rtld.c revision 259292
1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5 * Copyright 2012 John Marino <draco@marino.st>.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * $FreeBSD: stable/10/libexec/rtld-elf/rtld.c 259292 2013-12-13 06:06:08Z kib $
29 */
30
31/*
32 * Dynamic linker for ELF.
33 *
34 * John Polstra <jdp@polstra.com>.
35 */
36
37#ifndef __GNUC__
38#error "GCC is needed to compile this file"
39#endif
40
41#include <sys/param.h>
42#include <sys/mount.h>
43#include <sys/mman.h>
44#include <sys/stat.h>
45#include <sys/sysctl.h>
46#include <sys/uio.h>
47#include <sys/utsname.h>
48#include <sys/ktrace.h>
49
50#include <dlfcn.h>
51#include <err.h>
52#include <errno.h>
53#include <fcntl.h>
54#include <stdarg.h>
55#include <stdio.h>
56#include <stdlib.h>
57#include <string.h>
58#include <unistd.h>
59
60#include "debug.h"
61#include "rtld.h"
62#include "libmap.h"
63#include "rtld_tls.h"
64#include "rtld_printf.h"
65#include "notes.h"
66
67#ifndef COMPAT_32BIT
68#define PATH_RTLD	"/libexec/ld-elf.so.1"
69#else
70#define PATH_RTLD	"/libexec/ld-elf32.so.1"
71#endif
72
73/* Types. */
74typedef void (*func_ptr_type)();
75typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76
77/*
78 * Function declarations.
79 */
80static const char *basename(const char *);
81static void die(void) __dead2;
82static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
83    const Elf_Dyn **, const Elf_Dyn **);
84static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
85    const Elf_Dyn *);
86static void digest_dynamic(Obj_Entry *, int);
87static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
88static Obj_Entry *dlcheck(void *);
89static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
90    int lo_flags, int mode, RtldLockState *lockstate);
91static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
92static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
93static bool donelist_check(DoneList *, const Obj_Entry *);
94static void errmsg_restore(char *);
95static char *errmsg_save(void);
96static void *fill_search_info(const char *, size_t, void *);
97static char *find_library(const char *, const Obj_Entry *);
98static const char *gethints(bool);
99static void init_dag(Obj_Entry *);
100static void init_rtld(caddr_t, Elf_Auxinfo **);
101static void initlist_add_neededs(Needed_Entry *, Objlist *);
102static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
103static void linkmap_add(Obj_Entry *);
104static void linkmap_delete(Obj_Entry *);
105static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
106static void unload_filtees(Obj_Entry *);
107static int load_needed_objects(Obj_Entry *, int);
108static int load_preload_objects(void);
109static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
110static void map_stacks_exec(RtldLockState *);
111static Obj_Entry *obj_from_addr(const void *);
112static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
113static void objlist_call_init(Objlist *, RtldLockState *);
114static void objlist_clear(Objlist *);
115static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
116static void objlist_init(Objlist *);
117static void objlist_push_head(Objlist *, Obj_Entry *);
118static void objlist_push_tail(Objlist *, Obj_Entry *);
119static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
120static void objlist_remove(Objlist *, Obj_Entry *);
121static void *path_enumerate(const char *, path_enum_proc, void *);
122static int relocate_object_dag(Obj_Entry *root, bool bind_now,
123    Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
124static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
125    int flags, RtldLockState *lockstate);
126static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
127    RtldLockState *);
128static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
129    int flags, RtldLockState *lockstate);
130static int rtld_dirname(const char *, char *);
131static int rtld_dirname_abs(const char *, char *);
132static void *rtld_dlopen(const char *name, int fd, int mode);
133static void rtld_exit(void);
134static char *search_library_path(const char *, const char *);
135static const void **get_program_var_addr(const char *, RtldLockState *);
136static void set_program_var(const char *, const void *);
137static int symlook_default(SymLook *, const Obj_Entry *refobj);
138static int symlook_global(SymLook *, DoneList *);
139static void symlook_init_from_req(SymLook *, const SymLook *);
140static int symlook_list(SymLook *, const Objlist *, DoneList *);
141static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
142static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
143static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
144static void trace_loaded_objects(Obj_Entry *);
145static void unlink_object(Obj_Entry *);
146static void unload_object(Obj_Entry *);
147static void unref_dag(Obj_Entry *);
148static void ref_dag(Obj_Entry *);
149static char *origin_subst_one(char *, const char *, const char *, bool);
150static char *origin_subst(char *, const char *);
151static void preinit_main(void);
152static int  rtld_verify_versions(const Objlist *);
153static int  rtld_verify_object_versions(Obj_Entry *);
154static void object_add_name(Obj_Entry *, const char *);
155static int  object_match_name(const Obj_Entry *, const char *);
156static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
157static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
158    struct dl_phdr_info *phdr_info);
159static uint32_t gnu_hash(const char *);
160static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
161    const unsigned long);
162
163void r_debug_state(struct r_debug *, struct link_map *) __noinline;
164
165/*
166 * Data declarations.
167 */
168static char *error_message;	/* Message for dlerror(), or NULL */
169struct r_debug r_debug;		/* for GDB; */
170static bool libmap_disable;	/* Disable libmap */
171static bool ld_loadfltr;	/* Immediate filters processing */
172static char *libmap_override;	/* Maps to use in addition to libmap.conf */
173static bool trust;		/* False for setuid and setgid programs */
174static bool dangerous_ld_env;	/* True if environment variables have been
175				   used to affect the libraries loaded */
176static char *ld_bind_now;	/* Environment variable for immediate binding */
177static char *ld_debug;		/* Environment variable for debugging */
178static char *ld_library_path;	/* Environment variable for search path */
179static char *ld_preload;	/* Environment variable for libraries to
180				   load first */
181static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
182static char *ld_tracing;	/* Called from ldd to print libs */
183static char *ld_utrace;		/* Use utrace() to log events. */
184static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
185static Obj_Entry **obj_tail;	/* Link field of last object in list */
186static Obj_Entry *obj_main;	/* The main program shared object */
187static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
188static unsigned int obj_count;	/* Number of objects in obj_list */
189static unsigned int obj_loads;	/* Number of objects in obj_list */
190
191static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
192  STAILQ_HEAD_INITIALIZER(list_global);
193static Objlist list_main =	/* Objects loaded at program startup */
194  STAILQ_HEAD_INITIALIZER(list_main);
195static Objlist list_fini =	/* Objects needing fini() calls */
196  STAILQ_HEAD_INITIALIZER(list_fini);
197
198Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
199
200#define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
201
202extern Elf_Dyn _DYNAMIC;
203#pragma weak _DYNAMIC
204#ifndef RTLD_IS_DYNAMIC
205#define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
206#endif
207
208int osreldate, pagesize;
209
210long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
211
212static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
213static int max_stack_flags;
214
215/*
216 * Global declarations normally provided by crt1.  The dynamic linker is
217 * not built with crt1, so we have to provide them ourselves.
218 */
219char *__progname;
220char **environ;
221
222/*
223 * Used to pass argc, argv to init functions.
224 */
225int main_argc;
226char **main_argv;
227
228/*
229 * Globals to control TLS allocation.
230 */
231size_t tls_last_offset;		/* Static TLS offset of last module */
232size_t tls_last_size;		/* Static TLS size of last module */
233size_t tls_static_space;	/* Static TLS space allocated */
234size_t tls_static_max_align;
235int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
236int tls_max_index = 1;		/* Largest module index allocated */
237
238bool ld_library_path_rpath = false;
239
240/*
241 * Fill in a DoneList with an allocation large enough to hold all of
242 * the currently-loaded objects.  Keep this as a macro since it calls
243 * alloca and we want that to occur within the scope of the caller.
244 */
245#define donelist_init(dlp)					\
246    ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
247    assert((dlp)->objs != NULL),				\
248    (dlp)->num_alloc = obj_count,				\
249    (dlp)->num_used = 0)
250
251#define	UTRACE_DLOPEN_START		1
252#define	UTRACE_DLOPEN_STOP		2
253#define	UTRACE_DLCLOSE_START		3
254#define	UTRACE_DLCLOSE_STOP		4
255#define	UTRACE_LOAD_OBJECT		5
256#define	UTRACE_UNLOAD_OBJECT		6
257#define	UTRACE_ADD_RUNDEP		7
258#define	UTRACE_PRELOAD_FINISHED		8
259#define	UTRACE_INIT_CALL		9
260#define	UTRACE_FINI_CALL		10
261
262struct utrace_rtld {
263	char sig[4];			/* 'RTLD' */
264	int event;
265	void *handle;
266	void *mapbase;			/* Used for 'parent' and 'init/fini' */
267	size_t mapsize;
268	int refcnt;			/* Used for 'mode' */
269	char name[MAXPATHLEN];
270};
271
272#define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
273	if (ld_utrace != NULL)					\
274		ld_utrace_log(e, h, mb, ms, r, n);		\
275} while (0)
276
277static void
278ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
279    int refcnt, const char *name)
280{
281	struct utrace_rtld ut;
282
283	ut.sig[0] = 'R';
284	ut.sig[1] = 'T';
285	ut.sig[2] = 'L';
286	ut.sig[3] = 'D';
287	ut.event = event;
288	ut.handle = handle;
289	ut.mapbase = mapbase;
290	ut.mapsize = mapsize;
291	ut.refcnt = refcnt;
292	bzero(ut.name, sizeof(ut.name));
293	if (name)
294		strlcpy(ut.name, name, sizeof(ut.name));
295	utrace(&ut, sizeof(ut));
296}
297
298/*
299 * Main entry point for dynamic linking.  The first argument is the
300 * stack pointer.  The stack is expected to be laid out as described
301 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
302 * Specifically, the stack pointer points to a word containing
303 * ARGC.  Following that in the stack is a null-terminated sequence
304 * of pointers to argument strings.  Then comes a null-terminated
305 * sequence of pointers to environment strings.  Finally, there is a
306 * sequence of "auxiliary vector" entries.
307 *
308 * The second argument points to a place to store the dynamic linker's
309 * exit procedure pointer and the third to a place to store the main
310 * program's object.
311 *
312 * The return value is the main program's entry point.
313 */
314func_ptr_type
315_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
316{
317    Elf_Auxinfo *aux_info[AT_COUNT];
318    int i;
319    int argc;
320    char **argv;
321    char **env;
322    Elf_Auxinfo *aux;
323    Elf_Auxinfo *auxp;
324    const char *argv0;
325    Objlist_Entry *entry;
326    Obj_Entry *obj;
327    Obj_Entry **preload_tail;
328    Obj_Entry *last_interposer;
329    Objlist initlist;
330    RtldLockState lockstate;
331    char *library_path_rpath;
332    int mib[2];
333    size_t len;
334
335    /*
336     * On entry, the dynamic linker itself has not been relocated yet.
337     * Be very careful not to reference any global data until after
338     * init_rtld has returned.  It is OK to reference file-scope statics
339     * and string constants, and to call static and global functions.
340     */
341
342    /* Find the auxiliary vector on the stack. */
343    argc = *sp++;
344    argv = (char **) sp;
345    sp += argc + 1;	/* Skip over arguments and NULL terminator */
346    env = (char **) sp;
347    while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
348	;
349    aux = (Elf_Auxinfo *) sp;
350
351    /* Digest the auxiliary vector. */
352    for (i = 0;  i < AT_COUNT;  i++)
353	aux_info[i] = NULL;
354    for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
355	if (auxp->a_type < AT_COUNT)
356	    aux_info[auxp->a_type] = auxp;
357    }
358
359    /* Initialize and relocate ourselves. */
360    assert(aux_info[AT_BASE] != NULL);
361    init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
362
363    __progname = obj_rtld.path;
364    argv0 = argv[0] != NULL ? argv[0] : "(null)";
365    environ = env;
366    main_argc = argc;
367    main_argv = argv;
368
369    if (aux_info[AT_CANARY] != NULL &&
370	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
371	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
372	    if (i > sizeof(__stack_chk_guard))
373		    i = sizeof(__stack_chk_guard);
374	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
375    } else {
376	mib[0] = CTL_KERN;
377	mib[1] = KERN_ARND;
378
379	len = sizeof(__stack_chk_guard);
380	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
381	    len != sizeof(__stack_chk_guard)) {
382		/* If sysctl was unsuccessful, use the "terminator canary". */
383		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
384		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
385		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
386		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
387	}
388    }
389
390    trust = !issetugid();
391
392    ld_bind_now = getenv(LD_ "BIND_NOW");
393    /*
394     * If the process is tainted, then we un-set the dangerous environment
395     * variables.  The process will be marked as tainted until setuid(2)
396     * is called.  If any child process calls setuid(2) we do not want any
397     * future processes to honor the potentially un-safe variables.
398     */
399    if (!trust) {
400        if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
401	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
402	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
403	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
404		_rtld_error("environment corrupt; aborting");
405		die();
406	}
407    }
408    ld_debug = getenv(LD_ "DEBUG");
409    libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
410    libmap_override = getenv(LD_ "LIBMAP");
411    ld_library_path = getenv(LD_ "LIBRARY_PATH");
412    ld_preload = getenv(LD_ "PRELOAD");
413    ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
414    ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
415    library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
416    if (library_path_rpath != NULL) {
417	    if (library_path_rpath[0] == 'y' ||
418		library_path_rpath[0] == 'Y' ||
419		library_path_rpath[0] == '1')
420		    ld_library_path_rpath = true;
421	    else
422		    ld_library_path_rpath = false;
423    }
424    dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
425	(ld_library_path != NULL) || (ld_preload != NULL) ||
426	(ld_elf_hints_path != NULL) || ld_loadfltr;
427    ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
428    ld_utrace = getenv(LD_ "UTRACE");
429
430    if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
431	ld_elf_hints_path = _PATH_ELF_HINTS;
432
433    if (ld_debug != NULL && *ld_debug != '\0')
434	debug = 1;
435    dbg("%s is initialized, base address = %p", __progname,
436	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
437    dbg("RTLD dynamic = %p", obj_rtld.dynamic);
438    dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
439
440    dbg("initializing thread locks");
441    lockdflt_init();
442
443    /*
444     * Load the main program, or process its program header if it is
445     * already loaded.
446     */
447    if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
448	int fd = aux_info[AT_EXECFD]->a_un.a_val;
449	dbg("loading main program");
450	obj_main = map_object(fd, argv0, NULL);
451	close(fd);
452	if (obj_main == NULL)
453	    die();
454	max_stack_flags = obj->stack_flags;
455    } else {				/* Main program already loaded. */
456	const Elf_Phdr *phdr;
457	int phnum;
458	caddr_t entry;
459
460	dbg("processing main program's program header");
461	assert(aux_info[AT_PHDR] != NULL);
462	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
463	assert(aux_info[AT_PHNUM] != NULL);
464	phnum = aux_info[AT_PHNUM]->a_un.a_val;
465	assert(aux_info[AT_PHENT] != NULL);
466	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
467	assert(aux_info[AT_ENTRY] != NULL);
468	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
469	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
470	    die();
471    }
472
473    if (aux_info[AT_EXECPATH] != 0) {
474	    char *kexecpath;
475	    char buf[MAXPATHLEN];
476
477	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
478	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
479	    if (kexecpath[0] == '/')
480		    obj_main->path = kexecpath;
481	    else if (getcwd(buf, sizeof(buf)) == NULL ||
482		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
483		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
484		    obj_main->path = xstrdup(argv0);
485	    else
486		    obj_main->path = xstrdup(buf);
487    } else {
488	    dbg("No AT_EXECPATH");
489	    obj_main->path = xstrdup(argv0);
490    }
491    dbg("obj_main path %s", obj_main->path);
492    obj_main->mainprog = true;
493
494    if (aux_info[AT_STACKPROT] != NULL &&
495      aux_info[AT_STACKPROT]->a_un.a_val != 0)
496	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
497
498    /*
499     * Get the actual dynamic linker pathname from the executable if
500     * possible.  (It should always be possible.)  That ensures that
501     * gdb will find the right dynamic linker even if a non-standard
502     * one is being used.
503     */
504    if (obj_main->interp != NULL &&
505      strcmp(obj_main->interp, obj_rtld.path) != 0) {
506	free(obj_rtld.path);
507	obj_rtld.path = xstrdup(obj_main->interp);
508        __progname = obj_rtld.path;
509    }
510
511    digest_dynamic(obj_main, 0);
512    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
513	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
514	obj_main->dynsymcount);
515
516    linkmap_add(obj_main);
517    linkmap_add(&obj_rtld);
518
519    /* Link the main program into the list of objects. */
520    *obj_tail = obj_main;
521    obj_tail = &obj_main->next;
522    obj_count++;
523    obj_loads++;
524
525    /* Initialize a fake symbol for resolving undefined weak references. */
526    sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
527    sym_zero.st_shndx = SHN_UNDEF;
528    sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
529
530    if (!libmap_disable)
531        libmap_disable = (bool)lm_init(libmap_override);
532
533    dbg("loading LD_PRELOAD libraries");
534    if (load_preload_objects() == -1)
535	die();
536    preload_tail = obj_tail;
537
538    dbg("loading needed objects");
539    if (load_needed_objects(obj_main, 0) == -1)
540	die();
541
542    /* Make a list of all objects loaded at startup. */
543    last_interposer = obj_main;
544    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
545	if (obj->z_interpose && obj != obj_main) {
546	    objlist_put_after(&list_main, last_interposer, obj);
547	    last_interposer = obj;
548	} else {
549	    objlist_push_tail(&list_main, obj);
550	}
551    	obj->refcount++;
552    }
553
554    dbg("checking for required versions");
555    if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
556	die();
557
558    if (ld_tracing) {		/* We're done */
559	trace_loaded_objects(obj_main);
560	exit(0);
561    }
562
563    if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
564       dump_relocations(obj_main);
565       exit (0);
566    }
567
568    /*
569     * Processing tls relocations requires having the tls offsets
570     * initialized.  Prepare offsets before starting initial
571     * relocation processing.
