    break;
3744	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3745	if (res == 0 && (req->sym_out == NULL ||
3746	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3747	    req->sym_out = req1.sym_out;
3748	    req->defobj_out = req1.defobj_out;
3749	    assert(req->defobj_out != NULL);
3750	}
3751    }
3752
3753    /*
3754     * Search the dynamic linker itself, and possibly resolve the
3755     * symbol from there.  This is how the application links to
3756     * dynamic linker services such as dlopen.
3757     */
3758    if (req->sym_out == NULL ||
3759      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3760	res = symlook_obj(&req1, &obj_rtld);
3761	if (res == 0) {
3762	    req->sym_out = req1.sym_out;
3763	    req->defobj_out = req1.defobj_out;
3764	    assert(req->defobj_out != NULL);
3765	}
3766    }
3767
3768    return (req->sym_out != NULL ? 0 : ESRCH);
3769}
3770
3771static int
3772symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3773{
3774    const Elf_Sym *def;
3775    const Obj_Entry *defobj;
3776    const Objlist_Entry *elm;
3777    SymLook req1;
3778    int res;
3779
3780    def = NULL;
3781    defobj = NULL;
3782    STAILQ_FOREACH(elm, objlist, link) {
3783	if (donelist_check(dlp, elm->obj))
3784	    continue;
3785	symlook_init_from_req(&req1, req);
3786	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3787	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3788		def = req1.sym_out;
3789		defobj = req1.defobj_out;
3790		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3791		    break;
3792	    }
3793	}
3794    }
3795    if (def != NULL) {
3796	req->sym_out = def;
3797	req->defobj_out = defobj;
3798	return (0);
3799    }
3800    return (ESRCH);
3801}
3802
3803/*
3804 * Search the chain of DAGS cointed to by the given Needed_Entry
3805 * for a symbol of the given name.  Each DAG is scanned completely
3806 * before advancing to the next one.  Returns a pointer to the symbol,
3807 * or NULL if no definition was found.
3808 */
3809static int
3810symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3811{
3812    const Elf_Sym *def;
3813    const Needed_Entry *n;
3814    const Obj_Entry *defobj;
3815    SymLook req1;
3816    int res;
3817
3818    def = NULL;
3819    defobj = NULL;
3820    symlook_init_from_req(&req1, req);
3821    for (n = needed; n != NULL; n = n->next) {
3822	if (n->obj == NULL ||
3823	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3824	    continue;
3825	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3826	    def = req1.sym_out;
3827	    defobj = req1.defobj_out;
3828	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3829		break;
3830	}
3831    }
3832    if (def != NULL) {
3833	req->sym_out = def;
3834	req->defobj_out = defobj;
3835	return (0);
3836    }
3837    return (ESRCH);
3838}
3839
3840/*
3841 * Search the symbol table of a single shared object for a symbol of
3842 * the given name and version, if requested.  Returns a pointer to the
3843 * symbol, or NULL if no definition was found.  If the object is
3844 * filter, return filtered symbol from filtee.
3845 *
3846 * The symbol's hash value is passed in for efficiency reasons; that
3847 * eliminates many recomputations of the hash value.
3848 */
3849int
3850symlook_obj(SymLook *req, const Obj_Entry *obj)
3851{
3852    DoneList donelist;
3853    SymLook req1;
3854    int flags, res, mres;
3855
3856    /*
3857     * If there is at least one valid hash at this point, we prefer to
3858     * use the faster GNU version if available.
