rtld.c revision 281453
1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5 * Copyright 2012 John Marino <draco@marino.st>.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * $FreeBSD: stable/10/libexec/rtld-elf/rtld.c 281453 2015-04-12 06:45:40Z kib $
29 */
30
31/*
32 * Dynamic linker for ELF.
33 *
34 * John Polstra <jdp@polstra.com>.
35 */
36
37#ifndef __GNUC__
38#error "GCC is needed to compile this file"
39#endif
40
41#include <sys/param.h>
42#include <sys/mount.h>
43#include <sys/mman.h>
44#include <sys/stat.h>
45#include <sys/sysctl.h>
46#include <sys/uio.h>
47#include <sys/utsname.h>
48#include <sys/ktrace.h>
49
50#include <dlfcn.h>
51#include <err.h>
52#include <errno.h>
53#include <fcntl.h>
54#include <stdarg.h>
55#include <stdio.h>
56#include <stdlib.h>
57#include <string.h>
58#include <unistd.h>
59
60#include "debug.h"
61#include "rtld.h"
62#include "libmap.h"
63#include "rtld_tls.h"
64#include "rtld_printf.h"
65#include "notes.h"
66
67#ifndef COMPAT_32BIT
68#define PATH_RTLD	"/libexec/ld-elf.so.1"
69#else
70#define PATH_RTLD	"/libexec/ld-elf32.so.1"
71#endif
72
73/* Types. */
74typedef void (*func_ptr_type)();
75typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76
77/*
78 * Function declarations.
79 */
80static const char *basename(const char *);
81static void die(void) __dead2;
82static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
83    const Elf_Dyn **, const Elf_Dyn **);
84static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
85    const Elf_Dyn *);
86static void digest_dynamic(Obj_Entry *, int);
87static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
88static Obj_Entry *dlcheck(void *);
89static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
90    int lo_flags, int mode, RtldLockState *lockstate);
91static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
92static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
93static bool donelist_check(DoneList *, const Obj_Entry *);
94static void errmsg_restore(char *);
95static char *errmsg_save(void);
96static void *fill_search_info(const char *, size_t, void *);
97static char *find_library(const char *, const Obj_Entry *);
98static const char *gethints(bool);
99static void init_dag(Obj_Entry *);
100static void init_pagesizes(Elf_Auxinfo **aux_info);
101static void init_rtld(caddr_t, Elf_Auxinfo **);
102static void initlist_add_neededs(Needed_Entry *, Objlist *);
103static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
104static void linkmap_add(Obj_Entry *);
105static void linkmap_delete(Obj_Entry *);
106static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
107static void unload_filtees(Obj_Entry *);
108static int load_needed_objects(Obj_Entry *, int);
109static int load_preload_objects(void);
110static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
111static void map_stacks_exec(RtldLockState *);
112static Obj_Entry *obj_from_addr(const void *);
113static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
114static void objlist_call_init(Objlist *, RtldLockState *);
115static void objlist_clear(Objlist *);
116static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
117static void objlist_init(Objlist *);
118static void objlist_push_head(Objlist *, Obj_Entry *);
119static void objlist_push_tail(Objlist *, Obj_Entry *);
120static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
121static void objlist_remove(Objlist *, Obj_Entry *);
122static void *path_enumerate(const char *, path_enum_proc, void *);
123static int relocate_object_dag(Obj_Entry *root, bool bind_now,
124    Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
125static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
126    int flags, RtldLockState *lockstate);
127static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
128    RtldLockState *);
129static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
130    int flags, RtldLockState *lockstate);
131static int rtld_dirname(const char *, char *);
132static int rtld_dirname_abs(const char *, char *);
133static void *rtld_dlopen(const char *name, int fd, int mode);
134static void rtld_exit(void);
135static char *search_library_path(const char *, const char *);
136static const void **get_program_var_addr(const char *, RtldLockState *);
137static void set_program_var(const char *, const void *);
138static int symlook_default(SymLook *, const Obj_Entry *refobj);
139static int symlook_global(SymLook *, DoneList *);
140static void symlook_init_from_req(SymLook *, const SymLook *);
141static int symlook_list(SymLook *, const Objlist *, DoneList *);
142static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
143static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
144static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
145static void trace_loaded_objects(Obj_Entry *);
146static void unlink_object(Obj_Entry *);
147static void unload_object(Obj_Entry *);
148static void unref_dag(Obj_Entry *);
149static void ref_dag(Obj_Entry *);
150static char *origin_subst_one(char *, const char *, const char *, bool);
151static char *origin_subst(char *, const char *);
152static void preinit_main(void);
153static int  rtld_verify_versions(const Objlist *);
154static int  rtld_verify_object_versions(Obj_Entry *);
155static void object_add_name(Obj_Entry *, const char *);
156static int  object_match_name(const Obj_Entry *, const char *);
157static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
158static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
159    struct dl_phdr_info *phdr_info);
160static uint32_t gnu_hash(const char *);
161static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
162    const unsigned long);
163
164void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
165void _r_debug_postinit(struct link_map *) __noinline __exported;
166
167/*
168 * Data declarations.
169 */
170static char *error_message;	/* Message for dlerror(), or NULL */
171struct r_debug r_debug __exported;	/* for GDB; */
172static bool libmap_disable;	/* Disable libmap */
173static bool ld_loadfltr;	/* Immediate filters processing */
174static char *libmap_override;	/* Maps to use in addition to libmap.conf */
175static bool trust;		/* False for setuid and setgid programs */
176static bool dangerous_ld_env;	/* True if environment variables have been
177				   used to affect the libraries loaded */
178static char *ld_bind_now;	/* Environment variable for immediate binding */
179static char *ld_debug;		/* Environment variable for debugging */
180static char *ld_library_path;	/* Environment variable for search path */
181static char *ld_preload;	/* Environment variable for libraries to
182				   load first */
183static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
184static char *ld_tracing;	/* Called from ldd to print libs */
185static char *ld_utrace;		/* Use utrace() to log events. */
186static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
187static Obj_Entry **obj_tail;	/* Link field of last object in list */
188static Obj_Entry *obj_main;	/* The main program shared object */
189static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
190static unsigned int obj_count;	/* Number of objects in obj_list */
191static unsigned int obj_loads;	/* Number of objects in obj_list */
192
193static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
194  STAILQ_HEAD_INITIALIZER(list_global);
195static Objlist list_main =	/* Objects loaded at program startup */
196  STAILQ_HEAD_INITIALIZER(list_main);
197static Objlist list_fini =	/* Objects needing fini() calls */
198  STAILQ_HEAD_INITIALIZER(list_fini);
199
200Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
201
202#define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
203
204extern Elf_Dyn _DYNAMIC;
205#pragma weak _DYNAMIC
206#ifndef RTLD_IS_DYNAMIC
207#define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
208#endif
209
210int dlclose(void *) __exported;
211char *dlerror(void) __exported;
212void *dlopen(const char *, int) __exported;
213void *fdlopen(int, int) __exported;
214void *dlsym(void *, const char *) __exported;
215dlfunc_t dlfunc(void *, const char *) __exported;
216void *dlvsym(void *, const char *, const char *) __exported;
217int dladdr(const void *, Dl_info *) __exported;
218void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
219    void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
220int dlinfo(void *, int , void *) __exported;
221int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
222int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
223int _rtld_get_stack_prot(void) __exported;
224int _rtld_is_dlopened(void *) __exported;
225void _rtld_error(const char *, ...) __exported;
226
227int npagesizes, osreldate;
228size_t *pagesizes;
229
230long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
231
232static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
233static int max_stack_flags;
234
235/*
236 * Global declarations normally provided by crt1.  The dynamic linker is
237 * not built with crt1, so we have to provide them ourselves.
238 */
239char *__progname;
240char **environ;
241
242/*
243 * Used to pass argc, argv to init functions.
244 */
245int main_argc;
246char **main_argv;
247
248/*
249 * Globals to control TLS allocation.
250 */
251size_t tls_last_offset;		/* Static TLS offset of last module */
252size_t tls_last_size;		/* Static TLS size of last module */
253size_t tls_static_space;	/* Static TLS space allocated */
254size_t tls_static_max_align;
255int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
256int tls_max_index = 1;		/* Largest module index allocated */
257
258bool ld_library_path_rpath = false;
259
260/*
261 * Fill in a DoneList with an allocation large enough to hold all of
262 * the currently-loaded objects.  Keep this as a macro since it calls
263 * alloca and we want that to occur within the scope of the caller.
264 */
265#define donelist_init(dlp)					\
266    ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
267    assert((dlp)->objs != NULL),				\
268    (dlp)->num_alloc = obj_count,				\
269    (dlp)->num_used = 0)
270
271#define	UTRACE_DLOPEN_START		1
272#define	UTRACE_DLOPEN_STOP		2
273#define	UTRACE_DLCLOSE_START		3
274#define	UTRACE_DLCLOSE_STOP		4
275#define	UTRACE_LOAD_OBJECT		5
276#define	UTRACE_UNLOAD_OBJECT		6
277#define	UTRACE_ADD_RUNDEP		7
278#define	UTRACE_PRELOAD_FINISHED		8
279#define	UTRACE_INIT_CALL		9
280#define	UTRACE_FINI_CALL		10
281
282struct utrace_rtld {
283	char sig[4];			/* 'RTLD' */
284	int event;
285	void *handle;
286	void *mapbase;			/* Used for 'parent' and 'init/fini' */
287	size_t mapsize;
288	int refcnt;			/* Used for 'mode' */
289	char name[MAXPATHLEN];
290};
291
292#define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
293	if (ld_utrace != NULL)					\
294		ld_utrace_log(e, h, mb, ms, r, n);		\
295} while (0)
296
297static void
298ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
299    int refcnt, const char *name)
300{
301	struct utrace_rtld ut;
302
303	ut.sig[0] = 'R';
304	ut.sig[1] = 'T';
305	ut.sig[2] = 'L';
306	ut.sig[3] = 'D';
307	ut.event = event;
308	ut.handle = handle;
309	ut.mapbase = mapbase;
310	ut.mapsize = mapsize;
311	ut.refcnt = refcnt;
312	bzero(ut.name, sizeof(ut.name));
313	if (name)
314		strlcpy(ut.name, name, sizeof(ut.name));
315	utrace(&ut, sizeof(ut));
316}
317
318/*
319 * Main entry point for dynamic linking.  The first argument is the
320 * stack pointer.  The stack is expected to be laid out as described
321 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
322 * Specifically, the stack pointer points to a word containing
323 * ARGC.  Following that in the stack is a null-terminated sequence
324 * of pointers to argument strings.  Then comes a null-terminated
325 * sequence of pointers to environment strings.  Finally, there is a
326 * sequence of "auxiliary vector" entries.
327 *
328 * The second argument points to a place to store the dynamic linker's
329 * exit procedure pointer and the third to a place to store the main
330 * program's object.
331 *
332 * The return value is the main program's entry point.
333 */
334func_ptr_type
335_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
336{
337    Elf_Auxinfo *aux_info[AT_COUNT];
338    int i;
339    int argc;
340    char **argv;
341    char **env;
342    Elf_Auxinfo *aux;
343    Elf_Auxinfo *auxp;
344    const char *argv0;
345    Objlist_Entry *entry;
346    Obj_Entry *obj;
347    Obj_Entry **preload_tail;
348    Obj_Entry *last_interposer;
349    Objlist initlist;
350    RtldLockState lockstate;
351    char *library_path_rpath;
352    int mib[2];
353    size_t len;
354
355    /*
356     * On entry, the dynamic linker itself has not been relocated yet.
357     * Be very careful not to reference any global data until after
358     * init_rtld has returned.  It is OK to reference file-scope statics
359     * and string constants, and to call static and global functions.
360     */
361
362    /* Find the auxiliary vector on the stack. */
363    argc = *sp++;
364    argv = (char **) sp;
365    sp += argc + 1;	/* Skip over arguments and NULL terminator */
366    env = (char **) sp;
367    while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
368	;
369    aux = (Elf_Auxinfo *) sp;
370
371    /* Digest the auxiliary vector. */
372    for (i = 0;  i < AT_COUNT;  i++)
373	aux_info[i] = NULL;
374    for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
375	if (auxp->a_type < AT_COUNT)
376	    aux_info[auxp->a_type] = auxp;
377    }
378
379    /* Initialize and relocate ourselves. */
380    assert(aux_info[AT_BASE] != NULL);
381    init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
382
383    __progname = obj_rtld.path;
384    argv0 = argv[0] != NULL ? argv[0] : "(null)";
385    environ = env;
386    main_argc = argc;
387    main_argv = argv;
388
389    if (aux_info[AT_CANARY] != NULL &&
390	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
391	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
392	    if (i > sizeof(__stack_chk_guard))
393		    i = sizeof(__stack_chk_guard);
394	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
395    } else {
396	mib[0] = CTL_KERN;
397	mib[1] = KERN_ARND;
398
399	len = sizeof(__stack_chk_guard);
400	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
401	    len != sizeof(__stack_chk_guard)) {
402		/* If sysctl was unsuccessful, use the "terminator canary". */
403		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
404		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
405		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
406		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
407	}
408    }
409
410    trust = !issetugid();
411
412    ld_bind_now = getenv(LD_ "BIND_NOW");
413    /*
414     * If the process is tainted, then we un-set the dangerous environment
415     * variables.  The process will be marked as tainted until setuid(2)
416     * is called.  If any child process calls setuid(2) we do not want any
417     * future processes to honor the potentially un-safe variables.
418     */
419    if (!trust) {
420        if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
421	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
422	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
423	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
424		_rtld_error("environment corrupt; aborting");
425		die();
426	}
427    }
428    ld_debug = getenv(LD_ "DEBUG");
429    libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
430    libmap_override = getenv(LD_ "LIBMAP");
431    ld_library_path = getenv(LD_ "LIBRARY_PATH");
432    ld_preload = getenv(LD_ "PRELOAD");
433    ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
434    ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
435    library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
436    if (library_path_rpath != NULL) {
437	    if (library_path_rpath[0] == 'y' ||
438		library_path_rpath[0] == 'Y' ||
439		library_path_rpath[0] == '1')
440		    ld_library_path_rpath = true;
441	    else
442		    ld_library_path_rpath = false;
443    }
444    dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
445	(ld_library_path != NULL) || (ld_preload != NULL) ||
446	(ld_elf_hints_path != NULL) || ld_loadfltr;
447    ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
448    ld_utrace = getenv(LD_ "UTRACE");
449
450    if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
451	ld_elf_hints_path = _PATH_ELF_HINTS;
452
453    if (ld_debug != NULL && *ld_debug != '\0')
454	debug = 1;
455    dbg("%s is initialized, base address = %p", __progname,
456	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
457    dbg("RTLD dynamic = %p", obj_rtld.dynamic);
458    dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
459
460    dbg("initializing thread locks");
461    lockdflt_init();
462
463    /*
464     * Load the main program, or process its program header if it is
465     * already loaded.
466     */
467    if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
468	int fd = aux_info[AT_EXECFD]->a_un.a_val;
469	dbg("loading main program");
470	obj_main = map_object(fd, argv0, NULL);
471	close(fd);
472	if (obj_main == NULL)
473	    die();
474	max_stack_flags = obj->stack_flags;
475    } else {				/* Main program already loaded. */
476	const Elf_Phdr *phdr;
477	int phnum;
478	caddr_t entry;
479
480	dbg("processing main program's program header");
481	assert(aux_info[AT_PHDR] != NULL);
482	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
483	assert(aux_info[AT_PHNUM] != NULL);
484	phnum = aux_info[AT_PHNUM]->a_un.a_val;
485	assert(aux_info[AT_PHENT] != NULL);
486	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
487	assert(aux_info[AT_ENTRY] != NULL);
488	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
489	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
490	    die();
491    }
492
493    if (aux_info[AT_EXECPATH] != 0) {
494	    char *kexecpath;
495	    char buf[MAXPATHLEN];
496
497	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
498	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
499	    if (kexecpath[0] == '/')
500		    obj_main->path = kexecpath;
501	    else if (getcwd(buf, sizeof(buf)) == NULL ||
502		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
503		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
504		    obj_main->path = xstrdup(argv0);
505	    else
506		    obj_main->path = xstrdup(buf);
507    } else {
508	    dbg("No AT_EXECPATH");
509	    obj_main->path = xstrdup(argv0);
510    }
511    dbg("obj_main path %s", obj_main->path);
512    obj_main->mainprog = true;
513
514    if (aux_info[AT_STACKPROT] != NULL &&
515      aux_info[AT_STACKPROT]->a_un.a_val != 0)
516	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
517
518#ifndef COMPAT_32BIT
519    /*
520     * Get the actual dynamic linker pathname from the executable if
521     * possible.  (It should always be possible.)  That ensures that
522     * gdb will find the right dynamic linker even if a non-standard
523     * one is being used.
524     */
525    if (obj_main->interp != NULL &&
526      strcmp(obj_main->interp, obj_rtld.path) != 0) {
527	free(obj_rtld.path);
528	obj_rtld.path = xstrdup(obj_main->interp);
529        __progname = obj_rtld.path;
530    }
531#endif
532
533    digest_dynamic(obj_main, 0);
534    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
535	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
536	obj_main->dynsymcount);
537
538    linkmap_add(obj_main);
539    linkmap_add(&obj_rtld);
540
541    /* Link the main program into the list of objects. */
542    *obj_tail = obj_main;
543    obj_tail = &obj_main->next;
544    obj_count++;
545    obj_loads++;
546
547    /* Initialize a fake symbol for resolving undefined weak references. */
548    sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
549    sym_zero.st_shndx = SHN_UNDEF;
550    sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
551
552    if (!libmap_disable)
553        libmap_disable = (bool)lm_init(libmap_override);
554
555    dbg("loading LD_PRELOAD libraries");
556    if (load_preload_objects() == -1)
557	die();
558    preload_tail = obj_tail;
559
560    dbg("loading needed objects");
561    if (load_needed_objects(obj_main, 0) == -1)
562	die();
563
564    /* Make a list of all objects loaded at startup. */
565    last_interposer = obj_main;
566    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
567	if (obj->z_interpose && obj != obj_main) {
568	    objlist_put_after(&list_main, last_interposer, obj);
569	    last_interposer = obj;
570	} else {
571	    objlist_push_tail(&list_main, obj);
572	}
573    	obj->refcount++;
574    }
575
576    dbg("checking for required versions");
577    if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
578	die();
579
580    if (ld_tracing) {		/* We're done */
581	trace_loaded_objects(obj_main);
582	exit(0);
583    }
584
585    if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
586       dump_relocations(obj_main);
587       exit (0);
588    }
589
590    /*
591     * Processing tls relocations requires having the tls offsets
592     * initialized.  Prepare offsets before starting initial
593     * relocation processing.