572     */
573    dbg("initializing initial thread local storage offsets");
574    STAILQ_FOREACH(entry, &list_main, link) {
575	/*
576	 * Allocate all the initial objects out of the static TLS
577	 * block even if they didn't ask for it.
578	 */
579	allocate_tls_offset(entry->obj);
580    }
581
582    if (relocate_objects(obj_main,
583      ld_bind_now != NULL && *ld_bind_now != '\0',
584      &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
585	die();
586
587    dbg("doing copy relocations");
588    if (do_copy_relocations(obj_main) == -1)
589	die();
590
591    if (getenv(LD_ "DUMP_REL_POST") != NULL) {
592       dump_relocations(obj_main);
593       exit (0);
594    }
595
596    /*
597     * Setup TLS for main thread.  This must be done after the
598     * relocations are processed, since tls initialization section
599     * might be the subject for relocations.
600     */
601    dbg("initializing initial thread local storage");
602    allocate_initial_tls(obj_list);
603
604    dbg("initializing key program variables");
605    set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
606    set_program_var("environ", env);
607    set_program_var("__elf_aux_vector", aux);
608
609    /* Make a list of init functions to call. */
610    objlist_init(&initlist);
611    initlist_add_objects(obj_list, preload_tail, &initlist);
612
613    r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
614
615    map_stacks_exec(NULL);
616
617    dbg("resolving ifuncs");
618    if (resolve_objects_ifunc(obj_main,
619      ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
620      NULL) == -1)
621	die();
622
623    if (!obj_main->crt_no_init) {
624	/*
625	 * Make sure we don't call the main program's init and fini
626	 * functions for binaries linked with old crt1 which calls
627	 * _init itself.
628	 */
629	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
630	obj_main->preinit_array = obj_main->init_array =
631	    obj_main->fini_array = (Elf_Addr)NULL;
632    }
633
634    wlock_acquire(rtld_bind_lock, &lockstate);
635    if (obj_main->crt_no_init)
636	preinit_main();
637    objlist_call_init(&initlist, &lockstate);
638    objlist_clear(&initlist);
639    dbg("loading filtees");
640    for (obj = obj_list->next; obj != NULL; obj = obj->next) {
641	if (ld_loadfltr || obj->z_loadfltr)
642	    load_filtees(obj, 0, &lockstate);
643    }
644    lock_release(rtld_bind_lock, &lockstate);
645
646    dbg("transferring control to program entry point = %p", obj_main->entry);
647
648    /* Return the exit procedure and the program entry point. */
649    *exit_proc = rtld_exit;
650    *objp = obj_main;
651    return (func_ptr_type) obj_main->entry;
652}
653
654void *
655rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
656{
657	void *ptr;
658	Elf_Addr target;
659
660	ptr = (void *)make_function_pointer(def, obj);
661	target = ((Elf_Addr (*)(void))ptr)();
662	return ((void *)target);
663}
664
665Elf_Addr
666_rtld_bind(Obj_Entry *obj, Elf_Size reloff)
667{
668    const Elf_Rel *rel;
669    const Elf_Sym *def;
670    const Obj_Entry *defobj;
671    Elf_Addr *where;
672    Elf_Addr target;
673    RtldLockState lockstate;
674
675    rlock_acquire(rtld_bind_lock, &lockstate);
676    if (sigsetjmp(lockstate.env, 0) != 0)
677	    lock_upgrade(rtld_bind_lock, &lockstate);
678    if (obj->pltrel)
679	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
680    else
681	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
682
683    where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
684    def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
685	&lockstate);
686    if (def == NULL)
687	die();
688    if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
689	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
690    else
691	target = (Elf_Addr)(defobj->relocbase + def->st_value);
692
693    dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
694      defobj->strtab + def->st_name, basename(obj->path),
695      (void *)target, basename(defobj->path));
696
697    /*
698     * Write the new contents for the jmpslot. Note that depending on
699     * architecture, the value which we need to return back to the
700     * lazy binding trampoline may or may not be the target
701     * address. The value returned from reloc_jmpslot() is the value
702     * that the trampoline needs.
703     */
704    target = reloc_jmpslot(where, target, defobj, obj, rel);
705    lock_release(rtld_bind_lock, &lockstate);
706    return target;
707}
708
709/*
710 * Error reporting function.  Use it like printf.  If formats the message
711 * into a buffer, and sets things up so that the next call to dlerror()
712 * will return the message.
713 */
714void
715_rtld_error(const char *fmt, ...)
716{
717    static char buf[512];
718    va_list ap;
719
720    va_start(ap, fmt);
721    rtld_vsnprintf(buf, sizeof buf, fmt, ap);
722    error_message = buf;
723    va_end(ap);
724}
725
726/*
727 * Return a dynamically-allocated copy of the current error message, if any.
728 */
729static char *
730errmsg_save(void)
731{
732    return error_message == NULL ? NULL : xstrdup(error_message);
733}
734
735/*
736 * Restore the current error message from a copy which was previously saved
737 * by errmsg_save().  The copy is freed.
738 */
739static void
740errmsg_restore(char *saved_msg)
741{
742    if (saved_msg == NULL)
743	error_message = NULL;
744    else {
745	_rtld_error("%s", saved_msg);
746	free(saved_msg);
747    }
748}
749
750static const char *
751basename(const char *name)
752{
753    const char *p = strrchr(name, '/');
754    return p != NULL ? p + 1 : name;
755}
756
757static struct utsname uts;
758
759static char *
760origin_subst_one(char *real, const char *kw, const char *subst,
761    bool may_free)
762{
763	char *p, *p1, *res, *resp;
764	int subst_len, kw_len, subst_count, old_len, new_len;
765
766	kw_len = strlen(kw);
767
768	/*
769	 * First, count the number of the keyword occurences, to
770	 * preallocate the final string.
771	 */
772	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
773		p1 = strstr(p, kw);
774		if (p1 == NULL)
775			break;
776	}
777
778	/*
779	 * If the keyword is not found, just return.
780	 */
781	if (subst_count == 0)
782		return (may_free ? real : xstrdup(real));
783
784	/*
785	 * There is indeed something to substitute.  Calculate the
786	 * length of the resulting string, and allocate it.
787	 */
788	subst_len = strlen(subst);
789	old_len = strlen(real);
790	new_len = old_len + (subst_len - kw_len) * subst_count;
791	res = xmalloc(new_len + 1);
792
793	/*
794	 * Now, execute the substitution loop.
795	 */
796	for (p = real, resp = res, *resp = '\0';;) {
797		p1 = strstr(p, kw);
798		if (p1 != NULL) {
799			/* Copy the prefix before keyword. */
800			memcpy(resp, p, p1 - p);
801			resp += p1 - p;
802			/* Keyword replacement. */
803			memcpy(resp, subst, subst_len);
804			resp += subst_len;
805			*resp = '\0';
806			p = p1 + kw_len;
807		} else
808			break;
809	}
810
811	/* Copy to the end of string and finish. */
812	strcat(resp, p);
813	if (may_free)
814		free(real);
815	return (res);
816}
817
818static char *
819origin_subst(char *real, const char *origin_path)
820{
821	char *res1, *res2, *res3, *res4;
822
823	if (uts.sysname[0] == '\0') {
824		if (uname(&uts) != 0) {
825			_rtld_error("utsname failed: %d", errno);
826			return (NULL);
827		}
828	}
829	res1 = origin_subst_one(real, "$ORIGIN", origin_path, false);
830	res2 = origin_subst_one(res1, "$OSNAME", uts.sysname, true);
831	res3 = origin_subst_one(res2, "$OSREL", uts.release, true);
832	res4 = origin_subst_one(res3, "$PLATFORM", uts.machine, true);
833	return (res4);
834}
835
836static void
837die(void)
838{
839    const char *msg = dlerror();
840
841    if (msg == NULL)
842	msg = "Fatal error";
843    rtld_fdputstr(STDERR_FILENO, msg);
844    rtld_fdputchar(STDERR_FILENO, '\n');
845    _exit(1);
846}
847
848/*
849 * Process a shared object's DYNAMIC section, and save the important
850 * information in its Obj_Entry structure.
851 */
852static void
853digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
854    const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
855{
856    const Elf_Dyn *dynp;
857    Needed_Entry **needed_tail = &obj->needed;
858    Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
859    Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
860    const Elf_Hashelt *hashtab;
861    const Elf32_Word *hashval;
862    Elf32_Word bkt, nmaskwords;
863    int bloom_size32;
864    bool nmw_power2;
865    int plttype = DT_REL;
866
867    *dyn_rpath = NULL;
868    *dyn_soname = NULL;
869    *dyn_runpath = NULL;
870
871    obj->bind_now = false;
872    for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
873	switch (dynp->d_tag) {
874
875	case DT_REL:
876	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
877	    break;
878
879	case DT_RELSZ:
880	    obj->relsize = dynp->d_un.d_val;
881	    break;
882
883	case DT_RELENT:
884	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
885	    break;
886
887	case DT_JMPREL:
888	    obj->pltrel = (const Elf_Rel *)
889	      (obj->relocbase + dynp->d_un.d_ptr);
890	    break;
891
892	case DT_PLTRELSZ:
893	    obj->pltrelsize = dynp->d_un.d_val;
894	    break;
895
896	case DT_RELA:
897	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
898	    break;
899
900	case DT_RELASZ:
901	    obj->relasize = dynp->d_un.d_val;
902	    break;
903
904	case DT_RELAENT:
905	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
906	    break;
907
908	case DT_PLTREL:
909	    plttype = dynp->d_un.d_val;
910	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
911	    break;
912
913	case DT_SYMTAB:
914	    obj->symtab = (const Elf_Sym *)
915	      (obj->relocbase + dynp->d_un.d_ptr);
916	    break;
917
918	case DT_SYMENT:
919	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
920	    break;
921
922	case DT_STRTAB:
923	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
924	    break;
925
926	case DT_STRSZ:
927	    obj->strsize = dynp->d_un.d_val;
928	    break;
929
930	case DT_VERNEED:
931	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
932		dynp->d_un.d_val);
933	    break;
934
935	case DT_VERNEEDNUM:
936	    obj->verneednum = dynp->d_un.d_val;
937	    break;
938
939	case DT_VERDEF:
940	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
941		dynp->d_un.d_val);
942	    break;
943
944	case DT_VERDEFNUM:
945	    obj->verdefnum = dynp->d_un.d_val;
946	    break;
947
948	case DT_VERSYM:
949	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
950		dynp->d_un.d_val);
951	    break;
952
953	case DT_HASH:
954	    {
955		hashtab = (const Elf_Hashelt *)(obj->relocbase +
956		    dynp->d_un.d_ptr);
957		obj->nbuckets = hashtab[0];
958		obj->nchains = hashtab[1];
959		obj->buckets = hashtab + 2;
960		obj->chains = obj->buckets + obj->nbuckets;
961		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
962		  obj->buckets != NULL;
963	    }
964	    break;
965
966	case DT_GNU_HASH:
967	    {
968		hashtab = (const Elf_Hashelt *)(obj->relocbase +
969		    dynp->d_un.d_ptr);
970		obj->nbuckets_gnu = hashtab[0];
971		obj->symndx_gnu = hashtab[1];
972		nmaskwords = hashtab[2];
973		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
974		/* Number of bitmask words is required to be power of 2 */
975		nmw_power2 = ((nmaskwords & (nmaskwords - 1)) == 0);
976		obj->maskwords_bm_gnu = nmaskwords - 1;
977		obj->shift2_gnu = hashtab[3];
978		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
979		obj->buckets_gnu = hashtab + 4 + bloom_size32;
980		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
981		  obj->symndx_gnu;
982		obj->valid_hash_gnu = nmw_power2 && obj->nbuckets_gnu > 0 &&
983		  obj->buckets_gnu != NULL;
984	    }
985	    break;
986
987	case DT_NEEDED:
988	    if (!obj->rtld) {
989		Needed_Entry *nep = NEW(Needed_Entry);
990		nep->name = dynp->d_un.d_val;
991		nep->obj = NULL;
992		nep->next = NULL;
993
994		*needed_tail = nep;
995		needed_tail = &nep->next;
996	    }
997	    break;
998
999	case DT_FILTER:
1000	    if (!obj->rtld) {
1001		Needed_Entry *nep = NEW(Needed_Entry);
1002		nep->name = dynp->d_un.d_val;
1003		nep->obj = NULL;
1004		nep->next = NULL;
1005
1006		*needed_filtees_tail = nep;
1007		needed_filtees_tail = &nep->next;
1008	    }
1009	    break;
1010
1011	case DT_AUXILIARY:
1012	    if (!obj->rtld) {
1013		Needed_Entry *nep = NEW(Needed_Entry);
1014		nep->name = dynp->d_un.d_val;
1015		nep->obj = NULL;
1016		nep->next = NULL;
1017
1018		*needed_aux_filtees_tail = nep;
1019		needed_aux_filtees_tail = &nep->next;
1020	    }
1021	    break;
1022
1023	case DT_PLTGOT:
1024	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1025	    break;
1026
1027	case DT_TEXTREL:
1028	    obj->textrel = true;
1029	    break;
1030
1031	case DT_SYMBOLIC:
1032	    obj->symbolic = true;
1033	    break;
1034
1035	case DT_RPATH:
1036	    /*
1037	     * We have to wait until later to process this, because we
1038	     * might not have gotten the address of the string table yet.
1039	     */
1040	    *dyn_rpath = dynp;
1041	    break;
1042
1043	case DT_SONAME:
1044	    *dyn_soname = dynp;
1045	    break;
1046
1047	case DT_RUNPATH:
1048	    *dyn_runpath = dynp;
1049	    break;
1050
1051	case DT_INIT:
1052	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1053	    break;
1054
1055	case DT_PREINIT_ARRAY:
1056	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1057	    break;
1058
1059	case DT_PREINIT_ARRAYSZ:
1060	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1061	    break;
1062
1063	case DT_INIT_ARRAY:
1064	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1065	    break;
1066
1067	case DT_INIT_ARRAYSZ:
1068	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1069	    break;
1070
1071	case DT_FINI:
1072	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1073	    break;
1074
1075	case DT_FINI_ARRAY:
1076	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1077	    break;
1078
1079	case DT_FINI_ARRAYSZ:
1080	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1081	    break;
1082
1083	/*
1084	 * Don't process DT_DEBUG on MIPS as the dynamic section
1085	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1086	 */
1087
1088#ifndef __mips__
1089	case DT_DEBUG:
1090	    /* XXX - not implemented yet */
1091	    if (!early)
1092		dbg("Filling in DT_DEBUG entry");
1093	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1094	    break;
1095#endif
1096
1097	case DT_FLAGS:
1098		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1099		    obj->z_origin = true;
1100		if (dynp->d_un.d_val & DF_SYMBOLIC)
1101		    obj->symbolic = true;
1102		if (dynp->d_un.d_val & DF_TEXTREL)
1103		    obj->textrel = true;
1104		if (dynp->d_un.d_val & DF_BIND_NOW)
1105		    obj->bind_now = true;
1106		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1107		    ;*/
1108	    break;
1109#ifdef __mips__
1110	case DT_MIPS_LOCAL_GOTNO:
1111		obj->local_gotno = dynp->d_un.d_val;
1112	    break;
1113
1114	case DT_MIPS_SYMTABNO:
1115		obj->symtabno = dynp->d_un.d_val;
1116		break;
1117
1118	case DT_MIPS_GOTSYM:
1119		obj->gotsym = dynp->d_un.d_val;
1120		break;
1121
1122	case DT_MIPS_RLD_MAP:
1123		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1124		break;
1125#endif
1126
1127	case DT_FLAGS_1:
1128		if (dynp->d_un.d_val & DF_1_NOOPEN)
1129		    obj->z_noopen = true;
1130		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1131		    obj->z_origin = true;
1132		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1133		    XXX ;*/
1134		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1135		    obj->bind_now = true;
1136		if (dynp->d_un.d_val & DF_1_NODELETE)
1137		    obj->z_nodelete = true;
1138		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1139		    obj->z_loadfltr = true;
1140		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1141		    obj->z_interpose = true;
1142		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1143		    obj->z_nodeflib = true;
1144	    break;
1145
1146	default:
1147	    if (!early) {
1148		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1149		    (long)dynp->d_tag);
1150	    }
1151	    break;
1152	}
1153    }
1154
1155    obj->traced = false;
1156
1157    if (plttype == DT_RELA) {
1158	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1159	obj->pltrel = NULL;
1160	obj->pltrelasize = obj->pltrelsize;
1161	obj->pltrelsize = 0;
1162    }
1163
1164    /* Determine size of dynsym table (equal to nchains of sysv hash) */
1165    if (obj->valid_hash_sysv)
1166	obj->dynsymcount = obj->nchains;
1167    else if (obj->valid_hash_gnu) {
1168	obj->dynsymcount = 0;
1169	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1170	    if (obj->buckets_gnu[bkt] == 0)
1171		continue;
1172	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1173	    do
1174		obj->dynsymcount++;
1175	    while ((*hashval++ & 1u) == 0);
1176	}
1177	obj->dynsymcount += obj->symndx_gnu;
1178    }
1179}
1180
1181static void
1182digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1183    const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1184{
1185
1186    if (obj->z_origin && obj->origin_path == NULL) {
1187	obj->origin_path = xmalloc(PATH_MAX);
1188	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1189	    die();
1190    }
1191
1192    if (dyn_runpath != NULL) {
1193	obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1194	if (obj->z_origin)
1195	    obj->runpath = origin_subst(obj->runpath, obj->origin_path);
1196    }
1197    else if (dyn_rpath != NULL) {
1198	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1199	if (obj->z_origin)
1200	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1201    }
1202
1203    if (dyn_soname != NULL)
1204	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1205}
1206
1207static void
1208digest_dynamic(Obj_Entry *obj, int early)
1209{
1210	const Elf_Dyn *dyn_rpath;
1211	const Elf_Dyn *dyn_soname;
1212	const Elf_Dyn *dyn_runpath;
1213
1214	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1215	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1216}
1217
1218/*
1219 * Process a shared object's program header.  This is used only for the
1220 * main program, when the kernel has already loaded the main program
1221 * into memory before calling the dynamic linker.  It creates and
1222 * returns an Obj_Entry structure.