3859     */
3860    if (obj->valid_hash_gnu)
3861	mres = symlook_obj1_gnu(req, obj);
3862    else if (obj->valid_hash_sysv)
3863	mres = symlook_obj1_sysv(req, obj);
3864    else
3865	return (EINVAL);
3866
3867    if (mres == 0) {
3868	if (obj->needed_filtees != NULL) {
3869	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3870	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3871	    donelist_init(&donelist);
3872	    symlook_init_from_req(&req1, req);
3873	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3874	    if (res == 0) {
3875		req->sym_out = req1.sym_out;
3876		req->defobj_out = req1.defobj_out;
3877	    }
3878	    return (res);
3879	}
3880	if (obj->needed_aux_filtees != NULL) {
3881	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3882	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3883	    donelist_init(&donelist);
3884	    symlook_init_from_req(&req1, req);
3885	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3886	    if (res == 0) {
3887		req->sym_out = req1.sym_out;
3888		req->defobj_out = req1.defobj_out;
3889		return (res);
3890	    }
3891	}
3892    }
3893    return (mres);
3894}
3895
3896/* Symbol match routine common to both hash functions */
3897static bool
3898matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3899    const unsigned long symnum)
3900{
3901	Elf_Versym verndx;
3902	const Elf_Sym *symp;
3903	const char *strp;
3904
3905	symp = obj->symtab + symnum;
3906	strp = obj->strtab + symp->st_name;
3907
3908	switch (ELF_ST_TYPE(symp->st_info)) {
3909	case STT_FUNC:
3910	case STT_NOTYPE:
3911	case STT_OBJECT:
3912	case STT_COMMON:
3913	case STT_GNU_IFUNC:
3914		if (symp->st_value == 0)
3915			return (false);
3916		/* fallthrough */
3917	case STT_TLS:
3918		if (symp->st_shndx != SHN_UNDEF)
3919			break;
3920#ifndef __mips__
3921		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3922		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3923			break;
3924		/* fallthrough */
3925#endif
3926	default:
3927		return (false);
3928	}
3929	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3930		return (false);
3931
3932	if (req->ventry == NULL) {
3933		if (obj->versyms != NULL) {
3934			verndx = VER_NDX(obj->versyms[symnum]);
3935			if (verndx > obj->vernum) {
3936				_rtld_error(
3937				    "%s: symbol %s references wrong version %d",
3938				    obj->path, obj->strtab + symnum, verndx);
3939				return (false);
3940			}
3941			/*
3942			 * If we are not called from dlsym (i.e. this
3943			 * is a normal relocation from unversioned
3944			 * binary), accept the symbol immediately if
3945			 * it happens to have first version after this
3946			 * shared object became versioned.  Otherwise,
3947			 * if symbol is versioned and not hidden,
3948			 * remember it. If it is the only symbol with
3949			 * this name exported by the shared object, it
3950			 * will be returned as a match by the calling
3951			 * function. If symbol is global (verndx < 2)
3952			 * accept it unconditionally.
3953			 */
3954			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3955			    verndx == VER_NDX_GIVEN) {
3956				result->sym_out = symp;
3957				return (true);
3958			}
3959			else if (verndx >= VER_NDX_GIVEN) {
3960				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
3961				    == 0) {
3962					if (result->vsymp == NULL)
3963						result->vsymp = symp;
3964					result->vcount++;
3965				}
3966				return (false);
3967			}
3968		}
3969		result->sym_out = symp;
3970		return (true);
3971	}
3972	if (obj->versyms == NULL) {
3973		if (object_match_name(obj, req->ventry->name)) {
3974			_rtld_error("%s: object %s should provide version %s "
3975			    "for symbol %s", obj_rtld.path, obj->path,
3976			    req->ventry->name, obj->strtab + symnum);
3977			return (false);
3978		}
3979	} else {
3980		verndx = VER_NDX(obj->versyms[symnum]);
3981		if (verndx > obj->vernum) {
3982			_rtld_error("%s: symbol %s references wrong version %d",
3983			    obj->path, obj->strtab + symnum, verndx);
3984			return (false);
3985		}
3986		if (obj->vertab[verndx].hash != req->ventry->hash ||
3987		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3988			/*
3989			 * Version does not match. Look if this is a
3990			 * global symbol and if it is not hidden. If
3991			 * global symbol (verndx < 2) is available,
3992			 * use it. Do not return symbol if we are
3993			 * called by dlvsym, because dlvsym looks for
3994			 * a specific version and default one is not
3995			 * what dlvsym wants.
3996			 */
3997			if ((req->flags & SYMLOOK_DLSYM) ||
3998			    (verndx >= VER_NDX_GIVEN) ||
3999			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4000				return (false);
4001		}
4002	}
4003	result->sym_out = symp;
4004	return (true);
4005}
4006
4007/*
4008 * Search for symbol using SysV hash function.
4009 * obj->buckets is known not to be NULL at this point; the test for this was
4010 * performed with the obj->valid_hash_sysv assignment.