594     */
595    dbg("initializing initial thread local storage offsets");
596    STAILQ_FOREACH(entry, &list_main, link) {
597	/*
598	 * Allocate all the initial objects out of the static TLS
599	 * block even if they didn't ask for it.
600	 */
601	allocate_tls_offset(entry->obj);
602    }
603
604    if (relocate_objects(obj_main,
605      ld_bind_now != NULL && *ld_bind_now != '\0',
606      &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
607	die();
608
609    dbg("doing copy relocations");
610    if (do_copy_relocations(obj_main) == -1)
611	die();
612
613    if (getenv(LD_ "DUMP_REL_POST") != NULL) {
614       dump_relocations(obj_main);
615       exit (0);
616    }
617
618    /*
619     * Setup TLS for main thread.  This must be done after the
620     * relocations are processed, since tls initialization section
621     * might be the subject for relocations.
622     */
623    dbg("initializing initial thread local storage");
624    allocate_initial_tls(obj_list);
625
626    dbg("initializing key program variables");
627    set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
628    set_program_var("environ", env);
629    set_program_var("__elf_aux_vector", aux);
630
631    /* Make a list of init functions to call. */
632    objlist_init(&initlist);
633    initlist_add_objects(obj_list, preload_tail, &initlist);
634
635    r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
636
637    map_stacks_exec(NULL);
638
639    dbg("resolving ifuncs");
640    if (resolve_objects_ifunc(obj_main,
641      ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
642      NULL) == -1)
643	die();
644
645    if (!obj_main->crt_no_init) {
646	/*
647	 * Make sure we don't call the main program's init and fini
648	 * functions for binaries linked with old crt1 which calls
649	 * _init itself.
650	 */
651	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
652	obj_main->preinit_array = obj_main->init_array =
653	    obj_main->fini_array = (Elf_Addr)NULL;
654    }
655
656    wlock_acquire(rtld_bind_lock, &lockstate);
657    if (obj_main->crt_no_init)
658	preinit_main();
659    objlist_call_init(&initlist, &lockstate);
660    _r_debug_postinit(&obj_main->linkmap);
661    objlist_clear(&initlist);
662    dbg("loading filtees");
663    for (obj = obj_list->next; obj != NULL; obj = obj->next) {
664	if (ld_loadfltr || obj->z_loadfltr)
665	    load_filtees(obj, 0, &lockstate);
666    }
667    lock_release(rtld_bind_lock, &lockstate);
668
669    dbg("transferring control to program entry point = %p", obj_main->entry);
670
671    /* Return the exit procedure and the program entry point. */
672    *exit_proc = rtld_exit;
673    *objp = obj_main;
674    return (func_ptr_type) obj_main->entry;
675}
676
677void *
678rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
679{
680	void *ptr;
681	Elf_Addr target;
682
683	ptr = (void *)make_function_pointer(def, obj);
684	target = ((Elf_Addr (*)(void))ptr)();
685	return ((void *)target);
686}
687
688Elf_Addr
689_rtld_bind(Obj_Entry *obj, Elf_Size reloff)
690{
691    const Elf_Rel *rel;
692    const Elf_Sym *def;
693    const Obj_Entry *defobj;
694    Elf_Addr *where;
695    Elf_Addr target;
696    RtldLockState lockstate;
697
698    rlock_acquire(rtld_bind_lock, &lockstate);
699    if (sigsetjmp(lockstate.env, 0) != 0)
700	    lock_upgrade(rtld_bind_lock, &lockstate);
701    if (obj->pltrel)
702	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
703    else
704	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
705
706    where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
707    def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
708	&lockstate);
709    if (def == NULL)
710	die();
711    if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
712	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
713    else
714	target = (Elf_Addr)(defobj->relocbase + def->st_value);
715
716    dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
717      defobj->strtab + def->st_name, basename(obj->path),
718      (void *)target, basename(defobj->path));
719
720    /*
721     * Write the new contents for the jmpslot. Note that depending on
722     * architecture, the value which we need to return back to the
723     * lazy binding trampoline may or may not be the target
724     * address. The value returned from reloc_jmpslot() is the value
725     * that the trampoline needs.
726     */
727    target = reloc_jmpslot(where, target, defobj, obj, rel);
728    lock_release(rtld_bind_lock, &lockstate);
729    return target;
730}
731
732/*
733 * Error reporting function.  Use it like printf.  If formats the message
734 * into a buffer, and sets things up so that the next call to dlerror()
735 * will return the message.
736 */
737void
738_rtld_error(const char *fmt, ...)
739{
740    static char buf[512];
741    va_list ap;
742
743    va_start(ap, fmt);
744    rtld_vsnprintf(buf, sizeof buf, fmt, ap);
745    error_message = buf;
746    va_end(ap);
747}
748
749/*
750 * Return a dynamically-allocated copy of the current error message, if any.
751 */
752static char *
753errmsg_save(void)
754{
755    return error_message == NULL ? NULL : xstrdup(error_message);
756}
757
758/*
759 * Restore the current error message from a copy which was previously saved
760 * by errmsg_save().  The copy is freed.
761 */
762static void
763errmsg_restore(char *saved_msg)
764{
765    if (saved_msg == NULL)
766	error_message = NULL;
767    else {
768	_rtld_error("%s", saved_msg);
769	free(saved_msg);
770    }
771}
772
773static const char *
774basename(const char *name)
775{
776    const char *p = strrchr(name, '/');
777    return p != NULL ? p + 1 : name;
778}
779
780static struct utsname uts;
781
782static char *
783origin_subst_one(char *real, const char *kw, const char *subst,
784    bool may_free)
785{
786	char *p, *p1, *res, *resp;
787	int subst_len, kw_len, subst_count, old_len, new_len;
788
789	kw_len = strlen(kw);
790
791	/*
792	 * First, count the number of the keyword occurences, to
793	 * preallocate the final string.
794	 */
795	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
796		p1 = strstr(p, kw);
797		if (p1 == NULL)
798			break;
799	}
800
801	/*
802	 * If the keyword is not found, just return.
803	 */
804	if (subst_count == 0)
805		return (may_free ? real : xstrdup(real));
806
807	/*
808	 * There is indeed something to substitute.  Calculate the
809	 * length of the resulting string, and allocate it.
810	 */
811	subst_len = strlen(subst);
812	old_len = strlen(real);
813	new_len = old_len + (subst_len - kw_len) * subst_count;
814	res = xmalloc(new_len + 1);
815
816	/*
817	 * Now, execute the substitution loop.
818	 */
819	for (p = real, resp = res, *resp = '\0';;) {
820		p1 = strstr(p, kw);
821		if (p1 != NULL) {
822			/* Copy the prefix before keyword. */
823			memcpy(resp, p, p1 - p);
824			resp += p1 - p;
825			/* Keyword replacement. */
826			memcpy(resp, subst, subst_len);
827			resp += subst_len;
828			*resp = '\0';
829			p = p1 + kw_len;
830		} else
831			break;
832	}
833
834	/* Copy to the end of string and finish. */
835	strcat(resp, p);
836	if (may_free)
837		free(real);
838	return (res);
839}
840
841static char *
842origin_subst(char *real, const char *origin_path)
843{
844	char *res1, *res2, *res3, *res4;
845
846	if (uts.sysname[0] == '\0') {
847		if (uname(&uts) != 0) {
848			_rtld_error("utsname failed: %d", errno);
849			return (NULL);
850		}
851	}
852	res1 = origin_subst_one(real, "$ORIGIN", origin_path, false);
853	res2 = origin_subst_one(res1, "$OSNAME", uts.sysname, true);
854	res3 = origin_subst_one(res2, "$OSREL", uts.release, true);
855	res4 = origin_subst_one(res3, "$PLATFORM", uts.machine, true);
856	return (res4);
857}
858
859static void
860die(void)
861{
862    const char *msg = dlerror();
863
864    if (msg == NULL)
865	msg = "Fatal error";
866    rtld_fdputstr(STDERR_FILENO, msg);
867    rtld_fdputchar(STDERR_FILENO, '\n');
868    _exit(1);
869}
870
871/*
872 * Process a shared object's DYNAMIC section, and save the important
873 * information in its Obj_Entry structure.
874 */
875static void
876digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
877    const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
878{
879    const Elf_Dyn *dynp;
880    Needed_Entry **needed_tail = &obj->needed;
881    Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
882    Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
883    const Elf_Hashelt *hashtab;
884    const Elf32_Word *hashval;
885    Elf32_Word bkt, nmaskwords;
886    int bloom_size32;
887    int plttype = DT_REL;
888
889    *dyn_rpath = NULL;
890    *dyn_soname = NULL;
891    *dyn_runpath = NULL;
892
893    obj->bind_now = false;
894    for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
895	switch (dynp->d_tag) {
896
897	case DT_REL:
898	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
899	    break;
900
901	case DT_RELSZ:
902	    obj->relsize = dynp->d_un.d_val;
903	    break;
904
905	case DT_RELENT:
906	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
907	    break;
908
909	case DT_JMPREL:
910	    obj->pltrel = (const Elf_Rel *)
911	      (obj->relocbase + dynp->d_un.d_ptr);
912	    break;
913
914	case DT_PLTRELSZ:
915	    obj->pltrelsize = dynp->d_un.d_val;
916	    break;
917
918	case DT_RELA:
919	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
920	    break;
921
922	case DT_RELASZ:
923	    obj->relasize = dynp->d_un.d_val;
924	    break;
925
926	case DT_RELAENT:
927	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
928	    break;
929
930	case DT_PLTREL:
931	    plttype = dynp->d_un.d_val;
932	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
933	    break;
934
935	case DT_SYMTAB:
936	    obj->symtab = (const Elf_Sym *)
937	      (obj->relocbase + dynp->d_un.d_ptr);
938	    break;
939
940	case DT_SYMENT:
941	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
942	    break;
943
944	case DT_STRTAB:
945	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
946	    break;
947
948	case DT_STRSZ:
949	    obj->strsize = dynp->d_un.d_val;
950	    break;
951
952	case DT_VERNEED:
953	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
954		dynp->d_un.d_val);
955	    break;
956
957	case DT_VERNEEDNUM:
958	    obj->verneednum = dynp->d_un.d_val;
959	    break;
960
961	case DT_VERDEF:
962	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
963		dynp->d_un.d_val);
964	    break;
965
966	case DT_VERDEFNUM:
967	    obj->verdefnum = dynp->d_un.d_val;
968	    break;
969
970	case DT_VERSYM:
971	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
972		dynp->d_un.d_val);
973	    break;
974
975	case DT_HASH:
976	    {
977		hashtab = (const Elf_Hashelt *)(obj->relocbase +
978		    dynp->d_un.d_ptr);
979		obj->nbuckets = hashtab[0];
980		obj->nchains = hashtab[1];
981		obj->buckets = hashtab + 2;
982		obj->chains = obj->buckets + obj->nbuckets;
983		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
984		  obj->buckets != NULL;
985	    }
986	    break;
987
988	case DT_GNU_HASH:
989	    {
990		hashtab = (const Elf_Hashelt *)(obj->relocbase +
991		    dynp->d_un.d_ptr);
992		obj->nbuckets_gnu = hashtab[0];
993		obj->symndx_gnu = hashtab[1];
994		nmaskwords = hashtab[2];
995		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
996		obj->maskwords_bm_gnu = nmaskwords - 1;
997		obj->shift2_gnu = hashtab[3];
998		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
999		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1000		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1001		  obj->symndx_gnu;
1002		/* Number of bitmask words is required to be power of 2 */
1003		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1004		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1005	    }
1006	    break;
1007
1008	case DT_NEEDED:
1009	    if (!obj->rtld) {
1010		Needed_Entry *nep = NEW(Needed_Entry);
1011		nep->name = dynp->d_un.d_val;
1012		nep->obj = NULL;
1013		nep->next = NULL;
1014
1015		*needed_tail = nep;
1016		needed_tail = &nep->next;
1017	    }
1018	    break;
1019
1020	case DT_FILTER:
1021	    if (!obj->rtld) {
1022		Needed_Entry *nep = NEW(Needed_Entry);
1023		nep->name = dynp->d_un.d_val;
1024		nep->obj = NULL;
1025		nep->next = NULL;
1026
1027		*needed_filtees_tail = nep;
1028		needed_filtees_tail = &nep->next;
1029	    }
1030	    break;
1031
1032	case DT_AUXILIARY:
1033	    if (!obj->rtld) {
1034		Needed_Entry *nep = NEW(Needed_Entry);
1035		nep->name = dynp->d_un.d_val;
1036		nep->obj = NULL;
1037		nep->next = NULL;
1038
1039		*needed_aux_filtees_tail = nep;
1040		needed_aux_filtees_tail = &nep->next;
1041	    }
1042	    break;
1043
1044	case DT_PLTGOT:
1045	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1046	    break;
1047
1048	case DT_TEXTREL:
1049	    obj->textrel = true;
1050	    break;
1051
1052	case DT_SYMBOLIC:
1053	    obj->symbolic = true;
1054	    break;
1055
1056	case DT_RPATH:
1057	    /*
1058	     * We have to wait until later to process this, because we
1059	     * might not have gotten the address of the string table yet.
1060	     */
1061	    *dyn_rpath = dynp;
1062	    break;
1063
1064	case DT_SONAME:
1065	    *dyn_soname = dynp;
1066	    break;
1067
1068	case DT_RUNPATH:
1069	    *dyn_runpath = dynp;
1070	    break;
1071
1072	case DT_INIT:
1073	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1074	    break;
1075
1076	case DT_PREINIT_ARRAY:
1077	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1078	    break;
1079
1080	case DT_PREINIT_ARRAYSZ:
1081	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1082	    break;
1083
1084	case DT_INIT_ARRAY:
1085	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1086	    break;
1087
1088	case DT_INIT_ARRAYSZ:
1089	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1090	    break;
1091
1092	case DT_FINI:
1093	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1094	    break;
1095
1096	case DT_FINI_ARRAY:
1097	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1098	    break;
1099
1100	case DT_FINI_ARRAYSZ:
1101	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1102	    break;
1103
1104	/*
1105	 * Don't process DT_DEBUG on MIPS as the dynamic section
1106	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1107	 */
1108
1109#ifndef __mips__
1110	case DT_DEBUG:
1111	    /* XXX - not implemented yet */
1112	    if (!early)
1113		dbg("Filling in DT_DEBUG entry");
1114	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1115	    break;
1116#endif
1117
1118	case DT_FLAGS:
1119		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1120		    obj->z_origin = true;
1121		if (dynp->d_un.d_val & DF_SYMBOLIC)
1122		    obj->symbolic = true;
1123		if (dynp->d_un.d_val & DF_TEXTREL)
1124		    obj->textrel = true;
1125		if (dynp->d_un.d_val & DF_BIND_NOW)
1126		    obj->bind_now = true;
1127		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1128		    ;*/
1129	    break;
1130#ifdef __mips__
1131	case DT_MIPS_LOCAL_GOTNO:
1132		obj->local_gotno = dynp->d_un.d_val;
1133	    break;
1134
1135	case DT_MIPS_SYMTABNO:
1136		obj->symtabno = dynp->d_un.d_val;
1137		break;
1138
1139	case DT_MIPS_GOTSYM:
1140		obj->gotsym = dynp->d_un.d_val;
1141		break;
1142
1143	case DT_MIPS_RLD_MAP:
1144		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1145		break;
1146#endif
1147
1148	case DT_FLAGS_1:
1149		if (dynp->d_un.d_val & DF_1_NOOPEN)
1150		    obj->z_noopen = true;
1151		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1152		    obj->z_origin = true;
1153		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1154		    XXX ;*/
1155		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1156		    obj->bind_now = true;
1157		if (dynp->d_un.d_val & DF_1_NODELETE)
1158		    obj->z_nodelete = true;
1159		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1160		    obj->z_loadfltr = true;
1161		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1162		    obj->z_interpose = true;
1163		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1164		    obj->z_nodeflib = true;
1165	    break;
1166
1167	default:
1168	    if (!early) {
1169		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1170		    (long)dynp->d_tag);
1171	    }
1172	    break;
1173	}
1174    }
1175
1176    obj->traced = false;
1177
1178    if (plttype == DT_RELA) {
1179	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1180	obj->pltrel = NULL;
1181	obj->pltrelasize = obj->pltrelsize;
1182	obj->pltrelsize = 0;
1183    }
1184
1185    /* Determine size of dynsym table (equal to nchains of sysv hash) */
1186    if (obj->valid_hash_sysv)
1187	obj->dynsymcount = obj->nchains;
1188    else if (obj->valid_hash_gnu) {
1189	obj->dynsymcount = 0;
1190	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1191	    if (obj->buckets_gnu[bkt] == 0)
1192		continue;
1193	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1194	    do
1195		obj->dynsymcount++;
1196	    while ((*hashval++ & 1u) == 0);
1197	}
1198	obj->dynsymcount += obj->symndx_gnu;
1199    }
1200}
1201
1202static void
1203digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1204    const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1205{
1206
1207    if (obj->z_origin && obj->origin_path == NULL) {
1208	obj->origin_path = xmalloc(PATH_MAX);
1209	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1210	    die();
1211    }
1212
1213    if (dyn_runpath != NULL) {
1214	obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1215	if (obj->z_origin)
1216	    obj->runpath = origin_subst(obj->runpath, obj->origin_path);
1217    }
1218    else if (dyn_rpath != NULL) {
1219	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1220	if (obj->z_origin)
1221	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1222    }
1223
1224    if (dyn_soname != NULL)
1225	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1226}
1227
1228static void
1229digest_dynamic(Obj_Entry *obj, int early)
1230{
1231	const Elf_Dyn *dyn_rpath;
1232	const Elf_Dyn *dyn_soname;
1233	const Elf_Dyn *dyn_runpath;
1234
1235	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1236	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1237}
1238
1239/*
1240 * Process a shared object's program header.  This is used only for the
1241 * main program, when the kernel has already loaded the main program
1242 * into memory before calling the dynamic linker.  It creates and
1243 * returns an Obj_Entry structure.