1223 */
1224static Obj_Entry *
1225digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1226{
1227    Obj_Entry *obj;
1228    const Elf_Phdr *phlimit = phdr + phnum;
1229    const Elf_Phdr *ph;
1230    Elf_Addr note_start, note_end;
1231    int nsegs = 0;
1232
1233    obj = obj_new();
1234    for (ph = phdr;  ph < phlimit;  ph++) {
1235	if (ph->p_type != PT_PHDR)
1236	    continue;
1237
1238	obj->phdr = phdr;
1239	obj->phsize = ph->p_memsz;
1240	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1241	break;
1242    }
1243
1244    obj->stack_flags = PF_X | PF_R | PF_W;
1245
1246    for (ph = phdr;  ph < phlimit;  ph++) {
1247	switch (ph->p_type) {
1248
1249	case PT_INTERP:
1250	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1251	    break;
1252
1253	case PT_LOAD:
1254	    if (nsegs == 0) {	/* First load segment */
1255		obj->vaddrbase = trunc_page(ph->p_vaddr);
1256		obj->mapbase = obj->vaddrbase + obj->relocbase;
1257		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1258		  obj->vaddrbase;
1259	    } else {		/* Last load segment */
1260		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1261		  obj->vaddrbase;
1262	    }
1263	    nsegs++;
1264	    break;
1265
1266	case PT_DYNAMIC:
1267	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1268	    break;
1269
1270	case PT_TLS:
1271	    obj->tlsindex = 1;
1272	    obj->tlssize = ph->p_memsz;
1273	    obj->tlsalign = ph->p_align;
1274	    obj->tlsinitsize = ph->p_filesz;
1275	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1276	    break;
1277
1278	case PT_GNU_STACK:
1279	    obj->stack_flags = ph->p_flags;
1280	    break;
1281
1282	case PT_GNU_RELRO:
1283	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1284	    obj->relro_size = round_page(ph->p_memsz);
1285	    break;
1286
1287	case PT_NOTE:
1288	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1289	    note_end = note_start + ph->p_filesz;
1290	    digest_notes(obj, note_start, note_end);
1291	    break;
1292	}
1293    }
1294    if (nsegs < 1) {
1295	_rtld_error("%s: too few PT_LOAD segments", path);
1296	return NULL;
1297    }
1298
1299    obj->entry = entry;
1300    return obj;
1301}
1302
1303void
1304digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1305{
1306	const Elf_Note *note;
1307	const char *note_name;
1308	uintptr_t p;
1309
1310	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1311	    note = (const Elf_Note *)((const char *)(note + 1) +
1312	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1313	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1314		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1315		    note->n_descsz != sizeof(int32_t))
1316			continue;
1317		if (note->n_type != ABI_NOTETYPE &&
1318		    note->n_type != CRT_NOINIT_NOTETYPE)
1319			continue;
1320		note_name = (const char *)(note + 1);
1321		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1322		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1323			continue;
1324		switch (note->n_type) {
1325		case ABI_NOTETYPE:
1326			/* FreeBSD osrel note */
1327			p = (uintptr_t)(note + 1);
1328			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1329			obj->osrel = *(const int32_t *)(p);
1330			dbg("note osrel %d", obj->osrel);
1331			break;
1332		case CRT_NOINIT_NOTETYPE:
1333			/* FreeBSD 'crt does not call init' note */
1334			obj->crt_no_init = true;
1335			dbg("note crt_no_init");
1336			break;
1337		}
1338	}
1339}
1340
1341static Obj_Entry *
1342dlcheck(void *handle)
1343{
1344    Obj_Entry *obj;
1345
1346    for (obj = obj_list;  obj != NULL;  obj = obj->next)
1347	if (obj == (Obj_Entry *) handle)
1348	    break;
1349
1350    if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1351	_rtld_error("Invalid shared object handle %p", handle);
1352	return NULL;
1353    }
1354    return obj;
1355}
1356
1357/*
1358 * If the given object is already in the donelist, return true.  Otherwise
1359 * add the object to the list and return false.
1360 */
1361static bool
1362donelist_check(DoneList *dlp, const Obj_Entry *obj)
1363{
1364    unsigned int i;
1365
1366    for (i = 0;  i < dlp->num_used;  i++)
1367	if (dlp->objs[i] == obj)
1368	    return true;
1369    /*
1370     * Our donelist allocation should always be sufficient.  But if
1371     * our threads locking isn't working properly, more shared objects
1372     * could have been loaded since we allocated the list.  That should
1373     * never happen, but we'll handle it properly just in case it does.
1374     */
1375    if (dlp->num_used < dlp->num_alloc)
1376	dlp->objs[dlp->num_used++] = obj;
1377    return false;
1378}
1379
1380/*
1381 * Hash function for symbol table lookup.  Don't even think about changing
1382 * this.  It is specified by the System V ABI.
1383 */
1384unsigned long
1385elf_hash(const char *name)
1386{
1387    const unsigned char *p = (const unsigned char *) name;
1388    unsigned long h = 0;
1389    unsigned long g;
1390
1391    while (*p != '\0') {
1392	h = (h << 4) + *p++;
1393	if ((g = h & 0xf0000000) != 0)
1394	    h ^= g >> 24;
1395	h &= ~g;
1396    }
1397    return h;
1398}
1399
1400/*
1401 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1402 * unsigned in case it's implemented with a wider type.
1403 */
1404static uint32_t
1405gnu_hash(const char *s)
1406{
1407	uint32_t h;
1408	unsigned char c;
1409
1410	h = 5381;
1411	for (c = *s; c != '\0'; c = *++s)
1412		h = h * 33 + c;
1413	return (h & 0xffffffff);
1414}
1415
1416/*
1417 * Find the library with the given name, and return its full pathname.
1418 * The returned string is dynamically allocated.  Generates an error
1419 * message and returns NULL if the library cannot be found.
1420 *
1421 * If the second argument is non-NULL, then it refers to an already-
1422 * loaded shared object, whose library search path will be searched.
1423 *
1424 * The search order is:
1425 *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1426 *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1427 *   LD_LIBRARY_PATH
1428 *   DT_RUNPATH in the referencing file
1429 *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1430 *	 from list)
1431 *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1432 *
1433 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1434 */
1435static char *
1436find_library(const char *xname, const Obj_Entry *refobj)
1437{
1438    char *pathname;
1439    char *name;
1440    bool nodeflib, objgiven;
1441
1442    objgiven = refobj != NULL;
1443    if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1444	if (xname[0] != '/' && !trust) {
1445	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1446	      xname);
1447	    return NULL;
1448	}
1449	if (objgiven && refobj->z_origin) {
1450		return (origin_subst(__DECONST(char *, xname),
1451		    refobj->origin_path));
1452	} else {
1453		return (xstrdup(xname));
1454	}
1455    }
1456
1457    if (libmap_disable || !objgiven ||
1458	(name = lm_find(refobj->path, xname)) == NULL)
1459	name = (char *)xname;
1460
1461    dbg(" Searching for \"%s\"", name);
1462
1463    /*
1464     * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1465     * back to pre-conforming behaviour if user requested so with
1466     * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1467     * nodeflib.
1468     */
1469    if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1470	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1471	  (refobj != NULL &&
1472	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1473          (pathname = search_library_path(name, gethints(false))) != NULL ||
1474	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1475	    return (pathname);
1476    } else {
1477	nodeflib = objgiven ? refobj->z_nodeflib : false;
1478	if ((objgiven &&
1479	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1480	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1481	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1482	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1483	  (objgiven &&
1484	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1485	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1486	  (objgiven && !nodeflib &&
1487	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1488	    return (pathname);
1489    }
1490
1491    if (objgiven && refobj->path != NULL) {
1492	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1493	  name, basename(refobj->path));
1494    } else {
1495	_rtld_error("Shared object \"%s\" not found", name);
1496    }
1497    return NULL;
1498}
1499
1500/*
1501 * Given a symbol number in a referencing object, find the corresponding
1502 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1503 * no definition was found.  Returns a pointer to the Obj_Entry of the
1504 * defining object via the reference parameter DEFOBJ_OUT.
1505 */
1506const Elf_Sym *
1507find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1508    const Obj_Entry **defobj_out, int flags, SymCache *cache,
1509    RtldLockState *lockstate)
1510{
1511    const Elf_Sym *ref;
1512    const Elf_Sym *def;
1513    const Obj_Entry *defobj;
1514    SymLook req;
1515    const char *name;
1516    int res;
1517
1518    /*
1519     * If we have already found this symbol, get the information from
1520     * the cache.
1521     */
1522    if (symnum >= refobj->dynsymcount)
1523	return NULL;	/* Bad object */
1524    if (cache != NULL && cache[symnum].sym != NULL) {
1525	*defobj_out = cache[symnum].obj;
1526	return cache[symnum].sym;
1527    }
1528
1529    ref = refobj->symtab + symnum;
1530    name = refobj->strtab + ref->st_name;
1531    def = NULL;
1532    defobj = NULL;
1533
1534    /*
1535     * We don't have to do a full scale lookup if the symbol is local.
1536     * We know it will bind to the instance in this load module; to
1537     * which we already have a pointer (ie ref). By not doing a lookup,
1538     * we not only improve performance, but it also avoids unresolvable
1539     * symbols when local symbols are not in the hash table. This has
1540     * been seen with the ia64 toolchain.
1541     */
1542    if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1543	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1544	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1545		symnum);
1546	}
1547	symlook_init(&req, name);
1548	req.flags = flags;
1549	req.ventry = fetch_ventry(refobj, symnum);
1550	req.lockstate = lockstate;
1551	res = symlook_default(&req, refobj);
1552	if (res == 0) {
1553	    def = req.sym_out;
1554	    defobj = req.defobj_out;
1555	}
1556    } else {
1557	def = ref;
1558	defobj = refobj;
1559    }
1560
1561    /*
1562     * If we found no definition and the reference is weak, treat the
1563     * symbol as having the value zero.
1564     */
1565    if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1566	def = &sym_zero;
1567	defobj = obj_main;
1568    }
1569
1570    if (def != NULL) {
1571	*defobj_out = defobj;
1572	/* Record the information in the cache to avoid subsequent lookups. */
1573	if (cache != NULL) {
1574	    cache[symnum].sym = def;
1575	    cache[symnum].obj = defobj;
1576	}
1577    } else {
1578	if (refobj != &obj_rtld)
1579	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1580    }
1581    return def;
1582}
1583
1584/*
1585 * Return the search path from the ldconfig hints file, reading it if
1586 * necessary.  If nostdlib is true, then the default search paths are
1587 * not added to result.
1588 *
1589 * Returns NULL if there are problems with the hints file,
1590 * or if the search path there is empty.
1591 */
1592static const char *
1593gethints(bool nostdlib)
1594{
1595	static char *hints, *filtered_path;
1596	struct elfhints_hdr hdr;
1597	struct fill_search_info_args sargs, hargs;
1598	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1599	struct dl_serpath *SLPpath, *hintpath;
1600	char *p;
1601	unsigned int SLPndx, hintndx, fndx, fcount;
1602	int fd;
1603	size_t flen;
1604	bool skip;
1605
1606	/* First call, read the hints file */
1607	if (hints == NULL) {
1608		/* Keep from trying again in case the hints file is bad. */
1609		hints = "";
1610
1611		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1612			return (NULL);
1613		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1614		    hdr.magic != ELFHINTS_MAGIC ||
1615		    hdr.version != 1) {
1616			close(fd);
1617			return (NULL);
1618		}
1619		p = xmalloc(hdr.dirlistlen + 1);
1620		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1621		    read(fd, p, hdr.dirlistlen + 1) !=
1622		    (ssize_t)hdr.dirlistlen + 1) {
1623			free(p);
1624			close(fd);
1625			return (NULL);
1626		}
1627		hints = p;
1628		close(fd);
1629	}
1630
1631	/*
1632	 * If caller agreed to receive list which includes the default
1633	 * paths, we are done. Otherwise, if we still did not
1634	 * calculated filtered result, do it now.
1635	 */
1636	if (!nostdlib)
1637		return (hints[0] != '\0' ? hints : NULL);
1638	if (filtered_path != NULL)
1639		goto filt_ret;
1640
1641	/*
1642	 * Obtain the list of all configured search paths, and the
1643	 * list of the default paths.
1644	 *
1645	 * First estimate the size of the results.
1646	 */
1647	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1648	smeta.dls_cnt = 0;
1649	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1650	hmeta.dls_cnt = 0;
1651
1652	sargs.request = RTLD_DI_SERINFOSIZE;
1653	sargs.serinfo = &smeta;
1654	hargs.request = RTLD_DI_SERINFOSIZE;
1655	hargs.serinfo = &hmeta;
1656
1657	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1658	path_enumerate(p, fill_search_info, &hargs);
1659
1660	SLPinfo = xmalloc(smeta.dls_size);
1661	hintinfo = xmalloc(hmeta.dls_size);
1662
1663	/*
1664	 * Next fetch both sets of paths.
1665	 */
1666	sargs.request = RTLD_DI_SERINFO;
1667	sargs.serinfo = SLPinfo;
1668	sargs.serpath = &SLPinfo->dls_serpath[0];
1669	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1670
1671	hargs.request = RTLD_DI_SERINFO;
1672	hargs.serinfo = hintinfo;
1673	hargs.serpath = &hintinfo->dls_serpath[0];
1674	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1675
1676	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1677	path_enumerate(p, fill_search_info, &hargs);
1678
1679	/*
1680	 * Now calculate the difference between two sets, by excluding
1681	 * standard paths from the full set.
1682	 */
1683	fndx = 0;
1684	fcount = 0;
1685	filtered_path = xmalloc(hdr.dirlistlen + 1);
1686	hintpath = &hintinfo->dls_serpath[0];
1687	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1688		skip = false;
1689		SLPpath = &SLPinfo->dls_serpath[0];
1690		/*
1691		 * Check each standard path against current.
1692		 */
1693		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1694			/* matched, skip the path */
1695			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1696				skip = true;
1697				break;
1698			}
1699		}
1700		if (skip)
1701			continue;
1702		/*
1703		 * Not matched against any standard path, add the path
1704		 * to result. Separate consequtive paths with ':'.
1705		 */
1706		if (fcount > 0) {
1707			filtered_path[fndx] = ':';
1708			fndx++;
1709		}
1710		fcount++;
1711		flen = strlen(hintpath->dls_name);
1712		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1713		fndx += flen;
1714	}
1715	filtered_path[fndx] = '\0';
1716
1717	free(SLPinfo);
1718	free(hintinfo);
1719
1720filt_ret:
1721	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1722}
1723
1724static void
1725init_dag(Obj_Entry *root)
1726{
1727    const Needed_Entry *needed;
1728    const Objlist_Entry *elm;
1729    DoneList donelist;
1730
1731    if (root->dag_inited)
1732	return;
1733    donelist_init(&donelist);
1734
1735    /* Root object belongs to own DAG. */
1736    objlist_push_tail(&root->dldags, root);
1737    objlist_push_tail(&root->dagmembers, root);
1738    donelist_check(&donelist, root);
1739
1740    /*
1741     * Add dependencies of root object to DAG in breadth order
1742     * by exploiting the fact that each new object get added
1743     * to the tail of the dagmembers list.
1744     */
1745    STAILQ_FOREACH(elm, &root->dagmembers, link) {
1746	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1747	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1748		continue;
1749	    objlist_push_tail(&needed->obj->dldags, root);
1750	    objlist_push_tail(&root->dagmembers, needed->obj);
1751	}
1752    }
1753    root->dag_inited = true;
1754}
1755
1756static void
1757process_nodelete(Obj_Entry *root)
1758{
1759	const Objlist_Entry *elm;
1760
1761	/*
1762	 * Walk over object DAG and process every dependent object that
1763	 * is marked as DF_1_NODELETE. They need to grow their own DAG,
1764	 * which then should have its reference upped separately.
1765	 */
1766	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1767		if (elm->obj != NULL && elm->obj->z_nodelete &&
1768		    !elm->obj->ref_nodel) {
1769			dbg("obj %s nodelete", elm->obj->path);
1770			init_dag(elm->obj);
1771			ref_dag(elm->obj);
1772			elm->obj->ref_nodel = true;
1773		}
1774	}
1775}
1776/*
1777 * Initialize the dynamic linker.  The argument is the address at which
1778 * the dynamic linker has been mapped into memory.  The primary task of
1779 * this function is to relocate the dynamic linker.
1780 */
1781static void
1782init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1783{
1784    Obj_Entry objtmp;	/* Temporary rtld object */
1785    const Elf_Dyn *dyn_rpath;
1786    const Elf_Dyn *dyn_soname;
1787    const Elf_Dyn *dyn_runpath;
1788
1789    /*
1790     * Conjure up an Obj_Entry structure for the dynamic linker.
1791     *
1792     * The "path" member can't be initialized yet because string constants
1793     * cannot yet be accessed. Below we will set it correctly.