4011 */
4012static int
4013symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4014{
4015	unsigned long symnum;
4016	Sym_Match_Result matchres;
4017
4018	matchres.sym_out = NULL;
4019	matchres.vsymp = NULL;
4020	matchres.vcount = 0;
4021
4022	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4023	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4024		if (symnum >= obj->nchains)
4025			return (ESRCH);	/* Bad object */
4026
4027		if (matched_symbol(req, obj, &matchres, symnum)) {
4028			req->sym_out = matchres.sym_out;
4029			req->defobj_out = obj;
4030			return (0);
4031		}
4032	}
4033	if (matchres.vcount == 1) {
4034		req->sym_out = matchres.vsymp;
4035		req->defobj_out = obj;
4036		return (0);
4037	}
4038	return (ESRCH);
4039}
4040
4041/* Search for symbol using GNU hash function */
4042static int
4043symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4044{
4045	Elf_Addr bloom_word;
4046	const Elf32_Word *hashval;
4047	Elf32_Word bucket;
4048	Sym_Match_Result matchres;
4049	unsigned int h1, h2;
4050	unsigned long symnum;
4051
4052	matchres.sym_out = NULL;
4053	matchres.vsymp = NULL;
4054	matchres.vcount = 0;
4055
4056	/* Pick right bitmask word from Bloom filter array */
4057	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4058	    obj->maskwords_bm_gnu];
4059
4060	/* Calculate modulus word size of gnu hash and its derivative */
4061	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4062	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4063
4064	/* Filter out the "definitely not in set" queries */
4065	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4066		return (ESRCH);
4067
4068	/* Locate hash chain and corresponding value element*/
4069	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4070	if (bucket == 0)
4071		return (ESRCH);
4072	hashval = &obj->chain_zero_gnu[bucket];
4073	do {
4074		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4075			symnum = hashval - obj->chain_zero_gnu;
4076			if (matched_symbol(req, obj, &matchres, symnum)) {
4077				req->sym_out = matchres.sym_out;
4078				req->defobj_out = obj;
4079				return (0);
4080			}
4081		}
4082	} while ((*hashval++ & 1) == 0);
4083	if (matchres.vcount == 1) {
4084		req->sym_out = matchres.vsymp;
4085		req->defobj_out = obj;
4086		return (0);
4087	}
4088	return (ESRCH);
4089}
4090
4091static void
4092trace_loaded_objects(Obj_Entry *obj)
4093{
4094    char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4095    int		c;
4096
4097    if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4098	main_local = "";
4099
4100    if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4101	fmt1 = "\t%o => %p (%x)\n";
4102
4103    if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4104	fmt2 = "\t%o (%x)\n";
4105
4106    list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
4107
4108    for (; obj; obj = obj->next) {
4109	Needed_Entry		*needed;
4110	char			*name, *path;
4111	bool			is_lib;
4112
4113	if (list_containers && obj->needed != NULL)
4114	    rtld_printf("%s:\n", obj->path);
4115	for (needed = obj->needed; needed; needed = needed->next) {
4116	    if (needed->obj != NULL) {
4117		if (needed->obj->traced && !list_containers)
4118		    continue;
4119		needed->obj->traced = true;
4120		path = needed->obj->path;
4121	    } else
4122		path = "not found";
4123
4124	    name = (char *)obj->strtab + needed->name;
4125	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4126
4127	    fmt = is_lib ? fmt1 : fmt2;
4128	    while ((c = *fmt++) != '\0') {
4129		switch (c) {
4130		default:
4131		    rtld_putchar(c);
4132		    continue;
4133		case '\\':
4134		    switch (c = *fmt) {
4135		    case '\0':
4136			continue;
4137		    case 'n':
4138			rtld_putchar('\n');
4139			break;
4140		    case 't':
4141			rtld_putchar('\t');
4142			break;
4143		    }
4144		    break;
4145		case '%':
4146		    switch (c = *fmt) {
4147		    case '\0':
4148			continue;
4149		    case '%':
4150		    default:
4151			rtld_putchar(c);
4152			break;
4153		    case 'A':
4154			rtld_putstr(main_local);
4155			break;
4156		    case 'a':
4157			rtld_putstr(obj_main->path);
4158			break;
4159		    case 'o':
4160			rtld_putstr(name);
4161			break;
4162#if 0
4163		    case 'm':
4164			rtld_printf("%d", sodp->sod_major);
4165			break;
4166		    case 'n':
4167			rtld_printf("%d", sodp->sod_minor);
4168			break;
4169#endif
4170		    case 'p':
4171			rtld_putstr(path);
4172			break;
4173		    case 'x':
4174			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4175			  0);
4176			break;
4177		    }
4178		    break;
4179		}
4180		++fmt;
4181	    }
4182	}
4183    }
4184}
4185
4186/*
4187 * Unload a dlopened object and its dependencies from memory and from
4188 * our data structures.  It is assumed that the DAG rooted in the
4189 * object has already been unreferenced, and that the object has a
4190 * reference count of 0.