1244 */
1245static Obj_Entry *
1246digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1247{
1248    Obj_Entry *obj;
1249    const Elf_Phdr *phlimit = phdr + phnum;
1250    const Elf_Phdr *ph;
1251    Elf_Addr note_start, note_end;
1252    int nsegs = 0;
1253
1254    obj = obj_new();
1255    for (ph = phdr;  ph < phlimit;  ph++) {
1256	if (ph->p_type != PT_PHDR)
1257	    continue;
1258
1259	obj->phdr = phdr;
1260	obj->phsize = ph->p_memsz;
1261	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1262	break;
1263    }
1264
1265    obj->stack_flags = PF_X | PF_R | PF_W;
1266
1267    for (ph = phdr;  ph < phlimit;  ph++) {
1268	switch (ph->p_type) {
1269
1270	case PT_INTERP:
1271	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1272	    break;
1273
1274	case PT_LOAD:
1275	    if (nsegs == 0) {	/* First load segment */
1276		obj->vaddrbase = trunc_page(ph->p_vaddr);
1277		obj->mapbase = obj->vaddrbase + obj->relocbase;
1278		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1279		  obj->vaddrbase;
1280	    } else {		/* Last load segment */
1281		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1282		  obj->vaddrbase;
1283	    }
1284	    nsegs++;
1285	    break;
1286
1287	case PT_DYNAMIC:
1288	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1289	    break;
1290
1291	case PT_TLS:
1292	    obj->tlsindex = 1;
1293	    obj->tlssize = ph->p_memsz;
1294	    obj->tlsalign = ph->p_align;
1295	    obj->tlsinitsize = ph->p_filesz;
1296	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1297	    break;
1298
1299	case PT_GNU_STACK:
1300	    obj->stack_flags = ph->p_flags;
1301	    break;
1302
1303	case PT_GNU_RELRO:
1304	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1305	    obj->relro_size = round_page(ph->p_memsz);
1306	    break;
1307
1308	case PT_NOTE:
1309	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1310	    note_end = note_start + ph->p_filesz;
1311	    digest_notes(obj, note_start, note_end);
1312	    break;
1313	}
1314    }
1315    if (nsegs < 1) {
1316	_rtld_error("%s: too few PT_LOAD segments", path);
1317	return NULL;
1318    }
1319
1320    obj->entry = entry;
1321    return obj;
1322}
1323
1324void
1325digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1326{
1327	const Elf_Note *note;
1328	const char *note_name;
1329	uintptr_t p;
1330
1331	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1332	    note = (const Elf_Note *)((const char *)(note + 1) +
1333	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1334	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1335		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1336		    note->n_descsz != sizeof(int32_t))
1337			continue;
1338		if (note->n_type != ABI_NOTETYPE &&
1339		    note->n_type != CRT_NOINIT_NOTETYPE)
1340			continue;
1341		note_name = (const char *)(note + 1);
1342		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1343		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1344			continue;
1345		switch (note->n_type) {
1346		case ABI_NOTETYPE:
1347			/* FreeBSD osrel note */
1348			p = (uintptr_t)(note + 1);
1349			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1350			obj->osrel = *(const int32_t *)(p);
1351			dbg("note osrel %d", obj->osrel);
1352			break;
1353		case CRT_NOINIT_NOTETYPE:
1354			/* FreeBSD 'crt does not call init' note */
1355			obj->crt_no_init = true;
1356			dbg("note crt_no_init");
1357			break;
1358		}
1359	}
1360}
1361
1362static Obj_Entry *
1363dlcheck(void *handle)
1364{
1365    Obj_Entry *obj;
1366
1367    for (obj = obj_list;  obj != NULL;  obj = obj->next)
1368	if (obj == (Obj_Entry *) handle)
1369	    break;
1370
1371    if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1372	_rtld_error("Invalid shared object handle %p", handle);
1373	return NULL;
1374    }
1375    return obj;
1376}
1377
1378/*
1379 * If the given object is already in the donelist, return true.  Otherwise
1380 * add the object to the list and return false.
1381 */
1382static bool
1383donelist_check(DoneList *dlp, const Obj_Entry *obj)
1384{
1385    unsigned int i;
1386
1387    for (i = 0;  i < dlp->num_used;  i++)
1388	if (dlp->objs[i] == obj)
1389	    return true;
1390    /*
1391     * Our donelist allocation should always be sufficient.  But if
1392     * our threads locking isn't working properly, more shared objects
1393     * could have been loaded since we allocated the list.  That should
1394     * never happen, but we'll handle it properly just in case it does.
1395     */
1396    if (dlp->num_used < dlp->num_alloc)
1397	dlp->objs[dlp->num_used++] = obj;
1398    return false;
1399}
1400
1401/*
1402 * Hash function for symbol table lookup.  Don't even think about changing
1403 * this.  It is specified by the System V ABI.
1404 */
1405unsigned long
1406elf_hash(const char *name)
1407{
1408    const unsigned char *p = (const unsigned char *) name;
1409    unsigned long h = 0;
1410    unsigned long g;
1411
1412    while (*p != '\0') {
1413	h = (h << 4) + *p++;
1414	if ((g = h & 0xf0000000) != 0)
1415	    h ^= g >> 24;
1416	h &= ~g;
1417    }
1418    return h;
1419}
1420
1421/*
1422 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1423 * unsigned in case it's implemented with a wider type.
1424 */
1425static uint32_t
1426gnu_hash(const char *s)
1427{
1428	uint32_t h;
1429	unsigned char c;
1430
1431	h = 5381;
1432	for (c = *s; c != '\0'; c = *++s)
1433		h = h * 33 + c;
1434	return (h & 0xffffffff);
1435}
1436
1437/*
1438 * Find the library with the given name, and return its full pathname.
1439 * The returned string is dynamically allocated.  Generates an error
1440 * message and returns NULL if the library cannot be found.
1441 *
1442 * If the second argument is non-NULL, then it refers to an already-
1443 * loaded shared object, whose library search path will be searched.
1444 *
1445 * The search order is:
1446 *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1447 *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1448 *   LD_LIBRARY_PATH
1449 *   DT_RUNPATH in the referencing file
1450 *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1451 *	 from list)
1452 *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1453 *
1454 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1455 */
1456static char *
1457find_library(const char *xname, const Obj_Entry *refobj)
1458{
1459    char *pathname;
1460    char *name;
1461    bool nodeflib, objgiven;
1462
1463    objgiven = refobj != NULL;
1464    if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1465	if (xname[0] != '/' && !trust) {
1466	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1467	      xname);
1468	    return NULL;
1469	}
1470	if (objgiven && refobj->z_origin) {
1471		return (origin_subst(__DECONST(char *, xname),
1472		    refobj->origin_path));
1473	} else {
1474		return (xstrdup(xname));
1475	}
1476    }
1477
1478    if (libmap_disable || !objgiven ||
1479	(name = lm_find(refobj->path, xname)) == NULL)
1480	name = (char *)xname;
1481
1482    dbg(" Searching for \"%s\"", name);
1483
1484    /*
1485     * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1486     * back to pre-conforming behaviour if user requested so with
1487     * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1488     * nodeflib.
1489     */
1490    if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1491	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1492	  (refobj != NULL &&
1493	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1494          (pathname = search_library_path(name, gethints(false))) != NULL ||
1495	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1496	    return (pathname);
1497    } else {
1498	nodeflib = objgiven ? refobj->z_nodeflib : false;
1499	if ((objgiven &&
1500	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1501	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1502	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1503	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1504	  (objgiven &&
1505	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1506	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1507	  (objgiven && !nodeflib &&
1508	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1509	    return (pathname);
1510    }
1511
1512    if (objgiven && refobj->path != NULL) {
1513	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1514	  name, basename(refobj->path));
1515    } else {
1516	_rtld_error("Shared object \"%s\" not found", name);
1517    }
1518    return NULL;
1519}
1520
1521/*
1522 * Given a symbol number in a referencing object, find the corresponding
1523 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1524 * no definition was found.  Returns a pointer to the Obj_Entry of the
1525 * defining object via the reference parameter DEFOBJ_OUT.
1526 */
1527const Elf_Sym *
1528find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1529    const Obj_Entry **defobj_out, int flags, SymCache *cache,
1530    RtldLockState *lockstate)
1531{
1532    const Elf_Sym *ref;
1533    const Elf_Sym *def;
1534    const Obj_Entry *defobj;
1535    SymLook req;
1536    const char *name;
1537    int res;
1538
1539    /*
1540     * If we have already found this symbol, get the information from
1541     * the cache.
1542     */
1543    if (symnum >= refobj->dynsymcount)
1544	return NULL;	/* Bad object */
1545    if (cache != NULL && cache[symnum].sym != NULL) {
1546	*defobj_out = cache[symnum].obj;
1547	return cache[symnum].sym;
1548    }
1549
1550    ref = refobj->symtab + symnum;
1551    name = refobj->strtab + ref->st_name;
1552    def = NULL;
1553    defobj = NULL;
1554
1555    /*
1556     * We don't have to do a full scale lookup if the symbol is local.
1557     * We know it will bind to the instance in this load module; to
1558     * which we already have a pointer (ie ref). By not doing a lookup,
1559     * we not only improve performance, but it also avoids unresolvable
1560     * symbols when local symbols are not in the hash table. This has
1561     * been seen with the ia64 toolchain.
1562     */
1563    if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1564	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1565	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1566		symnum);
1567	}
1568	symlook_init(&req, name);
1569	req.flags = flags;
1570	req.ventry = fetch_ventry(refobj, symnum);
1571	req.lockstate = lockstate;
1572	res = symlook_default(&req, refobj);
1573	if (res == 0) {
1574	    def = req.sym_out;
1575	    defobj = req.defobj_out;
1576	}
1577    } else {
1578	def = ref;
1579	defobj = refobj;
1580    }
1581
1582    /*
1583     * If we found no definition and the reference is weak, treat the
1584     * symbol as having the value zero.
1585     */
1586    if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1587	def = &sym_zero;
1588	defobj = obj_main;
1589    }
1590
1591    if (def != NULL) {
1592	*defobj_out = defobj;
1593	/* Record the information in the cache to avoid subsequent lookups. */
1594	if (cache != NULL) {
1595	    cache[symnum].sym = def;
1596	    cache[symnum].obj = defobj;
1597	}
1598    } else {
1599	if (refobj != &obj_rtld)
1600	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1601    }
1602    return def;
1603}
1604
1605/*
1606 * Return the search path from the ldconfig hints file, reading it if
1607 * necessary.  If nostdlib is true, then the default search paths are
1608 * not added to result.
1609 *
1610 * Returns NULL if there are problems with the hints file,
1611 * or if the search path there is empty.
1612 */
1613static const char *
1614gethints(bool nostdlib)
1615{
1616	static char *hints, *filtered_path;
1617	struct elfhints_hdr hdr;
1618	struct fill_search_info_args sargs, hargs;
1619	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1620	struct dl_serpath *SLPpath, *hintpath;
1621	char *p;
1622	unsigned int SLPndx, hintndx, fndx, fcount;
1623	int fd;
1624	size_t flen;
1625	bool skip;
1626
1627	/* First call, read the hints file */
1628	if (hints == NULL) {
1629		/* Keep from trying again in case the hints file is bad. */
1630		hints = "";
1631
1632		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1633			return (NULL);
1634		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1635		    hdr.magic != ELFHINTS_MAGIC ||
1636		    hdr.version != 1) {
1637			close(fd);
1638			return (NULL);
1639		}
1640		p = xmalloc(hdr.dirlistlen + 1);
1641		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1642		    read(fd, p, hdr.dirlistlen + 1) !=
1643		    (ssize_t)hdr.dirlistlen + 1) {
1644			free(p);
1645			close(fd);
1646			return (NULL);
1647		}
1648		hints = p;
1649		close(fd);
1650	}
1651
1652	/*
1653	 * If caller agreed to receive list which includes the default
1654	 * paths, we are done. Otherwise, if we still did not
1655	 * calculated filtered result, do it now.
1656	 */
1657	if (!nostdlib)
1658		return (hints[0] != '\0' ? hints : NULL);
1659	if (filtered_path != NULL)
1660		goto filt_ret;
1661
1662	/*
1663	 * Obtain the list of all configured search paths, and the
1664	 * list of the default paths.
1665	 *
1666	 * First estimate the size of the results.
1667	 */
1668	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1669	smeta.dls_cnt = 0;
1670	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1671	hmeta.dls_cnt = 0;
1672
1673	sargs.request = RTLD_DI_SERINFOSIZE;
1674	sargs.serinfo = &smeta;
1675	hargs.request = RTLD_DI_SERINFOSIZE;
1676	hargs.serinfo = &hmeta;
1677
1678	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1679	path_enumerate(p, fill_search_info, &hargs);
1680
1681	SLPinfo = xmalloc(smeta.dls_size);
1682	hintinfo = xmalloc(hmeta.dls_size);
1683
1684	/*
1685	 * Next fetch both sets of paths.
1686	 */
1687	sargs.request = RTLD_DI_SERINFO;
1688	sargs.serinfo = SLPinfo;
1689	sargs.serpath = &SLPinfo->dls_serpath[0];
1690	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1691
1692	hargs.request = RTLD_DI_SERINFO;
1693	hargs.serinfo = hintinfo;
1694	hargs.serpath = &hintinfo->dls_serpath[0];
1695	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1696
1697	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1698	path_enumerate(p, fill_search_info, &hargs);
1699
1700	/*
1701	 * Now calculate the difference between two sets, by excluding
1702	 * standard paths from the full set.
1703	 */
1704	fndx = 0;
1705	fcount = 0;
1706	filtered_path = xmalloc(hdr.dirlistlen + 1);
1707	hintpath = &hintinfo->dls_serpath[0];
1708	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1709		skip = false;
1710		SLPpath = &SLPinfo->dls_serpath[0];
1711		/*
1712		 * Check each standard path against current.
1713		 */
1714		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1715			/* matched, skip the path */
1716			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1717				skip = true;
1718				break;
1719			}
1720		}
1721		if (skip)
1722			continue;
1723		/*
1724		 * Not matched against any standard path, add the path
1725		 * to result. Separate consequtive paths with ':'.
1726		 */
1727		if (fcount > 0) {
1728			filtered_path[fndx] = ':';
1729			fndx++;
1730		}
1731		fcount++;
1732		flen = strlen(hintpath->dls_name);
1733		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1734		fndx += flen;
1735	}
1736	filtered_path[fndx] = '\0';
1737
1738	free(SLPinfo);
1739	free(hintinfo);
1740
1741filt_ret:
1742	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1743}
1744
1745static void
1746init_dag(Obj_Entry *root)
1747{
1748    const Needed_Entry *needed;
1749    const Objlist_Entry *elm;
1750    DoneList donelist;
1751
1752    if (root->dag_inited)
1753	return;
1754    donelist_init(&donelist);
1755
1756    /* Root object belongs to own DAG. */
1757    objlist_push_tail(&root->dldags, root);
1758    objlist_push_tail(&root->dagmembers, root);
1759    donelist_check(&donelist, root);
1760
1761    /*
1762     * Add dependencies of root object to DAG in breadth order
1763     * by exploiting the fact that each new object get added
1764     * to the tail of the dagmembers list.
1765     */
1766    STAILQ_FOREACH(elm, &root->dagmembers, link) {
1767	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1768	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1769		continue;
1770	    objlist_push_tail(&needed->obj->dldags, root);
1771	    objlist_push_tail(&root->dagmembers, needed->obj);
1772	}
1773    }
1774    root->dag_inited = true;
1775}
1776
1777static void
1778process_nodelete(Obj_Entry *root)
1779{
1780	const Objlist_Entry *elm;
1781
1782	/*
1783	 * Walk over object DAG and process every dependent object that
1784	 * is marked as DF_1_NODELETE. They need to grow their own DAG,
1785	 * which then should have its reference upped separately.
1786	 */
1787	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1788		if (elm->obj != NULL && elm->obj->z_nodelete &&
1789		    !elm->obj->ref_nodel) {
1790			dbg("obj %s nodelete", elm->obj->path);
1791			init_dag(elm->obj);
1792			ref_dag(elm->obj);
1793			elm->obj->ref_nodel = true;
1794		}
1795	}
1796}
1797/*
1798 * Initialize the dynamic linker.  The argument is the address at which
1799 * the dynamic linker has been mapped into memory.  The primary task of
1800 * this function is to relocate the dynamic linker.
1801 */
1802static void
1803init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1804{
1805    Obj_Entry objtmp;	/* Temporary rtld object */
1806    const Elf_Dyn *dyn_rpath;
1807    const Elf_Dyn *dyn_soname;
1808    const Elf_Dyn *dyn_runpath;
1809
1810    /*
1811     * Conjure up an Obj_Entry structure for the dynamic linker.
1812     *
1813     * The "path" member can't be initialized yet because string constants
1814     * cannot yet be accessed. Below we will set it correctly.
1815     */
1816    memset(&objtmp, 0, sizeof(objtmp));
1817    objtmp.path = NULL;
1818    objtmp.rtld = true;
1819    objtmp.mapbase = mapbase;
1820#ifdef PIC
1821    objtmp.relocbase = mapbase;
1822#endif
1823    if (RTLD_IS_DYNAMIC()) {
1824	objtmp.dynamic = rtld_dynamic(&objtmp);
1825	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1826	assert(objtmp.needed == NULL);
1827#if !defined(__mips__)
1828	/* MIPS has a bogus DT_TEXTREL. */
1829	assert(!objtmp.textrel);
1830#endif
1831
1832	/*
1833	 * Temporarily put the dynamic linker entry into the object list, so
1834	 * that symbols can be found.