1794     */
1795    memset(&objtmp, 0, sizeof(objtmp));
1796    objtmp.path = NULL;
1797    objtmp.rtld = true;
1798    objtmp.mapbase = mapbase;
1799#ifdef PIC
1800    objtmp.relocbase = mapbase;
1801#endif
1802    if (RTLD_IS_DYNAMIC()) {
1803	objtmp.dynamic = rtld_dynamic(&objtmp);
1804	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1805	assert(objtmp.needed == NULL);
1806#if !defined(__mips__)
1807	/* MIPS has a bogus DT_TEXTREL. */
1808	assert(!objtmp.textrel);
1809#endif
1810
1811	/*
1812	 * Temporarily put the dynamic linker entry into the object list, so
1813	 * that symbols can be found.
1814	 */
1815
1816	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1817    }
1818
1819    /* Initialize the object list. */
1820    obj_tail = &obj_list;
1821
1822    /* Now that non-local variables can be accesses, copy out obj_rtld. */
1823    memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1824
1825    if (aux_info[AT_PAGESZ] != NULL)
1826	    pagesize = aux_info[AT_PAGESZ]->a_un.a_val;
1827    if (aux_info[AT_OSRELDATE] != NULL)
1828	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1829
1830    digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1831
1832    /* Replace the path with a dynamically allocated copy. */
1833    obj_rtld.path = xstrdup(PATH_RTLD);
1834
1835    r_debug.r_brk = r_debug_state;
1836    r_debug.r_state = RT_CONSISTENT;
1837}
1838
1839/*
1840 * Add the init functions from a needed object list (and its recursive
1841 * needed objects) to "list".  This is not used directly; it is a helper
1842 * function for initlist_add_objects().  The write lock must be held
1843 * when this function is called.
1844 */
1845static void
1846initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1847{
1848    /* Recursively process the successor needed objects. */
1849    if (needed->next != NULL)
1850	initlist_add_neededs(needed->next, list);
1851
1852    /* Process the current needed object. */
1853    if (needed->obj != NULL)
1854	initlist_add_objects(needed->obj, &needed->obj->next, list);
1855}
1856
1857/*
1858 * Scan all of the DAGs rooted in the range of objects from "obj" to
1859 * "tail" and add their init functions to "list".  This recurses over
1860 * the DAGs and ensure the proper init ordering such that each object's
1861 * needed libraries are initialized before the object itself.  At the
1862 * same time, this function adds the objects to the global finalization
1863 * list "list_fini" in the opposite order.  The write lock must be
1864 * held when this function is called.
1865 */
1866static void
1867initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1868{
1869
1870    if (obj->init_scanned || obj->init_done)
1871	return;
1872    obj->init_scanned = true;
1873
1874    /* Recursively process the successor objects. */
1875    if (&obj->next != tail)
1876	initlist_add_objects(obj->next, tail, list);
1877
1878    /* Recursively process the needed objects. */
1879    if (obj->needed != NULL)
1880	initlist_add_neededs(obj->needed, list);
1881    if (obj->needed_filtees != NULL)
1882	initlist_add_neededs(obj->needed_filtees, list);
1883    if (obj->needed_aux_filtees != NULL)
1884	initlist_add_neededs(obj->needed_aux_filtees, list);
1885
1886    /* Add the object to the init list. */
1887    if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1888      obj->init_array != (Elf_Addr)NULL)
1889	objlist_push_tail(list, obj);
1890
1891    /* Add the object to the global fini list in the reverse order. */
1892    if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1893      && !obj->on_fini_list) {
1894	objlist_push_head(&list_fini, obj);
1895	obj->on_fini_list = true;
1896    }
1897}
1898
1899#ifndef FPTR_TARGET
1900#define FPTR_TARGET(f)	((Elf_Addr) (f))
1901#endif
1902
1903static void
1904free_needed_filtees(Needed_Entry *n)
1905{
1906    Needed_Entry *needed, *needed1;
1907
1908    for (needed = n; needed != NULL; needed = needed->next) {
1909	if (needed->obj != NULL) {
1910	    dlclose(needed->obj);
1911	    needed->obj = NULL;
1912	}
1913    }
1914    for (needed = n; needed != NULL; needed = needed1) {
1915	needed1 = needed->next;
1916	free(needed);
1917    }
1918}
1919
1920static void
1921unload_filtees(Obj_Entry *obj)
1922{
1923
1924    free_needed_filtees(obj->needed_filtees);
1925    obj->needed_filtees = NULL;
1926    free_needed_filtees(obj->needed_aux_filtees);
1927    obj->needed_aux_filtees = NULL;
1928    obj->filtees_loaded = false;
1929}
1930
1931static void
1932load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
1933    RtldLockState *lockstate)
1934{
1935
1936    for (; needed != NULL; needed = needed->next) {
1937	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
1938	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1939	  RTLD_LOCAL, lockstate);
1940    }
1941}
1942
1943static void
1944load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
1945{
1946
1947    lock_restart_for_upgrade(lockstate);
1948    if (!obj->filtees_loaded) {
1949	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
1950	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
1951	obj->filtees_loaded = true;
1952    }
1953}
1954
1955static int
1956process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
1957{
1958    Obj_Entry *obj1;
1959
1960    for (; needed != NULL; needed = needed->next) {
1961	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
1962	  flags & ~RTLD_LO_NOLOAD);
1963	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
1964	    return (-1);
1965    }
1966    return (0);
1967}
1968
1969/*
1970 * Given a shared object, traverse its list of needed objects, and load
1971 * each of them.  Returns 0 on success.  Generates an error message and
1972 * returns -1 on failure.
1973 */
1974static int
1975load_needed_objects(Obj_Entry *first, int flags)
1976{
1977    Obj_Entry *obj;
1978
1979    for (obj = first;  obj != NULL;  obj = obj->next) {
1980	if (process_needed(obj, obj->needed, flags) == -1)
1981	    return (-1);
1982    }
1983    return (0);
1984}
1985
1986static int
1987load_preload_objects(void)
1988{
1989    char *p = ld_preload;
1990    Obj_Entry *obj;
1991    static const char delim[] = " \t:;";
1992
1993    if (p == NULL)
1994	return 0;
1995
1996    p += strspn(p, delim);
1997    while (*p != '\0') {
1998	size_t len = strcspn(p, delim);
1999	char savech;
2000
2001	savech = p[len];
2002	p[len] = '\0';
2003	obj = load_object(p, -1, NULL, 0);
2004	if (obj == NULL)
2005	    return -1;	/* XXX - cleanup */
2006	obj->z_interpose = true;
2007	p[len] = savech;
2008	p += len;
2009	p += strspn(p, delim);
2010    }
2011    LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2012    return 0;
2013}
2014
2015static const char *
2016printable_path(const char *path)
2017{
2018
2019	return (path == NULL ? "<unknown>" : path);
2020}
2021
2022/*
2023 * Load a shared object into memory, if it is not already loaded.  The
2024 * object may be specified by name or by user-supplied file descriptor
2025 * fd_u. In the later case, the fd_u descriptor is not closed, but its
2026 * duplicate is.
2027 *
2028 * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2029 * on failure.
2030 */
2031static Obj_Entry *
2032load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2033{
2034    Obj_Entry *obj;
2035    int fd;
2036    struct stat sb;
2037    char *path;
2038
2039    if (name != NULL) {
2040	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2041	    if (object_match_name(obj, name))
2042		return (obj);
2043	}
2044
2045	path = find_library(name, refobj);
2046	if (path == NULL)
2047	    return (NULL);
2048    } else
2049	path = NULL;
2050
2051    /*
2052     * If we didn't find a match by pathname, or the name is not
2053     * supplied, open the file and check again by device and inode.
2054     * This avoids false mismatches caused by multiple links or ".."
2055     * in pathnames.
2056     *
2057     * To avoid a race, we open the file and use fstat() rather than
2058     * using stat().
2059     */
2060    fd = -1;
2061    if (fd_u == -1) {
2062	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2063	    _rtld_error("Cannot open \"%s\"", path);
2064	    free(path);
2065	    return (NULL);
2066	}
2067    } else {
2068	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2069	if (fd == -1) {
2070	    _rtld_error("Cannot dup fd");
2071	    free(path);
2072	    return (NULL);
2073	}
2074    }
2075    if (fstat(fd, &sb) == -1) {
2076	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2077	close(fd);
2078	free(path);
2079	return NULL;
2080    }
2081    for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2082	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2083	    break;
2084    if (obj != NULL && name != NULL) {
2085	object_add_name(obj, name);
2086	free(path);
2087	close(fd);
2088	return obj;
2089    }
2090    if (flags & RTLD_LO_NOLOAD) {
2091	free(path);
2092	close(fd);
2093	return (NULL);
2094    }
2095
2096    /* First use of this object, so we must map it in */
2097    obj = do_load_object(fd, name, path, &sb, flags);
2098    if (obj == NULL)
2099	free(path);
2100    close(fd);
2101
2102    return obj;
2103}
2104
2105static Obj_Entry *
2106do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2107  int flags)
2108{
2109    Obj_Entry *obj;
2110    struct statfs fs;
2111
2112    /*
2113     * but first, make sure that environment variables haven't been
2114     * used to circumvent the noexec flag on a filesystem.
2115     */
2116    if (dangerous_ld_env) {
2117	if (fstatfs(fd, &fs) != 0) {
2118	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2119	    return NULL;
2120	}
2121	if (fs.f_flags & MNT_NOEXEC) {
2122	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2123	    return NULL;
2124	}
2125    }
2126    dbg("loading \"%s\"", printable_path(path));
2127    obj = map_object(fd, printable_path(path), sbp);
2128    if (obj == NULL)
2129        return NULL;
2130
2131    /*
2132     * If DT_SONAME is present in the object, digest_dynamic2 already
2133     * added it to the object names.
2134     */
2135    if (name != NULL)
2136	object_add_name(obj, name);
2137    obj->path = path;
2138    digest_dynamic(obj, 0);
2139    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2140	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2141    if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2142      RTLD_LO_DLOPEN) {
2143	dbg("refusing to load non-loadable \"%s\"", obj->path);
2144	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2145	munmap(obj->mapbase, obj->mapsize);
2146	obj_free(obj);
2147	return (NULL);
2148    }
2149
2150    *obj_tail = obj;
2151    obj_tail = &obj->next;
2152    obj_count++;
2153    obj_loads++;
2154    linkmap_add(obj);	/* for GDB & dlinfo() */
2155    max_stack_flags |= obj->stack_flags;
2156
2157    dbg("  %p .. %p: %s", obj->mapbase,
2158         obj->mapbase + obj->mapsize - 1, obj->path);
2159    if (obj->textrel)
2160	dbg("  WARNING: %s has impure text", obj->path);
2161    LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2162	obj->path);
2163
2164    return obj;
2165}
2166
2167static Obj_Entry *
2168obj_from_addr(const void *addr)
2169{
2170    Obj_Entry *obj;
2171
2172    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2173	if (addr < (void *) obj->mapbase)
2174	    continue;
2175	if (addr < (void *) (obj->mapbase + obj->mapsize))
2176	    return obj;
2177    }
2178    return NULL;
2179}
2180
2181static void
2182preinit_main(void)
2183{
2184    Elf_Addr *preinit_addr;
2185    int index;
2186
2187    preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2188    if (preinit_addr == NULL)
2189	return;
2190
2191    for (index = 0; index < obj_main->preinit_array_num; index++) {
2192	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2193	    dbg("calling preinit function for %s at %p", obj_main->path,
2194	      (void *)preinit_addr[index]);
2195	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2196	      0, 0, obj_main->path);
2197	    call_init_pointer(obj_main, preinit_addr[index]);
2198	}
2199    }
2200}
2201
2202/*
2203 * Call the finalization functions for each of the objects in "list"
2204 * belonging to the DAG of "root" and referenced once. If NULL "root"
2205 * is specified, every finalization function will be called regardless
2206 * of the reference count and the list elements won't be freed. All of
2207 * the objects are expected to have non-NULL fini functions.
2208 */
2209static void
2210objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2211{
2212    Objlist_Entry *elm;
2213    char *saved_msg;
2214    Elf_Addr *fini_addr;
2215    int index;
2216
2217    assert(root == NULL || root->refcount == 1);
2218
2219    /*
2220     * Preserve the current error message since a fini function might
2221     * call into the dynamic linker and overwrite it.
2222     */
2223    saved_msg = errmsg_save();
2224    do {
2225	STAILQ_FOREACH(elm, list, link) {
2226	    if (root != NULL && (elm->obj->refcount != 1 ||
2227	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2228		continue;
2229	    /* Remove object from fini list to prevent recursive invocation. */
2230	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2231	    /*
2232	     * XXX: If a dlopen() call references an object while the
2233	     * fini function is in progress, we might end up trying to
2234	     * unload the referenced object in dlclose() or the object
2235	     * won't be unloaded although its fini function has been
2236	     * called.
2237	     */
2238	    lock_release(rtld_bind_lock, lockstate);
2239
2240	    /*
2241	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2242	     * When this happens, DT_FINI_ARRAY is processed first.
2243	     */
2244	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2245	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2246		for (index = elm->obj->fini_array_num - 1; index >= 0;
2247		  index--) {
2248		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2249			dbg("calling fini function for %s at %p",
2250			    elm->obj->path, (void *)fini_addr[index]);
2251			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2252			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2253			call_initfini_pointer(elm->obj, fini_addr[index]);
2254		    }
2255		}
2256	    }
2257	    if (elm->obj->fini != (Elf_Addr)NULL) {
2258		dbg("calling fini function for %s at %p", elm->obj->path,
2259		    (void *)elm->obj->fini);
2260		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2261		    0, 0, elm->obj->path);
2262		call_initfini_pointer(elm->obj, elm->obj->fini);
2263	    }
2264	    wlock_acquire(rtld_bind_lock, lockstate);
2265	    /* No need to free anything if process is going down. */
2266	    if (root != NULL)
2267	    	free(elm);
2268	    /*
2269	     * We must restart the list traversal after every fini call
2270	     * because a dlclose() call from the fini function or from
2271	     * another thread might have modified the reference counts.
2272	     */
2273	    break;
2274	}
2275    } while (elm != NULL);
2276    errmsg_restore(saved_msg);
2277}
2278
2279/*
2280 * Call the initialization functions for each of the objects in
2281 * "list".  All of the objects are expected to have non-NULL init
2282 * functions.
2283 */
2284static void
2285objlist_call_init(Objlist *list, RtldLockState *lockstate)
2286{
2287    Objlist_Entry *elm;
2288    Obj_Entry *obj;
2289    char *saved_msg;
2290    Elf_Addr *init_addr;
2291    int index;
2292
2293    /*
2294     * Clean init_scanned flag so that objects can be rechecked and
2295     * possibly initialized earlier if any of vectors called below
2296     * cause the change by using dlopen.
2297     */
2298    for (obj = obj_list;  obj != NULL;  obj = obj->next)
2299	obj->init_scanned = false;
2300
2301    /*
2302     * Preserve the current error message since an init function might
2303     * call into the dynamic linker and overwrite it.
2304     */
2305    saved_msg = errmsg_save();
2306    STAILQ_FOREACH(elm, list, link) {
2307	if (elm->obj->init_done) /* Initialized early. */
2308	    continue;
2309	/*
2310	 * Race: other thread might try to use this object before current
2311	 * one completes the initilization. Not much can be done here
2312	 * without better locking.
2313	 */
2314	elm->obj->init_done = true;
2315	lock_release(rtld_bind_lock, lockstate);
2316
2317        /*
2318         * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2319         * When this happens, DT_INIT is processed first.
2320         */
2321	if (elm->obj->init != (Elf_Addr)NULL) {
2322	    dbg("calling init function for %s at %p", elm->obj->path,
2323	        (void *)elm->obj->init);
2324	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2325	        0, 0, elm->obj->path);
2326	    call_initfini_pointer(elm->obj, elm->obj->init);
2327	}
2328	init_addr = (Elf_Addr *)elm->obj->init_array;
2329	if (init_addr != NULL) {
2330	    for (index = 0; index < elm->obj->init_array_num; index++) {
2331		if (init_addr[index] != 0 && init_addr[index] != 1) {
2332		    dbg("calling init function for %s at %p", elm->obj->path,
2333			(void *)init_addr[index]);
2334		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2335			(void *)init_addr[index], 0, 0, elm->obj->path);
2336		    call_init_pointer(elm->obj, init_addr[index]);
2337		}
2338	    }
2339	}
2340	wlock_acquire(rtld_bind_lock, lockstate);
2341    }
2342    errmsg_restore(saved_msg);
2343}
2344
2345static void
2346objlist_clear(Objlist *list)
2347{
2348    Objlist_Entry *elm;
2349
2350    while (!STAILQ_EMPTY(list)) {
2351	elm = STAILQ_FIRST(list);
2352	STAILQ_REMOVE_HEAD(list, link);
2353	free(elm);
2354    }
2355}
2356
2357static Objlist_Entry *
2358objlist_find(Objlist *list, const Obj_Entry *obj)
2359{
2360    Objlist_Entry *elm;
2361
2362    STAILQ_FOREACH(elm, list, link)
2363	if (elm->obj == obj)
2364	    return elm;
2365    return NULL;
2366}
2367
2368static void
2369objlist_init(Objlist *list)
2370{
2371    STAILQ_INIT(list);
2372}
2373
2374static void
2375objlist_push_head(Objlist *list, Obj_Entry *obj)
2376{
2377    Objlist_Entry *elm;
2378
2379    elm = NEW(Objlist_Entry);
2380    elm->obj = obj;
2381    STAILQ_INSERT_HEAD(list, elm, link);
2382}
2383
2384static void
2385objlist_push_tail(Objlist *list, Obj_Entry *obj)
2386{
2387    Objlist_Entry *elm;
2388
2389    elm = NEW(Objlist_Entry);
2390    elm->obj = obj;
2391    STAILQ_INSERT_TAIL(list, elm, link);
2392}
2393
2394static void
2395objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2396{
2397	Objlist_Entry *elm, *listelm;
2398
2399	STAILQ_FOREACH(listelm, list, link) {
2400		if (listelm->obj == listobj)
2401			break;
2402	}
2403	elm = NEW(Objlist_Entry);
2404	elm->obj = obj;
2405	if (listelm != NULL)
2406		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2407	else
2408		STAILQ_INSERT_TAIL(list, elm, link);
2409}
2410
2411static void
2412objlist_remove(Objlist *list, Obj_Entry *obj)
2413{
2414    Objlist_Entry *elm;
2415
2416    if ((elm = objlist_find(list, obj)) != NULL) {
2417	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2418	free(elm);
2419    }
2420}
2421
2422/*
2423 * Relocate dag rooted in the specified object.