4191 */
4192static void
4193unload_object(Obj_Entry *root)
4194{
4195    Obj_Entry *obj;
4196    Obj_Entry **linkp;
4197
4198    assert(root->refcount == 0);
4199
4200    /*
4201     * Pass over the DAG removing unreferenced objects from
4202     * appropriate lists.
4203     */
4204    unlink_object(root);
4205
4206    /* Unmap all objects that are no longer referenced. */
4207    linkp = &obj_list->next;
4208    while ((obj = *linkp) != NULL) {
4209	if (obj->refcount == 0) {
4210	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4211		obj->path);
4212	    dbg("unloading \"%s\"", obj->path);
4213	    unload_filtees(root);
4214	    munmap(obj->mapbase, obj->mapsize);
4215	    linkmap_delete(obj);
4216	    *linkp = obj->next;
4217	    obj_count--;
4218	    obj_free(obj);
4219	} else
4220	    linkp = &obj->next;
4221    }
4222    obj_tail = linkp;
4223}
4224
4225static void
4226unlink_object(Obj_Entry *root)
4227{
4228    Objlist_Entry *elm;
4229
4230    if (root->refcount == 0) {
4231	/* Remove the object from the RTLD_GLOBAL list. */
4232	objlist_remove(&list_global, root);
4233
4234    	/* Remove the object from all objects' DAG lists. */
4235    	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4236	    objlist_remove(&elm->obj->dldags, root);
4237	    if (elm->obj != root)
4238		unlink_object(elm->obj);
4239	}
4240    }
4241}
4242
4243static void
4244ref_dag(Obj_Entry *root)
4245{
4246    Objlist_Entry *elm;
4247
4248    assert(root->dag_inited);
4249    STAILQ_FOREACH(elm, &root->dagmembers, link)
4250	elm->obj->refcount++;
4251}
4252
4253static void
4254unref_dag(Obj_Entry *root)
4255{
4256    Objlist_Entry *elm;
4257
4258    assert(root->dag_inited);
4259    STAILQ_FOREACH(elm, &root->dagmembers, link)
4260	elm->obj->refcount--;
4261}
4262
4263/*
4264 * Common code for MD __tls_get_addr().
4265 */
4266static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4267static void *
4268tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4269{
4270    Elf_Addr *newdtv, *dtv;
4271    RtldLockState lockstate;
4272    int to_copy;
4273
4274    dtv = *dtvp;
4275    /* Check dtv generation in case new modules have arrived */
4276    if (dtv[0] != tls_dtv_generation) {
4277	wlock_acquire(rtld_bind_lock, &lockstate);
4278	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4279	to_copy = dtv[1];
4280	if (to_copy > tls_max_index)
4281	    to_copy = tls_max_index;
4282	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4283	newdtv[0] = tls_dtv_generation;
4284	newdtv[1] = tls_max_index;
4285	free(dtv);
4286	lock_release(rtld_bind_lock, &lockstate);
4287	dtv = *dtvp = newdtv;
4288    }
4289
4290    /* Dynamically allocate module TLS if necessary */
4291    if (dtv[index + 1] == 0) {
4292	/* Signal safe, wlock will block out signals. */
4293	wlock_acquire(rtld_bind_lock, &lockstate);
4294	if (!dtv[index + 1])
4295	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4296	lock_release(rtld_bind_lock, &lockstate);
4297    }
4298    return ((void *)(dtv[index + 1] + offset));
4299}
4300
4301void *
4302tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4303{
4304	Elf_Addr *dtv;
4305
4306	dtv = *dtvp;
4307	/* Check dtv generation in case new modules have arrived */
4308	if (__predict_true(dtv[0] == tls_dtv_generation &&
4309	    dtv[index + 1] != 0))
4310		return ((void *)(dtv[index + 1] + offset));
4311	return (tls_get_addr_slow(dtvp, index, offset));
4312}
4313
4314#if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
4315
4316/*
4317 * Allocate Static TLS using the Variant I method.