1835	 */
1836
1837	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1838    }
1839
1840    /* Initialize the object list. */
1841    obj_tail = &obj_list;
1842
1843    /* Now that non-local variables can be accesses, copy out obj_rtld. */
1844    memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1845
1846    /* The page size is required by the dynamic memory allocator. */
1847    init_pagesizes(aux_info);
1848
1849    if (aux_info[AT_OSRELDATE] != NULL)
1850	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1851
1852    digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1853
1854    /* Replace the path with a dynamically allocated copy. */
1855    obj_rtld.path = xstrdup(PATH_RTLD);
1856
1857    r_debug.r_brk = r_debug_state;
1858    r_debug.r_state = RT_CONSISTENT;
1859}
1860
1861/*
1862 * Retrieve the array of supported page sizes.  The kernel provides the page
1863 * sizes in increasing order.
1864 */
1865static void
1866init_pagesizes(Elf_Auxinfo **aux_info)
1867{
1868	static size_t psa[MAXPAGESIZES];
1869	int mib[2];
1870	size_t len, size;
1871
1872	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
1873	    NULL) {
1874		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
1875		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
1876	} else {
1877		len = 2;
1878		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
1879			size = sizeof(psa);
1880		else {
1881			/* As a fallback, retrieve the base page size. */
1882			size = sizeof(psa[0]);
1883			if (aux_info[AT_PAGESZ] != NULL) {
1884				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
1885				goto psa_filled;
1886			} else {
1887				mib[0] = CTL_HW;
1888				mib[1] = HW_PAGESIZE;
1889				len = 2;
1890			}
1891		}
1892		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
1893			_rtld_error("sysctl for hw.pagesize(s) failed");
1894			die();
1895		}
1896psa_filled:
1897		pagesizes = psa;
1898	}
1899	npagesizes = size / sizeof(pagesizes[0]);
1900	/* Discard any invalid entries at the end of the array. */
1901	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
1902		npagesizes--;
1903}
1904
1905/*
1906 * Add the init functions from a needed object list (and its recursive
1907 * needed objects) to "list".  This is not used directly; it is a helper
1908 * function for initlist_add_objects().  The write lock must be held
1909 * when this function is called.
1910 */
1911static void
1912initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1913{
1914    /* Recursively process the successor needed objects. */
1915    if (needed->next != NULL)
1916	initlist_add_neededs(needed->next, list);
1917
1918    /* Process the current needed object. */
1919    if (needed->obj != NULL)
1920	initlist_add_objects(needed->obj, &needed->obj->next, list);
1921}
1922
1923/*
1924 * Scan all of the DAGs rooted in the range of objects from "obj" to
1925 * "tail" and add their init functions to "list".  This recurses over
1926 * the DAGs and ensure the proper init ordering such that each object's
1927 * needed libraries are initialized before the object itself.  At the
1928 * same time, this function adds the objects to the global finalization
1929 * list "list_fini" in the opposite order.  The write lock must be
1930 * held when this function is called.
1931 */
1932static void
1933initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1934{
1935
1936    if (obj->init_scanned || obj->init_done)
1937	return;
1938    obj->init_scanned = true;
1939
1940    /* Recursively process the successor objects. */
1941    if (&obj->next != tail)
1942	initlist_add_objects(obj->next, tail, list);
1943
1944    /* Recursively process the needed objects. */
1945    if (obj->needed != NULL)
1946	initlist_add_neededs(obj->needed, list);
1947    if (obj->needed_filtees != NULL)
1948	initlist_add_neededs(obj->needed_filtees, list);
1949    if (obj->needed_aux_filtees != NULL)
1950	initlist_add_neededs(obj->needed_aux_filtees, list);
1951
1952    /* Add the object to the init list. */
1953    if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1954      obj->init_array != (Elf_Addr)NULL)
1955	objlist_push_tail(list, obj);
1956
1957    /* Add the object to the global fini list in the reverse order. */
1958    if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1959      && !obj->on_fini_list) {
1960	objlist_push_head(&list_fini, obj);
1961	obj->on_fini_list = true;
1962    }
1963}
1964
1965#ifndef FPTR_TARGET
1966#define FPTR_TARGET(f)	((Elf_Addr) (f))
1967#endif
1968
1969static void
1970free_needed_filtees(Needed_Entry *n)
1971{
1972    Needed_Entry *needed, *needed1;
1973
1974    for (needed = n; needed != NULL; needed = needed->next) {
1975	if (needed->obj != NULL) {
1976	    dlclose(needed->obj);
1977	    needed->obj = NULL;
1978	}
1979    }
1980    for (needed = n; needed != NULL; needed = needed1) {
1981	needed1 = needed->next;
1982	free(needed);
1983    }
1984}
1985
1986static void
1987unload_filtees(Obj_Entry *obj)
1988{
1989
1990    free_needed_filtees(obj->needed_filtees);
1991    obj->needed_filtees = NULL;
1992    free_needed_filtees(obj->needed_aux_filtees);
1993    obj->needed_aux_filtees = NULL;
1994    obj->filtees_loaded = false;
1995}
1996
1997static void
1998load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
1999    RtldLockState *lockstate)
2000{
2001
2002    for (; needed != NULL; needed = needed->next) {
2003	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2004	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2005	  RTLD_LOCAL, lockstate);
2006    }
2007}
2008
2009static void
2010load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2011{
2012
2013    lock_restart_for_upgrade(lockstate);
2014    if (!obj->filtees_loaded) {
2015	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2016	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2017	obj->filtees_loaded = true;
2018    }
2019}
2020
2021static int
2022process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2023{
2024    Obj_Entry *obj1;
2025
2026    for (; needed != NULL; needed = needed->next) {
2027	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2028	  flags & ~RTLD_LO_NOLOAD);
2029	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2030	    return (-1);
2031    }
2032    return (0);
2033}
2034
2035/*
2036 * Given a shared object, traverse its list of needed objects, and load
2037 * each of them.  Returns 0 on success.  Generates an error message and
2038 * returns -1 on failure.
2039 */
2040static int
2041load_needed_objects(Obj_Entry *first, int flags)
2042{
2043    Obj_Entry *obj;
2044
2045    for (obj = first;  obj != NULL;  obj = obj->next) {
2046	if (process_needed(obj, obj->needed, flags) == -1)
2047	    return (-1);
2048    }
2049    return (0);
2050}
2051
2052static int
2053load_preload_objects(void)
2054{
2055    char *p = ld_preload;
2056    Obj_Entry *obj;
2057    static const char delim[] = " \t:;";
2058
2059    if (p == NULL)
2060	return 0;
2061
2062    p += strspn(p, delim);
2063    while (*p != '\0') {
2064	size_t len = strcspn(p, delim);
2065	char savech;
2066
2067	savech = p[len];
2068	p[len] = '\0';
2069	obj = load_object(p, -1, NULL, 0);
2070	if (obj == NULL)
2071	    return -1;	/* XXX - cleanup */
2072	obj->z_interpose = true;
2073	p[len] = savech;
2074	p += len;
2075	p += strspn(p, delim);
2076    }
2077    LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2078    return 0;
2079}
2080
2081static const char *
2082printable_path(const char *path)
2083{
2084
2085	return (path == NULL ? "<unknown>" : path);
2086}
2087
2088/*
2089 * Load a shared object into memory, if it is not already loaded.  The
2090 * object may be specified by name or by user-supplied file descriptor
2091 * fd_u. In the later case, the fd_u descriptor is not closed, but its
2092 * duplicate is.
2093 *
2094 * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2095 * on failure.
2096 */
2097static Obj_Entry *
2098load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2099{
2100    Obj_Entry *obj;
2101    int fd;
2102    struct stat sb;
2103    char *path;
2104
2105    if (name != NULL) {
2106	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2107	    if (object_match_name(obj, name))
2108		return (obj);
2109	}
2110
2111	path = find_library(name, refobj);
2112	if (path == NULL)
2113	    return (NULL);
2114    } else
2115	path = NULL;
2116
2117    /*
2118     * If we didn't find a match by pathname, or the name is not
2119     * supplied, open the file and check again by device and inode.
2120     * This avoids false mismatches caused by multiple links or ".."
2121     * in pathnames.
2122     *
2123     * To avoid a race, we open the file and use fstat() rather than
2124     * using stat().
2125     */
2126    fd = -1;
2127    if (fd_u == -1) {
2128	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2129	    _rtld_error("Cannot open \"%s\"", path);
2130	    free(path);
2131	    return (NULL);
2132	}
2133    } else {
2134	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2135	if (fd == -1) {
2136	    _rtld_error("Cannot dup fd");
2137	    free(path);
2138	    return (NULL);
2139	}
2140    }
2141    if (fstat(fd, &sb) == -1) {
2142	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2143	close(fd);
2144	free(path);
2145	return NULL;
2146    }
2147    for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2148	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2149	    break;
2150    if (obj != NULL && name != NULL) {
2151	object_add_name(obj, name);
2152	free(path);
2153	close(fd);
2154	return obj;
2155    }
2156    if (flags & RTLD_LO_NOLOAD) {
2157	free(path);
2158	close(fd);
2159	return (NULL);
2160    }
2161
2162    /* First use of this object, so we must map it in */
2163    obj = do_load_object(fd, name, path, &sb, flags);
2164    if (obj == NULL)
2165	free(path);
2166    close(fd);
2167
2168    return obj;
2169}
2170
2171static Obj_Entry *
2172do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2173  int flags)
2174{
2175    Obj_Entry *obj;
2176    struct statfs fs;
2177
2178    /*
2179     * but first, make sure that environment variables haven't been
2180     * used to circumvent the noexec flag on a filesystem.
2181     */
2182    if (dangerous_ld_env) {
2183	if (fstatfs(fd, &fs) != 0) {
2184	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2185	    return NULL;
2186	}
2187	if (fs.f_flags & MNT_NOEXEC) {
2188	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2189	    return NULL;
2190	}
2191    }
2192    dbg("loading \"%s\"", printable_path(path));
2193    obj = map_object(fd, printable_path(path), sbp);
2194    if (obj == NULL)
2195        return NULL;
2196
2197    /*
2198     * If DT_SONAME is present in the object, digest_dynamic2 already
2199     * added it to the object names.
2200     */
2201    if (name != NULL)
2202	object_add_name(obj, name);
2203    obj->path = path;
2204    digest_dynamic(obj, 0);
2205    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2206	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2207    if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2208      RTLD_LO_DLOPEN) {
2209	dbg("refusing to load non-loadable \"%s\"", obj->path);
2210	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2211	munmap(obj->mapbase, obj->mapsize);
2212	obj_free(obj);
2213	return (NULL);
2214    }
2215
2216    obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2217    *obj_tail = obj;
2218    obj_tail = &obj->next;
2219    obj_count++;
2220    obj_loads++;
2221    linkmap_add(obj);	/* for GDB & dlinfo() */
2222    max_stack_flags |= obj->stack_flags;
2223
2224    dbg("  %p .. %p: %s", obj->mapbase,
2225         obj->mapbase + obj->mapsize - 1, obj->path);
2226    if (obj->textrel)
2227	dbg("  WARNING: %s has impure text", obj->path);
2228    LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2229	obj->path);
2230
2231    return obj;
2232}
2233
2234static Obj_Entry *
2235obj_from_addr(const void *addr)
2236{
2237    Obj_Entry *obj;
2238
2239    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2240	if (addr < (void *) obj->mapbase)
2241	    continue;
2242	if (addr < (void *) (obj->mapbase + obj->mapsize))
2243	    return obj;
2244    }
2245    return NULL;
2246}
2247
2248static void
2249preinit_main(void)
2250{
2251    Elf_Addr *preinit_addr;
2252    int index;
2253
2254    preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2255    if (preinit_addr == NULL)
2256	return;
2257
2258    for (index = 0; index < obj_main->preinit_array_num; index++) {
2259	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2260	    dbg("calling preinit function for %s at %p", obj_main->path,
2261	      (void *)preinit_addr[index]);
2262	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2263	      0, 0, obj_main->path);
2264	    call_init_pointer(obj_main, preinit_addr[index]);
2265	}
2266    }
2267}
2268
2269/*
2270 * Call the finalization functions for each of the objects in "list"
2271 * belonging to the DAG of "root" and referenced once. If NULL "root"
2272 * is specified, every finalization function will be called regardless
2273 * of the reference count and the list elements won't be freed. All of
2274 * the objects are expected to have non-NULL fini functions.
2275 */
2276static void
2277objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2278{
2279    Objlist_Entry *elm;
2280    char *saved_msg;
2281    Elf_Addr *fini_addr;
2282    int index;
2283
2284    assert(root == NULL || root->refcount == 1);
2285
2286    /*
2287     * Preserve the current error message since a fini function might
2288     * call into the dynamic linker and overwrite it.
2289     */
2290    saved_msg = errmsg_save();
2291    do {
2292	STAILQ_FOREACH(elm, list, link) {
2293	    if (root != NULL && (elm->obj->refcount != 1 ||
2294	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2295		continue;
2296	    /* Remove object from fini list to prevent recursive invocation. */
2297	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2298	    /*
2299	     * XXX: If a dlopen() call references an object while the
2300	     * fini function is in progress, we might end up trying to
2301	     * unload the referenced object in dlclose() or the object
2302	     * won't be unloaded although its fini function has been
2303	     * called.
2304	     */
2305	    lock_release(rtld_bind_lock, lockstate);
2306
2307	    /*
2308	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2309	     * When this happens, DT_FINI_ARRAY is processed first.
2310	     */
2311	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2312	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2313		for (index = elm->obj->fini_array_num - 1; index >= 0;
2314		  index--) {
2315		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2316			dbg("calling fini function for %s at %p",
2317			    elm->obj->path, (void *)fini_addr[index]);
2318			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2319			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2320			call_initfini_pointer(elm->obj, fini_addr[index]);
2321		    }
2322		}
2323	    }
2324	    if (elm->obj->fini != (Elf_Addr)NULL) {
2325		dbg("calling fini function for %s at %p", elm->obj->path,
2326		    (void *)elm->obj->fini);
2327		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2328		    0, 0, elm->obj->path);
2329		call_initfini_pointer(elm->obj, elm->obj->fini);
2330	    }
2331	    wlock_acquire(rtld_bind_lock, lockstate);
2332	    /* No need to free anything if process is going down. */
2333	    if (root != NULL)
2334	    	free(elm);
2335	    /*
2336	     * We must restart the list traversal after every fini call
2337	     * because a dlclose() call from the fini function or from
2338	     * another thread might have modified the reference counts.
2339	     */
2340	    break;
2341	}
2342    } while (elm != NULL);
2343    errmsg_restore(saved_msg);
2344}
2345
2346/*
2347 * Call the initialization functions for each of the objects in
2348 * "list".  All of the objects are expected to have non-NULL init
2349 * functions.
2350 */
2351static void
2352objlist_call_init(Objlist *list, RtldLockState *lockstate)
2353{
2354    Objlist_Entry *elm;
2355    Obj_Entry *obj;
2356    char *saved_msg;
2357    Elf_Addr *init_addr;
2358    int index;
2359
2360    /*
2361     * Clean init_scanned flag so that objects can be rechecked and
2362     * possibly initialized earlier if any of vectors called below
2363     * cause the change by using dlopen.
2364     */
2365    for (obj = obj_list;  obj != NULL;  obj = obj->next)
2366	obj->init_scanned = false;
2367
2368    /*
2369     * Preserve the current error message since an init function might
2370     * call into the dynamic linker and overwrite it.
2371     */
2372    saved_msg = errmsg_save();
2373    STAILQ_FOREACH(elm, list, link) {
2374	if (elm->obj->init_done) /* Initialized early. */
2375	    continue;
2376	/*
2377	 * Race: other thread might try to use this object before current
2378	 * one completes the initilization. Not much can be done here
2379	 * without better locking.
2380	 */
2381	elm->obj->init_done = true;
2382	lock_release(rtld_bind_lock, lockstate);
2383
2384        /*
2385         * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2386         * When this happens, DT_INIT is processed first.
2387         */
2388	if (elm->obj->init != (Elf_Addr)NULL) {
2389	    dbg("calling init function for %s at %p", elm->obj->path,
2390	        (void *)elm->obj->init);
2391	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2392	        0, 0, elm->obj->path);
2393	    call_initfini_pointer(elm->obj, elm->obj->init);
2394	}
2395	init_addr = (Elf_Addr *)elm->obj->init_array;
2396	if (init_addr != NULL) {
2397	    for (index = 0; index < elm->obj->init_array_num; index++) {
2398		if (init_addr[index] != 0 && init_addr[index] != 1) {
2399		    dbg("calling init function for %s at %p", elm->obj->path,
2400			(void *)init_addr[index]);
2401		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2402			(void *)init_addr[index], 0, 0, elm->obj->path);
2403		    call_init_pointer(elm->obj, init_addr[index]);
2404		}
2405	    }
2406	}
2407	wlock_acquire(rtld_bind_lock, lockstate);
2408    }
2409    errmsg_restore(saved_msg);
2410}
2411
2412static void
2413objlist_clear(Objlist *list)
2414{
2415    Objlist_Entry *elm;
2416
2417    while (!STAILQ_EMPTY(list)) {
2418	elm = STAILQ_FIRST(list);
2419	STAILQ_REMOVE_HEAD(list, link);
2420	free(elm);
2421    }
2422}
2423
2424static Objlist_Entry *
2425objlist_find(Objlist *list, const Obj_Entry *obj)
2426{
2427    Objlist_Entry *elm;
2428
2429    STAILQ_FOREACH(elm, list, link)
2430	if (elm->obj == obj)
2431	    return elm;
2432    return NULL;
2433}
2434
2435static void
2436objlist_init(Objlist *list)
2437{
2438    STAILQ_INIT(list);
2439}
2440
2441static void
2442objlist_push_head(Objlist *list, Obj_Entry *obj)
2443{
2444    Objlist_Entry *elm;
2445
2446    elm = NEW(Objlist_Entry);
2447    elm->obj = obj;
2448    STAILQ_INSERT_HEAD(list, elm, link);
2449}
2450
2451static void
2452objlist_push_tail(Objlist *list, Obj_Entry *obj)
2453{
2454    Objlist_Entry *elm;
2455
2456    elm = NEW(Objlist_Entry);
2457    elm->obj = obj;
2458    STAILQ_INSERT_TAIL(list, elm, link);
2459}
2460
2461static void
2462objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2463{
2464	Objlist_Entry *elm, *listelm;
2465
2466	STAILQ_FOREACH(listelm, list, link) {
2467		if (listelm->obj == listobj)
2468			break;
2469	}
2470	elm = NEW(Objlist_Entry);
2471	elm->obj = obj;
2472	if (listelm != NULL)
2473		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2474	else
2475		STAILQ_INSERT_TAIL(list, elm, link);
2476}
2477
2478static void
2479objlist_remove(Objlist *list, Obj_Entry *obj)
2480{
2481    Objlist_Entry *elm;
2482
2483    if ((elm = objlist_find(list, obj)) != NULL) {
2484	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2485	free(elm);
2486    }
2487}
2488
2489/*
2490 * Relocate dag rooted in the specified object.