2424 * Returns 0 on success, or -1 on failure.
2425 */
2426
2427static int
2428relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2429    int flags, RtldLockState *lockstate)
2430{
2431	Objlist_Entry *elm;
2432	int error;
2433
2434	error = 0;
2435	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2436		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2437		    lockstate);
2438		if (error == -1)
2439			break;
2440	}
2441	return (error);
2442}
2443
2444/*
2445 * Relocate single object.
2446 * Returns 0 on success, or -1 on failure.
2447 */
2448static int
2449relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2450    int flags, RtldLockState *lockstate)
2451{
2452
2453	if (obj->relocated)
2454		return (0);
2455	obj->relocated = true;
2456	if (obj != rtldobj)
2457		dbg("relocating \"%s\"", obj->path);
2458
2459	if (obj->symtab == NULL || obj->strtab == NULL ||
2460	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2461		_rtld_error("%s: Shared object has no run-time symbol table",
2462			    obj->path);
2463		return (-1);
2464	}
2465
2466	if (obj->textrel) {
2467		/* There are relocations to the write-protected text segment. */
2468		if (mprotect(obj->mapbase, obj->textsize,
2469		    PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2470			_rtld_error("%s: Cannot write-enable text segment: %s",
2471			    obj->path, rtld_strerror(errno));
2472			return (-1);
2473		}
2474	}
2475
2476	/* Process the non-PLT relocations. */
2477	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2478		return (-1);
2479
2480	if (obj->textrel) {	/* Re-protected the text segment. */
2481		if (mprotect(obj->mapbase, obj->textsize,
2482		    PROT_READ|PROT_EXEC) == -1) {
2483			_rtld_error("%s: Cannot write-protect text segment: %s",
2484			    obj->path, rtld_strerror(errno));
2485			return (-1);
2486		}
2487	}
2488
2489
2490	/* Set the special PLT or GOT entries. */
2491	init_pltgot(obj);
2492
2493	/* Process the PLT relocations. */
2494	if (reloc_plt(obj) == -1)
2495		return (-1);
2496	/* Relocate the jump slots if we are doing immediate binding. */
2497	if (obj->bind_now || bind_now)
2498		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2499			return (-1);
2500
2501	if (obj->relro_size > 0) {
2502		if (mprotect(obj->relro_page, obj->relro_size,
2503		    PROT_READ) == -1) {
2504			_rtld_error("%s: Cannot enforce relro protection: %s",
2505			    obj->path, rtld_strerror(errno));
2506			return (-1);
2507		}
2508	}
2509
2510	/*
2511	 * Set up the magic number and version in the Obj_Entry.  These
2512	 * were checked in the crt1.o from the original ElfKit, so we
2513	 * set them for backward compatibility.
2514	 */
2515	obj->magic = RTLD_MAGIC;
2516	obj->version = RTLD_VERSION;
2517
2518	return (0);
2519}
2520
2521/*
2522 * Relocate newly-loaded shared objects.  The argument is a pointer to
2523 * the Obj_Entry for the first such object.  All objects from the first
2524 * to the end of the list of objects are relocated.  Returns 0 on success,
2525 * or -1 on failure.
2526 */
2527static int
2528relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2529    int flags, RtldLockState *lockstate)
2530{
2531	Obj_Entry *obj;
2532	int error;
2533
2534	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2535		error = relocate_object(obj, bind_now, rtldobj, flags,
2536		    lockstate);
2537		if (error == -1)
2538			break;
2539	}
2540	return (error);
2541}
2542
2543/*
2544 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2545 * referencing STT_GNU_IFUNC symbols is postponed till the other
2546 * relocations are done.  The indirect functions specified as
2547 * ifunc are allowed to call other symbols, so we need to have
2548 * objects relocated before asking for resolution from indirects.
2549 *
2550 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2551 * instead of the usual lazy handling of PLT slots.  It is
2552 * consistent with how GNU does it.
2553 */
2554static int
2555resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2556    RtldLockState *lockstate)
2557{
2558	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2559		return (-1);
2560	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2561	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2562		return (-1);
2563	return (0);
2564}
2565
2566static int
2567resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2568    RtldLockState *lockstate)
2569{
2570	Obj_Entry *obj;
2571
2572	for (obj = first;  obj != NULL;  obj = obj->next) {
2573		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2574			return (-1);
2575	}
2576	return (0);
2577}
2578
2579static int
2580initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2581    RtldLockState *lockstate)
2582{
2583	Objlist_Entry *elm;
2584
2585	STAILQ_FOREACH(elm, list, link) {
2586		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2587		    lockstate) == -1)
2588			return (-1);
2589	}
2590	return (0);
2591}
2592
2593/*
2594 * Cleanup procedure.  It will be called (by the atexit mechanism) just
2595 * before the process exits.
2596 */
2597static void
2598rtld_exit(void)
2599{
2600    RtldLockState lockstate;
2601
2602    wlock_acquire(rtld_bind_lock, &lockstate);
2603    dbg("rtld_exit()");
2604    objlist_call_fini(&list_fini, NULL, &lockstate);
2605    /* No need to remove the items from the list, since we are exiting. */
2606    if (!libmap_disable)
2607        lm_fini();
2608    lock_release(rtld_bind_lock, &lockstate);
2609}
2610
2611/*
2612 * Iterate over a search path, translate each element, and invoke the
2613 * callback on the result.
2614 */
2615static void *
2616path_enumerate(const char *path, path_enum_proc callback, void *arg)
2617{
2618    const char *trans;
2619    if (path == NULL)
2620	return (NULL);
2621
2622    path += strspn(path, ":;");
2623    while (*path != '\0') {
2624	size_t len;
2625	char  *res;
2626
2627	len = strcspn(path, ":;");
2628	trans = lm_findn(NULL, path, len);
2629	if (trans)
2630	    res = callback(trans, strlen(trans), arg);
2631	else
2632	    res = callback(path, len, arg);
2633
2634	if (res != NULL)
2635	    return (res);
2636
2637	path += len;
2638	path += strspn(path, ":;");
2639    }
2640
2641    return (NULL);
2642}
2643
2644struct try_library_args {
2645    const char	*name;
2646    size_t	 namelen;
2647    char	*buffer;
2648    size_t	 buflen;
2649};
2650
2651static void *
2652try_library_path(const char *dir, size_t dirlen, void *param)
2653{
2654    struct try_library_args *arg;
2655
2656    arg = param;
2657    if (*dir == '/' || trust) {
2658	char *pathname;
2659
2660	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2661		return (NULL);
2662
2663	pathname = arg->buffer;
2664	strncpy(pathname, dir, dirlen);
2665	pathname[dirlen] = '/';
2666	strcpy(pathname + dirlen + 1, arg->name);
2667
2668	dbg("  Trying \"%s\"", pathname);
2669	if (access(pathname, F_OK) == 0) {		/* We found it */
2670	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2671	    strcpy(pathname, arg->buffer);
2672	    return (pathname);
2673	}
2674    }
2675    return (NULL);
2676}
2677
2678static char *
2679search_library_path(const char *name, const char *path)
2680{
2681    char *p;
2682    struct try_library_args arg;
2683
2684    if (path == NULL)
2685	return NULL;
2686
2687    arg.name = name;
2688    arg.namelen = strlen(name);
2689    arg.buffer = xmalloc(PATH_MAX);
2690    arg.buflen = PATH_MAX;
2691
2692    p = path_enumerate(path, try_library_path, &arg);
2693
2694    free(arg.buffer);
2695
2696    return (p);
2697}
2698
2699int
2700dlclose(void *handle)
2701{
2702    Obj_Entry *root;
2703    RtldLockState lockstate;
2704
2705    wlock_acquire(rtld_bind_lock, &lockstate);
2706    root = dlcheck(handle);
2707    if (root == NULL) {
2708	lock_release(rtld_bind_lock, &lockstate);
2709	return -1;
2710    }
2711    LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2712	root->path);
2713
2714    /* Unreference the object and its dependencies. */
2715    root->dl_refcount--;
2716
2717    if (root->refcount == 1) {
2718	/*
2719	 * The object will be no longer referenced, so we must unload it.
2720	 * First, call the fini functions.
2721	 */
2722	objlist_call_fini(&list_fini, root, &lockstate);
2723
2724	unref_dag(root);
2725
2726	/* Finish cleaning up the newly-unreferenced objects. */
2727	GDB_STATE(RT_DELETE,&root->linkmap);
2728	unload_object(root);
2729	GDB_STATE(RT_CONSISTENT,NULL);
2730    } else
2731	unref_dag(root);
2732
2733    LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2734    lock_release(rtld_bind_lock, &lockstate);
2735    return 0;
2736}
2737
2738char *
2739dlerror(void)
2740{
2741    char *msg = error_message;
2742    error_message = NULL;
2743    return msg;
2744}
2745
2746/*
2747 * This function is deprecated and has no effect.
2748 */
2749void
2750dllockinit(void *context,
2751	   void *(*lock_create)(void *context),
2752           void (*rlock_acquire)(void *lock),
2753           void (*wlock_acquire)(void *lock),
2754           void (*lock_release)(void *lock),
2755           void (*lock_destroy)(void *lock),
2756	   void (*context_destroy)(void *context))
2757{
2758    static void *cur_context;
2759    static void (*cur_context_destroy)(void *);
2760
2761    /* Just destroy the context from the previous call, if necessary. */
2762    if (cur_context_destroy != NULL)
2763	cur_context_destroy(cur_context);
2764    cur_context = context;
2765    cur_context_destroy = context_destroy;
2766}
2767
2768void *
2769dlopen(const char *name, int mode)
2770{
2771
2772	return (rtld_dlopen(name, -1, mode));
2773}
2774
2775void *
2776fdlopen(int fd, int mode)
2777{
2778
2779	return (rtld_dlopen(NULL, fd, mode));
2780}
2781
2782static void *
2783rtld_dlopen(const char *name, int fd, int mode)
2784{
2785    RtldLockState lockstate;
2786    int lo_flags;
2787
2788    LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2789    ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2790    if (ld_tracing != NULL) {
2791	rlock_acquire(rtld_bind_lock, &lockstate);
2792	if (sigsetjmp(lockstate.env, 0) != 0)
2793	    lock_upgrade(rtld_bind_lock, &lockstate);
2794	environ = (char **)*get_program_var_addr("environ", &lockstate);
2795	lock_release(rtld_bind_lock, &lockstate);
2796    }
2797    lo_flags = RTLD_LO_DLOPEN;
2798    if (mode & RTLD_NODELETE)
2799	    lo_flags |= RTLD_LO_NODELETE;
2800    if (mode & RTLD_NOLOAD)
2801	    lo_flags |= RTLD_LO_NOLOAD;
2802    if (ld_tracing != NULL)
2803	    lo_flags |= RTLD_LO_TRACE;
2804
2805    return (dlopen_object(name, fd, obj_main, lo_flags,
2806      mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2807}
2808
2809static void
2810dlopen_cleanup(Obj_Entry *obj)
2811{
2812
2813	obj->dl_refcount--;
2814	unref_dag(obj);
2815	if (obj->refcount == 0)
2816		unload_object(obj);
2817}
2818
2819static Obj_Entry *
2820dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2821    int mode, RtldLockState *lockstate)
2822{
2823    Obj_Entry **old_obj_tail;
2824    Obj_Entry *obj;
2825    Objlist initlist;
2826    RtldLockState mlockstate;
2827    int result;
2828
2829    objlist_init(&initlist);
2830
2831    if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2832	wlock_acquire(rtld_bind_lock, &mlockstate);
2833	lockstate = &mlockstate;
2834    }
2835    GDB_STATE(RT_ADD,NULL);
2836
2837    old_obj_tail = obj_tail;
2838    obj = NULL;
2839    if (name == NULL && fd == -1) {
2840	obj = obj_main;
2841	obj->refcount++;
2842    } else {
2843	obj = load_object(name, fd, refobj, lo_flags);
2844    }
2845
2846    if (obj) {
2847	obj->dl_refcount++;
2848	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2849	    objlist_push_tail(&list_global, obj);
2850	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2851	    assert(*old_obj_tail == obj);
2852	    result = load_needed_objects(obj,
2853		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
2854	    init_dag(obj);
2855	    ref_dag(obj);
2856	    if (result != -1)
2857		result = rtld_verify_versions(&obj->dagmembers);
2858	    if (result != -1 && ld_tracing)
2859		goto trace;
2860	    if (result == -1 || relocate_object_dag(obj,
2861	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
2862	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2863	      lockstate) == -1) {
2864		dlopen_cleanup(obj);
2865		obj = NULL;
2866	    } else if (lo_flags & RTLD_LO_EARLY) {
2867		/*
2868		 * Do not call the init functions for early loaded
2869		 * filtees.  The image is still not initialized enough
2870		 * for them to work.
2871		 *
2872		 * Our object is found by the global object list and
2873		 * will be ordered among all init calls done right
2874		 * before transferring control to main.
2875		 */
2876	    } else {
2877		/* Make list of init functions to call. */
2878		initlist_add_objects(obj, &obj->next, &initlist);
2879	    }
2880	    /*
2881	     * Process all no_delete objects here, given them own
2882	     * DAGs to prevent their dependencies from being unloaded.
2883	     * This has to be done after we have loaded all of the
2884	     * dependencies, so that we do not miss any.
2885	     */
2886	    if (obj != NULL)
2887		process_nodelete(obj);
2888	} else {
2889	    /*
2890	     * Bump the reference counts for objects on this DAG.  If
2891	     * this is the first dlopen() call for the object that was
2892	     * already loaded as a dependency, initialize the dag
2893	     * starting at it.
2894	     */
2895	    init_dag(obj);
2896	    ref_dag(obj);
2897
2898	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2899		goto trace;
2900	}
2901	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2902	  obj->z_nodelete) && !obj->ref_nodel) {
2903	    dbg("obj %s nodelete", obj->path);
2904	    ref_dag(obj);
2905	    obj->z_nodelete = obj->ref_nodel = true;
2906	}
2907    }
2908
2909    LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2910	name);
2911    GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2912
2913    if (!(lo_flags & RTLD_LO_EARLY)) {
2914	map_stacks_exec(lockstate);
2915    }
2916
2917    if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
2918      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2919      lockstate) == -1) {
2920	objlist_clear(&initlist);
2921	dlopen_cleanup(obj);
2922	if (lockstate == &mlockstate)
2923	    lock_release(rtld_bind_lock, lockstate);
2924	return (NULL);
2925    }
2926
2927    if (!(lo_flags & RTLD_LO_EARLY)) {
2928	/* Call the init functions. */
2929	objlist_call_init(&initlist, lockstate);
2930    }
2931    objlist_clear(&initlist);
2932    if (lockstate == &mlockstate)
2933	lock_release(rtld_bind_lock, lockstate);
2934    return obj;
2935trace:
2936    trace_loaded_objects(obj);
2937    if (lockstate == &mlockstate)
2938	lock_release(rtld_bind_lock, lockstate);
2939    exit(0);
2940}
2941
2942static void *
2943do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2944    int flags)
2945{
2946    DoneList donelist;
2947    const Obj_Entry *obj, *defobj;
2948    const Elf_Sym *def;
2949    SymLook req;
2950    RtldLockState lockstate;
2951#ifndef __ia64__
2952    tls_index ti;
2953#endif
2954    int res;
2955
2956    def = NULL;
2957    defobj = NULL;
2958    symlook_init(&req, name);
2959    req.ventry = ve;
2960    req.flags = flags | SYMLOOK_IN_PLT;
2961    req.lockstate = &lockstate;
2962
2963    rlock_acquire(rtld_bind_lock, &lockstate);
2964    if (sigsetjmp(lockstate.env, 0) != 0)
2965	    lock_upgrade(rtld_bind_lock, &lockstate);
2966    if (handle == NULL || handle == RTLD_NEXT ||
2967	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2968
2969	if ((obj = obj_from_addr(retaddr)) == NULL) {
2970	    _rtld_error("Cannot determine caller's shared object");
2971	    lock_release(rtld_bind_lock, &lockstate);
2972	    return NULL;
2973	}
2974	if (handle == NULL) {	/* Just the caller's shared object. */
2975	    res = symlook_obj(&req, obj);
2976	    if (res == 0) {
2977		def = req.sym_out;
2978		defobj = req.defobj_out;
2979	    }
2980	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2981		   handle == RTLD_SELF) { /* ... caller included */
2982	    if (handle == RTLD_NEXT)
2983		obj = obj->next;
2984	    for (; obj != NULL; obj = obj->next) {
2985		res = symlook_obj(&req, obj);
2986		if (res == 0) {
2987		    if (def == NULL ||
2988		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
2989			def = req.sym_out;
2990			defobj = req.defobj_out;
2991			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2992			    break;
2993		    }
2994		}
2995	    }
2996	    /*
2997	     * Search the dynamic linker itself, and possibly resolve the
2998	     * symbol from there.  This is how the application links to
2999	     * dynamic linker services such as dlopen.