4318 */
4319void *
4320allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4321{
4322    Obj_Entry *obj;
4323    char *tcb;
4324    Elf_Addr **tls;
4325    Elf_Addr *dtv;
4326    Elf_Addr addr;
4327    int i;
4328
4329    if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4330	return (oldtcb);
4331
4332    assert(tcbsize >= TLS_TCB_SIZE);
4333    tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4334    tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4335
4336    if (oldtcb != NULL) {
4337	memcpy(tls, oldtcb, tls_static_space);
4338	free(oldtcb);
4339
4340	/* Adjust the DTV. */
4341	dtv = tls[0];
4342	for (i = 0; i < dtv[1]; i++) {
4343	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4344		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4345		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4346	    }
4347	}
4348    } else {
4349	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4350	tls[0] = dtv;
4351	dtv[0] = tls_dtv_generation;
4352	dtv[1] = tls_max_index;
4353
4354	for (obj = objs; obj; obj = obj->next) {
4355	    if (obj->tlsoffset > 0) {
4356		addr = (Elf_Addr)tls + obj->tlsoffset;
4357		if (obj->tlsinitsize > 0)
4358		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4359		if (obj->tlssize > obj->tlsinitsize)
4360		    memset((void*) (addr + obj->tlsinitsize), 0,
4361			   obj->tlssize - obj->tlsinitsize);
4362		dtv[obj->tlsindex + 1] = addr;
4363	    }
4364	}
4365    }
4366
4367    return (tcb);
4368}
4369
4370void
4371free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4372{
4373    Elf_Addr *dtv;
4374    Elf_Addr tlsstart, tlsend;
4375    int dtvsize, i;
4376
4377    assert(tcbsize >= TLS_TCB_SIZE);
4378
4379    tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4380    tlsend = tlsstart + tls_static_space;
4381
4382    dtv = *(Elf_Addr **)tlsstart;
4383    dtvsize = dtv[1];
4384    for (i = 0; i < dtvsize; i++) {
4385	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4386	    free((void*)dtv[i+2]);
4387	}
4388    }
4389    free(dtv);
4390    free(tcb);
4391}
4392
4393#endif
4394
4395#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4396
4397/*
4398 * Allocate Static TLS using the Variant II method.
4399 */
4400void *
4401allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4402{
4403    Obj_Entry *obj;
4404    size_t size, ralign;
4405    char *tls;
4406    Elf_Addr *dtv, *olddtv;
4407    Elf_Addr segbase, oldsegbase, addr;
4408    int i;
4409
4410    ralign = tcbalign;
4411    if (tls_static_max_align > ralign)
4412	    ralign = tls_static_max_align;
4413    size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4414
4415    assert(tcbsize >= 2*sizeof(Elf_Addr));
4416    tls = malloc_aligned(size, ralign);
4417    dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4418
4419    segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4420    ((Elf_Addr*)segbase)[0] = segbase;
4421    ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4422
4423    dtv[0] = tls_dtv_generation;
4424    dtv[1] = tls_max_index;
4425
4426    if (oldtls) {
4427	/*
4428	 * Copy the static TLS block over whole.
4429	 */
4430	oldsegbase = (Elf_Addr) oldtls;
4431	memcpy((void *)(segbase - tls_static_space),
4432	       (const void *)(oldsegbase - tls_static_space),
4433	       tls_static_space);
4434
4435	/*
4436	 * If any dynamic TLS blocks have been created tls_get_addr(),
4437	 * move them over.
4438	 */
4439	olddtv = ((Elf_Addr**)oldsegbase)[1];
4440	for (i = 0; i < olddtv[1]; i++) {
4441	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4442		dtv[i+2] = olddtv[i+2];
4443		olddtv[i+2] = 0;
4444	    }
4445	}
4446
4447	/*
4448	 * We assume that this block was the one we created with
4449	 * allocate_initial_tls().
4450	 */
4451	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4452    } else {
4453	for (obj = objs; obj; obj = obj->next) {
4454	    if (obj->tlsoffset) {
4455		addr = segbase - obj->tlsoffset;
4456		memset((void*) (addr + obj->tlsinitsize),
4457		       0, obj->tlssize - obj->tlsinitsize);
4458		if (obj->tlsinit)
4459		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4460		dtv[obj->tlsindex + 1] = addr;
4461	    }
4462	}
4463    }
4464
4465    return (void*) segbase;
4466}
4467
4468void
4469free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4470{
4471    Elf_Addr* dtv;
4472    size_t size, ralign;
4473    int dtvsize, i;
4474    Elf_Addr tlsstart, tlsend;
4475
4476    /*
4477     * Figure out the size of the initial TLS block so that we can
4478     * find stuff which ___tls_get_addr() allocated dynamically.
4479     */
4480    ralign = tcbalign;
4481    if (tls_static_max_align > ralign)
4482	    ralign = tls_static_max_align;
4483    size = round(tls_static_space, ralign);
4484
4485    dtv = ((Elf_Addr**)tls)[1];
4486    dtvsize = dtv[1];
4487    tlsend = (Elf_Addr) tls;
4488    tlsstart = tlsend - size;
4489    for (i = 0; i < dtvsize; i++) {
4490	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4491		free_aligned((void *)dtv[i + 2]);
4492	}
4493    }
4494
4495    free_aligned((void *)tlsstart);
4496    free((void*) dtv);
4497}
4498
4499#endif
4500
4501/*
4502 * Allocate TLS block for module with given index.