2491 * Returns 0 on success, or -1 on failure.
2492 */
2493
2494static int
2495relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2496    int flags, RtldLockState *lockstate)
2497{
2498	Objlist_Entry *elm;
2499	int error;
2500
2501	error = 0;
2502	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2503		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2504		    lockstate);
2505		if (error == -1)
2506			break;
2507	}
2508	return (error);
2509}
2510
2511/*
2512 * Relocate single object.
2513 * Returns 0 on success, or -1 on failure.
2514 */
2515static int
2516relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2517    int flags, RtldLockState *lockstate)
2518{
2519
2520	if (obj->relocated)
2521		return (0);
2522	obj->relocated = true;
2523	if (obj != rtldobj)
2524		dbg("relocating \"%s\"", obj->path);
2525
2526	if (obj->symtab == NULL || obj->strtab == NULL ||
2527	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2528		_rtld_error("%s: Shared object has no run-time symbol table",
2529			    obj->path);
2530		return (-1);
2531	}
2532
2533	if (obj->textrel) {
2534		/* There are relocations to the write-protected text segment. */
2535		if (mprotect(obj->mapbase, obj->textsize,
2536		    PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2537			_rtld_error("%s: Cannot write-enable text segment: %s",
2538			    obj->path, rtld_strerror(errno));
2539			return (-1);
2540		}
2541	}
2542
2543	/* Process the non-PLT non-IFUNC relocations. */
2544	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2545		return (-1);
2546
2547	if (obj->textrel) {	/* Re-protected the text segment. */
2548		if (mprotect(obj->mapbase, obj->textsize,
2549		    PROT_READ|PROT_EXEC) == -1) {
2550			_rtld_error("%s: Cannot write-protect text segment: %s",
2551			    obj->path, rtld_strerror(errno));
2552			return (-1);
2553		}
2554	}
2555
2556	/* Set the special PLT or GOT entries. */
2557	init_pltgot(obj);
2558
2559	/* Process the PLT relocations. */
2560	if (reloc_plt(obj) == -1)
2561		return (-1);
2562	/* Relocate the jump slots if we are doing immediate binding. */
2563	if (obj->bind_now || bind_now)
2564		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2565			return (-1);
2566
2567	/*
2568	 * Process the non-PLT IFUNC relocations.  The relocations are
2569	 * processed in two phases, because IFUNC resolvers may
2570	 * reference other symbols, which must be readily processed
2571	 * before resolvers are called.
2572	 */
2573	if (obj->non_plt_gnu_ifunc &&
2574	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2575		return (-1);
2576
2577	if (obj->relro_size > 0) {
2578		if (mprotect(obj->relro_page, obj->relro_size,
2579		    PROT_READ) == -1) {
2580			_rtld_error("%s: Cannot enforce relro protection: %s",
2581			    obj->path, rtld_strerror(errno));
2582			return (-1);
2583		}
2584	}
2585
2586	/*
2587	 * Set up the magic number and version in the Obj_Entry.  These
2588	 * were checked in the crt1.o from the original ElfKit, so we
2589	 * set them for backward compatibility.
2590	 */
2591	obj->magic = RTLD_MAGIC;
2592	obj->version = RTLD_VERSION;
2593
2594	return (0);
2595}
2596
2597/*
2598 * Relocate newly-loaded shared objects.  The argument is a pointer to
2599 * the Obj_Entry for the first such object.  All objects from the first
2600 * to the end of the list of objects are relocated.  Returns 0 on success,
2601 * or -1 on failure.
2602 */
2603static int
2604relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2605    int flags, RtldLockState *lockstate)
2606{
2607	Obj_Entry *obj;
2608	int error;
2609
2610	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2611		error = relocate_object(obj, bind_now, rtldobj, flags,
2612		    lockstate);
2613		if (error == -1)
2614			break;
2615	}
2616	return (error);
2617}
2618
2619/*
2620 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2621 * referencing STT_GNU_IFUNC symbols is postponed till the other
2622 * relocations are done.  The indirect functions specified as
2623 * ifunc are allowed to call other symbols, so we need to have
2624 * objects relocated before asking for resolution from indirects.
2625 *
2626 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2627 * instead of the usual lazy handling of PLT slots.  It is
2628 * consistent with how GNU does it.
2629 */
2630static int
2631resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2632    RtldLockState *lockstate)
2633{
2634	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2635		return (-1);
2636	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2637	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2638		return (-1);
2639	return (0);
2640}
2641
2642static int
2643resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2644    RtldLockState *lockstate)
2645{
2646	Obj_Entry *obj;
2647
2648	for (obj = first;  obj != NULL;  obj = obj->next) {
2649		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2650			return (-1);
2651	}
2652	return (0);
2653}
2654
2655static int
2656initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2657    RtldLockState *lockstate)
2658{
2659	Objlist_Entry *elm;
2660
2661	STAILQ_FOREACH(elm, list, link) {
2662		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2663		    lockstate) == -1)
2664			return (-1);
2665	}
2666	return (0);
2667}
2668
2669/*
2670 * Cleanup procedure.  It will be called (by the atexit mechanism) just
2671 * before the process exits.
2672 */
2673static void
2674rtld_exit(void)
2675{
2676    RtldLockState lockstate;
2677
2678    wlock_acquire(rtld_bind_lock, &lockstate);
2679    dbg("rtld_exit()");
2680    objlist_call_fini(&list_fini, NULL, &lockstate);
2681    /* No need to remove the items from the list, since we are exiting. */
2682    if (!libmap_disable)
2683        lm_fini();
2684    lock_release(rtld_bind_lock, &lockstate);
2685}
2686
2687/*
2688 * Iterate over a search path, translate each element, and invoke the
2689 * callback on the result.
2690 */
2691static void *
2692path_enumerate(const char *path, path_enum_proc callback, void *arg)
2693{
2694    const char *trans;
2695    if (path == NULL)
2696	return (NULL);
2697
2698    path += strspn(path, ":;");
2699    while (*path != '\0') {
2700	size_t len;
2701	char  *res;
2702
2703	len = strcspn(path, ":;");
2704	trans = lm_findn(NULL, path, len);
2705	if (trans)
2706	    res = callback(trans, strlen(trans), arg);
2707	else
2708	    res = callback(path, len, arg);
2709
2710	if (res != NULL)
2711	    return (res);
2712
2713	path += len;
2714	path += strspn(path, ":;");
2715    }
2716
2717    return (NULL);
2718}
2719
2720struct try_library_args {
2721    const char	*name;
2722    size_t	 namelen;
2723    char	*buffer;
2724    size_t	 buflen;
2725};
2726
2727static void *
2728try_library_path(const char *dir, size_t dirlen, void *param)
2729{
2730    struct try_library_args *arg;
2731
2732    arg = param;
2733    if (*dir == '/' || trust) {
2734	char *pathname;
2735
2736	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2737		return (NULL);
2738
2739	pathname = arg->buffer;
2740	strncpy(pathname, dir, dirlen);
2741	pathname[dirlen] = '/';
2742	strcpy(pathname + dirlen + 1, arg->name);
2743
2744	dbg("  Trying \"%s\"", pathname);
2745	if (access(pathname, F_OK) == 0) {		/* We found it */
2746	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2747	    strcpy(pathname, arg->buffer);
2748	    return (pathname);
2749	}
2750    }
2751    return (NULL);
2752}
2753
2754static char *
2755search_library_path(const char *name, const char *path)
2756{
2757    char *p;
2758    struct try_library_args arg;
2759
2760    if (path == NULL)
2761	return NULL;
2762
2763    arg.name = name;
2764    arg.namelen = strlen(name);
2765    arg.buffer = xmalloc(PATH_MAX);
2766    arg.buflen = PATH_MAX;
2767
2768    p = path_enumerate(path, try_library_path, &arg);
2769
2770    free(arg.buffer);
2771
2772    return (p);
2773}
2774
2775int
2776dlclose(void *handle)
2777{
2778    Obj_Entry *root;
2779    RtldLockState lockstate;
2780
2781    wlock_acquire(rtld_bind_lock, &lockstate);
2782    root = dlcheck(handle);
2783    if (root == NULL) {
2784	lock_release(rtld_bind_lock, &lockstate);
2785	return -1;
2786    }
2787    LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2788	root->path);
2789
2790    /* Unreference the object and its dependencies. */
2791    root->dl_refcount--;
2792
2793    if (root->refcount == 1) {
2794	/*
2795	 * The object will be no longer referenced, so we must unload it.
2796	 * First, call the fini functions.
2797	 */
2798	objlist_call_fini(&list_fini, root, &lockstate);
2799
2800	unref_dag(root);
2801
2802	/* Finish cleaning up the newly-unreferenced objects. */
2803	GDB_STATE(RT_DELETE,&root->linkmap);
2804	unload_object(root);
2805	GDB_STATE(RT_CONSISTENT,NULL);
2806    } else
2807	unref_dag(root);
2808
2809    LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2810    lock_release(rtld_bind_lock, &lockstate);
2811    return 0;
2812}
2813
2814char *
2815dlerror(void)
2816{
2817    char *msg = error_message;
2818    error_message = NULL;
2819    return msg;
2820}
2821
2822/*
2823 * This function is deprecated and has no effect.
2824 */
2825void
2826dllockinit(void *context,
2827	   void *(*lock_create)(void *context),
2828           void (*rlock_acquire)(void *lock),
2829           void (*wlock_acquire)(void *lock),
2830           void (*lock_release)(void *lock),
2831           void (*lock_destroy)(void *lock),
2832	   void (*context_destroy)(void *context))
2833{
2834    static void *cur_context;
2835    static void (*cur_context_destroy)(void *);
2836
2837    /* Just destroy the context from the previous call, if necessary. */
2838    if (cur_context_destroy != NULL)
2839	cur_context_destroy(cur_context);
2840    cur_context = context;
2841    cur_context_destroy = context_destroy;
2842}
2843
2844void *
2845dlopen(const char *name, int mode)
2846{
2847
2848	return (rtld_dlopen(name, -1, mode));
2849}
2850
2851void *
2852fdlopen(int fd, int mode)
2853{
2854
2855	return (rtld_dlopen(NULL, fd, mode));
2856}
2857
2858static void *
2859rtld_dlopen(const char *name, int fd, int mode)
2860{
2861    RtldLockState lockstate;
2862    int lo_flags;
2863
2864    LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2865    ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2866    if (ld_tracing != NULL) {
2867	rlock_acquire(rtld_bind_lock, &lockstate);
2868	if (sigsetjmp(lockstate.env, 0) != 0)
2869	    lock_upgrade(rtld_bind_lock, &lockstate);
2870	environ = (char **)*get_program_var_addr("environ", &lockstate);
2871	lock_release(rtld_bind_lock, &lockstate);
2872    }
2873    lo_flags = RTLD_LO_DLOPEN;
2874    if (mode & RTLD_NODELETE)
2875	    lo_flags |= RTLD_LO_NODELETE;
2876    if (mode & RTLD_NOLOAD)
2877	    lo_flags |= RTLD_LO_NOLOAD;
2878    if (ld_tracing != NULL)
2879	    lo_flags |= RTLD_LO_TRACE;
2880
2881    return (dlopen_object(name, fd, obj_main, lo_flags,
2882      mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2883}
2884
2885static void
2886dlopen_cleanup(Obj_Entry *obj)
2887{
2888
2889	obj->dl_refcount--;
2890	unref_dag(obj);
2891	if (obj->refcount == 0)
2892		unload_object(obj);
2893}
2894
2895static Obj_Entry *
2896dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2897    int mode, RtldLockState *lockstate)
2898{
2899    Obj_Entry **old_obj_tail;
2900    Obj_Entry *obj;
2901    Objlist initlist;
2902    RtldLockState mlockstate;
2903    int result;
2904
2905    objlist_init(&initlist);
2906
2907    if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2908	wlock_acquire(rtld_bind_lock, &mlockstate);
2909	lockstate = &mlockstate;
2910    }
2911    GDB_STATE(RT_ADD,NULL);
2912
2913    old_obj_tail = obj_tail;
2914    obj = NULL;
2915    if (name == NULL && fd == -1) {
2916	obj = obj_main;
2917	obj->refcount++;
2918    } else {
2919	obj = load_object(name, fd, refobj, lo_flags);
2920    }
2921
2922    if (obj) {
2923	obj->dl_refcount++;
2924	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2925	    objlist_push_tail(&list_global, obj);
2926	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2927	    assert(*old_obj_tail == obj);
2928	    result = load_needed_objects(obj,
2929		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
2930	    init_dag(obj);
2931	    ref_dag(obj);
2932	    if (result != -1)
2933		result = rtld_verify_versions(&obj->dagmembers);
2934	    if (result != -1 && ld_tracing)
2935		goto trace;
2936	    if (result == -1 || relocate_object_dag(obj,
2937	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
2938	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2939	      lockstate) == -1) {
2940		dlopen_cleanup(obj);
2941		obj = NULL;
2942	    } else if (lo_flags & RTLD_LO_EARLY) {
2943		/*
2944		 * Do not call the init functions for early loaded
2945		 * filtees.  The image is still not initialized enough
2946		 * for them to work.
2947		 *
2948		 * Our object is found by the global object list and
2949		 * will be ordered among all init calls done right
2950		 * before transferring control to main.
2951		 */
2952	    } else {
2953		/* Make list of init functions to call. */
2954		initlist_add_objects(obj, &obj->next, &initlist);
2955	    }
2956	    /*
2957	     * Process all no_delete objects here, given them own
2958	     * DAGs to prevent their dependencies from being unloaded.
2959	     * This has to be done after we have loaded all of the
2960	     * dependencies, so that we do not miss any.
2961	     */
2962	    if (obj != NULL)
2963		process_nodelete(obj);
2964	} else {
2965	    /*
2966	     * Bump the reference counts for objects on this DAG.  If
2967	     * this is the first dlopen() call for the object that was
2968	     * already loaded as a dependency, initialize the dag
2969	     * starting at it.
2970	     */
2971	    init_dag(obj);
2972	    ref_dag(obj);
2973
2974	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2975		goto trace;
2976	}
2977	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2978	  obj->z_nodelete) && !obj->ref_nodel) {
2979	    dbg("obj %s nodelete", obj->path);
2980	    ref_dag(obj);
2981	    obj->z_nodelete = obj->ref_nodel = true;
2982	}
2983    }
2984
2985    LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2986	name);
2987    GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2988
2989    if (!(lo_flags & RTLD_LO_EARLY)) {
2990	map_stacks_exec(lockstate);
2991    }
2992
2993    if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
2994      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2995      lockstate) == -1) {
2996	objlist_clear(&initlist);
2997	dlopen_cleanup(obj);
2998	if (lockstate == &mlockstate)
2999	    lock_release(rtld_bind_lock, lockstate);
3000	return (NULL);
3001    }
3002
3003    if (!(lo_flags & RTLD_LO_EARLY)) {
3004	/* Call the init functions. */
3005	objlist_call_init(&initlist, lockstate);
3006    }
3007    objlist_clear(&initlist);
3008    if (lockstate == &mlockstate)
3009	lock_release(rtld_bind_lock, lockstate);
3010    return obj;
3011trace:
3012    trace_loaded_objects(obj);
3013    if (lockstate == &mlockstate)
3014	lock_release(rtld_bind_lock, lockstate);
3015    exit(0);
3016}
3017
3018static void *
3019do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3020    int flags)
3021{
3022    DoneList donelist;
3023    const Obj_Entry *obj, *defobj;
3024    const Elf_Sym *def;
3025    SymLook req;
3026    RtldLockState lockstate;
3027#ifndef __ia64__
3028    tls_index ti;
3029#endif
3030    int res;
3031
3032    def = NULL;
3033    defobj = NULL;
3034    symlook_init(&req, name);
3035    req.ventry = ve;
3036    req.flags = flags | SYMLOOK_IN_PLT;
3037    req.lockstate = &lockstate;
3038
3039    rlock_acquire(rtld_bind_lock, &lockstate);
3040    if (sigsetjmp(lockstate.env, 0) != 0)
3041	    lock_upgrade(rtld_bind_lock, &lockstate);
3042    if (handle == NULL || handle == RTLD_NEXT ||
3043	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3044
3045	if ((obj = obj_from_addr(retaddr)) == NULL) {
3046	    _rtld_error("Cannot determine caller's shared object");
3047	    lock_release(rtld_bind_lock, &lockstate);
3048	    return NULL;
3049	}
3050	if (handle == NULL) {	/* Just the caller's shared object. */
3051	    res = symlook_obj(&req, obj);
3052	    if (res == 0) {
3053		def = req.sym_out;
3054		defobj = req.defobj_out;
3055	    }
3056	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3057		   handle == RTLD_SELF) { /* ... caller included */
3058	    if (handle == RTLD_NEXT)
3059		obj = obj->next;
3060	    for (; obj != NULL; obj = obj->next) {
3061		res = symlook_obj(&req, obj);
3062		if (res == 0) {
3063		    if (def == NULL ||
3064		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3065			def = req.sym_out;
3066			defobj = req.defobj_out;
3067			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3068			    break;
3069		    }
3070		}
3071	    }
3072	    /*
3073	     * Search the dynamic linker itself, and possibly resolve the
3074	     * symbol from there.  This is how the application links to
3075	     * dynamic linker services such as dlopen.