3000	     */
3001	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3002		res = symlook_obj(&req, &obj_rtld);
3003		if (res == 0) {
3004		    def = req.sym_out;
3005		    defobj = req.defobj_out;
3006		}
3007	    }
3008	} else {
3009	    assert(handle == RTLD_DEFAULT);
3010	    res = symlook_default(&req, obj);
3011	    if (res == 0) {
3012		defobj = req.defobj_out;
3013		def = req.sym_out;
3014	    }
3015	}
3016    } else {
3017	if ((obj = dlcheck(handle)) == NULL) {
3018	    lock_release(rtld_bind_lock, &lockstate);
3019	    return NULL;
3020	}
3021
3022	donelist_init(&donelist);
3023	if (obj->mainprog) {
3024            /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3025	    res = symlook_global(&req, &donelist);
3026	    if (res == 0) {
3027		def = req.sym_out;
3028		defobj = req.defobj_out;
3029	    }
3030	    /*
3031	     * Search the dynamic linker itself, and possibly resolve the
3032	     * symbol from there.  This is how the application links to
3033	     * dynamic linker services such as dlopen.
3034	     */
3035	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3036		res = symlook_obj(&req, &obj_rtld);
3037		if (res == 0) {
3038		    def = req.sym_out;
3039		    defobj = req.defobj_out;
3040		}
3041	    }
3042	}
3043	else {
3044	    /* Search the whole DAG rooted at the given object. */
3045	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3046	    if (res == 0) {
3047		def = req.sym_out;
3048		defobj = req.defobj_out;
3049	    }
3050	}
3051    }
3052
3053    if (def != NULL) {
3054	lock_release(rtld_bind_lock, &lockstate);
3055
3056	/*
3057	 * The value required by the caller is derived from the value
3058	 * of the symbol. For the ia64 architecture, we need to
3059	 * construct a function descriptor which the caller can use to
3060	 * call the function with the right 'gp' value. For other
3061	 * architectures and for non-functions, the value is simply
3062	 * the relocated value of the symbol.
3063	 */
3064	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3065	    return (make_function_pointer(def, defobj));
3066	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3067	    return (rtld_resolve_ifunc(defobj, def));
3068	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3069#ifdef __ia64__
3070	    return (__tls_get_addr(defobj->tlsindex, def->st_value));
3071#else
3072	    ti.ti_module = defobj->tlsindex;
3073	    ti.ti_offset = def->st_value;
3074	    return (__tls_get_addr(&ti));
3075#endif
3076	} else
3077	    return (defobj->relocbase + def->st_value);
3078    }
3079
3080    _rtld_error("Undefined symbol \"%s\"", name);
3081    lock_release(rtld_bind_lock, &lockstate);
3082    return NULL;
3083}
3084
3085void *
3086dlsym(void *handle, const char *name)
3087{
3088	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3089	    SYMLOOK_DLSYM);
3090}
3091
3092dlfunc_t
3093dlfunc(void *handle, const char *name)
3094{
3095	union {
3096		void *d;
3097		dlfunc_t f;
3098	} rv;
3099
3100	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3101	    SYMLOOK_DLSYM);
3102	return (rv.f);
3103}
3104
3105void *
3106dlvsym(void *handle, const char *name, const char *version)
3107{
3108	Ver_Entry ventry;
3109
3110	ventry.name = version;
3111	ventry.file = NULL;
3112	ventry.hash = elf_hash(version);
3113	ventry.flags= 0;
3114	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3115	    SYMLOOK_DLSYM);
3116}
3117
3118int
3119_rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3120{
3121    const Obj_Entry *obj;
3122    RtldLockState lockstate;
3123
3124    rlock_acquire(rtld_bind_lock, &lockstate);
3125    obj = obj_from_addr(addr);
3126    if (obj == NULL) {
3127        _rtld_error("No shared object contains address");
3128	lock_release(rtld_bind_lock, &lockstate);
3129        return (0);
3130    }
3131    rtld_fill_dl_phdr_info(obj, phdr_info);
3132    lock_release(rtld_bind_lock, &lockstate);
3133    return (1);
3134}
3135
3136int
3137dladdr(const void *addr, Dl_info *info)
3138{
3139    const Obj_Entry *obj;
3140    const Elf_Sym *def;
3141    void *symbol_addr;
3142    unsigned long symoffset;
3143    RtldLockState lockstate;
3144
3145    rlock_acquire(rtld_bind_lock, &lockstate);
3146    obj = obj_from_addr(addr);
3147    if (obj == NULL) {
3148        _rtld_error("No shared object contains address");
3149	lock_release(rtld_bind_lock, &lockstate);
3150        return 0;
3151    }
3152    info->dli_fname = obj->path;
3153    info->dli_fbase = obj->mapbase;
3154    info->dli_saddr = (void *)0;
3155    info->dli_sname = NULL;
3156
3157    /*
3158     * Walk the symbol list looking for the symbol whose address is
3159     * closest to the address sent in.
3160     */
3161    for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3162        def = obj->symtab + symoffset;
3163
3164        /*
3165         * For skip the symbol if st_shndx is either SHN_UNDEF or
3166         * SHN_COMMON.
3167         */
3168        if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3169            continue;
3170
3171        /*
3172         * If the symbol is greater than the specified address, or if it
3173         * is further away from addr than the current nearest symbol,
3174         * then reject it.
3175         */
3176        symbol_addr = obj->relocbase + def->st_value;
3177        if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3178            continue;
3179
3180        /* Update our idea of the nearest symbol. */
3181        info->dli_sname = obj->strtab + def->st_name;
3182        info->dli_saddr = symbol_addr;
3183
3184        /* Exact match? */
3185        if (info->dli_saddr == addr)
3186            break;
3187    }
3188    lock_release(rtld_bind_lock, &lockstate);
3189    return 1;
3190}
3191
3192int
3193dlinfo(void *handle, int request, void *p)
3194{
3195    const Obj_Entry *obj;
3196    RtldLockState lockstate;
3197    int error;
3198
3199    rlock_acquire(rtld_bind_lock, &lockstate);
3200
3201    if (handle == NULL || handle == RTLD_SELF) {
3202	void *retaddr;
3203
3204	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3205	if ((obj = obj_from_addr(retaddr)) == NULL)
3206	    _rtld_error("Cannot determine caller's shared object");
3207    } else
3208	obj = dlcheck(handle);
3209
3210    if (obj == NULL) {
3211	lock_release(rtld_bind_lock, &lockstate);
3212	return (-1);
3213    }
3214
3215    error = 0;
3216    switch (request) {
3217    case RTLD_DI_LINKMAP:
3218	*((struct link_map const **)p) = &obj->linkmap;
3219	break;
3220    case RTLD_DI_ORIGIN:
3221	error = rtld_dirname(obj->path, p);
3222	break;
3223
3224    case RTLD_DI_SERINFOSIZE:
3225    case RTLD_DI_SERINFO:
3226	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3227	break;
3228
3229    default:
3230	_rtld_error("Invalid request %d passed to dlinfo()", request);
3231	error = -1;
3232    }
3233
3234    lock_release(rtld_bind_lock, &lockstate);
3235
3236    return (error);
3237}
3238
3239static void
3240rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3241{
3242
3243	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3244	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
3245	    STAILQ_FIRST(&obj->names)->name : obj->path;
3246	phdr_info->dlpi_phdr = obj->phdr;
3247	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3248	phdr_info->dlpi_tls_modid = obj->tlsindex;
3249	phdr_info->dlpi_tls_data = obj->tlsinit;
3250	phdr_info->dlpi_adds = obj_loads;
3251	phdr_info->dlpi_subs = obj_loads - obj_count;
3252}
3253
3254int
3255dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3256{
3257    struct dl_phdr_info phdr_info;
3258    const Obj_Entry *obj;
3259    RtldLockState bind_lockstate, phdr_lockstate;
3260    int error;
3261
3262    wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3263    rlock_acquire(rtld_bind_lock, &bind_lockstate);
3264
3265    error = 0;
3266
3267    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3268	rtld_fill_dl_phdr_info(obj, &phdr_info);
3269	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3270		break;
3271
3272    }
3273    lock_release(rtld_bind_lock, &bind_lockstate);
3274    lock_release(rtld_phdr_lock, &phdr_lockstate);
3275
3276    return (error);
3277}
3278
3279static void *
3280fill_search_info(const char *dir, size_t dirlen, void *param)
3281{
3282    struct fill_search_info_args *arg;
3283
3284    arg = param;
3285
3286    if (arg->request == RTLD_DI_SERINFOSIZE) {
3287	arg->serinfo->dls_cnt ++;
3288	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3289    } else {
3290	struct dl_serpath *s_entry;
3291
3292	s_entry = arg->serpath;
3293	s_entry->dls_name  = arg->strspace;
3294	s_entry->dls_flags = arg->flags;
3295
3296	strncpy(arg->strspace, dir, dirlen);
3297	arg->strspace[dirlen] = '\0';
3298
3299	arg->strspace += dirlen + 1;
3300	arg->serpath++;
3301    }
3302
3303    return (NULL);
3304}
3305
3306static int
3307do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3308{
3309    struct dl_serinfo _info;
3310    struct fill_search_info_args args;
3311
3312    args.request = RTLD_DI_SERINFOSIZE;
3313    args.serinfo = &_info;
3314
3315    _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3316    _info.dls_cnt  = 0;
3317
3318    path_enumerate(obj->rpath, fill_search_info, &args);
3319    path_enumerate(ld_library_path, fill_search_info, &args);
3320    path_enumerate(obj->runpath, fill_search_info, &args);
3321    path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3322    if (!obj->z_nodeflib)
3323      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3324
3325
3326    if (request == RTLD_DI_SERINFOSIZE) {
3327	info->dls_size = _info.dls_size;
3328	info->dls_cnt = _info.dls_cnt;
3329	return (0);
3330    }
3331
3332    if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3333	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3334	return (-1);
3335    }
3336
3337    args.request  = RTLD_DI_SERINFO;
3338    args.serinfo  = info;
3339    args.serpath  = &info->dls_serpath[0];
3340    args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3341
3342    args.flags = LA_SER_RUNPATH;
3343    if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3344	return (-1);
3345
3346    args.flags = LA_SER_LIBPATH;
3347    if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3348	return (-1);
3349
3350    args.flags = LA_SER_RUNPATH;
3351    if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3352	return (-1);
3353
3354    args.flags = LA_SER_CONFIG;
3355    if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3356      != NULL)
3357	return (-1);
3358
3359    args.flags = LA_SER_DEFAULT;
3360    if (!obj->z_nodeflib &&
3361      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3362	return (-1);
3363    return (0);
3364}
3365
3366static int
3367rtld_dirname(const char *path, char *bname)
3368{
3369    const char *endp;
3370
3371    /* Empty or NULL string gets treated as "." */
3372    if (path == NULL || *path == '\0') {
3373	bname[0] = '.';
3374	bname[1] = '\0';
3375	return (0);
3376    }
3377
3378    /* Strip trailing slashes */
3379    endp = path + strlen(path) - 1;
3380    while (endp > path && *endp == '/')
3381	endp--;
3382
3383    /* Find the start of the dir */
3384    while (endp > path && *endp != '/')
3385	endp--;
3386
3387    /* Either the dir is "/" or there are no slashes */
3388    if (endp == path) {
3389	bname[0] = *endp == '/' ? '/' : '.';
3390	bname[1] = '\0';
3391	return (0);
3392    } else {
3393	do {
3394	    endp--;
3395	} while (endp > path && *endp == '/');
3396    }
3397
3398    if (endp - path + 2 > PATH_MAX)
3399    {
3400	_rtld_error("Filename is too long: %s", path);
3401	return(-1);
3402    }
3403
3404    strncpy(bname, path, endp - path + 1);
3405    bname[endp - path + 1] = '\0';
3406    return (0);
3407}
3408
3409static int
3410rtld_dirname_abs(const char *path, char *base)
3411{
3412	char base_rel[PATH_MAX];
3413
3414	if (rtld_dirname(path, base) == -1)
3415		return (-1);
3416	if (base[0] == '/')
3417		return (0);
3418	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3419	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3420	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3421		return (-1);
3422	strcpy(base, base_rel);
3423	return (0);
3424}
3425
3426static void
3427linkmap_add(Obj_Entry *obj)
3428{
3429    struct link_map *l = &obj->linkmap;
3430    struct link_map *prev;
3431
3432    obj->linkmap.l_name = obj->path;
3433    obj->linkmap.l_addr = obj->mapbase;
3434    obj->linkmap.l_ld = obj->dynamic;
3435#ifdef __mips__
3436    /* GDB needs load offset on MIPS to use the symbols */
3437    obj->linkmap.l_offs = obj->relocbase;
3438#endif
3439
3440    if (r_debug.r_map == NULL) {
3441	r_debug.r_map = l;
3442	return;
3443    }
3444
3445    /*
3446     * Scan to the end of the list, but not past the entry for the
3447     * dynamic linker, which we want to keep at the very end.
3448     */
3449    for (prev = r_debug.r_map;
3450      prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3451      prev = prev->l_next)
3452	;
3453
3454    /* Link in the new entry. */
3455    l->l_prev = prev;
3456    l->l_next = prev->l_next;
3457    if (l->l_next != NULL)
3458	l->l_next->l_prev = l;
3459    prev->l_next = l;
3460}
3461
3462static void
3463linkmap_delete(Obj_Entry *obj)
3464{
3465    struct link_map *l = &obj->linkmap;
3466
3467    if (l->l_prev == NULL) {
3468	if ((r_debug.r_map = l->l_next) != NULL)
3469	    l->l_next->l_prev = NULL;
3470	return;
3471    }
3472
3473    if ((l->l_prev->l_next = l->l_next) != NULL)
3474	l->l_next->l_prev = l->l_prev;
3475}
3476
3477/*
3478 * Function for the debugger to set a breakpoint on to gain control.
3479 *
3480 * The two parameters allow the debugger to easily find and determine
3481 * what the runtime loader is doing and to whom it is doing it.
3482 *
3483 * When the loadhook trap is hit (r_debug_state, set at program
3484 * initialization), the arguments can be found on the stack:
3485 *
3486 *  +8   struct link_map *m
3487 *  +4   struct r_debug  *rd
3488 *  +0   RetAddr
3489 */
3490void
3491r_debug_state(struct r_debug* rd, struct link_map *m)
3492{
3493    /*
3494     * The following is a hack to force the compiler to emit calls to
3495     * this function, even when optimizing.  If the function is empty,
3496     * the compiler is not obliged to emit any code for calls to it,
3497     * even when marked __noinline.  However, gdb depends on those
3498     * calls being made.
3499     */
3500    __asm __volatile("" : : : "memory");
3501}
3502
3503/*
3504 * Get address of the pointer variable in the main program.
3505 * Prefer non-weak symbol over the weak one.
3506 */
3507static const void **
3508get_program_var_addr(const char *name, RtldLockState *lockstate)
3509{
3510    SymLook req;
3511    DoneList donelist;
3512
3513    symlook_init(&req, name);
3514    req.lockstate = lockstate;
3515    donelist_init(&donelist);
3516    if (symlook_global(&req, &donelist) != 0)
3517	return (NULL);
3518    if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3519	return ((const void **)make_function_pointer(req.sym_out,
3520	  req.defobj_out));
3521    else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3522	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3523    else
3524	return ((const void **)(req.defobj_out->relocbase +
3525	  req.sym_out->st_value));
3526}
3527
3528/*
3529 * Set a pointer variable in the main program to the given value.  This
3530 * is used to set key variables such as "environ" before any of the
3531 * init functions are called.
3532 */
3533static void
3534set_program_var(const char *name, const void *value)
3535{
3536    const void **addr;
3537
3538    if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3539	dbg("\"%s\": *%p <-- %p", name, addr, value);
3540	*addr = value;
3541    }
3542}
3543
3544/*
3545 * Search the global objects, including dependencies and main object,
3546 * for the given symbol.
3547 */
3548static int
3549symlook_global(SymLook *req, DoneList *donelist)
3550{
3551    SymLook req1;
3552    const Objlist_Entry *elm;
3553    int res;
3554
3555    symlook_init_from_req(&req1, req);
3556
3557    /* Search all objects loaded at program start up. */
3558    if (req->defobj_out == NULL ||
3559      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3560	res = symlook_list(&req1, &list_main, donelist);
3561	if (res == 0 && (req->defobj_out == NULL ||
3562	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3563	    req->sym_out = req1.sym_out;
3564	    req->defobj_out = req1.defobj_out;
3565	    assert(req->defobj_out != NULL);
3566	}
3567    }
3568
3569    /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3570    STAILQ_FOREACH(elm, &list_global, link) {
3571	if (req->defobj_out != NULL &&
3572	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3573	    break;
3574	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3575	if (res == 0 && (req->defobj_out == NULL ||
3576	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3577	    req->sym_out = req1.sym_out;
3578	    req->defobj_out = req1.defobj_out;
3579	    assert(req->defobj_out != NULL);
3580	}
3581    }
3582
3583    return (req->sym_out != NULL ? 0 : ESRCH);
3584}
3585
3586/*
3587 * Given a symbol name in a referencing object, find the corresponding
3588 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3589 * no definition was found.  Returns a pointer to the Obj_Entry of the
3590 * defining object via the reference parameter DEFOBJ_OUT.