4503 */
4504void *
4505allocate_module_tls(int index)
4506{
4507    Obj_Entry* obj;
4508    char* p;
4509
4510    for (obj = obj_list; obj; obj = obj->next) {
4511	if (obj->tlsindex == index)
4512	    break;
4513    }
4514    if (!obj) {
4515	_rtld_error("Can't find module with TLS index %d", index);
4516	rtld_die();
4517    }
4518
4519    p = malloc_aligned(obj->tlssize, obj->tlsalign);
4520    memcpy(p, obj->tlsinit, obj->tlsinitsize);
4521    memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4522
4523    return p;
4524}
4525
4526bool
4527allocate_tls_offset(Obj_Entry *obj)
4528{
4529    size_t off;
4530
4531    if (obj->tls_done)
4532	return true;
4533
4534    if (obj->tlssize == 0) {
4535	obj->tls_done = true;
4536	return true;
4537    }
4538
4539    if (obj->tlsindex == 1)
4540	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4541    else
4542	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4543				   obj->tlssize, obj->tlsalign);
4544
4545    /*
4546     * If we have already fixed the size of the static TLS block, we
4547     * must stay within that size. When allocating the static TLS, we
4548     * leave a small amount of space spare to be used for dynamically
4549     * loading modules which use static TLS.
4550     */
4551    if (tls_static_space != 0) {
4552	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4553	    return false;
4554    } else if (obj->tlsalign > tls_static_max_align) {
4555	    tls_static_max_align = obj->tlsalign;
4556    }
4557
4558    tls_last_offset = obj->tlsoffset = off;
4559    tls_last_size = obj->tlssize;
4560    obj->tls_done = true;
4561
4562    return true;
4563}
4564
4565void
4566free_tls_offset(Obj_Entry *obj)
4567{
4568
4569    /*
4570     * If we were the last thing to allocate out of the static TLS
4571     * block, we give our space back to the 'allocator'. This is a
4572     * simplistic workaround to allow libGL.so.1 to be loaded and
4573     * unloaded multiple times.
4574     */
4575    if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4576	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4577	tls_last_offset -= obj->tlssize;
4578	tls_last_size = 0;
4579    }
4580}
4581
4582void *
4583_rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4584{
4585    void *ret;
4586    RtldLockState lockstate;
4587
4588    wlock_acquire(rtld_bind_lock, &lockstate);
4589    ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4590    lock_release(rtld_bind_lock, &lockstate);
4591    return (ret);
4592}
4593
4594void
4595_rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4596{
4597    RtldLockState lockstate;
4598
4599    wlock_acquire(rtld_bind_lock, &lockstate);
4600    free_tls(tcb, tcbsize, tcbalign);
4601    lock_release(rtld_bind_lock, &lockstate);
4602}
4603
4604static void
4605object_add_name(Obj_Entry *obj, const char *name)
4606{
4607    Name_Entry *entry;
4608    size_t len;
4609
4610    len = strlen(name);
4611    entry = malloc(sizeof(Name_Entry) + len);
4612
4613    if (entry != NULL) {
4614	strcpy(entry->name, name);
4615	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4616    }
4617}
4618
4619static int
4620object_match_name(const Obj_Entry *obj, const char *name)
4621{
4622    Name_Entry *entry;
4623
4624    STAILQ_FOREACH(entry, &obj->names, link) {
4625	if (strcmp(name, entry->name) == 0)
4626	    return (1);
4627    }
4628    return (0);
4629}
4630
4631static Obj_Entry *
4632locate_dependency(const Obj_Entry *obj, const char *name)
4633{
4634    const Objlist_Entry *entry;
4635    const Needed_Entry *needed;
4636
4637    STAILQ_FOREACH(entry, &list_main, link) {
4638	if (object_match_name(entry->obj, name))
4639	    return entry->obj;
4640    }
4641
4642    for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4643	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4644	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4645	    /*
4646	     * If there is DT_NEEDED for the name we are looking for,
4647	     * we are all set.  Note that object might not be found if
4648	     * dependency was not loaded yet, so the function can
4649	     * return NULL here.  This is expected and handled
4650	     * properly by the caller.