3076	     */
3077	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3078		res = symlook_obj(&req, &obj_rtld);
3079		if (res == 0) {
3080		    def = req.sym_out;
3081		    defobj = req.defobj_out;
3082		}
3083	    }
3084	} else {
3085	    assert(handle == RTLD_DEFAULT);
3086	    res = symlook_default(&req, obj);
3087	    if (res == 0) {
3088		defobj = req.defobj_out;
3089		def = req.sym_out;
3090	    }
3091	}
3092    } else {
3093	if ((obj = dlcheck(handle)) == NULL) {
3094	    lock_release(rtld_bind_lock, &lockstate);
3095	    return NULL;
3096	}
3097
3098	donelist_init(&donelist);
3099	if (obj->mainprog) {
3100            /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3101	    res = symlook_global(&req, &donelist);
3102	    if (res == 0) {
3103		def = req.sym_out;
3104		defobj = req.defobj_out;
3105	    }
3106	    /*
3107	     * Search the dynamic linker itself, and possibly resolve the
3108	     * symbol from there.  This is how the application links to
3109	     * dynamic linker services such as dlopen.
3110	     */
3111	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3112		res = symlook_obj(&req, &obj_rtld);
3113		if (res == 0) {
3114		    def = req.sym_out;
3115		    defobj = req.defobj_out;
3116		}
3117	    }
3118	}
3119	else {
3120	    /* Search the whole DAG rooted at the given object. */
3121	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3122	    if (res == 0) {
3123		def = req.sym_out;
3124		defobj = req.defobj_out;
3125	    }
3126	}
3127    }
3128
3129    if (def != NULL) {
3130	lock_release(rtld_bind_lock, &lockstate);
3131
3132	/*
3133	 * The value required by the caller is derived from the value
3134	 * of the symbol. For the ia64 architecture, we need to
3135	 * construct a function descriptor which the caller can use to
3136	 * call the function with the right 'gp' value. For other
3137	 * architectures and for non-functions, the value is simply
3138	 * the relocated value of the symbol.
3139	 */
3140	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3141	    return (make_function_pointer(def, defobj));
3142	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3143	    return (rtld_resolve_ifunc(defobj, def));
3144	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3145#ifdef __ia64__
3146	    return (__tls_get_addr(defobj->tlsindex, def->st_value));
3147#else
3148	    ti.ti_module = defobj->tlsindex;
3149	    ti.ti_offset = def->st_value;
3150	    return (__tls_get_addr(&ti));
3151#endif
3152	} else
3153	    return (defobj->relocbase + def->st_value);
3154    }
3155
3156    _rtld_error("Undefined symbol \"%s\"", name);
3157    lock_release(rtld_bind_lock, &lockstate);
3158    return NULL;
3159}
3160
3161void *
3162dlsym(void *handle, const char *name)
3163{
3164	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3165	    SYMLOOK_DLSYM);
3166}
3167
3168dlfunc_t
3169dlfunc(void *handle, const char *name)
3170{
3171	union {
3172		void *d;
3173		dlfunc_t f;
3174	} rv;
3175
3176	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3177	    SYMLOOK_DLSYM);
3178	return (rv.f);
3179}
3180
3181void *
3182dlvsym(void *handle, const char *name, const char *version)
3183{
3184	Ver_Entry ventry;
3185
3186	ventry.name = version;
3187	ventry.file = NULL;
3188	ventry.hash = elf_hash(version);
3189	ventry.flags= 0;
3190	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3191	    SYMLOOK_DLSYM);
3192}
3193
3194int
3195_rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3196{
3197    const Obj_Entry *obj;
3198    RtldLockState lockstate;
3199
3200    rlock_acquire(rtld_bind_lock, &lockstate);
3201    obj = obj_from_addr(addr);
3202    if (obj == NULL) {
3203        _rtld_error("No shared object contains address");
3204	lock_release(rtld_bind_lock, &lockstate);
3205        return (0);
3206    }
3207    rtld_fill_dl_phdr_info(obj, phdr_info);
3208    lock_release(rtld_bind_lock, &lockstate);
3209    return (1);
3210}
3211
3212int
3213dladdr(const void *addr, Dl_info *info)
3214{
3215    const Obj_Entry *obj;
3216    const Elf_Sym *def;
3217    void *symbol_addr;
3218    unsigned long symoffset;
3219    RtldLockState lockstate;
3220
3221    rlock_acquire(rtld_bind_lock, &lockstate);
3222    obj = obj_from_addr(addr);
3223    if (obj == NULL) {
3224        _rtld_error("No shared object contains address");
3225	lock_release(rtld_bind_lock, &lockstate);
3226        return 0;
3227    }
3228    info->dli_fname = obj->path;
3229    info->dli_fbase = obj->mapbase;
3230    info->dli_saddr = (void *)0;
3231    info->dli_sname = NULL;
3232
3233    /*
3234     * Walk the symbol list looking for the symbol whose address is
3235     * closest to the address sent in.
3236     */
3237    for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3238        def = obj->symtab + symoffset;
3239
3240        /*
3241         * For skip the symbol if st_shndx is either SHN_UNDEF or
3242         * SHN_COMMON.
3243         */
3244        if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3245            continue;
3246
3247        /*
3248         * If the symbol is greater than the specified address, or if it
3249         * is further away from addr than the current nearest symbol,
3250         * then reject it.
3251         */
3252        symbol_addr = obj->relocbase + def->st_value;
3253        if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3254            continue;
3255
3256        /* Update our idea of the nearest symbol. */
3257        info->dli_sname = obj->strtab + def->st_name;
3258        info->dli_saddr = symbol_addr;
3259
3260        /* Exact match? */
3261        if (info->dli_saddr == addr)
3262            break;
3263    }
3264    lock_release(rtld_bind_lock, &lockstate);
3265    return 1;
3266}
3267
3268int
3269dlinfo(void *handle, int request, void *p)
3270{
3271    const Obj_Entry *obj;
3272    RtldLockState lockstate;
3273    int error;
3274
3275    rlock_acquire(rtld_bind_lock, &lockstate);
3276
3277    if (handle == NULL || handle == RTLD_SELF) {
3278	void *retaddr;
3279
3280	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3281	if ((obj = obj_from_addr(retaddr)) == NULL)
3282	    _rtld_error("Cannot determine caller's shared object");
3283    } else
3284	obj = dlcheck(handle);
3285
3286    if (obj == NULL) {
3287	lock_release(rtld_bind_lock, &lockstate);
3288	return (-1);
3289    }
3290
3291    error = 0;
3292    switch (request) {
3293    case RTLD_DI_LINKMAP:
3294	*((struct link_map const **)p) = &obj->linkmap;
3295	break;
3296    case RTLD_DI_ORIGIN:
3297	error = rtld_dirname(obj->path, p);
3298	break;
3299
3300    case RTLD_DI_SERINFOSIZE:
3301    case RTLD_DI_SERINFO:
3302	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3303	break;
3304
3305    default:
3306	_rtld_error("Invalid request %d passed to dlinfo()", request);
3307	error = -1;
3308    }
3309
3310    lock_release(rtld_bind_lock, &lockstate);
3311
3312    return (error);
3313}
3314
3315static void
3316rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3317{
3318
3319	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3320	phdr_info->dlpi_name = obj->path;
3321	phdr_info->dlpi_phdr = obj->phdr;
3322	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3323	phdr_info->dlpi_tls_modid = obj->tlsindex;
3324	phdr_info->dlpi_tls_data = obj->tlsinit;
3325	phdr_info->dlpi_adds = obj_loads;
3326	phdr_info->dlpi_subs = obj_loads - obj_count;
3327}
3328
3329int
3330dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3331{
3332    struct dl_phdr_info phdr_info;
3333    const Obj_Entry *obj;
3334    RtldLockState bind_lockstate, phdr_lockstate;
3335    int error;
3336
3337    wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3338    rlock_acquire(rtld_bind_lock, &bind_lockstate);
3339
3340    error = 0;
3341
3342    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3343	rtld_fill_dl_phdr_info(obj, &phdr_info);
3344	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3345		break;
3346
3347    }
3348    lock_release(rtld_bind_lock, &bind_lockstate);
3349    lock_release(rtld_phdr_lock, &phdr_lockstate);
3350
3351    return (error);
3352}
3353
3354static void *
3355fill_search_info(const char *dir, size_t dirlen, void *param)
3356{
3357    struct fill_search_info_args *arg;
3358
3359    arg = param;
3360
3361    if (arg->request == RTLD_DI_SERINFOSIZE) {
3362	arg->serinfo->dls_cnt ++;
3363	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3364    } else {
3365	struct dl_serpath *s_entry;
3366
3367	s_entry = arg->serpath;
3368	s_entry->dls_name  = arg->strspace;
3369	s_entry->dls_flags = arg->flags;
3370
3371	strncpy(arg->strspace, dir, dirlen);
3372	arg->strspace[dirlen] = '\0';
3373
3374	arg->strspace += dirlen + 1;
3375	arg->serpath++;
3376    }
3377
3378    return (NULL);
3379}
3380
3381static int
3382do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3383{
3384    struct dl_serinfo _info;
3385    struct fill_search_info_args args;
3386
3387    args.request = RTLD_DI_SERINFOSIZE;
3388    args.serinfo = &_info;
3389
3390    _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3391    _info.dls_cnt  = 0;
3392
3393    path_enumerate(obj->rpath, fill_search_info, &args);
3394    path_enumerate(ld_library_path, fill_search_info, &args);
3395    path_enumerate(obj->runpath, fill_search_info, &args);
3396    path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3397    if (!obj->z_nodeflib)
3398      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3399
3400
3401    if (request == RTLD_DI_SERINFOSIZE) {
3402	info->dls_size = _info.dls_size;
3403	info->dls_cnt = _info.dls_cnt;
3404	return (0);
3405    }
3406
3407    if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3408	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3409	return (-1);
3410    }
3411
3412    args.request  = RTLD_DI_SERINFO;
3413    args.serinfo  = info;
3414    args.serpath  = &info->dls_serpath[0];
3415    args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3416
3417    args.flags = LA_SER_RUNPATH;
3418    if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3419	return (-1);
3420
3421    args.flags = LA_SER_LIBPATH;
3422    if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3423	return (-1);
3424
3425    args.flags = LA_SER_RUNPATH;
3426    if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3427	return (-1);
3428
3429    args.flags = LA_SER_CONFIG;
3430    if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3431      != NULL)
3432	return (-1);
3433
3434    args.flags = LA_SER_DEFAULT;
3435    if (!obj->z_nodeflib &&
3436      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3437	return (-1);
3438    return (0);
3439}
3440
3441static int
3442rtld_dirname(const char *path, char *bname)
3443{
3444    const char *endp;
3445
3446    /* Empty or NULL string gets treated as "." */
3447    if (path == NULL || *path == '\0') {
3448	bname[0] = '.';
3449	bname[1] = '\0';
3450	return (0);
3451    }
3452
3453    /* Strip trailing slashes */
3454    endp = path + strlen(path) - 1;
3455    while (endp > path && *endp == '/')
3456	endp--;
3457
3458    /* Find the start of the dir */
3459    while (endp > path && *endp != '/')
3460	endp--;
3461
3462    /* Either the dir is "/" or there are no slashes */
3463    if (endp == path) {
3464	bname[0] = *endp == '/' ? '/' : '.';
3465	bname[1] = '\0';
3466	return (0);
3467    } else {
3468	do {
3469	    endp--;
3470	} while (endp > path && *endp == '/');
3471    }
3472
3473    if (endp - path + 2 > PATH_MAX)
3474    {
3475	_rtld_error("Filename is too long: %s", path);
3476	return(-1);
3477    }
3478
3479    strncpy(bname, path, endp - path + 1);
3480    bname[endp - path + 1] = '\0';
3481    return (0);
3482}
3483
3484static int
3485rtld_dirname_abs(const char *path, char *base)
3486{
3487	char *last;
3488
3489	if (realpath(path, base) == NULL)
3490		return (-1);
3491	dbg("%s -> %s", path, base);
3492	last = strrchr(base, '/');
3493	if (last == NULL)
3494		return (-1);
3495	if (last != base)
3496		*last = '\0';
3497	return (0);
3498}
3499
3500static void
3501linkmap_add(Obj_Entry *obj)
3502{
3503    struct link_map *l = &obj->linkmap;
3504    struct link_map *prev;
3505
3506    obj->linkmap.l_name = obj->path;
3507    obj->linkmap.l_addr = obj->mapbase;
3508    obj->linkmap.l_ld = obj->dynamic;
3509#ifdef __mips__
3510    /* GDB needs load offset on MIPS to use the symbols */
3511    obj->linkmap.l_offs = obj->relocbase;
3512#endif
3513
3514    if (r_debug.r_map == NULL) {
3515	r_debug.r_map = l;
3516	return;
3517    }
3518
3519    /*
3520     * Scan to the end of the list, but not past the entry for the
3521     * dynamic linker, which we want to keep at the very end.
3522     */
3523    for (prev = r_debug.r_map;
3524      prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3525      prev = prev->l_next)
3526	;
3527
3528    /* Link in the new entry. */
3529    l->l_prev = prev;
3530    l->l_next = prev->l_next;
3531    if (l->l_next != NULL)
3532	l->l_next->l_prev = l;
3533    prev->l_next = l;
3534}
3535
3536static void
3537linkmap_delete(Obj_Entry *obj)
3538{
3539    struct link_map *l = &obj->linkmap;
3540
3541    if (l->l_prev == NULL) {
3542	if ((r_debug.r_map = l->l_next) != NULL)
3543	    l->l_next->l_prev = NULL;
3544	return;
3545    }
3546
3547    if ((l->l_prev->l_next = l->l_next) != NULL)
3548	l->l_next->l_prev = l->l_prev;
3549}
3550
3551/*
3552 * Function for the debugger to set a breakpoint on to gain control.
3553 *
3554 * The two parameters allow the debugger to easily find and determine
3555 * what the runtime loader is doing and to whom it is doing it.
3556 *
3557 * When the loadhook trap is hit (r_debug_state, set at program
3558 * initialization), the arguments can be found on the stack:
3559 *
3560 *  +8   struct link_map *m
3561 *  +4   struct r_debug  *rd
3562 *  +0   RetAddr
3563 */
3564void
3565r_debug_state(struct r_debug* rd, struct link_map *m)
3566{
3567    /*
3568     * The following is a hack to force the compiler to emit calls to
3569     * this function, even when optimizing.  If the function is empty,
3570     * the compiler is not obliged to emit any code for calls to it,
3571     * even when marked __noinline.  However, gdb depends on those
3572     * calls being made.
3573     */
3574    __compiler_membar();
3575}
3576
3577/*
3578 * A function called after init routines have completed. This can be used to
3579 * break before a program's entry routine is called, and can be used when
3580 * main is not available in the symbol table.
3581 */
3582void
3583_r_debug_postinit(struct link_map *m)
3584{
3585
3586	/* See r_debug_state(). */
3587	__compiler_membar();
3588}
3589
3590/*
3591 * Get address of the pointer variable in the main program.
3592 * Prefer non-weak symbol over the weak one.
3593 */
3594static const void **
3595get_program_var_addr(const char *name, RtldLockState *lockstate)
3596{
3597    SymLook req;
3598    DoneList donelist;
3599
3600    symlook_init(&req, name);
3601    req.lockstate = lockstate;
3602    donelist_init(&donelist);
3603    if (symlook_global(&req, &donelist) != 0)
3604	return (NULL);
3605    if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3606	return ((const void **)make_function_pointer(req.sym_out,
3607	  req.defobj_out));
3608    else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3609	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3610    else
3611	return ((const void **)(req.defobj_out->relocbase +
3612	  req.sym_out->st_value));
3613}
3614
3615/*
3616 * Set a pointer variable in the main program to the given value.  This
3617 * is used to set key variables such as "environ" before any of the
3618 * init functions are called.
3619 */
3620static void
3621set_program_var(const char *name, const void *value)
3622{
3623    const void **addr;
3624
3625    if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3626	dbg("\"%s\": *%p <-- %p", name, addr, value);
3627	*addr = value;
3628    }
3629}
3630
3631/*
3632 * Search the global objects, including dependencies and main object,
3633 * for the given symbol.
3634 */
3635static int
3636symlook_global(SymLook *req, DoneList *donelist)
3637{
3638    SymLook req1;
3639    const Objlist_Entry *elm;
3640    int res;
3641
3642    symlook_init_from_req(&req1, req);
3643
3644    /* Search all objects loaded at program start up. */
3645    if (req->defobj_out == NULL ||
3646      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3647	res = symlook_list(&req1, &list_main, donelist);
3648	if (res == 0 && (req->defobj_out == NULL ||
3649	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3650	    req->sym_out = req1.sym_out;
3651	    req->defobj_out = req1.defobj_out;
3652	    assert(req->defobj_out != NULL);
3653	}
3654    }
3655
3656    /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3657    STAILQ_FOREACH(elm, &list_global, link) {
3658	if (req->defobj_out != NULL &&
3659	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3660	    break;
3661	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3662	if (res == 0 && (req->defobj_out == NULL ||
3663	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3664	    req->sym_out = req1.sym_out;
3665	    req->defobj_out = req1.defobj_out;
3666	    assert(req->defobj_out != NULL);
3667	}
3668    }
3669
3670    return (req->sym_out != NULL ? 0 : ESRCH);
3671}
3672
3673/*
3674 * Given a symbol name in a referencing object, find the corresponding
3675 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3676 * no definition was found.  Returns a pointer to the Obj_Entry of the
3677 * defining object via the reference parameter DEFOBJ_OUT.