3591 */
3592static int
3593symlook_default(SymLook *req, const Obj_Entry *refobj)
3594{
3595    DoneList donelist;
3596    const Objlist_Entry *elm;
3597    SymLook req1;
3598    int res;
3599
3600    donelist_init(&donelist);
3601    symlook_init_from_req(&req1, req);
3602
3603    /* Look first in the referencing object if linked symbolically. */
3604    if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3605	res = symlook_obj(&req1, refobj);
3606	if (res == 0) {
3607	    req->sym_out = req1.sym_out;
3608	    req->defobj_out = req1.defobj_out;
3609	    assert(req->defobj_out != NULL);
3610	}
3611    }
3612
3613    symlook_global(req, &donelist);
3614
3615    /* Search all dlopened DAGs containing the referencing object. */
3616    STAILQ_FOREACH(elm, &refobj->dldags, link) {
3617	if (req->sym_out != NULL &&
3618	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3619	    break;
3620	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3621	if (res == 0 && (req->sym_out == NULL ||
3622	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3623	    req->sym_out = req1.sym_out;
3624	    req->defobj_out = req1.defobj_out;
3625	    assert(req->defobj_out != NULL);
3626	}
3627    }
3628
3629    /*
3630     * Search the dynamic linker itself, and possibly resolve the
3631     * symbol from there.  This is how the application links to
3632     * dynamic linker services such as dlopen.
3633     */
3634    if (req->sym_out == NULL ||
3635      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3636	res = symlook_obj(&req1, &obj_rtld);
3637	if (res == 0) {
3638	    req->sym_out = req1.sym_out;
3639	    req->defobj_out = req1.defobj_out;
3640	    assert(req->defobj_out != NULL);
3641	}
3642    }
3643
3644    return (req->sym_out != NULL ? 0 : ESRCH);
3645}
3646
3647static int
3648symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3649{
3650    const Elf_Sym *def;
3651    const Obj_Entry *defobj;
3652    const Objlist_Entry *elm;
3653    SymLook req1;
3654    int res;
3655
3656    def = NULL;
3657    defobj = NULL;
3658    STAILQ_FOREACH(elm, objlist, link) {
3659	if (donelist_check(dlp, elm->obj))
3660	    continue;
3661	symlook_init_from_req(&req1, req);
3662	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3663	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3664		def = req1.sym_out;
3665		defobj = req1.defobj_out;
3666		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3667		    break;
3668	    }
3669	}
3670    }
3671    if (def != NULL) {
3672	req->sym_out = def;
3673	req->defobj_out = defobj;
3674	return (0);
3675    }
3676    return (ESRCH);
3677}
3678
3679/*
3680 * Search the chain of DAGS cointed to by the given Needed_Entry
3681 * for a symbol of the given name.  Each DAG is scanned completely
3682 * before advancing to the next one.  Returns a pointer to the symbol,
3683 * or NULL if no definition was found.
3684 */
3685static int
3686symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3687{
3688    const Elf_Sym *def;
3689    const Needed_Entry *n;
3690    const Obj_Entry *defobj;
3691    SymLook req1;
3692    int res;
3693
3694    def = NULL;
3695    defobj = NULL;
3696    symlook_init_from_req(&req1, req);
3697    for (n = needed; n != NULL; n = n->next) {
3698	if (n->obj == NULL ||
3699	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3700	    continue;
3701	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3702	    def = req1.sym_out;
3703	    defobj = req1.defobj_out;
3704	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3705		break;
3706	}
3707    }
3708    if (def != NULL) {
3709	req->sym_out = def;
3710	req->defobj_out = defobj;
3711	return (0);
3712    }
3713    return (ESRCH);
3714}
3715
3716/*
3717 * Search the symbol table of a single shared object for a symbol of
3718 * the given name and version, if requested.  Returns a pointer to the
3719 * symbol, or NULL if no definition was found.  If the object is
3720 * filter, return filtered symbol from filtee.
3721 *
3722 * The symbol's hash value is passed in for efficiency reasons; that
3723 * eliminates many recomputations of the hash value.
3724 */
3725int
3726symlook_obj(SymLook *req, const Obj_Entry *obj)
3727{
3728    DoneList donelist;
3729    SymLook req1;
3730    int flags, res, mres;
3731
3732    /*
3733     * If there is at least one valid hash at this point, we prefer to
3734     * use the faster GNU version if available.
3735     */
3736    if (obj->valid_hash_gnu)
3737	mres = symlook_obj1_gnu(req, obj);
3738    else if (obj->valid_hash_sysv)
3739	mres = symlook_obj1_sysv(req, obj);
3740    else
3741	return (EINVAL);
3742
3743    if (mres == 0) {
3744	if (obj->needed_filtees != NULL) {
3745	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3746	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3747	    donelist_init(&donelist);
3748	    symlook_init_from_req(&req1, req);
3749	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3750	    if (res == 0) {
3751		req->sym_out = req1.sym_out;
3752		req->defobj_out = req1.defobj_out;
3753	    }
3754	    return (res);
3755	}
3756	if (obj->needed_aux_filtees != NULL) {
3757	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3758	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3759	    donelist_init(&donelist);
3760	    symlook_init_from_req(&req1, req);
3761	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3762	    if (res == 0) {
3763		req->sym_out = req1.sym_out;
3764		req->defobj_out = req1.defobj_out;
3765		return (res);
3766	    }
3767	}
3768    }
3769    return (mres);
3770}
3771
3772/* Symbol match routine common to both hash functions */
3773static bool
3774matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3775    const unsigned long symnum)
3776{
3777	Elf_Versym verndx;
3778	const Elf_Sym *symp;
3779	const char *strp;
3780
3781	symp = obj->symtab + symnum;
3782	strp = obj->strtab + symp->st_name;
3783
3784	switch (ELF_ST_TYPE(symp->st_info)) {
3785	case STT_FUNC:
3786	case STT_NOTYPE:
3787	case STT_OBJECT:
3788	case STT_COMMON:
3789	case STT_GNU_IFUNC:
3790		if (symp->st_value == 0)
3791			return (false);
3792		/* fallthrough */
3793	case STT_TLS:
3794		if (symp->st_shndx != SHN_UNDEF)
3795			break;
3796#ifndef __mips__
3797		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3798		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3799			break;
3800		/* fallthrough */
3801#endif
3802	default:
3803		return (false);
3804	}
3805	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3806		return (false);
3807
3808	if (req->ventry == NULL) {
3809		if (obj->versyms != NULL) {
3810			verndx = VER_NDX(obj->versyms[symnum]);
3811			if (verndx > obj->vernum) {
3812				_rtld_error(
3813				    "%s: symbol %s references wrong version %d",
3814				    obj->path, obj->strtab + symnum, verndx);
3815				return (false);
3816			}
3817			/*
3818			 * If we are not called from dlsym (i.e. this
3819			 * is a normal relocation from unversioned
3820			 * binary), accept the symbol immediately if
3821			 * it happens to have first version after this
3822			 * shared object became versioned.  Otherwise,
3823			 * if symbol is versioned and not hidden,
3824			 * remember it. If it is the only symbol with
3825			 * this name exported by the shared object, it
3826			 * will be returned as a match by the calling
3827			 * function. If symbol is global (verndx < 2)
3828			 * accept it unconditionally.
3829			 */
3830			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3831			    verndx == VER_NDX_GIVEN) {
3832				result->sym_out = symp;
3833				return (true);
3834			}
3835			else if (verndx >= VER_NDX_GIVEN) {
3836				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
3837				    == 0) {
3838					if (result->vsymp == NULL)
3839						result->vsymp = symp;
3840					result->vcount++;
3841				}
3842				return (false);
3843			}
3844		}
3845		result->sym_out = symp;
3846		return (true);
3847	}
3848	if (obj->versyms == NULL) {
3849		if (object_match_name(obj, req->ventry->name)) {
3850			_rtld_error("%s: object %s should provide version %s "
3851			    "for symbol %s", obj_rtld.path, obj->path,
3852			    req->ventry->name, obj->strtab + symnum);
3853			return (false);
3854		}
3855	} else {
3856		verndx = VER_NDX(obj->versyms[symnum]);
3857		if (verndx > obj->vernum) {
3858			_rtld_error("%s: symbol %s references wrong version %d",
3859			    obj->path, obj->strtab + symnum, verndx);
3860			return (false);
3861		}
3862		if (obj->vertab[verndx].hash != req->ventry->hash ||
3863		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3864			/*
3865			 * Version does not match. Look if this is a
3866			 * global symbol and if it is not hidden. If
3867			 * global symbol (verndx < 2) is available,
3868			 * use it. Do not return symbol if we are
3869			 * called by dlvsym, because dlvsym looks for
3870			 * a specific version and default one is not
3871			 * what dlvsym wants.
3872			 */
3873			if ((req->flags & SYMLOOK_DLSYM) ||
3874			    (verndx >= VER_NDX_GIVEN) ||
3875			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
3876				return (false);
3877		}
3878	}
3879	result->sym_out = symp;
3880	return (true);
3881}
3882
3883/*
3884 * Search for symbol using SysV hash function.
3885 * obj->buckets is known not to be NULL at this point; the test for this was
3886 * performed with the obj->valid_hash_sysv assignment.
3887 */
3888static int
3889symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
3890{
3891	unsigned long symnum;
3892	Sym_Match_Result matchres;
3893
3894	matchres.sym_out = NULL;
3895	matchres.vsymp = NULL;
3896	matchres.vcount = 0;
3897
3898	for (symnum = obj->buckets[req->hash % obj->nbuckets];
3899	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3900		if (symnum >= obj->nchains)
3901			return (ESRCH);	/* Bad object */
3902
3903		if (matched_symbol(req, obj, &matchres, symnum)) {
3904			req->sym_out = matchres.sym_out;
3905			req->defobj_out = obj;
3906			return (0);
3907		}
3908	}
3909	if (matchres.vcount == 1) {
3910		req->sym_out = matchres.vsymp;
3911		req->defobj_out = obj;
3912		return (0);
3913	}
3914	return (ESRCH);
3915}
3916
3917/* Search for symbol using GNU hash function */
3918static int
3919symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
3920{
3921	Elf_Addr bloom_word;
3922	const Elf32_Word *hashval;
3923	Elf32_Word bucket;
3924	Sym_Match_Result matchres;
3925	unsigned int h1, h2;
3926	unsigned long symnum;
3927
3928	matchres.sym_out = NULL;
3929	matchres.vsymp = NULL;
3930	matchres.vcount = 0;
3931
3932	/* Pick right bitmask word from Bloom filter array */
3933	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
3934	    obj->maskwords_bm_gnu];
3935
3936	/* Calculate modulus word size of gnu hash and its derivative */
3937	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
3938	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
3939
3940	/* Filter out the "definitely not in set" queries */
3941	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
3942		return (ESRCH);
3943
3944	/* Locate hash chain and corresponding value element*/
3945	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
3946	if (bucket == 0)
3947		return (ESRCH);
3948	hashval = &obj->chain_zero_gnu[bucket];
3949	do {
3950		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
3951			symnum = hashval - obj->chain_zero_gnu;
3952			if (matched_symbol(req, obj, &matchres, symnum)) {
3953				req->sym_out = matchres.sym_out;
3954				req->defobj_out = obj;
3955				return (0);
3956			}
3957		}
3958	} while ((*hashval++ & 1) == 0);
3959	if (matchres.vcount == 1) {
3960		req->sym_out = matchres.vsymp;
3961		req->defobj_out = obj;
3962		return (0);
3963	}
3964	return (ESRCH);
3965}
3966
3967static void
3968trace_loaded_objects(Obj_Entry *obj)
3969{
3970    char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
3971    int		c;
3972
3973    if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
3974	main_local = "";
3975
3976    if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
3977	fmt1 = "\t%o => %p (%x)\n";
3978
3979    if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
3980	fmt2 = "\t%o (%x)\n";
3981
3982    list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
3983
3984    for (; obj; obj = obj->next) {
3985	Needed_Entry		*needed;
3986	char			*name, *path;
3987	bool			is_lib;
3988
3989	if (list_containers && obj->needed != NULL)
3990	    rtld_printf("%s:\n", obj->path);
3991	for (needed = obj->needed; needed; needed = needed->next) {
3992	    if (needed->obj != NULL) {
3993		if (needed->obj->traced && !list_containers)
3994		    continue;
3995		needed->obj->traced = true;
3996		path = needed->obj->path;
3997	    } else
3998		path = "not found";
3999
4000	    name = (char *)obj->strtab + needed->name;
4001	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4002
4003	    fmt = is_lib ? fmt1 : fmt2;
4004	    while ((c = *fmt++) != '\0') {
4005		switch (c) {
4006		default:
4007		    rtld_putchar(c);
4008		    continue;
4009		case '\\':
4010		    switch (c = *fmt) {
4011		    case '\0':
4012			continue;
4013		    case 'n':
4014			rtld_putchar('\n');
4015			break;
4016		    case 't':
4017			rtld_putchar('\t');
4018			break;
4019		    }
4020		    break;
4021		case '%':
4022		    switch (c = *fmt) {
4023		    case '\0':
4024			continue;
4025		    case '%':
4026		    default:
4027			rtld_putchar(c);
4028			break;
4029		    case 'A':
4030			rtld_putstr(main_local);
4031			break;
4032		    case 'a':
4033			rtld_putstr(obj_main->path);
4034			break;
4035		    case 'o':
4036			rtld_putstr(name);
4037			break;
4038#if 0
4039		    case 'm':
4040			rtld_printf("%d", sodp->sod_major);
4041			break;
4042		    case 'n':
4043			rtld_printf("%d", sodp->sod_minor);
4044			break;
4045#endif
4046		    case 'p':
4047			rtld_putstr(path);
4048			break;
4049		    case 'x':
4050			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4051			  0);
4052			break;
4053		    }
4054		    break;
4055		}
4056		++fmt;
4057	    }
4058	}
4059    }
4060}
4061
4062/*
4063 * Unload a dlopened object and its dependencies from memory and from
4064 * our data structures.  It is assumed that the DAG rooted in the
4065 * object has already been unreferenced, and that the object has a
4066 * reference count of 0.
4067 */
4068static void
4069unload_object(Obj_Entry *root)
4070{
4071    Obj_Entry *obj;
4072    Obj_Entry **linkp;
4073
4074    assert(root->refcount == 0);
4075
4076    /*
4077     * Pass over the DAG removing unreferenced objects from
4078     * appropriate lists.
4079     */
4080    unlink_object(root);
4081
4082    /* Unmap all objects that are no longer referenced. */
4083    linkp = &obj_list->next;
4084    while ((obj = *linkp) != NULL) {
4085	if (obj->refcount == 0) {
4086	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4087		obj->path);
4088	    dbg("unloading \"%s\"", obj->path);
4089	    unload_filtees(root);
4090	    munmap(obj->mapbase, obj->mapsize);
4091	    linkmap_delete(obj);
4092	    *linkp = obj->next;
4093	    obj_count--;
4094	    obj_free(obj);
4095	} else
4096	    linkp = &obj->next;
4097    }
4098    obj_tail = linkp;
4099}
4100
4101static void
4102unlink_object(Obj_Entry *root)
4103{
4104    Objlist_Entry *elm;
4105
4106    if (root->refcount == 0) {
4107	/* Remove the object from the RTLD_GLOBAL list. */
4108	objlist_remove(&list_global, root);
4109
4110    	/* Remove the object from all objects' DAG lists. */
4111    	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4112	    objlist_remove(&elm->obj->dldags, root);
4113	    if (elm->obj != root)
4114		unlink_object(elm->obj);
4115	}
4116    }
4117}
4118
4119static void
4120ref_dag(Obj_Entry *root)
4121{
4122    Objlist_Entry *elm;
4123
4124    assert(root->dag_inited);
4125    STAILQ_FOREACH(elm, &root->dagmembers, link)
4126	elm->obj->refcount++;
4127}
4128
4129static void
4130unref_dag(Obj_Entry *root)
4131{
4132    Objlist_Entry *elm;
4133
4134    assert(root->dag_inited);
4135    STAILQ_FOREACH(elm, &root->dagmembers, link)
4136	elm->obj->refcount--;
4137}
4138
4139/*
4140 * Common code for MD __tls_get_addr().
4141 */
4142static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4143static void *
4144tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4145{
4146    Elf_Addr *newdtv, *dtv;
4147    RtldLockState lockstate;
4148    int to_copy;
4149
4150    dtv = *dtvp;
4151    /* Check dtv generation in case new modules have arrived */
4152    if (dtv[0] != tls_dtv_generation) {
4153	wlock_acquire(rtld_bind_lock, &lockstate);
4154	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4155	to_copy = dtv[1];
4156	if (to_copy > tls_max_index)
4157	    to_copy = tls_max_index;
4158	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4159	newdtv[0] = tls_dtv_generation;
4160	newdtv[1] = tls_max_index;
4161	free(dtv);
4162	lock_release(rtld_bind_lock, &lockstate);
4163	dtv = *dtvp = newdtv;
4164    }
4165
4166    /* Dynamically allocate module TLS if necessary */
4167    if (dtv[index + 1] == 0) {
4168	/* Signal safe, wlock will block out signals. */
4169	wlock_acquire(rtld_bind_lock, &lockstate);
4170	if (!dtv[index + 1])
4171	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4172	lock_release(rtld_bind_lock, &lockstate);
4173    }
4174    return ((void *)(dtv[index + 1] + offset));
4175}
4176
4177void *
4178tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4179{
4180	Elf_Addr *dtv;
4181
4182	dtv = *dtvp;
4183	/* Check dtv generation in case new modules have arrived */
4184	if (__predict_true(dtv[0] == tls_dtv_generation &&
4185	    dtv[index + 1] != 0))
4186		return ((void *)(dtv[index + 1] + offset));
4187	return (tls_get_addr_slow(dtvp, index, offset));
4188}
4189
4190#if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
4191
4192/*
4193 * Allocate Static TLS using the Variant I method.