4651	     */
4652	    return (needed->obj);
4653	}
4654    }
4655    _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4656	obj->path, name);
4657    rtld_die();
4658}
4659
4660static int
4661check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4662    const Elf_Vernaux *vna)
4663{
4664    const Elf_Verdef *vd;
4665    const char *vername;
4666
4667    vername = refobj->strtab + vna->vna_name;
4668    vd = depobj->verdef;
4669    if (vd == NULL) {
4670	_rtld_error("%s: version %s required by %s not defined",
4671	    depobj->path, vername, refobj->path);
4672	return (-1);
4673    }
4674    for (;;) {
4675	if (vd->vd_version != VER_DEF_CURRENT) {
4676	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4677		depobj->path, vd->vd_version);
4678	    return (-1);
4679	}
4680	if (vna->vna_hash == vd->vd_hash) {
4681	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4682		((char *)vd + vd->vd_aux);
4683	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4684		return (0);
4685	}
4686	if (vd->vd_next == 0)
4687	    break;
4688	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4689    }
4690    if (vna->vna_flags & VER_FLG_WEAK)
4691	return (0);
4692    _rtld_error("%s: version %s required by %s not found",
4693	depobj->path, vername, refobj->path);
4694    return (-1);
4695}
4696
4697static int
4698rtld_verify_object_versions(Obj_Entry *obj)
4699{
4700    const Elf_Verneed *vn;
4701    const Elf_Verdef  *vd;
4702    const Elf_Verdaux *vda;
4703    const Elf_Vernaux *vna;
4704    const Obj_Entry *depobj;
4705    int maxvernum, vernum;
4706
4707    if (obj->ver_checked)
4708	return (0);
4709    obj->ver_checked = true;
4710
4711    maxvernum = 0;
4712    /*
4713     * Walk over defined and required version records and figure out
4714     * max index used by any of them. Do very basic sanity checking
4715     * while there.
4716     */
4717    vn = obj->verneed;
4718    while (vn != NULL) {
4719	if (vn->vn_version != VER_NEED_CURRENT) {
4720	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4721		obj->path, vn->vn_version);
4722	    return (-1);
4723	}
4724	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4725	for (;;) {
4726	    vernum = VER_NEED_IDX(vna->vna_other);
4727	    if (vernum > maxvernum)
4728		maxvernum = vernum;
4729	    if (vna->vna_next == 0)
4730		 break;
4731	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4732	}
4733	if (vn->vn_next == 0)
4734	    break;
4735	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4736    }
4737
4738    vd = obj->verdef;
4739    while (vd != NULL) {
4740	if (vd->vd_version != VER_DEF_CURRENT) {
4741	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4742		obj->path, vd->vd_version);
4743	    return (-1);
4744	}
4745	vernum = VER_DEF_IDX(vd->vd_ndx);
4746	if (vernum > maxvernum)
4747		maxvernum = vernum;
4748	if (vd->vd_next == 0)
4749	    break;
4750	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4751    }
4752
4753    if (maxvernum == 0)
4754	return (0);
4755
4756    /*
4757     * Store version information in array indexable by version index.
4758     * Verify that object version requirements are satisfied along the
4759     * way.
4760     */
4761    obj->vernum = maxvernum + 1;
4762    obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4763
4764    vd = obj->verdef;
4765    while (vd != NULL) {
4766	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4767	    vernum = VER_DEF_IDX(vd->vd_ndx);
4768	    assert(vernum <= maxvernum);
4769	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4770	    obj->vertab[vernum].hash = vd->vd_hash;
4771	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4772	    obj->vertab[vernum].file = NULL;
4773	    obj->vertab[vernum].flags = 0;
4774	}
4775	if (vd->vd_next == 0)
4776	    break;
4777	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4778    }
4779
4780    vn = obj->verneed;
4781    while (vn != NULL) {
4782	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4783	if (depobj == NULL)
4784	    return (-1);
4785	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4786	for (;;) {
4787	    if (check_object_provided_version(obj, depobj, vna))
4788		return (-1);
4789	    vernum = VER_NEED_IDX(vna->vna_other);
4790	    assert(vernum <= maxvernum);
4791	    obj->vertab[vernum].hash = vna->vna_hash;
4792	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4793	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4794	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4795		VER_INFO_HIDDEN : 0;
4796	    if (vna->vna_next == 0)
4797		 break;
4798	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4799	}
4800	if (vn->vn_next == 0)
4801	    break;
4802	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4803    }
4804    return 0;
4805}
4806
4807static int
4808rtld_verify_versions(const Objlist *objlist)
4809{
4810    Objlist_Entry *entry;
4811    int rc;
4812
4813    rc = 0;
4814    STAILQ_FOREACH(entry, objlist, link) {
4815	/*
4816	 * Skip dummy objects or objects that have their version requirements
4817	 * already checked.