3678 */
3679static int
3680symlook_default(SymLook *req, const Obj_Entry *refobj)
3681{
3682    DoneList donelist;
3683    const Objlist_Entry *elm;
3684    SymLook req1;
3685    int res;
3686
3687    donelist_init(&donelist);
3688    symlook_init_from_req(&req1, req);
3689
3690    /* Look first in the referencing object if linked symbolically. */
3691    if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3692	res = symlook_obj(&req1, refobj);
3693	if (res == 0) {
3694	    req->sym_out = req1.sym_out;
3695	    req->defobj_out = req1.defobj_out;
3696	    assert(req->defobj_out != NULL);
3697	}
3698    }
3699
3700    symlook_global(req, &donelist);
3701
3702    /* Search all dlopened DAGs containing the referencing object. */
3703    STAILQ_FOREACH(elm, &refobj->dldags, link) {
3704	if (req->sym_out != NULL &&
3705	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3706	    break;
3707	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3708	if (res == 0 && (req->sym_out == NULL ||
3709	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3710	    req->sym_out = req1.sym_out;
3711	    req->defobj_out = req1.defobj_out;
3712	    assert(req->defobj_out != NULL);
3713	}
3714    }
3715
3716    /*
3717     * Search the dynamic linker itself, and possibly resolve the
3718     * symbol from there.  This is how the application links to
3719     * dynamic linker services such as dlopen.
3720     */
3721    if (req->sym_out == NULL ||
3722      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3723	res = symlook_obj(&req1, &obj_rtld);
3724	if (res == 0) {
3725	    req->sym_out = req1.sym_out;
3726	    req->defobj_out = req1.defobj_out;
3727	    assert(req->defobj_out != NULL);
3728	}
3729    }
3730
3731    return (req->sym_out != NULL ? 0 : ESRCH);
3732}
3733
3734static int
3735symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3736{
3737    const Elf_Sym *def;
3738    const Obj_Entry *defobj;
3739    const Objlist_Entry *elm;
3740    SymLook req1;
3741    int res;
3742
3743    def = NULL;
3744    defobj = NULL;
3745    STAILQ_FOREACH(elm, objlist, link) {
3746	if (donelist_check(dlp, elm->obj))
3747	    continue;
3748	symlook_init_from_req(&req1, req);
3749	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3750	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3751		def = req1.sym_out;
3752		defobj = req1.defobj_out;
3753		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3754		    break;
3755	    }
3756	}
3757    }
3758    if (def != NULL) {
3759	req->sym_out = def;
3760	req->defobj_out = defobj;
3761	return (0);
3762    }
3763    return (ESRCH);
3764}
3765
3766/*
3767 * Search the chain of DAGS cointed to by the given Needed_Entry
3768 * for a symbol of the given name.  Each DAG is scanned completely
3769 * before advancing to the next one.  Returns a pointer to the symbol,
3770 * or NULL if no definition was found.
3771 */
3772static int
3773symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3774{
3775    const Elf_Sym *def;
3776    const Needed_Entry *n;
3777    const Obj_Entry *defobj;
3778    SymLook req1;
3779    int res;
3780
3781    def = NULL;
3782    defobj = NULL;
3783    symlook_init_from_req(&req1, req);
3784    for (n = needed; n != NULL; n = n->next) {
3785	if (n->obj == NULL ||
3786	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3787	    continue;
3788	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3789	    def = req1.sym_out;
3790	    defobj = req1.defobj_out;
3791	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3792		break;
3793	}
3794    }
3795    if (def != NULL) {
3796	req->sym_out = def;
3797	req->defobj_out = defobj;
3798	return (0);
3799    }
3800    return (ESRCH);
3801}
3802
3803/*
3804 * Search the symbol table of a single shared object for a symbol of
3805 * the given name and version, if requested.  Returns a pointer to the
3806 * symbol, or NULL if no definition was found.  If the object is
3807 * filter, return filtered symbol from filtee.
3808 *
3809 * The symbol's hash value is passed in for efficiency reasons; that
3810 * eliminates many recomputations of the hash value.
3811 */
3812int
3813symlook_obj(SymLook *req, const Obj_Entry *obj)
3814{
3815    DoneList donelist;
3816    SymLook req1;
3817    int flags, res, mres;
3818
3819    /*
3820     * If there is at least one valid hash at this point, we prefer to
3821     * use the faster GNU version if available.
3822     */
3823    if (obj->valid_hash_gnu)
3824	mres = symlook_obj1_gnu(req, obj);
3825    else if (obj->valid_hash_sysv)
3826	mres = symlook_obj1_sysv(req, obj);
3827    else
3828	return (EINVAL);
3829
3830    if (mres == 0) {
3831	if (obj->needed_filtees != NULL) {
3832	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3833	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3834	    donelist_init(&donelist);
3835	    symlook_init_from_req(&req1, req);
3836	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3837	    if (res == 0) {
3838		req->sym_out = req1.sym_out;
3839		req->defobj_out = req1.defobj_out;
3840	    }
3841	    return (res);
3842	}
3843	if (obj->needed_aux_filtees != NULL) {
3844	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3845	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3846	    donelist_init(&donelist);
3847	    symlook_init_from_req(&req1, req);
3848	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3849	    if (res == 0) {
3850		req->sym_out = req1.sym_out;
3851		req->defobj_out = req1.defobj_out;
3852		return (res);
3853	    }
3854	}
3855    }
3856    return (mres);
3857}
3858
3859/* Symbol match routine common to both hash functions */
3860static bool
3861matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3862    const unsigned long symnum)
3863{
3864	Elf_Versym verndx;
3865	const Elf_Sym *symp;
3866	const char *strp;
3867
3868	symp = obj->symtab + symnum;
3869	strp = obj->strtab + symp->st_name;
3870
3871	switch (ELF_ST_TYPE(symp->st_info)) {
3872	case STT_FUNC:
3873	case STT_NOTYPE:
3874	case STT_OBJECT:
3875	case STT_COMMON:
3876	case STT_GNU_IFUNC:
3877		if (symp->st_value == 0)
3878			return (false);
3879		/* fallthrough */
3880	case STT_TLS:
3881		if (symp->st_shndx != SHN_UNDEF)
3882			break;
3883#ifndef __mips__
3884		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3885		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3886			break;
3887		/* fallthrough */
3888#endif
3889	default:
3890		return (false);
3891	}
3892	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3893		return (false);
3894
3895	if (req->ventry == NULL) {
3896		if (obj->versyms != NULL) {
3897			verndx = VER_NDX(obj->versyms[symnum]);
3898			if (verndx > obj->vernum) {
3899				_rtld_error(
3900				    "%s: symbol %s references wrong version %d",
3901				    obj->path, obj->strtab + symnum, verndx);
3902				return (false);
3903			}
3904			/*
3905			 * If we are not called from dlsym (i.e. this
3906			 * is a normal relocation from unversioned
3907			 * binary), accept the symbol immediately if
3908			 * it happens to have first version after this
3909			 * shared object became versioned.  Otherwise,
3910			 * if symbol is versioned and not hidden,
3911			 * remember it. If it is the only symbol with
3912			 * this name exported by the shared object, it
3913			 * will be returned as a match by the calling
3914			 * function. If symbol is global (verndx < 2)
3915			 * accept it unconditionally.
3916			 */
3917			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3918			    verndx == VER_NDX_GIVEN) {
3919				result->sym_out = symp;
3920				return (true);
3921			}
3922			else if (verndx >= VER_NDX_GIVEN) {
3923				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
3924				    == 0) {
3925					if (result->vsymp == NULL)
3926						result->vsymp = symp;
3927					result->vcount++;
3928				}
3929				return (false);
3930			}
3931		}
3932		result->sym_out = symp;
3933		return (true);
3934	}
3935	if (obj->versyms == NULL) {
3936		if (object_match_name(obj, req->ventry->name)) {
3937			_rtld_error("%s: object %s should provide version %s "
3938			    "for symbol %s", obj_rtld.path, obj->path,
3939			    req->ventry->name, obj->strtab + symnum);
3940			return (false);
3941		}
3942	} else {
3943		verndx = VER_NDX(obj->versyms[symnum]);
3944		if (verndx > obj->vernum) {
3945			_rtld_error("%s: symbol %s references wrong version %d",
3946			    obj->path, obj->strtab + symnum, verndx);
3947			return (false);
3948		}
3949		if (obj->vertab[verndx].hash != req->ventry->hash ||
3950		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3951			/*
3952			 * Version does not match. Look if this is a
3953			 * global symbol and if it is not hidden. If
3954			 * global symbol (verndx < 2) is available,
3955			 * use it. Do not return symbol if we are
3956			 * called by dlvsym, because dlvsym looks for
3957			 * a specific version and default one is not
3958			 * what dlvsym wants.
3959			 */
3960			if ((req->flags & SYMLOOK_DLSYM) ||
3961			    (verndx >= VER_NDX_GIVEN) ||
3962			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
3963				return (false);
3964		}
3965	}
3966	result->sym_out = symp;
3967	return (true);
3968}
3969
3970/*
3971 * Search for symbol using SysV hash function.
3972 * obj->buckets is known not to be NULL at this point; the test for this was
3973 * performed with the obj->valid_hash_sysv assignment.
3974 */
3975static int
3976symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
3977{
3978	unsigned long symnum;
3979	Sym_Match_Result matchres;
3980
3981	matchres.sym_out = NULL;
3982	matchres.vsymp = NULL;
3983	matchres.vcount = 0;
3984
3985	for (symnum = obj->buckets[req->hash % obj->nbuckets];
3986	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3987		if (symnum >= obj->nchains)
3988			return (ESRCH);	/* Bad object */
3989
3990		if (matched_symbol(req, obj, &matchres, symnum)) {
3991			req->sym_out = matchres.sym_out;
3992			req->defobj_out = obj;
3993			return (0);
3994		}
3995	}
3996	if (matchres.vcount == 1) {
3997		req->sym_out = matchres.vsymp;
3998		req->defobj_out = obj;
3999		return (0);
4000	}
4001	return (ESRCH);
4002}
4003
4004/* Search for symbol using GNU hash function */
4005static int
4006symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4007{
4008	Elf_Addr bloom_word;
4009	const Elf32_Word *hashval;
4010	Elf32_Word bucket;
4011	Sym_Match_Result matchres;
4012	unsigned int h1, h2;
4013	unsigned long symnum;
4014
4015	matchres.sym_out = NULL;
4016	matchres.vsymp = NULL;
4017	matchres.vcount = 0;
4018
4019	/* Pick right bitmask word from Bloom filter array */
4020	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4021	    obj->maskwords_bm_gnu];
4022
4023	/* Calculate modulus word size of gnu hash and its derivative */
4024	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4025	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4026
4027	/* Filter out the "definitely not in set" queries */
4028	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4029		return (ESRCH);
4030
4031	/* Locate hash chain and corresponding value element*/
4032	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4033	if (bucket == 0)
4034		return (ESRCH);
4035	hashval = &obj->chain_zero_gnu[bucket];
4036	do {
4037		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4038			symnum = hashval - obj->chain_zero_gnu;
4039			if (matched_symbol(req, obj, &matchres, symnum)) {
4040				req->sym_out = matchres.sym_out;
4041				req->defobj_out = obj;
4042				return (0);
4043			}
4044		}
4045	} while ((*hashval++ & 1) == 0);
4046	if (matchres.vcount == 1) {
4047		req->sym_out = matchres.vsymp;
4048		req->defobj_out = obj;
4049		return (0);
4050	}
4051	return (ESRCH);
4052}
4053
4054static void
4055trace_loaded_objects(Obj_Entry *obj)
4056{
4057    char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4058    int		c;
4059
4060    if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4061	main_local = "";
4062
4063    if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4064	fmt1 = "\t%o => %p (%x)\n";
4065
4066    if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4067	fmt2 = "\t%o (%x)\n";
4068
4069    list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
4070
4071    for (; obj; obj = obj->next) {
4072	Needed_Entry		*needed;
4073	char			*name, *path;
4074	bool			is_lib;
4075
4076	if (list_containers && obj->needed != NULL)
4077	    rtld_printf("%s:\n", obj->path);
4078	for (needed = obj->needed; needed; needed = needed->next) {
4079	    if (needed->obj != NULL) {
4080		if (needed->obj->traced && !list_containers)
4081		    continue;
4082		needed->obj->traced = true;
4083		path = needed->obj->path;
4084	    } else
4085		path = "not found";
4086
4087	    name = (char *)obj->strtab + needed->name;
4088	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4089
4090	    fmt = is_lib ? fmt1 : fmt2;
4091	    while ((c = *fmt++) != '\0') {
4092		switch (c) {
4093		default:
4094		    rtld_putchar(c);
4095		    continue;
4096		case '\\':
4097		    switch (c = *fmt) {
4098		    case '\0':
4099			continue;
4100		    case 'n':
4101			rtld_putchar('\n');
4102			break;
4103		    case 't':
4104			rtld_putchar('\t');
4105			break;
4106		    }
4107		    break;
4108		case '%':
4109		    switch (c = *fmt) {
4110		    case '\0':
4111			continue;
4112		    case '%':
4113		    default:
4114			rtld_putchar(c);
4115			break;
4116		    case 'A':
4117			rtld_putstr(main_local);
4118			break;
4119		    case 'a':
4120			rtld_putstr(obj_main->path);
4121			break;
4122		    case 'o':
4123			rtld_putstr(name);
4124			break;
4125#if 0
4126		    case 'm':
4127			rtld_printf("%d", sodp->sod_major);
4128			break;
4129		    case 'n':
4130			rtld_printf("%d", sodp->sod_minor);
4131			break;
4132#endif
4133		    case 'p':
4134			rtld_putstr(path);
4135			break;
4136		    case 'x':
4137			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4138			  0);
4139			break;
4140		    }
4141		    break;
4142		}
4143		++fmt;
4144	    }
4145	}
4146    }
4147}
4148
4149/*
4150 * Unload a dlopened object and its dependencies from memory and from
4151 * our data structures.  It is assumed that the DAG rooted in the
4152 * object has already been unreferenced, and that the object has a
4153 * reference count of 0.
4154 */
4155static void
4156unload_object(Obj_Entry *root)
4157{
4158    Obj_Entry *obj;
4159    Obj_Entry **linkp;
4160
4161    assert(root->refcount == 0);
4162
4163    /*
4164     * Pass over the DAG removing unreferenced objects from
4165     * appropriate lists.
4166     */
4167    unlink_object(root);
4168
4169    /* Unmap all objects that are no longer referenced. */
4170    linkp = &obj_list->next;
4171    while ((obj = *linkp) != NULL) {
4172	if (obj->refcount == 0) {
4173	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4174		obj->path);
4175	    dbg("unloading \"%s\"", obj->path);
4176	    unload_filtees(root);
4177	    munmap(obj->mapbase, obj->mapsize);
4178	    linkmap_delete(obj);
4179	    *linkp = obj->next;
4180	    obj_count--;
4181	    obj_free(obj);
4182	} else
4183	    linkp = &obj->next;
4184    }
4185    obj_tail = linkp;
4186}
4187
4188static void
4189unlink_object(Obj_Entry *root)
4190{
4191    Objlist_Entry *elm;
4192
4193    if (root->refcount == 0) {
4194	/* Remove the object from the RTLD_GLOBAL list. */
4195	objlist_remove(&list_global, root);
4196
4197    	/* Remove the object from all objects' DAG lists. */
4198    	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4199	    objlist_remove(&elm->obj->dldags, root);
4200	    if (elm->obj != root)
4201		unlink_object(elm->obj);
4202	}
4203    }
4204}
4205
4206static void
4207ref_dag(Obj_Entry *root)
4208{
4209    Objlist_Entry *elm;
4210
4211    assert(root->dag_inited);
4212    STAILQ_FOREACH(elm, &root->dagmembers, link)
4213	elm->obj->refcount++;
4214}
4215
4216static void
4217unref_dag(Obj_Entry *root)
4218{
4219    Objlist_Entry *elm;
4220
4221    assert(root->dag_inited);
4222    STAILQ_FOREACH(elm, &root->dagmembers, link)
4223	elm->obj->refcount--;
4224}
4225
4226/*
4227 * Common code for MD __tls_get_addr().
4228 */
4229static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4230static void *
4231tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4232{
4233    Elf_Addr *newdtv, *dtv;
4234    RtldLockState lockstate;
4235    int to_copy;
4236
4237    dtv = *dtvp;
4238    /* Check dtv generation in case new modules have arrived */
4239    if (dtv[0] != tls_dtv_generation) {
4240	wlock_acquire(rtld_bind_lock, &lockstate);
4241	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4242	to_copy = dtv[1];
4243	if (to_copy > tls_max_index)
4244	    to_copy = tls_max_index;
4245	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4246	newdtv[0] = tls_dtv_generation;
4247	newdtv[1] = tls_max_index;
4248	free(dtv);
4249	lock_release(rtld_bind_lock, &lockstate);
4250	dtv = *dtvp = newdtv;
4251    }
4252
4253    /* Dynamically allocate module TLS if necessary */
4254    if (dtv[index + 1] == 0) {
4255	/* Signal safe, wlock will block out signals. */
4256	wlock_acquire(rtld_bind_lock, &lockstate);
4257	if (!dtv[index + 1])
4258	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4259	lock_release(rtld_bind_lock, &lockstate);
4260    }
4261    return ((void *)(dtv[index + 1] + offset));
4262}
4263
4264void *
4265tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4266{
4267	Elf_Addr *dtv;
4268
4269	dtv = *dtvp;
4270	/* Check dtv generation in case new modules have arrived */
4271	if (__predict_true(dtv[0] == tls_dtv_generation &&
4272	    dtv[index + 1] != 0))
4273		return ((void *)(dtv[index + 1] + offset));
4274	return (tls_get_addr_slow(dtvp, index, offset));
4275}
4276
4277#if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
4278
4279/*
4280 * Allocate Static TLS using the Variant I method.