4194 */
4195void *
4196allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4197{
4198    Obj_Entry *obj;
4199    char *tcb;
4200    Elf_Addr **tls;
4201    Elf_Addr *dtv;
4202    Elf_Addr addr;
4203    int i;
4204
4205    if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4206	return (oldtcb);
4207
4208    assert(tcbsize >= TLS_TCB_SIZE);
4209    tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4210    tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4211
4212    if (oldtcb != NULL) {
4213	memcpy(tls, oldtcb, tls_static_space);
4214	free(oldtcb);
4215
4216	/* Adjust the DTV. */
4217	dtv = tls[0];
4218	for (i = 0; i < dtv[1]; i++) {
4219	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4220		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4221		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4222	    }
4223	}
4224    } else {
4225	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4226	tls[0] = dtv;
4227	dtv[0] = tls_dtv_generation;
4228	dtv[1] = tls_max_index;
4229
4230	for (obj = objs; obj; obj = obj->next) {
4231	    if (obj->tlsoffset > 0) {
4232		addr = (Elf_Addr)tls + obj->tlsoffset;
4233		if (obj->tlsinitsize > 0)
4234		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4235		if (obj->tlssize > obj->tlsinitsize)
4236		    memset((void*) (addr + obj->tlsinitsize), 0,
4237			   obj->tlssize - obj->tlsinitsize);
4238		dtv[obj->tlsindex + 1] = addr;
4239	    }
4240	}
4241    }
4242
4243    return (tcb);
4244}
4245
4246void
4247free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4248{
4249    Elf_Addr *dtv;
4250    Elf_Addr tlsstart, tlsend;
4251    int dtvsize, i;
4252
4253    assert(tcbsize >= TLS_TCB_SIZE);
4254
4255    tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4256    tlsend = tlsstart + tls_static_space;
4257
4258    dtv = *(Elf_Addr **)tlsstart;
4259    dtvsize = dtv[1];
4260    for (i = 0; i < dtvsize; i++) {
4261	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4262	    free((void*)dtv[i+2]);
4263	}
4264    }
4265    free(dtv);
4266    free(tcb);
4267}
4268
4269#endif
4270
4271#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4272
4273/*
4274 * Allocate Static TLS using the Variant II method.
4275 */
4276void *
4277allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4278{
4279    Obj_Entry *obj;
4280    size_t size, ralign;
4281    char *tls;
4282    Elf_Addr *dtv, *olddtv;
4283    Elf_Addr segbase, oldsegbase, addr;
4284    int i;
4285
4286    ralign = tcbalign;
4287    if (tls_static_max_align > ralign)
4288	    ralign = tls_static_max_align;
4289    size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4290
4291    assert(tcbsize >= 2*sizeof(Elf_Addr));
4292    tls = malloc_aligned(size, ralign);
4293    dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4294
4295    segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4296    ((Elf_Addr*)segbase)[0] = segbase;
4297    ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4298
4299    dtv[0] = tls_dtv_generation;
4300    dtv[1] = tls_max_index;
4301
4302    if (oldtls) {
4303	/*
4304	 * Copy the static TLS block over whole.
4305	 */
4306	oldsegbase = (Elf_Addr) oldtls;
4307	memcpy((void *)(segbase - tls_static_space),
4308	       (const void *)(oldsegbase - tls_static_space),
4309	       tls_static_space);
4310
4311	/*
4312	 * If any dynamic TLS blocks have been created tls_get_addr(),
4313	 * move them over.
4314	 */
4315	olddtv = ((Elf_Addr**)oldsegbase)[1];
4316	for (i = 0; i < olddtv[1]; i++) {
4317	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4318		dtv[i+2] = olddtv[i+2];
4319		olddtv[i+2] = 0;
4320	    }
4321	}
4322
4323	/*
4324	 * We assume that this block was the one we created with
4325	 * allocate_initial_tls().
4326	 */
4327	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4328    } else {
4329	for (obj = objs; obj; obj = obj->next) {
4330	    if (obj->tlsoffset) {
4331		addr = segbase - obj->tlsoffset;
4332		memset((void*) (addr + obj->tlsinitsize),
4333		       0, obj->tlssize - obj->tlsinitsize);
4334		if (obj->tlsinit)
4335		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4336		dtv[obj->tlsindex + 1] = addr;
4337	    }
4338	}
4339    }
4340
4341    return (void*) segbase;
4342}
4343
4344void
4345free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4346{
4347    Elf_Addr* dtv;
4348    size_t size, ralign;
4349    int dtvsize, i;
4350    Elf_Addr tlsstart, tlsend;
4351
4352    /*
4353     * Figure out the size of the initial TLS block so that we can
4354     * find stuff which ___tls_get_addr() allocated dynamically.
4355     */
4356    ralign = tcbalign;
4357    if (tls_static_max_align > ralign)
4358	    ralign = tls_static_max_align;
4359    size = round(tls_static_space, ralign);
4360
4361    dtv = ((Elf_Addr**)tls)[1];
4362    dtvsize = dtv[1];
4363    tlsend = (Elf_Addr) tls;
4364    tlsstart = tlsend - size;
4365    for (i = 0; i < dtvsize; i++) {
4366	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4367		free_aligned((void *)dtv[i + 2]);
4368	}
4369    }
4370
4371    free_aligned((void *)tlsstart);
4372    free((void*) dtv);
4373}
4374
4375#endif
4376
4377/*
4378 * Allocate TLS block for module with given index.
4379 */
4380void *
4381allocate_module_tls(int index)
4382{
4383    Obj_Entry* obj;
4384    char* p;
4385
4386    for (obj = obj_list; obj; obj = obj->next) {
4387	if (obj->tlsindex == index)
4388	    break;
4389    }
4390    if (!obj) {
4391	_rtld_error("Can't find module with TLS index %d", index);
4392	die();
4393    }
4394
4395    p = malloc_aligned(obj->tlssize, obj->tlsalign);
4396    memcpy(p, obj->tlsinit, obj->tlsinitsize);
4397    memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4398
4399    return p;
4400}
4401
4402bool
4403allocate_tls_offset(Obj_Entry *obj)
4404{
4405    size_t off;
4406
4407    if (obj->tls_done)
4408	return true;
4409
4410    if (obj->tlssize == 0) {
4411	obj->tls_done = true;
4412	return true;
4413    }
4414
4415    if (obj->tlsindex == 1)
4416	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4417    else
4418	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4419				   obj->tlssize, obj->tlsalign);
4420
4421    /*
4422     * If we have already fixed the size of the static TLS block, we
4423     * must stay within that size. When allocating the static TLS, we
4424     * leave a small amount of space spare to be used for dynamically
4425     * loading modules which use static TLS.
4426     */
4427    if (tls_static_space != 0) {
4428	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4429	    return false;
4430    } else if (obj->tlsalign > tls_static_max_align) {
4431	    tls_static_max_align = obj->tlsalign;
4432    }
4433
4434    tls_last_offset = obj->tlsoffset = off;
4435    tls_last_size = obj->tlssize;
4436    obj->tls_done = true;
4437
4438    return true;
4439}
4440
4441void
4442free_tls_offset(Obj_Entry *obj)
4443{
4444
4445    /*
4446     * If we were the last thing to allocate out of the static TLS
4447     * block, we give our space back to the 'allocator'. This is a
4448     * simplistic workaround to allow libGL.so.1 to be loaded and
4449     * unloaded multiple times.
4450     */
4451    if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4452	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4453	tls_last_offset -= obj->tlssize;
4454	tls_last_size = 0;
4455    }
4456}
4457
4458void *
4459_rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4460{
4461    void *ret;
4462    RtldLockState lockstate;
4463
4464    wlock_acquire(rtld_bind_lock, &lockstate);
4465    ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4466    lock_release(rtld_bind_lock, &lockstate);
4467    return (ret);
4468}
4469
4470void
4471_rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4472{
4473    RtldLockState lockstate;
4474
4475    wlock_acquire(rtld_bind_lock, &lockstate);
4476    free_tls(tcb, tcbsize, tcbalign);
4477    lock_release(rtld_bind_lock, &lockstate);
4478}
4479
4480static void
4481object_add_name(Obj_Entry *obj, const char *name)
4482{
4483    Name_Entry *entry;
4484    size_t len;
4485
4486    len = strlen(name);
4487    entry = malloc(sizeof(Name_Entry) + len);
4488
4489    if (entry != NULL) {
4490	strcpy(entry->name, name);
4491	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4492    }
4493}
4494
4495static int
4496object_match_name(const Obj_Entry *obj, const char *name)
4497{
4498    Name_Entry *entry;
4499
4500    STAILQ_FOREACH(entry, &obj->names, link) {
4501	if (strcmp(name, entry->name) == 0)
4502	    return (1);
4503    }
4504    return (0);
4505}
4506
4507static Obj_Entry *
4508locate_dependency(const Obj_Entry *obj, const char *name)
4509{
4510    const Objlist_Entry *entry;
4511    const Needed_Entry *needed;
4512
4513    STAILQ_FOREACH(entry, &list_main, link) {
4514	if (object_match_name(entry->obj, name))
4515	    return entry->obj;
4516    }
4517
4518    for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4519	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4520	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4521	    /*
4522	     * If there is DT_NEEDED for the name we are looking for,
4523	     * we are all set.  Note that object might not be found if
4524	     * dependency was not loaded yet, so the function can
4525	     * return NULL here.  This is expected and handled
4526	     * properly by the caller.
4527	     */
4528	    return (needed->obj);
4529	}
4530    }
4531    _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4532	obj->path, name);
4533    die();
4534}
4535
4536static int
4537check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4538    const Elf_Vernaux *vna)
4539{
4540    const Elf_Verdef *vd;
4541    const char *vername;
4542
4543    vername = refobj->strtab + vna->vna_name;
4544    vd = depobj->verdef;
4545    if (vd == NULL) {
4546	_rtld_error("%s: version %s required by %s not defined",
4547	    depobj->path, vername, refobj->path);
4548	return (-1);
4549    }
4550    for (;;) {
4551	if (vd->vd_version != VER_DEF_CURRENT) {
4552	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4553		depobj->path, vd->vd_version);
4554	    return (-1);
4555	}
4556	if (vna->vna_hash == vd->vd_hash) {
4557	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4558		((char *)vd + vd->vd_aux);
4559	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4560		return (0);
4561	}
4562	if (vd->vd_next == 0)
4563	    break;
4564	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4565    }
4566    if (vna->vna_flags & VER_FLG_WEAK)
4567	return (0);
4568    _rtld_error("%s: version %s required by %s not found",
4569	depobj->path, vername, refobj->path);
4570    return (-1);
4571}
4572
4573static int
4574rtld_verify_object_versions(Obj_Entry *obj)
4575{
4576    const Elf_Verneed *vn;
4577    const Elf_Verdef  *vd;
4578    const Elf_Verdaux *vda;
4579    const Elf_Vernaux *vna;
4580    const Obj_Entry *depobj;
4581    int maxvernum, vernum;
4582
4583    if (obj->ver_checked)
4584	return (0);
4585    obj->ver_checked = true;
4586
4587    maxvernum = 0;
4588    /*
4589     * Walk over defined and required version records and figure out
4590     * max index used by any of them. Do very basic sanity checking
4591     * while there.
4592     */
4593    vn = obj->verneed;
4594    while (vn != NULL) {
4595	if (vn->vn_version != VER_NEED_CURRENT) {
4596	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4597		obj->path, vn->vn_version);
4598	    return (-1);
4599	}
4600	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4601	for (;;) {
4602	    vernum = VER_NEED_IDX(vna->vna_other);
4603	    if (vernum > maxvernum)
4604		maxvernum = vernum;
4605	    if (vna->vna_next == 0)
4606		 break;
4607	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4608	}
4609	if (vn->vn_next == 0)
4610	    break;
4611	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4612    }
4613
4614    vd = obj->verdef;
4615    while (vd != NULL) {
4616	if (vd->vd_version != VER_DEF_CURRENT) {
4617	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4618		obj->path, vd->vd_version);
4619	    return (-1);
4620	}
4621	vernum = VER_DEF_IDX(vd->vd_ndx);
4622	if (vernum > maxvernum)
4623		maxvernum = vernum;
4624	if (vd->vd_next == 0)
4625	    break;
4626	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4627    }
4628
4629    if (maxvernum == 0)
4630	return (0);
4631
4632    /*
4633     * Store version information in array indexable by version index.
4634     * Verify that object version requirements are satisfied along the
4635     * way.
4636     */
4637    obj->vernum = maxvernum + 1;
4638    obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4639
4640    vd = obj->verdef;
4641    while (vd != NULL) {
4642	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4643	    vernum = VER_DEF_IDX(vd->vd_ndx);
4644	    assert(vernum <= maxvernum);
4645	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4646	    obj->vertab[vernum].hash = vd->vd_hash;
4647	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4648	    obj->vertab[vernum].file = NULL;
4649	    obj->vertab[vernum].flags = 0;
4650	}
4651	if (vd->vd_next == 0)
4652	    break;
4653	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4654    }
4655
4656    vn = obj->verneed;
4657    while (vn != NULL) {
4658	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4659	if (depobj == NULL)
4660	    return (-1);
4661	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4662	for (;;) {
4663	    if (check_object_provided_version(obj, depobj, vna))
4664		return (-1);
4665	    vernum = VER_NEED_IDX(vna->vna_other);
4666	    assert(vernum <= maxvernum);
4667	    obj->vertab[vernum].hash = vna->vna_hash;
4668	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4669	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4670	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4671		VER_INFO_HIDDEN : 0;
4672	    if (vna->vna_next == 0)
4673		 break;
4674	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4675	}
4676	if (vn->vn_next == 0)
4677	    break;
4678	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4679    }
4680    return 0;
4681}
4682
4683static int
4684rtld_verify_versions(const Objlist *objlist)
4685{
4686    Objlist_Entry *entry;
4687    int rc;
4688
4689    rc = 0;
4690    STAILQ_FOREACH(entry, objlist, link) {
4691	/*
4692	 * Skip dummy objects or objects that have their version requirements
4693	 * already checked.
4694	 */
4695	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4696	    continue;
4697	if (rtld_verify_object_versions(entry->obj) == -1) {
4698	    rc = -1;
4699	    if (ld_tracing == NULL)
4700		break;
4701	}
4702    }
4703    if (rc == 0 || ld_tracing != NULL)
4704    	rc = rtld_verify_object_versions(&obj_rtld);
4705    return rc;
4706}
4707
4708const Ver_Entry *
4709fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4710{
4711    Elf_Versym vernum;
4712
4713    if (obj->vertab) {
4714	vernum = VER_NDX(obj->versyms[symnum]);
4715	if (vernum >= obj->vernum) {
4716	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4717		obj->path, obj->strtab + symnum, vernum);
4718	} else if (obj->vertab[vernum].hash != 0) {
4719	    return &obj->vertab[vernum];
4720	}
4721    }
4722    return NULL;
4723}
4724
4725int
4726_rtld_get_stack_prot(void)
4727{
4728
4729	return (stack_prot);
4730}
4731
4732static void
4733map_stacks_exec(RtldLockState *lockstate)
4734{
4735	void (*thr_map_stacks_exec)(void);
4736
4737	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4738		return;
4739	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4740	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4741	if (thr_map_stacks_exec != NULL) {
4742		stack_prot |= PROT_EXEC;
4743		thr_map_stacks_exec();
4744	}
4745}
4746
4747void
4748symlook_init(SymLook *dst, const char *name)
4749{
4750
4751	bzero(dst, sizeof(*dst));
4752	dst->name = name;
4753	dst->hash = elf_hash(name);
4754	dst->hash_gnu = gnu_hash(name);
4755}
4756
4757static void
4758symlook_init_from_req(SymLook *dst, const SymLook *src)
4759{
4760
4761	dst->name = src->name;
4762	dst->hash = src->hash;
4763	dst->hash_gnu = src->hash_gnu;
4764	dst->ventry = src->ventry;
4765	dst->flags = src->flags;
4766	dst->defobj_out = NULL;
4767	dst->sym_out = NULL;
4768	dst->lockstate = src->lockstate;
4769}
4770
4771/*
4772 * Overrides for libc_pic-provided functions.
4773 */
4774
4775int
4776__getosreldate(void)
4777{
4778	size_t len;
4779	int oid[2];
4780	int error, osrel;
4781
4782	if (osreldate != 0)
4783		return (osreldate);
4784
4785	oid[0] = CTL_KERN;
4786	oid[1] = KERN_OSRELDATE;
4787	osrel = 0;
4788	len = sizeof(osrel);
4789	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4790	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4791		osreldate = osrel;
4792	return (osreldate);
4793}
4794
4795void
4796exit(int status)
4797{
4798
4799	_exit(status);
4800}
4801
4802void (*__cleanup)(void);
4803int __isthreaded = 0;
4804int _thread_autoinit_dummy_decl = 1;
4805
4806/*
4807 * No unresolved symbols for rtld.
4808 */
4809void
4810__pthread_cxa_finalize(struct dl_phdr_info *a)
4811{
4812}
4813
4814void
4815__stack_chk_fail(void)
4816{
4817
4818	_rtld_error("stack overflow detected; terminated");
4819	die();
4820}
4821__weak_reference(__stack_chk_fail, __stack_chk_fail_local);
4822
4823void
4824__chk_fail(void)
4825{
4826
4827	_rtld_error("buffer overflow detected; terminated");
4828	die();
4829}
4830
4831const char *
4832rtld_strerror(int errnum)
4833{
4834
4835	if (errnum < 0 || errnum >= sys_nerr)
4836		return ("Unknown error");
4837	return (sys_errlist[errnum]);
4838}
4839