4818	 */
4819	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4820	    continue;
4821	if (rtld_verify_object_versions(entry->obj) == -1) {
4822	    rc = -1;
4823	    if (ld_tracing == NULL)
4824		break;
4825	}
4826    }
4827    if (rc == 0 || ld_tracing != NULL)
4828    	rc = rtld_verify_object_versions(&obj_rtld);
4829    return rc;
4830}
4831
4832const Ver_Entry *
4833fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4834{
4835    Elf_Versym vernum;
4836
4837    if (obj->vertab) {
4838	vernum = VER_NDX(obj->versyms[symnum]);
4839	if (vernum >= obj->vernum) {
4840	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4841		obj->path, obj->strtab + symnum, vernum);
4842	} else if (obj->vertab[vernum].hash != 0) {
4843	    return &obj->vertab[vernum];
4844	}
4845    }
4846    return NULL;
4847}
4848
4849int
4850_rtld_get_stack_prot(void)
4851{
4852
4853	return (stack_prot);
4854}
4855
4856int
4857_rtld_is_dlopened(void *arg)
4858{
4859	Obj_Entry *obj;
4860	RtldLockState lockstate;
4861	int res;
4862
4863	rlock_acquire(rtld_bind_lock, &lockstate);
4864	obj = dlcheck(arg);
4865	if (obj == NULL)
4866		obj = obj_from_addr(arg);
4867	if (obj == NULL) {
4868		_rtld_error("No shared object contains address");
4869		lock_release(rtld_bind_lock, &lockstate);
4870		return (-1);
4871	}
4872	res = obj->dlopened ? 1 : 0;
4873	lock_release(rtld_bind_lock, &lockstate);
4874	return (res);
4875}
4876
4877static void
4878map_stacks_exec(RtldLockState *lockstate)
4879{
4880	void (*thr_map_stacks_exec)(void);
4881
4882	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4883		return;
4884	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4885	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4886	if (thr_map_stacks_exec != NULL) {
4887		stack_prot |= PROT_EXEC;
4888		thr_map_stacks_exec();
4889	}
4890}
4891
4892void
4893symlook_init(SymLook *dst, const char *name)
4894{
4895
4896	bzero(dst, sizeof(*dst));
4897	dst->name = name;
4898	dst->hash = elf_hash(name);
4899	dst->hash_gnu = gnu_hash(name);
4900}
4901
4902static void
4903symlook_init_from_req(SymLook *dst, const SymLook *src)
4904{
4905
4906	dst->name = src->name;
4907	dst->hash = src->hash;
4908	dst->hash_gnu = src->hash_gnu;
4909	dst->ventry = src->ventry;
4910	dst->flags = src->flags;
4911	dst->defobj_out = NULL;
4912	dst->sym_out = NULL;
4913	dst->lockstate = src->lockstate;
4914}
4915
4916/*
4917 * Overrides for libc_pic-provided functions.
4918 */
4919
4920int
4921__getosreldate(void)
4922{
4923	size_t len;
4924	int oid[2];
4925	int error, osrel;
4926
4927	if (osreldate != 0)
4928		return (osreldate);
4929
4930	oid[0] = CTL_KERN;
4931	oid[1] = KERN_OSRELDATE;
4932	osrel = 0;
4933	len = sizeof(osrel);
4934	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4935	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4936		osreldate = osrel;
4937	return (osreldate);
4938}
4939
4940void
4941exit(int status)
4942{
4943
4944	_exit(status);
4945}
4946
4947void (*__cleanup)(void);
4948int __isthreaded = 0;
4949int _thread_autoinit_dummy_decl = 1;
4950
4951/*
4952 * No unresolved symbols for rtld.
4953 */
4954void
4955__pthread_cxa_finalize(struct dl_phdr_info *a)
4956{
4957}
4958
4959void
4960__stack_chk_fail(void)
4961{
4962
4963	_rtld_error("stack overflow detected; terminated");
4964	rtld_die();
4965}
4966__weak_reference(__stack_chk_fail, __stack_chk_fail_local);
4967
4968void
4969__chk_fail(void)
4970{
4971
4972	_rtld_error("buffer overflow detected; terminated");
4973	rtld_die();
4974}
4975
4976const char *
4977rtld_strerror(int errnum)
4978{
4979
4980	if (errnum < 0 || errnum >= sys_nerr)
4981		return ("Unknown error");
4982	return (sys_errlist[errnum]);
4983}
4984