4281 */
4282void *
4283allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4284{
4285    Obj_Entry *obj;
4286    char *tcb;
4287    Elf_Addr **tls;
4288    Elf_Addr *dtv;
4289    Elf_Addr addr;
4290    int i;
4291
4292    if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4293	return (oldtcb);
4294
4295    assert(tcbsize >= TLS_TCB_SIZE);
4296    tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4297    tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4298
4299    if (oldtcb != NULL) {
4300	memcpy(tls, oldtcb, tls_static_space);
4301	free(oldtcb);
4302
4303	/* Adjust the DTV. */
4304	dtv = tls[0];
4305	for (i = 0; i < dtv[1]; i++) {
4306	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4307		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4308		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4309	    }
4310	}
4311    } else {
4312	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4313	tls[0] = dtv;
4314	dtv[0] = tls_dtv_generation;
4315	dtv[1] = tls_max_index;
4316
4317	for (obj = objs; obj; obj = obj->next) {
4318	    if (obj->tlsoffset > 0) {
4319		addr = (Elf_Addr)tls + obj->tlsoffset;
4320		if (obj->tlsinitsize > 0)
4321		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4322		if (obj->tlssize > obj->tlsinitsize)
4323		    memset((void*) (addr + obj->tlsinitsize), 0,
4324			   obj->tlssize - obj->tlsinitsize);
4325		dtv[obj->tlsindex + 1] = addr;
4326	    }
4327	}
4328    }
4329
4330    return (tcb);
4331}
4332
4333void
4334free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4335{
4336    Elf_Addr *dtv;
4337    Elf_Addr tlsstart, tlsend;
4338    int dtvsize, i;
4339
4340    assert(tcbsize >= TLS_TCB_SIZE);
4341
4342    tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4343    tlsend = tlsstart + tls_static_space;
4344
4345    dtv = *(Elf_Addr **)tlsstart;
4346    dtvsize = dtv[1];
4347    for (i = 0; i < dtvsize; i++) {
4348	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4349	    free((void*)dtv[i+2]);
4350	}
4351    }
4352    free(dtv);
4353    free(tcb);
4354}
4355
4356#endif
4357
4358#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4359
4360/*
4361 * Allocate Static TLS using the Variant II method.
4362 */
4363void *
4364allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4365{
4366    Obj_Entry *obj;
4367    size_t size, ralign;
4368    char *tls;
4369    Elf_Addr *dtv, *olddtv;
4370    Elf_Addr segbase, oldsegbase, addr;
4371    int i;
4372
4373    ralign = tcbalign;
4374    if (tls_static_max_align > ralign)
4375	    ralign = tls_static_max_align;
4376    size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4377
4378    assert(tcbsize >= 2*sizeof(Elf_Addr));
4379    tls = malloc_aligned(size, ralign);
4380    dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4381
4382    segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4383    ((Elf_Addr*)segbase)[0] = segbase;
4384    ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4385
4386    dtv[0] = tls_dtv_generation;
4387    dtv[1] = tls_max_index;
4388
4389    if (oldtls) {
4390	/*
4391	 * Copy the static TLS block over whole.
4392	 */
4393	oldsegbase = (Elf_Addr) oldtls;
4394	memcpy((void *)(segbase - tls_static_space),
4395	       (const void *)(oldsegbase - tls_static_space),
4396	       tls_static_space);
4397
4398	/*
4399	 * If any dynamic TLS blocks have been created tls_get_addr(),
4400	 * move them over.
4401	 */
4402	olddtv = ((Elf_Addr**)oldsegbase)[1];
4403	for (i = 0; i < olddtv[1]; i++) {
4404	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4405		dtv[i+2] = olddtv[i+2];
4406		olddtv[i+2] = 0;
4407	    }
4408	}
4409
4410	/*
4411	 * We assume that this block was the one we created with
4412	 * allocate_initial_tls().
4413	 */
4414	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4415    } else {
4416	for (obj = objs; obj; obj = obj->next) {
4417	    if (obj->tlsoffset) {
4418		addr = segbase - obj->tlsoffset;
4419		memset((void*) (addr + obj->tlsinitsize),
4420		       0, obj->tlssize - obj->tlsinitsize);
4421		if (obj->tlsinit)
4422		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4423		dtv[obj->tlsindex + 1] = addr;
4424	    }
4425	}
4426    }
4427
4428    return (void*) segbase;
4429}
4430
4431void
4432free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4433{
4434    Elf_Addr* dtv;
4435    size_t size, ralign;
4436    int dtvsize, i;
4437    Elf_Addr tlsstart, tlsend;
4438
4439    /*
4440     * Figure out the size of the initial TLS block so that we can
4441     * find stuff which ___tls_get_addr() allocated dynamically.
4442     */
4443    ralign = tcbalign;
4444    if (tls_static_max_align > ralign)
4445	    ralign = tls_static_max_align;
4446    size = round(tls_static_space, ralign);
4447
4448    dtv = ((Elf_Addr**)tls)[1];
4449    dtvsize = dtv[1];
4450    tlsend = (Elf_Addr) tls;
4451    tlsstart = tlsend - size;
4452    for (i = 0; i < dtvsize; i++) {
4453	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4454		free_aligned((void *)dtv[i + 2]);
4455	}
4456    }
4457
4458    free_aligned((void *)tlsstart);
4459    free((void*) dtv);
4460}
4461
4462#endif
4463
4464/*
4465 * Allocate TLS block for module with given index.
4466 */
4467void *
4468allocate_module_tls(int index)
4469{
4470    Obj_Entry* obj;
4471    char* p;
4472
4473    for (obj = obj_list; obj; obj = obj->next) {
4474	if (obj->tlsindex == index)
4475	    break;
4476    }
4477    if (!obj) {
4478	_rtld_error("Can't find module with TLS index %d", index);
4479	die();
4480    }
4481
4482    p = malloc_aligned(obj->tlssize, obj->tlsalign);
4483    memcpy(p, obj->tlsinit, obj->tlsinitsize);
4484    memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4485
4486    return p;
4487}
4488
4489bool
4490allocate_tls_offset(Obj_Entry *obj)
4491{
4492    size_t off;
4493
4494    if (obj->tls_done)
4495	return true;
4496
4497    if (obj->tlssize == 0) {
4498	obj->tls_done = true;
4499	return true;
4500    }
4501
4502    if (obj->tlsindex == 1)
4503	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4504    else
4505	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4506				   obj->tlssize, obj->tlsalign);
4507
4508    /*
4509     * If we have already fixed the size of the static TLS block, we
4510     * must stay within that size. When allocating the static TLS, we
4511     * leave a small amount of space spare to be used for dynamically
4512     * loading modules which use static TLS.
4513     */
4514    if (tls_static_space != 0) {
4515	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4516	    return false;
4517    } else if (obj->tlsalign > tls_static_max_align) {
4518	    tls_static_max_align = obj->tlsalign;
4519    }
4520
4521    tls_last_offset = obj->tlsoffset = off;
4522    tls_last_size = obj->tlssize;
4523    obj->tls_done = true;
4524
4525    return true;
4526}
4527
4528void
4529free_tls_offset(Obj_Entry *obj)
4530{
4531
4532    /*
4533     * If we were the last thing to allocate out of the static TLS
4534     * block, we give our space back to the 'allocator'. This is a
4535     * simplistic workaround to allow libGL.so.1 to be loaded and
4536     * unloaded multiple times.
4537     */
4538    if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4539	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4540	tls_last_offset -= obj->tlssize;
4541	tls_last_size = 0;
4542    }
4543}
4544
4545void *
4546_rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4547{
4548    void *ret;
4549    RtldLockState lockstate;
4550
4551    wlock_acquire(rtld_bind_lock, &lockstate);
4552    ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4553    lock_release(rtld_bind_lock, &lockstate);
4554    return (ret);
4555}
4556
4557void
4558_rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4559{
4560    RtldLockState lockstate;
4561
4562    wlock_acquire(rtld_bind_lock, &lockstate);
4563    free_tls(tcb, tcbsize, tcbalign);
4564    lock_release(rtld_bind_lock, &lockstate);
4565}
4566
4567static void
4568object_add_name(Obj_Entry *obj, const char *name)
4569{
4570    Name_Entry *entry;
4571    size_t len;
4572
4573    len = strlen(name);
4574    entry = malloc(sizeof(Name_Entry) + len);
4575
4576    if (entry != NULL) {
4577	strcpy(entry->name, name);
4578	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4579    }
4580}
4581
4582static int
4583object_match_name(const Obj_Entry *obj, const char *name)
4584{
4585    Name_Entry *entry;
4586
4587    STAILQ_FOREACH(entry, &obj->names, link) {
4588	if (strcmp(name, entry->name) == 0)
4589	    return (1);
4590    }
4591    return (0);
4592}
4593
4594static Obj_Entry *
4595locate_dependency(const Obj_Entry *obj, const char *name)
4596{
4597    const Objlist_Entry *entry;
4598    const Needed_Entry *needed;
4599
4600    STAILQ_FOREACH(entry, &list_main, link) {
4601	if (object_match_name(entry->obj, name))
4602	    return entry->obj;
4603    }
4604
4605    for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4606	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4607	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4608	    /*
4609	     * If there is DT_NEEDED for the name we are looking for,
4610	     * we are all set.  Note that object might not be found if
4611	     * dependency was not loaded yet, so the function can
4612	     * return NULL here.  This is expected and handled
4613	     * properly by the caller.
4614	     */
4615	    return (needed->obj);
4616	}
4617    }
4618    _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4619	obj->path, name);
4620    die();
4621}
4622
4623static int
4624check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4625    const Elf_Vernaux *vna)
4626{
4627    const Elf_Verdef *vd;
4628    const char *vername;
4629
4630    vername = refobj->strtab + vna->vna_name;
4631    vd = depobj->verdef;
4632    if (vd == NULL) {
4633	_rtld_error("%s: version %s required by %s not defined",
4634	    depobj->path, vername, refobj->path);
4635	return (-1);
4636    }
4637    for (;;) {
4638	if (vd->vd_version != VER_DEF_CURRENT) {
4639	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4640		depobj->path, vd->vd_version);
4641	    return (-1);
4642	}
4643	if (vna->vna_hash == vd->vd_hash) {
4644	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4645		((char *)vd + vd->vd_aux);
4646	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4647		return (0);
4648	}
4649	if (vd->vd_next == 0)
4650	    break;
4651	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4652    }
4653    if (vna->vna_flags & VER_FLG_WEAK)
4654	return (0);
4655    _rtld_error("%s: version %s required by %s not found",
4656	depobj->path, vername, refobj->path);
4657    return (-1);
4658}
4659
4660static int
4661rtld_verify_object_versions(Obj_Entry *obj)
4662{
4663    const Elf_Verneed *vn;
4664    const Elf_Verdef  *vd;
4665    const Elf_Verdaux *vda;
4666    const Elf_Vernaux *vna;
4667    const Obj_Entry *depobj;
4668    int maxvernum, vernum;
4669
4670    if (obj->ver_checked)
4671	return (0);
4672    obj->ver_checked = true;
4673
4674    maxvernum = 0;
4675    /*
4676     * Walk over defined and required version records and figure out
4677     * max index used by any of them. Do very basic sanity checking
4678     * while there.
4679     */
4680    vn = obj->verneed;
4681    while (vn != NULL) {
4682	if (vn->vn_version != VER_NEED_CURRENT) {
4683	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4684		obj->path, vn->vn_version);
4685	    return (-1);
4686	}
4687	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4688	for (;;) {
4689	    vernum = VER_NEED_IDX(vna->vna_other);
4690	    if (vernum > maxvernum)
4691		maxvernum = vernum;
4692	    if (vna->vna_next == 0)
4693		 break;
4694	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4695	}
4696	if (vn->vn_next == 0)
4697	    break;
4698	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4699    }
4700
4701    vd = obj->verdef;
4702    while (vd != NULL) {
4703	if (vd->vd_version != VER_DEF_CURRENT) {
4704	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4705		obj->path, vd->vd_version);
4706	    return (-1);
4707	}
4708	vernum = VER_DEF_IDX(vd->vd_ndx);
4709	if (vernum > maxvernum)
4710		maxvernum = vernum;
4711	if (vd->vd_next == 0)
4712	    break;
4713	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4714    }
4715
4716    if (maxvernum == 0)
4717	return (0);
4718
4719    /*
4720     * Store version information in array indexable by version index.
4721     * Verify that object version requirements are satisfied along the
4722     * way.
4723     */
4724    obj->vernum = maxvernum + 1;
4725    obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4726
4727    vd = obj->verdef;
4728    while (vd != NULL) {
4729	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4730	    vernum = VER_DEF_IDX(vd->vd_ndx);
4731	    assert(vernum <= maxvernum);
4732	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4733	    obj->vertab[vernum].hash = vd->vd_hash;
4734	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4735	    obj->vertab[vernum].file = NULL;
4736	    obj->vertab[vernum].flags = 0;
4737	}
4738	if (vd->vd_next == 0)
4739	    break;
4740	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4741    }
4742
4743    vn = obj->verneed;
4744    while (vn != NULL) {
4745	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4746	if (depobj == NULL)
4747	    return (-1);
4748	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4749	for (;;) {
4750	    if (check_object_provided_version(obj, depobj, vna))
4751		return (-1);
4752	    vernum = VER_NEED_IDX(vna->vna_other);
4753	    assert(vernum <= maxvernum);
4754	    obj->vertab[vernum].hash = vna->vna_hash;
4755	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4756	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4757	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4758		VER_INFO_HIDDEN : 0;
4759	    if (vna->vna_next == 0)
4760		 break;
4761	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4762	}
4763	if (vn->vn_next == 0)
4764	    break;
4765	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4766    }
4767    return 0;
4768}
4769
4770static int
4771rtld_verify_versions(const Objlist *objlist)
4772{
4773    Objlist_Entry *entry;
4774    int rc;
4775
4776    rc = 0;
4777    STAILQ_FOREACH(entry, objlist, link) {
4778	/*
4779	 * Skip dummy objects or objects that have their version requirements
4780	 * already checked.
4781	 */
4782	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4783	    continue;
4784	if (rtld_verify_object_versions(entry->obj) == -1) {
4785	    rc = -1;
4786	    if (ld_tracing == NULL)
4787		break;
4788	}
4789    }
4790    if (rc == 0 || ld_tracing != NULL)
4791    	rc = rtld_verify_object_versions(&obj_rtld);
4792    return rc;
4793}
4794
4795const Ver_Entry *
4796fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4797{
4798    Elf_Versym vernum;
4799
4800    if (obj->vertab) {
4801	vernum = VER_NDX(obj->versyms[symnum]);
4802	if (vernum >= obj->vernum) {
4803	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4804		obj->path, obj->strtab + symnum, vernum);
4805	} else if (obj->vertab[vernum].hash != 0) {
4806	    return &obj->vertab[vernum];
4807	}
4808    }
4809    return NULL;
4810}
4811
4812int
4813_rtld_get_stack_prot(void)
4814{
4815
4816	return (stack_prot);
4817}
4818
4819int
4820_rtld_is_dlopened(void *arg)
4821{
4822	Obj_Entry *obj;
4823	RtldLockState lockstate;
4824	int res;
4825
4826	rlock_acquire(rtld_bind_lock, &lockstate);
4827	obj = dlcheck(arg);
4828	if (obj == NULL)
4829		obj = obj_from_addr(arg);
4830	if (obj == NULL) {
4831		_rtld_error("No shared object contains address");
4832		lock_release(rtld_bind_lock, &lockstate);
4833		return (-1);
4834	}
4835	res = obj->dlopened ? 1 : 0;
4836	lock_release(rtld_bind_lock, &lockstate);
4837	return (res);
4838}
4839
4840static void
4841map_stacks_exec(RtldLockState *lockstate)
4842{
4843	void (*thr_map_stacks_exec)(void);
4844
4845	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4846		return;
4847	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4848	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4849	if (thr_map_stacks_exec != NULL) {
4850		stack_prot |= PROT_EXEC;
4851		thr_map_stacks_exec();
4852	}
4853}
4854
4855void
4856symlook_init(SymLook *dst, const char *name)
4857{
4858
4859	bzero(dst, sizeof(*dst));
4860	dst->name = name;
4861	dst->hash = elf_hash(name);
4862	dst->hash_gnu = gnu_hash(name);
4863}
4864
4865static void
4866symlook_init_from_req(SymLook *dst, const SymLook *src)
4867{
4868
4869	dst->name = src->name;
4870	dst->hash = src->hash;
4871	dst->hash_gnu = src->hash_gnu;
4872	dst->ventry = src->ventry;
4873	dst->flags = src->flags;
4874	dst->defobj_out = NULL;
4875	dst->sym_out = NULL;
4876	dst->lockstate = src->lockstate;
4877}
4878
4879/*
4880 * Overrides for libc_pic-provided functions.
4881 */
4882
4883int
4884__getosreldate(void)
4885{
4886	size_t len;
4887	int oid[2];
4888	int error, osrel;
4889
4890	if (osreldate != 0)
4891		return (osreldate);
4892
4893	oid[0] = CTL_KERN;
4894	oid[1] = KERN_OSRELDATE;
4895	osrel = 0;
4896	len = sizeof(osrel);
4897	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4898	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4899		osreldate = osrel;
4900	return (osreldate);
4901}
4902
4903void
4904exit(int status)
4905{
4906
4907	_exit(status);
4908}
4909
4910void (*__cleanup)(void);
4911int __isthreaded = 0;
4912int _thread_autoinit_dummy_decl = 1;
4913
4914/*
4915 * No unresolved symbols for rtld.
4916 */
4917void
4918__pthread_cxa_finalize(struct dl_phdr_info *a)
4919{
4920}
4921
4922void
4923__stack_chk_fail(void)
4924{
4925
4926	_rtld_error("stack overflow detected; terminated");
4927	die();
4928}
4929__weak_reference(__stack_chk_fail, __stack_chk_fail_local);
4930
4931void
4932__chk_fail(void)
4933{
4934
4935	_rtld_error("buffer overflow detected; terminated");
4936	die();
4937}
4938
4939const char *
4940rtld_strerror(int errnum)
4941{
4942
4943	if (errnum < 0 || errnum >= sys_nerr)
4944		return ("Unknown error");
4945	return (sys_errlist[errnum]);
4946}
4947